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ABSTRACT 

 

 

The modulus of elasticity of a homogeneous body is the same for all directions.  

No known crystalline materials have a Young’s modulus that is the same in all directions.  

The linear theory of elasticity states that strain is proportional to stress so that a straight 

line is obtained in a stress versus strain plot.  As long as the forces applied to the body are 

proportional, the body behaves perfectly elastically, obeying Hooke’s law.  At high 

enough strains, however, deviations from Hooke’s law will occur.  Nonlinear elasticity is 

generally apparent when large deformations are applied and usually when the sample size 

is on the micro/nano scale.  The nonlinear theory of elasticity of materials is more 

complex and leads to the introduction of higher-order elastic constants.  These higher-

order constants confer increased accuracy to theoretical predictions of the elastic 

behavior of the material.  Here, equipment specifically designed for the tensile 

measurements of individual micro/nano-composite fibers will be introduced.  The results 

obtained for the elastic properties of single filaments of IM7 carbon fibers, which include 

the usual second-order as well as the third-order elastic constants and the piezoresistivity 

will be presented. 
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CHAPTER ONE 

 

INTRODUCTION 
 

 

1.1 Carbon Fibers – General Overview 

 

Allotropes of carbon include diamond and graphite.  Most recently, new forms of 

carbon such as fullerenes, carbon nanotubes and graphene have been discovered.  While 

diamond and graphite have ordered structures, carbon fibers are usually amorphous.  

Each form of carbon possesses a unique structure and properties and, in order to be 

produced, they require specific temperature and pressure treatment conditions.  Figure 1 

shows the structures of allotropes of carbon. 

In graphite the carbon atoms are ordered in a honeycomb plane, with a distance 

between atoms of 1.42 Å, and the planes are regularly stacked with a spacing of 3.35 Å.  

The structure of carbon fibers resembles that of graphite but in a more disordered 

manner, the so called turbostratic structure
1
.  Due to the weak nature of the van der Waals 

forces between the layers, any disorder introduced in the system will affect the 

interplanar spacing and stacking.  Figure 2 is a schematic diagram of the lattices of 

graphitic (a) and non-graphitic (b) carbons
2
. 

                                                
1 Thomas W. Ebbesen, Carbon Nanotubes: Preparation and Properties, CRC Press, Inc., Boca Raton, FL, 

1997. 
2 M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, 

Academic Press, San Diego, CA, 1996. 
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Figure 1. Allotropes of carbon and their structures. 



 3 

 
 

Figure 2. (a) Well-ordered graphite lattice showing its interlayer distance of 3.35 Å.  

The inset shows A and B carbon atoms represented by open circles and A’ and B’ carbon 

atoms represented by closed circles.  The nearest neighbor distance between two carbon 

atoms, aC-C, in graphite is 1.42 Å.  The in-plane lattice constant is represented by a0 and 

the unit cell vectors in the direction a1, a2 and c are indicated.  (b) Disordered stacking of 

interplanar graphite layers showing random interlayer spacing of at least 3.44 Å
2
. 
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As can be seen in Figure 1, the tetrahedral bonding nature of the carbon atoms in 

diamond gives rise to sp
3
 hybridization, while in graphite strong covalent bonds exist 

only between in-plane carbons, giving rise to sp
2
 hybridization.  The weak van der Waals 

bonds between the planes are what distinguish the softness of graphite from the hardness 

of diamond
2
.  Carbon materials are known to possess excellent properties, such as: high 

strength, stiffness, thermal resistance, conductivity and light weight.  Diamond has very 

high modulus of elasticity, and graphite has high moduli for in-planar moduli.  Their 

Young’s moduli are reported to be on the order of 1000 GPa
3, 4

.  The Young’s modulus 

along the axis of single- and multi-walled carbon nanotubes can range from 1000 - 5000 

GPa
5
 and their tensile strength from 10 – 60 GPa

6
.  Tensile strength is defined as the 

maximum tensile stress that a specimen can withstand before failure.  Carbon fibers can 

be either graphitic (stronger) or non-graphitic (less strong) depending on the precursor 

and processing conditions and, therefore, their moduli can approach that of graphite or 

even diamond. 

Knowing that carbon fibers are light materials and also very strong, their 

commercial use has been made available since the early 60’s and has been mainly 

targeted as a high-performance reinforcement material in several industries, such as: 

transportation, sporting goods and textiles.  Specific applications include: 

microelectronics, military, aerospace and automotive components, passenger and 

                                                
3
 A. Kelly, N. H. MacMillan, Strong Solids, Clarendon Press, Oxford, 3rd Ed., 1986. 

4 J.-P. Salvetat, J.-M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Mechanical 
Properties of Carbon Nanotubes, Appl. Phys. A 69, 255-260, 1999. 
5 M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Exceptionally High Young's Modulus Observed for 

Individual Carbon Nanotubes, Nature 381, 678-680, 1996. 
6 M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Strength and Breaking Mechanism 

of Multiwalled Carbon Nanotubes Under Tensile Load, Science 287, 637-640, 2000. 
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recreational vehicles, racing cars, and portable consumer goods, such as: bicycle frames, 

golf club shafts, fishing rods, tennis racquets; novel nanofibers and yarns; etc
7
. 

At room temperature and atmospheric pressure graphite is the stable form of 

carbon as well as the most abundant.  Bundy
8
 reported the triple point of graphite-

diamond, i. e., the point at which vapor, liquid and solid phases are in equilibrium, to be 

between temperatures of 3700 and 4000 
o
C and pressures between 12.5 and 13 GPa.  It 

should be noticed that, under industrial processing conditions, it is very difficult and 

costly to prepare carbon fibers from the liquid phase.  For this reason the standard 

industrial process to obtain them is from organic polymer precursors which are subjected 

to a three-step heating process
9
: 

1) Stabilization in air at 300 
o
C: this stage is responsible for chemical alteration 

of a linear polymeric chain to a more thermally stable cyclic chain. 

2) Carbonization at 1100 
o
C in an inert atmosphere leading to a fiber content of 

at least 92% carbon: at this stage oxygen is absent from the surroundings and 

the higher temperatures promote loss of the non-carbon elements in gaseous 

forms such as water vapor, carbon dioxide, hydrogen and nitrogen. 

3) Graphitization at temperatures above 2500 
o
C leading to fibers with carbon in 

excess of 99%: at this stage the even higher temperatures transform unstable 

non-graphitic carbons into a more ordered and crystalline graphitic structure.  

                                                
7 J. B. Donnet, Carbon Fibers, Marcel Dekker, Inc. 3rd Ed., New York, NY, 1998. 
8 F. P. Bundy, Melting of Graphite at Very High Pressure, Journal of Chemical Physics 38, 618-630, 1963. 
9 P. Morgan, Carbon Fibers and Their Composites, Taylor & Francis Group, Boca Raton, FL, 2005. 
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“Graphite fibers” undergo all three steps while “carbon fibers” are not 

subjected to graphitization. 

Based on fiber strength, modulus and final heat treatment, carbon fibers can be 

classified into different types
9
: 

a) ultra-high modulus (UHM): Young’s modulus > 600 GPa; 

b) high modulus (HM): Young’s modulus > 300 GPa; 

c) intermediate modulus (IM): Young’s modulus between 150 and 300 GPa; 

d) low modulus (LM): Young’s modulus > 100 GPa; 

e) type I, high-heat treatment (HHT): final heat temperature > 2000 
o
C (related 

to high-modulus type); 

f) type II, intermediate-heat treatment (IHT): final heat temperature around or 

above 1000 
o
C (related to high-strength type); 

g) type III, low-heat treatment (LHT): final heat temperature no higher than 1000 

o
C (related to low modulus and low-strength type). 

The most common precursors for carbon fiber manufacture include: 

polyacrylonitrile (PAN), rayon (cellulose) and pitch (from petroleum or coal tar).  This 

Thesis will focus on PAN-based carbon fibers which are introduced in the next section. 

 

1.2 Polyacrylonitrile (PAN) Carbon Fiber 

 

 Polyacrylonitrile is a linear organic polymer resin obtained from polymerization 

of acrylonitrile.  Both chemical structures are depicted in Figure 3. 
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Figure 3. Chemical structures of the acrylonitrile and polyacrylonitrile repeat unit. 

 

PAN-based carbon fibers are non-crystalline fibers obtained from 

polyacrylonitrile precursors by stabilization, carbonization and final heat treatment.  A 

schematic diagram in Figure 4 shows the conversion of PAN to a carbonized fiber
10

. 

About ninety percent of the carbon fiber market is taken by PAN-based fibers
9
 

due to the affordability of the cheap precursor and the straightforward fabrication 

process.  Their good strength and modulus properties are derived from the preferred 

orientation of the graphene layers parallel to the fiber axis and also from defects in the 

structure which prevent the sliding of neighboring planes relative to each other
 2

.  As 

previously mentioned, their excellent mechanical properties and light weight are of great 

interest as reinforcement materials. 

The mechanical properties of carbon fibers are usually tested by standard testing 

procedures for the determination of longitudinal and transverse tensile strength and 

moduli, longitudinal compression strength and modulus, flexural strength and modulus, 

and shear strength.  Either tow or single-filament fibers can be tested as well as pristine 

or composite fibers and laminates. 

                                                
10 K. Morita, Y. Murata, A. Ishitani, K. Murayama, T. Ono, A. Nakajima, Characterization of 

Commercially Available PAN-Based Carbon Fibers, Pure & Applied Chemistry 58, 455-468, 1986. 
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Figure 4. Conversion of polyacrylonitrile to carbonized carbon fiber after 

subsequent heat treatments
10

. 

 

In the early stages of carbon fiber research all tensile analysis was done by 

filament testing where only small quantities of samples were needed
9
.  After the massive 

production and commercialization of carbon fibers, testing procedures were designed for 

analysis of the properties of the tow since the fibers are sold this way and the results 

correlate better with the properties of composite fibers than those found by the single 

filament method.  When theoretical consideration is carried out, however, it is important 

to account for the distribution of the tensile strength of single filament fibers
10

.  
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Mechanical properties are normally measured using a universal testing machine which is 

capable of performing either tensile or compressive tests.  From tensile measurements, 

tensile strength and maximum elongation can be determined as well as Young’s modulus. 

The most common testing equipment is the Instron machine.  The specimen to be 

tested must have specific dimensions and the testing machine should have been 

completely leveled, aligned axially and carefully calibrated.  The carbon fiber, in this 

case, is mounted in a cardboard holder, the ends of the fiber are usually glued with epoxy 

and the cardboard is placed between two grips.  Prior to testing, the sides of the holder 

are cut so only the fiber is tensed.  The force applied to the sample is measured by a load 

cell as a movable cross-head at a constant speed elongates the sample until it breaks.  The 

machine is equipped with software that calculates modulus and tensile strength as well as 

other properties depending on the standard method chosen for analysis.  The software can 

calculate the modulus using different methods as shown in Figure 5
9
 and it is important to 

know which method was established for modulus determination. 

Extensive research has been done on the mechanical properties of carbon fibers 

and, since the Instron machine is very popular, attention is not given to the data produced 

more than it is to the readily available Young’s modulus value that the software 

generates.  Mostly known as the slope of the stress-strain plot, Young’s modulus is 

usually calculated taking into account only the linear fit to the plot and neglecting the 

curvature or, according to other methods, the entire data set of the plot is not taken into 

consideration.  This will give rise to deviations of the measured Young’s modulus from 

the standard thermodynamic definition, as shown below.   
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Figure 5. Methods for determination of Young’s modulus with an Instron testing 

machine
9
. 
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Although many studies establish linear elasticity for carbon fibers due to a 

seeming linear stress-strain relationship at the traditional rates of elongation, carbon 

fibers from rayon or PAN precursors have shown nonlinear elastic behavior according to 

previous reports in the literature
11, 12, 13, 14, 15

.  High tensile strength fibers undergo 

stiffening under load and, therefore, do not obey Hooke’s law
15

. 

Beetz
14

 investigated the strain-induced stiffening of carbon fibers and, like other 

researchers, he focused on the mechanism of deformation which led to the observation of 

nonlinear elasticity.  Figure 6 shows the stress-strain relation of a single filament of 

Thornel carbon fiber subjected to tensile testing using an Instron machine
14

.  It is 

explained that, due to stiffening, an initial and final modulus can be obtained.  Small 

strains at the initial stage give rise to lower slopes and, just before failure, a final slope 

with a higher value is obtained. 

 

1.3 Research Objective – Hypothesis 

 

It is well known that carbon fibers possess excellent mechanical properties and for 

this reason are of great interest as reinforcement materials.  The elastic properties of 

carbon materials have been extensively investigated as well as carbon fiber composites.  

                                                
11 G. J. Curtis, J. M. Milne, W. N. Reynolds, Non-Hookean Behavior of Strong Carbon Fibers, Nature 220, 

1024-1025, 1968. 
12 A. Voet, J. C. Morawski, J. B. Donnet, Dynamic Mechanical Properties of Carbon Fibers, Carbon 13, 

465-468, 1975. 
13 A. Gupta, I. R. Harrison, New Aspects in the Oxidative Stabilization of PAN-based Carbon Fibers: II, 
Carbon 35, 809-818, 1997. 
14 C. P. Beetz, Jr., Strain-Induced Stiffening of Carbon Fibers, Fibre Science and Technology 16, 219-229, 

1982. 
15 M. Guigon, A. Oberlin, G. Desarmot, Microtexture and Structure of High Tensile Strength PAN-based 

Carbon Fibers, Fibre Science and Technology 20, 55-72, 1984. 
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Advancements in technology have forced the development of even stronger carbon fibers 

in order to meet the demand in novel applications.  The current state-of-the-art does not 

pay much attention to the non-Hookean behavior of strong carbon fibers when 

determining their elastic properties as well as of their composites.  The nonlinear elastic 

behavior of strong carbon fibers is indicative of the presence of higher-order elastic 

constants other than the modulus of elasticity measured by the average slope of a stress-

strain curve. 

 

Figure 6. Stress-strain relationship for a single filament of Thornel carbon fiber, 

after Beetz.  The dashed line is an extrapolation of the initial linear portion of the curve
14

. 
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A universal testing machine equipped with software that can calculate a material’s 

Young’s modulus using different methods is popular among researchers, however, the 

entire data set obtained during testing is often not considered when calculating the 

material’s modulus of elasticity leading to a less useful measurement of this important 

property. 

The objective of this research was to measure the usual second-order elastic 

constant (Young’s modulus) as well as the nonlinearity constant δ, which is a 

combination of third-order elastic constants, of a single filament of HewTow
®
 IM7-12K 

PAN-based carbon fibers.  A fiber puller specifically designed and built to accommodate 

micro scale size samples was employed.  A LabVIEW
®
 software program was developed 

to control the experiments and a second lock-in amplifier was employed to measure the 

slope of the stress-strain curve directly.  IM7 carbon fiber is a PAN-based carbon fiber of 

intermediate modulus.  Performance of tensile tests was expected to reveal non-Hookean 

behavior of IM7, since it is a relatively high strength material.  No reference to the 

higher-order elastic constant of a single filament of IM7 was found in the literature. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

 

2.1 Second-Order Elastic Constant – Modulus of Elasticity 

 

Engineering stress, ζ (in MPa) is defined as: 

F

A
    (1) 

where, F (in N) is the load applied perpendicular to a sample’s cross-section and, A (in 

m
2
) is the material’s cross-section area before load is applied

16
.  Engineering strain, ε 

(dimensionless) is defined as: 

0

0

l l

l



  (2) 

where, l is the specimen’s length after elongation and, l0 is the initial length before load is 

applied
16

. 

A schematic illustration of a body subjected to tensile load is depicted in Figure 7. 

 

Figure 7. Schematic illustration of a body subjected to tensile load.  The dashed 

lines indicate the shape of the specimen after elongation. 

                                                
16 W. D. Callister, Jr., Materials Science and Engineering: An Introduction, John Wiley and Sons, 6th Ed., 

Hoboken, NJ, 2003. 

 



 15 

No crystals have a Young’s modulus that is the same in all directions.  Consider 

Figure 8 below which displays the spatial orientation components of a 3D differential 

element.  Plane directions are described as x, y and z and the stress components in each 

direction are also displayed. 

 

Figure 8. Components of stress tensor in 3D space. 

 

Under static equilibrium, the stress state at a point P is described by a second-

order stress tensor of nine components associated with two directions (x, y, z) or (1, 2, 3) 

as shown below.  As a result, stress components have two subscripts
17

. 

xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 
 
 
 

 => 

11 12 13

21 22 23

31 32 33

ij

  

   

  

 
 

  
 
 

 

where, ζij represents the stress on the i plane along the j direction; i is the direction of the 

surface normal upon which the stress acts, j is the direction of the stress component and, 

i, j = 1, 2, 3 are component indices. 

                                                
17 J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford 

University Press, London, UK, 1957. 
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Similarly, strain tensors follow a similar rule as shown below: 

11 12 13

21 22 23

31 32 33

ij

  

   

  

 
 

  
 
 

 

Tensor notation indices 11, 22, 33, 23 and 32, 31 and 13, 12 and 21 for the stress 

ζij can be reduced to 1, 2, 3, 4, 5 and 6, respectively, in matrix (Voigt) notation.  This is 

due to the diagonal symmetry of the tensors, which in turn is due to the constraints of no 

motion (for stress) and the definition of the strains, as below.  The resultant stress matrix 

is
17

: 

1 6 5

6 2 4

5 4 3

  

  

  

 
 
 
 
 

 

The strain tensor [εij] is the symmetrical part of [eij], where eij is defined as the 

strain at the point P:   εij = ½ (eij + eji) = εji (3) 

i
ij

j

u
e

x





 (4) 

where  u is the increase in length and  x is the differential change in length.  Utilizing 

the identity equation in (3) the strain tensor is reduced to the matrix notation below: 

11 12 21 13 31 1 6 5

11 12 13

21 22 23 12 21 22 23 32 6 2 4

31 32 33

13 31 23 32 33 5 4 3

1 1 1 1
( ) ( )

2 2 2 2

1 1 1 1
( ) ( )

2 2 2 2

1 1 1 1
( ) ( )
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The principal tensile strains resultant from stretching, ε1, ε2 and ε3, are the diagonal 

components of εij and the other components, ε4, ε5 and ε6, measure shear strains resultant 

from parallel or tangent forces applied to the surface of the material. 

 An isotropic material is identical in all directions and its properties are not 

dependent on directionality.  In this case, its modulus of elasticity, or Young’s modulus E 

is the same for all directions when such a material is subjected to any tension or 

compression.  The linear theory of elasticity
18

 states that strain ε is proportional to stress 

ζ, so that a straight line is obtained in a stress versus strain plot.  As long as the forces 

applied to the body are proportional to the resulting strains, the body obeys Hooke’s law.  

In this case, the stress-strain relation can be written as: 

ζ = E ε  (5) 

Anisotropic materials, however, have properties that differ according to the 

direction of measurement.  For anisotropic elastic materials, the stress-strain relations can 

be written as
17

: 

ζii = Ciijj  εjj (6) 

εii = Siijj  ζjj (7) 

where, εii is the ii
th

 component of a second-rank strain tensor; ζii is the ii
th

 component of a 

second-rank stress tensor; Ciijj is the elastic stiffness tensor, Siijj is the elastic compliance 

tensor, and the Einstein sum convention, in which subscripts that are repeated two or 

more times in a product are summed, is used.  Both Ciijj and Siijj are the iijj
th

 components 

of fourth-rank tensors with 81 components, each necessary to connect two second-rank 

                                                
18 A. I. Lurie, Theory of Elasticity. Springer, Netherlands, 2005. 
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tensors, the stress and strain tensors.  The elastic compliance S is the inverse of Young’s 

modulus, 1/E. 

 Considering equation (7) written out for ε
11

 we have: 

         (8) 

 

 In the matrix notation equation (8) becomes: 

     (9) 

 

 In general, the equation takes the shorter form: 

εi = sij ζj (10) 

where: i, j = 1, 2,…, 6, and the Einstein convention is used. 

 Young’s modulus denotes the slope of the stress-strain curve in uniaxial tension, 

and has the dimensions of stress, N/m
2
 or GPa.  Poisson’s ratio, ν, is the ratio of the 

lateral to longitudinal strain in a uniaxial tensile stress, and it is a dimensionless quantity.  

Young’s modulus and Poisson’s ratio vary with direction in a non-isotropic solid, and are 

a function of direction in anisotropic materials, such as IM7 carbon fiber.  In an isotropic 

material, any two of E, ν, and G (the shear modulus), determine the material’s linear 

elasticity.  The shear modulus, or modulus of rigidity, is defined as the ratio between the 

shearing stress that deforms a material in the lateral direction and the shearing strain 

produced by this stress. 

Carbon fibers are generally only transversely isotropic, in which Young’s 

modulus depends only on the angle with respect to the axial direction.  A complete 
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description of the linear elasticity of such a substance requires five engineering 

constants
19

: axial Young’s modulus (E11), shear modulus (G11), transverse Young’s 

modulus (E22), transverse shear modulus (G22) and axial Poisson’s ratio (ν12).  In terms of 

the five independent compliance constants (Sij) they are: S11, S12, S13, S33 and S44.  

Equations 11 to 15 show the relationship between the engineering and elastic compliance 

constants
19

. 

11

1

1
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E
   (11) 
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
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
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33
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E
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1
S

G
   (15) 

This Thesis shows the results measured for one combination.  The constants 

related to linear behavior, such as Young’s modulus and Poisson’s ratio are called the 

second-order elastic constants, as they are given by second derivatives of a 

thermodynamic potential of the substance
20

.  If the isothermal E is defined as the second 

derivative of the Gibbs energy with respect to stress, evaluated at zero stress, then it is 

                                                
19 M. Cheng, W. Chen, Mechanical Properties of Kevlar® KM2 Single Fiber, Journal of Engineering 

Materials and Technology 127, 197-203, 2005. 
20 K. Brugger, Thermodynamic Definition of Higher-Order Elastic Coefficients, Physical Review 133, 

A1611-A1612, 1964. 
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determined by the linear term in a fit to a stress-strain curve taken at constant 

temperature. 

The nonlinear properties are related to higher-order derivatives of thermodynamic 

potentials.  An isotropic material requires three third-order elastic constants to completely 

describe the third-order behavior, and a material with transverse isotropic symmetry, such 

as IM7 carbon fibers, requires nine
21

 of which we have measured one combination of six.  

The concept of higher-order elastic constants is introduced in the following section. 

 

2.2 Higher-Order Elastic Constants (HOECs) 

 

 In order to design novel reinforced carbon composite materials, for instance, 

carbon fiber and carbon nanotube composites, it is important to consider the known 

properties of the pristine carbon material and the matrix individually in the initial stage of 

the composite design.  Using the knowledge of the elastic properties of the materials 

incorporated into composites, one can model and calculate a set of elastic constants as 

well as simulate their behavior under specific working circumstances
9
. 

At a high enough strains and stresses, deviations from Hooke’s law will occur.  

The nonlinear theory of elasticity of materials is more complex and leads to the 

introduction of HOECs.  The investigation of HOECs is important in determining the 

anharmonic properties of materials such as: nonlinear elasticity, thermal conductivity and 

                                                
21 I. J. Fritz, Third-Order Elastic Constants for Materials with Transversely Isotropic Symmetry, Journal of 

Applied Physics 48, 812-814, 1977. 
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thermal expansion, solid-state diffusion, static and dynamic properties of lattice defects 

and phonon-phonon interactions
22

. 

Nonlinear elasticity
23

 is generally apparent when large deformations are applied, 

and usually when the sample is on the micro or nano scale.  HOECs can be expressed in 

the form
24

: 

ε1 = s11 ζ1 + δ (s11 ζ1)
2
 (16) 

where: ε1 is the strain, ζ1 is the stress, s11 is an elastic constant and, δ is a nonlinearity 

constant (a combination of second- and third-order elastic constants). 

 Riley and Skove
25

 have shown how to determine the relation between δ and the 

third-order elastic constants for various directions in substances of arbitrary symmetry.  

For stress along the symmetry axis of a transversely isotropic substance the relation is: 

δ001 = 2 s133 (C111 + 3 C112) + 6 s13 s33 (s13 C113 + s13 C123 + s33 C133) + s333 C333 (17) 

 Although the properties of macro-scale materials are well established today, it is 

still not completely known how bulk materials made of nanostructures, or how 

nanostructures by themselves, will behave under large strains and stresses and, therefore, 

it may be important to know their anharmonicity.  Their anharmonic nature originates 

from the changes in interatomic forces due to atomic displacements
26

. 

                                                
22 Y. Hiki, Higher Order Elastic Constants of Solids. Ann. Rev. Mater. Sci. 11, 51-73, 1981. 
23 M. A. Biot, Nonlinear Theory of Elasticity and the Linearized Case for a Body Under Initial Stress. 

Philosophical Magazine, Ser. 7, Vol. 27, Columbia University, 1939. 
24 F. D. Murnaghan, Finite Deformation of an Elastic Solid, Dover Publications, New York, 1967. 
25 M. W. Riley, M. J. Skove, Higher-Order Elastic Constants of Copper and Nickel Whiskers, Physical 

Review B 8, 466-474, 1973. 
26 A. G.-Comas, L. Manosa, A. Planes, M. Morin, Anharmonicity of Cu-based Shape-Memory Alloys in the 

Vicinity of their Martensitic Transition, Physical Review B 59, 246-250, 1999. 
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Elastic properties of materials have been determined in different ways.  Both 

experimental and theoretical approaches have been used.  Besides the universal testing 

machine for experimental determination of second-order elastic constants
13, 14, 15, 27, 28

, 

elastic moduli can also be measured dynamically by oscillatory forces applied at very 

small amplitudes to statically stretched fibers
12

.  HOECs can furthermore be determined 

by acoustical measurements
11, 29, 30 31

 which generally determine more combinations of 

constants, since each polarization of the wave determines a different combination.  

Bogardus
32

 utilized a pulse superposition method to determine the ultrasonic velocity as a 

function of both uniaxial and hydrostatic pressure of germanium, magnesium oxide, and 

fused silica. 

Recently, Segur et al.
33

 used a pump-probe technique to generate acoustic waves 

and propagate them in the cross-section of micrometric single carbon fibers in order to 

measure their elastic properties in the transverse direction as well as the fiber’s optical 

properties.  The researchers studied two different carbon fibers and found that their 

elastic coefficients c11 were in the same range of order, 30 ± 6 GPa for a low elastic 

modulus carbon fiber and 15 ± 3 GPa for a high elastic modulus PAN-based carbon fiber; 

                                                
27 T. H. Ko, Influence of Continuous Stabilization on the Physical Properties and Microstructure of PAN-

based Carbon Fibers, Journal of Applied Polymer Science 42, 1949-1957, 1991. 
28 M. C. Paiva, C. A. Bernardo, M. Nardin, Mechanical, Surface and Interfacial Characterization of Pitch 

and PAN-based Carbon Fibers, Carbon 38, 1323-1337, 2000. 
29 E. H. Bogardus, Temperature Dependence of the Pressure Coefficients of Elastic Constants for NaCl, 

Journal of Applied Physics 36, 3544-3546, 1965. 
30 W. H. Prosser, R. E. Green, Jr., Characterization of the Nonlinear Elastic Properties of Graphite/Epoxy 

Composites Using Ultrasound, Journal of Reinforced Plastics and Composites 9, 162-173, 1990. 
31 R. E. Smith, Ultrasonic Elastic Constants of Carbon Fibers and their Composites, Journal of Applied 
Physics 43, 2555-2561, 1972. 
32 E. H. Bogardus, Third-Order Elastic Constants of Ge, MgO, and Fused SiO2. Journal of Applied Physics 

36, 2504-2513, 1965. 
33 D. Segur, Y. Guillet, B. Audoin, Picosecond Ultrasonics on a Single Micron Carbon Fiber. J. Phys. 278, 

012020-1-4, 2011. 



 23 

however, their elastic moduli E in the axial direction were considerably different (53 GPa 

for the low modulus and 380 GPa for the PAN-based carbon fiber) due to their dissimilar 

microstructure.  A device similar to that used in this Thesis has been previously used to 

determine the combinations of HOECs of a set of different materials − Cu and Ni
25

, Pb
34

, 

Al
35

, Zn and Cd
36

, fused quartz
37

 and, Fe and Ag whiskers
38

 − using finite deformations.  

Their method has shown results that are in good agreement, experimentally and 

theoretically, with results from the literature. 

Further, simulations and first principle calculations are often made for carbon 

materials as well as their composites.  Theoretical modeling is of great interest so that 

composite properties can be characterized for potential engineering applications.  

Physical constants of nonlinear elastic fibrous micro and nano composites have been 

predicted by Cattani et al.
39

; Naik et al.
40

 have formulated a model for determination of 

the elastic properties of impregnated twisted yarns made of long unbroken filaments; 

Hlavacek et al.
41

 have calculated the elastic stiffness constants of unidirectional fiber-

reinforced composites with a hexagonal layout of fibers using the effective stiffness 

                                                
34 B. E. Powell, M. J. Skove, Combinations of Third-Order Elastic Constants of Lead, Journal of Applied 

Physics 51, 3433-3434, 1980. 
35 B. E. Powell, M. J. Skove, A Combination of Third-Order Elastic Constants of Aluminum, Journal of 

Applied Physics 53, 764-765, 1982. 
36 B. E. Powell, M. J. Skove, Combinations of Third-Order Elastic Constants of Zinc and Cadmium, 

Journal of Applied Physics 44, 666-667, 1973. 
37 B. E. Powell, M. J. Skove, Combinations of Fourth-Order Elastic Constants of Fused Quartz, Journal of 

Applied Physics 41, 4913-4917, 1970. 
38 B. E. Powell, M. J. Skove, Measurement of Higher-Order Elastic Constants Using Finite Deformations, 

Phys. Rev. 174, 977-983, 1968. 
39 C. Cattani, J. J. Rushchitsky, S. V. Sinchilo, Physical Constants for One Type of Nonlinearly Elastic 

Fibrous Micro- and Nanocomposites with Hard and Soft Nonlinearities. Int. Appl. Mech. 41, 1368-1377, 
2005. 
40 N. K. Naik, V. Madhavan, Twisted Impregnated Yarns: Elastic Properties. J. Strain Analysis 35, 83-91, 

2000. 
41 M. Hlavacek, A Continuum Theory for Fibre Reinforced Composites, International Journal of Solids and 

Structures 11, 199-211, 1975. 

http://www.sciencedirect.com/science/journal/00207683
http://www.sciencedirect.com/science/journal/00207683
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theory developed by Sun et al.
42

; Datta et al.
43

 used a multiple-scattering approach to 

derive the effective elastic constants of an anisotropic graphite fiber-reinforced epoxy 

composite; Thissell et al.
44

 calculated the elastic properties of polycrystalline anisotropic 

fibers of cylindrical symmetry and porosity using a preferred orientation model called the 

“Tomé ellipsoidal self-consistent model”.  The researchers compared their results with 

those “back calculated” from a composite laminate made of a PAN-based carbon fiber 

and epoxy using the Halpin-Tsai model and found significant differences between the 

two results.  They attributed these differences to the fact that the Halpin-Tsai model was 

developed using isotropic reinforcement materials and is not directly applicable to cases 

of anisotropic materials. 

One of the objectives of this study was to measure HOECs of a single filament of 

HewTow
®
 IM7-12K carbon fibers.  No reference to the HOECs of a single filament of 

IM7 was found in the literature.  Comparison between the outcomes of this work and 

theoretical results will aid in better understanding these materials as well as their 

composites. 

 

                                                
42 C. T. Sun, J. D. Achenbach, G. Herrmann, Continuum Theory for a Laminated Medium, Journal of 
Applied Mechanics 35, 467-475, 1968. 
43 S. K. Datta, H. M. Ledbetter, R. D. Kriz, Calculated Elastic Constants of Composites Containing 

Anisotropic Fibers, International Journal of Solids and Structures 20, 429-438, 1984. 
44 W. R. Thissell, A. K. Zurek, F. Addessio, Accurate Estimation of the Elastic Properties of Porous 

Fibers, 11th International Conference on Composite Materials, Gold Coast, Australia, 1997. 
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CHAPTER THREE 

 

EXPERIMENTAL METHODS 

 

 

3.1 Materials: HewTow
®
 IM7-12K Carbon Fiber 

 

A HewTow
®
 IM7-12K carbon fiber tow was provided by the Hexcel Corp., 

Stamford, Connecticut (lot # 5023-10M).  The fiber tow is comprised of approximately 

12,000 cylindrical filaments of continuous, PAN-based carbon fibers of high performance 

and intermediate modulus.  The measurements were performed using single filaments of 

the tow which were separated using tweezers and an optical microscope.  In order to 

verify the filament diameter reported by the manufacturer, the surface morphology was 

characterized and the diameter measured using a field emission scanning electron 

microscope (SEM), model Hitachi S4800.  Samples with gauge lengths ranging from 2.2 

to 5.5 mm were tested as-received at room temperature. 

 

3.2 Fiber Puller 

 

The tensile experiments were performed in an instrument specifically designed 

and built to test micro scale size samples.  A schematic diagram of the bench sized puller 

device is shown in Figure 9, which is described in detail elsewhere
45

. 

 

                                                
45 M. J. Skove, T. M. Tritt, A. C. Ehrlich, H. S. Davis, Device for Simultaneously Measuring Stress, Strain 

and Resistance in Whiskerlike Materials in the Temperature Range 1.5 K < T < 360 K, Review of 

Scientific Instruments 62, 1010-1014, 1991. 

http://rsi.aip.org/resource/1/rsinak
http://rsi.aip.org/resource/1/rsinak
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Figure 9. Schematic diagram of the fiber puller device. 

 

The fiber puller capabilities are several: tensile measurements can determine 

tensile strength, maximum elongation at failure, and tensile modulus of micro-scale 

samples with diameters ranging from 1 to 100 microns and lengths from ~0.5 to 7 mm.  

The instrument is also capable of determining resistivity, piezoresistivity and cyclic 

mechanical and electrical behavior based on hysteresis studies.  The coupling of a second 

lock-in amplifier to the equipment allows real-time verification of nonlinearities in the 

stress-strain relations.  Temperature dependent studies in the range between 1.5 and 360 

Kelvin can also be performed, since the equipment is constructed so that it can be 

inserted in a Janis Vari-temp Dewar, although all data presented here were taken at room 

temperature.  The fiber puller operation is described briefly below. 
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A current provides a magnetic field which is applied to built-in permanent 

magnets.  The resulting force elongates the sample and displaces the capacitor plate 

(CP1) that moves with the sample.  The resulting change in capacitance is used to 

determine the elongation of the sample.  The fiber filament was secured at both ends 

using Devcon
®
 S-31 or S-6 high-strength weld epoxy.  The puller device is connected to 

a power supply which provides the magnet current, a capacitance bridge which measures 

the capacitance, a lock-in amplifier (SRS 850) which measures the off-balance of the 

capacitance bridge, and a computer system which collects the data obtained using a 

LabVIEW
®
 program.  To measure the piezoresistivity, a four-point probe was set up with 

two copper wire pairs placed on each of the mounting plates (M1, M2) and contacts made 

to the fiber with silver paint.  The wires are electrically connected to a multimeter which 

is also connected to the computer system.  A second lock-in amplifier (EG&G 5110) was 

added to the entire device setup with the role of applying a known small oscillating low 

frequency (approximately 5 − 20 Hz) current to the oscillating coils.  The resulting 

oscillation in the length of the sample causes an oscillation in the capacitance which is 

measured by the second lock-in.  This is too fast for most damping and creep mechanisms 

for the sample to respond, so that only the elastic properties are usually seen.  The 

amplitude of this oscillation is inversely proportional to the slope of the stress-strain 

curve.  The resulting data obtained from it was used to check the second derivative 

d
2
ζ/dε

2
 during pulling. 
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A picture of the fiber puller is shown in Figure 10.  To appreciate how small the 

stress-strain device is a blue square has been placed in the picture.  The mounting plates 

M1 and M2 are shown inside a red square. 

 

Figure 10. Picture of the fiber puller on a bench top table.  The stress-strain device of 

the fiber puller is located in the blue square and mounting plates M1 and M2 are shown 

in a zoomed view inside red squares. 

 

3.3 Equipment Calibration 

 

Following the puller device diagram in Figure 9 and its operation in the above 

section, we see that the force F applied to the sample is a function of the current I which 

creates a magnetic field that acts on the built-in permanent magnets, so: 

F = cF * I (18) 
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where: cF is the force constant in N/A.  The force-current relation was calibrated by a 

hanging weight attached to a micromanipulator to the movable plate (M1), moving the 

weight with the micromanipulator and returning M1 to its equilibrium position by 

adjusting the current in the coil.  A schematic diagram of the force balance is shown in 

Figure 11.  The force on the pulling magnet Fp was linear in current with a slope of 

ΔFp/ΔI = 0.562 ± 0.01 N/A.  A plot of F vs. I is shown in Figure 12.  Similarly, a force 

constant was also determined for the oscillating magnet which applies an oscillating force 

to monitor relative changes in Young’s modulus.  A slope of ΔFo/ΔI = 0.176 N/A was 

obtained resulting in a Fp:Fo ratio of 3.2. 

 

Figure 11. Schematic diagram of the force balance in the force-current calibration. 

 

 The fiber puller uses a capacitive technique to correlate the change in capacitance 

with the elongation of the sample.  The SRS 850 lock-in amplifier measures the off-

balance of the capacitance bridge.  The capacitance is proportional to the offset according 

to the relation: 

C = C0 – (cC * X)  (19) 
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where: C is the final capacitance (pF), C0 is the initial capacitance (pF), X is the offset in 

mV and cC is the capacitance constant in pF/mV.  The final capacitance was linear in 

offset with a slope of ΔC/ΔX = 1.42 ± 0.006 pF/mV.  A plot of C vs. X is shown in Figure 

13. 

 

Figure 12. F vs. I calibration plot showing a slope of 0.5615 N/A. 

 

 

Figure 13. C vs. X calibration plot showing a slope of 1.42 pF/mV. 
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The change in capacitance ΔC is inversely proportional to the change in length of 

the sample ΔL in μm, i. e., the displacement Δd of the capacitor plate CP1 according to 

the relation: 

*

0

1 1
( )dd c
C C

    (20) 

where: cd is the displacement constant in μm.pF.  The Δd−1/C relation was calibrated by 

measuring the displacement of a specific spot on M1 with the change in current using an 

optical microscope with a calibrated reticule.  The capacitance change was also measured 

simultaneously.  Figure 14 depicts a linear relationship between displacement and 1/C 

over a wide range.  The displacement constant cd was calculated to be 2061.9 ± 86.2 

μm.pF. 

 

Figure 14. 1/C vs. Δd calibration plot. 

 

 The tensile stress and strain applied to the sample are calculated using equations 

(1) and (2).  The calculated force given by equation (18) is the total force FT and not the 



 32 

force Fsam acting on the sample and, therefore, this force must be calculated.  Taking into 

consideration the spring constant of the leaf spring supports for the center rod of the 

apparatus (k = 0.065 mN/μm) the force on the sample is given by
45

: 

Fsam = FT - k Δd (21) 

 Once all variables are calculated the stress and strain can be obtained as well as 

the second-order elastic constant (or Young’s modulus) according to equation (5). 

 

3.4 Equipment Automation 

 

During and after calibration of the fiber puller all measurements were taken by 

hand meaning that the equipment was lacking some form of computer control.  It was 

also part of this project to design a program capable of collecting data of the tensile 

measurements so equipment and experiment control were possible for further data 

analysis.  LabVIEW
®
 from National Instruments is the program used to automate the 

fiber puller.  The program, initially, recorded the basic variables: lock-in amplifier offset 

(related to strain) and current (related to force) only.  All other variables were calculated 

in a spreadsheet using the calibration relationships after calibration constants were 

determined.  At that early stage of program development manual and automated data 

were put side by side to make sure the program was delivering comparable results.  Once 

reliability was achieved manual data collection was eliminated. 

It is to be mentioned that the process of program development did not take place 

at once.  Continuous development of the program took place throughout the past two 
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years, and there is still room for improvement.  For the purposes of the project the present 

program has served well its function.  An overview of the LabVIEW
®
 program used to 

control the fiber puller is introduced next. 

A snapshot of the front panel of the main LabVIEW
®
 program is shown in Figure 

15.  In the “Sample Properties” box, besides the file name, characteristics of the sample, 

such as: gauge length, fiber diameter, initial capacitance and cross-sectional area of the 

fiber are entered.  Fiber diameter and cross-sectional area were fixed for these 

experiments, but file name, gauge length and initial capacitance differ for each 

experiment and sample. 

In the “System Controls” box, parameters that can control the experiment are 

entered.  “Current max” limits the total force applied to the sample; “current step” 

controls the current (or force) increment applied to the sample from start to end, “time for 

output to stabilize” controls the duration each measurement is held until the next 

measurement is taken and, “time to wait” tells the instrument how long it should hold the 

last measurement taken (at the maximum force) before the puller starts to release (or 

unload) the fiber.  It is worth mentioning that the program is designed to pull the fiber to 

a specific maximum force and unload it back to zero force so hysteresis curves can be 

obtained. 

The “Oscillation Controls” box controls the second lock-in amplifier (EG&G 

5110) which applies oscillation forces to the coil magnet and oscillates the sample.  

“Oscillation current” can be set on or off, “oscillation time” controls the duration the coil 

oscillates in each measurement and, “oscillation amplitude” controls the amplitude of 
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oscillation.  The frequency of oscillation is set manually in the EG&G 5110 lock-in 

amplifier before the experiment is started. 

 

Figure 15. Snapshot of the front panel of the main LabVIEW
®
 program used to 

control the tensile measurements on the fiber puller. 

 

 “Waveform Graph” in the front panel plots the amplitude of the output of the first 

lock-in in volts versus data points for the pulling data.  The “Derivative” graph plots the 
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amplitude of the output of the second lock-in in volts versus data points for the pulling 

data. 

The “Multimeter Filter” box controls the parameters of the filter; “power line 

cycles” determines the type of averaging, “digital filter” on or off and “digital filter 

readings” set the number of points being averaged. 

The data from each run is saved in a file that can be opened in Excel.  The 

spreadsheet records the following information: trace X (V), total force (mN), capacitance 

(pF), distance (μm), strain, force on sample (mN), stress (GPa), second lock-in output (V) 

and oscillating distance (μm).  The stress vs. strain curve is plotted using Excel tools and 

HOECs are obtained by fitting the strain-stress plot with a three term polynomial 

regression.  Results and discussion are presented in the next chapter. 
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CHAPTER FOUR 

 

RESULTS AND DISCUSSION 

 

 

4.1 Surface Morphology Characterization 

 

Sample characterization using a field emission scanning electron microscope 

(SEM), model Hitachi S4800 showed an average filament diameter of 5.3 ± 0.2 µm 

obtained from 27 dissimilar IM7 pieces, which is in good agreement with the diameter of 

5.2 microns reported by the manufacturer.  Figure 16 shows the surface morphology of a 

single filament of the IM7 carbon fiber obtained by SEM analysis. 

 

Figure 16. SEM image of a single filament of IM7 carbon fiber with diameter of 5.3 

microns. 

 

 

 



 37 

4.2 Elastic Properties 

 

The tensile modulus was determined by plotting a stress versus strain curve and 

fitting it with linear and polynomial regression.  The average Young’s modulus obtained 

for 42 runs was 242.8 ± 21.6 GPa by linear regression and 230.8 ± 20.2 GPa by 

polynomial regression.  The reason for these differences will be discussed later.  Fibers of 

gauge length between 2.2 and 5.5 mm were tested.  The Young’s modulus reported by the 

manufacturer is 276 GPa, which was determined by test method ASTM D3039 

designated as “Standard Test Method for Tensile Properties of Polymer Matrix 

Composite Materials”.  A study published in 2010 by Qian et al.
46

 reported a Young’s 

modulus value of 298 – 299 GPa for single filaments of IM7 carbon fiber with gauge 

lengths ranging from 15 to 35 mm.  Their tests were carried out on a single filament using 

a tensile testing rig instrument following the standard method BS ISO 11566:1996 

designated as “Standard Test for Determination of the Tensile Properties of Single 

Filament of Carbon Fiber Specimens”.  We would expect their E to be larger than the 

manufacturer’s because they did not allow for a finite higher-order elastic behavior.  

Since the fiber puller used in the studies for this Thesis was designed and built to 

accommodate custom made samples of micro-scale size, no standard method was 

followed. 

The ultimate fiber elongation at failure (maximum strain %) is reported by the 

manufacturer as 1.9 % for the HexTow
®
 IM7-12K.  Using the average Young’s modulus 

                                                
46 H. Qian, A. Bismarck, E. S. Greenhalgh, M. S. P. Shaffer, Carbon Nanotube Grafted Carbon Fibres: A 

Study of Wetting and Fibre Fragmentation, Composites: Part A 41, 1107-1114, 2010. 
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obtained above and considering the maximum strain (nearly 2.2 %) applied to the 

samples, a lower limit range for the tensile strength of a single filament of IM7 can be 

estimated between 4.21 and 5.02 GPa (compared to 4.84 − 5.89 GPa for a single filament 

by Qian et al.
46

 and 5.67 GPa for the tow reported by the manufacturer).  However, the 

majority of the single filaments tested did not break at the maximum forces applied which 

were around 101.2 mN.  The higher breaking strains may be due to the shorter length of 

the samples which may imply probabilities of fewer defects within and on the graphitic 

structure
47

 of the shorter carbon fiber filaments.  The fact that these tests were performed 

on single filaments instead of the entire tow is also considered.  Single filament tests 

result in a higher modulus since the single fiber is correctly aligned, while in a tow not all 

filaments are parallel, resulting in a lower modulus
9
. 

Figure 17 shows the hysteresis loops of five runs of a single filament of the IM7 

carbon fiber glued with Devcon
®

 S-31, 2 ton clear weld epoxy.  The respective sample 

bow profile (which is related to how much the fiber is straightened before pulling begins) 

for each run is also shown.  The more straightened the fiber before pulling begins (run 5 

in Fig. 17), the closer to the origin the stress-strain curve will begin, i. e., the stress-strain 

curve will start at zero.  Although the loops are narrow, one can see the relatively good 

definition of the hysteresis loops.  According to Wang et al.
48 

this behavior indicates that 

very little damage occurred within the fiber during the tensile load/unload cycle.  It is 

clear that a small residual strain is left behind after the sample is unloaded.  There are two 

                                                
47 M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg, Graphite Fibers and 

Filaments, Springer Series in Materials Science 5, Springer-Verlag, 1988. 
48 Y. Wang, L. Zhang, L. Cheng, H. Mei, J. Ma, Characterization of Tensile Behavior of a Two-

Dimensional Woven Carbon/Silicon Carbide Composite Fabricated by Chemical Vapor Infiltration,  

Materials Science and Engineering: A 497, 295-300, 2008. 

http://libcat.clemson.edu/search~S1?/tSpringer+series+in+materials+science+%3B+v.+5/tspringer+series+in+materials+science+v++++5/-3,-1,0,B/browse
http://www.sciencedirect.com/science/journal/09215093
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reasons for this behavior: a) the energy stored by the fiber during pulling is not 

completely released during unloading and leaves behind a residual strain, or b) there was 

a slight slipping of the sample through the glue. 

 

Figure 17. Hysteresis loop of five runs of a single filament of the IM7 carbon fiber 

with the respective sample bow profile for each run.  M1 and M2 represent the movable 

and stationary sample mounting plates, respectively (refer to Fig. 9).  The arrows up 

represent the loading (pulling) of the sample and the arrows down represent the 

unloading (releasing). 

 

Figure 18 shows an example of linear and polynomial regression fits in the stress 

vs. strain plot for the single filament sample ID IM7 #42, run 3, glued with Devcon
®
 S-6, 

plastic steel weld epoxy.  The linear fit is represented by a continuous red line and the 

polynomial fit is shown in a dashed black line.  From the fitting equations shown in the 

figure one can see that the polynomial fit is a much better fit to the data obtained.  It can 
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be noted that the stress-strain curve is steep and straight without noticeable softening.  

According to Lee et al.
49

 this is an indication of negligible plastic deformation in the 

sample.  The positive constant value multiplying the x
2
 term in the polynomial fit 

equation (+992.66 GPa) is also an indication of very little, or non-existent fiber slippage 

during pulling.  The fiber was pulled to a total strain of 1.03 % at an applied stress of 2.42 

GPa at a maximum force of 56.2 mN.  For this particular run, the value obtained for the 

Young’s modulus was 235.37 GPa by linear regression and 225 GPa by polynomial 

regression.  A fit to the data which includes higher-order terms results in a lower estimate 

of Young’s modulus, E.  The green curve represents the nonlinear portion of the 

polynomial fit and it shows us that there is, indeed, a nonlinear behavior of this fiber that 

is unnoticeable to the eye in the linear regression.  This proves the existence of HOECs 

(third-order, fourth-order, etc.).  The HOECs are a consequence of the interatomic forces 

not being strictly parabolic. 

The HOEC was determined by plotting a strain vs. stress curve and fitting it to 

polynomial regression.  To calculate the value of the inelastic constant, δ was factored by 

s11, according to equation (16).  The average value obtained for δ was −2.9 ± 1.7 which 

represents a combination of the individual elastic coefficients.  This value was more 

consistent and reproducible for fibers of longer gauge length (between 2.2 and 5.5 mm) 

than for fibers of relatively shorter gauge length (between 1 and 1.5 mm).  The average 

value of the elastic constant s11, which is inversely proportional to Young’s modulus, was 

                                                
49 C. Lee, X. Wei, Q. Li, R. Carpick, J. W. Kysar, J. Hone, Elastic and Frictional Properties of Graphene, 

Physica Status Solidi B 246, 2562-2567, 2009. 
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calculated to be 4.2 ± 0.35 x 10
-3

 GPa
-1

 by linear regression.  By polynomial regression 

s11 was found to be 4.4 ± 0.37 x 10
-3

 GPa
-1

. 

 

Figure 18. Stress vs. strain pulling plot of an IM7 fiber.  The linear fit is represented 

by a continuous red line and the polynomial fit is shown in a dashed black line.  The 

green curvature represents the nonlinear portion of the pulling data which is represented 

by open blue circles. 

 

Figure 19 shows the strain vs. stress curve (open blue circles) for the sample ID 

IM7 #42, run 3 (which it is just the inverse plot from Figure 18).  The linear fit is 

represented by a continuous red line and the polynomial fit is shown in a dashed black 
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line.  The polynomial fit is shown to be a better fit to the data according to the fitting 

equations.  The nonlinear portion of the polynomial fit is represented by a green line and 

its downward curvature originates the negative sign of the nonlinearity constant, δ. 

 

Figure 19. Strain vs. stress plot (open blue circles) for an IM7 sample (inverse to the 

plot in Figure 18).  The polynomial fit is represented by a dashed black line.  The green 

curvature represents the nonlinearity in the strain-stress relation. 

 

In order to verify the nonlinearity of the slope of the stress-strain relation, a 

second lock-in amplifier (EG&G 5110 in Fig. 9) was coupled to the fiber puller system.  
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Here, a small oscillating force is applied by an oscillating current in a separate coil 

around the magnets that apply force to the center rod and thus to the sample.  This 

oscillating force provokes an oscillating strain in the sample, and thus an oscillating 

capacitance that is measured by the bridge off-balance and the SRS 850 lock-in amplifier 

that measures this off-balance.  The second lock-in (tuned to a much lower frequency 

than the one used in the capacitance bridge) takes the output of the first lock-in and 

measures the component of the signal at the oscillating frequency, 5.12 Hz.  This signal is 

inversely proportional to the slope of the stress strain curve.  The data is given in terms of 

the inverse voltage versus strain %.  Figure 20 shows an example of this data collected 

for an IM7 sample of gauge length 4.0 mm.  The stress vs. strain curve for this particular 

sample is consistent with previous data showing the curve to be steep and straight with 

very little noticeable curvature.  A constant voltage of 1.5 V and frequency of 5.12 Hz 

were applied to the oscillating magnet coil.  The delay time between each measurement 

was 8 s.  The maximum force applied by the pulling coil was 56.2 mN with increments of 

0.3 mN and delay times of 1.5 s between each measurement.  This corresponded to a total 

strain of 0.75 % and maximum applied stress of 2.10 GPa.  No damage (breaking) of the 

sample was observed in this case.  The secondary y-axis in Figure 20 corresponds to the 

inverse of the output voltage of the second lock-in versus the strain.  Interestingly, one 

can note the curvature (polynomial regression fit of the 1/V vs. strain % plot) of the slope 

in the strain region at which the sample is being straightened confirming that the 

curvature is related to the HOECs (third- and fourth-order) pertained to this type of fiber. 
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Figure 20. Stress vs. strain % pulling plot of an IM7 sample of gauge length 4.0 mm 

(diamond shaped blue points) and 1/V vs. strain % correspondent to it (square shaped red 

points).  The dashed lines represent a polynomial fit to the 1/V vs. strain % plot and it is a 

guide to the eye.  The curvature of the slope of the stress-strain relation is highly 

accentuated by the use of a second lock-in amplifier. 

 

As previously mentioned, the oscillating amplitude of the output voltage is 

inversely proportional to the slope of the stress-strain plot.  An example of this 

proportionality can be seen in Figure 21.  The primary y-axis shows the normalized dζ/dε 

vs. strain (blue line) and the secondary y-axis shows the normalized 1/V vs. strain (red 

trace) corresponding to it.  The dashed black line is a linear fit to the normalized 1/V vs. 

strain and one can see that its change is around 6%.  Comparatively, the change observed 

for the normalized dζ/dε vs. strain is around 6% as well.  The second lock-in gave results 
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that agree with the analysis of the first; that is, the slope of the stress-strain curve 

increases gradually and at a constant rate.  This agreement between the two ways of 

measuring the nonlinearity gives more confidence in its measurement. 

 

Figure 21. Normalized plots of the dζ/dε vs. strain % (blue line) and 1/V vs. strain % 

(red trace).  The dashed black line is the linear fit of the normalized 1/V vs. strain plot, 

and is a guide to the eye.  Both slopes are in good agreement with each other, being 

approximately 6% change each. 

 

The observation of nonlinear elasticity in carbon fibers is explained by a strain-

induced stiffening mechanism
14

 which generates an initial and final modulus associated 

with the increased strain imposed on the sample.  Table 1 shows the values of Young’s 

modulus obtained by both linear and polynomial regression fits for an IM7 sample of 

gauge length 3.1 mm.  We note that the higher the strain the higher is the value of the 

tensile modulus.  Small strains (0.6 %) at the initial stage give rise to lower slopes (249 
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GPa) while at larger strains (1.7 %) a final slope with a higher value is obtained (262 

GPa).  A fit to the data which includes higher-order terms results in a lower estimate of 

Young’s modulus, E.  This may be the reason that our values of E are lower than 

published values, and the reason that E as measured by the best linear fit is larger when a 

larger strain is applied to the sample.  If the isothermal E is defined as the second 

derivative of the Gibbs energy with respect to stress, evaluated at zero stress, then it is 

determined by the linear term in a polynomial fit to a stress-strain curve. 

 

Table 1. Values of Young’s modulus obtained by both linear and polynomial 

regression fits for an IM7 sample of gauge length 3.1 mm.  The maximum strain % 

applied for each run is also listed.  Note that E as measured by a linear fit increases 

monotonically with strain, whereas E as measured by a polynomial fit is relatively 

constant. 

Run # Max. strain % E (GPa), linear fit E (GPa), polynomial fit 

1 0.6 249 238 

2 1.2 252 235 

3 1.7 262 244 

 

In 1969 Ruland
50

 elucidated the reason for the increase of the carbon fiber's 

modulus developing an elastic unwrinkling model.  He assumed that the graphitic layers 

of a carbon fiber are connected together to form long and wrinkled ribbons along the 

                                                
50 W. Ruland, The Relationship Between Preferred Orientation and Young's Modulus of Carbon Fibers, 

Applied Polymer Symposia 9, 293-301, 1969. 
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fiber axis.  When the fiber is subjected to tensile forces, a stress on the ribbons increases 

the preferred orientation of the individual layers; consequently, the stiff axis of the 

individual layers is more directly aligned with the fiber axis resulting in an increased 

fiber modulus. 

 

4.3 Electrical Properties 

 

Figure 22 shows the change in resistance with increasing strain during pulling for 

an IM7 sample of gauge length 4.3 mm.  The measurements were taken over a force 

ranging from zero to 84.3 mN with increments of 0.6 mN.  The delay times between each 

measurement were 0.1 (runs 15-18), 1 (runs 6-10) and 5 (runs 11-14) seconds. 

From the figure, one can see the increase in resistance with increasing strain for 

all 13 runs.  The average value obtained for the variation of the scaled resistance with 

strain, (1/R) dR/dε = (1/ρ) dρ/dε, was 1.27 ± 0.10 (Ω.cm/Ω.cm) which is in good 

agreement with Blazewicz et al.
51

 who studied the piezoresistance effect in different 

types of carbon fibers.  The average value of the resistivity of the fiber was calculated to 

be 1.52 ± 0.12 x 10
-3

 Ω.cm, which is in good agreement with the electrical resistivity of 

the tow (1.5 x 10
-3

 Ω.cm) reported by the manufacturer.  These results are also in 

agreement with Owston
52

 who measured the electrical resistance of single PAN-based 

carbon fibers with 8 µm diameters and gauge lengths from 45 to 250 mm using a 

                                                
51 S. Blazewicz, B. Patalita, P. Touzain, Study of Piezoresistance Effect in Carbon Fibers, Carbon 35, 1613-

1618, 1997. 
52 C. N. Owston, Electrical Properties of Single Carbon Fibres, Journal of Physics D 3, 1615-1626, 1970. 
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tensometer.  The authors attributed these results to be between 10 and 100 times the 

values of the resistivity for the basal plane conduction in graphite single crystals, which is 

about 4 x 10
-5

 Ω.cm at room temperature
53

.  The origin of the electrical noise may come 

from a somewhat granular structure of the fibers with contacts between the grains which 

may tend to rupture under higher tensile loads
52

. 

 

Figure 22. Resistance vs. strain plot of an IM7 sample.  The times, 0.1, 1 and 5 s 

correspond to the duration of the force applied between each measurement. 

 

                                                
53 D. W. McKee, Carbon and Graphite Science, Annu. Rev. Mater. Sci. 3, 195-231, 1973. 
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Figure 23 shows the hysteresis loop for R vs. ε for run 15 in Figure 22.  The blue 

line is loading (pulling) and the red line, unloading (releasing).  The hysteresis loop 

profiles of the resistance measurements were very similar to those obtained during tensile 

tests (narrow and well defined for all runs). 

 

Figure 23. Hysteresis loop for the resistance vs. strain for the run 15 in Figure 22.  

The blue line is loading (pulling) and the red line, unloading (releasing). 

 

It can be seen that the final resistance after complete unload did not return to its 

original value which it is typical carbon fiber behavior under high loading conditions
52

.  

The piezoresistivity mechanism in carbon fibers has been explained by different authors 

in terms of the change in electrical resistance with strain, being due to changes in the 
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contact resistance between the grain boundaries of the fiber
54

, or the degree of 

misorientation between the crystallites in the fiber
55

, or the density of dangling bonds in 

the atomic hexagonal graphite structure of the carbon fiber
56

. 

 

4.4 Contribution of epoxy (glue) to the Young’s Modulus of Carbon Fiber 

 

In order to maintain a sample secured on the fiber puller mounting plates during 

tensile measurements the sample must be glued at both ends with glue (or epoxy).  The 

first tensile experiments performed on IM7, with either manual or automated collection 

of data, used Devcon
®
 S-205 high-strength 5-minute epoxy.  At that early stage of 

equipment calibration and automation, the results for second- as well as third-order 

elastic constants were low and inconsistent.  The S-205 5-min epoxy served its purpose 

but it seemed, according to the results, that the fiber was slipping through it, producing 

unreliable data.  In order to obtain improved results, a search for a better epoxy was 

undertaken. 

Several different types of glue were tried, and all failed to secure the fiber 

adequately during tensile measurements except epoxy glue.  The glues tried were: super 

glue, sodium silicate and diphenylcarbazide.  A combination with different two types was 

also tried unsuccessfully.  Then Devcon
®
 S-31, 2 ton clear weld epoxy was tried, and the 

                                                
54 M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, M. S. Dresselhaus, Vapor-
Grown Carbon Fibers (VGCFs): Basic Properties and their Battery Applications, Carbon 39, 1287-1297, 

2001. 
55 P. C. Conor, C. N. Owston, Electrical Resistance of Single Carbon Fibres, Nature 223, 1146-1147, 1969. 
56 Y. Nishi, T. Toriyama, K. Oguri, A. Tonegawa, K. Takayama, High Fracture Resistance of Carbon 

Fiber Treated by Electron Beam Irradiation, J. Materials Research 16, 1632-1635, 2001. 
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results obtained were more consistent and reproducible than the results obtained with 5-

min epoxy.  New experiments were performed for acquisition of new data and all 

previously obtained data were discarded. 

Although the data obtained with Devcon
®
 S-31 epoxy seemed to be in good 

agreement with the manufacturer, it was the oscillation experiments that raised doubts 

about this glue and how well it was working to keeping the carbon fiber in place without 

slippage.  A helpful clue to determine if the fiber is slipping through the glue during 

tensile measurements is to pay attention to the quadratic term in a polynomial fit to the 

stress-strain curve.  If that term is negative, there is an indication of fiber slippage.  The 

resulting data from oscillation experiments does not account for fiber slippage, because 

the time constant associated with slippage appears to be much longer than that associated 

with the oscillation frequency.  Therefore, oscillation measurement is a second way of 

confirming the presence of HOECs of a sample, but is limited in its usefulness in 

measuring glue slippage.  From experience and analyzing the hysteresis response and the 

final strain after unloading, one might notice a broadening of the hysteresis behavior, 

which suggests that some slippage of the fiber in the glue might be occurring. 

In order to answer this question another type of epoxy was tried, Devcon
®
 S-6 

high-strength plastic steel epoxy.  This epoxy gave the best results for IM7 elastic 

properties, “best” meaning the highest values for modulus obtained thus far.  Another 

observation throughout the course of the project was that shorter fibers had lower 

modulus than longer ones.  Understanding that the glue was playing a role in the resulting 
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measured value for the HOECs, a model was proposed to correlate the values of the 

measured modulus with the actual one. 

Assuming that a carbon fiber sample of initial length l1, and homogeneous 

diameter throughout its length, subjected to a force F will deform Δl1, and assume that 

the deformation in the glue will be Δlg.  Cutting the fiber to a shorter length l2, regluing it 

and subjecting it to the same force F, the fiber will deform Δl2.  Assuming that the 

deformation in the glue is the same for both lengths, we have: 

1
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It is known that the Young’s modulus is the ratio between stress and strain, and 

strain is Δl/l.  Using the relations in equations (22), (23) and (24) we obtain for the 

measured modulus Em1 and Em2: 
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Rearranging equations (25) and (26) we obtain: 
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. .k c A E   (29) 

Solving equation (27) for k and putting it into equation (28) we have: 
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Solving for the actual modulus E we have: 
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Applying equation (32) to the resulting measured modulus of a non-oscillating 

IM7 sample (ID IM7 #42) glued with Devcon
®
 S-6 high-strength plastic steel epoxy of 

longer length 3.9 mm and shorter length 2.2 mm, the actual tensile modulus obtained was 

307 GPa.  This result confirms the tensile modulus of a single filament to be higher than 

the modulus reported for a fiber tow due to a better alignment of the single fiber 

compared to multiple fibers within a bundle.  The actual modulus is higher than the upper 

and lower values of measured modulus fitted to polynomial regression (258.1 ± 5.6 and 

229.7 ± 6.1 GPa, respectively).  An average of six runs for the 3.9 mm fiber was used 

while 5 runs were used for the 2.2 mm IM7 piece.  For these runs the maximum applied 

force ranged from 45 to 101.2 mN and the total strain varied from 0.7 to 1.9 %.  None of 

these fibers failed (broke).  Once again, to confirm the contribution of the glue to the 

measured modulus of the single carbon filament, the same correction was applied to the 

measured moduli of two pieces of the same tungsten wire of lengths 4.2 mm and 2.2 mm.  
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The results were consistent with the correction for the IM7, that is the accepted value of 

E was obtained only by correcting for the contribution of the glue to the measured strain.  

This is further evidence that the epoxy used to secure the sample on the fiber puller has 

an effect on the final measured tensile modulus of samples. 
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CHAPTER FIVE 

 

CONCLUSIONS 

 

 

Young’s modulus, the resistivity, the piezoresistivity and δ, the nonlinearity in the 

stress-strain relation for single filaments of IM7 carbon fibers have been successfully 

measured.  It is shown that δ is related to a combination of second- and third-order elastic 

constants.  Since these are derivatives of the Gibbs free energy with respect to stress or 

strain, they are relatively easy to compare to calculations from a model of the structure of 

the fibers. 

Results from this work also showed strain-induced stiffening effects pertain to 

carbon fibers.  The higher the strain applied to the sample, the higher the tensile modulus 

obtained.  Likewise, a comparison between the Young’s modulus obtained by linear 

regression and polynomial regression revealed that a linear fit gives higher values.  The 

presence of higher-order elastic terms, which are neglected in a linear fit, causes a 

decrease in the reported value of the second-order elastic constant, but a value consistent 

with thermodynamic definitions of the elastic moduli. 

The use of a second lock-in amplifier, coupled to the fiber puller system, 

confirmed the presence of HOECs since the results were proportional to the derivative of 

the stress-strain relation. 

Moreover, a correction for the contribution of the epoxy to the measured tensile 

modulus of single filaments of IM7 carbon fiber was applied, and it was revealed that the 

epoxy plays a role during tensile measurements.  The actual calculated tensile modulus of 

single filaments of IM7 is higher than the measured values, reaching 307 GPa, compared 
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to 276 GPa modulus for the fiber tow reported by the manufacturer.  It is expected that 

these results may be of interest for theoretical modeling and simulations, and help 

researchers in attaining a better understanding of the properties and behavior of 

composites which incorporate IM7 carbon fiber. 
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CHAPTER SIX 

 

RECOMMENDATIONS FOR FUTURE WORK 

 

 

The fiber puller has been successfully applied to the determination of the elastic 

properties of IM7 carbon fiber.  A second lock-in amplifier coupled to the instrument 

helped in confirming the presence of HOECs in this sample.  It is recommended that any 

type of carbon fiber, or any type of micro-scale size sample be tested using the 

equipment.  Materials that do not have their E determined can be subjected to tensile 

measurements and their elastic properties can be measured, aiding in helping scientists 

who specialize in modeling and simulations.  Additionally, the LabVIEW
®
 program is 

open to improvement.  Any further relation or calculation can be added to the program.  It 

is the intent to develop the current program further and code it to perform consecutive, or 

continuous, loading and unloading cycles for study of hysteresis behavior with increasing 

strain sequences.  The use of epoxy to hold samples in place should be taken into 

consideration and each different type of glue should be investigated to determine their 

individual contribution to the measured tensile modulus of samples. 
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