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ABSTRACT

There have been considerable developments in the quest for intelligent machines 

since the beginning of the cybernetics revolution and the advent of computers. In the last 

two decades with the onset of the internet the developments have been extensive. This 

quest for building intelligent machines have led into research on the working of human 

brain, which has in turn led to the development of pattern recognition models which take 

inspiration in their structure and performance from biological neural networks.  Research 

in  creating intelligent  systems poses  two main  problems.  The  first  one is  to  develop 

algorithms which can generalize and predict accurately based on previous examples. The 

second one is to make these algorithms run fast enough to be able to do real time tasks. 

The aim of this thesis is to study and compare the accuracy and multi-core performance 

of some of the best learning algorithms to the task of handwritten character recognition. 

Seven algorithms are compared for their accuracy on the MNIST database, and the test 

set accuracy (generalization) for the different algorithms are compared. The second task 

is to implement and compare the performance of two of the hierarchical Bayesian based 

cortical algorithms, Hierarchical Temporal Memory (HTM) and Hierarchical Expectation 

Refinement Algorithm (HERA) on multi-core architectures. The results indicate that the 

HTM and HERA algorithms can make use of the parallelism in multi-core architectures.
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CHAPTER ONE

INTRODUCTION

Intelligent  machines  were  part  of  myths  in  most  of  the  ancient  world. 

Considerable real development began with the cybernetics revolution and the advent of 

personal computers. Honda's humanoid robot 'Asimo', Stanford University's Autonomous 

vehicle  'Stanley',  and  IBM's  chess  playing  computer  'Deep  Blue'  are  its   products. 

Improvements in inference capabilities and real time performance would benefit many 

areas of research including speech processing, computer vision, data mining, robotics, 

and computer games. 

1.2 Related Work.

From the earliest models, we have taken inspiration in the structure and performance of 

biological  neural  networks.  McCulloch  and  Pitts  [38]  proposed  the  McCulloch-Pitts 

model of a neuron, which performed weighted sum of inputs followed by thresholding. 

John  McCarthy  coined  the  term  "artificial  intelligence”  and  also  invented  the  Lisp 

language.  Rosenblatt  [46]  proposed  the  perceptron  model,  in  which  the  perceptron 

learning  rule   adjusted  the  input  weights,  and  Minsky  et  al.  [40]  demonstrated  the 

limitations  of  the  multilayer  perceptron  model.  Kohonen  came  up  with  the  idea  of 

associative  memories  [29],  Vapnik  and  Chervonenkis  established  the  VC  dimension 

theorem [49],  which is a  measure of capacity of a statistical  classification algorithm. 

Adaptive Resonance Theory was formulated by Grossberg in 1976 [20], and Barto et al. 
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[6] originated the idea of reinforcement learning. Hopfield invented the recurrent neural 

networks in 1983 and in 1989 Judea Pearl formalized the concepts of Bayesian Networks 

[43].  In  1995,  Cortes  et  al.  [10]  proposed  the  concepts  of  support  vector  machines. 

Convolutional Neural Networks was introduced by LeCun et al. [32], and Geoffrey E. 

Hinton along with Terry Sejnowski invented Boltzmann machines [23]. Some of the most 

interesting applications were ALVINN which stands for Autonomous Land Vehicle In a 

Neural  Network  by  Dean  Pomerleau,  Honda's  Humanoid  robot  'Asimo',  Stanford 

University's DARPA 2007 Grand Challenge winning autonomous vehicle 'Stanley' and 

IBM's chess playing computer 'Deep Blue'.

There has been number of studies on the comparison of classifiers. One of the 

oldest  and  most  comprehensive  was the  works  of  King et  al.  [28],  which compared 

symbolic, statistical and neural networks based algorithms. But this study was conducted 

in  1995,  and  hence  many  of  the  newer  algorithms  are  missing.  LeCun  et  al.  [31], 

compared  different  classifiers  for  the  problem  of  handwritten  character  recognition. 

Caruna et al. [9], compared different classifiers for many different problems and reported 

that  performance  was  problem specific.  More  recently,  Neeba  et  al.  [42],  compared 

different features and statistical and neural networks based classifiers for the problem of 

handwritten character recognition. But all the above studies have not included the newer 

hierarchical Bayesian based cortical models.  

Recently, several  models  of  the  neocortex  have  been  proposed  that  are  based  on 

modeling  mini-columns/columns  [3][11][18][27].  The  models  by  Dean  [11],  George  and 

Hawkins [18], and Anderson [3] are based on hierarchical graphical networks and concur well 
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with experimental  results.  They describe  the  brain  as  a hierarchical  device that  computes  by 

performing sophisticated pattern matching and sequence prediction. Johansson and Lansner [27] 

utilized a cluster of 442 dual Xeon processors to simulate a randomly connected brain model 

utilizing recurrently connected neural networks grouped into cortical columns. Anderson et. al [4] 

are examining the design and implementation of large scale cortical models based on the brain 

state in a box model [3].

Several  studies  have  examined  the  acceleration  of  various  models  on  multi-core 

architectures. Wu et al. [52] are examining the acceleration of the brain state in a box model [2] 

on the Cell processor in a Playstation 3. They achieve about 70% of the theoretical peak of the 

processor. Felch et al [17] examined the acceleration of the Brain Derived Vision algorithm on 

the  Cell  processor.  They  achieved  a  speedup  of  140  times  using  a  cluster  of  three  Sony 

Playstation 3 systems over a serial implementation on 2.13 GHz Intel Core processor. Xia and 

Prasanna examined the parallelization of the exact inference algorithm in junction trees [53] and 

examined its  acceleration on a Sony Playstation 3 based Cell  processor [54].  They achieve a 

speedup of about four times a 3.0 GHz Intel Pentium 4 processor. 

1.2 Overview

This thesis studies the two of the problems faced in artificial intelligence research, 

when applied to hand written character recognition. The first problem is accuracy of the 

generalization behavior and the second one is that of performance, speed, and the ability 

of the algorithm to work in real time. 

For the first problem, seven classification algorithms from two different classes of 

algorithms are compared against  each other. The first class of algorithms is based on 
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statistical  machine learning.  Naïve  Bayes  (NB) is  the  first  algorithm from this  class, 

which is a simple probabilistic classifier with strong independence assumptions. The K 

Nearest Neighborhood classifier (KNN) labels a test case with the maximum occurring 

label  of  the  k  nearest  training  examples.  The  Neighborhood  Component  Analysis 

proposed by Goldberger et al., is an improvement of KNN which searches for the optimal 

distance parameter for the KNN algorithm in the Mahalanobis quadratic distance space. 

The next  algorithm of this class, the Support Vector Machines invented by V. Vapnik et 

al. [50], is a binary classification algorithms which finds the optimal hyperplane which 

divides the two classes with the maximum margin. The last  algorithm of this class of 

algorithms is the neural networks based algorithm which have taken inspiration from the 

biological neural networks. The Multilayer Perceptron Algorithm (MLP) which uses the 

back propagation algorithm, is a non linear statistical learning algorithms which adapts its 

structure  during  the  learning  phase  based  on  the  information  flowing  through  the 

network. 

The  second class  of  algorithms are  based  on Hierarchical  Bayesian  Networks 

pioneered  by  Judea  Pearl  [43].  The  first  algorithm  called  Hierarchical  Temporal 

Memory(HTM) and developed by Jeff  Hawkins and Dileep George  [18],  models  the 

structural and algorithmic properties of the neocortex. The second algorithm, Hierarchical 

Expectation Refinement Algorithm (HERA) was proposed by Thomas Dean [13]. All the 

above algorithms were compared on four different data sets of varying sizes.

The second problem of performance is studied by comparison of the Hierarchical 

Bayesian networks on different multi-core architectures. The HTM algorithm and HERA, 
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both were implemented on four different multi-core architectures, the Intel Xeon Blade, 

Sony Play Station 3, IBM QS 20 and Sun SPARC T5140.

The main contributions of this work are:

1) An  empirical  study  of  the  accuracy  of  the  leading  off  the  shelf  learning 

algorithms for the problem of handwritten character recognition.

2) Parallelization study of two hierarchical Bayesian cortical models. Both thread 

level  parallelization  and  the  data  level  parallelization  of  the  models  are 

examined. 

3) A study of different optimizations and parallelization strategies for multi-core 

implementations of the models. This thesis examines the performance of the 

models  on  three  multi-core  processors  using  four  platforms  (a  Sony 

Playstation 3, an IBM QS20 blade, a Sun Enterprise 5140 server, and a dual 

processor Intel Xeon blade). Several differnt sizes of the model networks were 

implemented to examine the effect of scaling.

1.4 Organization

The second chapter explains the statistical machine learning based algorithms and 

the third chapter explains the Hierarchical Bayesian Networks based algorithms and the 

fourth  chapter  explains  experimental  setup  and  implementation.  The  fifth  chapter 

discusses the results and the last chapter draws the conclusions and future work. 
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CHAPTER TWO

STATISTICAL MACHINE LEARNING ALGORITHMS

Statistical machine learning merges statistics with learning theory and is applied 

to  large-scale,  dynamical  and  heterogeneous data  streams.  One  of  the  main  research 

interest in this area is to understand the relation between inference and computational 

requirements. Some of the leading algorithms are described in the following sections. 

Section 2.1 and 2.2 describes the simplest statistical algorithms, namely the naïve Bayes 

algorithm and the K nearest neighbor algorithm. Section 2.3 describes a generalization to 

K nearest neighbor algorithm, and 2.4 explains the Support Vector Machines algorithm. 

Finally  section  2.5  explains  the  Artificial  Neural  Network  algorithm  based  on  the 

Multilayer Perceptron.   

2.1 Naïve Bayes

The simplest algorithm is the naïve Bayes (NB) classifier which makes the strong 

assumption of conditional independence of the each element of the feature space with 

respect to the class label. 

Let X={x1,x2,..xm} and x1={x11,x12,...x1n} represent m training examples of n sized 

features. 

Let Y={y1,y2,..ym} represents the labels of the m training examples.

6
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The naïve Bayes assumption is that xi's are conditionally independent given y. So for a 

binary classifier, the parameter to be learned is the maximum likelihood of φ  j∣y= 0  and 

φ  j∣y=1 .  The parameter φ  j∣y=1  is the fraction that feature j contributes to class with 

label 1, φ  j∣y= 0 is the fraction that the feature contributes to  class with label 0 and   

φ y=1 is the prior, or the probability of the class with label 1. Now the class label for a 

training set can be calculated by the Bayes rule. 

In  addition  to  the  above  in  case  of  small  training  sets,  some   φ  j  may  be 

calculated as zeros,  which can severely distort  the probabilities for some classes.  So, 

Laplace smoothing is applied to avoid this. 

2.2 K Nearest Neighbor (KNN)

The KNN is one of the simplest algorithms, which labels the test set example with 

the class label of the majority of the training set labels in its neighborhood. The distance 

parameter is used to determine the neighborhood of the test label. In our experiments, the 
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study compares the Euclidean and Manhattan distance parameters. The advantages of this 

algorithm includes simplicity, non linear decision boundary, single parameter that needs 

to be tuned, and that accuracy increases with training set size. The disadvantages of the 

algorithm are that accuracy varies with the distance parameters, high computational cost 

with large databases, and the need to keep the database even for testing.   

Fig 2.1 KNN Classification

2.3 Neighborhood Component Analysis (NCA)

This algorithm was proposed by J Goldberger et al. [62], it is an extension of the 

KNN algorithm. The idea is to convert the problem such that gradient descent can be 

done on the error function by varying the distance metric. The error function in case of 

the  k  nearest  neighbors  is  discontinuous  with  respect  to  the  distance  metric,  so  the 

stochastic random neighbor selection function is used, where pij  is the probability that a 

point i  chooses j as its neighbor, by leave one out cross validation.
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            Training Algorithm

1. Start with A as identity matrix, LDA matrix 

2. Continue steps 3 and 4 till convergence

3. Optimize by gradient descent

4.

Testing Algorithm

1. Convert the original input to the new feature space by multiplying with the 

learned kernel A.

2. Do KNN for the nearest neighbor with Euclidean distance.

2.4 Support Vector Machines

Support vector machines are a highly effective machine learning technique for 

many classes of problems. SVMs construct a hyperplane which maximizes the margin 

between the  two classes.   The  problem of  finding  the  optimal  solution  to  the  SVM 

problem is non convex by the basic formulation. Therefore the dual of the problem is 

considered  which  is  convex.  Then  the  Sequential  Minimal  Optimization  (SMO) 
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d ij=xi−x j  'AA' xi−x j 
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algorithm by John C. Platt [60] is used for the optimization of this convex problem. The 

memory requirement of SMO algorithm is between linear and quadratic in the training set 

size, depending on the problem. A simplified version of the SMO algorithm as explained 

in [60] is described below,

Algorithm

   C = Regularization parameter

   tol = numerical tolerance 

   Repeat till convergence

        for i=1...m

10

α ∈Rm:LagrangeMultiplier

b∈R:threshold

E i =f xi − yi

select j≠i randomly
E j =f x j − y j

if   yi E i−tol && α i <C  ∣∣ y i E i >tol && α i >C 

f  xi =∑ α i yi 〈 xi ,x 〉+b

if yi≠y j , L=max 0, α j−α i  , H=minC,C+α j−α i 

α i
old =  α i , α j

old =α j

if yi =y j , L=max0, α i +α j−C  , H=min C,α i +α j 

if  L=H 

continue to next i .

Compute η = 2 〈x i ,x j 〉−〈 x i ,xi 〉−〈 x j ,x j 〉

if η ≥0 

continue to next i

α j =α j−y j E i−E j / η



                           Determine value for α i b1 and b2

 

  

   
 Compute  b

      

      
    

end loop

2.5 ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks are computational models which try to simulate the 

structural and functional aspects of biological neural networks. The network is formed by 

interconnected nodes, called neurons. Each neuron is presented by the weighted input, on 

which the neuron does a functional mapping to the output. 

Let  x1 ,x2 , .. x n be the inputs to the neuron and  w1 ,w2 , .. wn be weights of the 

inputs  to  the  neuron.  Each  neuron  does  two  computations,  summation  followed  by 

logistic function or sigmoid function.  Therefore the output is

11

output = g ∑ xi wi , whereg  x =1/ 1 +e−x 

{b1+b2 /2 otherwise }

{b2 if 0<α j <C }

b2=b−E j−y i  α i−α j
old 〈 xi ,x i〉−y j  α j−α j

old  〈 x j ,x j〉

b= {b1 if 0<α i <C }

b1=b−E i−yi α i−α i
old 〈 xi ,xi 〉−y j α j−α j

old 〈 x i ,x j 〉

α i =α i +yi y j  α j
old
−α j

continue to next i

Set α j= H if α j >H 

if  ∣α j−α j
old
∣10−5

α j if L≤α j≤H 

L if α j <L 



Fig 2.2 Node operation. 

Fig 2.3 Network Architecture

The network architecture is completely connected, except in case of the neurons in the 

same layer as shown in figure 2.3 above. 

Neural Network with one hidden layer

x11 ,x 21 ,. . xn1   : n inputs to first neuron of the hidden layer

w11 ,w21 , . .wn1 : weight of those inputs 

X= {x11 ,x21 ,. . xn1 ;x21 . . . . x nm}

W= {w11 ,w21 ,. . wn1;w21 . . .W nm }

X= {X;bias }

  L is the learning rate, T is target labels. 

12
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Training Algorithm

Repeat till Convergence 

1. Neth=∑ X∗W h : Net of the hidden layer.

2. Oh =1/ 1exp −Neth         : Output of the hidden layer.

3. I o = {Oh ;bias } : Input to output layer is output of hidden unit and the bias. 

4. Neto=∑ IoW o : Net of the output layer. 

5. O=1/ 1exp −Neto           : Output of the output layer.

6. E=T−O : Error

7. δ o=O .∗1−O  .∗E   : Sensitivity of output units.

8. δ h =Oh.∗δ o∗W o              : Sensitivity of hidden units.

9. w hδ =L∗X∗δ h : Change in weights of hidden units.

10. w oδ =L∗I o∗δ o : Change in weights of output units.

11. W h=Wh +w hδ : Weight correction for hidden units.

12. W o =Wo+w oδ : Weight correction for output units.

end

Testing Algorithm

 X is test input, Wh and Wo from training.

1. Neth=∑ X∗W h : Net of the hidden layer, 

2. Oh =1/ 1exp −Neth         : Output of the hidden layer.

13



3. Io= {Oh ;bias } : Input to output layer is output of hidden unit and the bias. 

4. Neto=∑ IoW o : Net of the output layer. 

5. O=1/ 1exp −Neto           : Output of the output layer.

14



CHAPTER THREE

HIERARCHICAL BAYESIAN CORTICAL MODELS

3.1 Hierarchical Temporal Memory model

George  and  Hawkins  developed  an  initial  mathematical  model  [18]  of  the 

neocortex based on the framework described by Hawkins in [21]. Their model utilizes a 

hierarchical  collection  of  nodes  that  employ  Pearl’s  Bayesian  belief  propagation 

algorithm [43]. As shown in Figure 3.1, each node has one parent and multiple children 

(hence there is no overlap in the input fields of any two nodes in a given layer). Input 

data is fed into the bottom layer of nodes (level 1) after undergoing some pre-processing. 

After  a  set  of  feed-forward  and  feedback  belief  propagations  between  nodes  in  the 

network, a final belief is available at the top level node. This belief is a distribution that 

indicates the degree of similarity between the input and the different items the network 

has been trained to recognize. The model is trained in a supervised manner by presenting 

a set of training data to the bottom layer of nodes multiple times.

Fig 3.1 HTM Architecture
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Level 3
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Level 1
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The computational  algorithm within each node of the  model  is  identical  and follows 

equations 1 through 6 below. Before a node starts computing, it receives belief vectors 

from its parent (π) and children (λ) as shown in Figure 3.2 (a). The belief vectors from its 

children are all combined together as shown in equation 1. This combined belief vector 

from the children is then multiplied with an internal probability matrix, Pxu (generated in 

an offline training phase), and the belief vector from the parent (see equation 2). The 

matrix multiplications are carried out element-by-element. A set of belief vectors are then 

generated for the parent and child nodes (equations 3 to 6). These output belief vectors 

are then transmitted to the parent and children of the node as shown in Figure 3.2(b). 

λ product[ i ]=∏ λ in [child ] [ i ] (1)
Fxu[j][k] = π in[j] ×  Pxu[j][k] ×  λproduct[k] (2)
mrow[j] = max(mrow[j], Fxu[j][k]) (3)
mcol[k] = max(mcol[k], Fxu[j][k]) (4)
λout[j] = mrow[j] / π in[j] (5)
πout[child][k] = mcol[k] / λin[child][k] (6)

Table 3.1  Equations describing the HTM Model

Fig 3.2 HTM Belief Propagation. (a) Node gathering beliefs (b) Node distributing beliefs.
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3.2 Hierarchical Expectation Refinement Algorithm

Thomas  Dean  proposed  a  new hierarchical  Bayesian  model  of  the  visual  cortex, 

called the Hierarchical Expectation Refinement Algorithm[12]. This model consists 

of a layered collection of nodes as shown in Figure 3.3. Input data is presented to the 

bottom layer of nodes (generally  after  some pre-processing)  and a final  inference 

based on this input is produced by the top layer node. All the nodes in the network 

carry out the same set of computations and can be considered to be the functional 

equivalent  of  cortical  columns.  The  model  is  trained  in  a  supervised  manner  by 

presenting a set of training data to the bottom layer of nodes multiple times.

Figure 3.3: An Example of Thomas Dean’s hierarchical Bayesian network model. This 
example can be divided into three subnets as shown and the nodes are numbered with the 
subnets they belong to.

In the example implementation of the model presented by Dean in [4], the model 

performs  hand  written  character  recognition  on  28×28  pixel  images.  This  example 

network consists of three layers of nodes connected in a pyramidal form, with the bottom 

layer consisting of 49 nodes (in a 7x7 layout), the middle layer of 9 nodes (in a 3x3 

layout), and the top layer of 1 node. Each layer 2 node has nine layer 1 children (arranged 
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in a 3x3 layout) forming a pyramidal collection. The field of view of each layer 2 node 

overlaps with its neighbors’ by an edge that is one node thick. Thus, each layer one node 

can have up to four layer 2 parents. 

The input image is preprocessed by a preprocessing layer before being fed to the 

layer 1 nodes. Each layer 1 node has a 4x4 patch of pixels corresponding to it. In the 

preprocessing layer, the 4x4 patch of pixels is transformed into a mixture of Gaussians 

and this mixture is matched against 16 predefined classes of mixtures of Gaussians. Thus 

each 4x4 pixel region is represented by a number between 1 and 16, with this number 

being fed to the corresponding layer 1 node by the preprocessing layer.

The network can be divided into a set of modular component subnets (as shown in 

Figure 3.3). Each subnet has two layers of nodes. A subnet can be defined as a node, its 

parents, and all the children of those parents in the same level as the original node [4]. 

The function of each subnet is to produce an abstract set of features that are seen by the 

lower level subnets feeding into it. Neighboring subnets have overlaps in their receptive 

fields to enable the network to more robustly recognize invariant features. Hence a node 

could belong to multiple subnets (as shown in Figure 3.3). The subnets are identified 

during the training process and only the largest subnets (those that would not be a subset 

of another  subnet)  are  utilized.  For  any given input  image,  the  network is  processed 

through  multiple  bottom-to-top-to-bottom passes.  In  each  pass,  all  the  subnets  for  a 

certain layer are processed before moving to the next layer.
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Figure 3.4: An Example of a junction tree derived from one of the lower level subnets 
shown in Figure 3.1. Part (a) shows the subnet with the nodes number 1 through 7. Part 
(b) shows the junction tree equivalent to this subnet. Each clique in part (b) is numbered 
with the corresponding nodes from the subnet that are used to build the clique.

In order to process a subnet, it is first converted to its equivalent junction-tree 

representation. The junction-tree consists of a set of nodes called cliques, where each 

clique is a collection of nodes in the original subnet. The connection between the cliques 

is called a separator and is labeled by the nodes in common between the two cliques. 

Figure  3.4  shows  a  simple  subnet  and  its  equivalent  junction  tree  decomposition. 

Although this junction tree has only 5 cliques (with two that can be evaluated in parallel), 

the junction trees in the networks examined have up to 25 cliques (with up to 21 that can 

be  evaluated  in  parallel).  The  subnet  to  junction  tree  mapping is  carried  out  during 

training and does not have to be redone during inference (as the mapping is reused). The 

junction tree for a subnet is evaluated in a single bottom-to-top and then top-to-bottom 

pass. The Lauritzen and Spiegelhalter's junction-tree algorithm [30] is utilized for exact 

inference  in  the  tree.  The  operations  consist  primarily  of  element  by  element  multi-

dimensional matrix adds, multiplies, and divides.
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CHAPTER FOUR

EXPERIMENTAL SETUP AND IMPLEMENTATION

4.1 Algorithmic Implementation

All  the  algorithms  were  presented  with  the  60,000  training  images  from the 

MNIST training data set. Each image is 28x28 in size with 8 bit gray scale resolution, 

thus each algorithm was presented with a 784 bit vector for each training image. The 

naive Bayes was implemented in Matlab with Laplace smoothing to avoid distortion. The 

KNN  algorithm  was  implemented  in  Matlab  and  was  tested  using  Euclidean  and 

Manhattan distances.  The support vector machines implementation was  based on the 

sequential minimal optimization [60], and the pseudo code as explained in [61] was used 

for the development of the algorithm. One versus all classification as explained in [50] 

was used for multi-class classification. The artificial neural networks was implemented 

by using the MLP algorithm in Matlab. The HTM algorithm was implemented using the 

Nupic 1.6 SDK, provided by Numenta Inc. and HERA was implemented by using the 

software provided by Thomas Dean [62].   

4.2 Multi-core architectures

The  problem  of  heat  dissipation  has  put  to  hold  the  frequency  scaling  of 

processors by miniaturization of transistors and has taken the semiconductor industry to 

to  explore  multi-core  architectures.  This  thesis  examines  three  different  multi-core 

architectures,  Intel  Xeon  E5345,  Sun  Ultra  SPARC  T2  Plus,  and  STI  Cell  BE 

architectures.
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The  Intel  Xeon  E5345  processor  examined  contains  four  Intel  Core  based 

processing cores clocked at  2.33 GHz. These processors contain a 256 KB level one 

cache per core and an 8 MB shared level two cache. The processor can execute vector 

instructions (with four floating point operations) using the SSE3 instruction set.

Fig 4.1 Intel Xeon E5345 processor architecture. [59]

The Sun Ultra SPARC T2 Plus processor [48] contains 8 cores running at  1.4 

GHz. Each core can execute up to eight threads simultaneously, with up to two threads in 

each  pipeline  stage.  Thus  the  entire  processor  can  run  a  maximum  of  64  threads 

concurrently. Each core contains 8 KB of data and 16 KB of instruction cache, and share 

a 4 MB level two cache.
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Fig 4.2 Sun UltraSPARC T2 Plus processor architecture. [59]

The Cell  Broadband Engine developed by  IBM, Sony,  and Toshiba  [20]  is  a 

multi-core processor that heavily exploits vector parallelism. The current generation of 

the  IBM  Cell  processor  consists  of  nine  processing  cores:  a  PowerPC based  Power 

Processor Unit (PPU) and eight independent Synergistic Processing Units (SPU). The 

processor operates at 3.2 GHz. Each SPU is capable of processing up to four instructions 

in  parallel  each  cycle  (eight,  if  considering  fused  multiply-add  instructions).  The 

processing cores in the Cell utilize in-order execution with no branch prediction. 

Fig 4.3 STI Cell processor architecture. [59]
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Core 
Architecture

Intel Core2
(Xeon 
E5345)

Sun 
UltraSPARC 
T2 Plus

STI Cell
Sony PS3 IBM QS 20
PPE SPE PPE SPE

Type
Superscalar 
out-of-order

Superscalar 
in-order

Multi
Thread 
dual 
issue

SIMD 
dual 
issue

Multi
Thread 
dual 
issue

SIMD 
dual 
issue

Clock (GHz) 2.33 1.16 3.2 3.2 3.2 3.2
Local store - - - 256 KB 256 KB
L1 Data Cache 
per core 32 KB 8 KB 32 KB - 32 KB -
L2 Cache per 
core - -

512 
KB -

512 
KB

# Sockets 2 2 1 2
Cores per 
Socket 4 8 1 8 1 8
DRAM 
Capacity 16 GB 64 GB 2 GB 1 GB
Threading Pthreads Pthreads Pthreads Pthreads
Compiler gcc cc gcc spu-gcc gcc spu-gcc

Table 4.1 Comparison of Multi-core architectures.

This simplified hardware design means that several software level optimizations 

are necessary to achieve high performance on the SPUs (these are generally not needed 

on  traditional  processors,  such  as  the  Intel  Xeon).  The  optimizations  include  use  of 

vectorization, reducing the frequency of branch instructions through loop unrolling and 

function in-lining, and explicit memory optimizations. Instead of a processor controlled 

data cache, each SPU contains a programmer controlled local store to explicitly optimize 

memory operations.  This enables several  memory level optimizations not possible  on 

most  high  performance  processors.  Since  high  compute-to-I/O  ratios  are  needed  to 

achieve the full potential of the Cell processor [5], the programmer controlled memory 

stores are especially important.
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4.3 Implementation

Four  hardware  platforms  were  utilized  in  this  study,  one  was  the  Intel  Xeon 

based, two were the STI Cell based, and one was the Sun UltraSPARC T2 Plus based. 

The  Intel  Xeon  platform  utilized  was  a  blade  on  the  Palmetto  Cluster  at  Clemson 

University. Each blade on the system contained two quad core Intel  Xeon processors 

running at  2.33 GHz (model E5345),  had 12 GB of DRAM, and ran the Cent OS 5 

operating system. The STI Cell platforms utilized was a Sony Playstation 3 at Clemson 

University and an IBM QS20 cluster at Georgia Tech. The Playstation 3 has one Cell 

processor on which six of the eight SPUs are available for use and contains 256 MB of 

DRAM. This platform was running Fedora Core 6 with IBM Cell SDK 2.1. The QS20 

blade  utilized had  two Cell  processors,  each with all  eight  cores available,  2  GB of 

DRAM,  and also  used  IBM Cell  SDK 2.1.  The  Sun UltraSPRAC T2 Plus  platform 

utilized was a Sun SPARC Enterprise T5140 running Solaris 10. This system contained 2 

Sun UltraSPARC T2 Plus  processors  and 64 GB of  DRAM. All  the  programs were 

compiled with -O3 optimizations using gcc. On the UltraSPARC platform, one processor 

was  used  for  running  the  operating  system,  while  the  other  was  used  to  run  the 

hierarchical Bayesian models, with each thread of the model bound to a specific core to 

ensure optimum performance.

Five networks with varying input image sizes were developed to  examine the 

acceleration  of  the  HTM  model  on  the  multi-core  platforms.  The  overall  network 

structure was kept similar to the design in [18], with three layers of nodes per network 
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and each level 2 node having four level 1 children. The level 1 and 2 nodes were arranged 

in a square grid. Table 4.2 lists details about each of the networks examined including the 

number of nodes implemented in each network and the input image size. The smallest 

network was identical to the example presented by George and Hawkins. In order to train 

the different sized networks, the training algorithm described in [18] was used to generate 

the  internal  Pxu matrices  for  the  networks.  A  subset  of  76  of  the  91  binary  image 

categories presented in [18] was utilized for the training of these networks since these 

were used in the training example  provided by the  authors of the  model.  The set  of 

images chosen would affect the runtimes on all the processors similarly. All the nodes in 

each layer are processed in parallel. The model was optimized separately for the different 

architectures. A set of nodes to be implemented was assigned to each thread (an SPU in 

the case of the cell processor), and these set of nodes were implemented in serial by each 

thread. The set of nodes to be assigned to each thread was pre-assigned to optimize the 

load on each thread. 

Table 4.2. HTM configurations evaluated

Network input size 32x32 48x48 64x64 80x80 96x96
Total Nodes 81 181 321 501 721
Layer 3 nodes 1 1 1 1 1
Layer 2 nodes 16 36 64 100 144
Layer 1 nodes 64 144 256 400 576

Four networks with varying input image sizes were developed to examine the 

acceleration of the Dean model on the multi-core platforms. As shown in Table 4.3, all 

the  networks  had  three  layers.  The  smallest  network  was  identical  to  the  example 
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presented by Dean in [8]. Dean utilized 10,000 images from the MNIST database [33] by 

Yann LeCun for training and testing of his model. These consist of one thousand versions 

of  10  objects  (handwritten  numerals  0  to  9  from the  MNIST  database),  resulting  in 

10,000 images. The images are 28×28 pixels in dimension and with 8 bit resolution. The 

smallest  network was trained with the 28×28 images in the database, while the larger 

networks were trained with zero padded versions of these images.                    

Table 4.3 Dean model configurations evaluated

Network input size 28×28 36×36 40×40 52×52

Nodes

Total 59 98 110 186
Layer 3 1 1 1 1
Layer 2 9 16 9 16
Layer 1 49 81 100 169

Subnets

Total 6 11 6 11
Layer 3 1 1 1 1
Layer 2 1 1 1 1
Layer 1 4 9 4 9

Dean’s implementation of the model was in Matlab and utilized Kevin Murphy’s 

Bayesian Network Toolbox (also written in Matlab) [37]. A C implementation of the 

model  along  with  relevant  parts  of  the  Bayesian  Network  Toolbox  was  developed. 

Although C++ Bayesian  Network libraries  are  available,  they would need significant 

modifications in order to be utilized in our study. These include, parallelizing to run on 

multiple cores, vectorization using Cell SPU SIMD intrinsics, and being able to handle 

the DMA data transfers needed for the explicit memory management of the SPU local 

stores. The model and the relevant Bayesian Network libraries were optimized separately 
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for the different architectures. In the Cell version, the PPU assigned a set of subnets or 

cliques to be processed to each SPU.

4.4 Parallelization and optimization

4.4.1 Hierarchical Temporal Memory model

Network parallelization

All the nodes in a particular layer are independent of each other and can therefore 

be evaluated in parallel. Therefore in this study, the HTM network was parallelized by 

assigning groups of nodes in a particular layer to separate processing cores. Nearly all 

computations in  equations 1  through 6 are  element-by-element  matrix  multiplies  and 

divides  (thus  there  are  no  addition  operations  needed).  In  order  to  accelerate  the 

computations,  the  matrix  values  were  converted  into  logarithmic  form so  that  more 

expensive multiplies and divides could be replaced by less time consuming additions and 

subtractions. The comparisons involved in equations 3 and 4 could still be performed in 

logarithmic form and were thus unaffected by this change.

Pxu matrix compression and model vectorization

The  Pxu matrix in equation 2 is large enough that it needs special consideration 

when examining the vectorization of the nodes. These matrices themselves are extremely 

sparse, being made up almost 90% zeros. The computations in equations 1 through 6 are 

element-by-element  rather  than  dot  products.  Compressing  the  Pxu matrices  can 

significantly speed up the algorithm computation by skipping over strings of zeros. Thus 
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any vectorization approach needs to consider the compression of the  Pxu matrix.  Two 

possible  approaches  to  utilize  vectorization  for  the  George  Hawkins  model  were 

examined.  The  first  involves  vectorizing  the  code  to  process  a  single  image  more 

efficiently.  The  second  approach  involves  vectorizing  the  code  to  process  multiple 

images simultaneously. 

Single  image  vectorization:  In  this  case,  equations  1  through  6  need  to  be 

vectorized  for  a  single  image.  Equations  1,  5,  and  6  can  be  vectorized  easily  if  the 

variables for the equations are padded to be multiples of the vector width. Equation 2, 

however, cannot be vectorized as easily, given that the  Pxu matrix is sparse. This study 

examined the feasibility of block compression [34] of the  Pxu matrix to vectorize the 

computations in equation 2. In order to be efficient, there should be on high density of 

non zero elements in uncompressed blocks.

Two possible approaches for block compression are to compress along the rows 

or along the columns of the target matrix. Tables 4.4 and 4.5 show the density of non zero 

blocks  for  both  row  and  column  wise  compression  with  block  sizes  of  4  and  8 

respectively.  Several  network  sizes  are  examined.  The  results  indicate  that  with  a 

vectorization factor of four, the average  Pxu uncompressed block contains less than two 

non-zero  elements  per  block,  while  a  vectorization  factor  of  eight  yields  at  most  2 

elements per block on average. Thus vectorizing the equations for single images is not 

very efficient. 

Table 4.4 Block compression of Pxu with a block size of 4. 
N/w Size : Network Size NZB: Non Zero Blocks; NZE: Non Zero Elements; 

Compression along rows Compression along columns
N/w %NZB Avg  NZE in %NZB>2 %NZB Avg  NZE in %NZB>2 NZE
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Size NZB NZE NZB
81 3.84 1.2531 20.06 3.97 1.2605 17.72
181 5.17 1.3035 22.82 5.02 1.3891 24.89
321 6.23 1.3935 27.47 5.96 1.4940 28.79
501 7.41 1.4624 30.53 6.72 1.6483 34.48
721 7.82 1.4848 31.4 7.12 1.6659 35.02

Table 4.5 Block compression of Pxu with a block size of 8.
N/w Size : Network Size NZB: Non Zero Blocks; NZE: Non Zero Elements; 

Compression along rows Compression along columns
N/w

Size
%NZB

Avg  NZE in 

NZB

%NZB>2 

NZE
%NZB

Avg  NZE in 

NZB
%NZB>2 NZE

81 6.44 1.4587 27.89 6.97 1.4374 22.74
181 8.32 1.5837 32.66 8.38 1.6506 29.77
321 9.75 1.7418 36.69 9.73 1.8270 33.35
501 11.31 1.8754 39.91 10.75 2.0571 38.98
721 11.88 1.9125 40.38 11.36 2.0851 39.45

Multiple  image  vectorization:  The  computations  for  any  input  image  are  identical 

throughout the network because each node in the network processes any input given in 

exactly the same manner. Therefore multiple images can also be evaluated in parallel 

using vectorization.  In  this  case  any compression scheme can be  adopted for the  Pxu 

matrices. The matrix is compressed by providing a coordinate for each nonzero value in 

the Pxu matrix. Two approaches for dealing with this are to treat the Pxu matrix as a linear 

vector (see Figure 4.4(b)) or to treat it as a two dimensional matrix (see Figure 4.4(c)). In 

the former case, only one coordinate is needed per nonzero element, while in the latter 

case,  two  coordinate  values  are  needed.  The  first  approach  results  in  a  higher 

compression  level  and  thus  lower  data  transfer  time.  It  however  does  require  the 

generation of a two dimensional (x,y) coordinate for each linear coordinate (for equation 

2). Our studies indicate that a two dimensional representation provides the lowest overall 
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execution  time.  For  example,  for  the  721  node  HTM  model  examined,   the  single 

dimensional approach required 18.26 ms on a Playstation 3, while the two dimensional 

approach required 10.96 ms.

(a)

(b)

1 0 0 2 0
2 4 1 1 6
1 2 1 3 0
9 4 4

(c)

Figure 4.4 Restructuring the Pxu matrix. (a) Original Pxu Matrix. (b) Single dimensional position 
representation, [p :value, x :coordinate].  (c) Two dimensional position representation, [p :value, 

x,y : coordinates]

4.4.2 Dean model

 Network parallelization

As shown in previous chapter, the nodes in a network in the Dean model can be 

grouped into subnets and the network would be processed by evaluating subnets rather 

than individual nodes. Also, as shown in the same section, each subnet was evaluated by 

processing its  junction-tree  representation.  Each node  of the  junction tree is  called a 

clique  and  has  a  clique  potential  associated  with  it.  This  potential  is  derived  by 

combining the conditional probability tables of each node in the subnet that forms the 

clique (these tables are multi-dimensional with a maximum of five dimensions in our 

study). 
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There  are  two  possible  approaches  to  parallelize  the  evaluation  of  the  Dean 

model: the first is at the subnet granularity and the second is at the clique granularity. 

This latter approach will yield a higher level of parallelism as there are more cliques than 

subnet  (given  that  a  subnet  can  be  decomposed into multiple  cliques).  Dependencies 

between the cliques may limit the number of cliques that can be evaluated in parallel at 

any given level within a junction tree. This study evaluated both approaches and found 

that for the networks examined, the clique based approach had a better utilization of the 

available processing cores. In both approaches the order in which the subnets or cliques 

will be evaluated is predetermined and does not vary with the network inputs. 

Vectorization

As with the HTM model, there are at least two approaches to vectorization for this 

model: vectorizing the operations for a single image and vectorizing to evaluate multiple 

images simultaneously. In the former case, matrix operations would have to be vectorized 

as a large portion of the junction tree evaluations consist of multi-dimensional matrix 

operations. In the networks examined, these matrices had up to five dimensions with each 

dimension being up to 16 elements wide. The matrix operations included element-by-

element  matrix  multiplies  and  divides.  There  were  also  matrix  dimension  reductions 

which essentially were summations along a given dimension of the matrix. Not all of 

these operations can be vectorized efficiently, particularly as the matrix dimensions were 

of small widths (that were not always multiples of the vectorization factor).
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Since the model evaluates any input data  in precisely the same way, multiple 

inputs can be evaluated in parallel through vectorization. In case of a vectorization factor 

of four, there will be four versions of each matrix (one for each image). The same set of 

operations  will  be  carried  out  for  all  four  versions  of  each  matrix.  In  this  case 

vectorization can be applied to almost 100% of all the operations. 
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CHAPTER FIVE

RESULTS

5.1 Study of Accuracy. 

The seven different algorithms were successfully implemented and tested with the 

MNIST  Database  [36].  The  MNIST  database  contains  handwritten  digits  with  6000 

28x28 images per class for training and around 10000 test images. 

NB KNN NCA SVM ANN HTM Dean

MNIST 12.8 5.2 3.2 1.8 12.5 26 19

MNIST(6000 
training examples)

18 9.00 8.5 8.1 16 30 24

Table 5.1 Comparison of Accuracy.

The  naïve  Bayes  classifier  was  trained  with  the  784 sized  features.  Different 

values of thresholding were compared and it was found to be optimal at 185. The test set 

error of 12.8% was received. The advantages are ease of implementation and very fast 

test  time, but the disadvantage is that  the strong independence assumption makes the 

algorithm weak. The KNN algorithm was also trained with the feature size of 784 and the 

change in accuracy of the KNN classifier improved with the increase in K is shown in 

figure  5.1.The  advantages  of  this  method  is  that,  it  requires  no  training  and 

implementation is very simple. The disadvantages are that, the test time is in the order of 

hours for MNIST data set (compared to seconds for all other algorithms) and the need to 

keep the complete database during testing. 

The SVM algorithm was implemented with the sequential minimal optimization 

algorithm[61],  with  Gaussian  kernel.  SVM  is  a  binary  classifier,  so  multi-class 

classification is achieved by one-against all classification [50]. 
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Test Error % 

Fig 5.1 Test Error versus K, KNN Algorithm.

The SVM algorithm does not require the complete database  to be stored.  The 

runtime for testing is fast and has very good accuracy but takes long to converge while 

training.  The  multilayer  perceptron  algorithm implemented  also  does  not  require  the 

complete database for testing and runtime for testing is fast. It was found that a network 

architecture  with  two hidden  layers  of  800 and 200 neurons,  gave  the  most  optimal 

performance in accordance with LeCun et al. [31]. HTM and Dean's model performed 

comparatively poorly, with a testing error of 26% and 19% respectively. But this is a 

respectable figure given the fact that, both these algorithms are in their nascent stages and 

have a large scope for improvement. The advantages of HTM and Dean are that, they do 

not  require  to  have  complete  database  for  testing,  fast  test  time  execution,  and  are 

comparatively more biologically  plausible  [11][12][19].   It  was found that,  the  SVM 

classifier performed the best and the test error  achieved was comparable to that achieved 

by  LeCun et  al.  [31].   The  other  interesting  thing to  note  is  that  algorithms behave 

differently to training set size. Simpler algorithms like NB, KNN and NCA depends on 
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the training set and accuracy improves with the training set size. This has been noted by 

Holte [59], that simple classifier do a very good job on large databases.    

5.2 Study of Multi-core Performance.

Both the models were tested on the following four platforms with the given

configurations.  

1. Intel blade with 4 and 8 threads.

2. Playstation 3 with 6 SPU threads.

3. QS20 with 6, 8 and 16 SPU threads.

4. Sun UltraSPARC T2 Plus with 8, 16, 32, and 64 threads.

The  six  SPU  thread  implementation  on  the  QS20  was  examined  inorder  to 

compare  the  it  against  the  Playstation  3  (PS3)  performance.  A  serial  version  of  the 

program  was  developed  and  tested  on  the  Sony  Playstation  3’s  Cell  PPU.  All  the 

implementations (both serial and all parallel) utilized the data structure optimizations for 

the models listed in earlier sections (such as Pxu matrix compression in the HTM model). 

5.2.1 Speedup 

Figures 5.2 and 5.3 present the speedup of each of the parallel implementations 

over  the  serial  PPU  implementation.  From  these  figures  it  is  seen  that  the  parallel 

implementations of the models provide a significant performance gain over their serial 

implementations.  This  is  mainly  due  to  the  use  of  multiple  cores  and  the  use  of 

vectorization on the Intel  and Cell  architectures. There is sufficient parallelism in the 
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models examined, so that for all  of the platforms, use of more cores provided higher 

speedups.  Our experiments showed that increasing the number of threads on the Intel 

Xeon blade beyond 8 provided no further improvement in performance. The Dean model 

produced a higher speedup than the HTM model for all the platforms examined. It is 

possible that the larger number of training categories in the HTM model produces larger 

potential tables, which translates to more data transfers, thus limiting its speedup over the 

Dean model.

For both models, it is seen that the Cell processor outperformed both the Intel 

Xeon and the Sun UltraSPARC T2 Plus processors. The Playstation 3 with 6 available 

SPU cores outperforms the Intel Xeon processor (with 4 cores) by about 1.9 times for the 

HTM model and by 2.4 times for the Dean model. As a result the Playstation 3 also 

outperformed  the  blade  with  two  Intel  Xeon  processors.  The  speedup  of  the  Cell 

processor on the QS20 with all 8 SPU cores available over a single Intel Xeon processor 

was about 2.3 times for the HTM model and about 3 times for the Dean model. Utilizing 

both Cell processors on the QS20 (16 threads) provides only a 11% performance gain for 

HTM model and a 22% performance gain for the Dean model over one Cell processor (8 

threads). This is believed to be due to the memory accesses becoming a bottleneck as 

calculation times become close to data access times (as shown in Table 5.2). This effect 

is not seen on the Sun processor when going from 8 to 16 threads as the calculations take 

much longer on that system.

36



0

20

40

60

80

100

120

81 181 321 501 721 Average

Nodes

S
pe

ed
up

Sun (8)

Sun (16)

Sun (32)

Sun (64)

Xeon (4)

Xeon (8)

PS3 (6)

QS20 (6)

QS20 (8)

QS20 (16)

Figure 5.2 Speedup for the HTM model on different multi-core architectures over the Cell PPU. 
The numbers in parenthesis in the legend represent the number of threads utilized on each 

platform. 

On the UltraSPARC processor, the Dean model provides speedups of about 2 

when going from 8 to 16 threads and when going from 16 to 32 threads. The speedup 

from 32 to 64 threads is minor (about 1.1 times for the 186 node network). The HTM 

model provided lower speedups than the Dean model: 1.9 times for the largest  model 

tested when going from 8 to 16 threads, 1.7 times when going from 16 to 32 threads, and 

1.3 times when going from 32 to 64 threads. The Sun processor provides a lower speedup 

than the Xeon and Cell  processors because of a lower clock frequency and a lack of 

vector capabilities. If multiple images were not available to process simultaneously (such 

as if there were only one small camera source), then it would not be possible to take 

advantage of the vectorization utilized. In this case the performance of the Intel and Cell 

architectures would be about one fourth of their current values. 
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Figure 5.3. Speedup for the Dean model on different multi-core architectures over the Cell PPU. 
The numbers in parenthesis in the legend represent the number of threads utilized on each 

platform.
Since the Sun does not support vector operations, its performance would not be 

affected. In this situation, the Sun processor with 64 threads would actually be faster than 

the Xeon processor with 4 threads; about 2 times for the largest HTM model and 1.6 

times for the largest Dean model.

5.2.2 Runtime breakdown of models

Figures 5.4 and 5.5 show the runtime breakdowns of the HTM and Dean models 

respectively on the Cell processor (on the Playstation 3) and the Intel Xeon processor (4 

thread implementation).  The runtime break downs are given for the smallest  and the 

largest network sizes for both the models. This is done to compare the change in each 

part of the algorithm with the scaling of the model. The time for signaling between the 

different threads on all the platforms was insignificant due to the pre-assigning of nodes 
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to different threads at the start of the program. Therefore this time is not listed separately 

in the timing breakdown. 

For the Cell platform, the non-overlapped memory access time is calculated by 

taking the difference between the overall runtime of the application and the runtime with 

DMA data transfers commented out of the code. This is the part of the DMA accesses 

that could not be overlapped with computations (generally through double buffering). On 

the Intel Xeon platform, this time was calculated by taking the difference between the 

overall  runtime  and  a  version  of  the  code  with  all  global  variables  in  the  threads 

converted to local variables (synchronization barriers between threads were kept intact). 

The number of computations (array accesses and other operations) was kept the same in 

both cases. 

The results  show that  on the Cell  processor, DMA transfers that  could not be 

overlapped can be a significant percentage of the overall runtime. However this fraction 

decreases as the network sizes increase since the nodes in the network become more 

complex and thus have more computations to be carried out per node. This is seen by the 

increase in the computation percentage for equations 2, 3, and 4 in the HTM model and in 

the  percentage  of  time  for  getting  evidence  in  the  Dean  model.  Stalls  due  to  global 

variable  accesses on the  Xeon processor  (listed as non-overlapped memory access in 

Figures 5.4 and 5.5) showed similar trends as well.
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The overall DMA time is unlikely to change with the number of cores used on the 

Cell processor as these accesses go to a centralized memory system. However the overall 

computation time is  likely to  decrease  with more  cores due  to  increased parallelism. 

Hence, as the number of cores increase, the DMA time can exceed the computation time, 
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thus limiting the speedup seen with increasing cores. This effect is seen in figures 5.2 and 

5.3: the speedup does not double when going from 8 to 16 cores. Although this could be 

due to the impact of off-chip memory buses, the results in Table 5.2 seem to indicate that 

it is due to a memory bottleneck. Table 5.2 shows the runtime breakdown of the largest 

HTM and Dean networks on the Cell processor platforms examined: Playstation 3 with 6 

SPU, and QS20 with both 8 and 16 SPUs. While the computation time decreased with 

increasing numbers of cores, the non-overlapped DMA time increased slightly (since the 

computations started taking less time than data transfers). To alleviate this issue, a higher 

memory bandwidth would be needed. This would be seen by having each cell processor 

have access to its own dedicated memory.  Figure 5.6 compares the two parallelization 

approaches examined for the Dean model: clique based and subnet based. All the subnets 

in a layer can be evaluated in parallel.

Table 5.2 Run time break down of the largest HTM and Dean models on the QS20 with 6, 8, and 
16 threads. All times are in ms.

HTM Dean
SPUs 6 8 16 6 8 16
Computation only (ms) 7.51 5.45 3.50 12.10 8.10 4.50
Non-overlapped DMA (ms) 3.45 3.60 4.45 4.10 4.34 5.12
Total (ms) 10.96 9.05 7.95 16.20 12.44 9.62
% of DMA in runtime 31.47 39.77 55.97 25.30 34.88 53.22

5.2.3 Parallelization strategy for the Dean model

The networks with 59 and 110 nodes had fewer subnets in level 1 than the 98 and 

186 node networks. Thus the former set of networks provided lower speedups than the 

latter set when parallelized by subnets. For all the networks, there were more cliques that 

could be evaluated in parallel than subnets (since each subnet could be decomposed into 
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multiple  cliques).  Thus  the  clique  based  parallelization  approach  provided  higher 

speedups for all the network sizes evaluated.

Figure 5.6 Parallelization of the Dean model by cliques vs. subnets. The 59 and 110 node 
networks are using only 4 SPUs because of the limited set of subnets on those networks. The 

other two are using six SPUs.
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CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

There  is  a  significant  interest  in  the  research  community  to  develop  machine 

learning algorithms with good inference capabilities and with the ability to do real time 

tasks.  Seven leading algorithms were compared for the  task of handwritten character 

recognition. The study shows that Hierarchical Bayesian cortical models, which are a 

relatively  new  class  of  models,  have  lower  performance  compared  to  the  leading 

algorithms  on  the  complete  MNIST  database.  The  performance  was  compared  for  a 

smaller subset of MNIST dataset,  and it was found that the accuracy of the Bayesian 

algorithms  does  not  decrease  considerably  with  the  change  in  training  set  size.  The 

Hierarchical Bayesian cortical models have inherent parallelism that make it easier to 

develop larger scale simulations of the cortex than traditional neural networks. 

Since Hierarchical  Bayesian cortical  models  are  based  on cortical  columns as 

opposed to individual neurons, they have a significant computational advantage over the 

latter. Fewer nodes need to be modeled along with fewer node connections. Given that 

large  scale  cortical  models  can  offer  strong  information  processing  capabilities, 

hierarchical Bayesian models are an attractive candidate for scaling. In the second part of 

this  study,  the  parallelization  and  implementation  on  multi-core  architectures  of  two 

hierarchical Bayesian models: the Hierarchical Temporal Memory model and the Dean’s 

Hierarchical Bayesian model were done. Three multi-core processors were examined for 

implementation:  the  IBM  Cell  processor,  the  Intel  Xeon  processor,  and  the  Sun 
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UltraSPARC T2 Plus. Both the models and their relevant libraries were implemented in 

C, parallelized, and vectorized. This is the first study of the acceleration of this class of 

models on multi-core architectures. It was shown that the hierarchical Bayesian cortical 

models can be parallelized onto multi-core architectures to provide significant speedups 

over serial implementations of the models. The speedups come primarily from the use of 

multiple processing cores and vector operations. The speedups increase as the models are 

scaled and as the number of processing cores is increased. The highest performance gain 

was seen from the Cell processor, with speedups of 1.9 times for the Dean model and 2.4 

times for the HTM model over a parallel implementation on the Xeon Processor. It was 

shown that the Dean model can be parallelized based on the subnets that it contains, or 

based on the cliques contained in the junction-trees that the subnets can be converted 

into. Our results indicate that  the latter approach provides slightly higher speedups as 

there is more parallelism exposed. This study also examined the vectorization of the two 

models  and  showed  that  it  is  easier  to  vectorize  by  processing  multiple  inputs 

simultaneously.

The results of this work can be applied to other multi-core processors. As future work, a 

study can examine:

1) Comparison  of  Convolutional  Neural  Networks[32]  and  LeCun  Convolutional 

Network [31] for handwritten character recognition. 

2) Comparison of all the above algorithms for more difficult recognition tasks like 

face recognition using standard databases.
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3) The performance of much larger networks on clusters of multi-core processors. 

4) The parallelization of the training phase of these models.

5) The  parallelization  of  the  newer  version  of  these  models  [9][10][15]  which 

incorporates temporal invariance in addition to spatial invariance. 

Moreover these parallelized multi-core implementations of the models could be 

used for real time tasks and to make improvements to the algorithms itself.
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