
Clemson University
TigerPrints

All Theses Theses

8-2009

ACCURACY AND MULTI-CORE
PERFORMANCE OF MACHINE LEARNING
ALGORITHMS FOR HANDWRITTEN
CHARACTER RECOGNITION
Sumod Mohan
Clemson University, sumodm@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Mohan, Sumod, "ACCURACY AND MULTI-CORE PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR
HANDWRITTEN CHARACTER RECOGNITION" (2009). All Theses. 634.
https://tigerprints.clemson.edu/all_theses/634

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_theses%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/634?utm_source=tigerprints.clemson.edu%2Fall_theses%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

ACCURACY AND MULTI-CORE PERFORMANCE OF MACHINE LEARNING
ALGORITHMS FOR HANDWRITTEN CHARACTER RECOGNITION

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Electrical Engineering

by
Sumod K Mohan

August 2009

Accepted by:
Tarek M Taha , Committee Chair

Stanley Birchfield
 Walter Ligon

ABSTRACT

There have been considerable developments in the quest for intelligent machines

since the beginning of the cybernetics revolution and the advent of computers. In the last

two decades with the onset of the internet the developments have been extensive. This

quest for building intelligent machines have led into research on the working of human

brain, which has in turn led to the development of pattern recognition models which take

inspiration in their structure and performance from biological neural networks. Research

in creating intelligent systems poses two main problems. The first one is to develop

algorithms which can generalize and predict accurately based on previous examples. The

second one is to make these algorithms run fast enough to be able to do real time tasks.

The aim of this thesis is to study and compare the accuracy and multi-core performance

of some of the best learning algorithms to the task of handwritten character recognition.

Seven algorithms are compared for their accuracy on the MNIST database, and the test

set accuracy (generalization) for the different algorithms are compared. The second task

is to implement and compare the performance of two of the hierarchical Bayesian based

cortical algorithms, Hierarchical Temporal Memory (HTM) and Hierarchical Expectation

Refinement Algorithm (HERA) on multi-core architectures. The results indicate that the

HTM and HERA algorithms can make use of the parallelism in multi-core architectures.

ii

DEDICATION

This work is dedicated to my grand-parents, parents and sister.

iii

ACKNOWLEDGMENTS

This work would not have been possible without whole hearted support of many

people. First and foremost I would like to thank my adviser, Dr. Tarek Taha for his

patience, guidance, and support. I must thank Dr. Birchfield for the teaching me all the

important things and for the positive guidance throughout. Next, I would like to thank Dr.

Ligon for all the support. I would like to thank my friends Mohammed Ashraf, Rommel

Jalasutram, Vidya N Murali, Kenneth Rice and Pavan Yalamanchali for all their help and

support during my research.

I would like to thank Dexter Stowers, Scott Duckworth and Dr. Wayne Madison

for all the support and the great ambiance at the CES Unix Help Desk. Last but not the

least, I would like to thank research community in general, Clemson University and

Georgia Institute of Technology for the resources which made this research possible.

iv

TABLE OF CONTENTS

Page

TITLE PAGE..i

ABSTRACT...ii

DEDICATION..iii

ACKNOWLEDGMENTS...iv

LIST OF TABLES...vii

LIST OF FIGURES..viii

CHAPTER

I. INTRODUCTION..1

Related Work..1
Overview..3
Organization...5

II. STATISTICAL MACHINE LEARNING ALGORITHMS..........................6

Naïve Bayes..6
K Nearest Neighbor..7
Neighborhood Component Analysis..8
Support Vector Machines...9
Artificial Neural Networks...11

III. HIERARCHICAL BAYESIAN MODELS...15

Hierarchical Temporal Memory...15
Hierarchical Expectation Refinement..17

IV. EXPERIMENTAL SETUP AND IMPLEMENTATION............................20

Algorithmic Implementation..20
Multi-core architectures...20
Implementation...24

v

Table of Contents (Continued)
Page

Parallelization and Optimization..27

V. RESULTS...33

Study of Accuracy..33
Study of Multi-core Performance...35

VI. CONCLUSION..43

REFERENCES...46

vi

LIST OF TABLES

Table Page

3.1 Equations describing the HTM Model...16

4.1 Comparison of Multi-core Platforms...23

4.2 HTM configurations evaluated...25

4.3 Dean configurations evaluated...26

4.4 Block compression of Pxu with a block size of 4. ..29

4.5 Block compression of Pxu with a block size of 8.29

5.1 Comparison of Accuracy..33

5.2 Run time break down of the largest HTM and Dean models on the QS20 with
6, 8, and 16 threads...41

vii

LIST OF FIGURES

Figure Page

2.1 KNN Classification..08

2.2 Node Operation..12

2.3 Network Architecture ..12

3.1 HTM Architecture ...15

3.2 HTM Belief Propagation ...15

3.3 An Example of Thomas Dean’s hierarchical Bayesian network model.......17

3.4 An Example of a junction tree derived from subnets...................................19

4.1 Intel Xeon E5345 processor architecture. ...21

4.2 Sun Ultra-SPARC T2 Plus processor architecture.22

4.3 STI Cell processor architecture..22

4.4 Restructuring the Pxu matrix...30

5.1 Test Error versus K, KNN Algorithm..33

5.2 Speedup for the HTM model on different multi-core architectures over the . .
Cell PPU...37

5.3 Speedup for the Dean model on different multi-core architectures over the . .
Cell PPU...38

5.4 Runtime breakdowns for the HTM model on the PS3 and Xeon
processors...40

5.5 Runtime breakdowns for the Dean model on the PS3 and Xeon
processors...40

5.6 Parallelization of the Dean model by cliques vs. subnets............................41

viii

CHAPTER ONE

INTRODUCTION

Intelligent machines were part of myths in most of the ancient world.

Considerable real development began with the cybernetics revolution and the advent of

personal computers. Honda's humanoid robot 'Asimo', Stanford University's Autonomous

vehicle 'Stanley', and IBM's chess playing computer 'Deep Blue' are its products.

Improvements in inference capabilities and real time performance would benefit many

areas of research including speech processing, computer vision, data mining, robotics,

and computer games.

1.2 Related Work.

From the earliest models, we have taken inspiration in the structure and performance of

biological neural networks. McCulloch and Pitts [38] proposed the McCulloch-Pitts

model of a neuron, which performed weighted sum of inputs followed by thresholding.

John McCarthy coined the term "artificial intelligence” and also invented the Lisp

language. Rosenblatt [46] proposed the perceptron model, in which the perceptron

learning rule adjusted the input weights, and Minsky et al. [40] demonstrated the

limitations of the multilayer perceptron model. Kohonen came up with the idea of

associative memories [29], Vapnik and Chervonenkis established the VC dimension

theorem [49], which is a measure of capacity of a statistical classification algorithm.

Adaptive Resonance Theory was formulated by Grossberg in 1976 [20], and Barto et al.

1

[6] originated the idea of reinforcement learning. Hopfield invented the recurrent neural

networks in 1983 and in 1989 Judea Pearl formalized the concepts of Bayesian Networks

[43]. In 1995, Cortes et al. [10] proposed the concepts of support vector machines.

Convolutional Neural Networks was introduced by LeCun et al. [32], and Geoffrey E.

Hinton along with Terry Sejnowski invented Boltzmann machines [23]. Some of the most

interesting applications were ALVINN which stands for Autonomous Land Vehicle In a

Neural Network by Dean Pomerleau, Honda's Humanoid robot 'Asimo', Stanford

University's DARPA 2007 Grand Challenge winning autonomous vehicle 'Stanley' and

IBM's chess playing computer 'Deep Blue'.

There has been number of studies on the comparison of classifiers. One of the

oldest and most comprehensive was the works of King et al. [28], which compared

symbolic, statistical and neural networks based algorithms. But this study was conducted

in 1995, and hence many of the newer algorithms are missing. LeCun et al. [31],

compared different classifiers for the problem of handwritten character recognition.

Caruna et al. [9], compared different classifiers for many different problems and reported

that performance was problem specific. More recently, Neeba et al. [42], compared

different features and statistical and neural networks based classifiers for the problem of

handwritten character recognition. But all the above studies have not included the newer

hierarchical Bayesian based cortical models.

Recently, several models of the neocortex have been proposed that are based on

modeling mini-columns/columns [3][11][18][27]. The models by Dean [11], George and

Hawkins [18], and Anderson [3] are based on hierarchical graphical networks and concur well

2

with experimental results. They describe the brain as a hierarchical device that computes by

performing sophisticated pattern matching and sequence prediction. Johansson and Lansner [27]

utilized a cluster of 442 dual Xeon processors to simulate a randomly connected brain model

utilizing recurrently connected neural networks grouped into cortical columns. Anderson et. al [4]

are examining the design and implementation of large scale cortical models based on the brain

state in a box model [3].

Several studies have examined the acceleration of various models on multi-core

architectures. Wu et al. [52] are examining the acceleration of the brain state in a box model [2]

on the Cell processor in a Playstation 3. They achieve about 70% of the theoretical peak of the

processor. Felch et al [17] examined the acceleration of the Brain Derived Vision algorithm on

the Cell processor. They achieved a speedup of 140 times using a cluster of three Sony

Playstation 3 systems over a serial implementation on 2.13 GHz Intel Core processor. Xia and

Prasanna examined the parallelization of the exact inference algorithm in junction trees [53] and

examined its acceleration on a Sony Playstation 3 based Cell processor [54]. They achieve a

speedup of about four times a 3.0 GHz Intel Pentium 4 processor.

1.2 Overview

This thesis studies the two of the problems faced in artificial intelligence research,

when applied to hand written character recognition. The first problem is accuracy of the

generalization behavior and the second one is that of performance, speed, and the ability

of the algorithm to work in real time.

For the first problem, seven classification algorithms from two different classes of

algorithms are compared against each other. The first class of algorithms is based on

3

statistical machine learning. Naïve Bayes (NB) is the first algorithm from this class,

which is a simple probabilistic classifier with strong independence assumptions. The K

Nearest Neighborhood classifier (KNN) labels a test case with the maximum occurring

label of the k nearest training examples. The Neighborhood Component Analysis

proposed by Goldberger et al., is an improvement of KNN which searches for the optimal

distance parameter for the KNN algorithm in the Mahalanobis quadratic distance space.

The next algorithm of this class, the Support Vector Machines invented by V. Vapnik et

al. [50], is a binary classification algorithms which finds the optimal hyperplane which

divides the two classes with the maximum margin. The last algorithm of this class of

algorithms is the neural networks based algorithm which have taken inspiration from the

biological neural networks. The Multilayer Perceptron Algorithm (MLP) which uses the

back propagation algorithm, is a non linear statistical learning algorithms which adapts its

structure during the learning phase based on the information flowing through the

network.

The second class of algorithms are based on Hierarchical Bayesian Networks

pioneered by Judea Pearl [43]. The first algorithm called Hierarchical Temporal

Memory(HTM) and developed by Jeff Hawkins and Dileep George [18], models the

structural and algorithmic properties of the neocortex. The second algorithm, Hierarchical

Expectation Refinement Algorithm (HERA) was proposed by Thomas Dean [13]. All the

above algorithms were compared on four different data sets of varying sizes.

The second problem of performance is studied by comparison of the Hierarchical

Bayesian networks on different multi-core architectures. The HTM algorithm and HERA,

4

both were implemented on four different multi-core architectures, the Intel Xeon Blade,

Sony Play Station 3, IBM QS 20 and Sun SPARC T5140.

The main contributions of this work are:

1) An empirical study of the accuracy of the leading off the shelf learning

algorithms for the problem of handwritten character recognition.

2) Parallelization study of two hierarchical Bayesian cortical models. Both thread

level parallelization and the data level parallelization of the models are

examined.

3) A study of different optimizations and parallelization strategies for multi-core

implementations of the models. This thesis examines the performance of the

models on three multi-core processors using four platforms (a Sony

Playstation 3, an IBM QS20 blade, a Sun Enterprise 5140 server, and a dual

processor Intel Xeon blade). Several differnt sizes of the model networks were

implemented to examine the effect of scaling.

1.4 Organization

The second chapter explains the statistical machine learning based algorithms and

the third chapter explains the Hierarchical Bayesian Networks based algorithms and the

fourth chapter explains experimental setup and implementation. The fifth chapter

discusses the results and the last chapter draws the conclusions and future work.

5

CHAPTER TWO

STATISTICAL MACHINE LEARNING ALGORITHMS

Statistical machine learning merges statistics with learning theory and is applied

to large-scale, dynamical and heterogeneous data streams. One of the main research

interest in this area is to understand the relation between inference and computational

requirements. Some of the leading algorithms are described in the following sections.

Section 2.1 and 2.2 describes the simplest statistical algorithms, namely the naïve Bayes

algorithm and the K nearest neighbor algorithm. Section 2.3 describes a generalization to

K nearest neighbor algorithm, and 2.4 explains the Support Vector Machines algorithm.

Finally section 2.5 explains the Artificial Neural Network algorithm based on the

Multilayer Perceptron.

2.1 Naïve Bayes

The simplest algorithm is the naïve Bayes (NB) classifier which makes the strong

assumption of conditional independence of the each element of the feature space with

respect to the class label.

Let X={x1,x2,..xm} and x1={x11,x12,...x1n} represent m training examples of n sized

features.

Let Y={y1,y2,..ym} represents the labels of the m training examples.

6

φ  j∣y=1=
∑ 1 {x ij=1∧yi=1} 

∑ 1 { yi=1}

The naïve Bayes assumption is that xi's are conditionally independent given y. So for a

binary classifier, the parameter to be learned is the maximum likelihood of φ  j∣y= 0 and

φ  j∣y=1 . The parameter φ  j∣y=1 is the fraction that feature j contributes to class with

label 1, φ  j∣y= 0 is the fraction that the feature contributes to class with label 0 and

φ y=1 is the prior, or the probability of the class with label 1. Now the class label for a

training set can be calculated by the Bayes rule.

In addition to the above in case of small training sets, some φ  j  may be

calculated as zeros, which can severely distort the probabilities for some classes. So,

Laplace smoothing is applied to avoid this.

2.2 K Nearest Neighbor (KNN)

The KNN is one of the simplest algorithms, which labels the test set example with

the class label of the majority of the training set labels in its neighborhood. The distance

parameter is used to determine the neighborhood of the test label. In our experiments, the

7

φ  j∣y= 0=
∑ 1 {x ij=1∧y i=0 }

∑ 1 {y i=0} 

φ y=
∑ 1 { yi=1}

m

p  y= 1∣x =
 p  x∣y=1 ∗p  y=1  

 p  x  

study compares the Euclidean and Manhattan distance parameters. The advantages of this

algorithm includes simplicity, non linear decision boundary, single parameter that needs

to be tuned, and that accuracy increases with training set size. The disadvantages of the

algorithm are that accuracy varies with the distance parameters, high computational cost

with large databases, and the need to keep the database even for testing.

Fig 2.1 KNN Classification

2.3 Neighborhood Component Analysis (NCA)

This algorithm was proposed by J Goldberger et al. [62], it is an extension of the

KNN algorithm. The idea is to convert the problem such that gradient descent can be

done on the error function by varying the distance metric. The error function in case of

the k nearest neighbors is discontinuous with respect to the distance metric, so the

stochastic random neighbor selection function is used, where pij is the probability that a

point i chooses j as its neighbor, by leave one out cross validation.

8

 Training Algorithm

1. Start with A as identity matrix, LDA matrix

2. Continue steps 3 and 4 till convergence

3. Optimize by gradient descent

4.

Testing Algorithm

1. Convert the original input to the new feature space by multiplying with the

learned kernel A.

2. Do KNN for the nearest neighbor with Euclidean distance.

2.4 Support Vector Machines

Support vector machines are a highly effective machine learning technique for

many classes of problems. SVMs construct a hyperplane which maximizes the margin

between the two classes. The problem of finding the optimal solution to the SVM

problem is non convex by the basic formulation. Therefore the dual of the problem is

considered which is convex. Then the Sequential Minimal Optimization (SMO)

9

pii=0pij=
e−dij

∑ exp−dik

∂φ
∂ A

=2A∑  pi
+i ∑ pik x ik xik '−pi

−i ∑ p ij xij xij ' 

d ij=xi−x j  'Q xi−x j 
d ij=xi−x j  'AA' xi−x j 

=φ
1
N ∑∑

e−dij

∑ exp−dik

algorithm by John C. Platt [60] is used for the optimization of this convex problem. The

memory requirement of SMO algorithm is between linear and quadratic in the training set

size, depending on the problem. A simplified version of the SMO algorithm as explained

in [60] is described below,

Algorithm

 C = Regularization parameter

 tol = numerical tolerance

 Repeat till convergence

 for i=1...m

10

α ∈Rm:LagrangeMultiplier

b∈R:threshold

E i =f xi − yi

select j≠i randomly
E j =f x j − y j

if   yi E i−tol && α i <C  ∣∣ y i E i >tol && α i >C 

f  xi =∑ α i yi 〈 xi ,x 〉+b

if yi≠y j , L=max 0, α j−α i  , H=minC,C+α j−α i 

α i
old = α i , α j

old =α j

if yi =y j , L=max0, α i +α j−C  , H=min C,α i +α j 

if  L=H 

continue to next i .

Compute η = 2 〈x i ,x j 〉−〈 x i ,xi 〉−〈 x j ,x j 〉

if η ≥0 

continue to next i

α j =α j−y j E i−E j / η

 Determine value for α i b1 and b2

 Compute b

end loop

2.5 ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks are computational models which try to simulate the

structural and functional aspects of biological neural networks. The network is formed by

interconnected nodes, called neurons. Each neuron is presented by the weighted input, on

which the neuron does a functional mapping to the output.

Let x1 ,x2 , .. x n be the inputs to the neuron and w1 ,w2 , .. wn be weights of the

inputs to the neuron. Each neuron does two computations, summation followed by

logistic function or sigmoid function. Therefore the output is

11

output = g ∑ xi wi , whereg  x =1/ 1 +e−x 

{b1+b2 /2 otherwise }

{b2 if 0<α j <C }

b2=b−E j−y i  α i−α j
old 〈 xi ,x i〉−y j  α j−α j

old  〈 x j ,x j〉

b= {b1 if 0<α i <C }

b1=b−E i−yi α i−α i
old 〈 xi ,xi 〉−y j α j−α j

old 〈 x i ,x j 〉

α i =α i +yi y j  α j
old
−α j

continue to next i

Set α j= H if α j >H 

if ∣α j−α j
old
∣10−5

α j if L≤α j≤H 

L if α j <L 

Fig 2.2 Node operation.

Fig 2.3 Network Architecture

The network architecture is completely connected, except in case of the neurons in the

same layer as shown in figure 2.3 above.

Neural Network with one hidden layer

x11 ,x 21 ,. . xn1 : n inputs to first neuron of the hidden layer

w11 ,w21 , . .wn1 : weight of those inputs

X= {x11 ,x21 ,. . xn1 ;x21 x nm}

W= {w11 ,w21 ,. . wn1;w21 . . .W nm }

X= {X;bias }

 L is the learning rate, T is target labels.

12

∑ ƒ

Training Algorithm

Repeat till Convergence

1. Neth=∑ X∗W h : Net of the hidden layer.

2. Oh =1/ 1exp −Neth  : Output of the hidden layer.

3. I o = {Oh ;bias } : Input to output layer is output of hidden unit and the bias.

4. Neto=∑ IoW o : Net of the output layer.

5. O=1/ 1exp −Neto  : Output of the output layer.

6. E=T−O : Error

7. δ o=O .∗1−O  .∗E : Sensitivity of output units.

8. δ h =Oh.∗δ o∗W o  : Sensitivity of hidden units.

9. w hδ =L∗X∗δ h : Change in weights of hidden units.

10. w oδ =L∗I o∗δ o : Change in weights of output units.

11. W h=Wh +w hδ : Weight correction for hidden units.

12. W o =Wo+w oδ : Weight correction for output units.

end

Testing Algorithm

 X is test input, Wh and Wo from training.

1. Neth=∑ X∗W h : Net of the hidden layer,

2. Oh =1/ 1exp −Neth  : Output of the hidden layer.

13

3. Io= {Oh ;bias } : Input to output layer is output of hidden unit and the bias.

4. Neto=∑ IoW o : Net of the output layer.

5. O=1/ 1exp −Neto  : Output of the output layer.

14

CHAPTER THREE

HIERARCHICAL BAYESIAN CORTICAL MODELS

3.1 Hierarchical Temporal Memory model

George and Hawkins developed an initial mathematical model [18] of the

neocortex based on the framework described by Hawkins in [21]. Their model utilizes a

hierarchical collection of nodes that employ Pearl’s Bayesian belief propagation

algorithm [43]. As shown in Figure 3.1, each node has one parent and multiple children

(hence there is no overlap in the input fields of any two nodes in a given layer). Input

data is fed into the bottom layer of nodes (level 1) after undergoing some pre-processing.

After a set of feed-forward and feedback belief propagations between nodes in the

network, a final belief is available at the top level node. This belief is a distribution that

indicates the degree of similarity between the input and the different items the network

has been trained to recognize. The model is trained in a supervised manner by presenting

a set of training data to the bottom layer of nodes multiple times.

Fig 3.1 HTM Architecture

15

Level 1
(64 nodes)

Level 3
(1 node)

Level 2
(16 nodes)

Level 1
(64 nodes)

Level 3
(1 node)

Level 2
(16 nodes)

The computational algorithm within each node of the model is identical and follows

equations 1 through 6 below. Before a node starts computing, it receives belief vectors

from its parent (π) and children (λ) as shown in Figure 3.2 (a). The belief vectors from its

children are all combined together as shown in equation 1. This combined belief vector

from the children is then multiplied with an internal probability matrix, Pxu (generated in

an offline training phase), and the belief vector from the parent (see equation 2). The

matrix multiplications are carried out element-by-element. A set of belief vectors are then

generated for the parent and child nodes (equations 3 to 6). These output belief vectors

are then transmitted to the parent and children of the node as shown in Figure 3.2(b).

λ product[i]=∏ λ in [child] [i] (1)
Fxu[j][k] = π in[j] × Pxu[j][k] × λproduct[k] (2)
mrow[j] = max(mrow[j], Fxu[j][k]) (3)
mcol[k] = max(mcol[k], Fxu[j][k]) (4)
λout[j] = mrow[j] / π in[j] (5)
πout[child][k] = mcol[k] / λin[child][k] (6)

Table 3.1 Equations describing the HTM Model

Fig 3.2 HTM Belief Propagation. (a) Node gathering beliefs (b) Node distributing beliefs.

16

πin from
parent

λin from
children

λout to
parent

πout to
children

(a) (b)

πin from
parent

λin from
children

λout to
parent

πout to
children

(a) (b)

3.2 Hierarchical Expectation Refinement Algorithm

Thomas Dean proposed a new hierarchical Bayesian model of the visual cortex,

called the Hierarchical Expectation Refinement Algorithm[12]. This model consists

of a layered collection of nodes as shown in Figure 3.3. Input data is presented to the

bottom layer of nodes (generally after some pre-processing) and a final inference

based on this input is produced by the top layer node. All the nodes in the network

carry out the same set of computations and can be considered to be the functional

equivalent of cortical columns. The model is trained in a supervised manner by

presenting a set of training data to the bottom layer of nodes multiple times.

Figure 3.3: An Example of Thomas Dean’s hierarchical Bayesian network model. This
example can be divided into three subnets as shown and the nodes are numbered with the
subnets they belong to.

In the example implementation of the model presented by Dean in [4], the model

performs hand written character recognition on 28×28 pixel images. This example

network consists of three layers of nodes connected in a pyramidal form, with the bottom

layer consisting of 49 nodes (in a 7x7 layout), the middle layer of 9 nodes (in a 3x3

layout), and the top layer of 1 node. Each layer 2 node has nine layer 1 children (arranged

17

1 1 1,2 1,2 1,2 2 2

2,31,3 1,2,3

3

Subnet 2Subnet 1

Layer 1

Layer 2

Layer 3

11 11 1,21,2 1,21,2 1,21,2 22 22

2,32,31,31,3 1,2,31,2,3

33

Subnet 2Subnet 1

Layer 1

Layer 2

Layer 3

in a 3x3 layout) forming a pyramidal collection. The field of view of each layer 2 node

overlaps with its neighbors’ by an edge that is one node thick. Thus, each layer one node

can have up to four layer 2 parents.

The input image is preprocessed by a preprocessing layer before being fed to the

layer 1 nodes. Each layer 1 node has a 4x4 patch of pixels corresponding to it. In the

preprocessing layer, the 4x4 patch of pixels is transformed into a mixture of Gaussians

and this mixture is matched against 16 predefined classes of mixtures of Gaussians. Thus

each 4x4 pixel region is represented by a number between 1 and 16, with this number

being fed to the corresponding layer 1 node by the preprocessing layer.

The network can be divided into a set of modular component subnets (as shown in

Figure 3.3). Each subnet has two layers of nodes. A subnet can be defined as a node, its

parents, and all the children of those parents in the same level as the original node [4].

The function of each subnet is to produce an abstract set of features that are seen by the

lower level subnets feeding into it. Neighboring subnets have overlaps in their receptive

fields to enable the network to more robustly recognize invariant features. Hence a node

could belong to multiple subnets (as shown in Figure 3.3). The subnets are identified

during the training process and only the largest subnets (those that would not be a subset

of another subnet) are utilized. For any given input image, the network is processed

through multiple bottom-to-top-to-bottom passes. In each pass, all the subnets for a

certain layer are processed before moving to the next layer.

18

Figure 3.4: An Example of a junction tree derived from one of the lower level subnets
shown in Figure 3.1. Part (a) shows the subnet with the nodes number 1 through 7. Part
(b) shows the junction tree equivalent to this subnet. Each clique in part (b) is numbered
with the corresponding nodes from the subnet that are used to build the clique.

In order to process a subnet, it is first converted to its equivalent junction-tree

representation. The junction-tree consists of a set of nodes called cliques, where each

clique is a collection of nodes in the original subnet. The connection between the cliques

is called a separator and is labeled by the nodes in common between the two cliques.

Figure 3.4 shows a simple subnet and its equivalent junction tree decomposition.

Although this junction tree has only 5 cliques (with two that can be evaluated in parallel),

the junction trees in the networks examined have up to 25 cliques (with up to 21 that can

be evaluated in parallel). The subnet to junction tree mapping is carried out during

training and does not have to be redone during inference (as the mapping is reused). The

junction tree for a subnet is evaluated in a single bottom-to-top and then top-to-bottom

pass. The Lauritzen and Spiegelhalter's junction-tree algorithm [30] is utilized for exact

inference in the tree. The operations consist primarily of element by element multi-

dimensional matrix adds, multiplies, and divides.

19

3 4 5 6 7

1 2

33 44 55 66 77

11 22
1,3

1,4

1,2,52,6 2,7

1,3

1,4

1,2,52,6 2,7

CHAPTER FOUR

EXPERIMENTAL SETUP AND IMPLEMENTATION

4.1 Algorithmic Implementation

All the algorithms were presented with the 60,000 training images from the

MNIST training data set. Each image is 28x28 in size with 8 bit gray scale resolution,

thus each algorithm was presented with a 784 bit vector for each training image. The

naive Bayes was implemented in Matlab with Laplace smoothing to avoid distortion. The

KNN algorithm was implemented in Matlab and was tested using Euclidean and

Manhattan distances. The support vector machines implementation was based on the

sequential minimal optimization [60], and the pseudo code as explained in [61] was used

for the development of the algorithm. One versus all classification as explained in [50]

was used for multi-class classification. The artificial neural networks was implemented

by using the MLP algorithm in Matlab. The HTM algorithm was implemented using the

Nupic 1.6 SDK, provided by Numenta Inc. and HERA was implemented by using the

software provided by Thomas Dean [62].

4.2 Multi-core architectures

The problem of heat dissipation has put to hold the frequency scaling of

processors by miniaturization of transistors and has taken the semiconductor industry to

to explore multi-core architectures. This thesis examines three different multi-core

architectures, Intel Xeon E5345, Sun Ultra SPARC T2 Plus, and STI Cell BE

architectures.

20

The Intel Xeon E5345 processor examined contains four Intel Core based

processing cores clocked at 2.33 GHz. These processors contain a 256 KB level one

cache per core and an 8 MB shared level two cache. The processor can execute vector

instructions (with four floating point operations) using the SSE3 instruction set.

Fig 4.1 Intel Xeon E5345 processor architecture. [59]

The Sun Ultra SPARC T2 Plus processor [48] contains 8 cores running at 1.4

GHz. Each core can execute up to eight threads simultaneously, with up to two threads in

each pipeline stage. Thus the entire processor can run a maximum of 64 threads

concurrently. Each core contains 8 KB of data and 16 KB of instruction cache, and share

a 4 MB level two cache.

21

Fig 4.2 Sun UltraSPARC T2 Plus processor architecture. [59]

The Cell Broadband Engine developed by IBM, Sony, and Toshiba [20] is a

multi-core processor that heavily exploits vector parallelism. The current generation of

the IBM Cell processor consists of nine processing cores: a PowerPC based Power

Processor Unit (PPU) and eight independent Synergistic Processing Units (SPU). The

processor operates at 3.2 GHz. Each SPU is capable of processing up to four instructions

in parallel each cycle (eight, if considering fused multiply-add instructions). The

processing cores in the Cell utilize in-order execution with no branch prediction.

Fig 4.3 STI Cell processor architecture. [59]

22

Element Interconnect Bus

SPE 1

1LS MFC

SPE 2

1LS MFC

SPE 3

1LS MFC

SPE 4

1LS MFC

1S

SPE 5

LS MFC 1S

SPE 6

LS MFC 1S

SPE 7

LS MFC 1S

SPE 8

LS MFC

PPE

1L1 L2

DRAM

Interrupt
Controller

I/O
Interface

Element Interconnect Bus

SPE 1

1LS MFC

SPE 2

1LS MFC

SPE 3

1LS MFC

SPE 4

1LS MFC

1S

SPE 5

LS MFC 1S

SPE 6

LS MFC 1S

SPE 7

LS MFC 1S

SPE 8

LS MFC

PPE

1L1 L2

DRAM

Interrupt
Controller

I/O
Interface

Core
Architecture

Intel Core2
(Xeon
E5345)

Sun
UltraSPARC
T2 Plus

STI Cell
Sony PS3 IBM QS 20
PPE SPE PPE SPE

Type
Superscalar
out-of-order

Superscalar
in-order

Multi
Thread
dual
issue

SIMD
dual
issue

Multi
Thread
dual
issue

SIMD
dual
issue

Clock (GHz) 2.33 1.16 3.2 3.2 3.2 3.2
Local store - - - 256 KB 256 KB
L1 Data Cache
per core 32 KB 8 KB 32 KB - 32 KB -
L2 Cache per
core - -

512
KB -

512
KB

Sockets 2 2 1 2
Cores per
Socket 4 8 1 8 1 8
DRAM
Capacity 16 GB 64 GB 2 GB 1 GB
Threading Pthreads Pthreads Pthreads Pthreads
Compiler gcc cc gcc spu-gcc gcc spu-gcc

Table 4.1 Comparison of Multi-core architectures.

This simplified hardware design means that several software level optimizations

are necessary to achieve high performance on the SPUs (these are generally not needed

on traditional processors, such as the Intel Xeon). The optimizations include use of

vectorization, reducing the frequency of branch instructions through loop unrolling and

function in-lining, and explicit memory optimizations. Instead of a processor controlled

data cache, each SPU contains a programmer controlled local store to explicitly optimize

memory operations. This enables several memory level optimizations not possible on

most high performance processors. Since high compute-to-I/O ratios are needed to

achieve the full potential of the Cell processor [5], the programmer controlled memory

stores are especially important.

23

4.3 Implementation

Four hardware platforms were utilized in this study, one was the Intel Xeon

based, two were the STI Cell based, and one was the Sun UltraSPARC T2 Plus based.

The Intel Xeon platform utilized was a blade on the Palmetto Cluster at Clemson

University. Each blade on the system contained two quad core Intel Xeon processors

running at 2.33 GHz (model E5345), had 12 GB of DRAM, and ran the Cent OS 5

operating system. The STI Cell platforms utilized was a Sony Playstation 3 at Clemson

University and an IBM QS20 cluster at Georgia Tech. The Playstation 3 has one Cell

processor on which six of the eight SPUs are available for use and contains 256 MB of

DRAM. This platform was running Fedora Core 6 with IBM Cell SDK 2.1. The QS20

blade utilized had two Cell processors, each with all eight cores available, 2 GB of

DRAM, and also used IBM Cell SDK 2.1. The Sun UltraSPRAC T2 Plus platform

utilized was a Sun SPARC Enterprise T5140 running Solaris 10. This system contained 2

Sun UltraSPARC T2 Plus processors and 64 GB of DRAM. All the programs were

compiled with -O3 optimizations using gcc. On the UltraSPARC platform, one processor

was used for running the operating system, while the other was used to run the

hierarchical Bayesian models, with each thread of the model bound to a specific core to

ensure optimum performance.

Five networks with varying input image sizes were developed to examine the

acceleration of the HTM model on the multi-core platforms. The overall network

structure was kept similar to the design in [18], with three layers of nodes per network

24

and each level 2 node having four level 1 children. The level 1 and 2 nodes were arranged

in a square grid. Table 4.2 lists details about each of the networks examined including the

number of nodes implemented in each network and the input image size. The smallest

network was identical to the example presented by George and Hawkins. In order to train

the different sized networks, the training algorithm described in [18] was used to generate

the internal Pxu matrices for the networks. A subset of 76 of the 91 binary image

categories presented in [18] was utilized for the training of these networks since these

were used in the training example provided by the authors of the model. The set of

images chosen would affect the runtimes on all the processors similarly. All the nodes in

each layer are processed in parallel. The model was optimized separately for the different

architectures. A set of nodes to be implemented was assigned to each thread (an SPU in

the case of the cell processor), and these set of nodes were implemented in serial by each

thread. The set of nodes to be assigned to each thread was pre-assigned to optimize the

load on each thread.

Table 4.2. HTM configurations evaluated

Network input size 32x32 48x48 64x64 80x80 96x96
Total Nodes 81 181 321 501 721
Layer 3 nodes 1 1 1 1 1
Layer 2 nodes 16 36 64 100 144
Layer 1 nodes 64 144 256 400 576

Four networks with varying input image sizes were developed to examine the

acceleration of the Dean model on the multi-core platforms. As shown in Table 4.3, all

the networks had three layers. The smallest network was identical to the example

25

presented by Dean in [8]. Dean utilized 10,000 images from the MNIST database [33] by

Yann LeCun for training and testing of his model. These consist of one thousand versions

of 10 objects (handwritten numerals 0 to 9 from the MNIST database), resulting in

10,000 images. The images are 28×28 pixels in dimension and with 8 bit resolution. The

smallest network was trained with the 28×28 images in the database, while the larger

networks were trained with zero padded versions of these images.

Table 4.3 Dean model configurations evaluated

Network input size 28×28 36×36 40×40 52×52

Nodes

Total 59 98 110 186
Layer 3 1 1 1 1
Layer 2 9 16 9 16
Layer 1 49 81 100 169

Subnets

Total 6 11 6 11
Layer 3 1 1 1 1
Layer 2 1 1 1 1
Layer 1 4 9 4 9

Dean’s implementation of the model was in Matlab and utilized Kevin Murphy’s

Bayesian Network Toolbox (also written in Matlab) [37]. A C implementation of the

model along with relevant parts of the Bayesian Network Toolbox was developed.

Although C++ Bayesian Network libraries are available, they would need significant

modifications in order to be utilized in our study. These include, parallelizing to run on

multiple cores, vectorization using Cell SPU SIMD intrinsics, and being able to handle

the DMA data transfers needed for the explicit memory management of the SPU local

stores. The model and the relevant Bayesian Network libraries were optimized separately

26

for the different architectures. In the Cell version, the PPU assigned a set of subnets or

cliques to be processed to each SPU.

4.4 Parallelization and optimization

4.4.1 Hierarchical Temporal Memory model

Network parallelization

All the nodes in a particular layer are independent of each other and can therefore

be evaluated in parallel. Therefore in this study, the HTM network was parallelized by

assigning groups of nodes in a particular layer to separate processing cores. Nearly all

computations in equations 1 through 6 are element-by-element matrix multiplies and

divides (thus there are no addition operations needed). In order to accelerate the

computations, the matrix values were converted into logarithmic form so that more

expensive multiplies and divides could be replaced by less time consuming additions and

subtractions. The comparisons involved in equations 3 and 4 could still be performed in

logarithmic form and were thus unaffected by this change.

Pxu matrix compression and model vectorization

The Pxu matrix in equation 2 is large enough that it needs special consideration

when examining the vectorization of the nodes. These matrices themselves are extremely

sparse, being made up almost 90% zeros. The computations in equations 1 through 6 are

element-by-element rather than dot products. Compressing the Pxu matrices can

significantly speed up the algorithm computation by skipping over strings of zeros. Thus

27

any vectorization approach needs to consider the compression of the Pxu matrix. Two

possible approaches to utilize vectorization for the George Hawkins model were

examined. The first involves vectorizing the code to process a single image more

efficiently. The second approach involves vectorizing the code to process multiple

images simultaneously.

Single image vectorization: In this case, equations 1 through 6 need to be

vectorized for a single image. Equations 1, 5, and 6 can be vectorized easily if the

variables for the equations are padded to be multiples of the vector width. Equation 2,

however, cannot be vectorized as easily, given that the Pxu matrix is sparse. This study

examined the feasibility of block compression [34] of the Pxu matrix to vectorize the

computations in equation 2. In order to be efficient, there should be on high density of

non zero elements in uncompressed blocks.

Two possible approaches for block compression are to compress along the rows

or along the columns of the target matrix. Tables 4.4 and 4.5 show the density of non zero

blocks for both row and column wise compression with block sizes of 4 and 8

respectively. Several network sizes are examined. The results indicate that with a

vectorization factor of four, the average Pxu uncompressed block contains less than two

non-zero elements per block, while a vectorization factor of eight yields at most 2

elements per block on average. Thus vectorizing the equations for single images is not

very efficient.

Table 4.4 Block compression of Pxu with a block size of 4.
N/w Size : Network Size NZB: Non Zero Blocks; NZE: Non Zero Elements;

Compression along rows Compression along columns
N/w %NZB Avg NZE in %NZB>2 %NZB Avg NZE in %NZB>2 NZE

28

Size NZB NZE NZB
81 3.84 1.2531 20.06 3.97 1.2605 17.72
181 5.17 1.3035 22.82 5.02 1.3891 24.89
321 6.23 1.3935 27.47 5.96 1.4940 28.79
501 7.41 1.4624 30.53 6.72 1.6483 34.48
721 7.82 1.4848 31.4 7.12 1.6659 35.02

Table 4.5 Block compression of Pxu with a block size of 8.
N/w Size : Network Size NZB: Non Zero Blocks; NZE: Non Zero Elements;

Compression along rows Compression along columns
N/w

Size
%NZB

Avg NZE in

NZB

%NZB>2

NZE
%NZB

Avg NZE in

NZB
%NZB>2 NZE

81 6.44 1.4587 27.89 6.97 1.4374 22.74
181 8.32 1.5837 32.66 8.38 1.6506 29.77
321 9.75 1.7418 36.69 9.73 1.8270 33.35
501 11.31 1.8754 39.91 10.75 2.0571 38.98
721 11.88 1.9125 40.38 11.36 2.0851 39.45

Multiple image vectorization: The computations for any input image are identical

throughout the network because each node in the network processes any input given in

exactly the same manner. Therefore multiple images can also be evaluated in parallel

using vectorization. In this case any compression scheme can be adopted for the Pxu

matrices. The matrix is compressed by providing a coordinate for each nonzero value in

the Pxu matrix. Two approaches for dealing with this are to treat the Pxu matrix as a linear

vector (see Figure 4.4(b)) or to treat it as a two dimensional matrix (see Figure 4.4(c)). In

the former case, only one coordinate is needed per nonzero element, while in the latter

case, two coordinate values are needed. The first approach results in a higher

compression level and thus lower data transfer time. It however does require the

generation of a two dimensional (x,y) coordinate for each linear coordinate (for equation

2). Our studies indicate that a two dimensional representation provides the lowest overall

29

execution time. For example, for the 721 node HTM model examined, the single

dimensional approach required 18.26 ms on a Playstation 3, while the two dimensional

approach required 10.96 ms.

(a)

(b)

1 0 0 2 0
2 4 1 1 6
1 2 1 3 0
9 4 4

(c)

Figure 4.4 Restructuring the Pxu matrix. (a) Original Pxu Matrix. (b) Single dimensional position
representation, [p :value, x :coordinate]. (c) Two dimensional position representation, [p :value,

x,y : coordinates]

4.4.2 Dean model

 Network parallelization

As shown in previous chapter, the nodes in a network in the Dean model can be

grouped into subnets and the network would be processed by evaluating subnets rather

than individual nodes. Also, as shown in the same section, each subnet was evaluated by

processing its junction-tree representation. Each node of the junction tree is called a

clique and has a clique potential associated with it. This potential is derived by

combining the conditional probability tables of each node in the subnet that forms the

clique (these tables are multi-dimensional with a maximum of five dimensions in our

study).

30

1 0 2 0 0
0 4 0 0 0
0 6 0 0 0
1 0 0 0 0
0 0 0 0 9

1 0 2 2 4

6 6
1
1

1 15

9
2
4

There are two possible approaches to parallelize the evaluation of the Dean

model: the first is at the subnet granularity and the second is at the clique granularity.

This latter approach will yield a higher level of parallelism as there are more cliques than

subnet (given that a subnet can be decomposed into multiple cliques). Dependencies

between the cliques may limit the number of cliques that can be evaluated in parallel at

any given level within a junction tree. This study evaluated both approaches and found

that for the networks examined, the clique based approach had a better utilization of the

available processing cores. In both approaches the order in which the subnets or cliques

will be evaluated is predetermined and does not vary with the network inputs.

Vectorization

As with the HTM model, there are at least two approaches to vectorization for this

model: vectorizing the operations for a single image and vectorizing to evaluate multiple

images simultaneously. In the former case, matrix operations would have to be vectorized

as a large portion of the junction tree evaluations consist of multi-dimensional matrix

operations. In the networks examined, these matrices had up to five dimensions with each

dimension being up to 16 elements wide. The matrix operations included element-by-

element matrix multiplies and divides. There were also matrix dimension reductions

which essentially were summations along a given dimension of the matrix. Not all of

these operations can be vectorized efficiently, particularly as the matrix dimensions were

of small widths (that were not always multiples of the vectorization factor).

31

Since the model evaluates any input data in precisely the same way, multiple

inputs can be evaluated in parallel through vectorization. In case of a vectorization factor

of four, there will be four versions of each matrix (one for each image). The same set of

operations will be carried out for all four versions of each matrix. In this case

vectorization can be applied to almost 100% of all the operations.

32

CHAPTER FIVE

RESULTS

5.1 Study of Accuracy.

The seven different algorithms were successfully implemented and tested with the

MNIST Database [36]. The MNIST database contains handwritten digits with 6000

28x28 images per class for training and around 10000 test images.

NB KNN NCA SVM ANN HTM Dean

MNIST 12.8 5.2 3.2 1.8 12.5 26 19

MNIST(6000
training examples)

18 9.00 8.5 8.1 16 30 24

Table 5.1 Comparison of Accuracy.

The naïve Bayes classifier was trained with the 784 sized features. Different

values of thresholding were compared and it was found to be optimal at 185. The test set

error of 12.8% was received. The advantages are ease of implementation and very fast

test time, but the disadvantage is that the strong independence assumption makes the

algorithm weak. The KNN algorithm was also trained with the feature size of 784 and the

change in accuracy of the KNN classifier improved with the increase in K is shown in

figure 5.1.The advantages of this method is that, it requires no training and

implementation is very simple. The disadvantages are that, the test time is in the order of

hours for MNIST data set (compared to seconds for all other algorithms) and the need to

keep the complete database during testing.

The SVM algorithm was implemented with the sequential minimal optimization

algorithm[61], with Gaussian kernel. SVM is a binary classifier, so multi-class

classification is achieved by one-against all classification [50].

33

Test Error %

Fig 5.1 Test Error versus K, KNN Algorithm.

The SVM algorithm does not require the complete database to be stored. The

runtime for testing is fast and has very good accuracy but takes long to converge while

training. The multilayer perceptron algorithm implemented also does not require the

complete database for testing and runtime for testing is fast. It was found that a network

architecture with two hidden layers of 800 and 200 neurons, gave the most optimal

performance in accordance with LeCun et al. [31]. HTM and Dean's model performed

comparatively poorly, with a testing error of 26% and 19% respectively. But this is a

respectable figure given the fact that, both these algorithms are in their nascent stages and

have a large scope for improvement. The advantages of HTM and Dean are that, they do

not require to have complete database for testing, fast test time execution, and are

comparatively more biologically plausible [11][12][19]. It was found that, the SVM

classifier performed the best and the test error achieved was comparable to that achieved

by LeCun et al. [31]. The other interesting thing to note is that algorithms behave

differently to training set size. Simpler algorithms like NB, KNN and NCA depends on

34

1 3 5 7 9 11 15 21 45 99 145 201

0

1

2

3

4

5

6

7

8

9

the training set and accuracy improves with the training set size. This has been noted by

Holte [59], that simple classifier do a very good job on large databases.

5.2 Study of Multi-core Performance.

Both the models were tested on the following four platforms with the given

configurations.

1. Intel blade with 4 and 8 threads.

2. Playstation 3 with 6 SPU threads.

3. QS20 with 6, 8 and 16 SPU threads.

4. Sun UltraSPARC T2 Plus with 8, 16, 32, and 64 threads.

The six SPU thread implementation on the QS20 was examined inorder to

compare the it against the Playstation 3 (PS3) performance. A serial version of the

program was developed and tested on the Sony Playstation 3’s Cell PPU. All the

implementations (both serial and all parallel) utilized the data structure optimizations for

the models listed in earlier sections (such as Pxu matrix compression in the HTM model).

5.2.1 Speedup

Figures 5.2 and 5.3 present the speedup of each of the parallel implementations

over the serial PPU implementation. From these figures it is seen that the parallel

implementations of the models provide a significant performance gain over their serial

implementations. This is mainly due to the use of multiple cores and the use of

vectorization on the Intel and Cell architectures. There is sufficient parallelism in the

35

models examined, so that for all of the platforms, use of more cores provided higher

speedups. Our experiments showed that increasing the number of threads on the Intel

Xeon blade beyond 8 provided no further improvement in performance. The Dean model

produced a higher speedup than the HTM model for all the platforms examined. It is

possible that the larger number of training categories in the HTM model produces larger

potential tables, which translates to more data transfers, thus limiting its speedup over the

Dean model.

For both models, it is seen that the Cell processor outperformed both the Intel

Xeon and the Sun UltraSPARC T2 Plus processors. The Playstation 3 with 6 available

SPU cores outperforms the Intel Xeon processor (with 4 cores) by about 1.9 times for the

HTM model and by 2.4 times for the Dean model. As a result the Playstation 3 also

outperformed the blade with two Intel Xeon processors. The speedup of the Cell

processor on the QS20 with all 8 SPU cores available over a single Intel Xeon processor

was about 2.3 times for the HTM model and about 3 times for the Dean model. Utilizing

both Cell processors on the QS20 (16 threads) provides only a 11% performance gain for

HTM model and a 22% performance gain for the Dean model over one Cell processor (8

threads). This is believed to be due to the memory accesses becoming a bottleneck as

calculation times become close to data access times (as shown in Table 5.2). This effect

is not seen on the Sun processor when going from 8 to 16 threads as the calculations take

much longer on that system.

36

0

20

40

60

80

100

120

81 181 321 501 721 Average

Nodes

S
pe

ed
up

Sun (8)

Sun (16)

Sun (32)

Sun (64)

Xeon (4)

Xeon (8)

PS3 (6)

QS20 (6)

QS20 (8)

QS20 (16)

Figure 5.2 Speedup for the HTM model on different multi-core architectures over the Cell PPU.
The numbers in parenthesis in the legend represent the number of threads utilized on each

platform.

On the UltraSPARC processor, the Dean model provides speedups of about 2

when going from 8 to 16 threads and when going from 16 to 32 threads. The speedup

from 32 to 64 threads is minor (about 1.1 times for the 186 node network). The HTM

model provided lower speedups than the Dean model: 1.9 times for the largest model

tested when going from 8 to 16 threads, 1.7 times when going from 16 to 32 threads, and

1.3 times when going from 32 to 64 threads. The Sun processor provides a lower speedup

than the Xeon and Cell processors because of a lower clock frequency and a lack of

vector capabilities. If multiple images were not available to process simultaneously (such

as if there were only one small camera source), then it would not be possible to take

advantage of the vectorization utilized. In this case the performance of the Intel and Cell

architectures would be about one fourth of their current values.

37

0

20

40

60

80

100

120

140

160

59 98 110 186 Average

Nodes

S
p

e
e

d
u

p
Sun (8)

Sun (16)

Sun (32)

Sun (64)

Xeon (4)

Xeon (8)

PS3 (6)

QS20 (6)

QS20 (8)

QS20 (16)

Figure 5.3. Speedup for the Dean model on different multi-core architectures over the Cell PPU.
The numbers in parenthesis in the legend represent the number of threads utilized on each

platform.
Since the Sun does not support vector operations, its performance would not be

affected. In this situation, the Sun processor with 64 threads would actually be faster than

the Xeon processor with 4 threads; about 2 times for the largest HTM model and 1.6

times for the largest Dean model.

5.2.2 Runtime breakdown of models

Figures 5.4 and 5.5 show the runtime breakdowns of the HTM and Dean models

respectively on the Cell processor (on the Playstation 3) and the Intel Xeon processor (4

thread implementation). The runtime break downs are given for the smallest and the

largest network sizes for both the models. This is done to compare the change in each

part of the algorithm with the scaling of the model. The time for signaling between the

different threads on all the platforms was insignificant due to the pre-assigning of nodes

38

to different threads at the start of the program. Therefore this time is not listed separately

in the timing breakdown.

For the Cell platform, the non-overlapped memory access time is calculated by

taking the difference between the overall runtime of the application and the runtime with

DMA data transfers commented out of the code. This is the part of the DMA accesses

that could not be overlapped with computations (generally through double buffering). On

the Intel Xeon platform, this time was calculated by taking the difference between the

overall runtime and a version of the code with all global variables in the threads

converted to local variables (synchronization barriers between threads were kept intact).

The number of computations (array accesses and other operations) was kept the same in

both cases.

The results show that on the Cell processor, DMA transfers that could not be

overlapped can be a significant percentage of the overall runtime. However this fraction

decreases as the network sizes increase since the nodes in the network become more

complex and thus have more computations to be carried out per node. This is seen by the

increase in the computation percentage for equations 2, 3, and 4 in the HTM model and in

the percentage of time for getting evidence in the Dean model. Stalls due to global

variable accesses on the Xeon processor (listed as non-overlapped memory access in

Figures 5.4 and 5.5) showed similar trends as well.

39

23

21

20

20

6

4

5

6

6

8

8

10

22

13

33

24

5

8

3

4

6

8

3

4

31

38

29

32

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

721 node on Cell

81 node on Cell

721 node on Xeon

81 node on Xeon
Pre-process

Initialize

Eq 1

Eq 2, 3, 4

Eq 5

Eq 6

Non-overlapped
Memory Access

Figure 5.4 Runtime breakdowns for the HTM model on the PS3 and Xeon processors (a)
Runtime breakdown for the 81 node network on the Playstation 3. (b) Runtime breakdown for the
721 node network on the Playstation 3. (c) Runtime breakdown for the 81 node network on the
Xeon Processor. (d) Runtime breakdown for the 721 node network on the Xeon Processor.

11

10

11

13

48

39

56

51

7

9

4

4

6

8

4

4

3

5

1

2

25

28

23

26

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

186 node on Cell

59 node on Cell

186 node on Xeon

59 node on Xeon Pre-process

Get evidence &
process J-tree

Comp. Lambda

Comp. Pi

Read output

Non-overlapped
memory access

Figure 5.5 Runtime breakdowns for the Dean model on the PS3 and Xeon processors (a)
Runtime breakdown for the 59 node network on the Playstation 3. (b) Runtime breakdown for the
186 node network on the Playstation 3. (c) Runtime breakdown for the 59 node network on the
Xeon Processor. (d) Runtime breakdown for the 186 node network on the Xeon Processor.

The overall DMA time is unlikely to change with the number of cores used on the

Cell processor as these accesses go to a centralized memory system. However the overall

computation time is likely to decrease with more cores due to increased parallelism.

Hence, as the number of cores increase, the DMA time can exceed the computation time,

40

thus limiting the speedup seen with increasing cores. This effect is seen in figures 5.2 and

5.3: the speedup does not double when going from 8 to 16 cores. Although this could be

due to the impact of off-chip memory buses, the results in Table 5.2 seem to indicate that

it is due to a memory bottleneck. Table 5.2 shows the runtime breakdown of the largest

HTM and Dean networks on the Cell processor platforms examined: Playstation 3 with 6

SPU, and QS20 with both 8 and 16 SPUs. While the computation time decreased with

increasing numbers of cores, the non-overlapped DMA time increased slightly (since the

computations started taking less time than data transfers). To alleviate this issue, a higher

memory bandwidth would be needed. This would be seen by having each cell processor

have access to its own dedicated memory. Figure 5.6 compares the two parallelization

approaches examined for the Dean model: clique based and subnet based. All the subnets

in a layer can be evaluated in parallel.

Table 5.2 Run time break down of the largest HTM and Dean models on the QS20 with 6, 8, and
16 threads. All times are in ms.

HTM Dean
SPUs 6 8 16 6 8 16
Computation only (ms) 7.51 5.45 3.50 12.10 8.10 4.50
Non-overlapped DMA (ms) 3.45 3.60 4.45 4.10 4.34 5.12
Total (ms) 10.96 9.05 7.95 16.20 12.44 9.62
% of DMA in runtime 31.47 39.77 55.97 25.30 34.88 53.22

5.2.3 Parallelization strategy for the Dean model

The networks with 59 and 110 nodes had fewer subnets in level 1 than the 98 and

186 node networks. Thus the former set of networks provided lower speedups than the

latter set when parallelized by subnets. For all the networks, there were more cliques that

could be evaluated in parallel than subnets (since each subnet could be decomposed into

41

multiple cliques). Thus the clique based parallelization approach provided higher

speedups for all the network sizes evaluated.

Figure 5.6 Parallelization of the Dean model by cliques vs. subnets. The 59 and 110 node
networks are using only 4 SPUs because of the limited set of subnets on those networks. The

other two are using six SPUs.

42

0

20

40

60

80

100

59 98 110 186Nodes

Sp
ee

d
up

 o
ve

r P
PU

Cliques Subnets

CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

There is a significant interest in the research community to develop machine

learning algorithms with good inference capabilities and with the ability to do real time

tasks. Seven leading algorithms were compared for the task of handwritten character

recognition. The study shows that Hierarchical Bayesian cortical models, which are a

relatively new class of models, have lower performance compared to the leading

algorithms on the complete MNIST database. The performance was compared for a

smaller subset of MNIST dataset, and it was found that the accuracy of the Bayesian

algorithms does not decrease considerably with the change in training set size. The

Hierarchical Bayesian cortical models have inherent parallelism that make it easier to

develop larger scale simulations of the cortex than traditional neural networks.

Since Hierarchical Bayesian cortical models are based on cortical columns as

opposed to individual neurons, they have a significant computational advantage over the

latter. Fewer nodes need to be modeled along with fewer node connections. Given that

large scale cortical models can offer strong information processing capabilities,

hierarchical Bayesian models are an attractive candidate for scaling. In the second part of

this study, the parallelization and implementation on multi-core architectures of two

hierarchical Bayesian models: the Hierarchical Temporal Memory model and the Dean’s

Hierarchical Bayesian model were done. Three multi-core processors were examined for

implementation: the IBM Cell processor, the Intel Xeon processor, and the Sun

43

UltraSPARC T2 Plus. Both the models and their relevant libraries were implemented in

C, parallelized, and vectorized. This is the first study of the acceleration of this class of

models on multi-core architectures. It was shown that the hierarchical Bayesian cortical

models can be parallelized onto multi-core architectures to provide significant speedups

over serial implementations of the models. The speedups come primarily from the use of

multiple processing cores and vector operations. The speedups increase as the models are

scaled and as the number of processing cores is increased. The highest performance gain

was seen from the Cell processor, with speedups of 1.9 times for the Dean model and 2.4

times for the HTM model over a parallel implementation on the Xeon Processor. It was

shown that the Dean model can be parallelized based on the subnets that it contains, or

based on the cliques contained in the junction-trees that the subnets can be converted

into. Our results indicate that the latter approach provides slightly higher speedups as

there is more parallelism exposed. This study also examined the vectorization of the two

models and showed that it is easier to vectorize by processing multiple inputs

simultaneously.

The results of this work can be applied to other multi-core processors. As future work, a

study can examine:

1) Comparison of Convolutional Neural Networks[32] and LeCun Convolutional

Network [31] for handwritten character recognition.

2) Comparison of all the above algorithms for more difficult recognition tasks like

face recognition using standard databases.

44

3) The performance of much larger networks on clusters of multi-core processors.

4) The parallelization of the training phase of these models.

5) The parallelization of the newer version of these models [9][10][15] which

incorporates temporal invariance in addition to spatial invariance.

Moreover these parallelized multi-core implementations of the models could be

used for real time tasks and to make improvements to the algorithms itself.

45

REFERENCES

[1] R. Ananthanarayan, D. Modha, “Anatomy of a cortical simulator”, Proceedings of
ACM/IEEE conference on Supercomputing, 2007.

[2] J.A. Anderson, “The BSB Network,” In: Hassoun, M.H. (ed.) Associative Neural
Networks. Oxford University Press, New York, 77-103, 1993.

[3] J. A. Anderson, “Arithmetic on a parallel computer: Perception versus logic,” Brain
and Mind, 4, 169–188, 2003.

[4] J. A. Anderson, P. Allopenna, G. S. Guralnik, D. Scheinberg, J. A. Santini, S.
Dimitriadis, B. B. Machta, and B. T. Merritt, “Programming a Parallel Computer:
The Ersatz Brain Project,” In W. Duch, J. Mandziuk, and J.M. Zurada (Eds.),
Challenges to Computational Intelligence, Springer: Berlin, 2006.

[5] D.A. Bader, V. Agarwal, K. Madduri, and S. Kang, “High Performance
Combinatorial Algorithm Design on the Cell Broadband Engine Processor,” Parallel
Computing, Elsevier, 33(10-11):720-740, 2007.

[6] Barto, A.G., Sutton, R.S., & Anderson, C. (1983). Neuron-like adaptive elements that
can solve difficult learning control problems, IEEE Transactions on Systems, Man,
and Cybernetics, SMC-13: 834-846.

[7] A. Buttari, J. Dongarra, and J. Kurzak, “Limitations of the Playstation 3 for High
Performance Cluster Computing,” University of Tennessee Computer Science
Technical Report, CS-07-594, May 2007.

[8] Carpenter, G. and Grossberg, S. (1995). Adaptive resonance theory (ART). In Arbib,
M., (Ed.), Handbook of Brain Theory and Neural Networks, pages 79--82. MIT
Press.

[9] Rich Caruana and Alexandru Niculescu-Mizil, "An Empirical Comparison of
Supervised Learning Algorithms," The Proceedings of the 23rd International
Conference on Machine Learning (ICML2006), June 2006, pp. 161-168.

46

[10] Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning,
20:1-25.

[11] T. Dean, “A Computational Model of the Cerebral Cortex,” Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI-05): 938-943, 2005.

[12] T. Dean. “Scalable inference in hierarchical generative models,” Ninth International
Symposium on Artificial Intelligence and Mathematics, 2006.

[13] T. Dean, “Learning invariant features using inertial priors,” Annals of Mathematics
and Artificial Intelligence, 47(3-4), 223–250, Aug. 2006.

[14] T. Dean, G. Carroll, and R. Washington, “On the prospects for building a working
model of the visual cortex,” Proceedings the Twenty-Second Conference on
Artificial Intelligence (AAAI-07): 1597-1600, 2007.

[15] A. Delorme and S. J. Thorpe, “SpikeNET: an event-driven simulation package for
modelling large networks of spiking neurons,” Network-computation in neural
systems, 14(4), 613–627, Nov. 2003.

[16] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, O. Ekeberg, and A. Lansner,
“Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer,”
IBM Journal of Research and Development, 52(1-2), 31–41, Jan.-Mar. 2008.

[17] A. Felch, J. Moorkanikara-Nageswaran, A. Chandrashekar, J. Furlong, N. Dutt, A.
Nicolau, A. Veidenbaum, R. H. Granger. “Accelerating Brain Circuit Simulations of
Object Recognition with a Sony PlayStation 3,” Proceedings of the International
Workshop on Innovative Architectures, 2007.

[18] D. George and J. Hawkins. “A Hierarchical Bayesian Model of Invariant Pattern
Recognition in the Visual Cortex,” International Joint Conference on Neural
Networks (IJCNN 2005), 2005.

[19] D. George, “How the brain might work: A hierarchical and temporal model for
learning and recognition,” Doctoral Dissertation, Dept. of Electrical Engineering,
Stanford University, 2008.

[20] M. 16, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, T. Yamazaki,
“Synergistic Processing in Cell’s multi-core Architecture,” IEEE Micro, 26(2), 10–
24, Mar. 2006.

47

[21] J. Hawkins and S. Blakeslee, “On Intelligence,” Times Books, Henry Holt and
Company, New York, NY 10011, Sept. 2004.

[22] J. Hawkins, D. George, “Hierarchical Temporal Memory: Concepts, Theory and
Terminology”, Numenta, http://www.numenta.com/Numenta_HTM_Concepts.pdf ,
2006.

[23] Hinton, G. E. and Sejnowski, T. J. (1983) Optimal perceptual inference.
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
Washington DC.

[24] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current
and application to conduction and excitation in nerve,” Journal of Physiology, 117,
500–544, 1952.

[25] Hopfield, J. J. (1982). Neural networks and physical systems with emergent
computational abilities. Proceedings of the National Academy of Sciences, 79:2554.

[26] E. Izhikevich and G. Edelman, “Large-Scale Model of Mammalian Thalamocortical
Systems,” Proceedings of the National Academy of Sciences, 105(9), 3593–3598,
Mar. 2008.

[27] C. Johansson, A. Lansner, “Towards Cortex Sized Artificial Neural Systems,”
Neural Networks, 20(1): 48-61, 2007.

[28] R. D. King, C. Feng, and A. Sutherland. STATLOG: comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence,
9(3):289-334, 1995.

[29] Kohonen, T. An adaptive associative memory principle. IEEE Transactions on
Computers, C-23:444-445, 1974.

[30] S. Lauritzen, D. Spiegelhalter, “Local computations with probabilities on graphical
structures and their application to expert systems,” Journal of the Royal Statistical
Society, 50(2):157–194, 1988.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11):2278-2324, November
1998.

48

[32] Y. Le Cun and Yoshua Bengio. Convolutional networks for images, speech, and
time series. In Michael A. Arbib, editor, The Handbook of Brain Theory and Neural
Networks, pages 255–258. MIT Press, Cambridge, Massachusetts, 1995.

[33] Y. LeCun and C. Cortes, “The MNIST Database of handwritten images,”
http://yann.lecun.com/exdb/mnist/.

[34] T. S. Lee and D. Mumford, “Hierarchical bayesian inference in the visual cortex,”
Journal of the Optical Society of America A, 2(7), 1434–1448, 2003.

[35] H. Markram, “The Blue Brain Project,” Nature Reviews Neuroscience, 7, 153–160,
2006.

[36] W. Maas, “Networks of spiking neurons: the third generation of neural network
models,” Transactions of the Society for Computer Simulation International, 14(4),
1659–1671, Dec. 1997.

[37] K. Murphy, “The Bayes Net Toolbox for Matlab.” Computer Science and Statistics
33(2): 1024-1034, 2001.

[38] McCulloch, W. S. and Pitts, W. H. (1943). A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133.

[40] Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press, Cambridge, MA.

[41] V. Mountcastle, “Introduction to the special issue on computation in cortical
columns,” Cerebral Cortex, 13(1):2–4, 2003.

[42] Neeba N.V and C.V. Jawahar, "Empirical Evaluation of Character Classification
Schemes," ICAPR, pp.310-313, Seventh International Conference on Advances in
Pattern Recognition, 2009.

[43] J. Pearl, “Probabilistic Reasoning in Intelligent Systems,” Networks of Plausible
Inference, Morgan Kaufmann, San Francisco, CA, 1988.

[44] W. Rall, “Branching dendritic trees and motoneuron membrane resistivity,”
Experimental Neurology, 1, 503–532, 1959.

[45] J. Rickman, “Roadrunner supercomputer puts research at a new scale,” Jun. 2008,
http://www.lanl.gov/news/index.php/fuseaction/home.story/story_id/13602.

49

http://yann.lecun.com/exdb/mnist/
http://www.lanl.gov/news/index.php/fuseaction/home.story/story_id/13602

[46] Rosenblatt F. “The Perceptron: A probabilistic model for information storage and
organization in the brain,” Psycho-logical Review 65: 386–408, 1958.

[47] P. Salin, J. Bullier, “Corticocortical connections in the visual system: structure and
function”, Physiological Reviews, 75(1):107-54, 1995.

[48] Sun Microsystems, “UltraSPARC T2™ Supplement to the UltraSPARC
Architecture 2007”, http://opensparc-t2.sunsource.net/specs/UST2-UASuppl-
current-draft-HP-EXT.pdf, 2007.

[49] V. N. Vapnik and A. Ya. Chervonenkis, On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities, Theory Probab. Appl. 16, 264 (1971).

[50]. Vapnik, V. (1995). The Nature of Statistical Learning Theory, chapter5. Springer-
Verlag, New York.

[51] S. Vassiliadis, S. Cotofana, P. Stathis “Block based compression storage expected
performance”, in the proceedings of HPCS2000, 2000.

[52] Q. Wu, P. Mukre, R. Linderman, T. Renz, D. Burns, M. Moore and Qinru Qiu,
“Performance Optimization for Pattern Recognition using Associative Neural
Memory,” Proceedings of the 2008 IEEE International Conference on Multimedia &
Expo, June 2008.

[53] Y. Xia and V. Prasanna, “Junction Tree Decomposition for Parallel Exact
Inference,” IEEE International Parallel & Distributed Processing Symposium
(IPDPS'08), April 2008.

[54] Y. Xia and V. Prasanna, “Parallel Exact Inference on the Cell Broadband engine
processor,” Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
2008.

[55] R. Zemel, “Cortical belief networks,” in Hecht-Neilsen, R., ed., Theories of the
Cerebral Cortex, New York, NY: Springer-Verlag, 2000.

[56] S. Zhu and D. Hammerstrom, “Simulation of associative neural networks,”
Proceedings of the 9th International Conference on Neural Information Processing,
1639- 1643, Nov. 2002.

[57] Richard Linderman, “Early experiences with algorithm optimizations on clusters of

50

 playstation 3’s,” DoD HPCMP Users Group Conference, Jul. 2008.

[58] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T.
Yamazaki, “Synergistic processing in Cell’s multi-core architecture,” IEEE Micro,
vol. 26, pp. 10–24, Mar. 2006.[59] Robert C. Holte. Very simple classification rules
perform well on most commonly used datasets. Machine Learning, 11(1):63–91,
1993.

[59] Samuel Williams, Jonas Carter, Leonid Oliker, John Shalf, Katherine
Yelick, “Optimization of a lattice Boltzmann computation on state-of-art
multicore platforms”, Journal of Parallel Distributed Computing, 2009.

[60] John C. Platt, Fast training of support vector machines using sequential minimal
optimization, Advances in kernel methods: support vector learning, MIT Press,
Cambridge, MA, 1999.

[61] Andrew Ng, Stanford CS 229 Machine Learning,
http://www.stanford.edu/class/cs229/notes/cs229-notes3.ps

[62] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood
components analysis.In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in
Neural Information Processing Systems 17, pages 513–520, Cambridge, MA, 2005.
MIT Press.

51

http://www.stanford.edu/class/cs229/notes/cs229-notes3.ps

	Clemson University
	TigerPrints
	8-2009

	ACCURACY AND MULTI-CORE PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR HANDWRITTEN CHARACTER RECOGNITION
	Sumod Mohan
	Recommended Citation

	tmp.1387585722.pdf.WpvSW

