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ABSTRACT 
 

Within this thesis, two ergonomics (i.e. seating comfort and long-distance driving 

fatigue problems) and two structural bio-mechanics (i.e. femur-fracture fixation and 

radius-fracture fixation) problems are investigated using musculo-skeletal multi-body 

dynamics and finite element computational analyses. 

Within the seating comfort problem analyzed, a complete-body finite element 

model is constructed and used to assess the effect of seat geometry and seating posture on 

the feel of comfort experienced by a seated human. 

Within the long-distance driving fatigue problem, musculo-skeletal analysis is 

employed to assess the extent of fatigue experienced by a driver through the evaluation of 

level of activity of his/her various muscles.  

Within the femur-fracture fixation problem, physiologically realistic loading 

conditions associated with active daily activities (i.e. cycling) are employed within a 

finite-element frame work to assess fracture fixation performance and durability of the 

implant. 

Within the radius-fracture fixation problem, the analysis developed within the 

femur-fracture fixation problem is further related to indicate the effects of other types of 

loadings (associated with additional daily activities) and improved biological and 

structural material model are employed. 

For all cases studied in the present work, relevant experimental data are used to 

validate the computational procedure employed. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

In the present work, a couple of ergonomics problems (i.e. seating comfort and 

long-distance driving fatigue) and two bio-mechanics (i.e. a femur-fracture and radius-

fracture implant-fixation) problems are investigated computationally. In each case, the 

relevant open-literature experimental results are used to judge validity/fidelity of the 

present computational approach. As will be shown in the subsequent four chapters, the 

overall agreement between the computation and experiment is reasonably suggesting that 

the present computational approach has the potential of greatly helping further advances 

in the area of ergonomics and bio-mechanics. 

The organization of the present thesis is as follows. In Chapter 2, the problem of 

seating comfort is presented and discussed. The main computational tool used in this 

section is the finite element method. In Chapter 3, the problem of long-distance driving 

fatigue is treated computationally. In this case, the finite element analysis is 

complemented by a musculo-skeletal multi-body dynamics analysis to create 

physiologically realistic loading conditions experienced by a human-body during driving. 

In Chapter 4, the problem of femoral-fracture fixation is analyzed using both the 

musculo-skeletal multi-body and structural bio-mechanics finite element analysis. The 

same approach is next extended in Chapter 5 to the problem of radius-fracture fixation. In 
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Chapter 6 and Chapter 7, a brief summary of the work is presented and recommendations 

are made for the future work, respectively. 
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CHAPTER TWO 
 

SEAT-CUSION AND SOFT-TISSUE MATERIAL MODELING AND A FINITE ELEMENT 
INVESTIGATION OF THE SEATING COMFORT FOR PASSENGER-VEHICLE 

OCCUPANTS 
 
 

ABSTRACT 

Improved seating comfort is an important factor that most car manufacturers use 

to distinguish their products from those of their competitors. In today’s automotive 

engineering practice, however, design and development of new, more comfortable car 

seats is based almost entirely on empiricism, legacy knowledge and extensive, time-

consuming and costly prototyping and experimental/field testing. To help accelerate and 

economize the design/development process of more-comfortable car seats, more 

extensive use of various computer aided engineering (CAE) tools will be necessary. 

However, before the CAE tools can be used more successfully by car-seat manufacturers, 

issues associated with the availability of realistic computer models for the seated human, 

the seat and the seated-human/seat interactions as well as with the establishment of 

objective seating-comfort quantifying parameters must be resolved.  

In the present work, detailed finite element models of a prototypical car seat and 

of a seated human are developed and used in the investigation of seated-human/seat 

interactions and the resulting seating comfort. To obtain a fairly realistic model for the 

human, a moderately detailed skeletal model containing 16 bone assemblies and 15 joints 

has been combined with an equally detailed ‘‘skin” model of the human. The intersection 
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between the two models was then used to define the muscular portion of the human. 

Special attention in the present work has been given to realistically 

representing/modeling the materials present in different sections of the car seat and the 

seated human. The models developed in the present work are validated by comparing the 

computational results related to the pressure distribution over the seated-human/seat 

interface with their open-literature counterparts obtained in experimental studies 

involving human subjects. 

Ii.1. INTRODUCTION 

Today, in the industrialized world, sitting is the most common working posture 

and perhaps the most frequent leisure posture. It is well-recognized that constrained 

sitting postures can lead to discomfort and health disorders (e.g. back, neck and shoulder 

pain, etc.) which translates into a major cost to society through missed work and reduced 

work-effectiveness/productivity [2.1]. Consequently, furniture manufacturers and car-

seats manufacturers are forced to more aggressively address seating ergonomics in order 

to gain a competitive edge. In the automotive industry, the ever increasing customer 

demand for vehicles with improved performance has been complimented by an equally 

strong demand for vehicles with improved comfort. As a result, vehicle manufacturers 

use car-seat/interior comfort as an important selling point and a way to distinguish 

themselves from their competitors. (Vehicle seats and the comfort level they can offer to 

the seated individual is the subject of the present work.) The current state of the car-seat 

manufacturing industry is such that development and introduction of new, more-
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comfortable car seats is based almost entirely on empiricism, legacy knowledge and 

extensive, time-consuming and costly prototyping and experimental/field testing. 64 

Considering the fact that Computer Aided Engineering (CAE) has made major 

contribution and has become an indispensible tool to many industries, one should expect 

that CAE should be used more aggressively by the car-seat manufacturing industry in 

order to address the issue of seating comfort. That is, the use of computer models of a 

human and seat, and the analysis of their interactions could facilitate, accelerate and 

economize the process of development and introduction of new, more comfortable car 

seats. Specifically, in the early stages of the seat-design process, a new design can be 

tested for its degree of comfort by carrying out computer simulations of the seated-human 

interactions with the seat. However, before these computer simulations can become 

reliable, high-fidelity seating-comfort assessment tools, a critical problem of 

identifying/defining the objectives and measurable comfort- quantifying 

parameters/measures and the establishment of their correlation with the subjective feeling 

of comfort has to be solved. Among the comfort-quantifying parameters, the ones most 

frequently cited are: (a) the average human/seat contact pressure; (b) the maximum 

human/seat contact pressure; (c) the human/seat contact-area size and (d) the extent of 

symmetry of the human/seat contact-area [2.2 – 2.14]. All of these comfort-quantifying 

parameters are based on measurements of the distribution of human/seat contact pressure 

over the contact area and these measurements commonly suffer from several limitations, 

e.g. [2.15,2.16]: (a) they are relatively difficult to perform reproducibly and with high 

accuracy; (b) the obtained contact-pressure distributions do not provide any information 
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about internal stresses and deformations of the human soft tissues and (c) the contact 

pressure distributions measured provide only information about the normal stresses at the 

contact human/seat interface whereas it is well established that significant shear stresses 

can be present at the human/seat interface, e.g. [2.17 – 2.22]. In addition, the contact-

pressure distribution-measurement approach has major deficiencies in its ability (or total 

lack thereof) to provide information about the level of muscular activity and about the 

magnitude of joint forces, two quantities which are certainly related to the seating 

comfort.  

To address some of the shortcomings of the contact-pressure distribution-

measurement approach, various human-body/seat coupled computer models and 

computational analyses were proposed. For example, a finite-element based modeling 

approach was introduced by Verver et al. [2.23] and a rigid-body mechanical based 

model was suggested by Langford et al. [2.24], etc. While these approaches were able to 

provide estimates for some of the parameters that are either difficult or impossible to 

obtain via direct measurements, so far however, it has not been possible to create a model 

that can calculate how muscular activity and joint forces are affected by changes in sitting 

conditions. The main reason for this is that the human body, in general, and its muscular 

and skeletal systems, specifically, is quite challenging mechanical systems to model. 

To address the limitations of the seating-comfort assessment computer modeling 

schemes mentioned above, the AnyBody Research Group [2.25] at Aalborg University in 

Denmark in collaboration with three furniture manufacturers recently initiated a research 

project entitled ‘‘The Seated Human’’. The main objective of this project is to define a 
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set of seating-comfort design criteria for chairs and to devise the means (based on 

rigorous computer modeling of the human musculoskeletal system) for reliable 

assessment of these criteria. Within the project, the recently-developed novel technology 

for computer modeling of the human-body mechanics and dynamics, namely the 

AnyBody Modeling System [2.25] and its associated public domain library of body 

models are being fully utilized and further developed. In its most recent rendition [2.26], 

the AnyBody Modeling System enables creation of a detailed computer model for a 

human body (including all important components of the musculoskeletal system) as well 

as examination of the influence of different postures and the environment on the internal 

joint forces and muscle activity.  

The earliest public-domain report related to the human body in a seated posture 

can be traced back to the pioneering analytical investigation conducted by Mandal [2.27, 

2.28] who used simple physics-based reasoning in place of the traditional empirical and 

subjective approaches. The main outcome of Mandal’s work was that it is beneficial from 

the spinal-loads reduction point of view to reduce the pelvic rotation (i.e. flexion between 

the pelvis and the thorax) below a normal value of 90° in the seated-human posture (by 

tilting the seat-pan forward and/or the backrest backward). In a recent multi-body 

dynamics based work carried out by Rasmussen et al. [2.29 – 2.32] it was shown that 

forward seat-pan inclination indeed can reduce the spinal-joint loads. However, forward 

seat-pan inclination was also found to increase the maximum muscle activity (i.e. muscle 

fatigue) unless sufficient friction is present at the human-buttocks/seat interface in which 
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case its spinal-joint load-reduction beneficial effect diminishes and is replaced with an 

comfort-compromising/harmful effect of inducing shear forces in the human soft tissue.  

While the work of Rasmussen et al. [2.29 – 2.32] has made major contributions to 

the field of seating comfort/discomfort, it has also revealed some of the limitations of the 

multi-body dynamics musculoskeletal approach with respect to modeling the interactions 

between the seated human and the seat. Simply stated, while the multi-body dynamics 

approach can in general capture the overall magnitudes of normal and shear interaction 

forces between the seated human and the seat, the distribution of the forces over the 

contact interface and their penetration into the human soft tissue could not be addressed. 

It appears clear that further progress in the area of seating-comfort modeling and 

simulation will come through additional advances in both the multi-body dynamics 

musculoskeletal and finite-element analyses of the seated-human/seat interactions and by 

finding ways to cooperatively and interactively engage these two modeling/simulation 

approaches.  

The main purpose of the present work is to introduce a fairly detailed finite-

element model for a seated human and for a generic car seat and to carry out a 

preliminary computational finite element analysis of the seated-human/seat interactions 

in order to help identify the factors which affect seating comfort/discomfort. A review of 

the literature carried out as part of the present work revealed several finite-element 

models of the seated human. However, all these models suffer from one or more serious 

limitations such as: (a) over-simplification of the geometry of the skeletal and/or 

muscular portions of the model [2.16, 2.19, 2.33 – 2.35]. As explained before, the 
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maximum human/seat contact pressure and its distribution are related to the seating 

comfort. It is well-established that the maximum contact pressure occurs under the ischial 

tuberosities and for a finite-element model to correctly predict the location of the 

maximum contact pressure it must provide an accurate geometrical description of the 

skeletal system of the human body; (b) excessive coarseness of the finite-element mesh 

used in order to reduce the computational cost [2.36 – 2.38] which yields to less accurate 

computational results and (c) geometrical details of the skeletal and the muscular systems 

are obtained from different sources and they are somewhat inconsistent [2.39].  

II.2. MODELING AND COMPUTATIONAL PROCEDURES 

II.2.1. Finite Element Model of the Car Seat  

A generic car-seat finite element model was constructed within this work, Figure 

2-1. First, a solid-geometrical model was developed using CATIA V5, a CAD computer 

program [2.40]. Then, the CAD model was pre-processed using HyperMesh, a general 

purpose analysis pre-processing software [2.41] to construct a meshed model with all the 

required sections, materials, joints, initial and boundary condition definitions.  

The car-seat model comprised five shell components (foot-rest, seat-base, seat-

pan back-face, back-rest back-face and head-rest back-face) and three solid components 

(seat-pan, back-rest and head-rest), Figure 2-1. The shell components were meshed using 

3,220 three-node first-order shell finite elements while the solid sections were discretized 

using 21,200 four-node first-order tetrahedron solid finite elements.  

The shell sections of the car seat were constructed using low-car- bon steel with a 

Young’s modulus of 210 GPa and a Poisson’s ratio of 0.3. Since the loading experienced 
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by the seat is solely caused by the weight of the seat occupant, and is hence not 

excessively high, plasticity of the steel components of the seat was not considered.  

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Finite element model for the car seat used in the present work. 

Solid sections of the seat were constructed using a hyperelastic foam (a poly-

urethane seat-cushion like) material. This material was represented using a non-linear 

isotropic compressible hyperelastic foam (i.e., a ‘‘hyperfoam”) material model. Within 

the hyperelastic foam material model formulation, the unique (generally non-linear) 

relation between the stress and the strain measures is represented using an elastic strain-

energy potential function, W, in the form: 
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where N (=1, 2, 3) is the polynomial model order μi, αi and βi are temperature-dependent 
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ˆˆˆ λλλ and λis are the principal stretches. Jel is 

the elastic-deformation volume-change ratio and Jth is the thermal-strain volume-change 

ratio. The coefficient βi controls the degree of compressibility and is related to the 

Poisson’s ratio, νi. It should be further noted that in order to account for the thin cell-wall 

closed-cell structure of the foam which allows wall buckling under pressure without 

lateral resistance/constraints, principal stresses/strains are assumed to be fully de-

coupled. In other words, the Poisson’s effect was neglected and the Poisson’s ratio set to 

zero. 
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Figure 2-2. (a) Uniaxial compression and (b) Simple shear test data used in the 
construction of the non-linear elastic part of the hyperfoam material model. 

In the present work, a second order (i.e. N = 2) strain energy hyperfoam potential 

function was used. Parameterization of this model was done by providing to 

ABAQUS/Standard (the general-purpose finite-element package used in the present work 

[2.50]) uni-axial-compression and simple-shear nominal stress vs. nominal strain 

experimental test data, Figures 2-2a and b. The data were obtained in an experimental 

investigation carried out in accordance with ASTM 3574-01 [2.48]. ABAQUS/Standard 

then performs a non-linear least-squares fit of the provided test data to determine the 

hyper-foam model parameters μi, αi and βi. This procedure yielded the following results: 

μ1 = 164.861 kPa, α1 = 8.88413, and β1 = 0.0, and μ2 = 0.023017 kPa, α2 = -4.81798, and 

β2 = 0.0. Within the hyper-foam material model used in the present work, principal 
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components of the stress (more precisely, principal components of the Cauchy stress 

tensor, σ) are obtained by differentiating the strain energy function W with respect to the 

principal stretches, λis, as: 

i
i

el
i

WJ
λ

λσ
∂
∂

= −1
         (2.2) 

Since the polyurethane foam modeled in the present work falls into the class of 

elastomeric-foam materials, which displays viscoelastic behavior, viscoelasticity was 

added to the hyperelastic model described above. To define the viscoelastic portion of the 

seat-cushion foam model, a time-based Prony-series model for the shear modulus was 

used. Since time dependency of the bulk modulus is generally quite weak in this type of 

material, the viscoelastic portion of the material model was confined to the shear 

modulus. Within this model, the time-dependent shear modulus, G(t), is defined in terms 

of the instantaneous shear modulus, G0, as:  

∑
=

−

−−=
N

i

t

i
ieGGtG

1
0 )1()( τ

       (2.3) 

where Gi (the relaxation magnitude) and τi (the relaxation time) are material dependent 

parameters and N is the order of the Prony-series (N = 2 in the present work).  

The viscoelastic portion of the foam model is defined in the present work by 

providing ABAQUS/Standard with the experimental normalized shear modulus, G(t)/G0 

vs. time relaxation data, Figure 2-3. These data are filled using a non-linear least squares 

procedure to define the viscoelastic material parameters, Gi and τi. This procedure yielded 
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the following results: G1 = 0.3003 and τ1 = 0.010014 s, and G2 = 0.1997 and τ2 = 0.1002 

s. It should be noted that while the viscoelastic part of the elastomeric-foam material; 

model was developed and parameterized in the present work, due to static nature of the 

computational analysis used, the role of viscoelasticity was immaterial. 

 

 

 

 

 

 

 
 
 

Figure 2-3. Normalized shear modulus relaxation data used in the construction of the 
viscoelastic portion of the hyperfoam material model. 

II.2.2. Finite Element Model of the Seated Human 

A new finite element model of the seated human was developed within the 

present work. The model was constructed by (somewhat) simplifying and re-posturing 

the human-body skeleton model downloaded from the AnyBody Repository [2.42], 

Figure 2-4, and combining it with a human-body shell model developed by F. Summer 

[2.43], Figure 2-5.  
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Figure 2-4. Finite element model for the skeletal portion of the seated human analyzed in 
the present work. 

The human-body skeleton model used included a fairly detailed anatomical description of 

the main bony structures (e.g. the iliac wings comprising the ischial tuberosities, sacrum, 

coccyx and femora). The intersection of the two models was used to define the portion of 

the human body filled with soft tissue (muscles, ligaments and fat). The outer surface of 

the model was covered with skin while the skeletal portion of the model was filled with 

(hollow) bones. The skin portion of the human body model was meshed using ca. 60,000 

three-node shell elements, the soft-tissue portion with ca. 135,000 four-node first-order 

tetrahedron elements while the bones were meshed using ca. 30,000 three-node shell 
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elements. Equivalent nodes were used between the skin and the soft tissue as well as 

between the soft tissue and the bones. 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. Finite element model for the muscular portion of the seated human 
analyzed in the present work. 

Three different materials (bones, soft-tissue muscle/fat and skin) are used in the 

construction of the seated-human finite-element model. 

Following the work done in Refs. [2.44,2.45], the skin was modeled as a linearly-

elastic isotropic nearly-incompressible material with a Young’s modulus of 0.15 MPa, a 

Poisson’s ratio of 0.46 and an average density of 1100 kg/m3. 
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Individual bones of the skeletal portion of the human-body model are constructed 

using a rigid (non-deformable) material with densities adjusted to yield accurate bone 

masses. The use of the rigid-material approximation was justified by the fact that the 

extents of deformation experienced by the bones are so small in comparison to that 

experienced by the soft tissue, that it can be ignored. Various (e.g. spherical, revolute, 

etc.) connectors were used to represent the joints connecting adjacent bones. For 

example, a spherical joint was placed between the lumbar spine and the pelvis, two 

spherical joints representing hips were placed between the iliac wings and the two femur 

bones, two revolute (knee) joints were placed between the femora and the lower legs, etc. 

A total of 15 connectors/joints were used in the skeletal portion of the human-body 

model.  

The muscular portion of the human-body was modeled using a Mooney–Rivlin 

hyperelastic isotropic material model. This model is capable of accounting for large (non-

linear) elastic deformations that soft tissue of the seated human can be subjected to, due 

to human/seat interactions. In the literature, it is well-established that a non-linear 

hyperelastic isotropic material model is a best compromise between physical reality and 

computational efficiency when dealing with the human-body soft tissue. However, the 

type(s) of the hyperelastic isotropic material model and their parameterizations vary 

widely [2.15, 2.16, 2.19, 2.39, 2.45 – 2.47]. Within the hyperelastic isotropic material 

model formulation, the unique (generally non-linear) relation between the stress and the 

strain measures is represented using an elastic strain-energy potential function. Within the 
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Mooney–Rivlin model used in the present work, the strain-energy potential function, W, 

is defined as: 

( ) ( ) ( ) ( )234
2

332211 1133 −+−+−+−= − JAJAJAJAW     (2.4) 

where J1, J2 and J3 are the three invariants of the Cauchy–Green strain tensor, C, defined 

as: 

FFC T=           (2.5) 

with F being the deformation-gradient tensor and superscript ‘‘T” denotes a transverse of 

the tensor in question. The three invariants of the C tensor are defined respectively as: 

)(1 CtraceJ =           (2.6) 

[ ])()(
2
1 22

2 CtraceCtraceJ −=        (2.7) 

( )3 detJ C=           (2.8) 

In Eq. 2.4, the material-dependent parameters A3 and A4 are related to the other two 

parameters, A1 and A2, as:  

213 2
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Following the investigations described in Refs. [2.15,2.16,2.19,2.39,2.45 – 2.47], using 

the experimental compression-force vs. displacement rigid flat-ended cylindrical-punch 

data reported in Ref. [2.49] and the finite-element/optimization procedure described in 

Appendix, A1, A2 and m were determined and respectively assigned the following values: 

1.65 kPa, 3.35 kPa and 0.49.  

Stress (more precisely, the second Piola–Kirchhoff stress tensor, S) is obtained by 

differentiating the strain energy function W with respect to the right Cauchy–Green strain 

tensor, C, as:  

C
WS
∂
∂

= 2           (2.11) 

The (true) Cauchy stress, σ, can then be computed from the corresponding second Piola–

Kirchoff stress, S, using the following component-form relation:  

1−= el
kjijrirk JFSFσ          (2.12) 

II. 2.3. Seated-human/seat Contact/interactions 

In the seated-human/car-seat interaction analyses carried out in the present work, 

the shell sections of the seat are first positioned to obtain the desired seat-pan and back-

rest inclination angles. Subsequently, their positions are kept fixed.  

The loading present in the seated-human/car-seat interaction analyses is 

associated solely with the weight of the seated-human. In other words, only the 

distributed gravity-based body forces were used to prescribe the loading. 
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The interactions between the seated human and the seat, between human feet and 

the foot-rest as well as potential human soft-tissue and seat self-interactions are analyzed 

in ABAQUS/Standard using a ‘‘penalty” contact method within which the penetration of 

the surfaces into each other is resisted by linear spring forces/contact-pressures with 

values proportional to the depth of penetration. These forces, hence, tend to pull the 

surfaces into an equilibrium position with no penetration. Contact pressures between two 

bodies are not transmitted unless the nodes on the “slave surface” contact the ‘‘master 

surface”. There is no limit to the magnitude of the contact pressure that could be 

transmitted when the surfaces are in contact. Transmission of shear stresses across the 

contact interfaces is defined in terms of a static and a kinetic/sliding friction coefficient 

and an upper-bound shear stress limit (a maximum value of shear stress which can be 

transmitted before the contacting surfaces begin to slide). A typical seated-human/car-

seat configuration analyzed in the present work is shown in Figure 2-6.  

As mentioned earlier, all the calculations in the present work were done using 

ABAQUS/Standard [2.50]. A typical quasi-static computational analysis of the seated-

human/car-seat interactions carried out on a 64 bit Windows XP based PC with two quad-

core 2.83 GHz Xenon processors (eight total cores) and 8 GB of RAM required ca. 30 

min of wall-clock time.  

II.2.4. Seated-human/car-seat Model Validation  

To validate the present model for the seated-human/car-seat assembly, the 

computational results obtained in the present work related to the distribution of pressure 

over the human/seat contact interface as well as the size and shape of this interface are 
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compared with their experimental counterparts reported in Ref. [2.23]. Toward that end, 

the seat-pan has been replaced with a cubical-shaped foam block with the dimension is 

L×W×H = 400 mm×400 mm×60 mm. The seat-pan is divided in three through-the-

thickness layers and each layer meshed using eight-node first-order solid elements with 

the dimensions L×W×H = 25 mm×25 mm×20 mm. In this way, the size of the upper-

face of the elements was made equal to the size of the pressure plates used in the 

experiments required in Ref. [2.23]. In Ref. [2.23], a 16×16 sensor pressure-mapping 

system with a sampling rate 3072 readings per second and a calibrated pressure range of 

0–200 mmHg was used. 

 

 

 

 

 

 

 

  

 

 
 

Figure 2-6. A typical configuration of the seated-human/car-seat assembly used in the 
present work. 
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An example of the comparison of the computational and the experimental results 

from Ref. [2.23] is displayed in Figure 2-7a and b. Due to copyright restrictions, the 

experimental results reported in Ref. [2.23], had to be read-off from this reference and re-

plotted Figure 2-7a. A comparison between the results presented in Figures 2-7a and b 

suggest that there is a quite good agreement between the experimental findings and the 

present modeling approach. Specifically, in both cases the maximum pressure is around 

30 kPa and it is located under the ischial tuberosities while the over-all size and shape of 

the contact-surface patches are quite comparable. Thus, to a first order of approximation, 

the present model can be relied on for further investigation of seated-human/car-seat 

interactions. 
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Fig. 2-7. A comparison between the contact pressure distribution over the seat-pan top 

surface obtained: (a) experimentally, in Ref. [1.23] and (b) computationally, in the 
present work. 

II.3. RESULTS AND DISSCUSSION 

The car-seat and the seated-human finite element models (as well as the seat-

cushion and the human soft-tissue material models) developed in the present work and 

reported in the previous section and in the Appendix enable preliminary investigation of 

comfort of the seated human. Two specific seating postures were considered: (a) a seating 

posture in which the feet of the human were supported by the foot rest (referred to as the 

‘‘supported feet case”), and (b) a seating posture where the feet were not supported by the 

foot rest (referred to as the ‘‘dangling feet case”). The results of this preliminary 

investigation are presented in the remainder of this section.  
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II.3.1. Contact-pressure Distribution and Contact Patch(es) Size/shape  

As stated earlier, distribution of the contact pressure over the seated human/car-

seat contact interface is an important factor in controlling seating comfort. Typical 

distributions of the contact pressure in the supported feet and dangling feet cases are 

shown in Figures 2-8a and b, respectively. The results displayed in these figures can be 

related to the seating comfort in the following ways: (a) the magnitude and the location of 

the maximum contact pressure can be determined. As was expected, the results displayed 

in Figure 2-8a show that the maximum pressure in the supported feet case was located at 

ischial tuberosities (a rounded protuberance associated with the lowest of the three pelvis 

bones), while Figure 2-8b shows that the maximum pressure in the dangling feet case was 

centered on the mid-span of the hamstring. Also, it should be noted that contact pressures 

are lower in the supported feet case; (b) the distribution of the pressure over the contact 

interface. It is well established that lower maximum contact pressure and more uniform 

distribution of the pressure over the human-body/car-seat contact area imply improved 

seating comfort; (c) the size and (d) the shape/symmetry of the contact area. Larger and 

more symmetric contact surface(s) are associated with increased seating comfort, in 

general.  

II.3.2. Distribution of Contact Shear Stresses 

As pointed out earlier, conventional experiments aimed at quantifying the 

interactions between a seated human and a car seat can only deal with normal contact 

stresses. However, contact shear stresses can also develop at the contact interface(s) 
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(particularly in the case when the backrest is reclined backward and the human is leaning 

against it). It is commonly known that prolonged exposure to contact shear stresses can   

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8. Typical contact pressure distribution over the human-body/car-seat interface 
for the case of a seat-human with: (a) supported feet and (b) dangling feet. 

cause soft-tissue trauma in wheel-chair bound disabled people, elderly or diabetic 

patients. In these individuals, the consequences of soft-tissue trauma can be quite severe 

and can lead to ulcers and tissue necrosis. While healthy individuals with proper skin 

sensation generally change their position/posture before significant tissue trauma occurs, 
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contact shear stresses clearly contribute to the perception of seating discomfort in these 

individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9. Typical contact shear stress distribution over the human-body/car-seat 
interface for the case of a seat-human with: (a) supported feet and (b) dangling feet. 

Typical distributions of the longitudinal contact shear stress in the supported feet 

and dangling feet cases are shown in Figures 2-9a and b, respectively. It should be noted 

that the results displayed in Figures 2-9a and b were obtained under the constant static 

friction coefficient condition of 0.5 (corresponding roughly to the case of a clothed 
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human body sitting on a fabric upholstered car seat.) Clearly, in the absence of friction, 

no contact shear stresses can be developed at the seated-human/car-seat interface. In 

should be further observed that somewhat higher longitudinal contact shear stresses exist 

in the supported feet case, the case for which the contact normal stresses were found to be 

lower.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10. Distributions of the von Mises equivalent stress over a section-cut along a 
sagittal (x-y) plane through the left ischial tuberosity for the case of a seat-human with: 

(a) supported feet and (b) dangling feet. 

II.3.3. Stresses Within the Human Body 
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The results presented in the previous two sections deal with contact normal and 

shear stresses, i.e. with the stresses present at the seated-human/car-seat contact 

interfaces. It is generally recognized that not only these contact stresses but also the 

stresses distributed within the human body in the regions adjacent to the contact interface 

can greatly contribute to the perception of seating discomfort. While at the present time 

these in-body stresses cannot be measured experimentally, they can be readily computed 

using finite element analyses of the human-body/car-seat interactions, like the one 

developed in the present work. Examples of the computed results of in-body stresses are 

displayed in Figures 2-10 – 2-12. In these figures, the distribution of von Mises 

equivalent stress over three vertical sections of the human body model is displayed for 

two seating posture cases. The results displayed in Figures 2-10a and b correspond to the 

case of a section-cut along a sagittal (x-y) plane through the left ischial tuberosity. A 

comparison of the results displayed in Figure 2-10a and b reveals that the in-body stresses 

are somewhat higher and concentrated around the ischial tuberosity in the supported feet 

case. While, in the dangling feet case, the stresses are mainly localized under the 

hamstring. Figures 2-11a and b correspond to the case of a sagittal plane cut through the 

coccyx (the tailbone, i.e. the final segment of the human vertebral column). The results 

displayed in these Figures show relatively low levels of the in-body stresses. This is 

justified by the fact that there is limited contact between the human soft tissue just below 

the coccyx and the seat pan, in both seating postures. Figures 2-12a and b display the case 

of a coronal (y-z) plane cut through the ischial tuberosities. A comparison of the results 

displayed in Figures 2-12a and b reveal significantly higher in-body stresses for the case 
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of supported feet. This finding is reasonable considering the fact that in the supported feet 

case the majority of the human upper-body weight is supported by the contact interfaces 

located directly below the ischial tuberosities. 

Again, it should be recalled that within the coordinate system chosen, x-axis is 

pointing forward, y-axis upward, and z-axis from left to right. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11. Distributions of the von Mises equivalent stress over a sagittal plane cut 
through the coccyx for the case of a seat-human with: (c) supported feet and (d) dangling 

feet. 

II.3.4. Seating Comfort Evaluation 
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To make the results displayed in Figures 2-8 – 2-12 useful, they should be 

compared with the (subjective) corresponding results of the human-subjects’ perception 

of the seating comfort. In such studies, the human-body model should be customized in 

order to most accurately describe the stature, physical build, weight, and the physical 

condition of the human test subject in question. This can be done through proper scaling 

of the generic human-body model like the one developed in the present work. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-12. Distributions of the von Mises equivalent stress over a coronal (y–z) plane 
cut through ischial tuberosities for the case of a seat-human with: (e) supported feet and 

(f) dangling feet. 
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It should be noted that, as mentioned earlier, maximum muscle activity also 

contributes to the perception of comfort. That is, if the voluntary muscle forces 

(controlled by the human central nervous system) required to maintain the given seating 

posture of the human are higher, then there will be an increased perception of discomfort. 

At the present time muscles are not treated as contractile actuation elements within the 

finite element models, like the one developed in the present work. However, muscle 

activities can be computed via the use of musculoskeletal multi-body dynamics programs 

like AnyBody Modeling System [2.25]. An example of the muscle activation results 

which can be obtained through the use of the AnyBody Modeling System is shown in 

Figure 2-13. In Figure 2-13, muscles are depicted as purple-grey lines while the extent of 

muscle activation can be denoted pictorially by the extent of muscle bulging. The results 

shown in Figure 2-13 were generated in our ongoing musculoskeletal investigation of 

seating comfort [2.51]. The two computational approaches to seating comfort analysis, 

i.e. the finite-element approach and the musculoskeletal multi-body dynamics approach, 

will be combined in our future work to construct a seating comfort metric. The starting 

point in this effort will be the so-called discomfort function proposed by Rasmussen and 

de Zee [2.31] which combines properly-weighted squared total shear force between the 

seat-pan and the human buttocks and the maximum muscle activity.  
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Figure 2-13. A musculoskeletal model used in the ongoing AnyBody System Modeling 
investigation of seating comfort [1.51]. 

II.4. SUMMARY AND CONCLUSIONS 

Based on the results obtained in the present work, the following main summary 

remarks and conclusions can be drawn: 

1. In order to investigate seated-human/car-seat interactions and their effect on 

human perception of seating comfort and fatigue, fairly detailed and anatomically correct 

finite element models have been developed for an average male human body and for a 

prototypical car seat. 
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2. One of the critical steps in development of the human-body model was a 

material-modeling of human soft tissue (skin, muscle and fat). This was accomplished 

through the use of a simple optimization procedure in conjunction with experimental and 

computational results pertaining to the force vs. displacement curves obtained in flat-head 

cylindrical rigid-punch indentation tests. 

3. The seated-human/car-seat assembly was validated by matching the available 

contact pressure experimental results from the literature with the computational results 

obtained in the present work. 

 4. A computational finite-element investigation of the seated-human/car-seat 

interaction was used to compute a number of quantities (contact pressure, contact shear 

stresses, and in-body stresses) which can be related to the seat-occupant’s perception of 

seating comfort. 

APPENDIX I(A). PARAMETERIZATION OF THE HUMAN SOFT-TISSUE 

MOONEY-RIVLIN HYPERELASTIC MATERIAL MODEL  

It is well-established that human soft-tissue behaves as a non- linear hyperelastic, 

viscoelastic, anisotropic and inhomogeneous material. To simplify mathematical 

modeling of the mechanical response of human soft-tissue (while retaining the physical 

reality) various assumptions are often utilized. Among these assumptions the following 

will be employed in the present work: (a) initial isotropy; (b) local homogeneity; and (c) 

time-invariant (i.e. non-visco-elastic) material behavior (mainly due to a lack of reliable 

data).  
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In accordance with the assumptions listed above, soft tissue is modeled using a 

Mooney–Rivlin hyperelastic material model which, in accordance with Eqs. 2.4, 2.9, and 

(10) contains three material-dependent parameters: A1, A2, and ν. These parameters were 

determined in the present work by fitting the compression- force vs. compression-strain 

data obtained in Ref. [2.48] (using a flat-head cylindrical rigid-punch indentation 

procedure) to the corresponding results obtained computationally in the present work (via 

the use of a finite element analysis). Details of this fitting procedure are described below.  

A simple schematic of the flat-head cylindrical rigid-punch indentation soft-tissue 

mechanical-property characterization test is depicted in Figure 2-A1. In Figure 2-A1, the 

key experimental quantities are denoted as: P – indentation force, h – specimen thickness, 

w– depth of indentation and a – the punch radius.  

 

 

 

 

Figure 2-A1. Schematic of typical flat-head cylindrical rigid-punch indentation 
experiment used to determine the mechanical properties of soft tissue. 

To determine the three unknown Mooney–Rivlin hyperelastic soft-tissue material 

parameters (A1, A2, and ν), an axisymmetric finite element model of the flat-head 

cylindrical rigid-punch indentation experiment was constructed, Figures 2-A2a and b. To 

ensure that the finite-element results are not significantly affected by the mesh size, a 

mesh-convergence analysis was undertaken for each choice of material parameters A1, A2, 



 35

and ν. Additional details of the finite element procedure used are provided below. The 

(static) finite element analysis yielded a unique P vs. w/h curve. To determine the optimal 

values of A1, A2, and ν, the finite-element analysis of the flat-head cylindrical rigid-punch 

indentation test was coupled with a simple gradient-free Nelder-Mead simplex 

optimization algorithm in which the sum of squares of the differences between the 

measure and computed indentation force, P, at a given level of indentation, w, was treated 

as the objective function and minimized. Additional details of the optimization procedure  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-A2. (a) The initial, and (b) a deformed finite-element mesh used in the present 
investigation of the flat-head cylindrical rigid-punch indentation experiment. 
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used are provided below. The resulting optimal values of A1, A2, and ν are reported in  

Section II.2.2. An example of the typical agreement between the experimental and the 

computational P vs. w results obtained in the present work is displayed in Figure 2-A3.  

As mentioned above, the finite-element model employed in this portion of the 

work was two-dimensional axisymmetric and based on a finite-deformation formulation. 

The model was meshed using quadrilateral CAX8H and triangular CAX6H quadratic 

elements in order to improve the ability of the model to deform to large strains. The flat-

headed cylindrical punch was modeled as a rigid body with a radius of 3 mm and a fillet 

radius of 0.2 mm. Punch/soft-tissue sample contact was treated as frictionless. To 

simulate the indentation test, a vertical displacement was prescribed, and the 

corresponding reaction force at the punch reference node was calculated. The bottom 

surface of the soft-tissue sample was constrained in the vertical direction to account for 

testing on a hard substrate and assigned a frictionless-type contact/boundary condition. 

Only the loading behavior of the soft-tissue material was investigated and, hence, the 

dissipative components of the response were neglected.  

As mentioned above, to carryout model parameterization (i.e. parameter 

identification), an iterative inverse finite-element problem was constructed so that the 

unknown material-model parameters are determined from the condition that a satisfactory 

agreement is attained between model-predicted and experimentally-measured load vs. 

nominal strain curves. Clearly, parameter identification is an optimization problem in 

three-dimensional A1– A2 –ν parameter space with the objective function (to be 

minimized) being the mean squared error (MSE) between the modeled and experimental 
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force vs. nominal strain curves. Optimization was carried out by coupling HyperStudy 

computer software from Altair Engineering [2.52] with ABAQUS/Standard. To increase 

the likelihood of finding the global solution, rather than a local minimum, the 

optimization algorithm was employed using different initial points in the parameter 

space. An optimization termination condition was defined as either a maximum of 1000 

iterations or the normalized simplex diameter smaller than 0.0001. A typical parameter 

identification analysis carried out on a 64 bit Windows XP based PC with two quad-core 

2.83 GHz Xenon processors (eight total cores) and 8 GB of RAM required ca. 40 min of 

wall-clock time. 

 

 

 

 

 

 

 

 

 

 

Figure 2-A3. Typical agreement between the experimental and the computational results 
pertaining to the flat-head cylindrical rigid-punch indentation experiment. 
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CHAPTER THREE 
 

MUSCULOSKELETAL COMPUTATIONAL ANALYSIS OF THE INFLUENCE OF CAR-
SEAT DESIGN/ADJUSTMENTS ON LONG-DISTANCE DRIVING FATIGUE 

 
 

ABSTRACT 

The main causes for long-distance driving fatigue experienced by vehicle drivers 

is investigated computationally using musculoskeletal modeling and simulation methods. 

A rigid-body model of a prototypical adjustable car-seat is constructed as a part of the 

present work and combined with a public-domain musculoskeletal model of a seated 

human. Seated-human/car-seat interactions associated with typical seating postures of the 

vehicle driver are analyzed using the inverse-dynamics approach while the “minimum-

fatigue” criterion is utilized to deal with the muscle-redundancy problem (i.e. with the 

problem that human body contains more muscles than what would be typically needed to 

drive various body joints). 

The results obtained show that various seat adjustments (e.g. back-rest inclination, 

seat-pan horizontal track position, etc.), driver’s back supports (e.g. presence/absence of 

lumbar support) and the nature of seat upholstery (e.g. fabric vs. vinyl) can have complex 

influence on the muscle activation, joint forces, soft-tissue contact normal and shear 

stresses, all of which not only affect the comfort perception of the driver but also their 

feel of fatigue. Subsequently, the results of the present work along with relevant public-

domain literature findings (e.g. subjective driving-fatigue assessments provided by 
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human test subjects and human-body/seat contact-force measurements) are used to 

construct a preliminary long-distance driving-fatigue function. 

III.1. INTRODUCTION 

Today, in the industrialized world, sitting is the most common working posture 

and perhaps the most frequent leisure posture. It is well-recognized that constrained 

sitting postures can lead to discomfort and health disorders (e.g. back pain, neck-shoulder 

complaints, etc.) causing a major cost to the society through missed work and reduced 

work-effectiveness/productivity [3.1]. Consequently, furniture manufacturers and car-

seats manufacturers are forced to more aggressively address seat ergonomics in order to 

gain a competitive edge. In the automotive industry, the ever increasing demand by the 

customers for vehicles with improved performance has been complimented by an equally 

strong demand for vehicles with improved comfort. As a result, vehicle manufacturers 

use car-seat/interior comfort as an important selling point and a way to distinguish 

themselves from their competitors. Car seats and their role in the subjective perception of 

long-distance driving fatigue is the subject of the present work. The state of the car-seat 

manufacturing industry today is that the development and introduction of new, more-

comfortable car seats is based almost entirely on empiricism, legacy knowledge and 

extensive, time-consuming and costly prototyping and experimental/field testing. 

Considering the fact that Computer Aided Engineering (CAE) has made major 

contribution and has become an indispensible tool for many industries, one should expect 

that CAE should be used more aggressively by the car seat manufacturing industry in 

order to address the issue of seating comfort. That is, the use of computer models of 
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human and seat and the analysis of their interactions could facilitate, speed-up and 

economize the process of development and introduction of new, more comfortable car 

seats. Specifically, in the early stages of the seat-design process, a new design can be 

tested for its degree of comfort by carrying out computer simulations of the seated-human 

interactions with the seat. However, before these computer simulations can become 

reliable/high-fidelity seating-comfort assessment tools, a critical problem of 

identifying/defining the objectives and measurable comfort-quantifying 

parameters/measures and the establishment of their relations with the subjective feeling 

of comfort/fatigue has to be solved. Among the comfort-quantifying parameters the ones 

most frequently cited are: (a) the average human/seat contact pressure; (b) the maximum 

human/seat contact pressure; (c) the human/seat contact-area size and (d) the extent of 

symmetry of the human/seat contact-area [3.2 – 3.14]. All these comfort-quantifying 

parameters are based on measurements of the distribution of human/seat contact pressure 

over the contact area and these measurements commonly suffer from several limitations 

[e.g. 3.15,3.16] (a) they are relatively difficult to perform reproducibly and with high 

accuracy; (b) the obtained contact-pressure distributions do not provide any information 

about internal stresses and deformations of the human soft tissues; (c) the contact 

pressure distributions measured provide only information about the normal stresses at the 

contact human/seat interface whereas it is well established that significant shear stresses 

can be present at the human/seat interface [e.g. 3.17 – 3.22]. In addition, a major 

deficiency of the contact-pressure distribution-measurement approach is that it does not 

provide any information about the level of muscular activity and about the magnitude of 
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joint forces, two quantities which are certainly related to the seating comfort and fatigue 

perception. 

To address some of the limitations of the contact-pressure distribution-

measurement-approach, various human-body/seat coupled computer models and 

computational analyses have been proposed. For example, a finite-element based 

modeling approach was introduced by Verver et al. [3.23], a rigid-body mechanics based 

model was suggested by Langsfeld et al.[3.24], etc. While these approaches were able to 

provide estimates for some of the parameters that are either difficult or impossible to 

obtain via direct measurements, so far however, it has not been possible to create a model 

that can calculate how muscular activity and joint forces are affected by changes in sitting 

conditions. The main reason for this is that the human body, in general, and its muscular 

and skeletal systems, specifically, are quite challenging mechanical systems to model. 

To address the limitations of the seating-comfort-assessment computer modeling 

schemes mentioned above, the AnyBody Research Group [3.25] at Aalborg University in 

Denmark in collaboration with three furniture manufacturers initiated recently a research 

project entitled ‘‘The Seated Human’’. The main objective of this project is to define a set 

of seating-comfort design criteria for chairs and to devise the means (based on rigorous 

computer modeling of the human musculo-skeletal system) for reliable assessment of 

these criteria. Within the project, the recently-developed novel technology for computer 

modeling of the human-body mechanics and dynamics, namely the AnyBody Modeling 

System [3.25] and its associated public domain library of body models are being fully 

utilized and further developed. In its most recent rendition [3.26], the AnyBody Modeling 
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System enables creation of a detailed computer model for the human body (including all 

important components of the musculo-skeletal system) as well as examination of the 

influence of different postures and the environment on the internal joint forces and 

muscle activity. 

The earliest public-domain report related to the human body in a seated posture 

can be traced back to the pioneering analytical investigation conducted by Mandal [3.27, 

3.28] who used simple physics-based reasoning in place of the traditional empirical and 

subjective approaches. The main outcome of Mandal’s work was that it is beneficial from 

the spinal-loads reduction point of view to reduce the pelvic rotation (i.e. flexion between 

the pelvis and the thorax) below a normal value of 90° in the seated-human posture (by 

tilting the seat-pan forward and/or the backrest backward). Moreover, in a recent work 

carried out by Rasmussen et al. [3.29 – 3.32] it was shown that forward seat-pan 

inclination indeed reduces the spinal-joint loads. However, it may also increase the 

maximum muscle activity (i.e. muscle fatigue) unless sufficient friction is present at the 

human-buttocks/seat interface in which case its spinal-joint load-reduction beneficial 

effect diminishes and is replaced with an comfort-compromising/harmful effect of 

inducing shear forces in the human soft tissue. 

The main objective of the present work is to explore the capabilities of the 

AnyBody Modeling System in predicting the aspects of human-body/car-seat interactions 

which affect car-driver fatigue during long-distance driving and to device a long-distance 

driving-fatigue function. The issue of long-distance driving induced fatigue in drivers 

was addressed by Michida et al. [3.41] using laboratory and on-road tests. These tests 
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involved subjective evaluations of fatigue provided by human test subjects as well as 

objective measurements obtained using contact-pressure sensor-array mats and non-

invasive electromyography (EMG, a muscle activity measuring technique). The results 

obtained by Michida et al. [3.41] can be summarized as follows: 

(a) While the interactions between human-body and the car-seat pan could 

contribute to seating discomfort via contact shear stresses (can in general lead to soft-

tissue trauma) and via normal contact pressures, the interactions between the car-driver’s 

back and seat back-rest tend to play a critical role in increasing long-distance driving 

fatigue; 

(b) In general, three main back/back-rest contact conditions were identified which 

are conducive to long-distance driving fatigue: (i) insufficient lumbar support; (ii) 

insufficient thorax support and (iii) excessive thorax support; and 

(c) As will be discussed in greater detail in Section III, the aforementioned three 

driving-fatigue controlling factors can be related to the kinematics of pelvis and lumbar 

and thoracic regions of the spine and with the required activities of the muscles to 

maintain the most comfortable seating posture. 

The organization of the paper is as follows. A brief overview of the AnyBody 

Modeling System is provided in Section III.2.1. The musculoskeletal human-body model, 

the concepts of muscle recruitment and muscle activity envelope, the car-seat model and 

the issues related to seated-human/car-seat kinematics and contact interactions are 

discussed in Sections III.2.2 - III.2.6. The definition of the problem analyzed in the 

present work is discussed in Section III.2.7. The results obtained in the present work are 
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presented and discussed in Section III.3. A discussion of the driving fatigue-relevant 

public-domain literature and the formulation of a preliminary long-distance driving-

fatigue function are presented in Section III.4. The main conclusions resulting from the 

present work are summarized in Section III.5. 

III.2. MODELING AND COMPUTATIONAL PROCEDURES 

III.2.1. The AnyBody Modeling System [2.25] 

The AnyBody Modeling System [3.25] developed at Aalborg University and used 

in the present work is a general-purpose musculoskeletal modeling and simulation 

program. The essential features of this computer program can be summarized as follows: 

(a) The musculoskeletal model is typically constructed as a standard multi-body 

dynamics model consisting of rigid bodies, kinematic joints, kinematic drivers and 

force/moment actuators (i.e. muscles) which can be solved using standard multi-body 

dynamics simulation methods; 

(b) Complex geometries of the muscles and their spatial arrangement/ interactions 

(e.g. muscles wrapping around other muscles, bones, ligaments, etc.) can be readily 

modeled within AnyBody Modeling System [3.25]; 

(c) It is well-established that a typical musculoskeletal system suffers from the so-

called “muscle redundancy problem”: i.e. the number of muscles available is generally 

larger than those needed to drive various body joints. Within the living humans and 

animals, this problem is handled by their Central Nervous System (CNS) which controls 

muscles activation/recruitment. To mimic this role of the CNS, the AnyBody Modeling 

System [3.25] offers the choice of several optimization-based muscle-recruitment criteria; 
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(d) A typical musculoskeletal multi-body dynamics problem is solved using 

computationally-efficient inverse dynamics methods within which the desired motion is 

prescribed while the muscle activity required to produce this motion is computed; 

(e) Within the AnyBody Modeling System [3.25], the muscle recruitment problem 

is solved using an optimization-based approach in the form:  

Minimize the objective function: 

)( )(MfG           (3.1) 

Subjected to the following constraints: 

dCf =            (3.2) 

0)( ≥M
if  { })(,...,1 Mni∈         (2.3) 

where the objective function G (a scalar function of the vector of n(M) unknown muscle 

forces, f(M)), defines the minimization object of the selected muscle-recruitment criterion 

(assumed to mimic the one used by the CNS). Eq. 3.2 defines the condition for dynamic 

mechanical equilibrium where C is the coefficient matrix for the “unknown” 

forces/moments in the system while d is a vector of the “known” (applied or inertia) 

forces. The forces appearing in vector f in Eq. 3.2 include the unknown muscle forces, 

f(M), and the joint-reaction forces, f(R). Eq. 3.3 simply states that muscles can only pull 

(not push) and that the upper bound for the force in each muscle fi
(M) i  corresponding 

muscle strength, Ni; 
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(f) While there are a number of functional forms for the objective function, G, the 

one most frequently used is the so-called “min/max” form within which the objective: 

function (to be minimized) is defined as the maximum muscle activity defined for each 

muscle i as fi
(M)/Ni, i.e.: 

( )( ) ( )i
M

i
M NffG /max )(= ;        (3.4) 

This formulation offers several numerical advantages over other popular forms of 

G and, in addition, it appears to be physiologically sound. That is, under the assumption 

that muscle fatigue is directly proportional to its activity, Eqs. 3.1 and 3.4 essentially state 

that muscle recruitment is based on a minimum muscle-fatigue criterion; 

(g) The problem defined by Eqs. 3.1 – 3.4 can be linearized using the so-called 

“bound formulation” [3.33] resulting in a linear programming problem with muscle 

forces and joint reaction forces as free variables. Relations between these two types of 

forces are next used to eliminate the joint reaction forces yielding a linear programming 

problem with the number of unknowns equal to the number of muscles in the system; and 

(h) While for a fairly detailed full-body model containing around one thousand 

muscles, this constitutes a medium-to-large size problem which can be readily solved by 

a variety of design-optimization methods (e.g. Simplex, Interior-point methods, etc.), the 

min/max problem is inherently indeterminate and must be solved iteratively. This can be 

rationalized as follows: The min/max criterion only deals with the maximally-activated 

muscles and with muscles which help support the maximally-activated muscles. Since the 

system, in general, may contain muscles that have no influence on the maximum muscle 

activity in the system, the forces in these muscles are left undetermined by the min/max 
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formulation presented above. To overcome this shortcoming, the muscle-recruitment 

optimization problem is solved iteratively, so that each iteration eliminates the muscles 

with uniquely determined forces and the procedure is repeated until all muscle forces are 

determined. 

III.2.2. Musculoskeletal Human-body Model 

The musculoskeletal model of the human body used in the present work was 

downloaded from the public domain AnyScript Model Repository [3.34]. The model was 

originally constructed by AnyBody Technology using the AnyBody Modeling System 

[3.25] following the procedure described in details by Damsgaard et al. [3.26]. 

Model Taxonomy: The musculoskeletal human-body model includes: (a) an arm/shoulder 

assembly containing 114 muscle units on each side of the body and having a morphology 

defined by Van der Helm [3.35], (b) a spine model developed by de Zee et al. [3.36] 

comprising sacrum, all lumbar vertebrae, a rigid thoracic-spine section, and a total of 158 

muscles, and (c) a pelvis and lower extremity model with a total of 70 muscles. In total, 

the model contains more than 500 individual muscle units and, hence, can be considered 

as a fairly detailed description of the human musculo-skeletal system. The 

anthropometrical dimensions of the model are selected in such a way that they roughly 

correspond to a 50th percentile European male. 

Segments and Joints: Within the model, the bodies (referred to as the “segments” within 

the AnyBody Modeling System) are treated as rigid with their mass/inertia properties 

derived from mass and shape of the associated bone and the soft tissue that is allotted to 

the bone. Joints in the human body are treated as idealized frictionless kinematic 
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constraints between the adjoining segments. Both standard kinematic joints (e.g. 

spherical joints for the hips, hinge joints for the knees, etc.) as well as specially-

developed joints (e.g. those used to represent kinematic constraints associated with 

floating of the scapula on the thorax) are employed. 

Muscles: Muscles are treated as string contractile force –activation elements which span 

the distance between the origin and the insertion points through either the via points or 

by wrapping over the surfaces which stand on their way. Muscle wrapping problem is 

treated using a shortest-path contact-mechanics algorithm. Due to the fact that the 

problem considered in the present work is static, muscles are modeled as being isometric 

(i.e. muscle strength is considered as being constant rather than being a function of the 

body posture and the rate of contraction). For the same reason, passive elasticity of 

muscles (i.e. the resistance of the muscles to stretching) is not considered. 

Model Validations: The mechanics of the model is implemented as a full three-

dimensional Cartesian formulation and includes inertial body forces (in the static problem 

under consideration, only gravity inertial forces are present). Integral validation of whole-

body musculoskeletal models is very difficult to conduct. To the best knowledge of the 

present authors, validation of the whole-body musculo-skeletal model is still lacking (due 

to major challenges which would be associated with such validation). However, various 

subsystems of the whole-body model were validated separately. For example: (a) The 

lumbar spine model was validated by de Zee et al., [3.36] by comparing the model 

prediction with in vivo L4-5 intradiscal pressure measurements of Wilke et al. [3.37]; (b) 

de Jong et al. [3.38] validated the lower extremity model by comparing model-predicted 
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muscle activations and pedal forces with their experimental counterparts obtained in 

pedaling experiments; an (c) The shoulder model was validated in the early work of Van 

der Helm [3.35]. 

III.2.3. The Muscle Activity Envelope 

As originally recognized by An et al. [3.39], the min/max muscle-recruitment 

formulation, discussed in Section III.2.1, defines effectively a minimum fatigue criterion 

as the basis for muscle recruitment, i.e. the aim of the proposed muscle-recruitment 

strategy is to postpone fatigue of the “hardest-working” muscle(s) as far as possible. The 

physiological consequence of this strategy is that muscles tend to form groups with 

muscles within the same group having comparable activity levels. In particular, in the 

muscle group associated with the maximum muscle activity there will be usually many 

muscles which, in a coordinated manner, carry a portion of the load comparable with 

their individual strengths. Consequently, in this group, many muscles will have the same 

activity level, which will be referred to as “the muscle activity envelope”. The linearity of 

the reformulated min/max criterion discussed earlier guarantees that the optimization 

problem defined by Eqs. 3.1 – 3.3, is convex and, hence, that the solution to the problem 

is unique and corresponds to the global optimum. In other words, there is no other muscle 

recruitment strategy which can reduce the muscle-activity envelope further. Moreover, 

since the muscle activity envelope represents the maximum muscle activation in the 

model, it can be interpreted as the fraction of maximum voluntary contraction necessary 

to support the imposed load (gravity in the present case) while maintaining the prescribed 

posture. Thus, the muscle-activity envelope appears to be an important 
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parameter/measure for ergonomic-design optimization, in the sense that designs which is 

associated with lower envelope levels may be perceived as less fatigue-inducing. 

III.2.4. Car-seat Model 

A rigid-body model of a prototypical seat is developed for use in the present 

work, Figure 3-1. The car seat model comprises of the following rigid bodies: head-rest, 

back-rest, seat-pan, leg-rest and the foot-rest. Revolute joints were used to enable back-

rest and seat-pan inclination angle adjustment and a prismatic joint was used for seat 

longitudinal-track position adjustment. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3-1. Rigid-body model for the car seat used in the present work. 
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To obtain the desired posture of the human for a given adjusted configuration of 

the car-seat (linear and angular) kinematic links were placed at the seated-human/seat 

contact interfaces (at the back-rest and at the seat-pan). However, these links were not 

allowed to transmit any forces/moments. As will be discussed below, human-body/car-

seat contact forces have been accounted for through the use of “support points”. 

III.2.5. Seated-human/Car-seat Kinematics 

As mentioned above, the car-seat can be adjusted, as needed, by assigning proper 

values to the car-seat joint degrees of freedom. Due to the presence of the human-

body/car-seat kinematic links, the human body acquires the appropriate seating posture 

for each given set of car-seat adjustments. In the process of acquiring the appropriate 

seating posture, kinematics of the spine is adjusted in accordance with the so-called 

“spinal rhythm” algorithm. Within this algorithm, a single input, the pelvis-thorax angle, 

is used to determine the three rotational-joint angles of adjacent vertebrae (under a 

condition that the passive-elastic elements of the spine are able to force the spine to act 

kinematically as an elastic beam). The physical soundness of the spinal-rhythm algorithm 

for the seating posture has been validated by Rasmussen and de Zee using motion capture 

experiments [3.32]. 

In acquiring the seated position for the human, an additional algorithm was 

employed. This algorithm controls the relative magnitudes of hip flexion and 

pelvis/thorax flexion. Following the experiments of Bell and Stigant [3.40], the ratio of 

the two angles was set to 2. That is, for a given value of the angle between the thorax and 

the thigh, the hip-joint flexion angle is twice that of the spine flexion angle. 
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III.2.6. Seated-human/Car-seat Contact Interactions 

To quantify the extent of and to account for the distributed nature of the human-

body/car-seat contact interactions, a number of support points are introduced over the 

back-rest, seat-pan and the foot-rest surfaces. These support points allow the transfer of 

reaction forces to the car-seat support elements. To quantify the contact reaction forces at 

the support points, the so-called “supporting elements” are used which can provide 

compressive reaction forces, Ri, (i is the support-element number) and tangential/friction 

forces, Ffi, (the maximum values of which is μRi, where μ is the (input) friction 

coefficient. It should be noted that the compressive reaction forces are perpendicular to 

the support surfaces while tangential force can be in any direction perpendicular to the 

corresponding compressive force. 

The reaction forces Ri and Ffi are unknown for a given seating posture and must 

be determined. However, due to the fact that a large number of support points were added 

in order to assess the distribution of contact forces over the seated-body/car-seat contact 

interfaces, the problem is made statically indeterminate and the solution cannot be 

obtained by simply solving the mechanical equilibrium equations. To overcome this 

problem, the unknown contact forces, Ri , are normalized using a large value of the 

“artificial-muscle” strength, Ni, and added to the vector of unknown forces fi in Eq.3.2. 

The seated-human/car-seat contact forces are then obtained by invoking the same muscle-

recruitment algorithm discussed in Section III.2.1. This approach, thus, treats the human-

body/car-seat contact problem as follows: (a) the human body is postulated to use the 

available support points at the backrest, seat-pan and the foot-rest to minimize its muscle 
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activity and (b) by choosing a large value of the artificial-muscle strength, the supporting 

elements are prevented from dominating the anatomic-muscle recruitment process. 

 

 

 

 

 

 

 

 

 

 

Figure 3-2. The musculoskeletal model of a human sitting in the car-seat developed in 
the present work. 

III.2.7. Problem Definition 

To analyze long-distance driving fatigue, the human-body model reviewed in 

Section III.2.2 is first placed in the car-seat described in Section III.2.4. Two additional 

environment segments are then added, one representing the brake pedal/accelerator 

assembly while the other representing the steering column. Then the human-body was 

repositioned in accordance with a typical posture associated with vehicle driving. This 
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involved placing the driver’s hands on the steering wheel, positioning of his right foot on 

the accelerator pedal while having his left foot resting on the foot-rest/vehicle-floor. In 

addition, neck flexion was adjusted to ensure straight-forward vision of the driver. A 

typical driving posture used in the present work is displayed in Figures 3-3(a)-(b). To 

improve clarity, human-body muscles are not shown in Figures 3-3(a)-(b). To mimic the 

reaction moment experienced by the driver’s right foot during the act of acceleration, a 

20Nm contact moment is applied to the right-foot/accelerator pedal revolute joint. Where 

applicable, to account for the presence/absence of lumbar support, the support points on 

the lumbar-section of the spine were added/removed accordingly. 
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Figure 3-3. (a) Isometric and (b) side-view of the car driver-seat assembly. 

III.3. RESULTS AND DISCUSSION 

In this section, the main results obtained in the present work are presented and 

discussed. First, the “reference-case” is considered and the key metrics related to long-

distance driving fatigue are introduced. Then, several parametric studies are performed 

within which the effects of key driver/seat kinematic and interaction parameters (e.g. 

seat-back inclination angle, back-rest/seat-pan upholstery-controlled friction coefficient, 

seat-pan track/longitudinal position, and the absence/presence of lumbar support) are 

investigated. 

III.3.1. The Reference Case 

Within the reference case, the following driver/seat kinematic/interaction 

parameters are used: back-rest (backward) inclination angle = 10º; seat-height = 600 mm 
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(relative to the foot-rest); human-body/car-seat friction coefficient = 0.5 (corresponds to 

atypical value associated with woven wool- or cotton-based fabric seat-upholstery); seat-

pan track position = 830 mm (corresponds to the distance between the driver’s right heel 

and the driver’s right hip); and lumbar support is used. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4. Muscle groups with the largest values of the average muscle activity (a.m.a.) 
for the reference case of the driver/car-seat interaction model. 

An example of the results of the present musculoskeletal computational analysis 

of long-distance driving comfort and fatigue for the reference case is displayed in Figure 

3-4. In this figure, the extent of actuation of the various muscles is displayed pictorially 
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by the extent of their bulging. Furthermore, muscle groups associated with the largest 

levels of activation are identified and the typical range of activation is indicated. It is seen 

that the following three muscle groups are associated with the largest extent of muscle-

activity (i.e. that the following three muscle groups define the muscle activity envelope): 

(a) the Corachobrachialis, the Deltoid and the Scapular muscles located in the 

forearm/shoulder region; (b) the Scalene, the Infraspinatus, the Supraspinatus neck 

muscles; and (c) the Semimembranosus and the Rectus Femoris thigh muscles (all with 

an average activity of 0.041). The next two groups of highly-activated muscles are the 

Soleus muscles (average activity: 0.026), found in the lower legs and the Rectus 

Abdominis and the Oblique muscles found in the abdomen regions, associated with 

significantly lower levels of activation (average activity: 0.010). 

It is well documented that in addition to the activity of the muscles, long-distance 

driving discomfort and fatigue are affected by shear contact forces present at the human-

buttocks/seat-pan interface. In the reference case considered in this section, the total shear 

contact force was evaluated as 292N. 

When seating discomfort and the associated fatigue are investigated 

experimentally (e.g. [3.23]) or analyzed computationally using the finite-element method 

[3.42], the maximum contact pressure is found at the human-buttocks/seat-pan and 

thigh/seat-pan interfaces. As expected earlier, a number of support points were used to 

model driver/seat contact interactions. Since these points were fairly equally spaced, one 

can assume that the maximum normal contact force is a good representation of the 

maximum contact pressure. In the reference case, this force was found to be 615N. 
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While it is not fully agreed that the magnitude of the intradiscal compressive 

forces in the spine contribute to long-distance driving fatigue, their detrimental effect on 

the spine health is well established [3.43]. For comparison with the other cases studied in 

the present work, the intradiscal compressive force between the fourth and the fifth 

lumbar vertebrae was computed for reference case and found to be ca. 331N. It is also 

well-established [3.43] that intradiscal spine loads are generally higher in the seating 

posture than in the corresponding standing posture due to the forward rotation of the 

pelvis around the pelvis/lumbar joints, Figures 3-5(a) - (b). 

III.3.2. The Effect of Back-rest Inclination 

As mentioned earlier, the (backward) back-rest inclination angle was set to 10º in 

the reference case. In this section, the effect of varying the back-rest inclination angle in a 

0º-15º range in the increments of 5º is examined. 

An example of the results obtained in this portion of the work pertaining to the 0º 

back-rest-inclination angle is displayed in Figure 3-6. The results displayed in this figure 

show that the following two muscle groups are associated with the highest level of 

activation: (a) the Scalene, the Infraspinatus, the Supraspinatus neck muscles and (b) the 

left Soleus (lower left leg) muscles all with an average muscle-activity level of ca. 0.041. 

The next three groups of muscles associated with a high level of muscle activity are: (a) 

the Deltoid (shoulder) muscles with an average activity of ca. 0.035; (b) the 

Semimembranosus and the right Rectus Femoris (the lower thigh and the upper thigh 

muscles, respectively) with an average muscle activity of ca. 0.024; and (c) the Obliques 

and Rectus Abdominis (abdomen) muscles with an average muscle activity of ca. 0.010. 
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Figure 3-5. Evaluation of the kinematics of the human-body pelvis region with a change 
in posture from: (a) standing to: (b) sitting erect to: (c) sitting in hunch-back posture. 
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Figure 3-6. Muscle groups with the largest values of the average muscle activity (a.m.a.) 
for the 0- back-rest inclination angle case of the driver/car-seat interaction model. 

A comparison of the results displayed in Figure 3-4 and Figure 3-6 reveals several 

important findings: 

(a) While the muscle-activity envelope has not changed, different three groups of 

muscles define the envelope, i.e. as the back-rest has been brought into the upright 

position, the thigh muscle group has been substituted by the lower leg muscle group in 

the muscle-activity envelope and the shoulder muscles are no longer on the muscle-

activity envelope; 
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 (b) As the back-rest is placed in the straight upright position, and the shoulders 

get close to the steering wheel, the shoulder muscle activity drops from ca. 0.041 to ca. 

0.035. This finding is expected since as the shoulder-to-steering-wheel distance decreases 

and shoulder flexing lowers the center of gravity of the arms, a lower level of muscle 

activation is required to retain the imposed kinematic configuration of the arms; 

(c) The lower leg muscles whose activation level in the reference case was ca. 

0.026, has increased in the 0º back-rest inclination angle case considerably to ca. 0.041. 

This finding is also reasonable since as the upper body is taking a more upright posture 

and less vertical support is provided by the seat back-rest, leg muscles’ activity has to 

increase in order to support the human-body weight; and 

(d) The abdominal and neck muscles have retained their levels of muscle activity.  

The effect of variation of the seat back-rest inclination angle on the average 

muscle activity of the five muscle groups mentioned above (i.e. neck, shoulder, 

abdominal, thigh and lower-leg muscle groups) is displayed in Figure 3-7(a). The results 

shown in this figure indicate that, for the most part, the muscle activation changes 

monotonically with the back-rest inclination angle. 

In Figure 3-7(b), the effect of variation of the seat-back inclination on the 

magnitude of the intradiscal L4-L5 compressive force and on the seat-pan/human-

buttocks shear force is displayed. The results displayed in Figure 3-7(b), which pertain to 

the effect of seat-back inclination angle on the intradiscal force, are reasonable since as 

the thorax becomes to lean forward, the line of gravity of the upper body moves forward 
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and increases the moment which has to be counterbalanced by higher intradiscal forces 

and higher abdominal muscle activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7. The effect of variation in the back-rest inclination angle on: (a) the maximum 
muscle activity; and (b) the maximum normal and total shear contact forces and the 

intradiscal L4-L5 compressive forces. 
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III.3.3. The Effect of Friction Coefficient 

In the reference case, the friction coefficient between the driver and the car seat 

was set to a value of 0.5 which roughly corresponds to the case of woven wool- or cotton-

fabric seat upholstery. Car seats are often equipped with vinyl or leather covering and in 

these cases the friction coefficient typically takes a significantly lower value (assumed as 

0.2, in the present work). In this section, the effect of reduction of the friction coefficient 

from 0.5 to 0.2 is considered while all other kinematic parameters of the driver and the 

seat are kept at their reference-case values as defined in Section III.3.1. 

An example of the results obtained in the present low-friction-coefficient case is 

displayed in Figure 3-8. It is seen that the following four muscle groups define the 

muscle-activity envelope: (a) the Infraspinatus, Supraspinatus and Scalene (neck) 

muscles; (b) the Deltoid, Corachobrachialis and Scapular (shoulder) muscles; (c) the 

Rectus Abdominis and Oblique (abdominal) muscles; and (d) the Soleus (lower leg) 

muscles, all with an average muscle activity of 0.041. It is also seen that the 

Semimembranosus and Rectus Femoris (thigh) muscles display a lower level of muscle 

activity (muscle activity of 0.023). 

A comparison of the results displayed in Figure 3-4 and Figure 3-8 shows that 

while the muscle-activity envelope has not changed measurably, the muscle groups 

defining the envelope have changed. That is, the thigh muscles are no longer associated 

with the highest level of muscle activity (average muscle activity level = 0.023), while 

the legs and abdomen muscles have joined the shoulders and the neck muscles as the 

muscle groups with the highest level of activation (average muscle activity level = 
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0.041). This finding is reasonable considering the fact that at a back-rest inclination angle 

of 10º and in the presence of a lower value of friction coefficient, the shear/tangential 

forces originating at the thorax/back-rest interface and propagated to the human-

buttocks/seat-pan interface cannot be fully counterbalanced by the friction forces causing 

the leg and abdomen muscles to be engaged more extensively (in order to prevent the 

driver from sliding). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8. Muscle groups with the largest values of the average muscle activity (a.m.a.) 
in the driver/car-seat interaction model for the case of a lower human-body/seat interface 

friction coefficient. 
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The human-buttocks/seat-pan total shear force (116N) is reduced significantly 

relative to that in the reference case (292N). This is clearly related to the fact that the 

maximum tangential force is controlled by the magnitude of the friction coefficient (as 

well as by the magnitude of the normal force). 

Reduction in the friction coefficient from 0.5 to 0.2 has been found to lower the 

maximum normal contact force by less than 5% relative to that observed in the reference 

case. 

The intradiscal L4-L5 compressive force (345N) was found to be somewhat 

higher than that of its reference-case counterpart (331N). This finding indicates that as the 

friction coefficient is reduced and lesser support is provided to the thorax by the back-

rest, more upper-body weight has to be supported by the spine itself. 

III.3.4. Effect of (Front/Back) Seat Track Position 

In this section, the effect of longitudinal-position adjustment of the seat along the 

track is considered. Two specific cases are analyzed: (a) forward translation of the seat by 

10 cm (no significant differences in the level of activation of the muscle groups analyzed 

so far or in the magnitudes of the lumbar and shear forces, relative to the reference case 

are observed); and (b) backward translation of the seat by 10 cm( the results discussed 

below). 

For brevity, no figures will be shown for the 10 cm back-translation case and the 

key result will only be discussed. Three muscle groups, the shoulder, the neck and the 

thigh muscles, define the muscle-activity envelope associated with a muscle-activity level 

of 0.043. This level is somewhat higher than the reference-case level (0.041), and this 
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increase can be attributed to the fact that the steering wheel is farther away (this increases 

shoulder and neck muscles activity) and since the accelerator pedal is also farther away, 

lower thigh muscles have to be engaged more extensively to keep the right foot on the 

accelerator pedal. 

One more significant observation was made: the Erector Spinae and the Spinalis 

muscle located at the back of the thoracic section of the spine are found to acquire an 

increased level of activity. This finding can be attributed to the fact that as the arms and 

the right leg are getting extended, the spine tends to bend to a hunch-back configuration 

which is supported by the aforementioned thoracic-spine muscles. 

The backward translation of the seat by 10 cm has been found to reduce the total 

shear contact force from 292N to 254N. This finding is consistent with the fact that as the 

spine is becoming to acquire the hunch-back configuration, less contact is expected 

between the thorax and the back-rest. 

The normal force has been found to remain essentially unchanged with the 

changes in the track position of the seat. 

The intradiscal L4-L5 compressive force, on the other hand, is found to increase 

with the 10cm backward translation of the seat, from 331N to 341N. This increase can be 

attributed to the effect of lesser support of the thorax by the back-rest in the case of the 

hunch-back configuration of the spine. 

Also, as shown in Figure 3-5(c), for the hunch-back configuration of the spine, the 

forward shift in the upper-body line of gravity is increased significantly which, as 

mentioned earlier, leads to increased intradiscal forces. Figure 3-5(c) also shows that the 
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shape of lumbar-portion of the spine changes (i.e. the lumbar section becomes more 

straight) which also contributes to an increase in the intradiscal forces. 

III.3.5. The Effect of Lumbar Support 

In the reference case, as well as in all other cases analyzed up to this point, lumbar 

support at the back-rest was used. In this section, the effect of lumbar-support removal is 

investigated. Again, a complete set of results will be discussed but not shown (for 

brevity): 

An example of the results obtained in the present section is displayed in Figure 3-

9(a). For comparison, the corresponding results obtained in the reference case are 

displayed in Figure 3-9(b). The comparison of results displayed in Figures 3-9(a) - (b) 

reveals that: 

(a) The muscle activity level corresponding to the muscle-activity envelope has 

been raised (from 0.041 in the reference case) to 0.058; 

(b) Furthermore, two muscle-groups define the muscle-activity envelope: (a) the 

shoulder muscles and (b) the abdomen muscles; 

(c)The neck muscle group has retained its muscle activity at the level observed in 

the reference case (average muscle activity level of 0.041); 

(d) Both the thigh and the leg muscle groups have significantly reduced their level 

of activity relative to the reference case (0.041 --> 0.010 and 0.026 --> 0.010, 

respectively). This finding is consistent with the fact that as the back-rest support is 

lowered due to removal of the lumbar support, less shear forces are transferred to the 

thighs and, in turn, to the legs; and 
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Figure 3-9. Muscle groups with the largest values of the average muscle activity (a.m.a.) 
for: (a) the driver/car-seat configuration without lumbar support; and (b) the reference 

case. 

(e) The level of activity of the muscles in the back of the human-body (supporting 

the spine) has significantly increased (>0.010) compared to the reference case (<0.005). 
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The total shear force at the human-body/seat-pan interface has decreased from ca. 

252N in the reference case to ca. 115N. At the same time, the normal contact force has 

remained effectively unchanged. As far as the intradiscal L4-L5 compressive force is 

concerned, it has increased from ca. 373N in the reference case to ca. 400N. 

III.4. DISCUSSION 

In the introduction section, Section III.1, of the present work, it was discussed that 

the main factors contributing to the long-distance driving fatigue are the maximum level 

of muscle activity, the magnitude of the driver/car-seat contact total shear force, the 

maximum contact normal force and the magnitude of intradiscal spine forces (e.g. the 

intradiscal L4-L5 compressive force). In Section III.3, the effect of four driver/car-seat 

kinematic/interaction parameters (i.e. the back-rest inclination angle, the friction 

coefficient, the longitudinal-track seat-position and the presence/absence of lumbar 

support) on the driving-induced fatigue-controlling parameters was investigated. In the 

present section, an attempt is made to provide more insight into the problem of long-

distance driving fatigue and to set the foundation for future developments of a long-

distance driving fatigue function. Toward that end, available public-domain data 

pertaining to the subjective input of human test subjects, the contact-pressure and EMI 

measurements will be used. 

A review of the public-domain literature showed that there are no driving-induced 

fatigue functions which can relate the objectively measured or computed driver/seat 

interaction parameters (e.g. maximum muscle activity, maximum normal contact force, 

etc.) with the subjective perception of fatigue by the human test subjects. It is interesting 
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to note that Rasmussen and de Zee [3.31] proposed a short-term seating discomfort 

function, as a linear combination of the squared maximum muscle activity and the 

squared (properly normalized) total contact shear force. While this function can be a good 

starting point in the development of a long-distance driving fatigue function, one must 

recognize that fatigue does not only depend on the maximum level of muscle activation 

but also on the number of muscles or muscle groups associated with the highest level of 

activation. 

The review of public-domain literature further revealed that the long-distance 

driving-fatigue investigation involving subjective inputs from human test subjects and 

objective EMI and contact pressure measurements reported in Ref. [3.41] is most closely 

related to the present work. Hence, a brief summary of the main findings reported in Ref. 

[3.41] is next presented. 

The main findings reported in Ref. [3.41] can be summarized as follows: (a) 

Despite significant variations in human test-subjects subjective evaluations, the study 

clearly established that there are correlations between the perception of fatigue and 

particular measurable human-body/car-seat kinematics/interaction parameters; (b) The 

three parameters which were found to most profoundly affect the perception of fatigue 

were identified as: (i) insufficient support provided by the seat to the lumbar region of the 

driver’s spine, (ii) insufficient thorax support and (iii) excessive thorax support. The three 

types of supports were quantified via contact pressure measurements; (c) Furthermore, 

the study established that depending on the level of support provided by the car seat, the 

driver test subjects were found to adopt different seating postures. The associated level of 
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muscle activity of different muscle groups were measured and also correlated with the 

subjective perception of fatigue. Specifically, neck, shoulder, abdomen, thigh, leg and 

spine muscle groups (i.e. the muscle groups investigated in Section III.3 of the present 

work) were found to be the key contributors to long-distance driving-fatigue perception; 

(d) Contact normal and shear forces acting on buttocks/thighs were not directly 

investigated/measured. However, the computational study carried out in Section III.3 of 

the present work clearly established relationships between the back-rest/lumbar support 

levels and the effects of normal/shear contact forces; and (e) Intradiscal forces were also 

not measured since it was assumed that these forces may affect spine health but not play a 

major role in the fatigue perception. Since this opinion is broadly observed in the 

literature, it was also adopted in the present work. 

Based on the findings obtained in the present work, the overview of the results 

obtained in Ref. [3.41] and other comments made throughout this manuscript, one should 

expect that the long-distance driving-fatigue function, LDDFF, has the following general 

form: 

LDDFF = func(CMA,CNF,CSF)        (3.5) 

where CMA, CNF and CSF denote the cumulative muscle activity, the contact normal 

force and the contact shear force, respectively. Furthermore, to a first-order of 

approximation, CMA can be represented by the sum of activity levels of the muscle 

groups defining the muscle activity envelope. 
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To avoid potential complications arising from the fact that CSF could be either 

positive or negative and that CNF is zero or negative (compressive), Eq.3.5 has been 

rewritten as: 

LDDFF = func(CMA2 ,CNF 2 ,CSF 2 )       (3.6) 

Since the exact mathematical form for the function “func” is presently not 

known, the following simple weighted-average form can be used as a starting point: 
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where CMA*, CNF*(=1.0) and CSF* are normalizing factors used to bring CMA and CSF 

values to a level comparable to that of CNF and w’s define the relative weighing 

coefficients for the three fatigue-controlling factors. The magnitude of the w’s quantifies 

the relative importance of the three fatigue-controlling factors. Since only relative values 

of the w’s are important, wCNF was set to 1.0. 

To establish preliminary values of the two remaining weighting coefficients (as 

well as of the two remaining normalizing factors, CMA* and CSF*), the following simple 

analysis was carried out: (a) Based on the results displayed in Figure 3-7(b), 

characteristic values for CNF and CSF are chosen as 600N and 300N, respectively. 

Consequently, CSF* is set to 0.5(=300N/600N); (b) Since it is well-established that 

contact shear forces contribute more towards fatigue perception (as well as to muscle 

trauma/tissue-necrosis [3.30]), wCSF is arbitrarily set to 1.5 (i.e. CSF is assumed to 

contribute 50% more than CNF to the perception of fatigue); (c) At the prevailing muscle 
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activity level of 0.041, and a typical number of 66 muscles defining the muscle-activity 

envelope, CMA* can be defined as 0.0045(=0.041·66/ 600); and (d) While the contact 

normal and shear forces may play a more critical role in the perception of short-term 

seating discomfort, the role of cumulative muscle activity is expected to be dominant in 

the perception of long-distance driving fatigue. Consequently, and arbitrarily, wCMA is 

set to 5.0. In other words, cumulative muscle activity is assumed to contribute five times 

more to fatigue perception than the maximum contact normal force. 

Based on the analysis presented above, Eq.3.7 can be rewritten as: 
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This function is currently being used in our ongoing work in order to test its 

validity both against the results recorded in the Ref. [3.41] and the results being obtained 

in the ongoing investigation. A detailed account of the findings will be reported in our 

future communications. 

III.5. SUMMARY AND CONCLUSIONS 

Based on the results obtained in the present work, the following main summary 

remarks and conclusions can be drawn: 

1. Musculoskeletal modeling and simulation technique is employed in order to 

investigate the problem of long-distance driving fatigue. 

2. The effect of several driver/car-seat kinematic/interaction factors (e.g. backrest 

inclination angle, human-body/car-seat interface friction coefficient, longitudinal-track 

position of the seat and presence/absence of lumbar support) on the factors controlling 
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driving fatigue (e.g. maximum muscle activity, contact normal and shear forces 

intradiscal spine forces, etc.) has been investigated. 

3. A preliminary long-distance driving fatigue function (LDDFF) has been 

constructed in accordance with the findings obtained in the present work as well as the 

findings reported in the open literature. 
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CHAPTER FOUR 
 

DESIGN-OPTIMIZATION AND MATERIAL SELECTION FOR A FEMORAL-FRACTURE 
FIXATION-PLATE IMPLANT 

 

 

ABSTRACT 

The problem of size/thickness optimization of a distal femoral-fracture fixation-

plate is addressed computationally using a combined finite-element/design-optimization 

procedure. To obtain realistic physiological loading conditions associated with normal 

living activities (cycling, in the present case), a musculoskeletal multi-body inverse-

dynamics analysis is carried out of a human riding the bicycle. While optimizing the 

design of the femoral-fracture locking-plate, realistic functional requirements pertaining 

to attain the required level of fracture-femur fixation and longevity/lifecycle were used. It 

is argued that these types of analysis should be used to complement preclinical implant-

evaluation tests, the tests which normally include a limited number of physiological 

loading conditions and single pass/fail outcomes/decisions with respect to a set of lower-

bound implant-performance criteria. 

IV.1. INTRODUCTION 

It is common practice to use the return of a patient to normal activities of daily 

living following a surgical procedure involving an implantable device (e.g. femoral-

fracture fixed-plate implant, total hip replacement, etc.) as a measure of the success of the 

surgery [4.1]. On the other hand, as people are living longer and continuing to maintain 
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active lifestyles, longevity of the implanted devices when subjected to physiological 

loads associated with the performance of normal daily activities has become an equally 

important measure of the success of the surgical intervention. Typically, pre-clinical 

implant evaluations under realistic physiological loading conditions are carried out in 

order to assess the lifespan of a new implant. However, in such studies, only a relatively 

small number of the physiological loading conditions (derived from everyday activities of 

the patient) are analyzed [4.2 – 4.5]. For example, long-term fatigue-controlled stability 

of hip implants has been evaluated under the conditions of normal walking [4.2, 4.3, 4.5], 

sit-to-stand [4.2], and stair climbing [4.3, 4.5] and in a combination of daily activities 

[4.4]. 

The pre-clinical implant evaluation tests mentioned above suffer from at least two 

major shortcomings: (a) they rely on a limited number of physiological loading 

conditions; and (b) the results of these studies are used only to determine if the implant 

has passed or failed a set of minimum-level performance criteria. Consequently, redesign 

of new implants is carried out only when the design has filled to meet these criteria. What 

is left unanswered is if the accepted new implant can meet the performance and longevity 

requirements under other physiological loading conditions associated with normal daily 

living and if the design (including the material selected for the implant) are optimal (with 

respect to their size, weight, cost, etc.) 

The main objective of the present work is to demonstrate how musculoskeletal 

modeling can be used to determine physiological loading conditions not normally 

covered by pre-clinical implant-evaluation tests although they may refer to fairly normal 
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daily activities (e.g. cycling). Within the present work, the recently-developed novel 

technology for computer modeling of the human-body mechanics and dynamics, namely 

the AnyBody Modeling System [4.6] and its associated public domain library of body 

models are being fully utilized and further developed. In its most recent rendition [4.7], 

the AnyBody Modeling System enables creation of a detailed computer model for the 

human body (including all important components of the musculoskeletal system) as well 

as examination of the influence of different postures and the environment on the internal 

joint forces and muscle activity. 

The second main objective of the present paper is to demonstrate how the loading 

conditions derived using musculoskeletal modeling can be utilized within a combined 

finite-element/design-optimization procedure to carry out optimization of the design of an 

implanted device. Specifically, optimal thickness of a distal femoral-fracture fixation-

plate under pedaling (cycling) exertion loading conditions is investigated. Optimization 

of the implant design/thickness is carried out with respect to its ability to meet several 

functional requirements pertaining to both the necessary level of fractured-femur fixation 

and to meeting the longevity/lifespan constraints. Details regarding these functional 

requirements are presented in the next section. 

The organization of the paper is as follows. A brief overview of the AnyBody 

Modeling System is provided in Section IV.2.1. The musculoskeletal human-body model, 

the concepts of muscle recruitment and muscle activity envelope, the bicycle model and 

the issues related to human/bicycle kinematics and contact interactions are discussed in 

Sections IV.2.2-IV.2.5. The definition of the musculoskeletal problem of a human riding 
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the bicycle analyzed in the present work is discussed in Section IV.2.6. The finite-

element/design-optimization problem and analysis for the distal femoral-fracture fixed-

plate implant are presented in Section IV.3. The results obtained in the present work are 

presented and discussed in Section IV.4. The main conclusions resulting from the present 

work are summarized in Section IV.5. 

IV.2. MUSCULOSKELETAL MODELING AND SIMULATION 

As mentioned earlier, two distinct computational analyses are carried out in the 

present work. Within the first analysis (discussed in this section), a musculoskeletal 

investigation of a person riding a bicycle is carried out. The resulting forces and 

moments, as a function of time, acting on the fractured right femur of the person riding 

the bicycle are next used in a finite-element/design-optimization analysis of the distal 

femoral-fracture fixation-plate implant. 

IV.2.1. The AnyBody Modeling System [4.6] 

The AnyBody Modeling System [4.6] developed at Aalborg University and used 

in the present work is a general-purpose musculoskeletal modeling and simulation 

program. The essential features of this computer program can be summarized as follows: 

(a) The musculoskeletal model is typically constructed as a standard multi-body 

dynamics model consisting of rigid bodies, kinematic joints, kinematic drivers and 

force/moment actuators (i.e. muscles). The kinematic and dynamic behavior of this model 

can be determined using standard multi-body dynamics simulation methods; 
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(b) Complex geometries of the muscles and their spatial arrangement/interactions 

(e.g. muscles wrapping around other muscles, bones, ligaments, etc.) can be readily 

modeled within AnyBody Modeling System [4.6]; 

(c) It is well-established that a typical musculoskeletal system suffers from the so-

called “muscle redundancy problem”: i.e. the number of muscles available is generally 

larger than those needed to drive various body joints. Within the living humans and 

animals, this problem is handled by their Central Nervous System (CNS) which controls 

muscles activation/recruitment. To mimic this role of the CNS, the AnyBody Modeling 

System [4.6] offers the choice of several optimization-based muscle-recruitment criteria; 

(d) A typical musculoskeletal multi-body dynamics problem is solved using 

computationally-efficient inverse dynamics methods within which the desired motion is 

prescribed while the muscle activity required to produce this motion is computed; 

(e) Within the AnyBody Modeling System [4.6], the muscle recruitment problem 

is solved using an optimization-based approach in the form: 

Minimize the objective function: 

G( f (M ) )           (4.1) 

Subjected to the following constraints: 

Cf = d            (4.2) 

,0)( ≥M
if  { })(,...,1 Mni∈          (4.3) 

where the objective function G (a scalar function of the vector of n(M) unknown muscle 

forces, f(M)), defines the minimization object of the selected muscle recruitment criterion 
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(assumed to mimic the one used by the CNS). Eq. 4.2 defines the condition for dynamic 

mechanical equilibrium where C is the coefficient matrix for the “unknown” 

forces/moments in the system while d is a vector of the “known” (applied or inertia) 

forces. The forces appearing in vector f in Eq. 4.2 include the unknown muscle forces, 

f(M), and the joint-reaction forces,  f(R). Eq. 4.3 simply states that muscles can only pull 

(not push) and that the upper bound for the force in each muscle i
M

if
)(  is the 

corresponding muscle strength, Ni; 

(f) While there are a number of functional forms for the objective function, G, the 

one used in the present work is the so-called “min/max” form within which the objective 

function (to be minimized) is defined as the maximum muscle activity defined for each 

muscle i as fi
(M) /Ni, i.e.: 

)/max()( )()(
i

M
i

M NffG = ;          (4.4) 

This formulation offers several numerical advantages over other popular forms of 

G and, in addition, it appears to be physiologically sound. That is, under the assumption 

that muscle fatigue is directly proportional to its activity, Eqs. 4.1 and 4.4 essentially state 

that muscle recruitment is based on a minimum muscle-fatigue criterion. Also, this 

expression for G, has been found to asymptotically approach other formulations of G 

(e.g. the so-called “Polynomial” form [4.8]). 

(g) The problem defined by Eqs. 4.1 – 4.4 can be linearized using the so-called 

“bound formulation” [4.9] resulting in a linear programming problem with muscle forces 

and joint reaction forces as free variables. Relations between these two types of forces are 
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next used to eliminate the joint reaction forces yielding a linear programming problem 

with the number of unknowns equal to the number of muscles in the system; and 

(h) While for a fairly detailed full-body model containing around one thousand 

muscles, this constitutes a medium-to-large size problem which can be readily solved by 

a variety of design-optimization methods (e.g. Simplex, Interior-point methods, etc.), the 

min/max problem is inherently indeterminate and must be solved iteratively. This can be 

rationalized as follows: The min/max criterion only deals with the maximally activated 

muscles and with muscles which help support the maximally-activated muscles. Since the 

system, in general, may contain muscles that have no influence on the maximum muscle 

activity in the system, the forces in these muscles are left undetermined by the min/max 

formulation presented above. To overcome this shortcoming, the muscle-recruitment 

optimization problem is solved iteratively, so that each iteration eliminates the muscles 

with uniquely determined forces and the procedure is repeated until all muscle forces are 

determined. 

IV.2.2. Musculoskeletal Human-body Model 

The musculoskeletal model of the human body used in the present work was 

downloaded from the public domain AnyScript Model Repository [4.10]. The model was 

originally constructed by AnyBody Technology using the AnyBody Modeling System 

[4.6] following the procedure described in details by Damsgaard et al. [4.7]. 

Model Taxonomy: The musculoskeletal human-body model includes: (a) an arm/shoulder 

assembly containing 114 muscle units on each side of the body and having a morphology 

defined by Van der Helm [4.11], (b) a spine model developed by de Zee et al. [4.12] 
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comprising sacrum, all lumbar vertebrae, a rigid thoracic-spine section, and a total of 158 

muscles, and (c) a pelvis and lower extremity model with a total of 70 muscles. In total, 

the model contains more than 500 individual muscle units and, hence, can be considered 

as a fairly detailed description of the human musculo-skeletal system. The 

anthropometrical dimensions of the model are selected in such a way that they 

correspond to the female cyclist participated in the motion-capture tests, Section IV.2.7. 

Segments and Joints: Within the model, the bodies (referred to as the “segments” within 

the AnyBody Modeling System) are treated as rigid with their mass/inertia properties 

derived from mass and shape of the associated bone and the soft tissue that is allotted to 

the bone. Joints in the human body are treated as idealized frictionless kinematic 

constraints between the adjoining segments. Both standard kinematic joints (e.g. 

spherical joints for the hips, hinge joints for the knees, etc.) as well as specially-

developed joints (e.g. those used to represent kinematic constraints associated with 

floating of the scapula on the thorax) are employed. 

Muscles: Muscles are treated as string contractile force –activation elements which span 

the distance between the origin and the insertion points through either the via points or 

by wrapping over the surfaces which stand on their way. Muscle wrapping problem is 

treated using a shortest-path contact-mechanics algorithm. Due to the fact that the 

problem considered in the present work is dynamic, muscles are modeled as being non-

isometric (i.e. muscle strength is considered to be a function of the body posture and the 

rate of contraction). Also, passive elasticity of muscles (i.e. the resistance of the muscles 

to stretching) was considered. 
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Model Validations: The mechanics of the model is implemented as a full three-

dimensional Cartesian formulation and includes inertial and gravity body forces. Integral 

validation of whole-body musculoskeletal models is very difficult to conduct. To the best 

knowledge of the present authors, validation of the whole-body musculoskeletal model is 

still lacking (due to major challenges which would be associated with such validation). 

However, various subsystems of the whole-body model were validated separately. For 

example: (a) The lumbar spine model was validated by de Zee et al., [4.12] by comparing 

the model prediction with in vivo L4-5 intradiscal pressure measurements of Wilke et al. 

[4.13]; (b) de Jong et al. [4.14] validated the lower extremity model by comparing model-

predicted muscle activations and pedal forces with their experimental counterparts 

obtained in pedaling experiments; and (c) The shoulder model was validated in the early 

work of Van der Helm [4.11]. 

IV.2.3. The Muscle Activity Envelope 

As originally recognized by An et al. [4.15], the min/max muscle-recruitment 

formulation, discussed in Section IV.2.1, defines effectively a minimum fatigue criterion 

as the basis for muscle recruitment, i.e. the aim of the proposed muscle-recruitment 

strategy is to postpone fatigue of the “hardest-working” muscle(s) as far as possible. The 

physiological consequence of this strategy is that muscles tend to form groups with 

muscles within the same group having comparable activity levels. In particular, in the 

muscle group associated with the maximum muscle activity there will be usually many 

muscles which, in a coordinated manner, carry a portion of the load comparable with 

their individual strengths. Consequently, in this group, many muscles will have the same 
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activity level, which will be referred to as “the muscle activity envelope”. The linearity of 

the reformulated min/max criterion discussed earlier guarantees that the optimization 

problem defined by Eqs. 4.1 – 4.3, is convex and, hence, that the solution to the problem 

is unique and corresponds to the global optimum. In other words, there is no other muscle 

recruitment strategy which can reduce the muscle-activity envelope further. Moreover, 

since the muscle activity envelope represents the maximum muscle activation in the 

model, it can be interpreted as the fraction of maximum voluntary contraction necessary 

to support the imposed load (gravity and inertia forces, in the present case) while 

maintaining the prescribed posture. Thus, the muscle-activity envelope appears to be an 

important parameter/measure for ergonomic-design optimization, in the sense that 

designs which are associated with lower envelope levels may be perceived as less 

fatigue-inducing. 

IV.2.4. Bicycle Model 

The raised-frame-bicycle used in the present musculoskeletal cycling analysis was 

comprised of four segments: a frame, a crank and two wheels. Three revolute joints are 

used to connect the crank and the two wheels to the frame. 

The effort that the human body must exert in order to drive the bicycle was 

modeled by prescribing a time-dependent resistance crank torque. The mean value of this 

torque was computed using an average value of the cycling power of 170W. The torque 

amplitude was defined by subtracting from the mean torque the so-called “deadcenter 

crank torque” (a value of the torque the cyclist must provide when the pedal arms are 

close to the vertical position and when the tangential pedal-force direction is nearly 
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perpendicular to the preferred force direction of the legs). To comply with the fact that 

the two pedals function equally the crank-torque frequency is set to twice the cadence 

value. 

IV.2.5. Human-body/Bicycle Kinematics and Interactions 

The interactions between the cyclist and the bicycle were handled as follows: (a) 

two spherical joints were used to connect the human hands to the bicycle-

frame/handlebar. These connections were attained through the use of gloves (one per 

each hand). Gloves are special elements in AnyBody which enable the definition of the 

joints with a finite strength and, thus, can be used to emulate the grip strength of a normal 

hand. This typically eliminates numerical problems (i.e. unreasonable results) associated 

with the use of infinitely-strong human-body/environment joints.; (b) the feet are 

connected to the peddle/crank using a pair of revolute joints; and (c) a general purpose 

joint based on linear and rotational measures was defined between the pelvis and the 

bicycle saddle/seat. 

To quantify the extent of and to account for the distributed nature of the human-

body/ bicycle-seat contact interactions, a number of support points are introduced over 

the bicycle-saddle surface. These support points allow the transfer of reaction forces to 

the bicycle-seat via the so-called “support elements”. These elements enable 

quantification of the human-body/bicycle-seat contact (compressive and 

tangential/friction) reaction forces at the support points. It should be noted that the 

compressive reaction forces are perpendicular to the support surfaces while tangential 

force can be in any direction perpendicular to the corresponding compressive force. 
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Due to the presence of the aforementioned human-body/bicycle kinematic links, 

the human body acquires the appropriate posture for each angular position of the bicycle-

crank. In the process of acquiring the appropriate posture, kinematics of the spine is 

adjusted in accordance with the so-called “spinal rhythm” algorithm. Within this 

algorithm, a single input, the pelvis-thorax angle, is used to determine the three 

rotational-joint angles of adjacent vertebrae (under a condition that the passive-elastic 

elements of the spine are able to force the spine to act kinematically as an elastic beam). 

The physical soundness of the spinal-rhythm algorithm for the seating posture has been 

validated by Rasmussen and de Zee using motion capture experiments [4.16]. 

In acquiring the sought posture for the human, an additional algorithm was 

employed. This algorithm controls the relative magnitudes of hip flexion and 

pelvis/thorax flexion. Following the experiments of Bell and Stigant [4.17], the ratio of 

the two angles was set to 2. That is, for a given value of the angle between the thorax and 

the thigh, the hip-joint flexion angle is twice that of the spine flexion angle. 

IV.2.6 Musculoskeletal Definition of the Cycling Problem 

To position the human body (overviewed in Section IV.2.3) onto the bicycle and 

have it drive the bicycle, laboratory experiments were conducted. Within these 

experiments, an experienced cyclist was instrumented with reflective markers on the 

outside of her thighs, knees, and ankles, Figure 4-1. After a bicycle specialist adjusted a 

raised-frame bicycle to match the anthropometry of the bicycle rider, the cyclist was 

asked to cycle at a comfortable speed (corresponding to the average cadence of 62 rpm). 

Meanwhile, motion capture measurements were carried out in order to locate and track 
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the position of the reflective markers. The marker-position data recorded as a function of 

time were then used as input to the AnyBody Modeling System to drive the human body 

model during cycling, Figure 4-2. 

 

 

 

 

 

 

 

Figure 4-1. Participant in the raised-frame-bicycle motion-capture experiments 

IV.3. FINITE-ELEMENT AND DESIGN-OPTIMIZATION PROCEDURES 

As mentioned earlier, the results of the musculoskeletal cycling analysis in the 

form of muscle forces and femur/hip and femur/knee joint reaction forces and moments, 

along with the spatial coordinates of the muscle attachment/via points and the two joints 

(as a function of time), are exported from the AnyBody Modeling System and used, as 

input, in a finite-element/design-optimization analysis of the distal femoral-fracture 

fixation-plate implant, Some details pertaining to the finite-element/design-optimization 

analysis are presented in the remainder of this section. In Figure 4-3, the names and the 

spatial locations of the muscle-attachment /via points and the hip and knee joints are 
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provided for the right femur. In this figure, there are 27 muscle attachment/via points and 

two joint points. Moments are transferred to the femur only at the two joint points since 

muscles, being contractile linear elements, can each provide only a force. 

 

 

 

 

 

 

 

 

Figure 4-2. Scaled musculoskeletal model of a person riding a bicycle (not scaled to 
size). 

In Figure 4-4, a close-up is provided of the right femur along with the adjoining 

bones. As can be seen, the femur contains a distal (next to the knee) fracture and it is 

fixed with a lateral fracture fixation-plate implant. The implant is attached to the two 

segments of the fractured femur using seven screws. 
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Figure 4-3. Spatial location of various muscle attachment points to the right femur. 

IV.3.1. Finite Element Model and Analysis 

The Model 

The finite element model analyzed consisted of a fractured right femur, a fixation-

plate implant and seven locking screws. Typical finite element meshes used are displayed 
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in Figure 4-5. The femur, the plate and each of the screws were discretized using ca. 

24,000  

 

 

 

 

 

 

Figure 4-4. A close-up view of the fractured right femur (with a lateral fixation-plate 
implant and locking screws) and the adjoining bones at one time instant during a cycling-

simulation run. 

tetrahedral solid elements, ca. 9,000 tetrahedral solid elements and ca. 7,000 hexahedral 

solid elements, respectively. 

To apply the muscle forces and joint-reaction forces and moments to the femur, 

each muscle-attachment/joint point is combined with a neighboring section of the femur 

surface to form a coupling. In this way, forces/moments acting at a muscle-

attachment/joint point are transferred to the femur over a larger surface area preventing 

(unrealistic) stress-concentration artifacts. 

To fasten the screws to the fixation plate and to the two bone segments, the outer 

surfaces of the screws are tied to the mating surfaces of the plate/femur. In other words, 

perfect fastening is assumed to have been achieved using the screws. 
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To prevent sections of the bottom surface of the fixation-plate implant between 

the screws from penetrating the femur, a “penalty-type” contact algorithm was employed. 

Within this algorithm, penetration of the contacting surfaces is opposed by a set of 

contact springs. Any level of contact pressure can be transmitted through the contact 

interface. Shear stresses are transmitted across the contact-interface in accordance with 

the Coulomb friction law. 

 

 

 

 

 

 

 

 

Figure 4-5. Typical finite-element meshes for the femur, fixation-plate implant and seven 
screws used in the quasi-static analysis of the implant longevity. 

Material Models 

The fixation-plate implant and the seven screws are assumed to be made of Ti-

6Al-4V, a Ti-based alloy which is commonly used in fractured-bone fixation 

applications. Ti-6Al-4V is modeled as a linear-elastic/ideal-plastic material. 
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To provide a higher level of realism to the analysis, it is recognized that femur is 

built of two types of bone tissues (cortical and trabecular) and that density (and hence 

mechanical properties) of the two types of bone tissues are spatially non-uniform. To 

obtain the necessary data for defining the cortical-bone/trabecular-bone dividing surfaces 

and the spatial distribution of the density within each of the two bone tissues, Computed 

Tomography (CT) scans of the femur bone were analyzed [4.18]. An example of the CT 

scan of the femur bone is shown in Figure 4-6. For each bone tissue, the local gray-scale 

level is proportional to the local density. CT images like the one displayed in Figure 6 are 

analyzed using the Medical Imaging Software Mimics [4.19]. Within Mimics, the two 

bone tissues are differentiated by assigning two non-overlapping grayscale ranges, one 

for each bone tissue. Then, the gray-scale of each pixel within the two bone tissues is 

quantified using the Hounsfield Unit (HU) value. The latter are next converted into the 

corresponding bone-density values as: ρ=1.9 HU/1,700, where the bone-density ρ is 

given in g/cm3. Lastly, the relations listed in Table 4-1 in [4.18] were used to compute the 

young’s modulus as a function of the local density within the two bone tissues. A 

constant value of ν = 0.3 was used for both bone tissues. No plasticity within the femur 

was considered. In other words, it was assumed that the femur was made of two isotropic 

heterogeneous linear-elastic materials. 

The Analysis 

The results of the AnyBody-based multi-body dynamic cycling analysis over a 

single revolution of the bicycle crank are exported at 100 equal time intervals. For each 

of these intervals, a quasi-static finite-element analysis of the femur/fixation-plate/screws 
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assembly is carried out. At each of these time steps, the following AnyBody output 

information was used. (a) Spatial position of the femur/fixation-plate/screw assembly and 

the associated muscle-attachment and joint-reaction points; (b) muscle forces and joint-

reaction forces and moments; and (c) the femur/plate/screws assembly (linear and 

angular) velocities and accelerations.   

Table 4-1. Functional Relations Used to compute, from CT-scans, Density and the 
Young’s Modulus in the Cortical and Trabecular Bones of the Radius. 

 

Bone Region 
Density (ρ) vs.Hounsfield 

Unit (HU) Relationship 

Young’s Modulus (E) vs. Density (ρ) 

Relationship 

Cortical Bone 
1700

9.1)( 3 HUcmg =ρ  )(1426430,13)( 3cmgMPaE ρ+−=  

Trabecular Bone 
1700

9.1)( 3 HUcmg =ρ  40.13 ))((1310)( cmgMPaE ρ=  
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Figure 4-6. A typical computed tomography (CT) scan of the femur showing the 
presence of two bone tissues (cortical and trabecular bone tissues) and density variation 

within each bone-tissue. 

The aforementioned AnyBody output data were used within the finite element 

model as follows: (a) the spatial position data were used to correctly position the finite-

element model and the points for the application of concentrated forces and moments; (b) 

The muscle-force and joint-reaction force/moment data were used to define concentrated-

load type of boundary conditions; and (c) The velocity and acceleration data were used to 

define distributed (gravity, inertia and centripetal) loading conditions. 

The finite-element analysis results were used to determine: (a) if the fixation –

plate implant has suffered (unacceptable) plastic deformation; (b) if the two contacting 

fractured surfaces of the femur have intruded into each other (also an unacceptable 
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scenario); and (c) if the stress-state of the most critical elements (elements which control 

the fatigue life of the fixation-plate implant). 

All the calculations pertaining to the quasi-static response of the 

femur/plate/screws assembly are done using ABAQUS/Standard, a commercially 

available general-purpose finite-element program [4.20]. 

IV.3.2. Design-Optimization Analysis 

One of the main objectives of the present work was to carry out optimization of 

the femoral-fracture fixation plate implant design. For simplicity, the overall implant-

design was assumed to remain fixed except for the plate thickness. Since the plate was 

modeled as a solid structure, changes in its thickness entailed re-meshing of this 

component during optimization. In addition, since the screws length also changed during 

optimization to comply with the plate thickness, the screws had to be re-meshed as well. 

In other words, while only the fixation-plate thickness was being altered, the optimization 

procedure was essentially a shape rather than a size based optimization. 

IV.3.2.1. Structural Optimization 

Structural optimization is a class of engineering optimization problems in which 

the evaluation of an objective function(s) or constraints requires the use of structural 

analyses (typically a finite element analysis, FEA). In compact form, the optimization 

problem can be symbolically defined as [4.21]: 

Minimize the objective function  f(x) 

Subjected to the non-equality constraints g(x)< 0 and 

to the equality constraints h(x) = 0 
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with the design variables x belonging to the domain D 

where, in general, g(x) and h(x) are vector functions. The design variables x form a vector 

of parameters describing the geometry of a part/component. For example, x, f(x), g(x) and 

h(x) can be part dimensions, part weight, a stress condition defining the onset of plastic 

yielding, and constraints on part dimensions, respectively. Depending on the nature of 

design variable in question, its domain D can be continuous, discrete or a mixture of the 

two. Furthermore, a structural optimization may have multiple objectives, in which case 

the objective function becomes a vector function. 

Structural optimizations can be classified in many different ways. One of these 

classifications distinguishes between topology, size and shape optimization methods. 

Topology Optimization: Topology optimization which is typically applied at the 

conceptual stage of part design represents the design domain as the continuum mixture of 

a solid material and “voids” and the optimal design is defined with respect to the 

distributions of the mixture density within the design space [e.g. 4.22]. 

Size Optimization: Within size optimization approach, the dimensions that describe part 

geometry are used as design variables, x. The application of size optimization is, 

consequently, mostly used at the detailed part-design stage where only fine tuning of the 

part geometry is necessary. Size optimization is typically quite straightforward and it 

generally requires no re-meshing of the finite element models during optimization 

iterations. 

Shape Optimization: Shape optimization which is also mostly used at the detailed part-

design stage, allows the changes in the boundary of part geometry. The boundaries are 
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typically represented as smooth parametric curves/surfaces, since irregular boundaries 

typically deteriorate the accuracy of finite element analysis or may even cause the 

numerical instability of optimization algorithms. Because the product geometry can 

change dramatically during the optimization process, the automatic re-meshing of finite 

element models is usually required. Structural shape optimization methods are generally 

classified as: (a) direct geometry manipulation and (b) indirect geometry manipulation 

approaches. In the direct geometry manipulation approaches, design variable x is a vector 

of parameters representing the geometry of part boundary, e.g., the control points of the 

boundary surfaces. In the indirect geometry manipulation approaches, design variable x is 

a vector of parameters that indirectly defines the boundary of the product geometry. A 

comprehensive review of shape optimization based on the direct and the indirect 

geometry manipulation approaches can be found in Ref. [4.23]. 

IV.3.2.2. Fixation-plate Shape Optimization 

The fixation-plate thickness optimization problem was defined as follows: The 

plate thickness is to be minimized while ensuring that during cycling no plastic 

deformation in the plate takes place, no interpenetration of the two fractured femur 

segments occur and that no high-cycle fatigue failure will take place after a preselected 

number of bicycle-crank revolutions (two million cycles, in accordance with a simple 

analysis presented in Section IV.4). Due to the three-dimensional nature of the fixation-

plate implant, its thickness optimization was handled as a shape-optimization problem. 

Eight shape variables were used, one for the plate and the remaining ones for each of the 

seven screws of the fixation-plate. Each shape variable enables a proportional change in 
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the geometry of the associated component while ensuring a high-quality of their finite-

element mesh. This was accomplished by using mesh-morphing algorithm which 

preserves identity of the nodes and elements while simply repositioning the nodes. The 

fixation-plate thickness-optimization problem was implemented into and solved using 

HyperStudy [4.24], a general purpose multi-disciplinary multi-objective optimization 

software. For a defined optimization problem, this software invokes the pre-selected 

optimization algorithm (the Adaptive Response Surface Method [4.25], in the present 

case), morphs the component meshes, prepares an input file for the finite-element 

analysis, launches the finite-element solver and reads and interprets the finite-element 

results in order to determine the immediate direction of the design-optimization process. 

IV.3.2.3. Fatigue-life Prediction 

As mentioned earlier, one of the fixation-plate design-optimization constraints 

pertains to the attainment of a pre-selected lifecycle. Since this lifecycle is expected to be 

high-cycle fatigue controlled, a fatigue-based lifecycle prediction procedure had to be 

developed in the present work. The first step in this direction was to examine the 

temporal behavior of the muscle forces and reaction forces and moments during a single 

revolution of the bicycle crank. An example of the results obtained for the two joint-

reaction force and moment components is displayed in Figures 4-7(a) & 4-7(b). Simple 

examination of the results displayed in these figures show that the temporal evolution of 

various forces and moments is not in phase and that these forces/moments are not 

associated with constant amplitude. These findings have important consequences to the 

type of fatigue life prediction analysis which should be employed. Firstly, the non- 
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Figure 4-7. Temporal evolution of the hip and knee joint reaction forces and moments 
over a single revolution of the bicycle crank. 

constant nature of the load amplitude implies that a cycle-counting procedure (e.g. the so-

called Rainflow Cycle-counting Analysis [4.26]) should be employed in order to represent 

(highly-irregular) time-dependent loading as a collection of constant-amplitude (fixed 

mean-value) loading cycles. Secondly, since temporal evolution of the various muscle 

forces and joint-reaction forces and moments are out of phase, not only the magnitude of 
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stresses/strains at an arbitrary point in the femur/plate/screw assembly varies as a 

function of time, but also the orientation of the associated principal coordinate system is 

time variant. The latter findings are what make the loading “non-proportional” and the 

fatigue-life prediction more complex. Specifically, the rain-flow cycle-counting analysis 

to be used should differentiate the load cycles not only on the basis of their amplitude and 

the mean value but also on the basis of the orientation of their stress/strain principal 

coordinate system. 

High-cycle Stress-based Fatigue Analysis. 

Due to a relatively simple geometry of the fixation-plate implant and the fact that 

a pre-defined high-cycle fatigue life is mandated for this component, it was deemed 

reasonable to assume that the fatigue-life of this component will be stress controlled. 

Furthermore it is assumed that the stress-based function responsible for the fatigue-

induced failure is the maximum principal (tensile) stress. Next, stress-amplitude 

dependence of the number of cycles till failure is assumed to be defined by the traditional 

Basquin relation [e.g. 4.27] and the effect of the mean value of the maximum principal 

(tensile) stress is accounted for through the use of Goodman relation [e.g. 4.27]. The 

high-cycle fatigue parameters for Ti-6Al-4V are obtained from the Ansys fatigue material 

database [4.28]. 

High-cycle Stress-based Fatigue Analysis 

To compute the number of cycles till failure for the given design/ thickness of the 

fixation-plate implant, the procedure developed in our previous work was utilized [4.29]. 

Due to space limitations, only a brief overview of this procedure will be provided here. 
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The main steps of this procedure applied to each finite element of the fixation-plate 

implant include: (a) utilization of the finite-element calculation results to determine 

temporal evolution of the maximum principal (tensile) stress; (b) application of the rain-

flow cycle counting analysis to determine a three dimensional histogram relating the 

number of cycles with the maximum principal stress amplitude and the associated mean 

value; (c) calculation of the fractional damage associated with each load-cycle type (as 

characterized by a fixed value of the stress amplitude and the stress mean value); and (d) 

computation of the total fractional damage associated with all load-cycle types and 

computation of the corresponding number of cycles till failure as an inverse of this 

fractional damage. 

The fixation-plate implant life cycle is then set to that of its element associated 

with the smallest number of cycle till failure. 

IV.4. RESULTS AND DISCUSSION 

IV.4.1. Musculoskeletal Cycling Analysis 

As mentioned earlier the sole purpose of conducting the musculoskeletal cycling 

analysis was to obtain physiologically realistic loading conditions for the femur/fixation-

plate/screws assembly. Specifically, at each of 100 time increment during a single 

rotation of the bicycle crank, the muscle forces and the joint reaction forces and moments 

as well as the spatial position of the muscle attachment/via points and the joint-reaction 

points had to be obtained from the musculoskeletal analysis. In addition, the spatial 

position and the orientation of the femur/plate/screws assembly at each time increment 

had to be obtained from the musculoskeletal analysis. 
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An example of the temporal evolution of the forces and moments acting on the 

femur (at the hip and knee joint points) was shown earlier, Figures 4-7(a) & (b). Similar 

results were obtained at muscle attachment/via points. As pointed out earlier these forces 

and moments are of non-constant amplitude and not in-phase resulting in non-

proportional type of loading on the femur. 

An example of the whole human-body/bicycle kinematics/muscle-activity results 

at four time intervals during a single revolution of the bicycle crank is shown in Figures 

4-8(a) - (d). It should be noted that the activity of each muscle (i.e. the force produced by 

the muscle) is displayed pictorially in these figures by the thickness and the color shading 

of the line segments representing the muscles. The results displayed in Figures 4-8(a) - 

(d) then can be used to qualitatively assess how the activity/recruitment of different 

muscles is changing during a single revolution of the bicycle crank for e.g., variation in 

the activity of the Biceps Femoris Caput Longum muscle is marked in these figures. 
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IV.4.2. Finite Element Results 

Since it was assumed throughout this work that the locking screws can secure 

well the fixation-plate implant to the two fractured-femur segments, the focus of the 

finite-element investigation was placed on the fixation-plate implant. The three primary 

functional requirements imposed onto the implant were: (a) sufficiently high strength to 

prevent any plastic deformation within the fixation plate; (b) adequate bending stiffness  

Figure 4-8. Temporal evolution of the human-body kinematics and muscles activity at 
four equally-spaced times during a single bicycle-crank revolution. 

to prevent the two femur segments from intruding into each other; and (c) a pre-selected 

fatigue life expressed as a number of bicycle crank revolutions. Using an expected 
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implant resident time of 6 years and an average cycling distance of 1,000km/year the 

implant fatigue life was set to two million cycles. 

An example of the typical finite-element results is displayed in Figures 4-9(a) & 

(b). The results shown in Figure 4-9(a) show that the von-Mises equivalent stress is 

substantially lower than the Ti-6Al-4V yield strength (930MPa). Thus under all the 

loading and fixation-plate design conditions the implant strength requirement was found 

to be met. Likewise, the conditions regarding the maximum interpenetration of the  

 

 

 

 

 

 

 

 

 

Figure 4-9. Typical results pertaining to the spatial distribution of: (a) von-Mises 
equivalent stress (red=30Mpa and blue=0.1Mpa); and (b) maximum principal stress 

(red=20Mpa and blue=-3Mpa). 

fracture surfaces of the femur was found to be satisfied (i.e. <0.001m) for all 

combinations of loading conditions and the fixation-plate thickness. As far as the 
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fixation-plate implant fatigue-life requirements is concerned, it is found to be satisfied at 

the implant-thickness upper-bound (4.25mm) and not to be satisfied at the implant 

thickness lower-bound (3.25mm). As mentioned earlier the fatigue-life in the present case 

is controlled by the maximum principal stress. Figure 4-9(b) displays an example of the 

typical results pertaining to spatial distribution of this stress component. Clearly the 

elements surrounding some of the screw-holes are associated with the highest levels of 

the maximum principal stress and are likely to control the overall fatigue-life of the 

component. 

 

 

 

 

Figure 4-10. Upper-bound (wireframe) and lower-bound (shaded red for the plate and 
blue for the locking screws) shapes used in the fixation-plate thickness design 

optimization analysis. 

IV.4.3. Design Optimization Results 

As stated earlier, under all the implant-design and muscle/joint-imposed loading 

conditions, the functional requirements for the implant pertaining to its strength and 

bending stiffness were found to be satisfied. Hence, they will not be considered any 

further. The focus will be placed in this section on the functional requirement pertaining 

to the fatigue-life of the implant. 
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In accordance with the discussion presented in Section IV.3.2, the implant-

thickness optimization problem was treated as a shape-design optimization problem. The 

implant thickness was defined as a single implant-shape variable. Definition of this shape 

variable is depicted in Figure 4-10. Additionally, the corresponding seven shape variables 

were defined (only three shown for brevity), one for each locking screw, in order to 

ensure that screws length is consistent with the implant thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11. Variations of: (a) the femur fixation-plate implant thickness; and (b) femur 
implant fatigue-life, with the successive design-optimization iteration numbers. 
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The progress of the implant thickness optimization is displayed in Figures 4-11(a) 

& (b). In Figure 4-11(a), implant thickness is tracked as a function of the iteration 

number. In Figure 4-11(b), on the other hand, the implant fatigue life is monitored as a 

function of the optimization iteration number. The results displayed in Figures 4-11(a) & 

(b) show that the optimal thickness of the fractured-femur fixation-plate implant is 

around 4.07mm. 

IV.4.4. Material Selection 

Until this point in the present investigation, the same implant material, Ti-6Al-4V 

STA (Solution Treated and Aged) alloy was used. This is a commonly used fractured-

femur fixation-plate implant material which provides a good combination of 

biocompatibility, mechanical performance and a low material/manufacturing cost. The 

present investigation has established that the key performance aspect of the fixation-plate 

implant under consideration is fatigue life. While retaining the requirements concerning 

low material/manufacturing cost and bio-compatibility (ensured by carrying out material 

selection within the family of Ti-based alloys), a material selection procedure was 

conducted in the present work in order to identify potential material substitutes for Ti-

6Al-4V. 

While examining different Ti-based material alternatives, it was found that in all 

cases considered, strength requirement can be readily attained. Consequently implant-

material selection is carried out with respect to simultaneously, satisfying the implant 

stiffness and longevity requirements. In all the cases considered, it was found that the 

longevity requirement is more difficult to meet. Consequently, in defining a single 
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material selection parameter, a higher weighting factor (wEL=0.8) was selected for 

endurance limit and a lower weighting factor (wYM=0.2) for the Young’s modulus of the 

candidate material. For convenience, the endurance limit and then Young’s modulus of 

each candidate material are normalized by their respective counterparts in Ti-6Al-4V. 

Thus, the material selection index for the fixation-plate implant is defined as: 

VAlTi
YM

VAlTiEL

EL
EL E

EwwM
4646, −−−−

+=
σ

σ        (4.5) 

where σEL denotes endurance limit while E is the Young’s modulus. 

Clearly, M = 1.0 for Ti-6Al-4V and for a material to be considered as a potential 

substitute for Ti-6Al-4V, its M must be larger than 1.0. 

 

 

 

 

 

 

 

 

Figure 4-12. Material selection chart used in the analysis of potential replacement of Ti- 
6Al-4V as the fixation-plate implant material with other Ti-based alloys. 
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To assist the implant material-selection process, a normalized stiffness (E/ETi-6Al-

4V) vs. normalized endurance limit (σ/σTi-6Al-4V) plot is constructed in Figure 4-12. Few iso-

M lines are also drawn in this figure. The results displayed in Figure 4-12 show that, with 

respect to the implant performance (as defined by its strength, stiffness, and longevity), 

Ti-10V-2Fe-3Al STA, Ti-3Al-8V-6Cr-4Zr-4Mo (Beta C) or Ti-15V-3Cr-3Sn-3Al STA 

may be a better alternative for the implant than Ti-6Al-4V. However, the final decision 

regarding the substitution of Ti-6Al-4V with these material alternatives should also 

account for material/manufacturing cost. Due to a lack of reliable/stable data pertaining 

to the cost of the materials in question, the effect of cost on material selection could not 

be taken into account in the present work. 

IV.5. SUMMARY AND CONCLUSIONS 

Based on the work conducted and the results obtained in the present investigation, 

the following main summary remarks and conclusions can be drawn: 

1. Design (more specifically thickness) optimization of a fractured-femur fixation-

plate implant is investigated computationally. To provide the realistic physiological 

loading conditions experienced by the implant during normal daily activities of the 

patient, a musculoskeletal multi-body dynamics analysis is coupled with implant finite-

element/design-optimization methods. 

2. The results show that out of the three functional requirements placed on the 

implant, (i.e. its strength, bending stiffness and longevity), it is longevity which typically 

controls the implant optimal design/thickness. 
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3. Under the assumption that bicycle riding provides the most critical loading 

conditions experienced by the femur-fixation implant during normal daily activities of the 

human with a surgically implanted femur-fixation plate, the optimal implant thickness 

was determined. 

4. Potential material replacements have been considered for Ti-6Al-4V, the alloy 

used in the present finite-element/design-optimization analysis of a femur-fixation 

implant, in order to further reduce implant thickness. 
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CHAPTER FIVE 
 

DESIGN-OPTIMIZATION AND MATERIAL SELECTION FOR A PROXIMAL RADIUS 
FRACTURE-FIXATION IMPLANT 

 

 

ABSTRACT 

The problem of optimal size, shape and placement of a proximal radius-fracture 

fixation-plate is addressed computationally using a combined finite-element/design-

optimization procedure. To expand the set of physiological loading conditions 

experienced by the implant during normal everyday activities of the patient, beyond those 

typically covered by the pre-clinical implant-evaluation testing procedures, the case of a 

wheel-chair push exertion is considered. Toward that end, a musculoskeletal multi-body 

inverse-dynamics analysis is carried out of a human propelling a wheelchair. The results 

obtained are used as input to finite-element structural analyses for evaluation of the 

maximum stress and fatigue life of the parametrically defined implant design. While 

optimizing the design of the radius-fracture fixation-plate, realistic functional 

requirements pertaining to the attainment of the required level of the devise safety factor 

and longevity/lifecycle were considered. It is argued that the type of analyses employed 

in the present work should be: (a) used to complement the standard experimental pre-

clinical implant-evaluation tests (the tests which normally include a limited number of 

daily-living physiological loading conditions and which rely on single pass/fail 

outcomes/decisions with respect to a set of lower-bound implant-performance criteria) 
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and (b) integrated early in the implant design and material/manufacturing route selection 

process. 

V.1. INTRODUCTION 

It is common practice nowadays to judge the success of a surgery involving an 

implantable device (e.g. radius-or femoral-fracture fixation-plate implant, total hip 

replacement, etc.) by how quickly the patient can return to his/her normal activities of 

daily living following the surgical procedure [5.1]. Another measure of the success of 

these surgeries is the longevity of the implanted device subjected to the physiological 

forces associated with the normal daily activities performed by the patient. However, as 

people are living longer and continuing to maintain active lifestyles, the paradigm of 

“everyday activities” must also evolve. This is critical since physiological loading 

conditions associated with these daily activities should be included in the pre-clinical 

implant-evaluation testing procedures. For example, long-term fatigue-controlled stability 

of hip implants has been evaluated under the conditions of normal walking [5.2, 5.3, 5.5], 

sit-to-stand [5.2], and stair climbing [5.3, 5.5] and in a combination of these daily 

activities [5.4]. However, only a relatively small number of the physiological loading 

conditions (derived from everyday activities of the patient), such as the ones just 

mentioned, are normally covered by the pre-clinical implant evaluation studies. The main 

reason for this is that the inclusion of more complex physiological loading conditions in 

the experimental pre-clinical implant evaluation testing procedures could be quite 

challenging and costly. 
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The additional shortcoming of the current pre-clinical implant evaluation studies 

is that they are used to mainly evaluate already designed and manufactured implant 

devices. This ensures that these devices will meet a predefined set of functional and 

longevity criteria. However, the results of these tests, unless the devise has failed to meet 

the performance/longevity criteria, are rarely integrated in the overall implant-design 

process. Consequently what is left unanswered is if the accepted new implant can meet 

the performance and longevity requirements under other physiological loading conditions 

associated with normal daily living and if the design (including the material selected for 

the implant) is optimal (with respect to its size, shape, placement, weight, cost, etc.). 

The main objective of the present work is to demonstrate how musculoskeletal 

modeling can be used to generate physiological loading conditions not normally covered 

by the pre-clinical implant-evaluation tests, although they may be associated with the 

fairly normal daily activities. Within the present work, the recently-developed novel 

technology for computer modeling of the human-body mechanics and dynamics, namely 

the AnyBody Modeling System [5.6] and its associated public domain library of body 

models are being fully utilized and further developed. In its most recent rendition [5.7], 

the AnyBody Modeling System enables creation of a detailed computer model for the 

human body (including all important components of the musculoskeletal system) as well 

as examination of the influence of different postures and the environment on the internal 

joint forces and muscle activity. 

The second main objective of the present paper is to demonstrate how the loading 

conditions derived using musculoskeletal modeling can be utilized within a combined 
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finite-element/design-optimization procedure to carry out optimization of the design of an 

implanted device. Specifically, optimal thickness, angular size and placement of a 

proximal radius-fracture fixation-plate under wheel-chair push exertion loading 

conditions is investigated. Optimization of the implant thickness, angular size and 

placement is carried out with respect to its ability to meet several functional requirements 

pertaining to both the necessary level of fractured-radius fixation and to meeting the 

longevity/lifespan constraints. Details regarding these functional requirements are 

presented in the next section. 

The organization of the paper is as follows. A brief overview of the AnyBody 

Modeling System is provided in Section V.2.1. The musculoskeletal human-body model, 

the concepts of muscle recruitment and muscle activity envelope, the wheel-chair model 

and the issues related to human/wheel-chair kinematics and contact interactions are 

discussed in Sections V.2.2 - V.2.5. The definition of the musculoskeletal problem of a 

human propelling the wheel-chair analyzed in the present work is discussed in Section 

V.2.6. The finite-element/design-optimization problem and analysis for the proximal 

radius-fracture fixation-plate implant are presented in Section V.3. The results obtained 

in the present work are presented and discussed in Section V.4. The main conclusions 

resulting from the present work are summarized in Section V.5. 

V.2. MUSCULOSKELETAL MODELING AND SIMULATIONS 

Within the present work, two distinct computational analyses are carried out. 

Within the first analysis (discussed in this section), a musculoskeletal investigation of a 

person propelling a wheel-chair is carried out. The resulting forces, moments, angular 
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velocities and angular accelerations, as functions of the time, acting on the fractured right 

radius of the person propelling the wheel-chair are next used in a finite-element/design-

optimization analysis of the proximal radius-fracture fixation-plate implant. 

V.2.1. The AnyBody Modeling System [4.6] 

All the musculoskeletal modeling and simulation analyses carried out in the 

present work were done using the AnyBody Modeling System [5.6] developed at Aalborg 

University. The essential features of this computer program can be summarized as 

follows: 

(a) The musculoskeletal model is typically constructed as a standard multi-body 

dynamics model consisting of rigid bodies, kinematic joints, kinematic drivers and 

force/moment actuators (i.e. muscles). The kinematic and dynamic behavior of this model 

can be determined using standard multi-body dynamics simulation methods; 

(b) Complex geometries of the muscles and their spatial arrangement/ interactions 

(e.g. muscles wrapping around other muscles, bones, ligaments, etc.) can be readily 

modeled within AnyBody Modeling System [5.6]; 

(c) It is well-established that a typical musculoskeletal system suffers from the so-

called “muscle redundancy problem”: i.e. the number of muscles available is generally 

larger than those needed to drive various body joints. Within the living humans and 

animals, this problem is handled by their Central Nervous System (CNS) which controls 

muscles activation/recruitment. To mimic this role of the CNS, the AnyBody Modeling 

System [5.6] offers the choice of several optimization-based muscle-recruitment 

algorithms; 
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 (d) A typical musculoskeletal multi-body dynamics problem is solved using one 

of the computationally-efficient inverse dynamics methods within which the desired body 

motion is prescribed while the muscle forces required to produce this motion is 

computed; 

(e) Within the AnyBody Modeling System [5.6], the muscle recruitment problem 

is solved using an optimization-based approach in the form: 

Minimize the objective function: 

G( f (M ) )           (5.1) 

Subjected to the following constraints: 

Cf = d            (5.2) 

,0)( ≥M
if { })(,...,1 Mni∈         (5.3) 

where the objective function G (a scalar function of the vector of n(M) unknown muscle 

forces, f(M)), defines the minimization object of the selected muscle-recruitment criterion 

(assumed to mimic the one used by the CNS). Eq. 5.2 defines the condition for dynamic 

mechanical equilibrium where C is the coefficient matrix for the “unknown” 

forces/moments in the system while d is a vector of the “known” (applied or inertia) 

forces. The forces appearing in vector f in Eq. 5.2 include the unknown muscle forces, 

f(M), and the joint-reaction forces, f(R). Eq. 5.3 simply states that muscles can only pull 

(not push) and that the upper bound for the force in each muscle i
M

if
)( is the 

corresponding muscle strength, Ni; 
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(f) While there are a number of functional forms for the objective function, G, the 

one used in the present work is the so-called “min/max” form within which the objective 

function (to be minimized) is defined as the maximum muscle activity defined for each 

muscle i as fi
(M) /Ni, i.e. ; 

);/max()( )()(
i

M
i

M NffG =         (5.4) 

This formulation offers several numerical advantages over other popular forms of 

G and, in addition, it appears to be physiologically sound. That is, under the assumption 

that muscle fatigue is directly proportional to its activity, Eqs. 5.1 and 5.4 essentially state 

that muscle recruitment is based on a minimum muscle-fatigue criterion. Also, this 

expression for G has been found to asymptotically approach other formulations of G (e.g. 

the so-called “Polynomial” form [5.8]). 

(g) The problem defined by Eqs. 5.1 – 5.4 can be linearized using the so-called 

“bound formulation” [5.9] resulting in a linear programming problem with muscle forces 

and joint reaction forces as free variables. Relations between these two types of forces are 

next used to eliminate the joint reaction forces yielding a linear programming problem 

with the number of unknowns equal to the number of muscles in the system; and 

(h) While for a fairly detailed full-body model containing around one thousand 

muscles, this constitutes a medium-to-large size problem which can be readily solved by 

a variety of design-optimization methods (e.g. Simplex, Interior-point methods, etc.), the 

min/max problem is inherently indeterminate and must be solved iteratively. This can be 

rationalized as follows: The min/max criterion only deals with the maximally-activated 

muscles and with muscles which help support the maximally-activated muscles. Since the 
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system, in general, may contain muscles that have no influence on the maximum muscle 

activity in the system, the forces in these muscles are left undetermined by the min/max 

formulation presented above. To overcome this shortcoming, the muscle-recruitment 

optimization problem is solved iteratively, so that each iteration eliminates the muscles 

with uniquely determined forces and the procedure is repeated until all muscle forces are 

determined. 

V.2.2. Musculoskeletal Human-body Model 

The human body musculoskeletal model used in the present work was 

downloaded from the public domain AnyScript Model Repository [5.10]. The model was 

originally constructed by AnyBody Technology using the AnyBody Modeling System 

[5.6] following the procedure described in details by Damsgaard et al. [5.7]. 

Model Taxonomy: The musculoskeletal human-body model includes: (a) an arm/shoulder 

assembly containing 114 muscle units on each side of the body and having a morphology 

defined by Van der Helm [5.11], (b) a spine model developed by de Zee et al. [5.12] 

comprising sacrum, all lumbar vertebrae, a rigid thoracic-spine section, and a total of 158 

muscles, and (c) a pelvis and lower extremity model with a total of 70 muscles. In total, 

the model contains more than 500 individual muscle units and, hence, can be considered 

as a fairly detailed description of the human musculoskeletal system. The 

anthropometrical dimensions of the model are selected in such a way that they roughly 

correspond to a 50th percentile European male. 

Segments and Joints: Within the model, the bodies (referred to as the “segments” within 

the AnyBody Modeling System) are treated as rigid with their mass/inertia properties 
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derived from mass and shape of the associated bone and the soft tissue that is allotted to 

the bone. Joints in the human body are treated as idealized frictionless kinematic 

constraints between the adjoining segments. Both standard kinematic joints (e.g. 

spherical joints for the hips, hinge joints for the knees, etc.) as well as specially-

developed joints (e.g. those used to represent kinematic constraints associated with 

floating of the scapula on the thorax) are employed. 

Muscles: Muscles are treated as string contractile force –activation elements which span 

the distance between the origin and the insertion points through either the via points or 

by wrapping over the surfaces which stand on their way. Muscle wrapping problem is 

treated using a shortest-path contact-mechanics algorithm. Due to the fact that the 

problem considered in the present work is dynamic, muscles are modeled as being non-

isometric (i.e. muscle strength is considered to be a function of the body posture and the 

rate of contraction). Also, passive elasticity of muscles (i.e. the resistance of the muscles 

to stretching) was considered. 

Model Validations: The mechanics of the model is implemented as a full three-

dimensional Cartesian formulation and includes inertial and gravity body forces. Integral 

validation of whole-body musculoskeletal models is very difficult to conduct. To the best 

knowledge of the present authors, validation of the whole-body musculoskeletal model is 

still lacking (due to major challenges which would be associated with such validation). 

However, various subsystems of the whole-body model were validated separately. For 

example: (a) The lumbar spine model was validated by de Zee et al., [5.12] by comparing 

the model prediction with in vivo L4-5 intradiscal pressure measurements of Wilke et al. 
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[5.13]; (b) de Jong et al. [5.14] validated the lower extremity model by comparing model-

predicted muscle activations and pedal forces with their experimental counterparts 

obtained in pedaling experiments; and (c) The shoulder model was validated in the early 

work of Van der Helm [5.11]. 

V.2.3. The Muscle Activity Envelope 

As originally recognized by An et al. [5.15], the min/max muscle-recruitment 

formulation, discussed in Section V.2.1, defines effectively a minimum fatigue criterion 

as the basis for muscle recruitment, i.e. the aim of the proposed muscle-recruitment 

strategy is to postpone fatigue of the “hardest-working” muscle(s) as far as possible. The 

physiological consequence of this strategy is that muscles tend to form groups with 

muscles within the same group having comparable activity levels. In particular, in the 

muscle group associated with the maximum muscle activity there will be usually many 

muscles which, in a coordinated manner, carry a portion of the load comparable with 

their individual strengths. Consequently, in this group, many muscles will have the same 

activity level, which will be referred to as “the muscle activity envelope”. The linearity of 

the reformulated min/max criterion discussed earlier guarantees that the optimization 

problem defined by Eqs. 5.1 – 5.3, is convex and, hence, that the solution to the problem 

is unique and corresponds to the global optimum. In other words, there is no other muscle 

recruitment strategy which can reduce the muscle-activity envelope further. Moreover, 

since the muscle activity envelope represents the maximum muscle activation in the 

model, it can be interpreted as the fraction of maximum voluntary contraction necessary 
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to support the imposed loads (wheel-chair push-exertion and gravity forces, in the present 

case) while maintaining the prescribed posture. 

V.2.4. Wheel-Chair Model 

The wheel-chair is modeled using four segments, i.e. the two wheels, the seat and 

the back-rest. These segments are constrained to the global reference frame and used 

merely for the visual representation of the wheel-chair. That is, these directly used in the 

musculoskeletal analysis of the wheel-chair propulsion problem. Instead, as explained in 

the next section, the interactions between the human and wheel-chair was modeled 

implicitly by prescribing the time-dependent motion to various human-body segments 

and the time-dependent force experienced by the right hand during wheel-chair 

propulsion. 

V.2.5. Musculoskeletal Definition of the Wheel-Chair Propulsion Problem 

As mentioned above, wheel-chair/human-body interactions were modeled 

implicitly by prescribing time-dependent motions and forces to the body, Figure 5-1. 

Specifically, seven points in the body (three of which were located on the thorax and one 

on the right humerus, the right radius, the right ulna and the right hand each) were used in 

the present case. Time-dependent positions of these points were obtained in a set of 

motion-capture laboratory experiments. Within these experiments, a male individual 

experienced with the use of a wheel-chair was instrumented with seven reflective markers 

on the outside of his spine, the right shoulder and the right arm. After a wheel-chair 

specialist adjusted the wheel-chair to match the anthropometry of the person propelling 

the chair, the individual was asked to propel the wheel-chair at a comfortable speed while  
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Figure 5-1. Scaled musculoskeletal model of a person propelling the wheel-chair (not 
scaled to size). 

seven cameras recorded motion of the upper-body markers. Meanwhile, motion capture 

measurements were taken in order to locate and track the position of the reflective 

markers. The markers-position data recorded as a function of time were then used as 

input to the AnyBody Modeling System to drive the human body model during the 

simulated wheel-chair ride, Figure 5-2 [5.30]. The remainder of the body was then 

allowed to acquire the appropriate posture by adjusting kinematics of the spine in 

accordance with the so-called “spinal rhythm” algorithm. Within this algorithm, a single 

input, the pelvis-thorax angle, is used to determine the three rotational-joint angles of 

adjacent vertebrae (under a condition that the passive-elastic elements of the spine are 

able to force the spine to act cinematically as an elastic beam). The physical soundness of 
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the spinal-rhythm algorithm for the seating posture has been validated by Rasmussen and 

de Zee using motion capture experiments [5.16]. 

 

 

 

 

 

 

 

 

 

Figure 5-2. Participant in the wheel-chair motion-capture experiments [5.30]. 

Time-dependent loads experienced by the right hand during wheel-chair 

propulsion were obtained using laboratory experiments and involved force-sensing push-

rims operated by the laboratory participant. The data were collected at a sampling 

frequency of 240Hz. The collected data were next filtered using a forth-order, 20Hz low-

pass Butterworth filter and then the resulting forces in Newtons were obtained via simple 

conversion from the collected data in Volts. 

The markers-position and hand-force recorded data were finally fitted using an 

eight-order B-spline function, which enabled determination of instantaneous values of the 
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marker locations and hand-push forces as required in the musculoskeletal analysis of 

wheel-chair propulsion. 

V.3. FINITE-ELEMENT AND DESIGN-OPTIMIZATION PROCEDURES 

As mentioned earlier, the results of the musculoskeletal wheel-chair propulsion 

analysis in the form of: (a) fractured-radius/implant assembly reference-frame/center-of-

mass coordinates, orientations, velocities and accelerations as a function of time; (b) 

temporal variations of the spatial coordinates of the muscle attachment/via points and of 

the muscle forces; and (c) temporal variations of the spatial coordinates of the 

radius/elbow and radius/wrist joint reaction forces and moments, are exported from the 

AnyBody Modeling System and used, as input, in a finite-element/design-optimization 

analysis of the proximal radius-fracture fixation-plate implant. Some details pertaining to 

the finite-element/design-optimization analysis are presented in the remainder of this 

section. In Figure 5-3, the names and the spatial locations of the muscle-attachment/via 

points and the elbow and wrist joints are provided for the right radius. In this figure, there 

are 45 muscle attachment/via points and two joint points. Moments are transferred to the 

radius only at the two joint points since muscles, being contractile linear elements, can 

each provide only a force. 

In Figure 5-4, a close-up is provided of the right radius along with the adjoining 

bones. As can be seen, the radius contains a proximal (i.e. next to the elbow) fracture and 

it is fixed with a lateral fracture fixation-plate implant. The implant is attached to the two 

segments of the fractured radius using six screws. 
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Figure 5-3. Spatial location of various muscle attachment points to the right radius. 
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Figure 5-4. A close-up view of the fractured right radius (with a lateral fixation-plate 
implant and locking screws) and the adjoining bones at one time instant during a wheel-

chair propulsion-simulation run. 

V.3.1. Finite Element Model and Analysis 

The Model 

The finite element model analyzed consisted of a fractured right radius, a fixation-

plate implant and six locking screws. Typical finite element meshes used are displayed in 

Figure 5-5. The radius, the plate and each of the screws were discretized using ca. 13,000 

ten-node second-order tetrahedral solid elements, ca. 2,200 twenty-node second-order 

brick elements and ca. 200 twenty-node second-order brick elements, respectively. 

To apply the muscle forces and joint-reaction forces and moments to the radius, 

each muscle-attachment/joint point is combined with a neighboring section of the radius 

surface to form a coupling. In this way, forces/moments acting at a muscle-

attachment/joint point are transferred to the radius over a larger surface area preventing 

(unrealistic) stress-concentration artifacts. 



 139

To fasten the screws to the fixation plate and to the two bone segments, the outer 

surfaces of the screws are tied to the mating surfaces of the plate/radius. In other words, a 

“perfect fastening” condition is assumed to have been achieved using the screws. 

 

 

 

 

 

 

 

 

Figure 5-5. Typical finite-element meshes for the radius, the fixation-plate implant and 
six screws used in the quasi-static analysis of the implant longevity. 

To prevent sections of the bottom surface of the fixation-plate implant between 

the screws from penetrating the radius, a “penalty-type” contact algorithm was employed. 

Within this algorithm, penetration of the contacting surfaces is opposed by a set of 

contact springs. Any level of contact pressure can be transmitted through the contact 

interface. Shear stresses are transmitted across the contact-interface in accordance with 

the Coulomb friction law. 

Material Models 
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The fixation-plate implant and the seven screws are assumed to be made of Ti-

6Al-4V, a Ti-based alloy which is commonly used in fractured-bone fixation 

applications. Ti-6Al-4V is modeled as a linear-elastic/ideal-plastic material. 

To provide a higher level of realism to the analysis, it is recognized that radius is 

built of two types of bone tissues (cortical and trabecular) and that density (and hence 

mechanical properties) of the two types of bone tissues are spatially non-uniform. To 

obtain the necessary data for defining the cortical-bone/trabecular-bone dividing surfaces 

and the spatial distribution of the density within each of the two bone tissues, 

Computed Tomography (CT) scans of the radius bone were analyzed [5.18]. An 

example of the CT scan of the radius bone is shown in Figure 5-6. For each bone tissue, 

the local gray-scale level is proportional to the local density. CT images like the one 

displayed in Figure 5-6 are analyzed using the Medical Imaging Software Mimics [5.19]. 

Within Mimics, the two bone tissues are differentiated by assigning two non-overlapping 

grayscale ranges, one for each bone tissue. Then, the gray-scale of each pixel within the 

two bone tissues is quantified using the Hounsfield Unit (HU) value. The latter are next 

converted into the corresponding bone-density values as: ρ=1.9·HU/1,700, where the 

bone-density ρ is given in g/cm3. Lastly, the relations listed in Table 4-1 in [5.18] were 

used to compute the Young’s modulus as a function of the local density within the two 

bone tissues. A constant value of ν=0.3 was used for both bone tissues. No plasticity 

within the radius was considered. In other words, it was assumed that the radius was 

made of two isotropic heterogeneous linear-elastic materials. 

The Analysis 
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Figure 5-6. A typical Computed Tomography (CT) scan of the radius showing the 
presence of two bone tissues (the cortical and the trabecular) and the associated density 

variation within each bone tissue. 

The results of the AnyBody-based multi-body dynamic wheel-chair propulsion 

analysis over a single hand-push cycle are exported at 100 equal time intervals. For each 

of these intervals, a quasi-static finite-element analysis of the radius/fixation-plate/screws 

assembly is carried out. At each of these time steps, the following AnyBody output 

information was used as input boundary/loading conditions (a) Spatial position of the 

radius/fixation-plate/screw assembly and the associated muscle-attachment and joint-

reaction points; (b) muscle forces and joint-reaction forces and moments; and (c) the 

radius/plate/screws assembly (linear and angular) velocities and accelerations 

The aforementioned AnyBody output data were used within the finite element 

model as follows: (a) the spatial position data were used to correctly position the finite-

element model and the points for the application of concentrated forces and moments; (b) 

The muscle-force and joint-reaction force/moment data were used to define concentrated-
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load type of boundary conditions; and (c) The velocity and acceleration data were used to 

define distributed (gravity, inertia and centripetal) loading conditions. 

The finite-element analysis results were used to determine: (a) if the fixation–

plate implant has suffered (unacceptable) plastic deformation; (b) if the two contacting 

fractured surfaces of the radius have intruded into each other (also an unacceptable 

scenario); and (c) the stress-state of the most critical elements (elements which control 

the fatigue life of the fixation-plate implant). 

All the calculations pertaining to the quasi-static response of the 

radius/plate/screws assembly are done using ABAQUS/Standard, a commercially 

available general-purpose finite-element program [5.20]. 

V.3.2. Design-Optimization Analysis 

One of the main objectives of the present work was to carry out optimization of 

the proximal radius-fracture fixation plate implant design. The overall implant 

design/geometry was parameterized in terms of the following three parameters: (a) plate 

thickness (2-4 mm); (b) angular plate-size (35-45º); and (c) angular plate-position (10-

170º), Figure 5-7: The information listed within the parentheses denotes the range of the 

parameter in question with the 100° angular plate-position being located on the proximal 

lateral side of the radius. Since the plate was modeled as a solid structure, changes in its 

geometry entailed continued re-meshing of this component during optimization. In 

addition, since the screws length also changed during optimization (in order to comply 

with the changing plate thickness), the screws had to be re-meshed as well. Likewise, 
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since the depth/location of the holes within the radius changed during implant 

optimization, the two bone fragments had to be repeatedly re-meshed. 

V.3.2.1. Structural Optimization 

Structural optimization is a class of engineering optimization problems in which 

the evaluation of an objective function(s) or constraints requires the use of structural 

analyses (typically a finite element analysis, FEA). In compact form, the optimization 

problem can be symbolically defined as [5.21]: 

Minimize the objective function f(x) 

Subjected to the non-equality constraints g(x)< 0 and 

to the equality constraints h(x) = 0 

with the design variables x belonging to the domain D 

where, in general, g(x) and h(x) are vector functions. The design variables x form a vector 

of parameters describing the geometry of a part/component. For example, x, f(x), g(x) and 

h(x) can be part dimensions, part weight, a stress condition defining the onset of plastic 

yielding, and constraints on part dimensions, respectively. Depending on the nature of 

design variable in question, its domain D can be continuous, discrete or a mixture of the 

two. Furthermore, a structural optimization may have multiple objectives, in which case 

the objective function becomes a vector function. 
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Figure 5-7. Definitions of the fractured-radius fixation-plate design/positioning variables 
used in the present implant optimization work. 

Structural optimizations can be classified in many different ways. One of these 

classifications distinguishes between topology, size and shape optimization methods. 

Topology Optimization: Topology optimization which is typically applied at the 

conceptual stage of part design represents the design domain as the continuum mixture of 

a solid material and “voids” and the optimal design is defined with respect to the 

distributions of the mixture density within the design space [e.g. 5.22]. 

Size Optimization: Within size optimization approach, the dimensions that describe part 

geometry are used as design variables, x. The application of size optimization is, 

consequently, mostly used at the detailed part-design stage where only fine tuning of the 

part geometry is necessary. Size optimization is typically quite straightforward and it 

generally requires no re-meshing of the finite element models during optimization 

iterations. 
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Shape Optimization: Shape optimization which is also mostly used at the detailed part-

design stage, allows the changes in the boundary of part geometry. The boundaries are 

typically represented as smooth parametric curves/surfaces, since irregular boundaries 

typically deteriorate the accuracy of finite element analysis or may even cause the 

numerical instability of optimization algorithms. Because the product geometry can 

change dramatically during the optimization process, the automatic re-meshing of finite 

element models is usually required. Structural shape optimization methods are generally 

classified as: (a) direct geometry manipulation and (b) indirect geometry manipulation 

approaches. In the direct geometry manipulation approaches, design variable x is a vector 

of parameters representing the geometry of part boundary, e.g., the control points of the 

boundary surfaces. In the indirect geometry manipulation approaches, design variable x is 

a vector of parameters that indirectly defines the boundary of the product geometry. A 

comprehensive review of shape optimization based on the direct and the indirect 

geometry manipulation approaches can be found in Ref. [5.23]. 

V.3.2.2. Fractured-radius Fixation-plate Design/Positioning Optimization 

The fractured-radius fixation-plate design/positioning optimization problem was 

defined as follows: The plate mass is to be minimized while ensuring that during wheel-

chair propulsion no plastic deformation in the plate takes place, no interpenetration of the 

two fractured radius segments occurs and that no high-cycle fatigue failure will take 

place after a pre-selected number of hand-push crank revolutions (set to two million 

cycles, in accordance with a simple analysis presented in Section V.4). 
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The fractured-radius fixation-plate design/positioning optimization is carried out 

as a two-step procedure;  

(a) within the first step, a full-factorial Design of Experiments (DOE) study was 

conducted using three design variables: the plate thickness (2.0, 2.5, 3.0, 3.5 and 4.0 mm), 

plate angular size (35, 37, 39, 41, 43 and 45 degrees) and plate angular position (10, 55, 

100, 145 and 190 degrees), where the numbers within the parentheses represent the levels 

of each of the three design variables. The full-factorial matrix includes 5×6×5=150 

discrete designs. Three of these designs, each associated with the same level of plate 

thickness (3 mm) and the angular-size (45º) but at three different angular positions (10, 

100 and 190 º) are displayed in Figure 5-8; and 

(b) once the DOE results are obtained and fitted to a higher-order mathematical 

function (the so-called “Response Surface”), the resulting meta-model is subjected to the 

standard three design variable optimization procedure. In other words, the optimization 

algorithm is applied to the higher-order mathematical function without the use of costly 

finite-element analyses. An example of the resulting maximum von Mises response 

surface for the complete ranges of the fixation-plate design at three different angular 

positions is shown respectively in Figures 5-8(a)-(c). 
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Figure 5-8. Examples of the fixation-plate design at three different angular positions. 
Please see text for details. 

The fixation-plate design/positioning optimization problem was implemented into 

and solved using HyperStudy [5.24], a general purpose multi-disciplinary multi-objective 

optimization software. For a defined optimization problem, this software invokes a pre-

selected DOE algorithm (a full-factorial method, in the present case) and an optimization 

algorithm (the Adaptive Response Surface Method [5.25], in the present case), prepares 

the appropriate input files for the finite-element analysis, launches the finite-element 

solver and reads and interprets the finite-element results in order to construct the response 

surface in the DOE case and to determine the immediate search direction in the design-

optimization case. 

V.3.2.3. Implant Fatigue-life Prediction 

As mentioned earlier, one of the fractured-radius fixation-plate design-

optimization constraints pertains to the attainment of a pre-selected lifecycle. Since this 

lifecycle is expected to be high-cycle fatigue controlled, a fatigue-based lifecycle 
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prediction procedure had to be developed in the present work. The first step in this 

direction was to examine the temporal behavior of the muscle forces and reaction forces 

and moments during a single hand-push cycle. An example of the results obtained for the 

two (elbow and wrist) joint-reaction force and moment components is displayed in 

Figures 5-9(a) – (b). Simple examination of the results displayed in these figures show 

that the temporal evolution of various forces and moments is not in phase and that these 

forces/moments are not associated with constant amplitude. These findings have 

important consequences to the type of fatigue life prediction analysis which should be 

employed. Firstly, the non-constant nature of the load amplitude implies that a cycle-

counting procedure (e.g. the so-called Rainflow Cycle counting Analysis [5.26]) should be 

employed in order to represent (highly-irregular) time-dependent loading as a collection 

of constant-amplitude (fixed mean-value) loading cycles. Secondly, since temporal 

evolution of the various muscle forces and joint-reaction forces and moments are out of 

phase, not only the magnitude of stresses/strains at an arbitrary point in the 

radius/plate/screw assembly varies as a function of time, but also the orientation of the 

associated principal coordinate system is time variant. The latter findings are what makes 

the loading “non-proportional” and the fatigue-life prediction more complex. In other 

words, the stress state in general, and the maximum principal stress specifically do not 

scale linearly with the overall load magnitudes. Consequently, to reveal the stress state 

history of the fixation-plate during a single hand-push cycle, finite-element analyses of 

the fractured radius subjected to the time-varying muscle forces and joint reaction-forces 
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and moments had to be carried out multiple times (100 times in the present case) over a 

single hand-push cycle period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9. Temporal evolution of the elbow and wrist joint reaction forces and moments 
over a single hand-push cycle. 
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High-cycle Stress-based Fatigue Analysis 

Due to a relatively simple geometry of the fractured-radius fixation-plate implant 

and the fact that a pre-defined high-cycle fatigue life is mandated for this component, it 

was deemed reasonable to assume that the fatigue-life of this component will be stress 

controlled. Furthermore it is assumed that the stress-based function responsible for the 

fatigue-induced failure is the maximum principal (tensile) stress. Next, stress-amplitude 

dependence of the number of cycles till failure is assumed to be defined by the traditional 

Basquin relation [e.g. 5.27] and the effect of the mean value of the maximum principal 

(tensile) stress is accounted for through the use of Goodman relation [e.g. 5.27]. The 

high-cycle fatigue parameters for Ti-6Al-4V are obtained from the Ansys fatigue material 

database [5.28]. 

To compute the number of cycles till failure for the given design/thickness of the 

fractured-radius fixation-plate implant, the procedure developed in our previous work 

was utilized [5.29]. Due to space limitations, only a brief overview of this procedure will 

be provided here. The main steps of this procedure applied to each finite element of the 

fixation-plate implant include: 

(a) utilization of the finite-element calculation results to determine temporal 

evolution of the maximum principal (tensile) stress/strain; 

(b) application of the rainflow cycle counting analysis to determine a three 

dimensional histogram relating the number of cycles with the maximum principal 

stress/strain amplitude and the associated mean value. An example of the typical results 

obtained in this portion of the work is displayed in Figure 5-10(a); 
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Figure 5-10. Typical: (a) Rainflow cycle-counting analysis; and (b) Goodman-diagram 
procedure results obtained in the fixation-plate implant fatigue-life assessment procedure. 

 (c) the use of the Goodman diagram for the calculation of the fractional damage 

associated with each load-cycle type (as characterized by a fixed value of the stress/strain 

amplitude and the stress/strain mean value). An example of the typical results obtained in 

this portion of the work is displayed in Figure 5-10(b); and 
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(d) computation of the total fractional damage associated with all load-cycle types 

and the use of the Miner’s rule to compute the corresponding number of cycles till failure 

as an inverse of this fractional damage. 

The fractured-radius fixation-plate implant life cycle is then set to that of its 

element associated with the smallest number of cycle till failure. 

V.4. RESULTS AND DISCUSSION 

V.4.1. Musculoskeletal wheel-chair Propulsion Analysis 

As mentioned earlier the sole purpose of conducting the musculoskeletal 

wheelchair propulsion analysis was to obtain physiologically realistic loading conditions 

for the radius/fixation-plate/screws assembly. Specifically, at each of 100 time 

increments during a single hand-push cycle, the muscle forces and the joint reaction 

forces and moments as well as the spatial position of the muscle attachment/via points 

and the joint-reaction points had to be obtained from the musculoskeletal analysis. In 

addition, the spatial position and the orientation of the radius/plate/screws assembly at 

each time increment had to be obtained from the musculoskeletal analysis. 

An example of the temporal evolution of the forces and moments acting on the 

radius (at the elbow and wrist joint points) was shown earlier, Figures 5-9(a) – (b). 

Similar results were obtained at muscle attachment/via points. As pointed out earlier 

these forces and moments are of non-constant amplitude and not in-phase resulting in 

non-proportional type of loading on the radius. 

An example of the human-body/wheel-chair kinematics/muscle-activity results at 

four time intervals during a single hand-push cycle is shown in Figures 5-11(a) - (d). It 
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should be noted that the activity of each muscle (i.e. the force produced by the muscle) is 

displayed pictorially in these figures by the thickness and the color shading of the line 

segments representing the muscles. Hence, the results displayed in Figures 5-11(a) - (d) 

can be used to qualitatively assess how the activity/recruitment of different muscles is 

changing during a single hand-push cycle, e.g., variation in the activity of the Brachialis 

muscle is marked in these figures. 

 

 

 

 

 

 

 

 

 

Figure 5-11. Temporal evolution of the human-body kinematics and muscles activity at 
four equally-spaced times during a single hand-push cycle. 

V.4.2. Finite Element Results 

Since it was assumed throughout this work that the locking screws can secure 

well the fixation-plate implant to the two fractured-radius segments, the focus of the 
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finite-element investigation was placed on the fixation-plate implant. The three primary 

functional requirements imposed onto the implant were: (a) sufficiently high strength to 

prevent any plastic deformation within the fixation plate; (b) adequate bending stiffness 

to prevent the two radius segments from intruding into each other; and (c) a pre-selected 

fatigue life expressed as a number of hand-push cycles. Using an expected implant 

resident time of 3 years and an average daily number of hand-push cycling of 1,000, the 

implant fatigue life was set to two million cycles. 

An example of the typical finite-element results is displayed in Figures 5-12(a) - 

(b). The results displayed in Figure 5-12(a) show that the von-Mises equivalent stress is 

substantially lower than the Ti-6Al-4V yield strength (930MPa). Thus under all the 

loading and fixation-plate design conditions the implant strength requirement was found 

to be met. Likewise, the condition regarding the maximum interpenetration of the fracture 

surfaces of the radius was found to be satisfied (i.e. <0.001m) for all combinations of 

loading conditions and the fixation-plate thickness. 

As far as the fixation-plate implant fatigue-life requirements is concerned, it is 

found to be satisfied at some of the limits and not to be satisfied at the other limits of the 

implant-design/positioning optimization variables. As mentioned earlier the fatigue-life 

in the present case is controlled by the maximum principal stress. Figure 5-12(b) displays 

an example of the typical results pertaining to spatial distribution of this stress 

component. Clearly the elements surrounding some of the screw-holes are associated 

with the highest levels of the maximum principal stress and are likely to control the 

overall fatigue-life of the component. 
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Figure 5-12. Typical results pertaining to the spatial distribution of: (a) von-Mises 
equivalent stress (red=30Mpa and blue=0.1Mpa); and (b) maximum principal stress 

(red=20Mpa and blue=-3Mpa). 

V.4.3. Implant-Design/Optimization Results 

As stated earlier, under all the implant-design and muscle/joint-imposed loading 

conditions, the functional requirements for the implant pertaining to its strength and 

bending stiffness were found to be satisfied. This is documented for the strength case in  



 157

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 158

 

 

 

 

 

 

 

 

Figure 5-13. Typical results of the Design of Experiments study pertaining to the 
variation of the maximum von Mises stress as a function of the fixation-plate angular size 

and angular position at three levels of the plate thickness: (a) 2mm; (b) 3mm; and 
(c) 4mm. 

Figures 5-13(a) - (c) in which the results of the DOE study are displayed for the von 

Mises stress as a function of the implant angular-size and angular-position at three 

different levels of the fixation-plate implant thickness. It is evident that the maximum von 

Mises stress for all the designs and all loading conditions represents only a minor fraction 

of the implant-material yield strength (930MPa). Based on these findings and the fact that 

the implant-design/positionining optimization is carried out within the same design 

domain used in the DOE study, the stiffness and strength requirements were not 

considered any further. The focus will be placed in this section on the functional 

requirement pertaining to the fatigue-life requirement of the implant. 
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Typical results pertaining to the progress of the implant design/positioning 

optimization are displayed in Figures 5-14(a) - (b). In Figure 5-14(a), the implant mass 

(objective function which is being minimized) is monitored as a function of the 

optimization iteration number. In Figure 5-14(b), on the other hand, the corresponding 

implant fatigue-life (one of the constraining function, the minimum acceptable value 

which is set to two million cycles) is also monitored as a function of the optimization 

iteration number. The results displayed in Figures 5-14(a) - (b) show that the optimized 

mass of the fractured-radius fixation-plate implant is around 6.07g. This optimal implant 

design is associated with the following values of the three design/positioning variables: 

(a) implant thickness of 3.06 mm; (b) implant angular-size of 41.090; and (c) implant 

angular-position of 105.7°. 

V.4.4. Material Selection 

Until this point in the present investigation, the same implant material, Ti-6Al-4V 

STA (Solution Treated and Aged) alloy was used. This is a commonly used fractured-

radius fixation-plate implant material which provides a good combination of 

biocompatibility, mechanical performance and a low material/manufacturing cost. The 

present investigation has established that the key performance aspect of the fixation-plate 

implant under consideration is fatigue life. While retaining the requirements concerning 

low material/manufacturing cost and bio-compatibility (ensured by carrying out material 

selection within the family of Ti-based alloys), a material selection procedure was 

conducted in the present work in order to identify potential material substitutes for Ti-

6Al-4V. 
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Figure 5-14. Variations of: (a) the radius fixation-plate implant mass; and (b) radius 
implant fatigue-life, with the successive design-optimization iteration numbers. 

While examining different Ti-based material alternatives, it was found that in all 

cases considered, strength requirement can be readily attained. Consequently, implant-
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material selection was carried out with respect to simultaneously, satisfying the implant 

stiffness and longevity requirements only and, at the end of the material-selection 

process, it was confirmed that the strength requirements were indeed satisfied. In all the 

cases considered, it was found that the longevity requirement is more difficult to meet. 

Consequently, in defining a single material selection parameter, a higher weighting factor 

(wEL=0.8) was selected for endurance limit and a lower weighting factor (wYM=0.2) for 

the Young’s modulus of the candidate material. For convenience, the endurance limit and 

the Young’s modulus of each candidate material are normalized by their respective 

counterparts in Ti-6Al-4V. Thus, the material selection index for the fixation-plate 

implant is defined as: 

VAlTi
YM

VAlTiEL

EL
EL E

EwwM
4646, −−−−

+=
σ

σ        (5.5) 

where σEL denotes endurance limit while E is the Young’s modulus. Clearly, M = 1.0 for 

Ti-6Al-4V and for a material to be considered as a potential substitute for Ti-6Al-4V, its 

M must be larger than 1.0. 

It should be noted that the endurance limit of a material is typically obtained 

under zero mean-stress/strain loading conditions. Consequently, the use of this parameter 

in a material selection process does not take into account the important effect that mean 

stress/strain can have on the “infinite-life” material strength (i.e. the endurance limit). To 

overcome this problem, and still keep the material selection procedure relatively simple 

and manageable, a variable-mean stress/strain effective endurance limit is defined and 

used in Eq. 5.5. This quantity is defined as a weighted average of the endurance-limit 
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values associated with different mean-stress/strain levels encountered during a simple 

hand-push cycle. The weighting factors in these calculations were set to the 

corresponding number fractions of the given mean-stress/ strain level encountered during 

a simple hand-push cycle. 

 

 

 

 

 

 

 

 
 

Figure 4-15. Material selection chart used in the analysis of potential replacement of Ti- 
6Al-4V as the fixation-plate implant material with other Ti-based alloys. 

To assist the implant material-selection process, a normalized stiffness (E/ETi-6Al-

4V) vs. normalized endurance limit (σ/σTi-6Al-4V) plot is constructed in Figure 5-15. Few 

iso-M lines are also drawn in this figure. The results displayed in Figure 5-15 show that, 

with respect to the implant performance (as defined by its strength, stiffness, and 

longevity), Ti-10V-2Fe-3Al STA, Ti-3Al-8V-6Cr-4Zr-4Mo (Beta C) or Ti-15V-3Cr-3Sn-

3Al STA may be a better alternative for the implant than Ti-6Al-4V. However, the final 
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decision regarding the substitution of Ti-6Al-4V with these material alternatives should 

also account for material/manufacturing cost. Due to a lack of reliable/stable data 

pertaining to the cost of the materials in question, the effect of cost on material selection 

could not be taken into account in the present work. 

V.5. SUMMARY AND CONCLUSIONS 

Based on the work conducted and the results obtained in the present investigation, 

the following main summary remarks and conclusions can be drawn: 

1. Design/positioning optimization of a fractured-radius fixation-plate implant is 

investigated computationally. To provide the realistic physiological loading conditions 

experienced by the implant during normal daily activities of the patient, a 

musculoskeletal multi-body dynamics analysis is coupled with implant finite-

element/design-optimization methods. 

2. The results show that out of the three functional requirements placed on the 

implant, (i.e. its strength, bending stiffness and longevity), it is longevity which typically 

controls the implant optimal design/positioning. 

3. Under an assumption that the musculoskeletal multi-body dynamics analysis of 

the wheel-chair propulsion can be used to mimic the most critical loading conditions 

experienced by the radius-fixation implant during normal daily activities of the human 

with a surgically implanted radius-fixation plate, the optimal implant design and 

positioning were determined with respect to the attainment of a minimal implant mass. 

4. In the final portion of the paper, potential material replacements have been 

considered for Ti-6Al-4V, the alloy used in the present finite-element/design-
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optimization analysis of a radius-fixation implant, in order to further reduce implant 

thickness. 
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CHAPTER SIX 
 

GENERAL SUMMARY AND CONCLUSIONS 
 
 

In the present work, an attempt is made to utilize advanced computational 

techniques (i.e. musculo-skeletal multi-body dynamics and structural bio-mechanics 

finite element analysis) to investigate computationally a couple of ergonomics problems 

(i.e. seating comfort and long-distance driving fatigue) and a couple of bio-mechanics 

problems (i.e. the performance of femoral-fracture and radius-fracture fixation orthopedic 

implants).  

In each case investigated, an effort was made to provide a deeper physical insight 

into the basic physics of the problem and to derive the appropriate figure-of-merit 

quantities. For example, in the case of seating comfort, an effort was made to define and 

evaluate a metric which quantifies the extent of comfort/discomfort experienced by a 

seated individual. In the case of long-distance driving fatigue, an effort was made to 

derive and evaluate the appropriate seating-induced fatigue function. In the case of the 

two fracture-fixation implant analyses, the work was focused on assessing the 

performance, validity and durability of the implants. In addition, a simple procedure for 

implant material selection was introduced and tested.  

Lastly, in all four types of analyses employed, open-literature experimental data 

were gathered and used to validate the computational methods used. Overall, the 
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agreement between the experiment and the computational predictions was reasonable 

providing support for the computational approaches employed in the present work.  
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CHAPTER SEVEN 
 

RECOMMENDATIONS FOR FUTURE WORK 
 
 

The present work can be extended in many different directions such as: 

(a) More realistic hard and soft tissue material properties and their variations 

through the body parts investigated should be employed; 

(b) Within the finite element approach, more realistic muscle model should be 

employed; 

(c) More detailed durability of the implant should be considered; 

(d) Potential for implant failure under brief-duration overloads should be also 

considered; 

(e) Additional daily activities, such as walking, running, lunging, egress, etc. 

should be investigated within the musculo-skeletal multi-body dynamics models; and   

(f) More detailed models within the finite element analyses should be employed 

for the joints.  
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