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ABSTRACT 
 
 

The aryl hydrocarbon receptor (AhR) functions as a ligand-activated transcription 

factor normally found in the cytoplasmic compartment of cells held by chaperones and 

immunophilin-like proteins.  Ligand binding dissociates the AhR/ligand from chaperone 

proteins, allowing translocation to the nucleus with subsequent transcription of a suite of 

responsive genes, most notably Phase I, II, and III drug metabolism genes.   Select 

environmental contaminants such as co-planar PCBs, planar polyaromatic hydrocarbons 

(PAHs), and halogenated aromatic hydrocarbons (HAHs) are potent AhR agonists, with 

2,3,7,8 –tetrachlorodibenzodioxin (TCDD) being one of the most potent.  Adverse effects 

of exposure to these potent environmental AhR ligands include immune suppression, 

reproductive, and developmental disorders.   Mammals express a single AhR protein, 

while fish express both AhR1 and AhR2.  However, to date only the AhR2 protein 

appears to be involved in mediating the toxic effects of known xenobiotic AhR ligands.  

Using bacterial expression plasmid systems, a recombinant Atlantic killifish, 

Fundulus heteroclitus, AhR2 protein was expressed and used to produce a monoclonal 

antibody (mAb 5B6) that does not cross-react with AhR1.   AhR2 expression can be 

detected with abundance in the cytosol of individual cells and in select organs.   By 

testing the antibody against paraffin-embedded tissues, it was found that mAb 5B6 

requires microwaving tissues under high pH conditions to properly recognize its epitope.  

High levels of AhR2 protein are detected in the liver, spleen, intestine, and anterior 

kidney. Experimental exposures to the potent AhR2 ligand PCB-126 induce 
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expression of both AhR2 and CYP1A proteins in most tissues, especially the intestine 

and liver.   Basal expression of AhR2 protein was determined in livers of Atlantic 

killifish collected at the US-EPA Superfund site in Portsmouth VA, a site heavily 

contaminated with creosote and containing very high levels of PAHs.  Several livers from 

the Superfund site harbored aggressive tumors and other hepatic lesions.  AhR2 protein 

expression was high in normal tissue, but not cells within lesions.   Overall, CYP1A 

protein expression patterns mirror those of AhR2 protein.   This is the first study to 

examine AhR2 expression in tissues isolated from fish collected in the field, and like 

CYP1A, this protein may be a sentinel biomarker in future studies. 
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CHAPTER ONE 
 

REVIEW OF LITERATURE 
 
 

Introduction to Fundulus heteroclitus 
 

The estuarine killifish, Fundulus heteroclitus, (Linnaeus) also know as the 

mummichog or Atlantic killifish is a small, ubiquitous, teleost fish that is distributed 

along the east coast of North America, extending from Newfoundland to northern Florida 

(Bigelow and Schroeder, 1953; Hardy, 1978). These fish normally inhabit saltwater 

marshes, estuaries, tidal creeks (Teo and Able, 2003; Kneib, 1986) and due to their 

limited migration (Duvernell et. al., 2008) these fish have a high home range fidelity 

throughout their entire life cycle (Kneib, 1986). Mummichogs are hardy euryhaline fish 

that can occupy bodies of water with ranges in salinity from freshwater, 0 parts per 

thousand (ppt), to salinities of upwards to 120.3ppt (Abraham, 1985; Griffth, 1974).  

The mummichog is a sexually dimorphic fish. The males are easily recognized by 

having horizontal stripes and colorful spots compared to the females, which lack stripes 

and are pale in comparison (Bigelow and Schroeder, 1953). These fish spawn by lunar 

cues during high tide on the new and full moon from spring to fall (Cochran et al., 1988; 

Taylor and DiMichele, 1980). Female mummichogs are oviparous egg layers. During 

spawning, females are capable of producing several hundred eggs, which remain 

transparent throughout embryonic development (Armstrong and Child, 1965).  
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Fundulus heteroclitus as research animals 
 

Due to the mummichog’s small size and hardiness it is simple to culture them in 

captivity (Bigelow and Schroeder, 1953; Overstreet et al., 2000). Since mummichogs live 

along the coast of embayments and waterways, which are often exposed to a myriad of 

anthropogenic contaminants from nearby factories and production plants that produce by-

products such as PCBs (Polychlorinated biphenyls) and PAHs (polycyclic aromatic 

hydrocarbons), these fish have adapted to their surroundings and are abundant in pristine 

as well as polluted environments. Because of this, these Fundulus fish are often used as 

an indicator species to monitor the overall health of its ecosystem and have therefore 

been used in a plethora of toxicological studies (Frederick et al., 2007; Nacci et al., 2010 

Vogelbein et al., 1990; Wassenberg et al., 2002; Munns et al., 1997; van den Hurk et al., 

2000; Weis, 2002; Nevid and Meir, 1993; Nevid and Meier, 1994; Roszell and Rice, 

1998; Rice and Xiang, 2000).  

 
 
Introduction to aryl hydrocarbon receptor (AhR) 
 

The aryl hydrocarbon receptor, AhR, belongs to a multigene family of 

transcription factors that has a signature PAS domain. The AhR’s function is to play a 

role in detecting and adapting to environmental pollutants by regulating drug-

metabolizing enzymes. In the PAS family of proteins, the PAS domain is named after the 

first letter of the first three founding proteins in the family, PER, ARNT, and SIM, 

respectively. The PAS domain within AhR allows for either the homotypic interaction 
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between another PAS protein or a heterotypic interaction, such as with a chaperorone 

protein or ligand. Within the AhR protein, there is a second domain which contains basic 

helix-loop-helix (bHLH) motifs that immediately follow the N-terminal of the PAS 

domain. Within the helix-loop-helix domain, there is homotypic interaction between a 

pair of bHLH motifs that forms a basic dimerization region which allows proteins to bind 

to the regulatory elements within the DNA (reviews by Gu et al., 2000; Kewley et al., 

2004). 

The AhR is a ligand-activated transcription factor that primarily activates genes 

which elicit biochemical and toxic responses in the presence of ligands. When AhR is in 

its latent form, unbound to its ligand, it is normally found in the cytoplasm of cells and is 

stabilized by chaperone proteins including two 90-kDa heat shock proteins, Hsp90 

(reviews by Kewley et al., 2004; Hahn, 1998; Merson et al., 2006), p23, and hepatitis B 

virus X-associated protein (also known as XAP2 or AIP or Ara9) (Denison et al., 2002).    

 

Ligands of AhR 

A large range of ligands can bind to the AhR binding site. These ligands are 

categorized into two basic types:  exogenous compounds, such as xenobiotics and other 

anthropogenic compounds, and endogenous compounds, which are dietary or biologically 

derived (reviewed by Denison and Nagy, 2003). The most common and highest affinity 

ligands of AhR are exogenous compounds, which are either produced anthropogenically 

or non-biologically in the environment by means such as the combustion of fossil fuels or 

petroleum products (Cherng et al. 1996).  These exogenous compounds include 
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halogenated aromatic hydrocarbons, HAHs (for instance TCDD - 2, 3, 7, 8- 

tetrachlorodibenzo-p-dioxin) and planar aromatic compounds (reviewed by Hahn, 1998).  

The planar aromatic compounds include the polyaromatic hydrocarbons, PAHs, such as 

benzo(a)pyrene and 3-methylcholanthrene, and polychlorinated biphenyls, PCBs, like 

3,3’ ,4, 4’, 5-pentachlorobiphenyl PCB-126 (Quattrochi, et al., 1994; reviewed by Hahn, 

1998).  

 Different types of ligands have different binding affinities for AhR. For instance, 

ligands such as HAHs have relatively high binding affinities for AhR that range in the 

neighborhood of pM to nM, whereas ligands such as PAHs have significantly lower 

binding affinities to AhR, being in the nM to µM scale (reviewed by Whitlock, 1999; 

Denison and Nagy, 2003; Mitchell and Elferink, 2009). 

While no high affinity endogenous ligands have been found, low affinity ligands 

from plant products such as indole-containing compounds, sterols, and tryptophan 

photoproducts, flavonoids, carotinoids, to name a few, exist (Denison et al., 2002; 

Mitchell and Elferink, 2009). 

 

Activation of AhR 
 
Upon ligand binding, a conformational change within the ligand:AhR complex 

results in the exposure of the NLS, nuclear localization sequence, followed by nuclear 

translocation (Denison et al., 2002).  Once inside the nucleus, AhR will dissociate from 

its protein complex (Denison et al., 2002; Mitchell et al., 2008). Since AhR belongs to a 

Class I group of bHLH/PAS proteins that neither heterodimerise nor homodimerise with 
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other Class I proteins, AhR must dimerise with a ubiquitous Class II bHLH/PAS protein, 

known as aryl hydrocarbon receptor nuclear translocator, ARNT. ARNT belongs to a 

promiscuous class of bHLH/PAS proteins that can homodimerise or heterodimerise with 

other bHLH/PAS proteins (reviewed by Kewley et al., 2004). 

Once AhR and ARNT form a heterodimer, an active transcription complex in the 

nucleus of the cell is formed. The ligand bound complex will then bind to xenobiotic 

response elements (XREs), also known as dioxin responsive elements (DREs) or aryl 

hydrocarbon responsive elements (AHREs), on the nuclear DNA. The consensus 

sequence for these elements is 5′-(T/G)NGCGTG-3′ (ZeRuth and Pollenz, 2007; 

reviewed by Whitlock, 1999). This interaction will cause a transcriptional activation of a 

variety of many target genes such as CYP1A1, CYP1A2, CYP1B1, flavin 

monooxygenases (FMOs), glutathione S-transferases (GSTs), and diphosphate 

glucuronosyltransferases (UGTs) which will then translate into enzymes that will be 

involved in xenobiotic metabolism as shown in Figure 1 (reviewed by Whitlock, 1999; 

Hahn et al., 2005). 
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Fig 1. The activation of the aryl hydrocarbon receptor through ligand binding. 

(reviewed by Kewley et al., 2004) 

One of the most characterized genes that shows the downstream effects of AhR 

induction, Cyp1A, also known as cytochrome P4501A1 (reviwed by Whitlock, 1999). 

This classically studied gene belongs to the cytochrome P450, also known as CYP, 

family of phase I enzymes that primarily function as monooxygenases, meaning they 

insert one oxygen atom into a substrate. There are over 400 genes that have been 

identified for the CYP family, and each CYP’s gene activation is controlled by different 

transcription factors that are present in distinct mechanistic pathways (Boelsterli, 2007).  
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CYPs are named according to their genetic relationships with each other. For instance, 

CYP1A1, the first 1 denotes to which gene family the enzyme belongs to where there is a 

forty percent or greater homology among members, the letter A stands for the subfamily 

the enzyme belongs to, and 1A1 denotes the individual gene of the protein. CYP1A1, 

CYP1A2, CYP1B1 genes happen to become activated through ligand activation of AhR. 

Once these particular genes are induced, the enzymes of those translated genes will often 

reduce the biological half life of the parent compound, the initial ligand, or alter the 

response of the compound (Denison, et al., 2002).  

Besides activating the transcription of cytochrome P450 genes, the AhR/ARNT 

complex can also activate the transcription of AhR repressor (AhR-R) genes which are 

then translated into their protein products. Aryl hydrocarbon receptor repressor is a 

member of the bHLH/PAS family of proteins that down regulates the induction of AhR.  

AhRR is a negative regulatory loop in AhR mediated pathway that will compete with 

AhR for dimerization with ARNT, which will consequentially inhibit AhR function and 

resulting effects (Mimura et al., 1999; Hahn et al., 2005).  Mechanistically, it thought that 

the AhR-R targets the AhR for ubiquination and subsequent degradation of the AhR. 

 
 

AhR1 and AhR2 
 
 In mammals, there has only been one AhR receptor discovered thus far, while in 

bony fish, there have been up to six AhR paralogs discovered (Merson et al., 2006). In 

Fundulus heteroclitus, there have been two highly divergent AhRs identified, AhR1 and 

AhR2 (Hahn et al., 2006; Karchner et al., 1999; Merson et al., 2006).   Hahn (2002) 
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speculates that gene duplication events in vertebrate evolution lead to multiple AhR 

genes.  Both AhR1 and AhR2 in Fundulus share similar mechanistic properties of 

mammalian AhR in that they share co-factors (e.g., ARNT, AhR Repressor) in the AhR 

induction and regulation pathways (Hahn, 2002). 

Fundulus AhR1 is more closely related to mammalian AhR and is considered its 

ortholog. The bHLH domain of AhR1 shares 83% amino acid identity compared to the 

domain of mammalian AhR. The bHLH domain of AhR2 shares a 73% amino acid 

identity compared to the domain of mammalian AhR. Phylogenetic analysis suggests that 

AhR2 may have evolved either after the divergence of bony fish from vertebrates or that 

this gene could have become lost in mammals long after they diverted from bony fish 

(Karchner et al., 1999). 

 It has been shown that slight differences in amino acid sequences of mouse AhR 

strains can have substantial impacts on their ligand affinity which may in turn cause 

different physiological effects such as ligand sensitivity and toxicity (Hahn, 2002). Since 

AhR1 and AhR2 have different structures, binding affinities to ligands, and different 

levels of expression in tissues and organs, this suggests that they also have different 

functions from one another (Karchner et al., 1999). 

 Fish larvae are very sensitive, especially during early development, to dioxin-like 

compounds, which are agonists for AhR (Hahn, 2002; Andreasen et al., 2002; Belair et 

al., 2001; Teraoka et al., 2002). Based on expression studies, AhR2 appears to be the 

predominant form of AhR expressed in fish and is therefore thought to be the main 

mediator in ligand induced toxicity in fish, especially in larval fish and embryos 
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(Hahn, 2002; Karchner et al., 1999; Andreasen, et al., 2002; Prasch, et al., 2003; Hahn et 

al., 2005). In gene knock-down methods using morpholino-modified oligonucleotides 

(MO) that have been used in AhR2 MO zebrafish, it was determined that AhR2 helps 

mediate several toxic effects of TCDD (Prasch, et al., 2003). 

 
 

 
 
 

Location and expression of AhR 
 

The level of expression of AhR varies in organs, tissues, cell types and 

developmental stages of animals (review by Hahn, 1998). In mammals, such as rats, AhR 

is predominately found and expressed in the lungs, liver, thymus, kidney, placenta and to 

a lesser extent can be present in the spleen, heart, brain, muscle, pancreas, and gonads 

(reviewed by Kewley et al., 2004; Hahn, 1998). Analyzing the varying degrees of AhR 

expression can be vital in determining the effects of different ligands (reviewed by Hahn, 

1998). 

In fish, the level of expression and organ location varies between AhR1 and 

AhR2. AhR2 is predominant and is the most widely and highly expressed aryl 

hydrocarbon receptor in teleost fish including Fundulus. AhR2 is expressed in most 

tissues in Fundulus, whereas, AhR1 is most often expressed in the heart, brain, and 

gonads (Karchner et al., 1999; Hahn, et al., 2006).  
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Effects of AhR activation 
 

The AhR comes from a family of bHLH/PAS family of proteins that are involved 

in developmental and environmental signaling (Hahn et al., 2006; Gu et al., 2000; 

Kewley et al., 2004). AhR is considered to be involved with cell cycle control and 

controlling growth factor transduction pathways (Karchner, et al., 1999). Early exposures 

to AhR agonists, such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in larval zebrafish, Danio 

rerio, has shown to cause development toxicity such as stunted growth, impaired swim 

bladder, impaired jaw development and even mortality (Andreasen et al., 2002; Belair et 

al., 2001; Teraoka et al., 2002). AhR is also involved in vascular development and cell 

proliferation, as AhR knockout mice experience defects in vascular development and 

have a slower rate of cellular proliferation (Mitchell and Elferink, 2009). 

 Studies with AhR knockout mice have also shown that TCDD toxicity is caused 

mostly in the presence of AhR, suggesting that AhR is responsible for most if not all of 

the toxic effects caused by TCDD exposure such as cardiovascular dysfunction, edema, 

hemorrhages, jaw malformations, inhibition of growth and mortality (Prasch, et al., 

2003). Gene knock-down methods using morpholino-modified oligonucleotides (MO) 

have been used in AhR2 MO zebrafish which have shown to reduce the effects of TCDD 

toxicity (Hahn, et al., 2005). Like Fundulus, zebrafish also have two AhRs, zfAhR1 

which is similar to it mammalian counterpart, and zfAhR2 which is different from 

mammalian AhR. In an experiment where zebrafish were exposed to TCDD, the zbAhR1 

seemed to be inactive, while zfAhR2 lead to CYP1A2 induction and TCDD mediated 

toxicity (Andreasen, et al., 2002; Hahn et al., 2005).  
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In the mammalian AhR pathway there is only one AhR and it mediates a toxic 

response in TCDD and HAH exposure. In Fundulus, while the two AhRs have the 

capability to bind to TCDD, it has been discovered within tissues that expressed CYP1A 

(caused by PHAH exposure and a biochemical indicator of aryl hydrocarbon receptor 

induction) that there were nearly undetectable amounts of AhR1 mRNA in comparison to 

mRNA of AhR2 indicating that PHAH toxicity is mainly mediated through AhR2 and 

that above normal AhR1 expression is not a physiological response to a contaminant 

exposure (Powell, et al., 2000). 

 
 
 
 
mAb for AhR2 in Fundulus 
 
 

Information showing how conserved the AhR is among different taxa can be used 

as a guide for the selection of animal models to be used for research and how the 

generated data can be extrapolated in terms of their physiological responses to AhR 

induced xenobiotics and pollutants in order to predict similar results in other species such 

as humans. Knowing the mechanisms of action or how strongly xenobiotics bind to the 

AhR can help predict its downstream induction and can prove to be vital in predicting 

environmental risks (Hahn, 1998; Hahn et al., 2005; Hahn et al., 2006). Specific 

monoclonal antibodies that bind to key protein players in the pathway, such as AhR2 , 

need to be developed in order to better understand the mechanism and physiological 

effects of AhR induction and overall function (Hahn, 2002; Merson et al., 2006).  
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Polyclonal antibodies against Fundulus heteroclitus proteins involved in the AhR 

pathway have been made, such as anti-AhR 1, anti-AhR2, and anti-AhRR (Merson et al., 

2006).   However, polyclonal antibodies have some drawbacks such as having limited 

quantities, as well as differences in activity from one animal to another as a result of 

genetic variability in antigen processing and presentation.  Genetic differences in 

processing and presentation can result in the production of different antibodies (Rice et 

al., 1998). The work in this paper shows the development, characterization, and technical 

applications of a monoclonal antibody, mAb 5B6, which detects AhR2 in Fundulus 

heteroclitus.
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CHAPTER TWO 

INTRODUCTION 

 
The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix 

PER-ARNT-SIM (bHLH-PAS) superfamily of proteins and functions as a ligand-

activated transcription factor (Gu et al., 2000).  It is normally found in the cytoplasmic 

compartment of cells held by chaperones p23/Hsp90 and the immunophilin-like XAP2 

protein (Chen et al., 1994; Elferink, 2003; Cox and Miller, 2004). Following the events 

of ligand binding and nuclear translocation, the chaperone proteins dissociate from the 

AhR/ligand complex allowing the ligand/AhR complex to form a heterodimer with aryl 

hydrocarbon receptor nuclear translocator (ARNT).  This complex then binds to cis-

acting response elements that in turn induce the transcription of a suite of responsive 

genes.  Most notably of these responsive genes include phase I and II drug-metabolizing 

enzymes such as CYP1A1, CYP1A2, NQO1, ALDH3A1, UGT1A6 (Hahn, 1998; Nebert 

et al., 2000; Merson et al., 2009).   Select environmental contaminants such as co-planar 

PCBs, planar polyaromatic hydrocarbons (PAHs), and halogenated aromatic 

hydrocarbons (HAHs) are potent AhR agonists, with 2,3,7,8 –tetrachlorodibenzodioxin 

(TCDD) being one of the most potent environmental ligands characterized to date.  

 Adverse effects of exposure to these potent environmental AhR ligands include 

immune suppression, reproductive, and developmental disorders (Holsapple et al., 1996; 

Kaminski et al., 2008).  Furthermore, constitutively expressed AhR is associated with 

several cancers (Moennikes et al., 2004) and mimics the effects of long term exposure to 
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environmental AhR ligands (Brunnberg et al., 2006), namely chronic expression of 

CYP1A1 and reduced organ weights. 

In addition to an association between the AhR and toxicity of planar HAHs and 

PAHs, signaling through the receptor regulates developmental cues and cell cycle 

progression through the induction of key regulatory proteins in the cell cycle pathway 

(Elferink et al., 2001; Hines et al., 2001; Reviewed in Elferink, 2003 and Nguyen et al., 

2008).  Mechanistically, ligand-activated AhR results in the expression of P27Kip1, which 

in turn represses CDK2 thereby inhibiting phosphorylation of pRb.  Thus, a potent AhR 

ligand like TCDD will arrest cells in the G0 – G1 stage of the cell cycle.  In the absence of 

ligand, E2F expression leads to presence of cyclins A and E, and thus increased activity 

of CDK2 and suppression of P27kip1. 

Mummichogs, Fundulus heteroclitus, (a.k.a. Atlantic killifish) are hardy 

teleostean fish often used as an indicator species in environmental health monitoring and 

developmental toxicology (Frederick et al., 2007; Nacci et al., 2010 Vogelbein et al., 

1990; Wassenberg et al., 2002; Munns et al., 1997; van den Hurk et al., 2000; Weis, 

2002).  Mummichogs live along the east coast high marshes of North America which are 

often exposed to a myriad of anthropogenic contaminants, especially near harbor 

estuaries.  These fish spawn on the new and full moons throughout the warmer months, 

and have a small home range, thus multiple generations with home-site fidelity have lead 

to populations adapting to their surroundings and are abundant in pristine as well as 

polluted environments. Many of the contaminants that Fundulus are exposed to induce 

their toxicities through AhR-mediated pathways: the most notable are  planar halogenated 
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aromatic hydrocarbons (HAHs), such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) 

and co-planar PCBs (i.e., PCB-77, PCB-126, and PCB-169) and various polyaromatic 

hydrocarbons (PAHs), like benzo(a)pyrene and benzo(k)flouranthene (Quattrochi, et al., 

1994; Hahn, 1998). 

While there is only one mammalian AhR, which mediates toxic cellular responses 

to environmental contaminants, studies on teleostean fish have found two aryl 

hydrocarbon receptors: AhR1 and AhR2 (Hahn et al., 1997; Roy and Wirgin, 1997; 

Abnet et al., 1999; Tanquay et al., 1999; Merson et al., 2006).  Both receptors are 

functional in that ligand binding leads to translocation to the nucleus, but the binding 

strength of AhR1 to the ligand is much less than what is observed with AhR2 (Karchner 

et al, 2002; Andreason et al., 2002).   Furthermore, the expression of AhR1 appears to be 

high early on in embryonic development, but low in juvenile and adult fish (Andreason et 

al., 2002).  Functional studies involving inhibition of AhR1 and AhR2 mRNA expression 

via morpholinos show that embryonic toxicity, including developmental abnormalities, 

teratogenesis, and induction of CYP1A gene and protein expression is inhibited with 

AhR2 knockdown, but not with AhR1 (Clark et al, 2010).  Taken together, most 

molecular toxicologists agree that AhR2 is the primary receptor involved in the toxicity 

of compounds historically associated with AhR binding in mammals. 

 One of the missing pieces of the puzzle in understanding the role of AhR(s) in the 

myriad of toxicities resulting from ligands is tissue-level expression in unexposed 

animals as well those animals exposed to ligands in the environment.  Whole tissue 

mRNA or protein expression of AhR does not yield specific cell types and/or location of 
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cells expression the AhR.   Specific antibodies to the AhR would allow for such studies 

and the elucidation of cell and tissue expression.  To date, rabbit polyclonal antibodies 

were developed against recombinant mummichog AhR1 and AhR2, but these antibodies 

are in limited supply, there seems to be a limited degree of specificity in terms of how 

clean immunoassays turn out (westerns, ELISAs, IHC, etc), and, as with all polyclonal 

antibodies the quality can vary from rabbit to rabbit.  Monoclonal antibodies circumvent 

these issues, and can be generated in large quantities.  Moreover, during the process of 

hybridoma selection and cloning, only those clones giving the best results in 

immunoassays are chosen.   The work described herein details the development, 

characterization, and technical applications of a mummichog AhR2-specific monoclonal 

antibody.  To the author’s knowledge, this is the first study to show cellular-level 

expression of the AhR2 via immunohistochemistry in any species of fish.  
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MATERIALS AND METHODS 
 

 
Expression and purification of rAhR2, and generation of mAb 

A C-terminus portion of Fundulus heteroclitus AhR2 cDNA was cloned into a 

pQE80/82 6-HIS expression plasmid (Qiagen) and used to transfect the BL21-CodonPlus 

(RP) strain of E. coli for protein expression (Merson et al., 2006).  This expression 

plasmid system was kindly provided by Dr. Mark Hahn, Woods Hole Oceanographic 

Institute, Woods Hole, MS USA, and used for subsequent steps as outlined herein.  

Levels of protein expression using the strain of E. coli produced minimal amounts of 

rAhR2 at 37 0 C for 3 hr in the presence of IPTG as described by Merson et al., 2006,  

therefore the pQE80/82 plasmid was isolated from BL21-CodonPlus (RP) cells and used 

to transfect the DE3 strain of E. coli (Stratagene).  DE3 strain of E. coli cells harbor 

chaperone proteins designed to express proteins at cold temperatures (Arctic Express™, 

Stratagene).   According to procedures outlined by Stratagene, cells expressing both 

rAhR2 and chaperone proteins are selected under ampicillin, gentamycin, and 

chloramphenicol induced-pressure during culture.   

DE3 cells transfected with the PQE80/82 plasmid containing mummichog rAhR2 

were grown at 37 0 C overnight in 25 ml LB broth, then added to 500 ml of LB broth 

containing antibiotics and grown for 3 hr at 30 0 C.   Batches of transformed DE3 cells 

were then treated with 1 mM IPTG and grown for 48 hr at 15 0 C, collected by 

centrifugation, and lysed using reagents provided in a commercially available kit from 

Qiagen (Quick Start, Ni-argarose).  This kit provides reagents for determining if isolation 

of HIS-tagged recombinant proteins is optimal under native or denaturing conditions.  
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Preliminary studies demonstrated that denaturing conditions are required for optimal 

recovery of the HIS-tagged rAhR2 protein (data not shown).  Though the ingredients of 

the lysis buffer are proprietary, and therefore unknown to end users, this lysis buffer most 

likely contains high concentrations of urea.  Recombinant AhR2 protein used for 

immunizations was isolated over Ni-agarose columns provided in the kit, and all wash 

and elution buffers were provided in the kit as well. 

The purity of recombinant proteins throughout washing and elution steps was 

determined visually by SDS-PAGE on 4-20% Criterion™ gels (Biorad) stained with 

Coomassie blue stain, followed by de-staining to visualize separated proteins.  The 

presence of HIS-tag on recombinant proteins was verified by repeating the above SDS-

PAGE using washing and elution fractions and transferring proteins to Immulon 

membranes (Fisher) and probing with Ni-HRP as part of commercially available kit 

(SuperSignal, Pierce).  HRP activity was visualized using 4-chloro-1-napthol as a 

substrate.  Only the most visually pure elutions were used to immunize mice. 

   Female balb/c mice, 6-8 wks of age, were obtain from Harlan and housed in 

Godley-Snell facilities at Clemson University, and under ALAC approved conditions.  

Mice were immunized s.c. with 50 ug rAhR2 using TiterMax as an adjuvant.  Two weeks 

later mice were re-immunized s.c. using Freunds incomplete adjuvant, followed by 2 

more immunizations at 21 day intervals without adjuvant.   The final immunization was 

administered i.p. and mice were euthanized using CO2, and the spleens quickly removed.   

Spleen cells were isolated and fused with SPO/14 myeloma cells in the presence of PEG 
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4000, and subsequent hybridomas screened for reactivity by ELISA against rAhR2 using 

techniques previously described by (Rice et al., 1998). 

Supernatants from positive primary hybridomas were further evaluated by SDS-

PAGE/immunoblotting steps as follows.  Two µg rAhR2 were applied to lanes of a 4-

20% acrylamide gel and subjected to SDS-PAGE, and the separated proteins transferred 

to a methanol-treated a 0.45 µM Immunlon (PVDF) membrane (Fisher Scientific) in 

transfer buffer.   

Following a 5 min wash with 0.1 M phosphate buffered saline containing with 

0.05% Tween-20 (PBS-Tw) the blot was covered with blocking buffer (10% FBS in 

PBS-Tw) and gently rocked for 2 hr at room temperature (RT).  Following a 5 min wash 

with PBS-Tw, the blot was cut into strips and incubated 1 hr with supernatants from 

primary hybridomas.  Strips were wash x 3 with PBS-Tw and further incubated with 

alkaline phosphatase-conjugated goat-anti-mouse Ig (h+l) (1:2000) for 1 hr at RT.  After 

four washings with PBS-TW, alkaline phosphatase activity was visualized using the 

chromagen NBT/BCIP (Fisher Scientific) in alkaline phosphatase buffer , hereafter 

referred to as AP buffer. 

Based on the results of screening by SDS-PAGE/immunoblotting, one primary 

hybridoma (5B6) was chosen for two rounds of cloning by limiting dilution to yield mAb 

5B6.  Using a commercially available isotyping kit (Southern Biotechnology), it was 

determined that mAb 5B6 is an IgG1 immunoglobulin expressing kappa light chains.  

Hybridoma 5B6 was maintained in Dubelco’s Modified Eagles Medium (DMEM, 

Cellgrow ™ - Fisher Scientific) supplemented with P/S antibiotics, L-glutamine, sodium 
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bicarbonate, sodium pyruvate, non-essential amino acids, HEPES, and 4/5 g/L glucose, 

and grown to confluence in T-150 Corning flasks 95% humidity and 5% CO2 at 37 0 C.  

Supernatants were collected by centrifugation and treated with 0.05% NaN3 to prevent 

bacterial contamination, then stored at 4 0 C until needed.  Hybridomas were frozen in 

95% FBS/10% DMSO at -80 0 C. 

The monoclonal antibody, 5B6, was further examined for its ability to recognize 

only AhR2, and not AhR1, as well as for the ability to recognize native protein in tissue 

homogenates.   Full length AhR1 and AhR2 proteins individually expressed in African 

green monkey kidney COS cells were generously provided by Dr. Mark Hahn, WHOI, 

Woods Hole MA USA.   Adult mummichogs were collected using baited minnow traps at 

the Belle Baruch Marine Lab, Georgetown SC (33 0, 19 min, 46 sec North/79 0, 10 min, 

12 sec West),  a site previously used by the lab (Frederick et al., 2002; Hunt and Rice, 

2008; Marsh and Rice, 2009), and transported to the Aquatic Animal Facility at Clemson 

University, maintained at 25 0 C in aerated artificial sea water (15 ppt), and fed a 

Tetramin fish food diet twice daily.    To obtain tissue cytosolic protein, adult 

mummichogs were euthanized in Tricaine (MS-222) and livers quickly removed and 

homogenized in homogenation buffer [25 mM MOPS (pH 7.5), 1 mM EDTA, 5 mM 

EGTA, 0.02% NaN3, 20 mM Na2MoO4, 10% glycerol (v/v), 1 mM DTT), containing 

protease inhibitors (20 uM TLCK, 5 ug/ml leupeptinin, 13 ug/ml aprotinin, 7 ug/ml 

pepstatin A, 0.1 mM PMSF], hereafter referred to as HB.   The homogenate was 

centrifuged at 1,000 x g for 10 min to remove organelles, and the supernatant centrifuged 

at 12,000 x g to obtain S-9 fraction containing AhR2 protein.  Thirty µg of liver protein, 
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1 µg each of COS-expressed AhR1 and AhR2, and rAhR2 were subjected to SDS-

PAGE/immunoblotting on 10% gels using the above described procedures with mAb 5B6 

diluted 1:10 with PBS-Tw. 

 

 

Detection and localization of AhR2 in F. heteroclitus cells: 

The presence and localization of cytosolic AhR2 in intact cells was evaluated 

using lymphoid cells isolated from head kidney and spleens using previously described 

procedures (Rosell and Rice, 1998; Frederick et al., 2002; Marsh and Rice, 2009).  Cells 

were then adhered onto poly-L-lysine treated glass slide cover slips (Marsh and Rice, 

2009) over a 60 min period, then fixed with a1% solution of methanol-free formalin in 

PBS.  Cells were permeabilized with 0.1% trition-x100 in PBS over a 30 min period, 

washed extensively with PBS-Tw, then covered with blocking buffer (10% FBS in PBS-

Tw) for 1 hr, washed extensively with the same, and probed with a 1:20 dilution of 

confluent hybridoma supernatants in PBS for 1 hr.  After washing x 3 with PBS-Tw the 

cells were probed with AccuFlour 488 Fluorocein-conjugated goat anti mouse IgG (1:100 

in PBS-Tw) for 1 hr.  Following washing x 3, the cells were probed with DAPI in PBS to 

label DNA as marker for the nucleus.  After another round of washings, the cover slip 

with cells was mounted on glass slides with 50% glycerol in PBS and sealed.  The 

presence and localization of AhR2 was detected by Epifluorence microscopy at the 

Jordan Hall imaging facility, Clemson University. 
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Ahr2 protein expression in tissues collected from a population of creosote-adapted 

F. heteroclitus: 

Adult Atlantic killifish were collected from the Atlantic Wood (AW) Superfund 

Site located on the southern branch of the Elizabeth river near Norfolk and Portsmouth 

VA, as well as the historical reference site at King’s Creek (KC), VA, using baited 

minnow traps.   Fish were transported to the Virginia Institute of Marine Science, School 

of Marine Science, College of William & Mary, Gloucester Point VA.   Fish were held in 

York River sea water under constant aeration, and then euthanized by sedation with MS-

222 and decapitation.  Livers were quickly removed and sectioned into two parcels: one 

was flash frozen in liquid nitrogen, then stored at -80 0 C until overnight express delivery 

to Clemson University.  The other parcel was immediately placed in 9% methanol-free 

formalin diluted in HBSS, and stored on ice before transport to Clemson University.  

Intestines and head kidneys were also collected and formalin-fixed.  Formalin-fixed 

tissues were embedded in paraffin and processed for 5 µM sections by the Clemson 

University Histology Core Facility, then de-paraffinized and processed for H&E staining 

or immunohistochemistry using mAb 5B6.  

 Frozen liver tissue samples from the two VA sites, as well as liver tissues from 

laboratory-raised fish collected near Georgetown, SC were thawed on ice and 

homogenized with HB containing protease inhibitors, differentially centrifuged as 

described above, and the resulting S-9 fraction protein concentration determined.   Fifty 

µg of cytosolic protein representing tissues from 3 - 5 individuals from the three groups 

of fish were subjected to SDS-PAGE/immunoblotting steps as described above using 5B6 
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hybridoma supernatants diluted 1:10 in PBS-Tw.  Upon examination of H&E-stained 

slides by marine histopathologist Dr. Wolfgang Vogelbein (VIMS), it was determined 

that livers from the AW site harbored either advanced tumors of various sorts and stages, 

or pre-cancerous lesions.  Previous studies show that hepatic tumors from the AW site 

show differential CYP1A staining patterns between tumor cells and normal tissue 

(Vogelbein et al., 1990).  Therefore, select clinical “cases” were used to probe with mAb 

5B6 and mAb C10-7 (Rice et al., 1998), the latter being a pan-fish CYP1A-specific mAb, 

and serves as a prototype biomarker reagent for determining exposure to AhR2-binding 

ligands.   Eight individual livers from the AW site and 8p from the KC site were prepared 

as described above and 50 µg of the cytosolic S-9 fraction from each animal were 

subjected to SDS-PAGE/immunoblotting using mAb C10-7 and mAb 5B6. 

 

Capture ELISA for quantifying AhR2 protein in Atlantic Wood vs. King’s Cree k 

Livers 

 Monoclonal antibody 5B6 was coated onto high bond ELISA plates (NUNC 

plates, high bond) overnight at 4 0 C as undiluted confluent hybridoma supernatants (2.5 

– 5.0 ug/well.  The following morning the contents of each well were removed by 

flicking the plate, and the plates were washed x 3 with PBS-Tw.   One hundred uL of 

blocking buffer (10% FBS in PBS) were added to all wells and allowed to incubate at RT 

for 2 hr, at which time the contents were removed by flicking.  ELISA plates were 

washed x 3 and 50 ug liver S-9 fraction protein in 100 ul bicarbonate buffer were added 

to wells in duplicate.  The plates also received a standard sample of rAhR2 to be used as 
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a reference for comparing plate to plate variability in O.D readings.  Plates were 

incubated overnight at 4 0 C.  The following morning plates were emptied and washed x 4 

with PBS-Tw.   The plates then received 100 ul per well of a mouse polyclonal anti-

AhR2 (diluted 1:2000 in blocking buffer) collected from the mice originally used to 

produce mAb 5B6.  Plates were incubated at RT for 1 hr, and then washed x 4 with PBS-

Tw.   Plates then received 100 ul of goat anti-mouse IgG-AP (1:2000; Southern 

Biotechnology) and were incubated at RT for another 1 hr period.   As the final step, 

plates were washed x 4 with PBS-tw, then incubated with 100 ul per well of chromagen 

in AP buffer, incubated for 30 minutes, and the optical density at 405 nM recorded.  The 

O.D. values for duplicate wells for each sample were averaged, as were the duplicated 

wells for the standard.  The ratio of sample O.D. to that of the standard was determined in 

order to give a relative Unit of expression for each sample. 

 

Immunohistochemistry in paraffin  

 

Fixed tissues were dehydrated through a graded series of 50% ethanol to 100% 

ethanol and then to xylene. Once in xylene, the tissue samples where then processed and 

embedded in paraffin and then cut into 5 µm sections and transferred onto superfrost® 

plus coated slides (VWR Scientific). To view the structural integrity of the tissues, the 

first slide from each organ set was hematoxylin and eosin stained.  

Vectastain Elite ABC kit (Vector Laboratories; Burlingame, CA) was used for 

immunohistochemical (IHC) staining following the manufacturer’s instructions. The 
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slides containing the tissues were first deparaffinized and hydrated through a gradated 

series of xylene followed by decreasing concentrations of ethanol and finally de-ionized 

water. Antigen retrieval was then performed using Vector Antigen Unmasking Solution, 

high pH 9, in a microwave and heated for 5 minutes at 100% power, followed by 5 

minutes of 0% power, followed by another 5 minutes at 100% power. After the slides 

cooled at room temperature for 30 minutes, they were washed in PBS (.01M, pH 7.4) and 

then quenched in 3% H2O2 in PBS for 30 minutes.  The slides were then washed in PBS 

and then were blocked with serum provided by the kit. Next, the slides were blocked with 

Avidin D for 15 minutes followed by Biotin for 15 minutes (Vector Laboratories). Next, 

each section of the slide was covered in mAb 5B6, against AhR-2, or a control mAb HB-

145, against human MHC II (major histocompatability complex) for one hour at room 

temperature.  Other sections were covered with mAb C10-7 to stain for CYP1A protein.  

In each case the antibodies were used as 1:20 dilutions of confluent hybridoma 

supernatant.  After washing the slides with PBS, the slides were then incubated with a 

secondary antibody, provided by the kit, for one hour at room temperature. Following 

incubation, the slides were again washed in PBS, followed by an application of 

Vectastain ABC Reagent, provided by the kit, for 30 minutes. A peroxidase substrate, 

NovaRed (Vector Laboratories), stain was then applied for approximately 5 minutes. The 

slides were then rinsed in water and a counterstained with 0.5% methyl green, applied for 

one minute and then rinsed in water.   Next, the slides were dehydrated and mounted, 

using PolyMount (Polysciences). 
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The Effects of 3-Methylcholanthrene on AhR2 Protein Expression in Intestines: a 

comparison to CYP1A expression. 

Single adult male mummichogs (over 10 g each) collected from the Belle Baruch 

Marine Lab, near Georgetown SC, were injected i.p. with either corn oil as a carrier 

control, or 1 mg/kg 3-MC in corn oil to induce CYP1A.  Seventy two hours later the two 

fish were euthanized by lethal MS-222 sedation and cervical dislocation.  The intestines 

were removed, washed in HBSS, then fixed in 9% buffered formalin and processed for 

IHC using mAb 5B6 and mAb C10-7 as described above. 
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RESULTS 
 

Using a commercial kit for purifications of his-tagged rAhR2, it was clear that 

denaturing conditions were required to obtain the protein from cellular lysates.  The 

results of column washes and elution quality are shown in Figure (2a).  rAhR2 eluted off 

the columns with relative easy to give clean bands.   These same fractions were then 

subjected to SDS-PAGE steps and transferred to PVDF membranes, then probed with 

HRP-Ni to specifically detect his-tagged proteins.  HRP activity was detected only in the 

bands corresponding to expected molecular wt of rAhR2 (Figure 2b). 

 

Figure 2.  Purification of his-tagged rAhR2 from DE3 E. coli cells.   Eluted fractions 
were subjected to SDS-PAGE analysis on 4-20% gels stained with Coomassie Blue 
and shown to be relatively pure (A).  Eluted fractions were again subjected to SDS-
PAGE, then transferred to PVDF membranes and probed with Ni-HRP and 
examined for HRP activity.  The eluted samples were shown to be his-tagged (B), 
and subsequently used to immunize mice. 
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Efforts to generate a monoclonal antibody specific to rAhR2 and recognizing 

native AhR2, and not AhR1, were successful.  The hybridoma, named 5B6, produces an 

IgG1 immunoglobulin with kappa light chains.  As can be seen in Figure 3, mAb 5B6 

recognizes not only recombinant AhR2, and full length COS-expressed AhR2, but the 

protein in freshly isolated liver cytosol preparations. 

 

Figure 3.  mAb 5B6 recognizes rAhR2, full length COS-expressed rAhR2, and 
freshly isolated liver S-9 fraction protein AhR2, but not full length COS-expressed 
rAhR1.   Samples were subjected to SDS-PAGE using 10% gels, then transferred to 
PVDF membranes.  The membrane was then probed with mAb 5B6. 
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Figure 4.  Intracellular expression of AhR2 proteins in lymphoid cells of 
mummichogs.  Lymphoid cells were isolated and allowed to adhere to glass cover 
slips, fixed in 1% formalin, permeabilized, and probed with mAb 5B6 followed by 
labeling with FITC-conjugated anti-mouse IgG antibody.   Cells were 
counterstained with DAPI to identify nuclei. 
 

The availability of mAb 5B6 allows for the development of quantifiable 

techniques to determine how much AhR2 is present in mummichogs under various 

conditions.  Mummichogs from the US EPA Superfund site at the Atlantic Wood site on 

the Elizabeth River near Portsmouth VA are known to be recalcitrant to the CYP1A 

inducing effects of PAHs that are so abundant at that site.  While CYP1A protein has 

been examined in those fish, to date there have been no studies on the levels of AhR2.   

Using a crude and first tier capture ELISA system, it can be seen that slightly more AhR2 

is present in whole liver cytosol preparations from the AW site compared to fish from the 
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KC site (P < 0.05: Students t-test) (Figure 5).  Of particular note, the variability between 

individuals at each site is very low.   

 

Figure 5.  ELISA for AhR2 in liver S-9 fraction preparations in mummichogs 
collected at the Atlantic Wood (AW) Superfund site and its historical reference site, 
King’s Creek (KC) in VA.  Capture antibody was mAb 5B6 and tracer antibody was 
mouse polyclonal anti-rAhR2.  Data are O.D. units relative to a rAhR2 standard as 
a reference.  Bars represent average values of n-16 individuals, and bars represent 
standard error of the means. 

 

Since cytosol preparations contain hundreds, if not thousands of proteins, the next 

logical step was to examine SDS-PAGE/immunoblotting profiles of pooled liver cytosols 

from each population, and compare to a standard lab-raised population of fish collected 

from SC.  Confirming the ELISA data, there is little, if any difference in cytosolic AhR2 

protein between KC and AW populations (Figure 6).  However, both populations have 

much higher levels of AhR2 than found in a long-term lab population from SC. 
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Figure 6.   Liver homogenates from lab-reared  Belle Baruch, SC (GT), King’s 
Creek, VA (KC), and Atlantic Wood site, Elizabeth River VA (AW).  50 ug of liver 
S-9 fraction protein loaded onto 4-20% SDS-PAGE gells and transferred to PVDF 
membranes.  Membranes were probed with mAb 5B6. 
 

 
 

Given that whole tissue cytosol AhR2 does not differ between AW and KC 

mummichog populations, the next logical step was to determine if localization of AhR2 

differed, and if CYP1A expression differed as well.  Three different tissues were 

examined by IHC.   Anterior kidney of KC tissues contained a high degree of AhR2 

protein throughout the tissue, including renal epithelial cells (Figure 8a).  Most of the 

anterior kidney was void of CYP1A expression, except for renal epithelial cells, which 

stain brightly for CYP1A (Figure 8c).  AhR2 expression in AW anterior kidney tissues 

was also highly expressed (Figure 9b) and appeared to be slightly more expressed than in 
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the representative KC sample.  CYP1A expression was pronounced throughout the tissue, 

indicating induction as a result of exposures to the PAHs at that site (Figure 9c). 

 

 

 

Figure 7.   Expression of CYP1A and AhR-2 in liver S-9 fractions from 8 
mummichogs collected from the Atlantic Wood and Kings Creek sites in VA.  Liver 
proteins were probed with mAb C10-7 for CYP1A detection and mAb 5B6 for AhR-
2 detection.  Fifty µg of protein were subjected to SDS-PAGE and immunoblotting.   
Note: CYP1A expression only in AW fish.  AhR-2 expression is variable between 
fish and between collection sites. 
 
 



 33

 

Figure 8.  Immunohistochemistry of anterior kidney tissue from mummichogs 
collected at King’s Creek site in VA.   5 uM tissue sections were prepared for IHC 
and probed with background stain only (A), mAb 5B6 (B), or mAb C10-7 (C).  
Images were captures using 4X lens.  Positive staining is noted by dark-red 
intensity.  Note that renal epithelial cells stain for CYP1A protein. 
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Figure 9.  Immunohistochemistry of anterior kidney tissue from mummichogs 
collected at the Atlantic Wood site in VA.   5 uM tissue sections were prepared for 
IHC and probed with background stain only (A), mAb 5B6 (B), or mAb C10-7 (C).  
Images were captures using 4X lens.  Positive staining is noted by dark-red 
intensity.  Note that renal epithelial cells stain for CYP1A protein.  Also note dark 
regional staining with anti-AhR2. 
 
 

Since dietary exposures to AhR2 ligands is a key means to toxicity of PAHs, it 

was logical to examine expression of AhR2 and CYP1A proteins in intestinal tissue from 

the two sites.   As can be seen in Figure 10b, intestinal epithelial cells of KC fish express 

high levels of AhR2, but low levels of CYP1A (Figure 10c).  In contrast, CYP1A is 

highly expressed in AW fish (Figure 11b), while AhR2 is expressed at about the same 

level, if not slightly higher (Figure 11a), though pixel strength of the staining was not 

quantified. 
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Figure 10.  Immunohistochemistry of intestine tissue from mummichogs collected at 
King’s Creek site in VA.   5 uM tissue sections were prepared for IHC and probed 
with background stain only (A), mAb 5B6 (B), or mAb C10-7 (C).  Images were 
captures using 4X lens.  Positive staining is noted by dark-red intensity.  Note that 
epithelial cells stain bright for AhR2. 
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Figure 11.  Immunohistochemistry of intestine tissue from mummichogs collected at 
the Atlantic Wood site in VA.   5 uM tissue sections were prepared for IHC and 
probed with background stain only (A), mAb 5B6 (B), or mAb C10-7 (C).  Images 
were captures using 4X lens.  Positive staining is noted by dark-red intensity.  Note 
that epithelial cells stain for both AhR2 and CYP1A protein. 
 

 
 
 

Because of the role of the liver in detoxification of most drugs and pollutants, this 

organ is the most frequently examined in terms of target organ toxicity in environmental 

studies.  In KC fish, the expression of AhR2 appears to be low in most areas, with zones 

of higher expression (Figure 12b), while CYP1A is relatively non-expressed (Figure 

12C).  In AW fish, however, both AhR2 and CYP1A are highly expressed (Figures 13b, 

13c), indicating induction patterns in response to exposure to PAHs at this heavily 

polluted site. 
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Figure 12.  Immunohistochemistry of liver tissue from mummichogs collected at 
King’s Creek site in VA.   5 uM tissue sections were prepared for IHC and probed 
with background stain only (A), mAb 5B6 (B), or mAb C10-7 (C).  Images were 
captures using 4X lens.  Positive staining is noted by dark-red intensity.  Note that 
cells stain for AhR2 in regions surrounded by the vascular tissues, but in general the 
staining is light. 
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Figure 13.  Immunohistochemistry of anterior kidney tissue from mummichogs 
collected at the Atlantic Wood site in VA.   5 uM tissue sections were prepared for 
IHC and probed with background stain only (A), mAb 5B6 (B), or mAb C10-7 (C).  
Images were captures using 4X lens.  Positive staining is noted by dark-red 
intensity.  Note the intensive staining for both AhR2 and CYP1A. 
 

One of the most common experimental systems in environmental toxicology is to 

expose animals to AhR ligands and follow the toxicity of a particular organ system, 

including liver toxicity, immunotoxicity, and endocrine toxicity.  3-methylcholanthrene 

(3-MC) is a model AhR-binding PAH, and is often used to model environmental PAHS, 

though this particular compound is not found in the environment.  Following the clarity 

of AhR2 expression in intestines of AW vs KC mummichogs, it follows that intestines 

would be a good target organ to examine in the inducibility of AhR2 by 3-MC.  Three 

days after receiving an i.p. injection of 3-MC or carrier control, mummichogs intestines 

were processed for IHC using mAb 5B6 and mAb C10-7.   As expected, very little 
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CYP1A was detected in the intestine of the carrier-control treated fish, while intestine 

CYP1A was highly expressed in the 3-MC treated fish (Figure 12).   There does not seem 

to be a difference in expression of AhR2 between the two animals.   

 
 

 

 

Figure 14.  IHC for AhR2 and CYP1A proteins in intestines from mummichogs 
given i.p. injection of either corn oil carrier, or carrier containing 1 mg/kg 3MC.  72 
hr after exposure tissues were removed and fixed in 9% formalin.  5 uM tissue 
sections were prepared for IHC and probed with background stain only (left panel), 
mAb 5B6 (middle panel), or mAb C10-7 (far right panel).  Images were captures 
using 4X lens.  Positive staining is noted by dark-red intensity.  Note dark staining 
for CYP1A in 3-MC treated fish, but not controls.   AhR2 expression is high in both 
control- and treated-fish tissues 
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DISCUSSION 
 

The work described herein provides the first monoclonal antibody specific to a 

fish AhR, and this case the AhR2 protein in mummichogs, Fundulus heteroclitus.  While 

Merson et al., (2006) demonstrated the production of rabbit pAbs against this same 

recombinant and native protein, those antibodies are in very limited supply and generally 

not available to the scientific community.  Furthermore, the antibody generated herein 

(mAb 5B6) gives very clean bands on SDS-PAGE/immunoblots and crisp/sharp 

reactivity in formalin-fixed and paraffin-embedded tissues. 

As with virtually all mAbs, tissues slices from formalin-fixed tissues required 

antigen retrieval steps, which was a major part of the antibody characterization process.  

Three different techniques were explored; and included microwaving the tissues in the 

presence of low pH buffer (Tris EDTA, pH 6.0), high pH (Carbonate buffer, pH 9.6), and 

steam conditions using both buffers in a vegetable steamer (www.abcam.com/technical).  

All three techniques are fairly common, depending upon the nature of specific antibodies 

in use.   While mAb C10-7 detects its epitopes at both high and low pH conditions using 

a microwave (personal experience), mAb 5B6 requires a high pH buffer during the 

microwave process. 

Although one would expect very little expression of AhR2 in the cytosol of 

ligand-exposed fish, and that the AhR2 protein would be located in the nucleus and 

bound to its specific response element, one of the most significant discoveries using mAb 

5B6 is that the AhR2 is abundantly expressed in fish, regardless of exposure to AhR-

binding ligands such as PAHs at the AW Superfund site, or after exposure to 3-MC, 
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which is a very potent inducer of CYP1A, and mediated through the AhR.   Since the 

AhR is also part of the inducible cassette of genes activated by the binding of AhR/ligand 

to its response unit (Powell et al., 2000), it is possible that what was detected in tissues 

and liver S-9 fraction proteins was a product of induction in response to the ligand(s).  If 

this is true, then the expression of AhR2 in control or reference fish may reflect normal 

tissue levels before induction.  In both scenarios of exposure to PAHs (AW fish and 3-

MC treated fish), tissues were collected long after exposure.  It is possible that what is 

noted in PAH-treated/exposed fish is due to subsequent induction of AhR2.  

Also of particular note was the strong labeling of CYP1A in AW mummichogs.  

Even though these fish are constantly exposed to PAHs, they are recalcitrant to CYP1A 

induction by these same ligands once the fish are brought the lab.  Many in the field of 

environmental toxicology consider AW fish to be “resistant” to those PAHs (Ownby et 

al., 2002; Frederick et al., 2007).  However, the observations described herein indicate 

that either such resistance has been lost since, or that previous conclusions were flawed. 

The ELISA developed in this study for quantifying liver AhR2 content may be 

flawed in that a goat anti-mouse IgG-AP antibody was used as the final detection reagent.   

Both the capture and tracer antibodies for the AhR2 protein were mouse antibodies, 

therefore the detection antibody may have reacted with both.   Ideally, the tracer antibody 

should have been from a different species, such as rabbit, and the detector reagent would 

have been an anti-rabbit-AP system.   At the time of these studies a rabbit pAb against 

mummichog AhR2 was not available, at least to our lab.  However, future studies may 

involve the generation of a second (tracer) mAb for AhR2 which can be directly 
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conjugated with biotin.  Alternatively, the mouse pAb anti-AhR2 in this study could have 

been directly labeled with biotin.  In both situations, an avidin-HRP system could be 

employed to give a sensitive signal.  Nonetheless, the values obtained from the ELISA 

developed during the process are more or less confirmed by western blotting with mAb 

5B6 in that there were essentially no differences between AW and KC liver S-9 fraction 

levels of AhR2. 

One of the more exciting future applications of mAb 5B6 will be to conduct 

cytosol-to-nuclear translocation observations.   While this thesis work clearly 

demonstrates the localization of AhR2 to the cytosol, translocation in response to 

exposure to prototype AhR2 remains to be observed in any fish model.    For example, in 

mammalian cell cultures it can be easily demonstrated that ligands such as planar HAHs 

and indirubins induced the transloation of AhR within a 5 hr period.  Preliminary studies 

in the lab with mummichog primary liver and leukocyte cultures attempted to repeat such 

observations from mammalians cells, but a 5 hr period may be too short.  Anything 

beyond 5 hrs in fish primary cultures quickly become contaminated with bacteria.  Future 

studies will use tissues collected under sterile/asceptic conditions.  Alternatively, a 

mummichog cell line could be developed. 

In summary, a novel mAb for detecting AhR2 in the mummichog has been 

developed and characterized, and its technical applications investigated.   Due to the 

variability between animals at each of the two collection sites examined, and between 

sites, the expression of AhR2 does not bode well for routine use as a biomarker in field 

studies.  While the expression level of CYP1A is the most common biomarker for 
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exposure to AhR2 ligands, the nature of the ligand(s) is usually unknown in field studies.   

It may be possible to use mAb 5B6 to “trap” AhR2 in wild-caught mummichogs, and 

then to determine the actual ligand(s) bound in the tissues, thus allowing for a means to 

compared AhR2 ligands present at the time of sampling. 
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