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ABSTRACT

In maintaining, designing, and testing of OO systems, understanding the relationships be-

tween the classes and corresponding objects is imperative. Class diagrams provide program

visualization that promotes easier understanding of large systems. Class diagrams are espe-

cially helpful when systems become too large to conceptualize without automated graphical

illustration. There are many tools available to software developers that permit generation

of class diagrams for large scale computing applications, many of which use various pars-

ing approaches to extract information for a class diagram. In this paper, we compare and

evaluate three tools that extract information for class diagrams from different phases of the

compilation process: a fuzzy parse of the program, a parse tree representation of the pro-

gram, and an abstract syntax graph to represent the program. Using three tools we generate

class diagrams from a test suite of OO systems, and compute metrics on these diagrams as

a means of comparing them.
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Chapter 1

Introduction

The construction of object-oriented systems (OO) has become the norm for system de-

velopment and the OO approach has replaced the procedural approach as the standard for

software development. An important aspect of object-oriented systems is the high degree

of interaction among the objects. In the procedural approach, the items of interest are state-

ments and functions; graphs, such as control flow graphs and call graphs, have been devel-

oped to facilitate statement and function level analysis [1]. However, in the OO approach

the items of interest are classes and objects; graphical program representations have been

developed as part of the Unified Modeling Language, including class and object diagrams,

to facilitate class and object level analysis [7, 5].

In maintaining, designing, and testing of OO systems, understanding the relationships

between the classes and corresponding objects is imperative. Class diagrams provide pro-

gram visualization that promotes easier understanding of large systems. Class diagrams

consist of nodes and edges. The nodes of the diagram represent classes in the system. The

edges that connect the nodes represent interactions among the classes in the system. These

diagrams are helpful because they aid in visualization, maintenance, and testing of a sys-

tem. Class diagrams are especially helpful when systems become too large to conceptualize

without the assistance of automated graphical illustration.

There are many tools available to software developers that permit generation of class

diagrams for large scale computing applications [23, 22, 8, 13]. These tools use various

parsing approaches to extract information at different stages of compilation to generate the

class diagrams. One problem with the development of tools for C++ applications is that the

scope and inherent ambiguity of the grammar make parsing of the C++ language a daunting

task and this difficulty is well documented in the literature [4, 9, 10, 14, 15, 17, 19, 20, 21].



Another problem with the development of tools for class diagram construction is that

the UML specification is general enough to accommodate all programming languages but is

sometimes lacking in specification detail to permit distinction between some of the artifacts

for various graphical representations [7]. For example, the distinction between the edges

that represent the composition and aggregation relationships in class diagrams for C++ has

been difficult to interpret and has led to much ambiguity in the literature.

A final problem with the development of tools for class diagrams is that few studies have

been conducted that compare the class diagram generation tools using a standard, objective

set of criteria or metrics, most likely because a standard criteria that can accommodate

all languages is difficult to develop, especially for the C++ language. One comparison

study evaluated several class diagram construction tools for C++, but failed to develop a

methodology for standardizing the comparison of the various diagrams [16].

In this paper, we compare and evaluate three tools that extract information for class

diagrams from different phases of the compilation process: one tool uses a fuzzy parse

of the program, a second tool uses an abstract syntax tree representation of the program,

and the third tool uses an abstract syntax graph to represent the program. We compare

class diagrams obtained from these tools using a test suite of applications and compare

the generated class diagrams using a common schema to specify the nodes and edges in

the graph. Our study will use a textual representation of class diagrams to encode them

into a graphical exchange language (GXL) file. Using a single schema for all three tools

facilitates comparison of the class diagrams constructed using a test suite of medium-sized

applications.

In the next section, we review related work in the field of class diagram generation and

measuring class diagrams with a given set of metrics. In Section 3, we define the key terms

and concepts used in our study. In Section 4 we describe our methodology for generating

class diagrams from different tools that all conform to the same schema. This section also

describes the manner in which metrics are computed for these graphs. In the final section,

Section 5, we describe our case study involving a test-suite of object-oriented applications

that we use as input to the three tools for computation of class diagrams and metrics. This

section will also draw conclusions from the case study.
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Chapter 2

Related Work

Matzko et al. investigated class diagram construction through a tool called Reveal [16].

Reveal used Keystone as a front-end to parse the input and to reverse-engineer a class

diagram for C++ applications [15]. The tool included some UML extensions to accomodate

language constructs peculiar to C++ and utilized a full parse of the input to provide a more

precise class diagram. The Reveal tool used graphviz to provide visualization of class

diagrams to accomodate maintenance tasks for applications that are not bundled with design

artifacts [2].

The research also involved a comparison of the class diagrams produced by Reveal

with those produced by three other tools: Rational Rose, Together and SuperWomble [8, 22,

23]. However, the research did not investigate or compare the class diagrams produced at

different phases of the compilation process [16].

Tong Yi et al. present a comparison of UML class diagram metrics [25]. The authors

compare the usefulness of several metrics used to measure class diagrams. The metrics

compared are Marchesi’s Metric, Genero’s Metric, In’s Metric, Rufai’s Metric, Kang’s Met-

ric, and Zhou’s Metric. These various metrics rate a UML class diagram based on ratios

of number of classes, association, composition, and inheritance edges, along with several

other metrics. The authors use hand written class diagrams of small scale systems to test the

various metrics under study. The conclusion of the work suggests that each metric provides

insight for various system qualities.

Eichelberger presents discussion of metrics and aesthetics in class diagram generation

in [6]. The author is mainly concerned with the improvement of aesthetics in class diagram

generation. However, he does describe the necessity of using certain "design criteria" for

aesthetic diagrams [6]. Class diagrams are measured on such qualities as number of inheri-

tances, number of children, and complexity of associations. The work proposes changes to

the UML specification for class diagrams, which would enhance the presentation of class



diagrams. This applies to our study, because the author describes the set of important met-

rics in the study of class diagrams.
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Chapter 3

Background

In this section we review background information and definitions of concepts and con-

structs used in our paper. In the next section we review class diagrams including a discus-

sion of the kinds of edges that describe the relationships between classes in these diagrams.

In Section 3.2 we describe and distinguish parse trees and abstract semantic graphs (ASG),

and in Section 3.3 we discuss fuzzy parsing. We conclude this section with a discussion of

schemas and their use in validation of the syntax and semantics of a program.

3.1 UML Class Diagrams

Because of the complexity inherent in large programs, a developer, or group of developers,

may not be able to grasp the overall design of the system, even if those involved are familiar

with the source code. The Unified Modeling Language (UML) includes graph structures

to represent aspects of the program, providing an overview of the programs structure and

behavior[5]. The UML can help even non-programmers get a better grasp of the overall

functionality of the system.

A UML class diagram is a static representation of the program consisting of rectangles

to represent classes in the system and lines connecting the rectangles to represent the rela-

tionships between the classes. In UML, a class is represented as a box with three vertical

sections. The top section shows the name of the class. The middle section displays the

variables belonging to the class, with symbols representing the visibility (public, protected,

or private) and properties (constant or static). The bottom section contains the member

functions of the class. Each method has a name, signature, and properties.

There are four types of relationships in a class diagram: association, dependency, gen-

eralization and realization. Each relationship is represented in the diagram by a different

type of arrow.



An association is a structural relationship that describes a set of links, where a link is

a connection among objects. An association can be a one-way or two-way relationship.

Class A has an association with class B if class A has a data member of type B. If class B

also has a data member of type A, then the relationship is bi-directional. A directed arrow

to the associated class specifies a one-way relationship. A line (no arrowhead) signifies a

bi-directional relationship. Associations are often adorned with numbers or symbols rep-

resenting the multiplicity of the relationship, or how many objects of one class the other is

using.

Dependency is a semantic relationship between two classes in which a change to one

class (the independent class) may affect the semantics of the other class (the dependent

class). A method is said to use an object of a class if the object is passed in as a parameter,

created in the method, or returned from a method. In UML, dependencies are designated

by a dashed arrow from the dependent class to the class on which it depends. If both classes

depend on the other, a double-headed dashed arrow is used.

Dependency may also be used to show a special type of relationship between classes:

friendship. If class A is a friend of class B, class A can access class B’s private information.

Friend classes are denoted by a dependency arrow with the stereotype <<friend>> on the

arrow.

Generalization, or inheritance, is a specialization/generalization relationship where ob-

jects of the specialized element (the child) are substitutable for objects of the generalized

element (the parent). Realization is a semantic relationship between classifiers, wherein

one classifier specifies a contract that another classifier guarantees to carry out. In C++,

an abstract base class, parent, has one or more purely virtual methods that every immediate

child must overwrite. The contract between the parent and the child is that the child will

overwrite these methods. Abstract classes are written in italics. Children of abstract classes

are connected to the class by a dashed arrow with a hollow arrowhead.
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3.2 Graphical Representations of Code: Parse Tree & ASG

Given an input string, a parser derives a parse tree for the string (i.e., it parses the string).

As the parser progresses through the input program, it builds a tree of the productions that

are invoked. An abstract syntax tree (AST) is an abridged parse tree; an AST is constructed

by a parser in lieu of the unabridged parse tree with non-terminals, keywords, and punc-

tuation explicitly represented. Using the semantic rules for the input language, a semantic

analyzer transforms an AST to an abstract syntax graph (ASG). An ASG is often the out-

put of a compiler front end, and includes semantic information such as edges from variable

uses to their declarations, edges from type uses to their definitions, and for C++, template

instantiations and specializations.

3.3 Fuzzy Parsing

A fuzzy parser is the term given to a tool that parses a subset of a given language. Fuzzy

parsers were first described by Sniff; Koppler first attempted to formalize a definition of the

tool in [11]. Fuzzy parsers are used to parse a subset of a language to be used in software

tools needing only selected parts of an input. These tools are useful because they alleviate

the need for programmers to implement full parsers that perform a set of small tasks. Fuzzy

parsers are language specific tools that perform only the necessary actions on necessary

parts of an input source. A major disadvantage of fuzzy parsers is their limited reuseability.

These tools are implemented to fulfill specific tasks, and adding extra capabilities would

push the parser closer to a full implementation of the language parser. The other disadvan-

tage of fuzzy parsers is that they ignore semantic information; thus, any context sensitive

information is ignored by the tools created [11].

Fuzzy parser construction requires that the developer partition the set of input symbols

into those that will be recognized by the fuzzy parser and those that will not be recognized.

Additionally, the operations that the language will be permitted to perform on the chosen

set of input symbols must also be similarly partitioned. The input symbols that the fuzzy

parser requires are a subset of the full input language and are known as anchors of the

– 7 –



parser. The fuzzy parser performs its functions in the same manner that a normal parser

works: the lexical analyzer searches an input file for the given anchors. When the analyzer

encounters an anchor, it calls the parser to parse the input until the scanner encounters the

last token for the desired input string [11].

3.4 Schemas

A schema is a UML class diagram encoded in XML. XML provides a common base from

which any schema for representing software can be derived. A schema constrains the ways

that a class diagram can be represented. An XML validator is used to validate an instance

of a schema graph. Validating XML and the corresponding graph is important: validation

can reveal errors in both the modeling, and the generation of XML instances. In addition,

valid XML files are more likely to be accepted by available XML tools than non-valid files.
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Chapter 4

Methodology

Figure 4.1: Overview of the Comparison System.

The goal of our work is to compare class diagrams generated at different levels, or

phases, of the compilation process. To make an accurate comparison of the generated class

diagrams, all graphs should conform to the same schema so that nodes and edges in each

graph will have the same semantics. Using the schema conforming class diagrams, we

can compute the number of nodes and edges in class diagrams generated for the same

application at different phases of the compilation process.

The basic flow of our system is illustrated in Figure 4.1, where the input to our system,

a C++ Application, is shown on the left side of the figure. The C++ Application is then

processed by one of the three tools, listed in the tabbed box in the middle of Figure 4.1; the

three tools used in our comparison system are g4re, Doxygen, and parse2xml [3, 12, 13,

18, 24]. The g4re tool uses gcc to construct an ASG representation of the C++ Application

and we then traverse the ASG to build a class diagram. Doxygen is a fuzzy parser that

produces a class diagram as one form of output. Finally, parse2xml is a tool that generates

a parse tree in XML format as part of the compilation process. We then use a SAX parser

to traverse the parse tree and build a class diagram.

Each of the construction tools that we use produces a class diagram in GXL format and

the GXL will be syntactically and semantically validated against the GXL schema for a

class diagram using xmllint; this process is shown in the upper right corner of Figure 4.1.



Finally, the GXL representation of the class diagram is used as input to a tool that computes

some metrics for each class diagram. These metrics include the count of the number of

nodes and edges in the C++ Application. The edge count is further partitioned into the

number of inheritance, association, and composition edges.

4.1 Construction of a Parse Tree

To build a class diagram from the parse tree representation of an application, we traverse

the tree and process the token nodes in the tree. The parse tree uses an XML representation

of the C++ application. This methodology uses an parse tree, which is generated before

linking, so that some type information generated in normal compilation will not be included

in the parse tree output.

The tool, parse2xml takes as input the source code of an application, and its function

is to produce an XML representation of the parse tree for the application. The XML is

generated during the parsing phase of compilation. To do this, the file, parser.c, in GNUs

C++ compiler is modified to output each production in the parse. This step results in a

file containing many of the grammar productions, however there is some recursive descent

information from the parse included in the XML. This information is present because some

statements in an application generate a tentative parse using certain subtrees, which may

be used or rolled back. These statements describing tentative parsing and rollbacks are

removed using the tool postprocess. The postprocess tool produces the final version of the

parse tree, with only the necessary information in the tree.

To use the parse2xml tool on our test suite, we made changes to the manner in which

the files are compiled. When building a large test case such as fluxbox, compiling with

our modified parser resulted in an explosion of XML productions. This was a result of all

included files, such as standard library files, being parsed each time they are encountered in

a system. To prevent the large size of XML output, we compile all header files at the same

time, with a main file that includes all header information. We assert that this will result in

the same number of classes, inheritance edges, composition edges, and association edges.

If our work computed the number of dependence edges, the results may not be considered
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valid. By compiling all header files at once, we can obtain an XML output file of reasonable

size.

After the parse2xml tool has produced an XML representation of the parse tree, we

break the overall XML file into separate files for each class declaration. We use a SAX

parser written in perl to recognize the desired tree nodes. This is done so that our DOM

parser, which produces a class diagram, can be run quicker and more efficiently. Our tool

parse2xml.pl traverses each class declaration XML file and finds all the necessary infor-

mation for class diagrams. The first step in class diagram construction using the tool is to

recognize class declarations. These class declarations can be found as part of the ‘class

specifier’ productions. From this point, parent classes can be found using the ’base clause’

productions in the class specifier’s subtree. Finally, association and composition relation-

ships are found using the ‘member declaration’ subtrees of a class. Only class attributes that

are of user defined types are used to produce edges in the generated class diagram. Associa-

tion edges are found when the member variable’s declarator subtree contains a ptroperator

node. Composition edges are found when the member variable’s declarator subtree does not

contain a ptroperator node. All class declaration nodes and edge nodes are stored as nodes

in a intermediate XML document. The final step in our perl program for class diagram

construction is to parse the document and convert it to the GXL schema.

4.2 Using Doxygen to Build a Class Diagram

Doxygen uses a fuzzy parse of an application’s source code to create a class diagram for

the input application. Using the doxygen configuration file, we direct doxygen to generate

an inheritance graph for each class in the system in XML format. The inheritance graph

maps each child class to its parent in the application under study. Our responsibility in this

project is to convert the doxygen output format so that it conforms to our GXL schema for

class diagrams. We use doxygen version 1.5.1 in our study. Doxygen generates an inheri-

tance graph for each class in an application; our goal is to combine all of these diagrams,

interpret composition and association edges, and present them in the schema conforming

XML format. The first step in solving this problem is to run doxygen on all header and
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source files in a program, using the doxygen configuration file. When this step is complete,

all classes in the system will have a corresponding XML file, containing information about

its members, as well as the inheritance graph that corresponds to the class.

We use our perl tool1 to create a class diagram in our GXL schema using two steps.

The first step in this process is to traverse each class’s XML file and map class names to the

reference numbers in the XML file. This step creates an intermediate XML document in

memory that stores all classes, and edges between classes. All inheritance edges are found

using the inheritance graphs from the doxygen-generated XML files. Composition and

Association edges are found in a class’s memberde f tag. The second step in our perl tool

construction is to create a GXL file that conforms to our schema. The most intricate step in

this process is to ensure that edges are represented only once in the GXL file. Redundant

edges exist due to the replication of the inheritance graphs for each doxygen-generated

XML file.

4.3 Using g4re to Build an ASG

The general structure of creating a class diagram using an ASG is done by utilizing the g4re

tool chain. This tool uses an application programmer interface (API) for the ASG created

by g4re when an application is compiled using g++. From this API, the tool extracts class

declarations, inheritances, associations, and compositions, and presents them in either GXL

or Dot format. Since the GXL is a native output format for g4re, there is no conversion step

for the graph created by this tool. Since it makes use of the ASG created by the GNU

compiler, type information that is not present in the other two methods of extracting class

diagrams is available using the g4re tool.

The g4re tool creates a class diagram using the following method. A C++ application’s

source code is run through the gcc parser and front end, producing an ASG from gcc’s

GENERIC schema for its internal ASG. This ASG is then represented by the CppInfo API,

which is an abstraction of the ASG that an application can access to obtain information

about the original application. The g4re tool creates a class diagram by obtaining a list of

1The perl tool is dox2gxl.pl
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all user classes in a system from the API. For each class obtained, all base classes, member

functions, and member variables are obtained from the API.

4.4 Metric Computation using GXL Representation

For each class diagram created by the above methods, we compute a set of metrics. This

serves as a means for comparing the effectiveness of each method in finding the maximum

number of edges for each application. The metrics that we calculate are: number of associ-

ation edges, number of composition edges, and number of inheritance edges. These metrics

are calculated simply by traversing the GXL representation of a class diagram, and counting

the number of each type of node. Our tool gxlMetrics.pl does this traversal. The tool first

searches for all nodes in the GXL. If the node is a class node, the class count is increased.

Edge nodes are counted by finding all nodes that are either composition, association, or

inheritance nodes according to the GXL schema.
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Chapter 5

Case Study

In this section we describe the results of a comparison of the three tools used to build

class diagrams. All of our test cases were run on Intel Pentium 4 2.0 GHz processor, using

a 5400 RPM hard drive formatted with Extended 3 file system, and running Ubuntu version

6.06 operating system. The version of gcc used for compiling test programs for g4re is

version 4.0.3. The version of gcc used for the parse2xml tool is gcc version 4.0.0. We use

perl version 5.8.7 to run our scripts. We use sclc to compute the number of lines of code in

each system.

Section 5.1 will describe the various test cases used in our study. Section 5.2 will break-

down the amount of class nodes found for each test case for each methodology. Section 5.3

will investigate the number of edges found for all test cases in each methodology.

5.1 Test Suite

We use three test cases in our study. Fluxbox is a window manager system. We test fluxbox

version 1.13. Jikes is an open source JAVA to byte-code processor, in our test we use jikes

version 1.22. Doxygen is a fuzzy parser used to aid the documentation of source code, we

use doxygen version 1.5.2 in our test. Our final test case is Hippodraw. Hippodraw is a data

analysis system, that provides graphical analysis tools for C++ programs; we use version

1.15.8 in our tests. Table 1 depicts the various test cases used along with the number of

uncommented lines of code that are present in the system. This metric is important because

it only accounts for the number of source code lines that are present in the system.

5.2 Number of Class Nodes

Each tool under study generates a gxl encoding of the class diagram of a system. These

graphs all adhere to the same schema, and can thus be easily compared using the same



Test Case Doxygen FluxBox Jikes Hippodraw
Version 1.5.1 0.1.13 1.22 1.15.82
NCLOC (K) 161 20 70 55
Number header files 105 42 33 243

Table 5.1: Testsuite. This table lists the four test cases that we use in our study, together
with version number and statistics about the test cases.

Test Case Doxygen FluxBox Jikes Hippodraw
Number of Classes 238 95 284 21
Number of Edges 457 249 967 26
Inheritance Edges 188 47 170 10
Composition Edges 23 91 51 6
Association Edges 246 111 746 10

Table 5.2: Results for the Doxygen Test Case. This table lists the four test cases and the
metrics computed on Doxygen’s class diagram output.

metrics.

5.2.1 Doxygen Class Nodes

Doxygen extracts class nodes from input files and generates an XML file for each one.

Our tool interprets these files and builds a class diagram. Doxygen does not generate files

for templated classes or for forward declarations of classes such as those declaring classes

from standard library files. Therefore, large systems such as the source for hippodraw are

not properly represented. Doxygen finds 238 class nodes for its own source code. The

fluxbox test case results in ninety-five class nodes. This may seem like a large number

given the relatively small number of source files in the system. However, since fluxbox is a

window manager, it should make significant use of standard library and system header files

to achieve its goals. Doxygen documented 284 classes for the jikes system. This test case

contains the fewest amount of header files of all under test. But, the system has a higher

number of lines of code than fluxbox, which had a comparable number of header files. Fi-

nally, doxygen locates twenty-one classes for the hippodraw test case. The system’s source

folder contains nearly three hundred header files, though. This suggests that hippodraw has

several templated classes that are not included in doxygen’s search.
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Test Case Doxygen FluxBox Jikes Hippodraw
Number of Classes 358 1124 404 253
Number of Edges 635 1830 1805 382
Inheritance Edges 17 92 50 180
Composition Edges 511 1702 1733 29
Association Edges 107 36 22 173

Table 5.3: Results for the g4re Test Case. This table lists the four test cases and the metrics
computed on g4re’s class diagram output.

Test Case Doxygen FluxBox Jikes Hippodraw
Number of Classes 304 369 432 584
Number of Edges 1265 714 1236 3451
Inheritance Edges 213 138 258 419
Composition Edges 444 259 810 1925
Association Edges 608 317 168 1107

Table 5.4: Results for the parse2xml Test Case. This table lists the four test cases and the
metrics computed on parse2xml’s class diagram output.

5.2.2 g4re Class Nodes

The g4re system presents class diagrams that result from traversing the ASG of a system.

This means that g4re class diagrams should contain more class nodes than the other class

diagrams in our study. This is because the ASG will contain information about the types

used in instantiating templated classes. With this expectation, the g4re class diagrams for

the systems under test yield appropriate results. The doxygen source code yielded 562

classes. The fluxbox test case results in over eleven hundred class nodes. This implies that

the system heavily relies on templates, that are not recognized by the doxygen tool. The

jikes test case has few more class nodes using g4re, yielding a class diagram with 404 class

nodes. The g4re tool found 253 class nodes with the Hippodraw test suite.

5.2.3 Parse2xml Class Nodes

The parse2gxl tool produces class diagrams based on traversing the parse tree of a system.

Because of this, the tool should present more classes than a source trace, as is done in the

doxygen tool, but less than diagrams with semantic information, as is generated with g4re.

This is certainly true with the fluxbox test case. Our tool recognizes 369 classes in the

fluxbox system, which shows that some standard classes, as well as in-lined classes are

recognized with our tool. The jikes system is shown to have 432 class nodes, a number
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higher than the doxygen tool’s results. However, this is higher than the number found by

g4re. Hippodraw is shown to have 548 classes, which is higher than the number of classes

output by the g4re tool. The explanation for this inconsistency comes from the high number

of forward declarations of classes in the Hippodraw source. The g4re tool chain version

that we used does not handle these language constructs well. Finally, the doxygen test case

contained 304 classes.

5.3 Number of Edges

For the same reasons that the number of class nodes increased from tool to tool in our study,

we expect to observe increasing counts of edge nodes. Not only will the added class nodes

have their own member variables and inheritances that will add to the count, some classes

will contain template class edges. These were not counted by the tools that ignore semantic

information.

5.3.1 Doxygen Edge Nodes

Our doxygen tool converts doxygen’s class diagrams into the GXL schema that we use.

However, several problems arise when templates are introduced in a test case. As stated ear-

lier, doxygen only generates XML files for declared classes, not templated classes. There-

fore, when our tool encounters a class with an edge to a template class, there is no mapping

in our system. Therefore, all edges to template classes are ignored by our system, and give

alerts when found. The doxygen source contains several templated classes, and thus creates

several errors with the system. The number of all edges would increase for this system,

if the doxygen tool could extract all templated classes. Other systems do not generate the

alerts, and are assumed to be based on normal class declarations.

5.3.2 g4re Edge Nodes

The anticipated results of metrics computation for g4re class diagrams would be that more

edges will be present. Due to the fact that g4re incorporates semantic information into the

formation of its graphs, instantiated template classes, and member variables will increase
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the total number of edges. For the jikes and fluxbox test cases, this idea holds. Both

systems are shown to have over 1800 edges. The large majority of these edges come from

composition edges, which implies that each class contains member variables that template

classes. The doxygen test case had 1317 edges in its g4re class diagrams. Finally, the g4re

tool generated a diagram with 382 edge nodes.

5.3.3 Parse2xml Edge Nodes

The parse2xml tool should return results that are between those of the doxygen and g4re

tools. This is because the g4re tool uses semantic information, and the doxygen does not

parse to the depth that parse2xml does. Once again, the fluxbox and jikes test cases present

consistent results with this hypothesis. The doxygen test case follows the number of edges

consistenty. The Hippodraw test case exhibits unusual results for the number of edges, this

is due to the same explanation as the inconsistent number of classes mentioned above.
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Chapter 6

Conclusions and Future Work

There is a large number of tools available to developers that can reverse engineer a

class diagram for large scale applications. These tools use information extracted from dif-

ferent stages of compilation of the application to generate the class diagrams. Few studies

have compared these class diagram generation tools using a common framework to define

the semantics of nodes and edges and using a standard set of metrics. In this paper, we

have tested three tools that each extract information for class diagrams from different ap-

proaches or phases of compilation: a fuzzy parser, an abstract syntax tree, and an abstract

syntax graph. We compared the class diagrams obtained from these tools when run on a

test suite of applications. These diagrams, where each diagram was validated against a

common schema, were then compared. Our study indicates that each of the tools produces

markedly different results. Moreover, our results support our conjecture that class diagrams

constructed from a parse tree have more nodes and edges than class diagrams constructed

using a fuzzy parser. Furthermore, class diagrams constructed from an abstract semantic

graph (ASG) have more nodes and edges than class diagrams constructed from a parse tree.

The importance of our study is, firstly, to inform the software and reverse engineering

communities that class diagram generation tools can produce markedly different diagrams,

including different numbers of nodes and edges. Secondly, our study shows that the num-

bers of classes and edges indicated for the system under study can be larger, depending

on the phase of compilation used to extract information about the application. And fi-

nally, the results of our study can be used to guide developers in choosing an appropriate

class diagram generation tool. For example, for program comprehension and visualization,

class diagrams generated using a fuzzy parse of the program may be more efficient than

class diagrams generated using a full parse or semantic analysis of the application under

study. However, for debugging purposes, class diagrams generated using an ASG may pro-

vide more accurate information to guide fault localization. Our ongoing work features the



design of an evaluation study to characterize the type of analysis needed to address the re-

quirements at each phase of the software life cycle. The study will include the construction

of an assessment metric to evaluate the usefulness and appropriateness of class diagram

generation tools that use information gathered from different phases of compilation of the

application under study.
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