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ABSTRACT

New bounds on the probability of bit error are presented for a coded communica-

tion system with binary antipodal modulation and soft-decision maximum-likelihood

decoding over a correlated Rayleigh-fading channel. The bounds are closed-form ex-

pressions in terms of the code’s transfer function; they are illustrated by considering

a system using convolutional encoding. A long-standing conjecture regarding the

worst-case error event in correlated Rician fading is proven for the special case of

correlated Rayleigh fading, and it is used in the development of some of the new

bounds. The bounds are shown to be tighter than previously developed closed-form

bounds for communications using convolutional codes in correlated Rayleigh fading.



DEDICATION

In loving memory of my grandfather, Rev. James C. Hunnicutt, whose wisdom,

faith, and work ethic continue to inspire me.



ACKNOWLEDGMENTS

I would like to sincerely thank my advisor, Dr. Daniel Noneaker, for his generous

support throughout my undergraduate and graduate studies. His insight and direction

were invaluable to the development and preparation of this thesis. I would also like

to thank Dr. Michael Pursley and Dr. Carl Baum for taking the time to serve on

my thesis committee. Their feedback was greatly appreciated. I should also mention

that this research was made possible through the financial assistance of the U.S. Army

Research Office and the U.S. Army Research Laboratory, for which I am very grateful.

I would be remiss if I failed to acknowledge my parents, Keith and Brenda

Hutchenson, for without their unwaivering support and guidance through the years, I

surely would not be where I am today. And, of course, I would like to thank my lovely

wife, Holly, who has helped me in countless ways, and with whom I look forward to

spending the next chapter in my life.



TABLE OF CONTENTS

Page

TITLE PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. SYSTEM AND CHANNEL MODELS . . . . . . . . . . . . . . . 5

3. EVALUATION OF THE PAIRWISE ERROR-EVENT PROB-
ABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. BOUNDS ON THE PAIRWISE ERROR-EVENT PROBA-
BILITY FOR THE GENERAL CORRELATED CHANNEL . . . 13

4.1 Rational-Polynomial Bounds . . . . . . . . . . . . . . . . 13
4.2 Integral Bounds . . . . . . . . . . . . . . . . . . . . . . . 16

5. BOUNDS ON THE PAIRWISE ERROR-EVENT PROBA-
BILITY FOR THE EXPONENTIALLY CORRELATED CHAN-
NEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Minimum-Spacing Error Events . . . . . . . . . . . . . . . 19
5.2 Other Error Events . . . . . . . . . . . . . . . . . . . . . . 20



Table of Contents (Continued)

Page

6. THE EFFECT OF THE COVARIANCE PARAMETER ON
THE PAIRWISE ERROR-EVENT PROBABILITY FOR THE
EXPONENTIALLY CORRELATED CHANNEL . . . . . . . . . 29

7. BOUNDS ON THE PROBABILITY OF BIT ERROR FOR
THE EXPONENTIALLY CORRELATED CHANNEL . . . . . . 31

7.1 Rational-Polynomial Bounds . . . . . . . . . . . . . . . . 32
7.2 Integral Bounds . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Term-by-Term Corrections . . . . . . . . . . . . . . . . . 33

8. NUMERICAL RESULTS FOR THE EXPONENTIALLY COR-
RELATED CHANNEL . . . . . . . . . . . . . . . . . . . . . . . 37

8.1 Comparison of Block Interleaving with the Ideal Periodic-
Interleaving Model . . . . . . . . . . . . . . . . . . . . . . 37

8.2 Accuracy of the Bounds for the Ideal Periodic-Interleaving
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



LIST OF FIGURES

Figure Page

8.1 Simulations with ideal periodic and block interleaving for the
NASA standard, K = 7, rate-1/2 convolutional code for DT =
10−3 and a block size of 1200 (code) bits. . . . . . . . . . . . . . . . 40

8.2 Simulations with ideal periodic and block interleaving for the
NASA standard, K = 7, rate-1/2 convolutional code for various
normalized Doppler spreads and an interleaving depth of 24 bits. . 42

8.3 Bounds and simulation results for the NASA standard, K = 7,
rate-1/2 convolutional code for DT = 10−1 and an interleaving
depth of 24 bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.4 Bounds and simulation results for the NASA standard, K = 7,
rate-1/2 convolutional code for DT = 10−2 and an interleaving
depth of 24 bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.5 Bounds and simulation results for the NASA standard, K = 7,
rate-1/2 convolutional code for DT = 10−3 and an interleaving
depth of 24 bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.6 Term-by-term corrections of integral bounds for the NASA stan-
dard, K = 7, rate-1/2 convolutional code, DT = 10−3, and an
interleaving depth of 24 bits . . . . . . . . . . . . . . . . . . . . . . 48



CHAPTER 1

INTRODUCTION

Many communication systems employ code-symbol interleaving to minimize the

effect of channel memory on the decoding of a message received over a fading channel.

If the interleaving depth is sufficiently large in relation to the rate of fading in the

channel, the effect of the channel on the decoder performance for a trellis code can be

accurately approximated as independent fading of channel symbols into the decoder.

For many scenarios of practical interest, the independence approximation is overly

optimistic, however, and the effect of finite interleaving depth must be accounted for

in the evaluation of system performance.

The instance of this problem that has received the greatest attention in past re-

search concerns the performance of a system with convolutional coding and binary an-

tipodal modulation, a Rayleigh-fading channel, and soft-decision maximum-likelihood

sequence detection (Viterbi decoding) at the receiver. Several approaches have been

employed to obtain expressions for an upper bound on the average probability of bit

error in this circumstance. For any error event of the code, the exact pairwise error-

event probability can be expressed in closed form in terms of the eigenvalues of the

associated channel covariance matrix [1].

The closed-form expressions for pairwise error-event probabilities can be used in

turn to express the union bound on the average probability of bit error or first event

error as an infinite series. (For example, see numerous references cited in [2].) The



series can not be expressed in a closed form, however; thus in practice it can be used

only to determine a partial sum that is an approximation to the union bound. A

partial sum determined in this way does not necessarily yield an upper bound on the

average probability of bit error.

A closed-form expression for an upper bound on the probability of error can be

obtained using any closed-form upper bound on the pairwise error-event probability

that is a linear combination of geometric functions of the Hamming weight of the

error event. The function can be employed with flow-graph techniques to obtain a

transfer-function bound on the union bound (and thus on the average probability of

error) [3]. This approach has been employed for convolutional coding and independent

Rayleigh fading to obtain a transfer-function bound based on the Chernoff bound on

the pairwise error-event probability[4] or an improvement of the Chernoff bound [5].

The same approach has been used to obtain transfer-function bounds for convo-

lutional coding and correlated Rayleigh fading [6, 7]. A fading-channel model that is

commonly used in system analysis employs an exponential time-correlation function

for the correlated Rayleigh fading, which results in a zero-mean, first-order Gauss-

Markov channel. The exponentially correlated Rayleigh-fading channel is among

those considered in [6], and it is the sole focus of [7].

A closed-form expression for the exact union bound on the average probability

of bit error is developed in [8] in terms of a single-dimensional improper integral

and in [9] in terms of a single-dimensional proper integral. Either can be evaluated

accurately with numerical techniques of reasonable complexity. The results in both

2



papers are limited to channels with independent fading, however.

In this thesis we develop several new, simple bounds on the pairwise error-event

probability for communications in correlated Rayleigh fading with an arbitrary time-

correlation function. For the channel with exponentially correlated fading and an

error event of a given Hamming weight and an arbitrary spacing of channel symbols,

we show that the pairwise error-event probability and its Chernoff bound are no

greater than the corresponding values for an error event of the same Hamming weight

and minimum spacing of symbols. We also develop improved, closed-form upper

bounds on the average probability of bit error for soft-decision maximum-likelihood

sequence detection of a convolutional code with correlated Rayleigh fading and perfect

channel-state information at the receiver. Our new results for the pairwise error-event

probability and the average probability of bit error can be adapted to yield similar

bounds for uniform trellis codes. The results for the pairwise error-event probability

are also directly applicable to performance analysis for uncoded diversity signaling.

They may also prove useful in the analysis of performance for other communication

systems, including those using turbo codes and space-time codes.

The system and channel are described in Chapter 2. Previous results giving an

expression for the exact pairwise error-event probability are reviewed in Chapter 3. In

Chapter 4, we develop improved geometric-form bounds and related integral bounds

on the pairwise error-event probability for a general correlated channel. Further re-

sults on the pairwise error-event probability that are specific to the exponentially

correlated channel are developed in Chapters 5 and 6. The results of Chapter 5 are

3



used in Chapter 7 to obtain several new transfer-function bounds on the average

probability of bit error. Examples are considered in Chapter 8 to illustrate the im-

provement the new bounds provide over the best previously developed closed-form

bound, and conclusions are summarized in Chapter 9.

4



CHAPTER 2

SYSTEM AND CHANNEL MODELS

Each binary code word c = (c1, c2, ..., cL) from the convolutional encoder is passed

through an arbitrary interleaver of designed interleaving depth m. The resulting bi-

nary sequence at the output of the interleaver c̃ = (c̃1, c̃2, ..., c̃L), which is transmitted

using binary antipodal modulation. The channel is piecewise-constant with additive

white Gaussian noise. The baseband-equivalent received signal is given by

r(t) =

√
Ec

T

L∑

k=1

α̃k(−1)c̃kψT (t− kT ) + n(t),

where n(t) is the white Gaussian noise process with double-sided, baseband-equivalent

power spectral density of N0/2. The channel-symbol duration is T , and ψT (t) is a

complex pulse of unit average power that is time-limited to [0, T ).

The baseband-equivalent channel gain α̃k during the kth channel-symbol interval

is a complex-valued, zero-mean Gaussian random variable with unit variance. Thus

the average energy per received channel symbol is Ec, and the channel-symbol signal-

to-noise ratio in the received signal is

SNR =
Ec

N0

.

In Chapters 3 and 4, an arbitrary autocorrelation function is considered for the

discrete-time Gaussian random process (α̃1, . . . , α̃L). In Chapters 5-8, attention is



restricted to a channel that has the autocorrelation function given by

Cov(α̃k, α̃j) = exp(−2π|k − j|BdT ),

however. The latter discrete-time random process thus has a geometric time-correlation

function, and it characterizes the piecewise-constant approximation to the Rayleigh-

fading channel with an exponential time-correlation function and Doppler spread Bd

[10]. In keeping with common usage (e.g, [7]), in this thesis the piecewise-constant

channel is referred to as the exponentially correlated channel. The normalized Doppler

spread of the channel is defined as DT , BdT .

The complex correlator output for the kth code symbol at the receiver is the

code-symbol statistic

Z̃k =

∫ (k+1)T

kT

r(t)ψ∗T (t− kT ) dt =
√

EcT α̃k(−1)c̃k + Nk,

where (Nk) are i.i.d. zero-mean, complex-valued Gaussian random variables with

variance N0T/2. The correlator outputs are deinterleaved prior to decoding. The

sequence of statistics at the output of the deinterleaver (going into the decoder) is

denoted by (Z1, . . . , ZL), which corresponds to the original ordering of code symbols in

c. The corresponding reordered channel gains are similarly denoted by (α1, . . . , αL).

Maximum-likelihood sequence detection is used at the receiver based on the code-

symbol statistics and perfect estimates of the channel gains. Thus the correlator

6



form of the path metric is given by

M(c) =
L∑

k=1

Re{(−1)ckα∗kZk},

and the sequence detector chooses the code sequence with the largest path metric.

It is desired that consecutive code-symbol statistics into the decoder correspond

to channel symbols that are transmitted at least m channel-symbol intervals apart,

and a well-designed interleaver ensures that this objective (the designed interleaver

depth) is achieved over any span corresponding to low-weight error events in the code.

Interleavers of practical utility are periodic interleavers [11]. Periodic interleavers in-

clude rectangular block interleavers (defined in Section 8.1) and convolutional inter-

leavers [12] (referred to as “periodic interleavers” therein), among others. No practical

periodic interleaver can achieve any designed interleaving depth greater than one over

all code-symbol spans; thus each periodic interleaver achieves its design objective only

approximately.

In this thesis, we use the approximation that the designed interleaver depth m is

achieved over all code-symbol spans so that any two code-symbol statistics Zj and

Zk correspond to channel symbols transmitted m|j − k| symbol intervals apart. We

refer to this as the ideal periodic-interleaving model, for which

Cov(αk, αj) = exp(−2πm|k − j|DT ). (2.1)

7



For convenience we define the covariance parameter of the system as

q , exp(−2πmDT ).

Thus

Cov(αk, αj) = q|k−j|. (2.2)
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CHAPTER 3

EVALUATION OF THE PAIRWISE ERROR-EVENT PROBABILITY

The pairwise error-event probability at the decoder output can be expressed in

a closed form as shown in [13]. This chapter summarizes the development in that

earlier paper and defines notation used in our development of new results presented

in the subsequent chapters. In the remainder of the thesis, assume without loss of

generality that c is the all-zeros code sequence. Let ĉ represent a code sequence of

length L with Hamming weight d. The receiver chooses ĉ over c if M(ĉ) > M(c).

Therefore, if c is the transmitted code sequence, the conditional pairwise error-event

probability given α for the sequence ĉ is

P (ĉ, α) = P

{
L∑

k=1

Re{|ck − ĉk|α∗k Zk} < 0

}
.

For convenience, let A = {αi1 , · · · , αid} correspond to the d positions of the er-

roneous code symbols in ĉ. Conditioned on A, the statistics {Zi1 , · · · , Zid} are inde-

pendent, complex-valued, Gaussian random variables. Thus the conditional pairwise

error-event probability given A is given by

P (ĉ, A) = Q




√√√√2Ec

N0

d∑

k=1

|Ak|2

 . (3.1)

Let ΣA = E[A AH ] denote the covariance matrix of A; it is referred to as the

channel covariance matrix for the corresponding error event. Since ΣA is Hermitian,



it can be represented by its spectral decomposition [14, Theorem 5.2.1]

ΣA = UΛUH .

The matrix U is unitary, and Λ = diag{λ1, . . . , λd} where (λk) are the eigenvalues

of ΣA where, without loss of generality, 0 ≤ λ1 . . . ≤ λd. (The eigenvalues are

nonnegative since ΣA is nonnegative definite.) If

Y , UHA,

it follows that

Y HY = (UHA)HUHA = AHA,

and the covariance matrix of Y is

ΣY = E[UHA(UHA)H ]

= UHΣAU

= Λ.

Thus Var[Yk] = λk for 1 ≤ k ≤ d. Since ΣY = Λ is diagonal, the random variables

{Y1, . . . , Yd} are uncorrelated and thus independent (since they are jointly Gaussian).

Therefore, we can replace
∑d

k=1 |Ak|2 in (3.1) with
∑d

k=1 |Yk|2, which replaces a sum

of correlated random variables with a sum of independent random variables.

10



We define

Vk , 2Ec

N0

|Yk|2,

which has an exponential distribution with probability density function

fVk
(v) =

1

2λkEc/N0

exp

(
− v

2λkEc/N0

)
,

and moment generating function

ΦVk
(s) =

1

2λkEc/N0

(
1

2λkEc/N0

− s

)−1

.

If X ,
∑d

k=1 Vk, then the moment generating function of X is

ΦX(s) =
d∏

k=1

ΦVk
(s).

Once a partial fraction expansion is performed on ΦX(s), the probability density

function of X, fX(x), is readily obtained. The pairwise error-event probability can

now be expressed as

P (ĉ) =

∫ ∞

x=0

Q(
√

x)fX(x) dx. (3.2)

A closed-form expression for (3.2) is obtainable, but the form of the expression

depends on the number and multiplicity of the distinct eigenvalues. The closed-form

expression for the pairwise error-event probability is given below for two special cases.

11



Special Case 1: λk = λ for 1 ≤ k ≤ d

The trace of a matrix is not changed by a diagonalizing transformation. Therefore,

∑d
k=1 Var(Yk) =

∑d
k=1 Var(Ak) = d, which for this case implies that each Yk has unit

variance. Thus X is a gamma-distributed random variable, and its probability density

function is

fX(x) =
xd−1

Γ(d)(2Ec/N0)d
exp

(
− x

2Ec/N0

)

for x ≥ 0. Substitution of this expression into (3.2), followed by standard techniques

of integration, results in

P (ĉ) =
1

2
− 1

2

√
Ec/N0

1 + Ec/N0

d∑
i=1

(
2i

i

)
[4(1 + Ec/N0)]

−i . (3.3)

Special Case 2: {λ1, . . . , λd} are distinct

The probability density function of X is given by

fX(x) =
1

2

d∑
i=1

(∏

j 6=i

γi

γi − γj

)
1

γi

exp

(
− x

2γi

)
,

for x ≥ 0. Substitution into (3.2) and standard techniques of integration yield

P (ĉ) =
1

2

d∑
i=1

(∏

j 6=i

λi

λi − λj

)[
1−

√
λiEc/N0

1 + λiEc/N0

]
.

12



CHAPTER 4

BOUNDS ON THE PAIRWISE ERROR-EVENT PROBABILITY FOR THE

GENERAL CORRELATED CHANNEL

In Chapter 7, bounds on the pairwise error-event probability are used to determine

new transfer-function bounds on the probability of bit error. This requires a bound on

the pairwise error-event probability that is a linear combination of geometric functions

of the Hamming weight of the error event. New bounds of this type are developed in

this chapter which serve as intermediate results for use in Chapter 7. In the following

chapters, P (Σ) is used to denote the pairwise error-event probability for the error

event with channel covariance matrix Σ in order to emphasize its dependence on Σ.

Similarly, PC(Σ) is used to denote the Chernoff bound on the same probability.

4.1 Rational-Polynomial Bounds

The random variables (Vk) are independent; thus, the pairwise error-event prob-

ability can be expressed as

P (ΣA) =

∫ ∞

vd=0

. . .

∫ ∞

v1=0

Q(
√

v1 + . . . + vd) fV1(v1) . . . fVd
(vd) dv1 . . . dvd. (4.1)

Substituting the upper bound

Q(x) ≤ 1

2
exp(−x2/2),



for x ≥ 0, from [3] into (4.1) yields the Chernoff bound

P (ΣA) ≤ PC(ΣA) =
1

2

d∏

k=1

(1 + λkEc/N0)
−1, (4.2)

as in [7, equation (7)]. A geometric-form upper bound on the pairwise error-event

probability is obtained from any non-negative lower bound λlb on the eigenvalues of

ΣA. Since λlb ≤ λk for all k, it follows from (4.2) that

P (ΣA) ≤ 1

2
(1 + λlbEc/N0)

−d (4.3)

as in [7, equation (9b)].

A new geometric-form upper bound on the pairwise error-event probability is

obtained from any non-negative lower bound λlb and any upper bound λub on the

eigenvalues of ΣA. Its development uses the following lemma.

Lemma 4.1. Suppose 0 ≤ λlb ≤ λub and C ≥ 0. For any x, 0 ≤ x ≤ 1,

(1 + λ∗C)−1 ≤ (1 + λlbC)−x(1 + λubC))−(1−x), (4.4)

where

λ∗ = xλlb + (1− x)λub.

Proof: Let φ(z) = log[(1 + zC)−1], for z > 0. The second derivative of φ(z) is

φ
′′
(z) = C2(1 + zC)−2, which is strictly positive. Therefore, φ(z) is convex, and by

14



Jensen’s inequality [15],

φ(λ∗) ≤ x φ(λlb) + (1− x) φ(λub).

Replacing φ(z) with log[(1 + zC)−1] we obtain

log[(1 + λ∗C)−1] ≤ log[(1 + λlbC)−x · (1 + λubC)−(1−x)].

Taking the anti-logarithm of both sides of the inequality results in (4.4). ¤

Lemma 4.1 is used in the proof of the new bound, which is given as the following

theorem.

Theorem 4.1.

P (ΣA) ≤ [
(1 + λlbEc/N0)

−y (1 + λubEc/N0)
−(1−y)

]d
, (4.5)

where 0 ≤ y ≤ 1 and satisfies

1 = yλlb + (1− y)λub.

15



Proof: Let xk satisfy λk = xkλlb + (1 − xk)λub. Applying Lemma 4.1 with

C = Ec/N0 to (4.2), we have

P (ΣA) ≤
d∏

k=1

(1 + λlbEc/N0)
−xk(1 + λubEc/N0)

−(1−xk)

=
[
(1 + λlbEc/N0)

−y (1 + λubEc/N0)
−(1−y)

]d
,

where y = 1
d

∑d
k=1 xk. Because the trace of a matrix is equal to the sum of its

eigenvalues and tr{ΣA} = d, we know that

d =
d∑

k=1

λk =
d∑

k=1

(xkλlb + (1− xk)λub).

Dividing by d, we see that y must satisfy 1 = yλlb +(1−y)λub and that λlb ≤ 1 ≤ λub.

Thus 0 ≤ y ≤ 1. ¤

An example of lower and upper bounds λlb and λub applicable to any covariance

matrix ΣA are those obtained from Gers̆gorin’s Theorem [14, Theorem 10.6.1], though

the resulting lower bound λlb is useful (positive) only if the matrix is strictly diagonally

dominant [14, page 373].

4.2 Integral Bounds

In this section, the generalization to correlated Rayleigh fading of an equality

developed in [9] is used in developing further bounds. The function Q(x) can be

16



expressed as the proper integral [9]

Q(x) =
1

π

∫ π/2

θ=0

exp

( −x2

sin2 θ

)
dθ.

Use of this representation in (4.1) (followed by a change of the order of integration)

results in an exact proper-integral expression for the pairwise error-event probability

P (ΣA) =
1

π

∫ π/2

θ=0

d∏

k=1

[
sin2 θ

sin2 θ + λkEc/N0

]
dθ (4.6)

as in [16, equation (7)]. The two approaches considered in the previous section can be

mimicked here to obtain integral bounds that are appropriate for use with the code’s

transfer function.

The first upper bound is obtained by noting that (sin2 θ+λlbEc/N0)
−1 ≥ (sin2 θ+

λkEc/N0)
−1 for all k so that

P (ΣA) ≤ 1

π

∫ π/2

θ=0

[
sin2 θ

sin2 θ + λlbEc/N0

]d

dθ (4.7)

following [17, equation (22)]

Application of Lemma 4.1 with C = Ec/(N0 sin2 θ) leads immediately to the

second, tighter upper bound

P (ΣA) ≤ 1

π

∫ π/2

θ=0

[
(sin2 θ)(sin2 θ + λlbEc/N0)

−y(sin2 θ + λubEc/N0)
−(1−y)

]d
dθ, (4.8)
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where 0 ≤ y ≤ 1 and satisfies

1 = yλlb + (1− y)λub.

If λlb and λub are chosen such that yd is an integer, partial-fraction expansion of

(4.8) results in an alternative expression as the difference of two terms of the form of

(3.3). The same approach, followed by application of [18, equation (5.A.3)], results

in the difference of two expressions in the form of the Gauss hypergeometric function

if yd is not an integer.
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CHAPTER 5

BOUNDS ON THE PAIRWISE ERROR-EVENT PROBABILITY FOR THE

EXPONENTIALLY CORRELATED CHANNEL

5.1 Minimum-Spacing Error Events

Consider the notional error event of Hamming weight d corresponding to d con-

secutive code symbols in the code sequence detected by the decoder, which we will

refer to as the minimum-spacing error event of weight d. (For a particular code and

a given value of d, it may be that no such error event is actually possible.) For

the ideal periodic-interleaving model and a Rayleigh-fading channel with exponential

time correlation, it follows from (2.2) that

Cov(αi, αj) = q|i−j|

for the minimum-spacing error event .

Let Σms(d) denote the channel covariance matrix for the minimum-spacing error

event of weight d. It is shown in [1] that the eigenvalues of Σms(d) are bounded by

(
1− q

1 + q

)
≤ λk ≤

(
1 + q

1− q

)
(5.1)

for all k. (The upper bound also follows from Gers̆gorin’s Theorem.) Moreover, from

the implicit solution given in [1] for the eigenvalues of Σms(d), it follows that the



bounds given by (5.1) are asymptotically tight in d as d → ∞. Thus they are the

tightest fixed bounds which are applicable to the minimum-spacing error events for

all values of d.

5.2 Other Error Events

Suppose B is the channel covariance matrix for an arbitrary error event of weight

d. Let B̂ denote the channel covariance matrix for a new notional error event that

results from the insertion of an additional zero at some location in the code sequence

for the original error event. Therefore, the two matrices can be expressed as

B =




B11 B12

B21 B22


 and B̂ =




B11 qB12

qB21 B22


 . (5.2)

The eigenvectors of B are denoted b1, . . . , bd with corresponding eigenvalues γ1 ≤

. . . ≤ γd. The eigenvectors of B̂ are denoted b̂1, . . . , b̂d with corresponding eigenvalues

γ̂1 ≤ . . . ≤ γ̂d. Because B and B̂ are covariance matrices, both are nonnegative

definite.

Lemma 5.1. All eigenvalues of B̂ are within the interval [γ1, γd].

Proof: Let

f1(x) , xT
1 B11x1 + xT

2 B22x2

and

f2(x) , xT
1 B12x2 + xT

2 B21x1,
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where x =




x1

x2


, with x1 and x2 having the appropriate dimensions. Therefore,

xT Bx = f1(x) + f2(x) and xT B̂x = f1(x) + qf2(x).

For any unit-length vector x, b̂
T

d B̂b̂d ≥ xT B̂x. Thus

f1(b̂d) + qf2(b̂d) = b̂
T

d B̂b̂d ≥ b̃
T

d B̂b̃d = f1(b̂d)− qf2(b̂d)

where

b̃d =




b̂d,1

−b̂d,2


 .

Consequently, f2(b̂d) ≥ 0 and

b̂
T

d Bb̂d = f1(b̂d) + f2(b̂d) ≥ f1(b̂d) + qf2(b̂d) = b̂
T

d B̂b̂d.

Thus,

γd = bT
d Bbd ≥ b̂

T

d Bb̂d ≥ b̂
T

d B̂b̂d = γ̂d.

Similarly, f2(b̂1) ≤ 0, and consequently, γ1 ≤ γ̂1. It follows that γ̂k ∈ [γ̂1, γ̂d] ⊆ [γ1, γd]

for 1 ≤ k ≤ d. ¤
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Lemma 5.2. If the channel is exponentially correlated, the eigenvalues of the channel

covariance matrix for each weight-d error event are within the interval [λms,1, λms,d],

where λms,1 and λms,d are the minimum and maximum eigenvalues, respectively, of

Σms(d).

Proof: The code sequence of any weight-d error event is obtained from the

code sequence of the minimum-spacing error event of weight d by inserting a fi-

nite number of zeros into the latter sequence. Through repeated application of

Lemma 5.1, it follows that eigenvalues from all weight-d error events fall within the

range [λms,1, λms,d]. ¤

Lemma 5.3. If the channel is exponentially correlated, the eigenvalues of the channel

covariance matrix for any error event (of any weight) are bounded by (5.1).

Proof: This follows immediately from Lemma 5.2, because (5.1) applies to λms,1

and λms,d. ¤

The following two theorems follow directly from Lemma 5.3.

Theorem 5.1. If the channel is exponentially correlated, the bounds on the pairwise

error-event probability in (4.3) and (4.5) hold for all weight-d error events if the

eigenvalue bounds in (5.1) are used for λlb and λub, respectively.
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Theorem 5.2. If the channel is exponentially correlated, the bounds on the pairwise

error-event probability in (4.7) and (4.8) hold for all weight-d error events if the

eigenvalue bounds in (5.1) are used for λlb and λub, respectively.

Stronger results are obtained from further consideration of the relationship be-

tween the matrices B and B̂. Define the matrix

C(u) = (aI + B11)− u2B12(aI + B22)
cB21

as a function of u, where a ≥ 0 is a constant and (aI + B22)
c is the c-inverse of

aI + B22 defined by

(aI + B22)(aI + B22)
c(aI + B22) = (aI + B22).

If (aI + B22)
−1 exists, the matrix C(u) is referred to as the Schur complement [14] of

aI + B22 in the matrix

aI +




B11 uB12

uB21 B22


 .

Following [19, Theorem 8.2.1],

|aI + B| = |aI + B22| · |C(1)| and |aI + B̂| = |aI + B22| · |C(q)|.

23



Lemma 5.4. xT C(1)x ≤ xT C(q)x, ∀x

Proof: The matrix B is nonnegative definite because it is a covariance matrix.

It follows that aI + B is nonnegative definite; and C(1) is nonnegative definite [19,

Theorem 12.2.21]. The matrices aI+B11 and aI+B22 are nonnegative definite because

they are principal submatrices of aI+B. Therefore, (aI+B22)
c is nonnegative definite

and

xT B12(aI + B22)
cB21x = xT BT

21(aI + B22)
cB21x

= (B21x)T (aI + B22)
c(B21x)

≥ 0,

i.e. B12(aI + B22)
cB21 is nonnegative definite. But 0 ≤ q < 1; thus,

xT C(1)x = xT (aI + B11)x− xT B12(aI + B22)
cB21x

≤ xT (aI + B11)x− q2xT B12(aI + B22)
cB21x

= xT C(q)x. ¤

Lemma 5.5. |aI + B̂| ≥ |aI + B| for any constant a ≥ 0.

Proof: Let η1 ≤ η2 ≤ . . . ≤ ηn represent the eigenvalues of C(1), with cor-

responding eigenvectors x1, x2, . . . , xn, and let η̂1 ≤ η̂2 ≤ . . . ,≤ η̂n represent the

eigenvalues of C(q), with corresponding eigenvectors x̂1, x̂2, . . . x̂n. From Lemma 5.4
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and the fact that η̂n ≥ xT C(q)x for any unit-norm vector x,

η̂n ≥ xT
nC(q)xn ≥ xT

nC(1)xn = ηn.

Suppose 1 ≤ i ≤ n− 1. There is a unit-norm x ∈ span{xn, xn−1, . . . , xn−i} such that

x is orthogonal to span{x̂n, x̂n−1, . . . , x̂n−i+1}, because

dim{xn, xn−1, . . . , xn−i} = dim{x̂n, x̂n−1, . . . , x̂n−i+1}+ 1.

It follows that

ηn−i ≤ xT C(1)x ≤ xT C(q)x ≤ η̂n−i.

Thus η̂k ≥ ηk, for 1 ≤ k ≤ n, and

|aI + B̂| = |aI + B22| · |C(q)|

= |aI + B22|
n∏

k=1

η̂k

≥ |aI + B22|
n∏

k=1

ηk

= |aI + B22| · |C(1)|

= |aI + B|. ¤

Theorem 5.3. If the channel is exponentially correlated and ΣA is the channel co-

variance matrix for an error event of weight d, |aI + ΣA| ≥ |aI + Σms(d)|.

Proof: The code sequence of any weight-d error event is obtained from the code
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sequence of the minimum-spacing error event of weight d by inserting a finite number

of zeros into the latter sequence. The result thus follows from repeated application

of Lemma 5.5. ¤

Theorem 5.4. If the channel is exponentially correlated and ΣA is the channel co-

variance matrix for an error event of weight d, then |ΣA| ≥ |Σms(d)|.

Proof: The result follows immediately from Theorem 5.3 with a = 0. ¤

Note that Theorem 5.4 also follows immediately from [7, equation (11)].

Recall that for the error event with channel covariance matrix Σ, P (Σ) denotes

its pairwise error-event probability, and PC(Σ) denotes the Chernoff bound on the

probability.

Theorem 5.5. If the channel is exponentially correlated and ΣA is the channel co-

variance matrix for an error event of weight d, then PC(ΣA) ≤ PC(Σms(d)).

Proof: The result follows immediately from (4.2) and application of Theorem 5.3

with a = (Ec/N0)
−1. ¤

The result of Theorem 5.5 is stated as part of a theorem in [7, Proposition 1] for

the more general exponentially correlated Rician-fading channel, but no details of a

proof are given therein.

Corollary 5.5.1 follows immediately from Theorem 5.5.
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Corollary 5.5.1. If the channel is exponentially correlated and ΣA is the channel

covariance matrix for an error event of weight d, then P (ΣA) ≤ PC(Σms(d)).

Note that Theorem 5.1 follows from Corollary 5.5.1 and the results in Chapter 4.

The stronger result below also follows from Theorem 5.3.

Theorem 5.6. If the channel is exponentially correlated and ΣA is the channel co-

variance matrix for an error event of weight d, P (ΣA) ≤ P (Σms(d)).

Proof: Application of Theorem 5.3 with a = sin2 θ
Ec/N0

yields the inequality

d∏

k=1

(sin2 θ + λkEc/N0) ≥
d∏

k=1

(sin2 θ + λms,kEc/N0)

for any θ. It follows that

1

π

d∏

k=1

[
sin2 θ

sin2 θ + λkEc/N0

]
≤ 1

π

d∏

k=1

[
sin2 θ

sin2 θ + λms,kEc/N0

]
. (5.3)

Integration of each side of (5.3) with respect to θ over the range [0, π/2] and compar-

ison of the resulting expressions with (4.6) yields the desired result. ¤

The result of Theorem 5.6 has been utilized as an (unproven) “folk theorem”

in some previous work (such as [20]). Note that Theorem 5.1 and Theorem 5.2

follow from Theorem 5.6 and the results in Chapter 4. Theorem 5.6 applies only

to the exponentially correlated channel in general; yet if Σ1 and Σ2 are the channel

27



covariance matrices for two error events in any correlated Rayleigh-fading channel

and |cI + Σ1| ≥ |cI + Σ2| for all c ≥ 0, then P (Σ1) ≤ P (Σ2).
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CHAPTER 6

THE EFFECT OF THE COVARIANCE PARAMETER ON THE PAIRWISE

ERROR-EVENT PROBABILITY FOR THE EXPONENTIALLY CORRELATED

CHANNEL

Consider an error event with Hamming weight d. Let ji represent the position of

the ith “one” in the code sequence of the error event. The spacing between consecutive

“ones” is represented by the vector ∆ = (∆1, ∆2, . . . , ∆d−1), where ∆i = ji+1 − ji.

Let Σ∆(q) represent the covariance matrix corresponding to this error event if the

covariance parameter is q, 0 ≤ q ≤ 1.

Theorem 6.1. If the channel is exponentially correlated and ∆ is the spacing vector

for an error event of Hamming weight d, then PC(Σ∆(q1)) ≤ PC(Σ∆(q2)) for q1 ≤ q2.

Proof: Let B(1) = Σ∆(q2). For 1 ≤ i ≤ d − 1, let B11(i) denote the upper

left i-by-i submatrix of B(i), and define B̂(i) based on B(i) according to (5.2) with

q = (q1/q2)
∆1 . From Lemma 5.5 with a = (Ec/N0)

−1, PC(B(i)) ≥ PC(B̂(i)). But

B̂(d− 1) = Σ∆(q1); thus PC(Σ∆(q1)) ≤ PC(Σ∆(q2)). ¤

The result of Theorem 6.1 is stated as the second part of a theorem in [7, Propo-

sition 1] for the more general exponentially correlated Rician-fading channel; yet a

new, stronger result also follows from Theorem 6.1.



Theorem 6.2. If the channel is exponentially correlated and ∆ is the spacing vector

for an error event of Hamming weight d, then P (Σ∆(q1)) ≤ P (Σ∆(q2)) for q1 ≤ q2.

Proof: The same iterative argument is followed as in the proof of Theorem 6.1,

except that Lemma 5.5 is applied with a = sin2 θ
Ec/N0

at each step. Integration of each

side of the resulting inequality with respect to θ over the range [0, π/2], as in the

proof of Theorem 5.6, yields the desired result. ¤

Recall that the covariance parameter is q = exp(−2πmDT ). For a given error

event and a fixed interleaving depth, increasing the normalized Doppler spread will

thus decrease both the pairwise error-event probability and its Chernoff bound. Sim-

ilarly, increasing the interleaving depth will decrease both the pairwise error-event

probability and its Chernoff bound.
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CHAPTER 7

BOUNDS ON THE PROBABILITY OF BIT ERROR FOR THE

EXPONENTIALLY CORRELATED CHANNEL

The standard union bound on the probability of bit error is given by

Pb ≤
∑
c∈C

i(c)P (c) (7.1)

where C is the infinite set of code sequences of the code and i(c) is the weight of the

information sequence that maps to c (i.e., the code sequence’s information weight).

The infinite series can not be expressed in a closed form, but a closed-form upper

bound on it can be obtained using the code’s transfer function.

The transfer function of the convolutional code, denoted T (D, I), is a power series

in the indeterminate variables D and I in which the summand aj,kD
jIk indicates that

the code has aj,k distinct error events of Hamming weight j and information weight k

[21]. Any bound on the pairwise error-event probability that is a linear combination

of geometric functions of the Hamming weight of the error event can be used in

conjunction with the transfer function to obtain a closed-form upper bound on the

union bound on the probability of bit error (which is thus an upper bound on the

actual probability of bit error).



7.1 Rational-Polynomial Bounds

If the bound g(Ec/N0) on the pairwise error-event probability is a geometric func-

tion of the Hamming weight, the resulting transfer-function bound for a code of rate

b/n is given by

Pb ≤ 1

2b

dT (D, I)

dI

∣∣∣∣
D=g(Ec/N0),I=1

. (7.2)

The bound in (4.3) and the result of Theorem 5.1 together yield the transfer-function

bound of (7.2) with

g(Ec/N0) =

[
1 +

(
1− q

1 + q

)
Ec

N0

]−1

(7.3)

for the exponentially correlated Rayleigh-fading channel. A tighter transfer-function

bound for the same channel is obtained by using (4.5) instead of (4.3). From (5.1)

it follows that (4.5) is true for y = (1 + q)/2. This results in the transfer-function

bound of (7.2) with

g(Ec/N0) =

{[
1 +

(
1− q

1 + q

)
Ec

N0

](1+q)/2 [
1 +

(
1 + q

1− q

)
Ec

N0

](1−q)/2
}−1

. (7.4)

7.2 Integral Bounds

The approach in the previous section can also be applied to the integrand in the

integral-form bounds derived in Chapter 4 for the pairwise error-event probability. In

each instance, the resulting bound on the probability of bit error has the form of a

single-dimensional proper integral with a rational-polynomial integrand. Specifically,
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for a code of rate b/n it is given by

Pb ≤ 1

bπ

∫ π/2

θ=0

dT (D, I)

dI

∣∣∣∣
D=g(Ec/N0,θ),I=1

dθ, (7.5)

where g(Ec/N0, θ) is determined by the particular geometric-form bound used for

the pairwise error-event probability. The use of (4.7) results in the transfer-function

bound (7.5) with

g(Ec/N0, θ) = [sin2 θ]

/ [
sin2 θ +

(
1− q

1 + q

)
Ec

N0

]
(7.6)

for the exponentially correlated Rayleigh-fading channel. A tighter bound on the

probability of bit error for the same channel is obtained by using (4.8). This results

in the transfer-function bound of (7.5) with

g(Ec/N0) = [sin2 θ]

×
{[

sin2 θ +

(
1− q

1 + q

)
Ec

N0

](1+q)/2 [
sin2 θ +

(
1 + q

1− q

)
Ec

N0

](1−q)/2
}−1

. (7.7)

7.3 Term-by-Term Corrections

The transfer-function bounds in (7.2) and (7.5) are looser than the union bound

(7.1), but the former are amenable to exact evaluation whereas the latter is not. A

closed-form expression with accuracy closer to that of the union bound can be ob-

tained by replacing the summands in (7.2) or (7.5) for a finite subset of the error
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events with the exact closed-form expressions for those error events. This “term-by-

term correction” [22] of the transfer-function bound has been applied previously to

transfer-function bounds using standard Chernoff bounds on the pairwise error-event

probability for exponentially correlated Rician fading and non-coherent communica-

tions [23]. The approach focuses on error events of the lowest Hamming weights, since

they dominate the performance at a large signal-to-noise ratio and are the easiest to

catalog exhaustively. Term-by-term correction for the set of error events of a given

Hamming weight requires knowledge of the details of the code sequence associated

with each error event (in order to determine the eigenvalues of the corresponding

channel covariance matrix) in addition to its information weight.

A term-by-term correction of the rational-polynomial bound in (7.2) for the code

sequences in the set S is given by

Pb ≤ 1

2b

dT (D, I)

dI

∣∣∣∣
D=g(Ec/N0),I=1

+
1

b

∑
c∈S

i(c)

(
P (c)− 1

2
[g(Ec/N0)]

w(c)

)
(7.8)

where w(c) denotes the Hamming weight of c. As in Section 7.1, either (7.3) or (7.4)

can be used for g(Ec/N0), with the latter of the two yielding the tighter upper bound.

Similarly, a term-by-term correction of the integral bound in (7.5) for codewords of
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the set S is given by

Pb ≤ 1

bπ

∫ π/2

θ=0

(
dT (D, I)

dI

∣∣∣∣
D=g(Ec/N0,θ),I=1

−
∑
c∈S

i(c)[g(Ec/N0)]
w(c)

)
dθ

+
1

b

∑
c∈S

i(c)P (c). (7.9)

Either (7.6) or (7.7) can be used for g(Ec/N0), with the latter of the two yielding the

tighter upper bound.

Term-by-term corrections can be computationally intensive, especially for a code

with a large constraint length. Correction for error events of the several lowest Ham-

ming weights can require consideration of a large number of error events. The exact

structure of each corresponding code sequence (in particular, the placement of non-

zero bits within the code sequence) cannot be obtained analytically even from the

three-variable complete path-weight enumerator [21] of the code. Instead a search

of the code trellis is required. Moreover, separate calculations are required to de-

termine the eigenvalues for the channel covariance matrix and the resulting pairwise

error-event probability for each low-weight error event.

This computational burden can be largely eliminated for exponentially corre-

lated Rayleigh fading by using a somewhat weaker correction to the transfer-function

bound. By Theorem 5.6, the bounds in (7.8) and (7.9) can be weakened if P (c)

for each c ∈ S is replaced with the pairwise error-event probability for the minimum-

spacing error event of the same Hamming weight as c. Applying this approach to (7.8)
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for term-by-term correction for the error events of weights dfree through N results in

Pb ≤ 1

2b

dT (D, I)

dI

∣∣∣∣
D=g(Ec/N0),I=1

+
1

b

N∑

k=dfree

Bk

(
P (cms(k))− 1

2
[g(Ec/N0)]

k

)
, (7.10)

where cms(k) is a sequence of k ones and Bk is the sum of the information weights of

all Hamming-weight-k error events. The term Bk is often tabulated for good codes

for low-weight error events; alternatively, it can be obtained from polynomial long

division of dT (D,I)

dI

∣∣∣
I=1

. Thus, a computer search to determine the details of each error

event in the set S is not required. Furthermore, the pairwise error-event probability

need be calculated only once for each Hamming weight for which the correction is

applied. Applying the same approach to (7.9) for term-by-term correction for the

error events of weights dfree through N results in

Pb ≤ 1

bπ

∫ π/2

θ=0

(
dT (D, I)

dI

∣∣∣∣
D=g(Ec/N0,θ),I=1

−
N∑

k=dfree

Bk[g(Ec/N0)]
k

)
dθ

+
1

b

N∑

k=dfree

BkP (c). (7.11)
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CHAPTER 8

NUMERICAL RESULTS FOR THE EXPONENTIALLY CORRELATED

CHANNEL

In this chapter, simulation results and bounds are compared by considering the

performance of a system using the “NASA standard” constraint-length-seven, rate-

1/2 convolutional code [24] over the exponentially correlated Rayleigh-fading channel.

8.1 Comparison of Block Interleaving with the Ideal Periodic-Interleaving Model

The ideal periodic interleaver represents an idealization of interleaving in a real

communication system in that the relationship given in (2.2) cannot be realized for

all j and k for any interleaver design. The ideal periodic-interleaving model often

results in performance analysis that is more tractable than if a block interleaver is

considered, however. Consideration of ideal periodic interleaving is also sufficient for

obtaining many useful insights into the design and performance of communication

systems.

Consider a p-by-m rectangular block interleaver into which code symbols are writ-

ten by rows and out of which they are read by columns. The column dimension m

thus corresponds to the designed interleaving depth. The row dimension p determines

the maximum span of consecutive code symbols into the interleaver over which the

ideal periodic-interleaving model correctly represents the fading to which the code

symbols are subjected. Any span of more than p consecutive code symbols results



in some pairs of symbols that are subjected to more highly correlated fading than is

predicted by the ideal periodic-interleaving model. Thus for a given block size p ·m,

the choice of the dimensions represents a tradeoff between the designed interleaving

depth and the length of code-symbol sequences over which the designed interleaving

depth is achieved. It also affects the accuracy of the ideal periodic-interleaving model.

Both of these phenomena are illustrated in Figure 8.1, which compares simulation

results for a block size of 1200 binary code symbols and a normalized Doppler spread of

DT = 10−3. Results are shown for systems with both ideal periodic interleaving and

block interleaving. Block interleavers with dimensions of 120-by-10, 30-by-40, and

10-by-120 are considered, along with the corresponding ideal periodic-interleaving

models with interleaving depths of 10, 40, and 120 bits, respectively.

The 120-by-10 block interleaver has a designed interleaving depth (m = 10) that

is small; thus it provides only limited time diversity as protection against error events

of any span. The 10-by-120 block interleaver has a large designed interleaving depth

(m = 120). The designed depth is not achieved for even the shortest-span error events

with this interleaver, however, due to the small row dimension (p = 10). The 30-by-40

block interleaver achieves a better balance between these two objectives than either

of the other two block interleavers, and it results in better performance than either

of them.

The ideal periodic-interleaving model does not account for the effect of the finite

row dimension, however, and thus the performance for that model improves mono-

tonically as the interleaving depth is increased. The performance with the block
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interleaver and the performance with the ideal periodic-interleaving model are thus

in closest agreement when the row dimension of the block interleaver is much larger

than the minimum error-event span of the code. As the row dimension is decreased

(and the designed interleaving depth is increased) for a fixed block size, the differ-

ence in performance for the two interleaver models increases. In each instance, better

performance is predicted with the ideal periodic-interleaving model than is achieved

with the block interleaver.

The difference between performance using a block interleaver and the performance

obtained with the ideal periodic-interleaving model is also affected by the Doppler

spread, as illustrated in Figure 8.2. The block interleaver has dimensions 24-by-

24, and the ideal periodic interleaver has an interleaving depth of m = 24. The

performance is shown for independent Rayleigh fading and for correlated Rayleigh

fading with five different values of the Doppler spread: DT = 10−3, DT = 10−5,

DT = 10−7, DT = 10−9, and DT = 0 (i.e., flat fading). The performance with block

interleaving and the performance with ideal periodic interleaving are in agreement

for either extreme of the Doppler spread (independent fading or flat fading); in fact,

the interleaving technique (or the absence of interleaving) is irrelevant to the sys-

tem’s performance in either of the two instances. The performance differs using the

two interleavers for any intermediate value of Doppler spread, however, and in each

instance the performance with block interleaving is poorer than is predicted by the

ideal periodic-interleaving model. The difference is small for very small or moderate-

to-large Doppler spreads and is greatest for moderately small values of the Doppler
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Figure 8.1: Simulations with ideal periodic and block interleaving for the NASA standard,
K = 7, rate-1/2 convolutional code for DT = 10−3 and a block size of 1200 (code) bits.
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spread.

8.2 Accuracy of the Bounds for the Ideal Periodic-Interleaving Model

The accuracy of the three (new) closed-form bounds developed in this thesis is

compared with the accuracy of the closed-form bound of (7.2) and (7.3) (i.e., using

the result from [7]). The latter bound is referred to as the rational-polynomial bound.

The new bound using (7.2) and (7.4) is referred to as the tighter rational-polynomial

bound, the new bound using (7.5) and (7.6) is referred to as the integral bound, and the

new bound using (7.5) and (7.7) is referred to as the tighter integral bound. Results

are shown in Figures 8.3-8.5 for a system using an ideal periodic interleaver with a

depth of 24 bits. Each figure contains results for a different fading rate.

Figure 8.3 shows the bounds and simulation results for the probability of bit

error as a function of Ec/N0 for a channel with a normalized Doppler spread of

DT = 10−1. For this fading rate, the rational-polynomial bound from (7.3) and the

integral bound from (7.6) are nearly indistinguishable from their tighter counterparts

from (7.4) and (7.7), respectively. The integral bounds are much tighter than the

rational-polynomial bounds, however. The two integral bounds differ by 0.1 dB from

the actual performance if the probability of bit error is 10−4, for example, whereas

the two rational-polynomial bounds differ from the actual performance by 0.9 dB.

Figure 8.4 shows analogous results for a more slowly time-varying fading channel

for which DT = 10−2. Greater differences between the bounds occur for this channel

than for the channel with the larger Doppler spread. If the probability of bit error is
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Figure 8.2: Simulations with ideal periodic and block interleaving for the NASA standard,
K = 7, rate-1/2 convolutional code for various normalized Doppler spreads and an inter-
leaving depth of 24 bits.
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Figure 8.3: Bounds and simulation results for the NASA standard, K = 7, rate-1/2 convo-
lutional code for DT = 10−1 and an interleaving depth of 24 bits.
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10−4, the rational-polynomial bound from (7.3) differs from the actual performance

by 2.8 dB, while the tighter rational-polynomial bound from (7.4) is within 1.2 dB

of the actual performance. For the same probability of bit error, the integral bound

from (7.6) and tighter integral bound from (7.7) differ from the actual performance

by 2.0 dB and 0.4 dB, respectively.

Figure 8.5 shows results for the smaller normalized Doppler spread of DT = 10−3.

It can be seen that the bounds are much less accurate in this case than for the two

higher Doppler spreads considered in Figures 8.3 and 8.4. For a probability of bit error

of 10−4, the rational-polynomial bound from (7.3) differs from the actual performance

by 9.9 dB if DT = 10−3, whereas the tighter rational-polynomial bound from (7.4) is

within 7.8 dB of the actual performance. For the same probability of bit error, the

integral bound from (7.6) and tighter integral bound from (7.7) differ from the actual

performance by 9.1 dB and 6.9 dB, respectively.

As described in Section 7.3, the accuracy of the bounds can be improved using

term-by-term corrections. Figure 8.6 illustrates the value of the corrections for the

system with an interleaving depth of 24 bits over the channel with a normalized

Doppler spread DT = 10−3 (the same parameters used for Figure 8.5). Term-by-term

corrections to the integral bound and tighter integral bound for all error events with

Hamming weights 10, 12, and 14 (the lowest three weights for this code) are included

based on (7.9), along with their “uncorrected” counterparts. If the probability of bit

error is 10−4, an improvement of 0.4 dB is achieved by applying the term-by-term

corrections to the integral bound. For the same probability of bit error, there is
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Figure 8.4: Bounds and simulation results for the NASA standard, K = 7, rate-1/2 convo-
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Figure 8.5: Bounds and simulation results for the NASA standard, K = 7, rate-1/2 convo-
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an improvement of 0.5 dB if the term-by-term corrections are applied to the tighter

integral bound. For this interleaving depth and Doppler spread, moreover, the looser

term-by-term corrections in (7.11) yield results so close to those in (7.9) that the two

are nearly indistinguishable when plotted using the scale of Figure 8.6.
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Figure 8.6: Term-by-term corrections of integral bounds for the NASA standard, K = 7,
rate-1/2 convolutional code, DT = 10−3, and an interleaving depth of 24 bits
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CHAPTER 9

CONCLUSION

Convolutional coding and maximum-likelihood decoding are considered for com-

munications over a correlated Rayleigh-fading channel. New bounds on the pairwise

error-event probability are developed for a general correlated channel with ideal pe-

riodic interleaving in terms of upper and lower bounds on the eigenvalues of the

channel covariance matrix. These results are applied to the exponentially correlated

channel, and the relationship between the spacing of the erroneous code symbols in

an error event and its pairwise error-event probability is explored. Most notably, it

is shown that the minimum-spacing error event of a given Hamming weight results in

the largest pairwise error-event probability among all error events of that weight.

The bounds on the pairwise error-event probability for the exponentially correlated

channel are then used to develop three new closed-form bounds on the probability

of bit error. It is shown that the new bounds can be as much as several decibels

tighter than previously developed bounds. Term-by-term corrections are shown to

improve the accuracy of the bounds, but their evaluation can be quite computation-

ally intensive. A weaker correction is also considered, which eliminates much of the

computational burden and yields an improvement in the accuracy of the bounds very

close to that of the more traditional term-by-term corrections.
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