
Clemson University
TigerPrints

All Theses Theses

5-2007

Linear and Non-Linear Control of a Quadrotor
UAV
Andrew Neff
Clemson University, aneff@ieee.org

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Neff, Andrew, "Linear and Non-Linear Control of a Quadrotor UAV" (2007). All Theses. 88.
https://tigerprints.clemson.edu/all_theses/88

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_theses%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/88?utm_source=tigerprints.clemson.edu%2Fall_theses%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

LINEAR AND NON-LINEAR CONTROL OF A QUADROTOR UAV

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Masters of Science
Electrical Engineering

by
Andrew Neff

May 2007

Accepted by:
Dr. Timothy Burg, Committee Chair

Dr. Darren Dawson
Dr. Samuel Sander

ABSTRACT

This thesis describes two controllers designed specifically for a quadrotor

helicopter unmanned aerial vehicle (UAV). A linear controller and a non-linear

controller are discussed for use on the quadrotor helicopter using feedback

that is obtained from microelectromechanical systems (MEMS) and global

positioning system (GPS) sensors.

The linear controller is an orientation based PID controller that controls

the angles of the quadrotor UAV. The controller was first simulated and the

results displayed graphically using FlightGear. Experiments were conducted

using this controller on a DraganFlyer X-Pro quadrotor helicopter to prove

the proposed method used for closing the feedback loop.

The non-linear controller is developed using Lyapunov stability methods.

The design goal for this controller is to add a two degree-of-freedom camera

postioner to the quadrotor for a total of six degree-of-freedom camera actua-

tor. The UAV will track three desired translational velocities and three an-

gular velocities using only translational and rotational velocities for feedback.

Simulations were conducted to verify this controller.

ACKNOWLEDGEMENTS

I would like to acknowledge my committee and my professors for all of their

help through my college career.

DEDICATION

I dedicate this to Yomiko, for all of her encouragement.

TABLE OF CONTENTS

Page

TITLE PAGE . i

ABSTRACT . iii

ACKNOWLEDGEMENTS. v

DEDICATION . vii

LIST OF TABLES . xi

LIST OF FIGURES. xiii

CHAPTER

1. INTRODUCTION . 1

Background . 1
Previous Work . 1
Thesis Outline . 2
Notation . 4

2. LINEAR CONTROL . 5

Introduction. 5
System Model . 6
Control Method . 13
Simulation and Implementation . 15
Observations and Results . 25
Conclusion . 28

3. NON-LINEAR CONTROL . 33

Introduction. 33
Motivation . 35
System Model . 36
Control Method . 51
Simulation . 59
Observations and Results . 67
Future Work . 79

Table of Contents (Continued)

Page

Conclusion . 83

APPENDICES . 84

A. Sensors . 86
B. Signal Chasing for Theorem 1. 103

BIBLIOGRAPHY . 105

x

LIST OF TABLES

Table Page

2.1. DraganFlyer X-Pro Parameters. 16

3.1. Actuations for all six degrees of freedom . 46

3.2. Denavit-Hartenburg table for 3-link camera . 49

3.3. DraganFlyer X-Pro Parameters. 60

A.1. Wiring table for the MIDG II connectionst . 87

LIST OF FIGURES

Figure Page

2.1. Yaw, pitch, and roll definitions. 6

2.2. Quadrotor method of applying torques to produce motion.. 8

2.3. Peculiarities resulting from mono-directional rotor motors
and blades. 9

2.4. Series of motions the quadrotor executes while moving 10

2.5. The quadrotor helicopter coordinate frames . 11

2.6. Simulation diagram. 17

2.7. Two Computer Simulation Flow . 19

2.8. Logitech Wingman Extreme 3D Pro joystick . 20

2.9. First person view of quadrotor while moving left 21

2.10. External view of quadrotor while moving left. 22

2.11. Two Computer Experiment Flow . 25

2.12. DraganFlyer X-Pro Remote Controller . 26

2.13. DraganFlyer X-Pro Trianer with power supply and vertical
sensors . 26

2.14. Desired orientations of quadrotor: Experiment 1 28

2.15. Orientation error of quadrotor: Experiment 1 29

2.16. Orientation error with disturbances : Experiment 2 30

3.1. A fixed camera mounted on the front of a moving UAV 36

3.2. An actuated camera mounted on the front of a moving UAV. . . . 37

3.3. Yaw, pitch, and roll definitions. 38

3.4. Quadrotor method of applying torques to produce motion.. 39

List of Figures (Continued)

Figure Page

3.5. Peculiarities resulting from mono-directional rotor motors
and blades. 40

3.6. Series of motions the quadrotor executes while moving 42

3.7. The quadrotor helicopter coordinate frames . 43

3.8. The quadrotor helicopter with a tilt-roll in front. 47

3.9. The quadrotor with a pan-tilt on the bottom. 47

3.10. Kinematics for pan tilt roll camera . 48

3.11. Simulation diagram. 61

3.12. Two Computer Simulation Flow . 64

3.13. Logitech Wingman Extreme 3D Pro joystick . 65

3.14. First person view of quadrotor while moving left 67

3.15. External view of quadrotor while moving left. 68

3.16. Camera view while moving left . 68

3.17. Desired velocities of Camera Frame (vCICd): Experiment 1 70

3.18. Angles of UAV while moving left and right (ΘF
I) 72

3.19. Camera error while moving left and right (ΘC
I). 72

3.20. Velocities of Camera Frame (vCIC): Experiment 1 73

3.21. Velocities of Camera in a Fixed Inertia Frame (vC(0)IC):
Experiment 1. 74

3.22. Velocities of UAV in UAV Frame (vFIF): Experiment 1 74

3.23. Position of UAV in Inertia Frame (xIIF ≈ xIIC): Experiment 1 . . . 75

3.24. UAV trust (F F
f): Experiment 1 . 76

3.25. UAV Angular rates (ωFIF and θC): Experiement 1 77

xiv

List of Figures (Continued)

Figure Page

3.26. Desired velocities of Camera Frame (vCICd): Experiment 3 77

3.27. Velocities of Camera Frame (vCIC): Experiment 3 78

3.28. UAV trust (F F
f): Experiment 3 . 78

3.29. Graphs of vCICd, v
C
IC , and θCI : Experiment 4. 80

3.30. UAV Thrust (FF
f): Experiment 4 . 81

3.31. Velocity Error (ev): Experiment 4 . 81

A.1. MIDG II RS-422 Connector [13] . 88

A.2. A connection diagram for a Wireless and Wired Method of
connecting the MIDG II sensor . 88

A.3. Yaw, Pitch, and Roll angles . 90

A.4. A simulated example of drift error over time. 91

A.5. The MIDG II mounted on the DraganFlyer X-Pro UAV 92

A.6. Gyroscope data for 8 seconds before the quadrotor is
powered. 93

A.7. Gyroscope data for a experiment while quadrotor vibrate
and the angles are held constant. 93

A.8. Cartesian and Cylindrical coordinates . 95

A.9. Magnetometer vector values . 97

A.10. Ferrous object disturbance in uniform magnetic field 97

A.11. GPS position values . 100

A.12. GPS velocity values . 101

A.13. GPS velocities integrated to yield position . 101

A.14. Times between GPS updates . 102

A.15. Number of satellites receiving GPS signals from. 102

xv

CHAPTER 1

INTRODUCTION

Background

An unmanned aerial vehicle (UAV) refers to any flying vehicle that does

not require a live pilot on the aircraft, typically an airplane or helicopter.

UAV research is a growing field because of the emerging affordable technology,

allowing for UAVs to be deployed in numerous new applications. Sending

UAVs into dangerous situations prevents the endangering of human lives while

accomplishing tasks such as visual inspections, following a target [4], scouting,

and many more applications.

This thesis will focus on the control design for a particular UAV, the

quadrotor helicopter, because of its simple design and its ability to control its

torques. This particular type of UAV is an underactuated helicopter that is,

there are only four inputs to control the six degrees-of-freedom. The quadrotor

design is covered in [6] and the analysis for controlling a quadrotor is described

in [11]. Since the quadrotor has only four control inputs, two degrees-of-

freedom are coupled in the sense that the translational position depends on

the orientation of the aircraft.

Another key aspect to developing these control systems is the sensors that

measure position and orientation of an aerial vehicle. One of the most prevalent

sensor systems in use is the global positioning system (GPS) based on satellite

signals. GPS supplies measurements of the three translational positions and

velocities with respect to the earth. However, to measure the three orienta-

tions another technology is required. Using a combination of microelectro-

mechanical systems (MEMS) gyroscopes, accelerometers, and magnetometers,

the orientation of a UAV can be determined. Thus, by combining GPS sensor

with an array of attitude sensors, the six DOF position and orientation of an

aircraft can be determined.

Previous Work

There is a lot of work being done on UAVs with the availability of affordable

UAVs and UAV sensors such as MEMS Gyros and GPS sensors. The Jang

and Tomlin paper [8] discusses the use of a single GPS sensor for use on

UAV tracking. It is important to have a method for a UAV to know where

it is and how it is oriented so that a controller can have a feedback signal.

The Hamel and Mohony paper [3] defines a dynamic model for an X-4 Flyer.

The X-4 Flyer is another quadrotor similar to the DraganFlyer X-Pro used at

Clemson University. The dynamic model proposed in [3] treated the quadrotor

helicopter as a rigid body that has the ability to thrust and torque itself in

midair.

The Chitrakaran and Dawson paper [5] designs an autonomous landing

system using a vision based controller. The controller used includes a method

for handling the underactuated quadrotor and the coupling between the trans-

lational and rotational forces. Procerus Technologies has a Vision-Centric [15]

approach to many targeting systems. They have developed an OnPoint Target-

ing system that include 5 different tracking methods. Among these difference

methods, include a Fly by Camera Control approach where the UAV can be

controlled from the frame of reference of the camera instead of the UAV frame.

Thesis Outline

A MEMS and GPS sensor are used on a quadrotor helicopter in the de-

velopment of two completely different control systems. The first is a PID

controller that will utilize the angular sensors for controlling the orientation of

a quadrotor in flight, according to a set of desired orientations. Hovering a he-

licopter is a very demanding task that requires many small adjustments when

flying by hand and can only be effectively accomplished by an experienced

pilot. Using the proposed orientation controller, the user simply specifies an

orientation, and the control works to achieve it. The desired orientations used

2

can be generated by numerous means, but they will be generated by a joystick

for these experiments.

The second control system will focus on the visual inspection application

of UAVs. When a helicopter is flown, an operator will typically: watch the

helicopter as it moves and actuate the motors for local uses or watch video

taken from a pilot perspective with an on-board video camera. In either case,

it is difficult to manually keep the UAV stable. A new approach to this control

problem was presented in [5] where the UAV and the camera positioning unit

are considered to be a single robotic unit. From this perspective, a controller

can be developed which will simultaneously control both the UAV and the cam-

era positioning unit in a complementary fashion. Here, this control approach

is exploited to provide a new perspective for piloting the UAV. This perspec-

tive, which shall be referred to as the fly-the-camera perspective, presents a

new interface to the pilot. In this proposed approach, the pilot commands

motion from the perspective of the on-board camera - it is as though the pilot

is riding on the tip of the camera and commanding movement of the camera

ala a six-DOF flying camera. This is subtly different from the traditional re-

mote control approach wherein the pilot processes the camera view and then

commands an aircraft motion to create a desired motion of the camera view.

If there is a camera mounted on the UAV, then the orientation and the

position of the UAV affect the orientation and position of the camera. Since

the camera is very important during visual inspections, it was decided that

instead of making the control inputs control the UAV, a non-linear controller

will be used to control the movements of the camera, actuating the UAV in

the process. The control inputs will not be controlling a particular torque to

either keep the UAV still, to rotate it, or to move the UAV, but the input will

simple tell the camera to move in a particular direction, handling the current

orientation of the UAV in the background. In addition, using an actuated

camera and the UAV will create a fully actuated system, giving complete

control over all six degrees-of-freedom.

3

This thesis is divided into two main chapters. Chapter 2 covers the de-

velopment of a PID controller that uses the quadrotor orientation feedback

to control quadrotor. A method for implementing a closed-loop sensor feed-

back system using wireless transmitters will be described. The experiments

for the PID controller include a simulation of the controller and experiments

implementing the PID controller on the DraganFlyer X-Pro.

Chapter 3 is dedicated to a non-linear controller that uses only transla-

tional and angular velocities for feedback. A two degree-of-freedom camera

positioner will be mounted onto the quadrotor helicopter to make a combined

UAV camera platform that is fully actuated in all six degrees-of-freedom. De-

sired velocities will be given relative to the camera frame, creating a fly-by-

camera interface.

Notation

The math for explaining robotics and their systems can involve many points

of views, or frames of reference. With the existence of two or more frames,

quantities such as rotation between two frames will be expressed as

ΘA
N ∈ R3

where ΘA
N are the three roll, pitch, and yaw angles of rotation of frame N with

respect to A. A position will be expressed as

xNEB ∈ R3

denoting the position of frame B relative to frame E expressed in the orien-

tation of frame N . The quantities xNEB can be expressed in other frames by

using a rotation matrix

RA
N ∈ SO (3) ,

where RA
N is the matrix that will transform coordinates defined in frame N to

frame A. So the quantity xNEB can be expressed in frame A by saying

RA
Nx

N
EB = xAEB. (1.1)

4

CHAPTER 2

LINEAR CONTROL

Introduction

Unmanned Aerial Vehicles (UAVs) can be used to complete a variety of

tasks. The quadrotor unmanned aerial vehicle can be used for civilian and

military tasks. They can go places too dangerous for humans and in places

too small for a person [12]. The quadrotor UAV is inherently unstable, thus a

system is required to control the four actuators on the quadrotor to achieve a

desired position and orientation.

The quadrotor has a six degree-of-freedom (DOF) rigid body that is posi-

tioned by changing the relative speed of the four rotors. These speed differ-

ences of the rotors can produce torques about the roll, pitch, and yaw axes in

addition to the thrust produced as the sum of the four rotating blades. Since

the helicopter is underactuated, it is only able to translate in one direction,

up and down, while rotating about all three axes. The remaining two trans-

lational axes depend on the upward force coupled with the orientation of the

UAV.

The basic components for building an orientation or position controller

include the quadrotor, a sensor for feedback, and a method for closing the loop.

In this chapter, a method for closing the control loop wirelessly is covered

and tested. This wireless loop requires that there be no computer on the

quadrotor weighing it down, only the sensors and the hardware needed for

wireless communication are used on the quadrotor itself. To test out the

wireless link, an orientation control system is developed using a PID controller

which will allow a pilot to easily control the quadrotor. This will allow for a

less experienced pilot to control the quadrotor without problem.

This chapter is divided up into six additional sections after the introduc-

tion. The system model section will cover the dynamics of the quadrotor that

zf

(yaw)

(front)

xf

(roll)

yf

(pitch)

UAV

Figure 2.1 Yaw, pitch, and roll definitions.

will be used in the simulations, as well as the kinematics and coupling effect

of the quadrotor design. The control method section will cover how these sen-

sors will be used in a PID system to control the quadrotor. Simulation and

implementation will cover the software used for the simulation and controller

and implementing it on the DraganFlyer X-Pro quadrotor helicopter. Obser-

vations and results will cover how well the controller works followed by the

conclusion.

System Model

DraganFlyer Quadrotor Overview

Figure 2.2 displays the different effects of certain rotor combinations. The

depiction in Figure 2.2.a shows all four rotors spinning at an equal rate which

results in an upward force in the z-direction. Since the rotors on the Dra-

ganFlyer X-Pro can only spin in one direction, the forces from each rotor and

the sum of all four rotors will always be added up in the negative z-direction,

according to Figure 2.1. If all the rotors spin faster then the craft will rise and

if all spin slower then the craft will settle.

The intriguing aspect of a quadrotor is the manner in which the torques,

that can be used to move the quadrotor, are generated. The four rotors can

6

be grouped into two sets, group A consisting of the front and back rotors

and group B consisting of the left and right rotors. Both rotors in group A

spin counter-clockwise while both rotors in group B spin clockwise, shown in

Figure 2.2. Pitch will be defined as rotation about the y-axis, roll as rotation

about the x-axis and yaw as rotation about the z-axis, as seen in Figure 2.1.

To achieve pitch torque, the front and back rotors in group A must spin at

different speeds. To pitch clockwise, the front rotor speed is decreased and

the rear rotor speed increased while keeping the left and right rotors in group

B constant, as depicted in Figure 2.2.b. The front rotor is increased and

the back rotor is equally decreased so that the total sum of the four rotor

forces remain the same. The same method is used for generating a roll torque

in the clockwise direction as seen in Figure 2.2.c. The third body torque is

applied using a different method; instead of using the thrusting forces of the

rotors as done for roll and pitch, rotating in the yaw direction uses torque

couples. Since group A spins counter-clockwise and group B spins clockwise,

the quadrotor creates a clockwise couple and counter-clockwise couple. When

all four rotors spin at the same speed, the couples cancel out and there is no

yaw rotation. But when group B slows down, and group A speeds up, there

will be a counterclockwise rotation as illustrated in Figure 2.2.d.

The DraganFlyer X-Pro is designed for each rotor to spin in one direction

only. Because of this restriction, there are certain situations in which all

torques cannot be arbitrarily applied. The first example in Figure 2.3.a is

when all four rotors are stopped. If roll is the desired torque, one motor

cannot be decreased while the opposite is increased as an undesired yaw force

will be introduced. This yaw force can be cancelled out with the other two

rotors, but then an undesired upward force is generated. If the motors could

spin backwards, then the roll torque could be achieved by simply spinning the

left rotor and right rotor in opposite directions. It is rare to have all four rotors

stopped while flying. The example in Figure 2.3.b is far more likely. When

trying to achieve a large yaw torque, two of the motors will shut off, making

7

Max spin

…

Medium

…

Slow

No Spin

Legend

Front

a - hovering b – pitching forward

c – rolling left d – yawing

counterclockwise

Back

 A A

 A A

 B

B

 B

B

 A A

 A A

 B

B

 B

B

Figure 2.2 Quadrotor method of applying torques to produce motion.

8

Max spin

…

Medium

…

Slow

No Spin

Legend

Front

a – undesired yaw and

thrust from roll or pitch

b – week roll while

yawing

c – week pitch while

yawing

Back

 A A

 A A

 B

B

 B

B

 A

 A

 B

B

Figure 2.3 Peculiarities resulting from mono-directional rotor motors and
blades.

9

 a b c
zf

xf
yf

Thrust Thrust

Figure 2.4 Series of motions the quadrotor executes while moving

roll impossible or extremely weak. In order to apply a roll torque, speeding

up the left rotor only will start creating a stray yaw torque in addition to

an additional upward force. The same is true for pitch in Figure 2.3.c. One

method to prevent such a situation is to set a minimum rotor speed. That

way the quadrotor can still apply at least a small amount of torque in the roll,

pitch, and yaw directions without introducing undesired forces and torques.

As stated, the quadrotor is underactuated, although it is still free to move

in all of its six degrees-of-freedom (DOF). An example of quadrotor motion is

shown in Figure 2.4. In Figure 2.4.a, the quadrotor is hovering. To move in

the x-direction, the quadrotor must pitch clockwise to direct a component of

the forward direction as seen in Figure 2.4.b. To come to a stop, the quadrotor

must pitch back as seen in Figure 2.4.c to bring the quadrotor’s velocity down

to zero. Once the quadrotor horizontal motion has stopped, it returns to the

horizontal state, Figure 2.4.a. This is the coupling between the pitch angle

and the x-direction which is used to move in the forward direction. The same

coupling is seen between the roll angle and the y-direction. Note that the

rotor speeds must increase in Figures 2.4.b and 2.4.c above Figure 2.4.b as the

thrust component that counters gravity is reduced.

Quadrotor Dynamics Model

As discussed above, the quadrotor UAV, such as the DraganFlyer X-Pro

quadrotor [18], is an inherently underactuated system. While the angular

10

zi

xi

yi

Inertial

(I)

zf

xf

yf

U AV

(F)

I

I F

I

F

x

R

Figure 2.5 The quadrotor helicopter coordinate frames

torques are directly actuated, the translational forces are only directly actuated

in the z-direction. The forces and torques are expressed as

F F
f =

[
0 0 u1

]ᵀ ∈ R3
F F
t =

[
u2 u3 u4

]ᵀ ∈ R3 (2.1)

where F F
f (t) refers to the UAV translational forces expressed in the UAV frame

F and F F
t (t) are the UAV torques expressed in the UAV frame, as seen in

Figure 2.5.

Rigid body dynamics are used for the UAV dynamics because the quadrotor

is a rigid body that can thrust and torque freely in space. The four equations

to describe the UAV’s rigid body dynamics are [3] in

ẋIIF = RI
Fv

F
IF (2.2)

mv̇FIF = −mS
(
ωFIF

)
vFIF + N1 (·) + mgRF

I e3 + F F
f (2.3)

ṘI
F = RI

FS
(
ωFIF

)
(2.4)

Mω̇FIF = −S
(
ωFIF

)
MωFIF + N2 (·) + F F

t (2.5)

where ẋIIF (t) ∈ R3 is the time derivative of the position of the UAV frame

with respect to the inertia frame expressed in the inertia frame orientation,

11

vFIF (t) ∈ R3 is the translational velocity of the UAV with respect to the inertia

frame, M , expressed in the orientation of the UAV frame, ωFIF (t) ∈ R3 is the

angular velocity of the UAV, RI
F (t) ∈ SO (3) is the rotational matrix that

transforms the vectors from the UAV frame, F , to the inertia frame, g is the

gravitational constant, m ∈ R is the mass of the UAV, and M ∈ R3x3 is the

constant moment of inertia matrix for the UAV. S (·) ∈ R3x3 represents a skew

symmetric defined as [20]

S (ω) =




0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0



 where ω = [ω1, ω2, ω3]
ᵀ ∈ R3. (2.6)

Both N1

(
xIF , R

I
F , v

I
IF , ω

I
IF , t

)
∈ R3 and N2

(
xIF , R

I
F , v

I
IF , ω

I
IF , t

)
∈ R3 are the

unmodeled non-linear terms in the translational and rotational dynamics, re-

spectively. Gravity is shown separately in (2.3) so that it can be analyzed

separately from the unmodeled dynamics. Out of the dynamics equations,

(2.2) is the easiest to understand. The time derivative ẋIIF (t) is the same as

the velocity of the UAV, except for the orientation in which it is expressed.

The transformation matrix, RI
F (t), simply changes the orientation frame, as

(1.1) shows. Similarly, (2.4) has to change orientation frames and relate ωFIF (t)

to the time derivative of ṘI
F (t). Sometimes a matrix similar to [5]






u1
u2
u3
u4




 =






−b −b −b −b
0 db 0 −db
db 0 −db 0
k −k k −k











ω̄21
ω̄22
ω̄23
ω̄24




 (2.7)

is used where ω̄ (t) are the torques of each rotor on the quadrotor, and d, b, k ∈
R
1 are constant parameters based on the rotor design and placement. Equation

(2.7) describes the relationship between the four rotor torques on the quadrotor

and the forces and torques of the quadrotor from (2.1). With the DraganFlyer

X-Pro (and most quadrotor RC helicopters) this calculation is done internally

and the joystick inputs are mapped to u (t) instead of ω (t).

12

Quadrotor Kinematic Model

Many of the equations, such as (2.2)-(2.4), will need either RI
F (t) or RF

I (t).

While (2.4) expresses how to get RI
F (t), it involves integrating an SO (3) ma-

trix, which will not yield another SO (3) matrix due to numerical integration

method errors. However, the integration can be done on the roll, pitch, and

yaw angles. A Jacobian will be required in order to satisfy the equation

ωFIF = JF Θ̇F
IF (2.8)

which can then be used to solve for

ΘI
F =

∫ t

0

J−1F ωFIFdt (2.9)

where ΘI
F (t) ∈ R3 represents the roll, pitch, and yaw angles between the UAV

frame and inertia frame. The Jacobian matrix used, J−1F
(
ΘI
F (t)

)
is defined as

[2]

J−1F =




1 sinψ tan θ cosψ tan θ
0 cosψ − sinψ
0 sinψ/ cos θ cosψ/ cos θ



 , ΘI
T =




ψ
θ
φ



 . (2.10)

As long as the θ term is not near ±π
2
, the yaw, pitch, roll representation will

not reach singularity. To convert between RI
F (t) and ΘI

F (t),

RI
F =




cosφ cos θ − sinφ cosψ + cosφ sin θ sinψ
sinφ cos θ cosφ cosψ + sinφ sin θ sinψ
− sin θ cos θ sinψ

(2.11)

sinφ sinψ + cosφ sin θ cosψ
− cos φ sinψ + sinφ sin θ cos φ

cos θ cosψ





is used [20].

Control Method

Because of the coupling explained in the previous sections, it was decided to

make the system control the pitch and roll angles at the expense of controlling

the x and y position directly. By controlling these angles, commanding the

quadrotor to move forward will be the same as commanding the quadrotor to

13

pitch forward in the pattern displayed in Figure 2.4. Since the yaw angle is

not coupled with a direction, it can rotate without affecting the position and

the yaw velocity which will facilitate the design of a controller that will allow

for the user to command the quadrotor to rotate the yaw at a certain rate

instead of to a certain angle.

Since the quadrotor UAV controls its torques directly, it is easier to control

the angle. Using a proportional-derivative-integral (PID) controller, the non-

linearities from (2.4) and (2.5), primarily the S
(
ωFIF

)
MωFIF and the unmodeled

non-linearities N2 (·), will be ignored. By using the torque F F
t (t) as a control

signal, a feedback system can be developed based on

u = −kpe− kd
de

dt
− ki

∫
e (2.12)

where u (t) is the control signal, e (t) is the error signal, kp is the proportional

gain, kd is the differential gain, and ki is the integral gain. The error signal

used, eθ (t) ∈ R3, consists of

eroll = θroll − θrolld (2.13)

epitch = θpitch − θpitchd (2.14)

eyaw = θyaw − θ̂yawd (2.15)

where θ̂yawd (t) is

θ̂yawd =

∫
θ̃yawd. (2.16)

Based upon these signals, the feedback signals used are

u1 = ũ1 (2.17)

u2 = −kp rolleroll − kd roll

depitch
dt

− ki roll

∫
eroll (2.18)

u3 = −kp pitchepitch − kd pitch

depitch
dt

− ki pitch

∫
epitch (2.19)

u4 = −kp yaweyaw − kd yaw

deyaw
dt

− ki yaw

∫
eyaw. (2.20)

The desired trajectories that will be generated will create the values for ũ1 (t),

θrolld (t), θpitchd (t), and θ̃yawd (t).

14

This approach takes a PID linear approach and applies it to the non-linear

system. It is not known if the non-linearities cause any significant instabilities,

however the goal of this was to verify the wireless closed looped system will

work.

Simulation and Implementation

Quadrotor Model Simulation Parameters

In order to have an accurate simulation of the DraganFlyer X-Pro, certain

parameters have to be measured. The mass and inertia matrix are needed for

the dynamics equations and the actual maximum thrust and torques produced

by the quadrotor are needed to set realistic limits on the simulation.

To measure the mass, the helicopter was weighted using a spring scale. To

measure the total force the helicopter can produce, a spring scale is used to

measure the amount of force one rotor can create when spinning at maximum

speed. This quantity multiplied by four will yield the full thrust ability. In

addition, the distance from the rotor to the center of the UAV will yield the

total roll and pitch torque that can be generated with one rotor spinning at

its maximum velocity while the opposite rotor stopped, as in Figure 2.2.b.

A similar measurement was made when two opposite rotors were spinning

at maximum speed and the other two rotors were off, as in Figure 2.3.b, to

estimate the maximum yaw torque. All of these measurements are displayed

in Table 2.1. The inertia matrix was not measured and was estimated based

off of [9][7] where the vehicle was half the weight of the DraganFlyer, so the

values of the inertia matrix were doubled to

M =




1.3 0 0
0 1.3 0
0 0 2



 kg ·m2. (2.21)

Simulation

To simulate this controller, there are three main tasks that must be im-

plemented as seen in Figure 2.6. The first block is the helicopter dynamics

15

Table 2.1 DraganFlyer X-Pro Parameters

Parameter Value Units
Mass 2.041 kg
Additional Weight (battery and sensors) .68 kg
Max Thrust 35.586 N
Max Roll Torque 4.067 Nm
Max Pitch Torque 4.067 Nm
Max Yaw Torque 2.034 Nm

16

Calculate
Dynamics

Graphical
Display

Evaluate
Control Input

Figure 2.6 Simulation diagram

that must be simulated based on (2.2)-(2.5). Then the control input must be

formulated based on sensor readings that come from the dynamics equations.

The control input will then be fed back into the dynamics equations to close

the loop. The third portion of the simulation is displaying the position and

orientation of the quadrotor in a 3D-simulation program called FlightGear.

For calculating the dynamics, equations (2.2)-(2.5) are rewritten as

ẋIIF = RI
Fv

F
IF (2.22)

v̇FIF = −S
(
ωFIF

)
vFIF + gRF

I e3 +
N1 (·) + F F

f

m
(2.23)

Θ̇F
IF = J−1F ωFIF (2.24)

ω̇FIF = M−1
(
−S

(
ωFIF

)
JFω

F
IF + N2 (·) + FF

t

)
. (2.25)

Equation (2.2) remains unchanged and (2.3) is divided by m to solve for v̇FIF (t).

Equations (2.4) and (2.5) are replaced with the roll, pitch, yaw version of the

equation from (2.8) instead of rotation matrices. Using the yaw, pitch, roll

representation results in a singularity at θpitch (t) = ±π
2
. The solution to this

problem is to avoid ±π
2
. The equations are then integrated on both sides using

an Adams Integrator at a 1000 Hz update frequency.

The software platform used is QNX Real-Time Operating system [16] run-

ning a QMotor program [17] written in C++. The entire program consists

of seven parts outlined in Figure 3.12. The program starts by initializing all

variables in “Start”. Then in “Calculate Dynamics” (2.22)-(2.25) are utilized

17

to find xIIF (t), vFIF (t), ΘI
F (t), and ωFIF (t). In “Evaluate Control Input” the

program uses the trajectories for θrolld (t), θpitchd (t), θ̃yawd (t), and ũ1 from

“Read in joystick values and generate trajectories” to evaluate (2.17)-(2.20).

“Saturate Control Inputs Based on UAV Parameters” uses the parameters

from Table 2.1 to make sure the control inputs do not exceed realistic values,

and if they do, it saturates the value to the maximum limits. A minimum

rotor speed is also utilized to prevent the quadrotor coupling peculiarities due

to the motors only spinning in one direction. Not only are the singularities

prevented, but the effects of the coupling between the different torques are also

included in the control inputs. “Update System States” is where all the posi-

tions and velocities in the inertia, UAV, and camera frames are computed for

use in other calculations in the next iteration. The resulting position and ve-

locity are sent to FlightGear by “Send UDP Packets” and received and shown

on the screen by “Virtual Simulation.” The code for the QNX program can

be found at http://www.ece.clemson.edu/crb/research/uav/simulation.zip. In

the simulate.cpp file, the “Send UDP Packets” is accomplished by

d flight UDP->PackitSend(Latitude, Longitude, Altitute, Roll, P itch, Y aw);

where all numbers are in radians except altitude which is in meters and

d flight UDP is of type FlightUDP. A UDP is send to a PC on a specific

port defined in the constructor in FlightUDP.cpp as

d UDP client=new UDPClient(“192.168.1.100”,4444,d timeout);

where the UDP packet is sent to the FlightGear IP address, 192.168.1.100 in

this case, on port 4444 and d timeout is a struct of type timeval set to 50ms.

The UDP packet is of type FGNetFDM defined by net fdm.hxx [1]. The only

use for the second computer is the FlightGear simulation, because a simulation

such as FlightGear requires| almost all of a computer’s CPU, video card, and

input/output system [1]. To execute the FlightGear simulator at GSP airport,

the following command is used

18

QNX
[QMotor]

QNX (or Other via UDP)
[Joystick]

Windows
[FlightGear]

Evaluate
Control Input

Calculate
Dynamics

Start

Send UDP
Packets

Saturate
Control Inputs
Based on UAV

Parameters

Update
System
States

Wait 1 ms

Virtual
Simulation

Read in joystick
values or generate

trajectories

Figure 2.7 Two Computer Simulation Flow

fgfs.exe —fg-root=”C:\Program Files\FlightGear\data”

—fg-scenery=”C:\Program Files\FlightGear\data\Scenery;

C:\Program Files\FlightGear\scenery” —airport-id=KGSP

—aircraft=draganfly —control=joystick —enable-game-mode

—disable-splash-screen —disable-random-objects —disable-sound

—disable-ai-models —disable-clouds —fog-disable

—geometry=1680x1050 —timeofday=noon —fdm=external

—native-fdm=socket,in,20,192.168.1.1,4444,udp

where 192.168.1.1 is the IP of the QNX PC sending the UDP packets on port

4444. The rest of the options load the other setting such as environment,

location, aircraft model, and resolution.

For the actual experiments, the “Calculate Dynamics” section is replaced

with “Read in Sensor Values” to get the actual position and velocity values

for the feedback loop.

19

x

y

Twist

Throttle

Figure 2.8 Logitech Wingman Extreme 3D Pro joystick

Input

The desired trajectories can be generated by any means. The method used

for this experiment used a Logitech Extreme 3D Pro joystick [19], seen in

Figure 2.8, to create four inputs labeled as x, y, twist and throttle. The x will

be used to generate θrolld (t), y for θpitchd (t), twist for θ̃yawd (t) and throttle for

ũ1 (t). The x, y, and twist can be easily controlled with one hand while using

the other hand for throttle.

FlightGear

FlightGear is an open-source flight simulator [1]. It can run on many com-

puter platforms including Linux and Windows. FlightGear offers a versatile

package with multiple input-output (I/O) systems and an interface for import-

ing custom helicopter models. FlightGear is used to display the position and

20

Figure 2.9 First person view of quadrotor while moving left

orientation and show the output in a 3D virtual world using the DraganFlyer

X-Pro helicopter model [18].

FlightGear has as least three Flight Dynamics Models (FDM) built in.

The user can use any of these FDMs on a real airplane model. However,

since this paper uses its own dynamics equations, it was decided to use a

custom model using the dynamic equations (2.2)-(2.5) instead of FlightGear’s

dynamics. FlightGear’s I/O system allows it to receive UDP packets of FDM

calculations in real-time. This network FDM (net fdm) allows any computer

on the network to perform the dynamics calculations, such as (2.22) through

(2.25). This provides a live fully visual representation of what is going on

inside the QMotor simulations.

FlightGear is used to show the helicopter during flight. A first person

and third person mode on FlightGear will show the quadrotor helicopter and

the angles as which it rotates as it moves around. Figure 2.9 shows the first

person mode and Figure 2.10 shows an exampled of third person mode. By

using FlightGear, a fully visual system can be used to test out the controller.

21

Figure 2.10 External view of quadrotor while moving left

22

Sensors

For an experiment, a sensor had to be picked so that all the feedback signals

required could be measured. After searching though many gyroscope sensors,

GPS, and Inertia Measurement Units (IMU), the MIDG II sensor [13] was

picked. The MIDG II sensor includes a 3-axis gyroscope, 3-axis accelerometer,

3-axis magnetometer and a Differential Global Position System sensor. The

MIGDG II Inertia Navigation System (INS)/GPS uses these sensors to de-

termine its orientation and position in addition to their associated velocities.

The sensor was also picked for its light weight of 55 grams. The sensor uses an

XTend RS-232/RS-485 RF Modem [14] to transmit to a ground computer. Us-

ing software written to receive and parse the MIDG II data, the measurements

from the MIDG II can be relayed back to the ground computer.

Using the MIDG II sensors, tests were done to evaluate the GPS sensor

on the MIDG II sensor using the ANT-GPS-UC-SMA GPS antenna. The

experiment covered in Appendix A discouraged the use of GPS since it was

not always getting 5 Hz update frequency, often going seconds with no update

at all. Until this problem can be fixed, it would be very difficult to use GPS.

Therefore it was decided not to use GPS for feedback in this experiment.

The sensor uses the gyroscopes to measure the angular rates as the sensor

rotates about the x-, y-, and z-axes. Mathematically, to get the orientation

the sensor must integrate the angular rates. However, there is an unknown

initial condition problem with this in addition to a bias drift error that will

occur from imperfections in the sensor values. In order to find out the initial

conditions and correct for drift, a second method of measurement is required.

The accelerometer can measure the gravity vector and can be used to determine

roll and pitch angles. To measure the yaw angle, the magnetometers are use

to measure which way north is, using north as zero degrees yaw [10]. Using

this redundant method, a Kalman filter uses the second method to determine

a bias correction to accurately determine the orientation. The accelerometers

will introduce additional error if they are accelerating sideways, however this

23

is usually a small error compared to acceleration measured due to gravity. The

magnetometer will introduce additional error when it is in the presence of a

magnetic field that is not due to the Earth. The main source of this kind of

magnetic field is the field generated from the high current of the DraganFlyer

X-Pro. This problem cannot be overcome with the DraganFlyer X-Pro design,

so a modified firmware was used to enable the magnetometers to determine

the initial bias for yaw, then stop using the magnetometers and allow for a

small drift error over time (approximately 1 degree per minute), covered in

Appendix A.

The MIDG II sensor with a modified firmware will be mounted onto the

quadrotor for determining the angle of the quadrotor. The GPS sensor is

not used because it was determined that the lapses between updates were too

unpredictable for this experiment. The throttle will be controlled manually,

since the emphasis of this controller is controlling the three angles.

To complete the feedback loop, wireless transmitters and receivers are used

for sending commands to the quadrotor and receiving feedback. To send the

commands, the PCM 9XII R/C controller is used. The signals for throttle,

roll, pitch, and yaw (u1 (t) through u4 (t)) are attached to digital to analog

converters (DAC) on a ServoToGo BreakOut Board on a PC. The MIDG II

serial communication goes through an XTend modem that also converts from

the MIDG II’s RS-422 signal to an RS-232 signal. This way only the sensor,

transmitter and receiver are mounted onto the quadrotor helicopter, weighing

much less than half a pound. All the control calculations are done on the

ground PC, allowing for a much more complicated controller algorithms to be

implemented in the future.

Experimental Setup

To perform experiments on the quadrotor UAV, an approach similar to

the simulation is used, as seen in Figure 2.11. The major difference in the

experiment is the “Read Sensors” section. Instead of calculating the dynamics

24

QNX (or Other via UDP)
[Joystick]

Windows
[FlightGear]

QNX
[QMotor]

Evaluate
Control Input

Start

Saturate
Control Inputs
Based on UAV

Parameters

Update
System
States

Wait 1 ms

Read in joystick
values or generate

trajectories

Read
Sensors

Virtual
Simulation

Send UDP
Packets

Output Control
Signals to UAV

Figure 2.11 Two Computer Experiment Flow

of the quadrotor helicopter based on the dynamic model, the actual orientation

of the DraganFlyer X-Pro is read in at 50 Hz using the MIDG II server.

The other difference is the control inputs are sent to the DraganFlyer in the

“Output Control Signals to UAV.” This is accomplished by sending the voltage

signals directly to the DraganFlyer remote control on a 0 to 5 volt scale via

the Servo-to-go board. The DraganFlyer X-Pro remote uses potentiometers

to read in the thumb stick positions seen in Figure 2.12. “Output Control

Signals to UAV” takes the control signal and sets the potentiometer signal to

the specified voltage, ignoring the actual thumb stick position.

To experiment inside, a trainer is used as seen in Figure 2.13. The Dragan-

Flyer X-Pro is mounted to a dowel stick and joint allowing the UAV to move

freely in the z direction, roll, pitch, and yaw. A string potentiometer is used

to measure the z position while the MIDG II sensor measures the orientation

angles. An array of power supplies are also included in the trainer to allow for

the DraganFlyer to be powered without using the Lithium Polymer batteries.

As the controller evolves, the trainer is removed and the DraganFlyer is tied

down to a weight and allowed to move freely around the room.

25

Thumb sticks

Figure 2.12 DraganFlyer X-Pro Remote Controller

Figure 2.13 DraganFlyer X-Pro Trianer with power supply and vertical sensors

26

Observations and Results

Simulation

The simulation used the dynamic model of the quadrotor helicopter to test

the two-computer simulation system. The gains found in the simulation would

not be in the same units of the quadrotor because the simulated dynamics use

torque input while the actual quadrotor uses a voltage to control the torques,

and little is known about the exact relationship of the voltage to the helicopter

rotor speeds. The simulation for the PID shows the simulation works for a

PID and can work for a more complicated controller, covered in Chapter 3.

Experiment

In early attempts of calculating deθ(t)
dt

in (2.18)-(2.20), deθ(t)
dt

was calculated

using
deθ
dt

=
dθ

dt
− dθd

dt
. (2.26)

The gyro values from the MIDG II sensor were used to obtain dθ(t)
dt

. However

the gyro signals are so noisy, that the feedback signals become extremely noisy.

This is probably the reason that most IMU manufacturers use a Kalman filter.

Instead of using the gyro values, the numerical derivative of eθ (t) is calculated

and filtered to obtain dθ(t)
dt

. This appears to give the most stable results.

The first experiment done was a flight around a room, using the Logitech

joystick for input. The desired velocities can be seen in Figure 2.14 with

the roll and pitch varying between ±.2 radians and the yaw varying up to

±.5 radians/sec. In this experiment, the gains are set to kp = 6 6 6
ᵀ
,

kd = .2 .2 2
ᵀ
, and ki = .01 .01 .1

ᵀ
. By looking at the error plots

of eθ (t) in Figure 2.15, it can be seen that the error peaks when there is a

sudden change in the desired angles. After each peak in error, it settles in a

damped sinusoidal pattern. However, the roll and pitch do not fully attenuate

and settle in a sine pattern instead of settling at zero. This was observed

when kp was too high for a given kd and ki. This problem was improved in

27

Figure 2.14 Desired orientations of quadrotor: Experiment 1

experiment 2 where the gains were set to kp = 4 4 2
ᵀ
, kd = .5 .5 .5

ᵀ
,

and ki = .5 .5 0
ᵀ
. In experiment 2, the desired angles were kept constant

while the quadrotor was jolted in midair. To see how the quadrotor reacted

with these gains, the error plots in Figure 2.16 show a jolt occurring at 10

seconds, where it takes approximately 3 seconds after the disturbance to settle

in the shape of 1 and a half cycles of a damped sinusoid. In this case, the error

settles at zero instead of a sine wave. There is a small drifting error in the roll

and pitch, but this is on a very small magnitude (less then .2 degrees). Even

though the quadrotor is not a linear system, the PID controller works well for

the quadrotor in these experiments.

28

Figure 2.15 Orientation error of quadrotor: Experiment 1

29

Figure 2.16 Orientation error with disturbances : Experiment 2

30

Conclusion

This chapter described a PID controller that was used on a quadrotor he-

licopter to control the orientation of the quadrotor in both simulation and

experiment. While the quadrotor is a non-linear system, satisfactory results

have nevertheless been achieved for making an angle based controller for the

DraganFlyer X-Pro helicopter using the MIDG II sensor for orientation feed-

back. It is much easier to control the helicopter using the controller compared

to open-loop control. Using this angle based control, the DraganFlyer X-Pro

can easily be controlled by the pilot, without having to worry about the sensi-

tivity of the controls possibly causing the quadrotor to rotate too much or lose

control. The biggest problem is pitching to ±π
2

which can be fixed by using

quaternions or avoiding that orientation.

The simulation showed that controlling just the angles will allow a pilot to

navigate the DraganFlyer X-Pro. Controlling the yaw, pitch, and roll while

directly controlling the throttle provides the pilot with a stabilized flight con-

troller. Both the simulation and actual experimentation demonstrated the

same feeling that even with an angle controller, the pilot does not need to

worry about flipping the quadrotor over, just avoiding the walls or other ob-

stacles.

The experiment conducted on the DraganFlyer X-Pro proves that the wire-

less feedback system does in fact work. A variety of sensors can be attached

to the helicopter and have their signals relayed back to a ground station. This

allows for a lighter load on the quadrotor because it does not need a computer

to execute the controller. Wireless feedback raises the level of controller com-

plexity so that anything that can be executed on a powerful PC computer is

possible, such as a complex non-linear controller.

31

CHAPTER 3

NON-LINEAR CONTROL

This chapter is organized into eight sections. The chapter starts out with

an introduction followed by the motivation for this controller. In Section 3

the system models are described, including the UAV dynamics and UAV and

camera kinematics models used for modeling the UAV/camera system. Section

4 covers the development and Lyapunov proof for the non-linear controller that

will achieve Globally Uniformly Ultimately Bounded (GUUB) tracking. The

following sections cover the simulation system used and the results obtained

from the simulation. Finally, the conclusion is followed by idea for future work.

Introduction

Unmanned Aerial Vehicles (UAVs) are well suited for a variety of tasks.

The quadrotor unmanned aerial vehicle (UAV) can be used for civilian and

military surveillance and inspection tasks by attaching a camera to it. They

can go places too dangerous for humans and in places too small for a person

[12]. The images may be the objective or they are often used for feedback in

the control itself [4]. Unfortunately, the images seen by the camera will always

depend on the UAV and its orientation. A way to separate the camera from

the UAV would have many advantages, allowing for a freer camera view.

The quadrotor has a six degrees-of-freedom (DOF) rigid body that is po-

sitioned by changing the relative speed of the four rotors. These speed dif-

ferences can produce torques about the roll, pitch, and yaw axes in addition

to the thrust produced as the sum of the four rotating blades. Since the he-

licopter is underactuated, it is only able to translate in one direction, up and

down, while rotating about all three axes. The remaining two translational

axes depend on the upward force coupled with the orientation of the UAV.

If a camera is to be mounted onto a quadrotor, then only four DOFs of the

camera can be controlled, making performing surveillance and inspection tasks

challenging. The camera will always depend on the orientation of the UAV.

It is possible to use an actuated camera system to cancel out any undesirable

rotations of the camera while the quadrotor performs its task. This will allow

the camera to focus on its objective and not worry about how the quadrotor

achieves its movements. By putting two actuators on the camera, the final

position and orientation of the camera becomes a fully actuated six DOF

system. With this system, the inputs choose to move and rotate the camera

frame no matter what the quadrotor’s orientation is, creating an intuitive way

of flying the quadrotor by the camera view.

This approach to the control problem was presented in [5] where the UAV

and the camera positioning unit are considered to be a single robotic unit.

From this perspective a controller can be developed which will simultaneously

control both the UAV and the camera positioning unit in a complementary

fashion. Here, this control approach is exploited to provide a new perspective

for piloting the UAV. This perspective, which shall be referred to as the fly-

by-camera perspective, presents a new interface to the pilot. In this proposed

approach, the pilot commands motion from the perspective of the on-board

camera. It is as though the pilot is riding on the tip of the camera and

commanding movement of the camera a la a six DOF flying camera. This is

subtly different from the traditional remote control approach wherein the pilot

processes the camera view and then commands an aircraft motion to create a

desired motion of the camera view.

This chapter will cover a non-linear controller developed using Lyapunov

stability methods. A two-DOF camera is mounted on the UAV. This cam-

era combined with a four degree-of-freedom UAV makes a fully actuated six

degrees-of-freedom system. Desired velocities are given relative to the camera

frame, creating a fly-by-camera interface. When the desired input says go left,

what is seen on the camera will go left, regardless of orientation. The camera

will use the UAV to move to its left in combination with actuating the camera

when necessary.

34

This controller will use only translational and rotational velocities for feed-

back. This will satisfy the limitations of the MIDG II sensor [13]. Although

the differential GPS (DGPS) system on the MIDG II sensor has the ability

to measure position, the velocity of a GPS sensor is much more reliable and

accurate and is discussed in Appendix A. Therefore it is interesting to consider

a controller using only velocities for the feedback.

For this controller, it is assumed that the quadrotor’s angular and trans-

lational velocities are measurable with respect to a fixed point (the inertia

frame). The angles of the camera with respect to the quadrotor are also

needed, easily provided by a servo-controlled camera or encoders. The last

measurable quantity is gravity, since small variations in g would show up in

the error result. It is also required that the desired velocities be continuous

and differentiable. Using these types of sensors in this controller, it will be

shown that this system is Globally Uniformly Ultimately Bounded (GUUB)

and the simulations will show the ease of flight that a fly-by-camera interface

can offer.

Motivation

There are many advantages to this fly-by-camera interface. The first ad-

vantage to this system is the ease of choosing a desired trajectory. A human

operator can simply look at the camera images and choose where to have the

pictures go. This also means visual contact with the UAV is no longer nec-

essary, as long as there is communication with the craft. To see above or to

the right of the image, all that is necessary is to tell the controller up or right.

Everything from actuating the camera to controlling the rotor speeds is taken

care of by the controller for all six DOFs of the camera.

Another advantage to this system is the independence of the camera and

the UAV. As seen in Figure 3.1, a typical quadrotor maneuver is demonstrated.

A hovering quadrotor seen in Figure 3.1.a will tilt to Figure 3.1.b in order to

move forward. Then the quadrotor will tilt back momentarily to come to a

35

 a b c

Figure 3.1 A fixed camera mounted on the front of a moving UAV

stop as seen in Figure 3.1.c and then finally back to Figure 3.1.a. The whole

time, the motion of the camera is directly tied to the motion of the UAV and

the camera has to look up and down when all that is desired is to look straight

ahead. It is not possible to simultaneously specify the attitude of the camera

and the attitude of the aircraft.

In contrast, the moveable camera depicted in Figure 3.2 maintains the

same orientation with minimal deviation regardless of the UAV orientation.

The UAV and camera motions must be coordinated in order to keep the camera

pointed in a particular direction. The traditional approach has been to have a

pilot position the aircraft about a target and have a camera operator position

the camera with the sub-task of compensating for motion of the aircraft. The

difficulty of coordinating pilot and camera tasks is a big motivation for a 6

DOF camera frame.

System Model

DraganFlyer Quadrotor Overview

Figure 3.4 displays the different effects of certain rotor combinations. The

depiction in Figure 3.4.a shows all four rotors spinning at an equal rate which

results in an upward force in the z-direction. Since the rotors on the Dra-

ganFlyer X-Pro can only spin in one direction, the forces from each rotor and

the sum of all four rotors will always be added up in the negative z-direction,

36

 a b c

Figure 3.2 An actuated camera mounted on the front of a moving UAV

37

zf

(yaw)

(front)

xf

(roll)

yf

(pitch)

UAV

Figure 3.3 Yaw, pitch, and roll definitions.

according to Figure 3.3. If all the rotors spin faster then the craft will rise and

if all spin slower then the craft will settle.

The intriguing aspect of a quadrotor is the manner in which the torques,

that can be used to move the quadrotor, are generated. The four rotors can

be grouped into two sets, group A consisting of the front and back rotors

and group B consisting of the left and right rotors. Both rotors in group A

spin counter-clockwise while both rotors in group B spin clockwise, shown in

Figure 3.4. Pitch will be defined as rotation about the y-axis, roll as rotation

about the x-axis and yaw as rotation about the z-axis, as seen in Figure 3.3.

To achieve pitch torque, the front and back rotors in group A must spin at

different speeds. To pitch clockwise, the front rotor speed is decreased and

the rear rotor speed increased while keeping the left and right rotors in group

B constant, as depicted in Figure 3.4.b. The front rotor is increased and

the back rotor is equally decreased so that the total sum of the four rotor

forces remain the same. The same method is used for generating a roll torque

in the clockwise direction as seen in Figure 3.4.c. The third body torque is

applied using a different method; instead of using the thrusting forces of the

rotors as done for roll and pitch, rotating in the yaw direction uses torque

38

Max spin

…

Medium

…

Slow

No Spin

Legend

Front

a - hovering b – pitching forward

c – rolling left d – yawing

counterclockwise

Back

 A A

 A A

 B

B

 B

B

 A A

 A A

 B

B

 B

B

Figure 3.4 Quadrotor method of applying torques to produce motion.

couples. Since group A spins counter-clockwise and group B spins clockwise,

the quadrotor creates a clockwise couple and counter-clockwise couple. When

all four rotors spin at the same speed, the couples cancel out and there is no

yaw rotation. But when group B slows down, and group A speeds up, there

will be a clockwise rotation for Figure 3.4.d.

While this explains how the four degrees-of-freedom are controlled, it is

still possible for the quadrotor to move in the x- and y-direction with respect

to a fixed inertia frame. To move forward in the x-direction, the quadro-

tor must first pitch clockwise. This will redirect the UAV’s upward thrust

force in the forward direction, moving it forward. The UAV will then pitch

counter-clockwise to stop movement and become level again, as depicted in

Figure 3.1. The same is true for left and right. This is the coupling between

the translational and rotational velocities.

39

Max spin

…

Medium

…

Slow

No Spin

Legend

Front

a – undesired yaw and

thrust from roll or pitch

b – week roll while

yawing

c – week pitch while

yawing

Back

 A A

 A A

 B

B

 B

B

 A

 A

 B

B

Figure 3.5 Peculiarities resulting from mono-directional rotor motors and
blades.

40

The DraganFlyer X-Pro is designed for each rotor to spin in one direction

only. Because of this restriction, there are certain situations in which all

torques cannot be arbitrarily applied. The first example in Figure 3.5.a is

when all four rotors are stopped. If roll is the desired torque, one motor

cannot be decreased while the opposite is increased as an undesired yaw force

will be introduced. This yaw force can be cancelled out with the other two

rotors, but then an undesired upward force is generated. If the motors could

spin backwards, then the roll torque could be achieved by simply spinning the

left rotor and right rotor in opposite directions. It is rare to have all four rotors

stopped while flying. The example in Figure 3.5.b is far more likely. When

trying to achieve a large yaw torque, two of the motors will shut off, making

roll impossible or extremely weak. In order to apply a roll torque, speeding

up the left rotor only will start creating a stray yaw torque in addition to

an additional upward force. The same is true for pitch in Figure 3.5.c. One

method to prevent such a situation is to set a minimum rotor speed. That

way the quadrotor can still apply at least a small amount of torque in the roll,

pitch, and yaw directions without introducing undesired forces and torques.

As stated, the quadrotor is underactuated, although it is still free to move

in all of its six degrees-of-freedom (DOF). An example of quadrotor motion is

shown in Figure 3.6. In Figure 3.6.a, the quadrotor is hovering. To move in

the x-direction, the quadrotor must pitch clockwise to direct a component of

the thrust in the forward direction as seen in Figure 3.6.b. To come to a stop,

the quadrotor must pitch back as seen in Figure 3.6.c to bring the quadrotor’s

velocity down to zero. Once the quadrotor horizontal motion has stopped, it

returns to the horizontal state, Figure 3.6.a. This is the coupling between the

pitch angle and the x-direction which is used to move in the forward direction.

The same coupling is seen between the roll angle and the y-direction. Note that

the rotor speeds must increase in Figures 3.6.b and 3.6.c above Figure 3.6.b

as the thrust component that counters gravity is reduced.

41

 a b c

Figure 3.6 Series of motions the quadrotor executes while moving

42

zi

xi

yi

Inertial

(I)

zf

xf

yf

U AV

(F)

I

I F

I

F

x

R

Figure 3.7 The quadrotor helicopter coordinate frames

Quadrotor Dynamics Model

As discussed above, the quadrotor UAV, such as the DraganFlyer X-Pro

quadrotor [18], is an inherently underactuated system. While the angular

torques are directly actuated, the translational forces are only directly actuated

in the z-direction. The forces and torques are expressed as

F F
f =

[
0 0 u1

]ᵀ ∈ R3
F F
t =

[
u2 u3 u4

]ᵀ ∈ R3 (3.1)

where F F
f (t) refers to the UAV translational forces expressed in the UAV frame

F and F F
t (t) are the UAV torques expressed in the UAV frame, as seen in

Figure 3.7.

Rigid body dynamics are used for the UAV dynamics because the quadrotor

is a rigid body that can thrust and torque freely in space. The four equations

to describe the UAV’s rigid body dynamics are [3]

ẋIIF = RI
Fv

F
IF (3.2)

mv̇FIF = −mS
(
ωFIF

)
vFIF + N1 (·) + mgRF

I e3 + F F
f (3.3)

ṘI
F = RI

FS
(
ωFIF

)
(3.4)

Mω̇FIF = −S
(
ωFIF

)
MωFIF + N2 (·) + F F

t (3.5)

43

where ẋIIF (t) ∈ R3 is the time derivative of the position of the UAV frame

with respect to the inertia frame expressed in the inertia frame orientation,

vFIF (t) ∈ R3 is the translational velocity of the UAV with respect to the inertia

frame, M , expressed in the orientation of the UAV frame, ωFIF (t) ∈ R3 is the

angular velocity of the UAV, RI
F (t) ∈ SO (3) is the rotational matrix that

transforms the vectors from the UAV frame, F , to the inertia frame, g is the

gravitational constant, m ∈ R is the mass of the UAV, and M ∈ R3x3 is the

constant moment of inertia matrix for the UAV. S (·) ∈ R3x3 represents a skew

symmetric defined as [20]

S (ω) =




0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0



 where ω = [ω1, ω2, ω3] ∈ R3. (3.6)

Both N1

(
RI
F , v

I
IF , t

)
∈ R3 and N2

(
xIF , R

I
F , v

I
IF , ω

I
IF , t

)
∈ R3 are the bounded

unmodeled non-linear terms in the translational and rotational dynamics, re-

spectively. Gravity is shown separately in (3.3) so that it can be analyzed

separately from the unmodeled dynamics. Out of the dynamics equations,

(3.2) is the easiest to understand. The time derivative ẋIIF (t) is the same as

the velocity of the UAV, except for the orientation in which it is expressed. The

transformation matrix, RI
F (t), simply changes the orientation frame, as (1.1)

shows. Similarly, (3.4) has to change orientation frames and relate ωFIF (t)

to the time derivative of ṘI
F (t). Out of the four dynamics equations (3.2)-

(3.5), (3.5) is not used in this nonlinear controller. Instead, ωFIF (t) is calcu-

lated directly without modeling the angular dynamics. This is done because

the quadrotor applies torques in a very direct way which is like controlling

ωFIF (t) directly, making the normal backstepping process not necessary in this

controller. Sometimes a matrix similar to [5]





u1
u2
u3
u4




 =






−b −b −b −b
0 db 0 −db
db 0 −db 0
k −k k −k











ω̄21
ω̄22
ω̄23
ω̄24




 (3.7)

is used where ω̄ (t) are the torques of each rotor on the quadrotor, d, b, k ∈ R1

are constant parameters based on the rotor design and placement. Equation

44

(3.7) describes the relationship between the four rotor torques on the quadrotor

and the forces and torques of the quadrotor from (3.1). However, with the

DraganFlyer X-Pro (and most quadrotor RC helicopters) this calculation is

done internally and the joystick inputs are mapped to u (t) instead of ω (t).

Quadrotor Kinematic Model

Many of the equations, such as (3.2)-(3.4), will need either RI
F (t) or RF

I (t).

While (3.4) expresses how to get RI
F (t), it involves integrating an SO (3) ma-

trix, which will not yield another SO (3) matrix due to numerical integration

method errors. However, the integration can be done on the roll, pitch, and

yaw angles. A Jacobian will be required in order to satisfy the equation

ωFIF = JF Θ̇F
IF (3.8)

which can then be used to solve for

ΘI
F =

∫ t

0

J−1F ωFIFdt (3.9)

where ΘI
F (t) ∈ R3 represents the roll, pitch, and yaw angles between the UAV

frame and inertia frame. The Jacobian matrix used, J−1F
(
ΘI
F (t)

)
is defined as

[2]

J−1F =




1 sinψ tan θ cosψ tan θ
0 cosψ − sinψ
0 sinψ/ cos θ cosψ/ cos θ



 , ΘI
T =




ψ
θ
φ



 . (3.10)

As long as the θ term is not near ±π
2
, the yaw, pitch, roll representation will

not reach singularity. To convert between RI
F (t) and ΘI

F (t),

RI
F =




cosφ cos θ − sinφ cosψ + cosφ sin θ sinψ
sinφ cos θ cosφ cosψ + sinφ sin θ sinψ
− sin θ cos θ sinψ

(3.11)

sinφ sinψ + cosφ sin θ cosψ
− cos φ sinψ + sinφ sin θ cosψ

cos θ cosψ





is used [20].

45

Table 3.1 Actuations for all six degrees of freedom

Camera Craft Rotations Translations
Type Action xc yc zc xc yc zc

Tilt-Roll UAV Yaw 0 0 +Thrust +Roll -Pitch
(Front) Camera 0 Tilt Roll 0 -Roll +Tilt

Pan-Tilt UAV 0 0 Yaw -Pitch +Roll -Thrust
(Bottom) Camera Pan Tilt 0 +Tilt -Pan 0

Camera Kinematics

As stated, the quadrotor can thrust in the z-direction, but it cannot thrust

in the x- or y-directions. Since the quadrotor helicopter is underactuated in

two of its translational velocities, a two actuator camera is added to achieve

six DOF control in the camera frame.

There are two ways in which this is done. The first method is to add a

tilt-roll camera to the front of the helicopter seen in Figure 3.8. The second

method is to add a pan-tilt camera to the bottom of the quadrotor seen in

Figure 3.9. With the new camera frame, there are now three rotations and

three translations, a total of six DOFs, to actuate. To control any of the DOFs,

either the camera must move, the UAV must move, or both. For example, to

move in the positive xc-direction on the tilt-roll configuration in Figure 3.8,

the quadrotor thrust must be increased. To move in the positive zc-direction

on the pan-tilt configuration in Figure 3.9, the quadrotor thrust should be

decreased. Table 3.1 demonstrates all of the ways the DOFs can be actuated

from an initial orientation. Table 3.1 should be read as to translate in the

yc-direction, in Tilt-Roll configuration, the roll of the UAV must increase and

the roll of the camera must decrease.

Figure 3.10 shows a 3-link model for a pan tilt roll camera. This model will

represent both the camera seen in Figure 3.8 with θpan = 0 and the camera seen

in Figure 3.9 with θroll = 0. O0 represents the origin at the base of the camera,

known as base B. O3 is the camera frame denoted C. The Denavit-Hartenberg

table for Figure 3.10 is shown in Table 3.2

46

zi

xi

yi

Inertial

(I)

zf

xf

yf

UAV

(F)
xc

 zc

 (Optical Axis)

yc

Camera

Frame (C) F

C
R

I

I F

I

F

x

R

Figure 3.8 The quadrotor helicopter with a tilt-roll in front.

zi

xi

yi

Inertial

(I)

zf

xf

yf

UAV

(F)

 zc

(Optical Axis)

xc

yc

Camera

Frame (C) F

C
R

I

I F

I

F

x

R

Figure 3.9 The quadrotor with a pan-tilt on the bottom.

47

x0

y0

z0

O0

z1=y2

O1=O2

 x1

y1

x2
z2

O3

y3

z3
x3

θpan

θtilt

θroll

Figure 3.10 Kinematics for pan tilt roll camera

48

Table 3.2 Denavit-Hartenburg table for 3-link camera

Link d (offset) a (length) α (twist) θ (angle)
1 0 0 90◦ θpan (t)
2 0 0 90◦ 90◦+θtilt (t)
3 0 0 0◦ θroll (t)

The rotation matrix generated by Table 3.2 is

RB
C =




− cos θp sin θt cos θr + sin θp sin θr
− sin θp sin θt cos θr − cos θp sin θr

cos θt cos θr

cos θp sin θt sin θr + sin θp cos θr cos θp cos θt
sin θp sin θt sin θr − cos θp cos θr sin θp cos θt

− cos θt sin θr sin θt



 (3.12)

and the rotation matrix from the camera from to the UAV frame can be

expressed as

RF
C = RF

BR
B
C (3.13)

and the angular rate expressed as

ωFFC =

0︷︸︸︷
ωFFB +ωFBC . (3.14)

ωFFB = 0 because RF
B ∈ SO (3) is a constant rotation matrix describing the

orientation in which the camera’s base is mounted onto the UAV.

To get the Jacobian matrix, use

JC =
[
z0 z1 z2

]
∈ R3×3 (3.15)

where z0 (t), z1 (t), and z2 (t) ∈ R3 are the z-axes from Figure 3.10 [20]. Using

Table 3.2 to get the z-axes, (3.15) becomes

JC =




0 sin θp cos θp cos θt
0 − cos θp sin θp cos θt
1 0 sin θt



 . (3.16)

49

Tilt-Roll Camera on the front of the UAV

For the first camera method seen in Figure 3.8, the rotation matrix between

the UAV frame and camera base frame is generated by inverting the signs on

the y and z axes, arriving at

RF
B =




1 0 0
0 −1 0
0 0 −1



 . (3.17)

Substituting (3.17) and (3.12) into (3.13) while setting θp = 0 yields

RF
C =




− sin θt cos θr sin θt sin θr cos θt

sin θr cos θr 0
− cos θt cos θr cos θt sin θr − sin θt



 . (3.18)

Since only two of the angles vary, the Jacobian for this method is expressed as

JC(front) =




0 cos θt
1 0
0 − sin θt



 (3.19)

and finally

ωFFC = JC(front)θ̇C(front), θ̇C(front) =
[
θ̇t θ̇r

]ᵀ ∈ R2 (3.20)

which facilitates the calculation of the angles of the camera when mounted in

front.

Pan-Tilt Camera on the Bottom of the UAV

For the second camera method seen in Figure 3.9, the rotation between the

UAV frame and base frame of the camera is generated by switching the x and

z axes and inverting the y to arrive at

RF
B =




0 0 1
0 −1 0
1 0 0



 . (3.21)

Substituting (3.21) and (3.12) into (3.13) while setting θr = 0 yields

RF
C =




cos θt 0 sin θt

sin θp sin θt cos θp − sin θp cos θt
− cos θp sin θt sin θp cos θp cos θt



 . (3.22)

50

Since only two of the angles vary, the Jacobian for this method is expressed as

JC(bottom) =




1 0
0 cos θp
0 sin θp



 (3.23)

and finally

ωFFC = JC(bottom)θ̇C(bottom), θ̇C(bottom) =
[
θ̇p θ̇t

]ᵀ ∈ R2 (3.24)

which facilitates the calculation of the angles of the camera when mounted on

the bottom.

Control Method

Error Formulation

Translational Velocity Error

It has been proposed to make a non-linear controller that will control all six

DOFs of the camera frame. The control inputs will be the six desired trans-

lational and angular velocities and will only use velocities as feedback in the

control loop. This is a significant detail because it is difficult to get reliable and

accurate position values even with GPS. Although the GPS velocities are more

accurate, it may be possible to get velocity information from accelerometers.

Positional information based on accelerometers, however, would be terribly

unreliable.

The control system development begins by defining the velocity error be-

tween the desired camera velocity, vCICd ∈ R3, and the actual velocities in the

camera frame,

ev � vCIC − vCICd. (3.25)

Using the velocity error, an auxiliary signal is defined as

rv � ev + RC
F δ, (3.26)

51

where δ will be used to couple the velocity error with the angular rates. This

coupling term mathematically says “When there is velocity error, rotate the

UAV in order to speed up in that direction and correct for that error.” The

δ term is a gain that represents which directions the UAV can thrust. The

quadrotor can only thrust in the z-direction, so δ is in the form of [0, 0, δ3]
ᵀ .

Since δ is expressed in the UAV frame and ev (t) is in the camera frame, a

change of frame, RC
F (t), is multiplied by δ. Substituting (3.25) into (3.26) and

expanding vCIC (t) produces

rv =

vC
IC︷ ︸︸ ︷

vCFC + vCIF −vCICd + RC
F δ. (3.27)

Since the camera is fixed to the UAV, there is zero velocity between the camera

and UAV and vCFC = 0. Since vFIF (t) is measured with respect to the UAV

frame, a transformation to camera frame is made to yield

rv = RC
F v

F
IF − vCICd + RC

F δ. (3.28)

The time derivative of (3.28) is

ṙv = ṘC
F v

F
IF + RC

F v̇
F
IF − v̇CICd + ṘC

F δ. (3.29)

Similar to (3.4), ṘC
F (t) can be expressed as

ṘC
F = RC

FS
(
ωFCF

)

= −RC
FS
(
ωFFC

)
. (3.30)

Substituting (3.3) for v̇FIF (t) and (3.30) for ṘC
F (t) into (3.29) yields

ṙv = −RC
FS

(
ωFFC + ωFIF

)
︸ ︷︷ ︸

ωF
IC

vFIF +
1

m
RC
FN1 (·) + gRC

I e3

+
1

m
RC
FF

F
f − v̇CICd −RC

FS
(
ωFFC

)
δ. (3.31)

By adding and subtracting RC
F (t)S

(
ωFIF (t)

)
δ, (3.31) will become

ṙv = −RC
FS
(
ωFIC

)
vFIF +

1

m
RC
FN1 (·) + gRC

I e3 +
1

m
RC
FF

F
f

−v̇CICd −RC
FS
(
ωFIC

)
δ + RC

FS
(
ωFIF

)
δ. (3.32)

52

Some skew-symmetric properties include [20]

S
(
ωFIC

)
= S

(
RF
Cω

C
IC

)

� RF
CS
(
ωCIC

)
RC
F , (3.33)

and

S (a) b = a× b (3.34)

which follows that

S (a) b = −S (b) a = −b× a. (3.35)

Using (3.33) in (3.32) and adding and subtracting S
(
ωCIC (t)

)
vCICd (t) to the

result to obtain

ṙv = −
I3︷ ︸︸ ︷

RC
FR

F
C S

(
ωCIC

) (
RC
F v

F
IF + RC

F δ − vCICd
)

+
1

m
RC
FN1 (·) + gRC

I e3 +
1

m
RC
FF

F
f − v̇CICd

+RC
FS
(
ωFIF

)
δ − S

(
ωCIC

)
vCICd. (3.36)

The non-linear term is redefined as

N11 =
1

m
RC
FN1 (·) (3.37)

and the gravity term as

G11 = gRC
I e3, e3 = [0, 0, 1]ᵀ . (3.38)

Using (3.35) on S
(
ωFIF (t)

)
δ in (3.36) yields

ṙv = −S
(
ωCIC

)
rv + N11 + G11

−
[
S
(
ωCIC

)
vCICd + v̇CICd

]
+

[
1

m
RC
FF

F
f −RC

FS (δ)ωFIF

]
. (3.39)

Substituting F F
f (t) with (3.1) and S (δ) with (3.6) in the last term of (3.39)

produces

1

m
RC
FF

F
f −RC

FS (δ)ωFIF = RC
F



 1

m




0
0
u1



−




0 −δ3 δ2
δ3 0 −δ1
−δ2 δ1 0



ωFIF





(3.40)

53

which makes (3.39)

ṙv = −S
(
ωCIC

)
rv + N11 + G11 −

[
S
(
ωCIC

)
vCICd + v̇CICd

]

+RC
F




0 0 δ3 −δ2
0 −δ3 0 δ1
1
m

δ2 −δ1 0








u1

ωFIF



 . (3.41)

Angular Velocity Error

The auxiliary signal definition in (3.28) and the subsequent open-loop sys-

tem (3.41) captures the behavior of the translational velocity error. A similar

error term for the rotational velocity is now motivated. The rotational velocity

error is defined as

eω � ωCIC − ωCICd (3.42)

where ωCIC (t) is the rotational velocities of the camera and ωCICd (t) is the

desired rotational velocity. Expanding ωCIC (t) produces

eω = RC
F

(
ωFIF + ωFFC

)
− ωCICd. (3.43)

Using (3.20) or (3.24), (3.43) can be rewritten as

eω = RC
Fω

F
IF + RC

FJC θ̇C − ωCICd. (3.44)

Open-Loop Error Dynamics

In preparation for the control design, it is useful to combine ṙv (t) from

(3.41) and eω (t) from (3.44) into a single vector to obtain the open-loop error

system

[
ṙv
eω

]
=

[
−S

(
ωCIC

)
rv

O3x1

]
+

[
−S

(
ωCIC

)
vCICd − v̇CICd

−ωCICd

]
+

[
N11 + G11

O3x1

]

+

[
RC
F O3x3

O3x3 RC
F

]






0 0 δ3 −δ2
0 −δ3 0 δ1 O3x2
1
m

δ2 −δ1 0
0 1 0 0
0 0 1 0 JC
0 0 0 1






︸ ︷︷ ︸
�B̄∈R6x6




u1
ωFIF
θ̇C





︸ ︷︷ ︸
�Ū∈R6

.(3.45)

54

Ū (t) contains the six control inputs available to the controller; however is it

multiplied by the B̄ (t) matrix. Instead of calculating Ū (t) directly, a new

control signal U (t) is defined as

U = B̄Ū (3.46)

where

U �

[
U1 ∈ R3
U2 ∈ R3

]
∈ R6. (3.47)

With this new U (t) vector, (3.45) becomes

[
ṙv
eω

]
=

[
−S

(
ωCIC

)
rv

O3x1

]
+

[
−S

(
ωCIC

)
vCICd − v̇CICd

−ωCICd

]

+

[
N11 + G11

O3x1

]
+

[
U1
U2

]
(3.48)

in which U1 (t) and U2 (t) can be designed to control rv (t) and eω (t).

Control Design and Stability Analysis

The first control input U1 (t) is designed using the non-negative scalar

Lyapunov candidate, V1 (t), formed from the auxiliary signal defined in (3.28)

as

V1 =
1

2
rᵀvrv. (3.49)

V1 (t) can be used to find a control input that will guarantee rv (t) is bounded as

long as the time derivative is also negative semi-definite. The time derivative

of (3.49) is found to be

V̇1 = rᵀv ṙv. (3.50)

Substituting (3.48) into (3.50) yields

V̇1 = rᵀv
(
U1 − S

(
ωCIC

)
vCICd − v̇CICd + N11 + G11 − S

(
ωCIC

)
rv
)
. (3.51)

The design of U1 (t) will cancel out as many terms as possible. Leaving only

v̇CICd (t) and S
(
ωCIC (t)

)
rv (t) untouched,

U1 = −krev − rv
ζ21
(∥∥vFIF

∥∥)

ε1
+ S

(
ωCIC

)
vCICd −G11. (3.52)

55

ζ1 (·) is a non-decreasing function used to compensate for the unmodeled non-

linear terms. This can include terms such as air resistance, which is a function

of velocity. In order to guarantee ζ1 (·) can compensate for N11 (·), it must

satisfy the inequality

α
∥∥vFIF (t)

∥∥+ β ≤ ζ1
(∥∥vFIF (t)

∥∥) ≥ ‖N11 (·)‖ ≤ 0. (3.53)

To design U2 (t), a non-negative scalar Lyapunov candidate is defined as

V2 =
1

2
eᵀωeω. (3.54)

The time derivative of (3.54) is found to be

V̇2 = eᵀωėω. (3.55)

The time derivative of eω (t) can be obtained from (3.48) as

ėω = U̇2 − ω̇CICd. (3.56)

Substituting (3.56) into (3.55) for eω yields

V̇2 = eᵀω

(
U̇2 − ω̇CICd

)
. (3.57)

In order to force V̇2 (t) to be negative, U̇2 (t) should cancel out ω̇CICd (t) and

add an extra term to guarantee V̇2 (t) is negative, making

U̇2 = ω̇CICd − kieω. (3.58)

Integrating (3.58) becomes

U2 = −ki

∫
eω + ωCICd. (3.59)

Theorem 1 The control laws of (3.52) and (3.59) guarantee that the trans-

lational velocity error (3.25) and angular velocity error (3.42) are Globally

Uniformly Ultimately Bounded (GUUB) in the sense that

‖ev‖ ≤ α11e
−α12 + α13 (3.60)

‖eω‖ ≤ α21e
−α22 + α23 (3.61)

where α11, α12, α13, α21, α22, α23 ∈ R+.

56

Proof:

To show that ev (t) and eω (t) are bounded, a Lyapunov function is used.

A Lyapunov function based on rv (t) and eω (t) is used instead of one based on

ev (t) and eω (t). The Lyapunov candidate is defined by the addition of V1 (t)

in (3.49) and V2 (t) in (3.54) to obtain

V =
1

2
rᵀvrv +

1

2
eᵀωeω (3.62)

which is positive definite. The next step is showing that the derivative has

two parts: a negative definite part and a positive part that will be bound by

an arbitrarily small constant. Taking the derivative of 3.62 yields

V̇ = rᵀv ṙv + eᵀωėω. (3.63)

Substituting ṙv from (3.48) and ėω from (3.56) into (3.63) yields

V̇ = rᵀv
(
U1 − v̇CICd + N11 + G11 − S

(
ωCIC

)
rv

−S
(
ωCIC

)
vCICd

)
+ eᵀω

(
U̇2 − ω̇CICd

)
. (3.64)

Substituting U1 from (3.52) and U̇2 from (3.58) into (3.64) results in

V̇ = rᵀv

(
−krrv + krR

C
F δ − rv

ζ21 (·)
ε1

− v̇CICd + N11 − S
(
ωCIC

)
rv

+ (G11 −G11) +
(
S
(
ωCIC

)
vCICd − S

(
ωCIC

)
vCICd

)
︸ ︷︷ ︸

0





+eᵀω



−kieω+ ω̇CICd − ω̇CICd︸ ︷︷ ︸
0



 . (3.65)

To show that the Lyapunov function derivative is negative definite, using vec-

tor norms and using (3.53) to replace N11 (·) with ζ1 (·) yields

V̇ ≤ −kr ‖rv‖2 + kr ‖δ‖ ‖rv‖ − ‖rv‖2
ζ21 (·)
ε1

+
∥∥v̇CICd

∥∥ ‖rv‖

+ ‖ζ1 (·)‖ ‖rv‖−
0︷ ︸︸ ︷

rᵀvS
(
ωCIC

)
rv −ki ‖eω‖2 . (3.66)

57

With v̇CICd (t) being the time derivative of the desired velocity, it was stated

earlier that vCICd (t) is continuous, so the derivative exists and is bound. v̇CICd (t)

is bound by
∥∥v̇CICd

∥∥ ≤ β1 (t) , β1 (t) ∈ R+. (3.67)

Rewriting (3.66) using (3.67) yields

V̇ ≤ −kr ‖rv‖2 − ki ‖eω‖2 + ‖rv‖ (β1(t) + kr ‖δ‖)

+ ‖rv‖ ‖ζ1‖
(

1− ‖rv‖
‖ζ1 (·)‖

ε1

)
. (3.68)

While the first two terms of the Lyapunov derivative in (3.68) are negative

definite, the rest are not. The last term of (3.68) can be bound such that

ε1 ≥ ‖rv‖
∥∥ζ1

(
vFIF
)∥∥
(

1− ‖rv‖
‖ζ (·)‖

ε1

)
(3.69)

because it is in the form of non-linear damping according to Lemma A.10

in [21]. ε1 was first introduced in (3.52) and is completely adjustable in the

control input. The remaining term of (3.68) can be bound such that

ε2 ≥sup
∀t

(β1(t)) + kr ‖δ‖ (3.70)

because all of these terms are constants. Since ε2 is multiplied by rv (t), it will

have to be bound also. To do this, it can be said that

0 ≤
(√

λ1 ‖rv‖ −
1√
λ1

ε2

)2
, λ1 ∈ R+. (3.71)

This can be expanded to say

‖rv‖ ε2 ≤
1

2

(
λ1 ‖rv‖2 +

1

λ1
ε22

)
. (3.72)

This finally bounds (3.68) to make

V̇ ≤ −
(
kr −

λ1
2

)
‖rv‖2 − ki ‖eω‖2 + ε1 +

ε22
2λ1

. (3.73)

In order to keep the ‖rv‖2 term negative definite, it follows that

kr ≥
λ1
2
. (3.74)

58

A constant λ2 is defined as

λ2 = max

(
kr −

λ1
2
, ki

)
. (3.75)

A larger upper bound can be placed on (3.73) using λ2 to get

V̇ ≤ −λ2
(
‖rv‖2 + ‖eω‖2

)
+ ε1 +

ε22
2λ1

. (3.76)

Since λ1 can be arbitrarily picked, by choosing a larger kr gain, λ1 in (3.74) is

forced to be bigger and can make the ε2 term in (3.76) arbitrarily small. The

same is true for ε1 since it is also arbitrarily picked. Solving for the differential

equation in (3.73) finally arrives at

V ≤ V (0) e−(2λ2t) +
2ε1λ1 + ε22

4λ1λ2
, (3.77)

which is in the form of (3.60) and (3.61). λ2 in (3.77) affects both the rate

at which the exponential term approaches zero and the value of the bounding

constant. Since λ2 is merely the maximum from (3.75), by increasing the

gains the bound can be made arbitrarily small and the Lyapunov function can

approach zero arbitrarily fast.

Remark 3.1 It has been shown that ‖eω (t)‖ is GUUB according to the Lya-

punov proof for V (t) , as stated in Theorem 1. The proof also shows that

‖rv (t)‖ is GUUB. According to (3.26), rv (t) is ev (t) plus a constant multi-

plied by an SO (3) rotation matrix, making ev (t) GUUB. Both desired veloc-

ities, vCICd (t) and ωCICd (t), are bound by design, therefore vCIC (t) and ωCIC (t)

are bound. The details of the signal chasing are covered in Appendix B.

Simulation

Quadrotor Model Simulation Parameters

In order to have an accurate simulation of the DraganFlyer X-Pro, certain

parameters have to be measured. The mass and inertia matrix are needed for

59

Table 3.3 DraganFlyer X-Pro Parameters

Parameter Value Units
Mass 2.041 kg
Additional Weight (battery and sensors) .68 kg
Max Thrust 35.586 N
Max Roll Torque 4.067 Nm
Max Pitch Torque 4.067 Nm
Max Yaw Torque 2.034 Nm

the dynamics equations and the actual maximum thrust and torques produced

by the quadrotor are needed to set realistic limits on the simulation.

To measure the mass, the helicopter was weighted using a spring scale. The

inertia matrix is never needed because (3.5) is not utilized in this simulation.

To measure the total force the helicopter can produce, a spring scale is used to

measure the amount of force one rotor can create when spinning at maximum

speed. This quantity multiplied by four will yield the full thrust ability. In

addition, the distance from the rotor to the center of the UAV will yield the

total roll and pitch torque that can be generated with one rotor spinning at

its maximum velocity while the opposite rotor stopped, as in Figure 3.4.b.

A similar measurement was made when two opposite rotors were spinning at

maximum speed and the other two rotors were not spinning, as in Figure 3.5.b,

to estimate the maximum yaw torque. All of these measurements are displayed

in Table 3.3.

Simulation Setup

To simulate this controller, there are three main tasks that must be im-

plemented, shown in Figure 3.11. The first block is the helicopter dynamics

that must be simulated, based on (3.2)-(3.4). Then the control input must be

formulated based on sensor readings that come from the dynamics equations.

The control input will then be fed back into the dynamics equations to close

the loop. The third portion of the simulation is displaying the position and

orientation of the quadrotor in a 3D-simulation program called FlightGear.

60

Calculate
Dynamics

Graphical
Display

Evaluate
Control Input

Figure 3.11 Simulation diagram

61

For calculating the dynamics, equations (3.2)-(3.4) are rewritten as

ẋIIF = RI
Fv

F
IF (3.78)

v̇FIF = −S
(
ωFIF

)
vFIF + gRF

I e3 +
N1 (·) + FF

f

m
(3.79)

Θ̇F
IF = J−1F ωFIF (3.80)

Θ̇C
FC = Θ̇C

FC . (3.81)

Equation (3.2) remains unchanged and (3.3) is divided by m to solve for v̇FIF (t).

Equation (3.4) is replaced with the roll, pitch, yaw version of the equation from

(3.8) instead of rotation matrices. Using the yaw, pitch, roll representation

results in a singularity at θpitch (t) = ±π
2
. The solution to this problem is to

avoid ±π
2
. The last equation is used to calculate the angles between the camera

and UAV frame. The equations are then integrated on both sides yielding

xIIF =

∫ (
RI
Fv

F
IF

)
(3.82)

vFIF =

∫ (

−S
(
ωFIF

)
vFIF + gRF

I e3 +
N1 (·) + FF

f

m

)

(3.83)

ΘI
F =

∫ (
JF
(
ΘI
F

)
ωFIF

)
(3.84)

ΘF
C =

∫
Θ̇C
FC . (3.85)

All three control inputs are utilized in these equations, F F
f (t), ωFIF (t), and

Θ̇C
FC (t). The numerical integration method used is an Adams Integrator at a

1000 Hz update frequency.

The software platform used is QNX Real-Time Operating system [16] run-

ning a QMotor program [17] written in C++. The entire program consists

of seven parts outlined in Figure 3.12. The program starts by initializing all

variables in “Start”. Then in “Calculate Dynamics”, (3.82)-(3.85) are utilized

to find xIIF (t), vFIF (t), ΘI
F (t), and ΘF

C (t). In “Evaluate Control Input”, the

program uses the trajectories for vCICd (t) and ωCICd (t) from “Read in joystick

values and generate trajectories” to evaluate (3.52) and (3.59). “Saturate Con-

trol Inputs Based on UAV Parameters” uses the parameters from Table 3.3 to

62

make sure the control inputs do not exceed realistic values, and if they do, sat-

urate the value to the maximum limit. A minimum rotor speed is also utilized

to prevent the quadrotor coupling singularities, due to the motors only spin-

ning in one direction. In addition to preventing the singularities, the coupling

effects are also added to the control inputs. “Update System States” is where

the all positions and velocities in the inertia, UAV, and camera frames are com-

puted for use in other calculations in the next iteration. The resulting position

and velocity are sent to FlightGear by “Send UDP Packets” and received and

show on the screen by “Virtual Simulation.” The code for the QNX program

can be found at http://www.ece.clemson.edu/crb/research/uav/sixdof.zip. In

the simulate.cpp file, the “Send UDP Packets” is accomplished by

d flight UDP->PackitSend(Latitude, Longitude, Altitute, Roll, P itch, Y aw);

where all numbers are in radians except altitude which is in meters and

d flight UDP is of type FlightUDP. A UDP is send to a PC on a specific

port defined in the constructor in FlightUDP.cpp as

d UDP client=new UDPClient(“192.168.1.100”,4444,d timeout);

where the UDP packet is sent to the FlightGear IP address, 192.168.1.100 in

this case, on port 4444 and d timeout is a struct of type timeval set to 50ms.

The UDP packet is of type FGNetFDM defined by net fdm.hxx [1]. The only

use for the second computer is the FlightGear simulation, because a simulation

such as FlightGear requires| almost all of a computer’s CPU, video card, and

input/output system [1]. To execute the FlightGear simulator at GSP airport,

the following command is used

fgfs.exe —fg-root=”C:\Program Files\FlightGear\data”

—fg-scenery=”C:\Program Files\FlightGear\data\Scenery;

C:\Program Files\FlightGear\scenery” —airport-id=KGSP

—aircraft=draganfly —control=joystick —enable-game-mode

63

QNX
[QMotor]

QNX (or Other via UDP)
[Joystick]

Windows
[FlightGear]

Evaluate
Control Input

Calculate
Dynamics

Start

Send UDP
Packets

Saturate
Control Inputs
Based on UAV

Parameters

Update
System
States

Wait 1 ms

Virtual
Simulation

Read in joystick
values or generate

trajectories

Figure 3.12 Two Computer Simulation Flow

—disable-splash-screen —disable-random-objects —disable-sound

—disable-ai-models —disable-clouds —fog-disable

—geometry=1680x1050 —timeofday=noon —fdm=external

—native-fdm=socket,in,20,192.168.1.1,4444,udp

where 192.168.1.1 is the IP of the QNX PC sending the UDP packets on port

4444. The rest of the options load the other setting such as environment,

location, aircraft model, and resolution.

Input

The desired trajectories can be generated by any means as long as vCICd (t)

and ωCICd (t) are continuous and differentiable. The method used for this ex-

periment used a Logitech Extreme 3D Pro joystick [19], seen in Figure 3.13,

to create four inputs labeled as x, y, twist and throttle. The x, y, and twist

on the joystick are used to generate either vCICd (t) or ωCICd (t). The throttle is

not utilized since out of the four inputs, only x, y, and twist can be easily con-

trolled with one hand. Throttle requires removing the hand from the joystick

64

x

y

Twist

Throttle

Figure 3.13 Logitech Wingman Extreme 3D Pro joystick

or using a second hand. One method of using this joystick is to only input

three of the desired velocities at one time. Depending on whether Button 1

is pressed, the joystick’s three axes will control the 3 translational velocities,

vCICd (t), or the three angular velocities, ωCICd (t). However this prevents all six

degrees from being controlled at once. A second method uses two Wingman

joysticks to allow the user to control three desired velocities with each hand,

for a total of all six desired velocities.

FlightGear

FlightGear is an open-source flight simulator [1]. It can run on many com-

puter platforms including Linux and Windows. FlightGear offers a versatile

package with multiple input-output (I/O) systems and an interface for import-

ing custom helicopter models. FlightGear is used to display the position and

65

orientation and show the output in a 3D virtual world using the DraganFlyer

X-Pro helicopter model [18].

FlightGear has as least three Flight Dynamics Models (FDM) built in.

The user can use any of these FDMs on a real airplane model. However,

since this paper uses its own dynamics equations, it was decided to use a

custom model using the dynamic equations (3.2)-(3.5) instead of FlightGear’s

dynamics. FlightGear’s I/O system allows it to receive UDP packets of FDM

calculations in real-time. This network FDM (netfdm) allows any computer

on the network to perform the dynamics calculations, such as (3.2) through

(3.5). This provides a live fully visual representation of what is going on inside

the QMotor simulations.

There are two useful viewpoints that can be shown from FlightGear. The

most important of these is the camera view. Since this is a fly-by-camera inter-

face, it is useful to be able to see the camera view for simulation. FlightGear’s

first person view looks out the quadrotor’s x-axis, as seen in Figure 3.8. To

accomplish this, a transformation is made so that the camera frame’s z-axis is

the x-axis seen in the simulator using the rotation matrix

Rsimulation
C(fonrt) =




0 0 −1
0 1 0
1 0 0



 (3.86)

that goes from the camera frame to the FlightGear simulation frame. If the

camera were mounted on the bottom of the helicopter as seen in Figure 3.9, the

transformation will be from the camera’s z-axis to the z-axis on the helicopter.

This transformation is needed because FlightGear is attempting to display

the UAV and this transformation allows it to display the camera correctly,

allowing for a complete camera view in the simulator. The other important

camera view is the helicopter itself. A third person mode on FlightGear will

show the quadrotor helicopter and the angles as which it rotates as it moves

around. QMotor has the option of showing either the camera frame for first

person mode or the UAV frame for third person mode to demonstrate what

the helicopter is actually doing.

66

Figure 3.14 First person view of quadrotor while moving left

FlightGear is used to show two points of view while the simulation is run-

ning: the UAV view and the camera view. The UAV view will show the

position and orientation of the UAV helicopter. Likewise, the camera frame

shows the orientation and position of the camera. It is important to show the

camera for the simulation since the experiment is the fly by camera interface.

In Figures 3.14 and 3.15, the UAV is oriented so that it can move to the left.

Figure 3.16 shows what the camera will show in the same situation. The actual

level of the ground can be seen in Figure 3.15 and is approximately the same

in Figure 3.16, thus demonstrating the independence of the UAV and camera

frame.

Observations and Results

The very first simulations were a complete failure. This is because the

original U1 control input was different from (3.52). Instead, U1 was defined as

U1 = −krrv − rv
ζ21
(∥∥vFIF

∥∥)

ε1
+ S

(
ωCIC

)
vCICd (3.87)

with no G11 (t) term and the ev (t) replaced by rv (t). The lack of a G11 (t)

term was because it was originally intended that gravity would be included

67

Figure 3.15 External view of quadrotor while moving left

Figure 3.16 Camera view while moving left

68

in the N11 (t) term. This was extremely difficult to overcome because accord-

ing to Table 3.3 the DraganFlyer X-Pro uses approximately 75% of it’s total

thrust just to overcome gravity. Using rv (t) instead of ev (t) also proved to be

unusable. Using (3.26), (3.87) can be rewritten as

U1 = −krev − krR
C
F δ − rv

ζ21
(∥∥vFIF

∥∥)

ε1
+ S

(
ωCIC

)
vCICd. (3.88)

The krR
C
F δ term was adding a constant to the control input, and overpowering

the rest of the system making it unusable. This is where the solution of using

(3.52) came from. (3.87) satisfies its own Lyapunov proof and the velocities

were GUUB, however they never came near to zero and the bound could not

be made arbitrarily small on ev (t).

In simulation when the UAV is just hovering, it will stand still with no

errors using (3.52) and (3.59). To examine how the control reacts, a simple

experiment is conducted by commanding the camera to move left and right.

All of the experiments are conducted with δ = 100, kr = 1, and no ki because

there is no angular error in the simulation. To look at how the velocities and

positions of the camera react, the first experiment will show the UAV going left

then right using the first camera mounting method highlighted in Figure 3.8.

The desired velocity graph seen in Figure 3.17 is used on the y-coordinate of

the camera frame only. All values remain zero for the first 15 seconds of the

experiment and are not shown. The desired x- and z-velocities remain zero and

ωCICd = 0. The actual velocities of the camera frame in Figure 3.20 approach

the desired velocities in a few seconds. It can also be seen that the x-velocity

changes when the camera moves left and right. This is because gravity is in

the x-direction. Sudden changes cause the quadrotor to lift or fall a little,

however, the controller does respond and stabilizes the x velocity to zero.

In this first experiment when the camera is commanded to go left and right,

the UAV will tilt left and right along the camera z-axis, as seen in Figure 3.18.

The other two axes not shown remain zero for the entire simulation. The graph

shows the UAV tilting over .5 radians (29 degrees). The controller is suppose

69

Figure 3.17 Desired velocities of Camera Frame (vCICd): Experiment 1

70

to apply a counter rotation to the camera frame in an attempt to minimize

the amount of rotation felt in the camera frame. As seen in Figure 3.19, the

camera frame’s rotation is much less than that of the UAV. There is still a

certain amount of rotation error in the camera frame. However, the error is not

due to an error in ωCIC (t). In the simulation, eω (t) is zero since the simulation

model controls the angular rates directly. The error is caused by the design of

the controller. The error is in the rotation of the camera, however the feedback

and inputs are in terms of angular velocities. Because the exact angles of the

UAV and camera are not known by the controller, there is a drifting error in

the camera rotation. The camera angles are essentially a result of integrating

the control inputs, thus creating this drift error over time. The drift error in

the translational velocities is less detrimental because the position error is not

focused on.

The camera is tilting a little more in the opposite direction than needed.

When the UAV turns left .38 radians, the camera is actually turning right

.46 radians, resulting in the final .08 radian rotation. This gives viewers and

observers a counterintuitive feeling because they are familiar with there being

no correction.

The error is relatively small and is easy to compensate for by telling the

camera to tilt a little in the opposite direction of the error. The total error

after about a minute of flight time can be seen in Figures 3.18 and 3.19 when

the UAV angle returns to zero and the camera angle settles around .15 radi-

ans (8.6◦). The feel from the camera is a lot smoother then if there was no

correction.

If the drift error seen in Figure 3.19 is to be fixed, then the controller has to

be changed. Theorem 1 does not state that the angles are bounded. In order

to control the angles, an angle sensor will need to be added to the controller.

With angle feedback, the angle can be controlled and the error can eventually

be bounded.

In this particular experiment, the desired camera angle was zero throughout

71

Figure 3.18 Angles of UAV while moving left and right (ΘF
I)

Figure 3.19 Camera error while moving left and right (ΘC
I)

72

the experiment, even though the actual angle is not zero as seen in Figure 3.19.

Because of this, the velocities expressed in the camera frame and the inertia

frame are in fact different. It is interesting to compare these velocities to

evaluate how significant this error is. In Figure 3.20, the camera y velocity can

be seen to be in the approximate shape of the desired velocity in Figure 3.17.

There is an apparent flat spot around 25 second and 35 seconds. While the

z-velocity remains zero the entire experiment, the x-velocity does not. This

is because the x-velocity is along the same axis as gravity in the Figure 3.8

configuration. When the quadrotor rolls left and right, rotation about the

x-axis is disturbed and the controller must correct for this. As stated before,

if there were no errors in the rotation, then vCIC = v
C(0)
IC , where C (0) is the

camera frame at time 0. Comparing Figure 3.20 to Figure 3.21, there are

small differences, however the errors seen in Figure 3.19 do not make a huge

difference in the velocities. The last velocity to look at is the UAV velocity in

the UAV frame seen in Figure 3.22. It is a much smoother curve compared to

the rest. This is how the quadrotor actually reacts: in smooth glides left and

right.

Another interesting graph to look at is the path the UAV and camera

actually travel in. Since the camera is closely mounted onto the UAV, it is

safe to say their positions are approximately the same. Figure 3.23 shows the

y-position going left then coming back right. Since the velocity to the right

seen in Figure 3.21 is faster and longer then to the left, the UAV ends up

going right more, before settling close to zero. The z-position is off by about

5 meters in the end. This is all part of the drift error that will occur in the

position when only the velocity is bounded, as stated in Theorem 1.

Examining the control inputs for the first experiment shows that the FF
f

control input u1, seen in Figure 3.24, only reaches its saturation point once,

at around 30 seconds. Due to the controller’s nature, where there are sharp

changes in the velocities, there are sharp changes in the thrusts, seen especially

at 25, 30, and 36 seconds. As for the other control inputs, only the x-axis of

73

Figure 3.20 Velocities of Camera Frame (vCIC): Experiment 1

Figure 3.21 Velocities of Camera in a Fixed Inertia Frame (v
C(0)
IC):

Experiment 1

74

Figure 3.22 Velocities of UAV in UAV Frame (vFIF): Experiment 1

Figure 3.23 Position of UAV in Inertia Frame (xIIF ≈ xIIC): Experiment 1

75

Figure 3.24 UAV trust (FF
f): Experiment 1

ωFIF and the roll angle of θ̇C do not remain zero, as shown in Figure 3.25. It

can be seen that these two curves are near opposites of each other, as would

be expected given the desired inputs and the θC .

The exact same results are seen in a second experiment when the desired

velocities tell the camera to go forward and backward instead of left and right,

since the quadrotor is completely symmetrical in this way.

In a third experiment, the camera is commanded to go up and down to

examine the effects that a limited thrust has. ωCICd is kept at zero while vCICd

is in the shape of Figure 3.26. Since the quadrotor is only translating in the

up and down directions, there will be no torques or change of angle. The

actual velocity achieved by the camera can be seen in Figure 3.27. Since the

thrust is limited to 35.586 N in Table 3.3, the quadrotor only significantly

reaches its limit at 7 seconds and again at 40 seconds, seen in Figure 3.28.

By comparing the acceleration of the UAV in Figure 3.27, it can be seen that

the acceleration up is much slower then the acceleration down due to this

76

Figure 3.25 UAV Angular rates (ωFIF and θC): Experiement 1

77

Figure 3.26 Desired velocities of Camera Frame (vCICd): Experiment 3

limitation. The saturation points reached at 15 seconds and 31 seconds are

there to stop the rotors from spinning and losing all roll, pitch, yaw control.

In the last experiment, a smoother desired velocity is used to tell the

quadrotor to move right then stop, as seen in Figure 3.29. Looking at the

camera velocities, it can be seen that there is a small overshoot at around

15 seconds, and then the velocity settles near the desired 15 m/s. The same

event occurs at around 50 seconds as the quadrotor comes to a stop. Similar

to experiment 1, the UAV drops in the camera’s x-direction. The drop in the

x-direction is smaller then that observed in experiment 1. In addition, a small

angular error can be observed. However this error is less then .1 radians for

all time, smaller than that from experiment 1. With less sudden changes in

the desired velocity, there is less error in the angles of rotation and less of a

drop in the x-direction. The thrust control input F F
f in Figure 3.30 varies con-

siderably less than experiment 1 did. The velocity error shown in Figure 3.31

shows most of the error in the y-direction and is in the same shape as u1 seen

78

Figure 3.27 Velocities of Camera Frame (vCIC): Experiment 3

Figure 3.28 UAV trust (FF
f): Experiment 3

79

in Figure 3.30. All of these results are expected for this kind of experiment.

All of these experiments show that the controller is GUUB in both vCIC

and ωCIC . One of the difficulties in a velocity controller like this is that the

positions and angles are not bounded and can only be kept small by making

the bounds on the velocities close to zero. By using (3.52) instead of (3.87),

it is possible to have a useful velocity GUUB controller.

Future Work

There are a number of improvements that can be made on this controller

for the future. One improvement would be to add a kvi integral gain into

equation (3.52) to make

U1 = −krev − rv
ζ21
(∥∥vFIF

∥∥)

ε1
+ S

(
ωCIC

)
vCICd − kviei −G11 (3.89)

where

ei � RI
C

∫
vCIC − vCICd. (3.90)

This will help compensate for constant errors and is especially good for cor-

recting for uncertainties in gravity. This relaxes the restriction that gravity

to be known. It has been observed that small uncertainties in gravity will

cause the velocities to drift to an offset instead of going to zero, as would

be expected. Another improvement to (3.52) could be to use a predictor for

v̇CICd (t). By adding a ‖rv‖
∥∥ṽCICd

∥∥ term to U1 to get

U1 = −krev − rv
ζ21
(∥∥vFIF

∥∥)

ε1
+ S

(
ωCIC

)
vCICd − ‖rv‖

∥∥ṽCICd
∥∥−G11, (3.91)

there will be no need for a β1 (t) term in (3.70). ε2 will become

ε2 = kr ‖δ‖ (3.92)

and there would be a smaller constant that does not vary with v̇CICd (t).

Another change that should be added is the frame in which the gains are

added. As seen in (3.90), there is a change of frame back to the UAV frame.

This is important because the kiei term will be used to remove slowly varying

80

Figure 3.29 Graphs of vCICd, v
C
IC , and θCI : Experiment 4

81

Figure 3.30 UAV Thrust (F F
f): Experiment 4

Figure 3.31 Velocity Error (ev): Experiment 4

82

errors. Errors such as wind and gravity will never vary as the UAV turns or

the camera turns, it is detrimental to make the term with respect to any from

other then an inertia frame. Another frame that should be changed is the

krev term. This term is currently in terms of the camera frame with a single

constant kr. This forces all three axes to react the same, when in fact, only

the UAV’s x- and y-axes behave the same. A solution for this is the change

(3.52) into

U1 = −diag
(
RF
Cev
)
kr − rv

ζ21
(∥∥vFIF

∥∥)

ε1
+ S

(
ωCIC

)
vCICd −G11, kr ∈ R3 (3.93)

allowing for three gains for each of the three axes of the UAV. diag (·) puts

the values of a vector on the diagonal in a square matrix. The same can be

done for (3.59) changing to

U2 = −diag
(
RF
C

∫
eω

)
ki + ωCICd. (3.94)

This second solution allows for a gain to control the yaw angle differently from

the roll and pitch angle, since the yaw torque is weaker then the other two.

While these changes make only small improvements in the performance, none

of them would change the main concept of this controller. A change that

would significantly change the controller is using position and orientation in

the feedback loop. While this will definitely improve the performance of the

controller, it will no longer be a velocity-only controller and the choices of

sensors and their accuracies will be more limited.

Conclusion

This chapter shows the development of a non-linear controller for use on a

quadrotor helicopter and a two DOF camera to successfully create a fully actu-

ated fly-by-camera interface. The controller is shown to be Globally Uniform

Ultimately Bounded (GUUB) using only velocity information for feedback.

The fly-by-camera system allows the camera and UAV to be controlled by the

user in an intuitive manner. Simulation verifies that the controller works based

83

on the rigid body model and that the fly-by-camera system is easy for anyone

to fly.

84

APPENDICES

Appendix A

Sensors

MIDG II Interface

To get information from the MIDG II sensor, the sensor had to be connected

to a computer through a converter. To communicate with the MIDG II sen-

sor, two tasks must be completed: i) create a hardware link from the MIDG

II connector to a PC computer’s DB-9 connector, ii) convert the MIDG II

RS-422 protocol to the PC computer’s RS-232 protocol, and iii) implement

software to parse the data packets and store the information in a convenient

data structure.. Tasks (i) and (ii) requires combining a variety of devices to

complete the data link while task (iii) requires adapting the software provided

by Microbotics Inc. to work in both Windows and QNX. Once these tasks

are completed, QNX programs will have an easy and reliable interface for

retrieving sensor data.

Connecting the MIDG II to a PC has two obstacles: i) the connecting

the connector in Figure A.1 to a DB-9 on a PC and ii) converting the signal

from RS-422 to RS-232. To power the MIDG II, pins 4 and 9 of the MIDG

II connector in Figure A.1 are connected to the on-board Lithium Polymer

battery on the UAV through an RCA plug. A standard RJ-45 connector

is used to connect to the MIDG II sensor connector, using the pin layout

displayed in Table A.1 and labeled as “MIDG II to (A) RJ-45”. Then an

RJ-45 to DB-9 connector labeled as “(A) to (B)” is used to get the signals

into a DB-9 connector using the wiring shown in the second and third column

of Table A.1. Then there is a third connector labeled as “(B) to (C)” is used

to get the signals back to the RJ-45 connector used on the Serial Converter

RS422 to RS232 (SLC22232) board from Microbotics Inc [13]. This converter

will change the RS-422 signals into the RS-232 voltage and DB-9 connector

which can there be plugged in on a PC computer. There is a USB plug that

must be plugged into a computer to power the converter. This completes the

87

first path shown in Figure A.2 using the “Wired Method”. All pathways are

bi-directional allowing for configuration data to be sent back to the MIDG II

sensor, although a majority of the data is sensor information from the MIDG

II to the PC computer.

A second method for connecting the sensor a PC involves the X-Tend Serial

Wireless transceivers [14] seen in Figure A.2 using the “Wireless Method”.

Using the “(A) to (B)” connector discussed above, the MIDG II can be plugged

into an X-Tend transceiver using the RS-422 protocol.. The X-Tend transceiver

will wirelessly communicated with another transceiver that can then connect

to a computer using RS-232, removing the need for an external RS-422 to RS-

232 converter. This is the method used for actual UAV experiments, providing

a range of up to 40 miles [14].

To use the data from the MIDG II, a client/server program is written

for the MIDG II using the software provided by Microbotics to parse the

data packets into a single data structure that includes GPS position, orien-

tation, time, and everything the sensor transmits. For Windows, the data

must be saved from the serial port to a file, and then the file can be parsed

using the Microbotics program [13]. In QNX, a server program, MIDGServer,

runs in the background and receives serial data, then parses the data pack-

ets and stores them in a single shared memory location as a data struc-

ture. Then a client program running in QMotor will read the shared mem-

Table A.1 Wiring table for the MIDG II connectionst

MIDG II Signal (A) RJ-45 (B) DB-9 (C) RJ-45
Pb (Not used) 1 NC NC

NC 2 NC NC
Rb 3 8 8

Ground 4 5 5
Ra 5 2 2
Ta 6 3 3

Pa (Not used) 7 NC NC
Tb 8 7 7

88

Figure A.1 MIDG II RS-422 Connector [13]

(A) RJ-45
to (B) DB-9

MIDG II
Sensor

MIDG II to
(A) RJ-45

Wireless Method

Wireless Transceiver
to (PC) DB-9

(B) DB-9 to
Wireless Transceiver

Wired Method

(C) RJ-45
to (PC) DB-9

(B) DB-9
to (C) RJ-45

RS-422 to RS-232
Serial Converter

Figure A.2 A connection diagram for a Wireless and Wired Method of con-
necting the MIDG II sensor

89

ory location to get feedback information such as orientation. The two pro-

grams are designed to run simultaneously without error and can be found at

http://www.ece.clemson.edu/crb/research/uav/MIDGServer.zip. In a C++

program, the MIDG II client is initiated by the command

d client = newMIDGClient(“/dev/midg0”);

which initiates the client with the shared memory location “/dev/midg0.” To

access the sensor data structure of type mtMIDG2State, the method

d client->getM2();

is used to access the different pieces of sensor information, defined in “mMIDG2.h.”

This is the only code needed on the client side to get all of the information

from the server.

Magnetometer Background

The MIDG II sensor is a position and orientation measurement system suitable

for many UAV applications because of its small size and number of integrated

sensors. Part of the MIDG II sensor is a magnetometer used for orientation.

Since Most UAVs are gas powered, there is no known electromagnetic inter-

ference surrounding the vehicle. This is not the case for electric helicopters.

A strong electromagnetic interference has been observed throughout the Dra-

ganFlyer X-Pro and all other electric helicopters. While companies such as

Rotomotion position the magnetometer far from the magnetic interference, on

the DraganFlyer X-Pro there is no safe location for the magnetometer, making

the magnetometers unusable. A solution has been found that allows for the

use of magnetometer readings during times of no interference.

A typical robotic arm can use encoders to measure angles of individual

links and then calculate the end effector’s orientation. Having end effector

orientation is almost always an important part for any control problem. How-

ever, in the case of a flying UAV, there are no links attached to the helicopter.

90

Figure A.3 Yaw, Pitch, and Roll angles

A sensor has to be able to measure the orientation of the helicopter without

making ground contact. An inclinometer uses a level to determine the roll

and pitch angles, but it is sensitive to vibration and cannot measure yaw. Gy-

roscopes (gyros) can measure angular rate which can then be used to derive

the angle. A sensor like the gyro can measure its own orientation and is very

useful in the UAV control problem.

The original spinning mechanical gyro uses conservation of momentum

to create gyroscopic forces which maintain a level orientation. Some of the

downfalls to mechanical gyros are their bulky size and fragility. The X-UFO

by SilverLit successfully uses a mechanical gyro for stabilization of the quad-

rotor helicopter. Unfortunately, the fragile wires of the gyro often break.

Micro-Electro-Mechanical Sensor (MEMS) gyros are beginning to manifest

themselves as an orientation sensor in many UAVs. MEMS gyros contain

vibrating masses that generate a force when they rotate due to Coriolis Forces.

By measuring these movements, angular rates can be determined. Some of the

advantages of MEMS gyros are their miniature size and durability. There are

many navigation sensors that use MEMS gyros for determining orientation,

including the MIDG II sensor.

MEMS Gyros can measure angular rates in the yaw, pitch, and roll di-

91

 Drift Error

Time

A
n

g
le

Actual

Measured

Figure A.4 A simulated example of drift error over time.

rections, as shown in Figure A.3. MEMS Gyros cannot directly measure the

orientation angles. Only inclinometers can directly measure orientation, and

they can only measure pitch and roll. To get the orientation angles from the

gyroscopes, the angular rates must be integrated to get angles as

θ = J−1
∫

ω − ωbias, (A.1)

where θ (t) ∈ R3 is the calculated orientation of the sensor with respect to an

inertia fixed frame, ω (t) ∈ R3 is the measured angular rate of the sensor with

respect to an inertia frame, ωbias (t) ∈ R3 is the angular rate bias that slowly

varies over time, and J−1 (t) is the Jacobian matrix. All sensors have errors

in their measurements. In the case of a MEMS gyro, an error will increase

over time, as seen in Figure A.4. The source of this error can be a bias in

the sensor, noise, or quantization error. In any event, a small error can grow

over time. A method of removing this error must be used to achieve accurate

readings, or else the sensor becomes ineffective in determining the angle. One

possible way of doing this is to calculate a slowly varying ωbias (t) to correct

for the drift.

After mounting the MIDG II onto the DraganFlyer X-Pro seen in Figure

A.5, the actual MEMS gyro data itself is heavily noisy, as seen in Figure A.6

and A.7. Figure A.6 shows MIDG II gyro readings while the sensor remains

92

MIDG II

Figure A.5 The MIDG II mounted on the DraganFlyer X-Pro UAV

93

 Gyro values over first 8 seconds

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

Time(sec)
R

a
te

(d
e
g

re
e
s
/s

e
c
)

?(pitch)

Figure A.6 Gyroscope data for 8 seconds before the quadrotor is powered.

 Gyro values over time

-30

-20

-10

0

10

20

30

0 10 20 30 40 50 60 70 80

Time(sec)

R
a
te

(d
e
g

re
e
s
/s

e
c
)

?(pitch)

Figure A.7 Gyroscope data for a experiment while quadrotor vibrate and the
angles are held constant.

still. In Figure A.7 from 10 to 60 seconds, the MIDG II gyro shows a large

change in the rates due to vibration from a DraganFlyer X-Pro helicopter while

the angle remained approximately still. This noise requires heavy filtering to

finally get a usable angle. The internal hardware of the MIDG II sensor uses

a Kalman filter with a secondary measurement method to remove the drift

error.

For the roll and pitch angles, the accelerometers act as the secondary

method of measurements. When the MIDG II sensor remains still, the ac-

celerometer readings will point one gravity (g) in the downward z-direction

according to the earth’s inertia frame. The difference in the sensor angle and

the known inertia angle will generate θacc ∈ R2 which is compared with θi

94

(A.1) to generate the ωbias for the roll and pitch angles to correct for drift.

The yaw angle is independent from gravity and cannot use the gravity vec-

tor to correct for drift, so an additional sensor must be used for correcting the

yaw drift. The secondary yaw sensor used in the MIDG II is a 3-axis magne-

tometer. Throughout the earth surface a magnetic field can be measured. A

north seeking compass is a primitive tool that can detect this magnetic field.

A 3-axis magnetometer actually measures this magnetic force (in milligauss)

in the x-, y-, and z-directions. These three pieces of information are magni-

tudes and allow the sensor to know the 3-D magnetic vector. What is desired,

however, is the yaw orientation. By projecting the vector on the x-y plane,

the yaw angle can be calculated relative to the North Pole. This assumes the

magnetic field in the area is approximately the constant (north seeking). This

assumption holds true as long as the sensor is not near ferrites or magnetic

fields. Three scalars can be used to determine up to two orientations and one

magnitude, as shown in Figure A.8. A point, P , contains two angles (θ and φ)

and one magnitude (ρ). Since there are two angles in the 3-D magnetic vector

(OP), it can potentially be used to measure a second orientation angle. How-

ever, this is not done since the accelerometers take care of pitch and roll. The

3-D magnetic vector cannot correct for a third orientation because the third

orientation rotates along the axis and cannot be measured. The accelerometers

follow the same reasoning and do correct for two orientations: pitch and roll.

With the accelerometers and magnetometers combined, three orientations are

measured. However, if the magnetic field and gravitational field line up, there

would be a singularity and one orientation cannot be measured. This does not

happen unless the magnetic field is no longer north seeking.

Both secondary measurement methods mentioned allow drift to be removed

and give a reference point to all orientations. For pitch and roll, zero degrees

is orthogonal to gravity. For yaw, zero degrees is north, assuming the mag-

netic field in the area is due to the earth’s magnetic field. The secondary

measurements are combined with the gyroscope data by Kalman filtering the

95

Figure A.8 Cartesian and Cylindrical coordinates

96

two together over time. This allows for the accelerometer vector to change a

little (by shaking the sensor around) without drastically changing the values

of pitch and roll, and allowing it to re-correct the values in seconds. In the

yaw case, a shift in the magnetic field causes the yaw heading to change in

only a few seconds. This is the cause for a great error in the yaw angle.

Magnetometer Problem

One of the applications for the MIDG II sensor is UAV application. Many

UAVs use gas power and will have no magnetic interference for the MIDG

II sensor. The DraganFlyer X-Pro is an electric helicopter with permanent

magnet motors and currents ranging from 30 to 70 amps (total current for

all four motors). The permanent magnets can be spaced 20 inches away from

the sensor, but the current is all over the DraganFlyer X-Pro and cannot be

avoided.

Figure A.9 shows a 3-D plot of magnetic field vectors shown as points in

x, y, and z from an experiment using the MIDG II on the DraganFlyer X-Pro.

The shift between the different ellipses shows the effects of interference in the

magnetic vectors. The magnetic field starts in ellipse a before the motors are

turned on. Ellipses b and c show an immediate shift in the direction of the

magnetic vector readings after turning on the helicopter. The magnetometer

readings vary throughout ellipses b and c depending on how much current

flows through the motors. The shift from ellipse a to b or c is across the x-

and y-axes, an error of up to 180◦. Such a large error is detrimental to the

operation of the sensor.

A magnetic source is not the only cause for disturbance in the earth’s mag-

netic field. The existence of a ferrous material alone can cause a shift in the

magnetic field, as shown in Figure A.10. Buildings, roads, and bridges com-

monly contain iron beams and rods for structural reinforcement. Rotomotion

uses a magnetometer for orientation data and cannot go near buildings for

this reason. This demonstrates one of the many possible errors observed when

97

a

b

c

Figure A.9 Magnetometer vector values

98

Figure A.10 Ferrous object disturbance in uniform magnetic field

using magnetometers.

Magnetometer Solution

The MIDG II sensor uses MEMS gyros for determining the orientations. If a

gyro is used by itself, there will always be a drift error due to a non-zero bias

and noise. The magnetometers are used to correct drift error over time by

monitoring the earth’s magnetic field for all time and continuously correcting

yaw ωbias (t).

The MIDG II sensor has three paths for the modes of operations: IMU,

VG, and INS. IMU path (Inertia Measurement Unit) is not used because it

only supplies raw unfiltered gyro and accelerometer information. INS (Inertia

Navigation System) path requires GPS and cannot be used inside of a building

where a majority of the experiments occur. The VG path (Vertical Gyro) uses

the gyros, accelerometers and magnetometers to generate yaw, pitch, and roll

values. The VG path has 5 sequential modes of operation: VG Initialize, VG

Fast, VG Med, VG Slow, and VG SE. Each mode is more accurate than the

last. VG SE mode can continue to INS path if GPS is engaged, or return to

VG Med mode if the gyro rates saturate (the sensor rotates too fast). To read

more about the different sensor modes, please see the MIDG II information

sheet “Operating Modes” [13].

Once in the VG SE mode, the MIDG II has a good estimation of the bias

in the system. The solution to the magnetometer problem is to correct for yaw

for only a limited period of time and not use the magnetometers in the VG

SE mode. If the magnetometers were simply not used in VG SE mode, then

99

(A.1) can be used with a constant value of ωbias for the yaw angle and any

drift error would only be due to variations in the yaw ωbias term. A modified

firmware is used to disable magnetometer readings in VG SE mode only.

It is important to have an accurate value of ωbias for yaw before entering

VG SE mode despite any magnetic interference. Even with the magnetometers

turned off in VG SE mode, if ωbias has a corrupted value there will be a large

drift over time due to the incorrect ωbias. To alleviate this problem, the sensor

remains motionless and the helicopter motors remain off until the sensor enters

VG SE mode. The only magnetic interferences that remain are fluctuations in

the magnetic fields due to ferrous materials, such as buildings. As long as the

magnetic field does not vary and does not line up with the gravitational field,

this solution works. There will still be a small drift error from the gyros, but

over a 15 minute time frame, it should be unnoticeable.

Upon implementing the new firmware, the magnetic interference due to

magnets and magnetic currents has no effect on the yaw reading at all. Micro-

botics Inc, maker of the MIDG II sensor stated that without the magnetometer

readings, the sensor can expect up to 5 degrees of error per minute. After a 10

minute experiment, there was an actual error of about 3 degrees. Even if there

was an error of 5 degrees a minute, it could be corrected with knowledge of the

sensor’s velocity. As the helicopter loses yaw, it would slowly move forward

in the wrong direction, and this can be detected and compensated for. It is

concluded that even a small 5 degrees per minute error would be acceptable,

given the 15 minute fly time of the DraganFlyer X-Pro.

GPS

The Differential GPS sensor is investigated to observer how it reacts under

normal conditions. In this experiment, the GPS sensor is positioned on top of

the Flour Daniel building and is held stationary while gathering data for 1 hour

and 45 minutes. All the GPS data from the MIDG II sensor is recorded during

this time. For this experiment, WAAS signals are not received. It has been

100

GPS Data (position)

-1200

-1000

-800

-600

-400

-200

0

200

400

600

0 1000 2000 3000 4000 5000 6000

Time(seconds)

P
o

s
it

io
n

(c
m

)

x(cm)

y(cm)

z(cm)

Figure A.11 GPS position values

difficult to receive WAAS signals during 2006 due to a change in the satellites,

according to Rotomotion. The ENU (east, north, up) GPS coordinates are

use where (0, 0, 0) is the starting point.

Figure A.11 shows the variation of the GPS positions over time. It can be

seen that the x varies 5 meters east and about 3 meters west, the y varies 4

meters north and 9 meters south, and the z varies 3 meters up and 7 meters

down. Figure A.12 shows the corresponding GPS velocities, which have been

observed to be more accurate. A direct integration of the GPS velocities yields

the positions seen in Figure A.13. The positions resulting from the integration

vary at a considerably slower rate, and only achieves an error of 2 meters in

the x- and y-directions by the end of the experiment. As expected, the error

in the z direction is larger with a 12 meter error by the end of the experiment.

The GPS values and accuracies are not the only attributes to consider.

The MIDG II DGPS sensor can achieve a GPS update every 200 milliseconds.

However, it does not always achieve this update rate. Figure A.14 shows

a histogram of the time between updates. A majority of the updates are

around 1 second, with 2077 of the samples exactly 1.0 seconds apart. The

most disturbing part of this is the GPS updates that took too long, with 44

101

GPS Velocities

-15

-10

-5

0

5

10

15

0 1000 2000 3000 4000 5000 6000

Time(sec)

V
e

lo
c

it
y
(c

m
/s

e
c
)

y_dot(cm/s)

z_dot(cm/s)

x_dot(cm/s)

Figure A.12 GPS velocity values

GPS data intergrated

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

0 1000 2000 3000 4000 5000 6000

Time (sec)

P
o

s
it

io
n

 (
c

m
)

x_int

y_int

z_int

Figure A.13 GPS velocities integrated to yield position

102

Figure A.14 Times between GPS updates

updates taking over 5 seconds. One update took over half a minute. Being

on top of a building, it is unlikely that the satellite connections were lost

and Figure A.15 shows a healthy number of satellites at all times. There are

always at least 6 satellites connected, and usually 9. Until this problem can

be resolved, it would be very difficult to reliably use the MIDG II GPS sensor.

If the sensor is fixed or replaced, the integrated GPS velocities and positions

can be filtered together, with a heavier emphasis on the velocities, to achieve

an accurate position.

103

365

842

1552

1751

122

0

200

400

600

800

1000

1200

1400

1600

1800

Count

6 7 8 9 10

Sattelites

Number of GPS Satellites

Figure A.15 Number of satellites receiving GPS signals from.

104

Appendix B

Signal Chasing for Theorem 1

According to Theorem 1 and its subsequent stability analysis from (3.62) to

(3.77), V (t) is bounded according to (3.77). Since the conditions in (3.71) and

(3.74) are guaranteed to be satisfied by some arbitrary variables that always

exist, it ensures that eω (t) and rv (t) are bounded. The desired trajectories,

vCICd (t) and ωCICd (t), are assumed to be bounded. The transformation matrices

R (Θ) and J−1F (Θ) are bounded under the assumption that θp
= ±π
2
, based on

the definition of (3.10) and (3.11) which applies to all rotation matrices. Now

it can be said that ev (t) in (3.26) is bounded, resulting in vCIC (t) in (3.25) and

ωCIC (t) in (3.42) being bounded. Thus vFIF (t) ∈ L∞ by (3.28) which results

in ẋIIF (t) ∈ L∞ by (3.2). Since JC (t) ∈ L∞ by (3.19)/(3.23), all elements

of B̄ (t) in (3.45) are bounded. ζ
(∥∥vFIF (t)

∥∥) can be shown to be upper and

lower bounded by the inequality in (3.53). N1 (·) and g are assumed to be

bounded, yielding N11 (·) and G11 (·) ∈ L∞ by (3.37) and (3.38). Now U1 (t)

and U2 (t) can be shown to be bounded in (3.52) and the lower half of (3.48).

Owing to B̄ (t) and U (t) ∈ L∞, Ū (t) is bounded by (3.46), yielding u1 (t),

ωFIF (t), and θ̇C (t) are bounded. Thus ωFFC (t) is bounded by (3.43). Owing to

ωFFC (t) ∈ L∞, S
(
ωFFC (t)

)
is also bounded by (3.6), resulting in ṘC

F (t) being

bounded by (3.30). Based on (3.10), JF (t) can be found to be

JF =




1 0 − sin (θ)
0 cos (ψ) sin (ψ) cos (θ)
0 − sin (ψ) cos (ψ) cos (θ)



 , (B.1)

which is bounded. Since ωFIF (t) ∈ L∞, Θ̇F
IF (t) is bounded by (3.8).

∥∥v̇CICd (t)
∥∥

is assumed to be upper bounded by β1 (t) expressed in (3.67). Owing to

U (t) ∈ L∞, ṙv (t) is bounded by (3.41) and v̇FIF (t) ∈ L∞ by modeling equation

(3.3). Therefore, we can conclude that all signals are bounded in the velocity

control of fly-by-camera interface.

105

BIBLIOGRAPHY

[1] FlightGear, http://www.flightgear.org/.

[2] T. I. Fossen, Marine Control Systems : Guidance, Navigation, and Control
of Ships, Rigs, and Underwater Vehicles, Marine Cybernetics, 2002.

[3] T. Hamel, R. Mahony, R. Lozano, and J. Ostrowski, “Dynamic Modelling
and Configuration Stabilization for an X-4 Flyer,” Proceedings of the
IFAC World Congress, Barcelona, Spain, July 2002.

[4] V. Chitrakaran, D. Dawson, H. Kannan, and M. Feemster, “Vision-
Based Tracking for Unmanned Aerial Vehicles.” Technical Report
CU/CRB/2/27/06/#1, College of Engineering and Science Control
and Robotics, Clemson University, Feb. 2006.

[5] V. Chitrakaran, D. Dawson, J. Chen, and M. Feemster, “Vision Assisted
Autonomous Landing of an Unmanned Aerial Vehicle,” Proceedings
of the IEEE Conf. on Decision and Control, Seville, Spain, pp. 1465-
1470, December, 2005.

[6] P. Pounds, R. Mahony, J. Gresham, P. Corke, and J. Roberts, “Towards
Dynamically-Favourable Quad-Rotor Aerial Robots,” Proc. of the
2004 Australasian Conf. on Robotics and Automation, Canberra,
Australia, Dec. 2004.

[7] G. Hoffmann, D. Rajnarayan, S. Waslander, D. Dostal, J. Jang, and C.
Tomlin, “The Stanford Testbed of Autonomous Rotorcraft for Multi
Agent Control (STARMAC)”, Proceedings of the 23rd Digital Avion-
ics Systems Conference, Salt Lake City, Utah, pp. 12.E.4-12.E.10,
November, 2004.

[8] J. Jang and C. Tomlin, “Longitudinal Stability Augmentation System De-
sign for the DragonFly UAV using a Single GPS Receiver,” Proceed-
ings of the AIAA Guidance, Navigation, and Control Conference,
Austin, Texas, AIAA Paper Number 2003-5592, August 2003.

[9] A. Tayebi and S. McGilvray, “Attitude Stabilization of a VTOL Quadrotor
Aircraft”, IEEE Transactions on Control Systems Technology, pp.
562-571, May 2006.

[10] T. Hamel and R. Mahony, “Attitude estimation on SO(3) based on direct
inertial measurements”, Proc. of the 2006 IEEE Int. Conf. on Ro-
botics and Automation, Orlando, Florida, pp. 2170-2175, May 2006.

[11] P. McKerrow, “Modelling the Draganflyer Four-Rotor Helicopter”, Proc.
of the 2004 IEEE Int. Conf. on Robotics and Automation, pp. 3596-
3601, New Orleans, April 2004.

[12] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an in-
door micro quadrotor”, Proc. of the 2004 IEEE Int. Conf. on Robot-
ics and Automation, New Orleans, Louisiana, pp. 4393-4398, April
2004.

[13] MIDG II INS/GPS Sensor, http://microboticsinc.com/ins gps.php.

[14] XTend RS-232/RS-485 RF Modem, http://www.maxstream.net/products
/xtend/rf-modem-rs232.php.

[15] Procerus Technologies: Vision-Centric, http://www.procerusuav.com
/cameraControl.php.

[16] QNX Software Systems, http://www.qnx.com/.

[17] QMotor Real-Time Control Environment, http://www.ece.clemson.edu
/crb/research/realtimesoftware/qmotor/index.htm.

[18] DraganFlyer X-Pro, http://www.rctoys.com/draganflyerxpro.php.

[19] Logitech Extreme 3D Pro Joystick, http://www.logitech.com/.

[20] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, John
Wiley and Sons, Inc: New York, NY, 1989.

[21] M. De Queiroz, D. Dawson, S. Nagarkatti, and F. Zhang, Lyapunov-Based
Control of Mechanical Systems, Birkhäuser, Boston, MA, 2000.

108

	Clemson University
	TigerPrints
	5-2007

	Linear and Non-Linear Control of a Quadrotor UAV
	Andrew Neff
	Recommended Citation

	swp0001.dvi

