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ABSTRACT 

 

 

Electric vehicles are potentially beneficial for both the environment and an 

organization’s bottom line. These benefits include, but are not limited to, reduced fuel 

costs, government tax incentives, reduced greenhouse gas emissions, and the ability to 

promote a company’s “green” image. In order to decide whether or not to convert or 

purchase electric trucks and install charging facilities, decision makers need to consider 

many factors including onboard battery capacity, delivery or service assignments, 

scheduling and routes, as well as weather and traffic conditions in a well-defined 

modeling framework. We develop a model to solve the partially rechargeable electric 

vehicle routing problem with time windows and capacitated charging stations. Given 

destination data and vehicle properties, our model determines the optimal number of 

vehicles or charging stations needed to meet the network’s requirements. Analyzing the 

model shows the relationships between vehicle range, battery recharge time, and fleet 

size. 
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1. INTRODUCTION 

 

 

The Vehicle Routing Problem (VRP) is concerned with finding effective routes 

for a set of vehicles. These vehicles must visit a number of customers in different 

geographical locations. Each customer has a demand and the objective typically 

associated with a VRP is to satisfy this demand with minimum cost of vehicle travel from 

a depot.  

Electric vehicles, especially battery-powered electric trucks, carry potential long-

term economic and environmental benefits for reduced fuel cost, government tax 

incentives, reduced greenhouse gas emissions, and the ability to promote a company’s 

“green” image. There are many benefits of electrification that companies can take 

advantage of today. However, limited travel range (“range anxiety”) and intense capital 

investment have hindered progress. The typical electric truck’s 50-100 mile travel range 

makes electric trucks particularly suitable for urban trips, given well-calibrated routing 

plans. The investments to convert or purchase electric trucks and install charging 

facilities at depots (e.g., local distribution centers or warehouses) depend on a number of 

major factors, including onboard battery capacity, delivery or service assignments, 

scheduling, and routes, as well as weather and traffic conditions. When making 

investment strategies, decision makers need to take into account these factors in a well-

defined modeling framework. 

According to a report by the Union of Concerned Scientists (2012), “freight-

hauling trucks consumed 2.3 million barrels of oil per day … and emitted 348 million 

metric tons of carbon dioxide.” There are nine million medium- and heavy-duty trucks on 
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the road in the United States. Today electrification of trucks can significantly reduce 

those environmentally sensitive numbers. As electric trucks run 50-100 miles per full 

charge, this is ideal for urban deliveries (e.g., UPS) and services (e.g., AT&T). However, 

sizable investments in these trucks (at a cost of ~$100,000) need justification. One of the 

barriers to adoption is the lack of public charging facilities. These trucks must be charged 

at depots and the charging facilities need to assure the trucks’ completion of trips under a 

variety of conditions: traffic congestions, weather conditions, routes, and scheduling. 

In this thesis research, we develop a model to solve the general electric vehicle 

routing problem. Given destinations data and vehicles properties, the model determines 

the optimal number of vehicles or charging stations needed for meeting delivery 

requirements. Real world constraints in the model include vehicle charge limits and 

delivery time windows within which goods have to be delivered to each customer. 

Analyzing this model will give insights about the optimal design combination of charging 

stations and electric vehicle fleet size needed for delivery. 



 3 

2. LITERATURE REVIEW 

 

The VRP is an integer programming and optimization problem in which a number 

of customers have to be served by a limited number of resources. Dantzig and Ramser 

(1959) consider a limited number of trucks that have to serve some stations—these trucks 

travel between a terminal and the stations. The demand of the stations and the distance 

between different points is given and the objective is to find the shortest total distance 

traveled by the trucks. Linear programming is used to find the optimal solution. Some 

models focus on distance limitations. Ichimori et al. (1983) propose an algorithm to find 

the minimum range needed to travel all the customers without the need to refuel. Mehrez 

and Stern (1985) consider a military problem in which the fuel can be transferred 

between trucks.  

Multi-depot VRP (MDVRP) is discussed in Crevier et al. (2007), the extension is 

called MDVRP with inter-depot routes (MDVRPI) and is motivated by the deliveries of 

groceries in Montreal. The model considers intermediate depots at which vehicles can be 

replenished with goods. Goncalves et al. (2011) consider a VRP with pickup and delivery 

(VRPPD) with a mixed fleet that consist of electric vehicles and regular vehicles. They 

do not incorporate the actual location of recharging stations into their model.       

Tarantilis et al. (2008) revise this model and name it VRPIRF (VRP with intermediate 

replenishment facilities). 

A recharging version of VRP is presented by Conrad and Figliozzi (2011). They 

consider that vehicles can only travel a limited distance. Some of the customer nodes 

could be considered as charging stations and the charging time is a fixed amount of time. 
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They also consider time window constraints. They present problem instances solved by a 

modified iterative construction and improvement algorithm. An environment related 

objective function is considered in Jabali et al. (2012). In their objective function they 

consider fuel and environment-related cost and also travel time. Travel speed is 

considered as a variable and the model finds the optimal speed during periods of time in 

order to minimize environment-related cost. Similarly, Bektas and Laporte (2011) 

consider a fuel and environment-related objective function. Fuel and environment cost 

variable is based on vehicle speed and type. 

VRP with the possibility of refueling a vehicle at a station along the route is 

called G-VRP, Erdogan and Miller-Hooks (2012). The G-VRP is modeled as an 

extension to the MDVRPI. Their objective is to minimize total distance traveled. The G-

VRP seeks to find at most m tours. In constraint description it states that at most m 

vehicles return to the depot in a given day. So it means that there’s no multi-trip 

considered for each vehicle. When refueling is undertaken, it is assumed that the tank is 

filled to the capacity. Since charging stations may be visited more than once, some 

dummy vertices are associated with every charging station. This technique was 

introduced by Bard et al. (1998) for their application involving stops at intermediate 

depots for reloading vehicles with goods for delivery. Service time parameter is 

considered in the model, for the charging stations the refueling time is equal to the 

service time. Refueling time is considered to be constant, which means that if a vehicle 

arrives at the depot with 100% battery or 0% battery, the same amount of time is required 

to charge. All of the vehicles are considered to be the same; this homogeneous vehicle 
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assumption means that all of them have the same battery capacity. No time window and 

capacity constraint is considered and partial charging is not allowed. No resource 

limitation constraint is considered which means that unlimited number of vehicles could 

be at a particular charging station at the same time. A different formulation for the exact 

solution is proposed by Taha et al. (2014) in which all the constraints are linear and it 

also permits return paths that visit more than one charging station. 

Electric Vehicle Routing Problem with Time Windows and Recharging Stations 

(E-VRPTW) is introduced by Schneider et al. (2014). It is stated that the objective 

function is to minimize the total traveled distance. All of the vehicles are considered to be 

the same; this homogeneous vehicle assumption means that all of them have the same 

battery capacity and the same cargo capacity. Multi-trip is considered in this model, a set 

of instances of depot is defined to avoid using decision variable with four dimensions. 

Capacity and time window constraints are considered. They don’t introduce departure 

and delivery time in their model. Using this model no information is available about the 

arrival and departure time and we only know the delivery time and a sum of waiting time. 

They use instances from Solomon (1987) to run the model and test their solving 

algorithm. Partial charging is not allowed and at each charging station charge goes to 

maximum, but in contrast to G-VRP in this model the charging time is not constant and 

depends on the available charge at the arrival at the charging station. The recharging 

process makes the calculations complex because the charging time depends on the 

available charge. The problem is solved by a variable neighborhood search (VNS) 

approach using tabu search (TS).  
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A more general problem with heterogeneous vehicles is defined by Hiermann et 

al. (2014). They introduce the Electric Fleet Size and Mix Vehicle Routing Problem with 

Time Windows and recharging stations (E-FSMVRPTW). Vehicles have different 

capacity, battery size and acquisition cost. They present a MIP model to solve for small 

instances, which is done after some preprocessing and symmetry breaking. In order to 

solve for larger instances they present a metaheuristic approach based on Adaptive Large 

Neighborhood Search (ALNS) with embedded local search and labeling procedures. The 

objective is to minimize acquisition cost and the total distance traveled. As the authors 

use dummy nodes representing recharging stations, they cannot count number of charging 

stations used and do not avoid overlaps at the charging station for different vehicles. 

Therefore, an unlimited number of vehicles could be present at the charging station at the 

same time. When the vehicle arrives at a charging station it is recharged to full capacity 

and the charging time is dependent on the vehicle’s remaining charge upon arrival, so no 

partial charging is considered. Compared to best results found in Schneider et al (2014) 

their approach is able to find 12 new, best-known solutions. 

A location-routing problem is defined by Yang and Sun (2014) for EVs 

considering the existence of battery swap stations. They simultaneously determine the 

location of stations and vehicle routes. Battery driving range and capacity limitations are 

considered. Time windows and station limitations are not considered, which means that 

unlimited number of EVs could be present at the same time at each battery swap station. 

In order to find the locations of the stations, they consider a set of candidate locations for 

stations. Objective function is to minimize the cost which is a combination of two parts; 
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fixed construction for constructing each of the stations and the unit shipping cost for each 

route considered. It is assumed that each route starts and ends at the depot, which means 

that multi-trip property is not considered in the model. Battery power is reset when the 

vehicle leaves the station, which means that no partial charging is considered in the 

model. They present two exact models, the first one assumes that every vehicle may pass 

a station only once, the second one eliminates this assumption and they consider station 

revisit in the extended model. They present a four-phase heuristic named SIGNAL and a 

Two-phase Tabu search-modified Clarke-Wright Savings heuristic to solve the model for 

large instances.  

Pickup and delivery for solar-recharged vehicles is modeled in Albrecht and 

Pudney (2013). In the problem definition they consider electric vehicles called African 

Solar Taxis to take people from villages to healthcare facilities. Charging stations are 

located at these healthcare facilities. The range limitations of these vehicles make it 

important to schedule the vehicles. In this article only a single-vehicle schedule is 

provided. Two objectives are considered: 1) maximize total trip distance completed in a 

day and 2) minimize the schedule span. They consider constraints on how much energy 

each charging station can deliver in a day. Partial charging is also considered in their 

scheduling. While they do this scheduling they don’t consider overlaps at charging 

stations. 

Vehicle routing in networks for electric vehicles is considered in Cassandras et al. 

(2014a). The authors consider a single-vehicle in their modeling and try to minimize the 

total elapsed time for vehicles to reach their destinations. They formulate a mixed integer 
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nonlinear programming (MINLP) and prove some properties for the optimal solution and 

divide the problem into two less complex problems. Then they consider a multi-vehicle 

problem and group vehicles into subflows and present an alternative formulation. They 

do not impose full recharging constraints. This problem is an optimal path finding for 

electric vehicles considering charging stations so no customer, depot, time window or 

capacity constraint is considered in the formulation. In their formulation they consider the 

potential energy recuperation effect during the routes (it means that the energy 

consumption could be negative during the route). In their latest article, Cassandras et al. 

(2014b) consider inhomogeneous charging nodes. Charging rates at different charging 

nodes are not the same, they use Society of Automotive Engineering (SAE) classification 

of charging stations.  

VRP with intermediate stops is considered in Schneider et al. (2014). They define 

three kinds of intermediate stops; replenishment of goods to be delivered, recharging and 

unloading of collected goods or disposal of waste. They define a dummy set of vertices 

for stop locations, which means that they are unable to count the number of stops or 

consider overlaps at stations. All the vehicles are considered to be homogeneous and the 

capacity constraints are considered. Arriving at a recharging station resets the battery to 

its capacity (no partial charging) and the time for recharge is dependent on the arrival 

remaining charge or fuel. Arriving at other types of stop locations fully replenishes or 

unloads the vehicle. They present a mixed-integer program as an exact solution.            

An adaptive variable neighborhood search algorithm (AVNS) is proposed to solve the 

model. 
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Energy-optimized vehicle routing for EVs is considered in Preis et al. (2013). 

They consider minimizing fuel consumption depending on vehicle weight and payload. 

Energy consumption functions are defined for empty vehicles and payload. In their mixed 

integer program they only consider charging stops by vehicles and not the actual 

locations of charging stations. Time window and capacity constraints are considered, 

charging time is supposed to be a fix amount of time. They propose a tabu search 

heuristic to find the optimal solutions for large instances. In the latest version of this 

book, Preis et al. (2014) consider actual locations of charging stations and dummy sets 

for them. Charging time is considered to be zero. First, they propose a two-index 

formulation in which the objective is to minimize total distance cost, and then they 

propose a revised formulation in which dummy vertices for charging stations are not 

considered. A set-partitioning formulation is offered. They use column generation 

approach to add feasible routes to all possible routes generated in master problem MP. It 

is shown that model formulation without use of dummy sets has a positive impact on the 

solving time ratio. 

Simultaneous vehicle routing and charging station siting in considered in Worley 

et al. (2014) in which they formulate a model in order to locate charging stations and 

design vehicle routes. The charging stations are chosen among a set of candidates. The 

objective function is to minimize sum of total travel, recharging and charging station 

construction. Vehicles are considered to be heterogeneous, no time constraint is 

considered. The charging time is assumed to be zero. When the vehicle arrives at the 

charging station it would be immediately fully charged (no partial charging).  After 
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completing our review of the literature, it is clear that no previous researchers have 

addressed the problem studied in this thesis research.  The formal description of our 

research problem follows in the next section. 
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3. PROBLEM DESCRIPTION 

 

 

Consider a set of geographically dispersed customers, each of which has their 

own demand for a package of some size that must be delivered within a specific period of 

time (i.e., time window).  Packages deliveries are sourced from a single depot by a fleet 

of electric vehicles.  A limited number of charging stations located at different locations 

are required to recharge a vehicle when needed—the amount of time required to recharge 

a vehicle is directly proportional to the amount of charge to be input into the vehicle.  

Each electric vehicle can be characterized by its recharging property/rate, and maximum 

range (as measured by distance driven). 

The research problem of interest focuses on determining the required routing for 

each electric vehicle, including required driving, waiting, and charging times, such that 

all customer demands are satisfied within the required time windows.  Any feasible 

solution must not violate maximum range limitations, or customer-required delivery 

requirements.  Our goal is to develop an optimal solution for each of the following 

objective functions individually: 

 Given a set of available charging stations, minimize the total number of 

vehicles required 

 Given a fleet of available vehicles, minimize the total number of charging 

stations required 

 

 



 12 

4. MATHEMATICAL MODEL 

 

 

This section contains our model formulation, pertinent notation, and an 

explanation of the model’s constraint sets.  

 

 

4.1. Notation 

 

The notation used in the mixed-integer program model formulation is as follows: 

 

Sets 

𝑁 set of nodes. This set includes the depot {0}, customers {1, . . . , 𝑐} and 

charging stations {𝑐 + 1, . . . , 𝑐 + ℎ}.  Indexed by 𝑖, 𝑗 

𝐶 set of customers {1, . . . , 𝑐}. Indexed by 𝑞 

𝑉 set of vehicles {1, . . . , 𝑣}. Indexed by 𝑚, 𝑛 

𝑇 set of trips {1, . . . , 𝑡}. Indexed by 𝑓, 𝑔, 𝑢 

𝑆 set of charging stations {𝑐 + 1, . . . , 𝑐 + ℎ}. Indexed by 𝑘 

 

Parameters 

𝑐 number of customers 

𝑣 number of vehicles 

ℎ number of charging stations 

𝑡 number of trips possible 

𝑑𝑖,𝑗 distance between node 𝑖 and node 𝑗 

𝛿𝑚 maximum distance vehicle 𝑚 could travel with full battery 

𝜏𝑖,𝑗 time it takes to travel from node 𝑖 to node 𝑗 

𝛼𝑖 starting point in time window for node 𝑖 

𝛽𝑖 ending point in time window for node 𝑖 

μ maximum charge time for empty battery 

𝑀1 parameter for constraint sets 

𝑀2 parameter for constraint sets 

𝑀3 parameter for constraint sets 

𝑒1 parameter for objective function coefficient 

𝑒2 parameter for constraint sets 

𝑒3 parameter for constraint sets 
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Variables 

𝑥𝑖,𝑗,𝑚,𝑓 1 if vehicle 𝑚 travels from node 𝑖 to node 𝑗 in its trip number 𝑓 else 0. 

𝑝𝑖,𝑚,𝑓 clock time at which vehicle 𝑚 delivers package to node 𝑖 in its trip number 

𝑓. 

𝑎𝑖,𝑚,𝑓 clock time at which vehicle 𝑚 arrives at node 𝑖 in its trip number 𝑓. 

𝑙𝑖,𝑚,𝑓 clock time at which vehicle 𝑚 leaves node 𝑖 in its trip number 𝑓. 

𝑏𝑚,𝑓 battery charge of vehicle 𝑚 when it leaves depot or a charging station at 

the beginning of its trip number 𝑓. 

𝑒𝑚,𝑓,𝑛,𝑔 binary variable used in resource limitation constraint. 

𝑜𝑚 binary variable used in counting number of vehicles used in the solution. 

𝑤𝑘 binary variable used in counting number of charging stations used in the 

solution. 

 

 

4.2. Model Formulation 

Our model is formulated as a mixed-integer program as follows: 

 

min (∑ 𝑜𝑚𝑚 ∈ 𝑉 ) + 𝑒1(∑ 𝑎0𝑚𝑡𝑚 ∈ 𝑉 ) 

min (∑ 𝑤𝑘𝑘 ∈ 𝑆 ) + 𝑒1(∑ 𝑎0𝑚𝑡𝑚 ∈ 𝑉 ) 

(1) 

(2) 

 

s.t. 

 

∑ 𝑥𝑖𝑞𝑚𝑓 = 1
𝑚 ∈ 𝑉
𝑓 ∈ 𝑇
𝑖 ∈ 𝑁

 ∀ 𝑞 ∈  𝐶 (3) 

∑ 𝑥𝑖𝑞𝑚𝑓 =  ∑ 𝑥𝑞𝑗𝑚𝑓

𝑗 ∈ 𝑁𝑖 ∈ 𝑁

 ∀ 𝑞 ∈  𝐶, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(4) 

∑ 𝑥𝑘𝑖𝑚𝑓

𝑖 ∈ 𝑁

= ∑ 𝑥𝑖𝑘𝑚𝑔

𝑖 ∈ 𝑁

 ∀ 𝑘 ∈ {0} ∪  𝑆, 𝑚 ∈  𝑉,

𝑓 ∈ {2, … , 𝑡},

𝑔 = 𝑓 − 1 

(5) 

∑ 𝑥𝑘𝑖𝑚𝑓

𝑘 ∈{0} ∪ 𝑆
𝑖 ∈ 𝑁

+ ∑ 𝑥𝑖𝑘𝑚𝑓

𝑘 ∈{0} ∪ 𝑆
𝑖 ∈ 𝑁

= 2 ∀ 𝑚 ∈  𝑉, 𝑓 ∈  𝑇 (6) 

∑ 𝑥0𝑖𝑚1 = 1

𝑖 ∈ 𝑁

 ∀ 𝑚 ∈  𝑉 (7) 
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∑ 𝑥𝑖0𝑚𝑡 = 1

𝑖 ∈ 𝑁

 ∀ 𝑚 ∈  𝑉 (8) 

[ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑚𝑓

𝑖,𝑗 ∈ 𝑁

] 𝛿𝑚⁄ ≤ 𝑏𝑚𝑓 
∀  𝑚 ∈  𝑉, 𝑓 ∈  𝑇 (9) 

𝑙𝑗𝑚𝑓 + 𝜏𝑗𝑖 − 𝑀1(1 − 𝑥𝑗𝑖𝑚𝑓) ≤ 𝑎𝑖𝑚𝑓 ∀ 𝑖, 𝑗 ∈  𝑁, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(10) 

𝑎𝑖𝑚𝑓  ≤   𝑙𝑗𝑚𝑓 + 𝜏𝑗𝑖 + 𝑀1(1 − 𝑥𝑗𝑖𝑚𝑓) ∀ 𝑖, 𝑗 ∈  𝑁, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(11) 

𝑎𝑖𝑚𝑓 ≤ 𝑀2 ∑ 𝑥𝑗𝑖𝑚𝑓

𝑗 ∈ 𝑁

 ∀  𝑖 ∈  𝑁, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(12) 

−( ∑ 𝑥𝑗𝑖𝑚𝑓

𝑗 ∈ 𝑁

)  ≤  𝑎𝑖𝑚𝑓 ∀  𝑖 ∈  𝑁, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(13) 

𝑙𝑖𝑚𝑓 ≤ 𝑀2 ∑ 𝑥𝑗𝑖𝑚𝑓

𝑗 ∈ 𝑁

 ∀  𝑖 ∈  𝑁, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(14) 

−( ∑ 𝑥𝑗𝑖𝑚𝑓

𝑗 ∈ 𝑁

)  ≤  𝑙𝑖𝑚𝑓 ∀  𝑖 ∈  𝑁, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(15) 

𝑝𝑖𝑚𝑓 ≤  𝑙𝑖𝑚𝑓 ∀ 𝑖 ∈  𝑁, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(16) 

𝑎𝑞𝑚𝑓  ≤  𝑝𝑞𝑚𝑓 ∀ 𝑞 ∈  𝐶, 𝑚 ∈  𝑉,

𝑓 ∈  𝑇 

(17) 

𝑝𝑘𝑚1 = 0 ∀ 𝑘 ∈ {0} ∪  𝑆, 𝑚 ∈  𝑉 (18) 

𝑎𝑘𝑚𝑓 =  𝑝𝑘𝑚𝑔 ∀ 𝑘 ∈ {0} ∪  𝑆, 𝑚 ∈  𝑉,

𝑓 ∈ {1, . . . , 𝑡 − 1},

𝑔 = 𝑓 + 1 

(19) 

∑ 𝑝𝑖𝑚𝑓

𝑚 ∈ 𝑉
𝑓 ∈ 𝑇

 ≤  𝛽𝑖 
∀  𝑖 ∈  𝑁 (20) 

𝛼𝑖  ≤ ∑ 𝑝𝑖𝑚𝑓

𝑚 ∈ 𝑉
𝑓 ∈ 𝑇

 ∀  𝑖 ∈  𝑁 (21) 

𝑏𝑚1 = 1         ∀ 𝑚 ∈  𝑉 (22) 

0 ≤ 𝑏𝑚𝑓 ≤ 1 ∀ 𝑚 ∈  𝑉, 𝑓 ∈  𝑇 (23) 
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𝑏𝑚𝑔

= 𝑏𝑚𝑓 − [( ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑚𝑓

𝑖,𝑗 ∈ 𝑁

) 𝛿𝑚⁄ ]

+ [( ∑ 𝑙𝑘𝑚𝑔

𝑘 ∈ 𝑆

− ∑ 𝑎𝑘𝑚𝑓

𝑘 ∈ 𝑆

) 𝜇⁄ ] 

∀ 𝑚 ∈ 𝑉, 𝑓 ∈  {1, . . . , 𝑡 − 1},

𝑔 = 𝑓 + 1 

(24) 

𝑎𝑖𝑚𝑓 − 𝑎𝑖𝑛𝑢 ≤ 𝑀3𝑒𝑚𝑓𝑛𝑔 − 𝑒2 ∀ 𝑖 ∈ 𝑆, ∀ 𝑚, 𝑛 ∈ 𝑉, 

 𝑓 ∈ {1, . . . , 𝑡 − 1},

𝑔 ∈ {2, . . . , 𝑡},

𝑢 = 𝑔 − 1,

𝑚 ≠ 𝑛 

(25) 

𝑙𝑖𝑛𝑔 − 𝑎𝑖𝑚𝑓 ≤ 𝑀3(1 − 𝑒𝑚𝑓𝑛𝑔) ∀ 𝑖 ∈ 𝑆, ∀ 𝑚, 𝑛 ∈  𝑉,  

𝑓 ∈  {1, … , 𝑡 − 1},   

𝑔 ∈  {2, . . . , 𝑡}, 𝑚 ≠ 𝑛 

 

(26) 

𝑜𝑚 ≥  𝑒3 𝑎0𝑚𝑡 ∀ 𝑚 ∈  𝑉 (27) 

𝑤𝑘 ≥  𝑒3  ∑ 𝑎𝑘𝑚𝑓

𝑚 ∈ 𝑉
𝑓 ∈ 𝑇

 ∀ 𝑘 ∈  𝑆 (28) 

 

Our model contains two individual (candidate) objective functions. Objective 

function (1) minimizes total number of vehicles used in the routes to serve customers; the 

second part of the objective function (with a very small coefficient) is used to make the 

vehicles return to the depot as soon as possible. Objective function (2) minimizes the 

total number of charging stations used in the routes to serve customers. 

In constraint set (3) there’s exactly one vehicle visits each customer 𝑞 and the 

vehicle passes through that customer on only one of its trips. Constraint set (4) allows at 

most one arrival and one departure at each customer. Constraint sets (5) and (6) are 

constraints for beginning and ending each trip. The first set (5) ensures that when a 

vehicle enters a node at the end of a trip, the vehicle would exit the same node at the start 
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of next trip. The second set (6) ensures that only the starting node and the ending node of 

each trip are non-customer nodes in that trip. Constraint set (7) ensures that each vehicle 

begins its route from the depot, while constraint set (8) ensures that each vehicle returns 

to the depot at the end of its route. 

In constraint set (9) the charge vehicle m uses in trip f to travel to customers 

should be less than its charge at the beginning of this trip. Constraint set (10) prescribes 

that a vehicle departing from node 𝑗 at time 𝑙 that takes τ hours to travel from node 𝑗 to 

node 𝑖 would arrive at node 𝑖 at time 𝑙 + τ. If there’s an arc between node 𝑖 and 𝑗, 

constraint sets (10) and (11) become activated. If vehicle 𝑚 doesn’t pass through node 𝑖 

in any of its trips, the arrival time would be zero. Otherwise, constraint sets (12) and (13) 

become inactive. 

Constraint sets (14) and (15) serve the same purpose as constraint sets (13) and 

(14), but they are for departure time calculations. In constraint sets (16) and (17), a 

vehicle should deliver to customer 𝑞 at some time between the vehicle’s arrival and 

departure times at the customer’s node. Constraint set (18) sets the start value of the 

model’s clock to zero. Constraint set (19) manages the calculation of pertinent times so 

that the departure time from a node at the beginning of any trip occurs after the vehicle’s 

arrival time to that same node at the end of the previous trip. We also consider stations 

for the starting and ending nodes of each trip. 

Constraint sets (20) and (21) specify that the delivery of any package should be 

within the specified time window. Next, constraint set (22) fixes charge of each vehicle at 

the beginning of its first trip to one (i.e., 100%). In constraint set (23), the charge of each 
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vehicle is restricted to be between zero and one.  Constraint set (24) ensures that at the 

end of each trip, if the vehicle enters a charging station, it is charged proportionally 

according to the time spent at the station. However, no charging occurs at the depot. 

Constraint sets (25) and (26) are resource limitation constraints. Constraint sets 

(27) and (28) calculate the values of two variables. In set (27), if a particular vehicle 

doesn’t go to any nodes, its arrival time to the depot at the final trip would be zero -- this 

constraint becomes inactive. However, if it travels to any node, the vehicle’s arrival time 

at the depot would be greater than zero and this constraint becomes active and the value 

for the variable would be equal to one. It follows that this is used to compute the total 

number of vehicles used. The same holds for set (28). If a charging station is used the 

value of the second variable becomes equal to one, so sum of this variable for all of the 

charging stations is equal to the number of stations used in the solution. 
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5. MODEL VALIDATION 

 

 

A sample problem instance is defined to validate the model. Consider a fleet of 

vehicles and a demand to deliver two packages each belonging to a unique customer. 

Each vehicle may travel a maximum of 30 miles using a fully charged battery. The 

distance between customers is given in Figure 1. By construction, it is not possible for 

any vehicle to deliver both packages without recharging. Three charging stations are 

available. It’s possible for any vehicle to leave the charging station with partially charged 

battery. Full charge of an empty battery takes 8 hours, while partial charging time is 

proportional to the charge gained during the recharge process. According to Table 1, 

Customer 1’s package has to be delivered at 7 AM (exact time) and the package 

belonging to Customer 2 has to be delivered within the time window from 10 AM to 10 

PM.  
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Figure 1: Data for Test Instance 

 

Table 1: Input Data for Example Problem 

Time window (Customer 1) 7 AM – 7:01 AM 

Time window (Customer 2) 10 AM – 10 PM 

Vehicle range 30 miles 

Recharge time 8 hours 

 

After implementing the model in AMPL, the two-customer instance is evaluated 

to minimize total number of vehicles required. The solution was produced using Gurobi 

v.5.6 solver on a Windows 7 Enterprise platform with an Intel® Core™ i7-2600 CPU 

processor @3.40 GHz.  Optimal vehicle routes, remaining charge percentage, arrival and 
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departure times are shown in Figure 2. The optimal objective function value is 1.03 as 

only one vehicle is used throughout the delivery process. The reason that the objective 

value is 1.03 instead of 1 is that we have defined a small objective function term which 

rewards the shortest return time to the depot (i.e., it eliminates long-journey solutions). 

The vehicle first travels to customer one’s location because the package must be 

delivered at 7 AM, before package two.  

Because of its distance limitation associated with its range, the vehicle uses a 

charging station after delivering the first package. The vehicle does a full charge due to 

the distance to the next charging station within its route being equal to the maximum 

vehicle range of 30 miles. The vehicle travels to customer two and uses a second 

charging station in this trip, again because of the maximum distance limitation. Then, the 

vehicle returns to the depot and again needs to use the third charging station due to its 

maximum distance limitation. Therefore, the model proposes a travel schedule in which 

the number of vehicles used is the minimum (one) and the number of charging stations 

needed is three. 
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Figure 2: Results for Test Instance (objective is to minimize number of vehicles) 

 

Now we run the model with a second objective: to minimize the number of 

charging stations. Now, the objective function is equal to 2.03 (i.e., the model uses two 

vehicles during the delivery process). Each vehicle delivers one package and each uses 

one charging station in their route due to the maximum distance limit (Figure 3). The 

vehicle delivering package one does not need a full charge when returning to the depot 
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because its distance traveled is 10 miles less than the maximum distance limit. However, 

the vehicle delivering package two requires a full charge while returning to the depot. 

Therefore, two vehicles and minimum number of charging stations (two) are used to 

deliver the packages. A comparison of the two models’ results is presented in Table 2. It 

is clear that the different objective functions lead to completely different routes and 

schedules.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3: Results for Test Instance (objective is to minimize number of stations) 
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Table 2: Comparison between Results 

 Objective 

Min number of vehicles Min number of stations 

Number of vehicles used 1 2 

Number of stations used 3 2 
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6. MODEL PARAMETER ESTIMATION 

 

 

In the proposed MIP model we use a number of 𝑀 (“big M”) parameters in the 

constraint right hand sides. The use of 𝑀 as a constraint coefficient could result in 

rounding errors that may cause the basis matrix (𝐵) to become singular. Also, there could 

exist precision errors when computing 𝐵−1. Since 𝑀 is sometimes used to make 

constraints active or inactive, even without basis matrix errors, large values of M could 

cause commercial branch-and-bound solvers to work inefficiently or slower than desired. 

Loose bounds can make it harder to prune nodes based on the objective function. In this 

case, more nodes will be explored and the solving process can slow down. With this in 

mind, we try to find smallest value for 𝑀 that works for the model.  

In the optimization model, parameter 𝑒1 is used in objective function (1) and (2). 

Parameter 𝑒1 is a coefficient multiplied by the summation of arrival times of all vehicles 

to the depot. This parameter is important to ensure that each vehicle returns to the depot 

as soon as possible and in order to eliminate unwanted idle time. We must make sure that 

this coefficient does not impact the count of vehicles or charging stations used in the 

model. In turn, we must ensure the value of second term in each objective function 

should be less than one. 

In the worst case, consider customer 𝑗 who has the maximum value of (any 

customer time window upper bound value) + (travel time from customer to the depot). In 

this case, 𝑒1 ∗ (∑ 𝑎0,𝑗,𝑡𝑉 ) would be maximal. This leads to the following estimation for 

parameter 𝑒1: 
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𝑒1 <  
1

𝑣 ∗ 𝑀𝑎𝑥𝑖∈𝐶 (𝛽𝑖 + 𝜏𝑖,0)
 .   

(29) 

 

Parameter 𝑀1 is used in constraint sets (10) and (11). This parameter is important 

to make these constraints active or inactive as necessary. We need to estimate 𝑀1 only if 

𝑥𝑗𝑖 is zero (if not, the parameter would have a zero multiplier and would be eliminated). 

In the worst case, we estimate the value for parameter 𝑀1 as follows: 

𝑀𝑎𝑥𝑖∈𝐶 (𝛽𝑖 + 𝜏𝑖,0) ≤ 𝑀1 . (30) 

 

Parameter 𝑀2 is used in constraint sets (12) and (14). This parameter is important 

in order to allow these constraints to become inactive as necessary. We must estimate a 

value for this parameter only if ∑ 𝑥𝑗𝑖𝑛𝑜𝑑𝑒𝑠  is not equal to zero, so it could be any positive 

integer (if not, parameter would have zero multiplier and would be eliminated). In worst 

case, this term would be one; therefore, our estimate for 𝑀2 would be as follows: 

𝑀2 ≥  𝑎𝑖𝑚𝑓 . (31) 

 

Further, as arrival time (𝑎𝑖𝑚𝑓) is estimated in the same way as for our 𝑀1 estimation, we 

conclude that 𝑀2 is equal to 𝑀1. 

Parameter 𝑀3 is used in constraint sets (25) and (26) in order to make these 

constraints active or inactive. If 𝑒𝑚𝑓𝑛𝑔 is equal to one, in the worst case, parameter 𝑀3 

would be greater than 𝑎𝑖𝑚𝑓. If 𝑒𝑚𝑓𝑛𝑔 is equal to zero then parameter 𝑀3 would be greater 

than 𝑙𝑖𝑛𝑔. Arrival time (and similarly, departure time) is estimated in the same way we 
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did for our parameter 𝑀1 estimation. In general, 𝑀3 may be less than 𝑀1 but for 

simplicity, we conclude that 𝑀3 is equal to 𝑀1. 

Parameter 𝑒2 is used in constraint set (25). This constraint does not allow 

simultaneous charging for distinct vehicles at the same station. In addition, we need this 

parameter to avoid the possibility of similar arrival times (without this parameter if two 

vehicles arrive at the same time, this constraint set does not work). In fact we block 𝑒2 

time units before and after each arrival. A worst-case estimate for this parameter is as 

follows: 

𝑒2 <
min(𝜏𝑖,𝑗)

𝑚𝑎𝑥 (𝛿𝑚)
𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑

∗ μ . 
(32) 

 

Parameter 𝑒3 is used in constraint sets (27) and (28). We need to estimate this 

parameter only if 𝑎0𝑚𝑡 is not equal to zero (otherwise, the parameter would have a zero 

multiplier and would be eliminated). In the worst case, our estimate for this parameter is 

as follows: 

𝑒3 <  
1

𝑀𝑎𝑥𝑖∈𝐶 (𝛽𝑖 + 𝜏𝑖,0)
  . 

(33) 
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7. EXPERIMENTAL STUDY 

 

 

7.1. Experimental Plan 

We analyze a set of 180 test instances, each with one depot, five customers, and 

one charging station to evaluate the proposed model’s performance. All instances are 

created based on the benchmark instances of Solomon (1987). The location of the depot 

and customers is fixed in each instance, but various factor levels are considered: two 

levels for vehicle range, three levels for recharge time, two levels for charging station 

location, and two levels for time windows (Table 3). Instance set 𝑅1 has a short 

scheduling horizon (time windows 𝑡1 − 𝑡8) while instance set 𝑅2 has a long scheduling 

horizon (time windows 𝑡9 − 𝑡15). Figure 4 depicts a representation of depot, customers, 

and candidate charging station locations. 

 

Table 3: Experimental Design Parameters 

Parameter Levels 

Station Locations (61.7, 72.4) 

(42.1, 64.9) 

Time Windows See Table 4 

Vehicle Range (𝛿) 100 

150 

Recharge Time (μ) 8 

2.5 

1 
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Figure 4: Instance Representation 
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Table 4: Experimental Time Window Data 

 

 Customer1 Customer2 Customer3 Customer4 Customer5 

t1 
start 161 50 116 149 34 

end 171 60 126 159 44 

t2 
start 0 0 0 149 0 

end 204 202 197 159 199 

t3 
start 151 40 106 139 24 

end 181 70 136 169 54 

t4 
start 0 0 0 139 0 

end 204 202 197 169 199 

t5 
start 133 22 98 123 20 

end 198 87 143 184 93 

t6 
start 130 20 106 71 20 

end 201 89 135 195 107 

t7 
start 15 18 54 138 20 

end 204 202 187 169 199 

t8 
start 73 18 76 73 20 

end 204 147 165 195 167 

t9 
start 707 143 527 678 34 

end 848 282 584 801 209 

t10 
start 0 0 0 149 0 

end 974 972 967 801 969 

t11 
start 658 93 436 620 20 

end 898 333 676 860 260 

t12 
start 0 0 0 620 0 

end 974 972 967 860 969 

t13 
start 636 74 498 470 20 

end 919 351 613 965 370 

t14 
start 190 18 289 679 20 

end 974 792 822 800 906 

t15 
start 451 18 378 477 20 

end 974 534 733 965 610 
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7.2.  Experimental Results and Analysis 

Solutions are found by implementing the optimization model in AMPL and 

solving it with Gurobi after imposing an optimization time limit, in order to minimize 

number of vehicles used in the solution. The solution is produced using Gurobi solver on 

a Windows 7 Enterprise platform with Intel® Core™ i7-2600 CPU @3.40 GHz.  After 

running our test instances, we see that in most cases, the objective function reaches a 

stable value after 5-10 minutes of optimization time that does not change for several 

hours. With this in mind, the optimization time limit for each run is set to 15 minutes. A 

summary of the experimental results is shown in Tables 5 and 6 for the two time window 

levels considered (𝑅1 and 𝑅2). The relative optimality gap is shown in Tables 7 and 8 for 

the two time window levels considered (𝑅1 and 𝑅2). 

For all instances, the near-optimal solution is to use either one or two vehicles to 

deliver packages. Table 9 shows the percentage of test instances in which the resulting 

near-optimal objective function recommends using one vehicle. This confirms that we 

would need fewer vehicles if either vehicle range is increased, recharge time is decreased, 

or scheduling horizon is increased. 

 

  



 31 

Table 5: Experimental Results for Time Windows Set R1 

 μ=8  
𝛿=100 

μ=8  
𝛿=150 

μ=2.5  
𝛿=100 

μ=2.5  
𝛿=150 

μ=1  
𝛿=100 

μ=1  
𝛿=150 

Charging 

Station 

Location = 

L1 

t1 2.000059 2.000058 2.000059 2.000059 2.00006 2.000058 

t2 2.00004 1.00003 2.000036 1.00003 2.000041 1.000029 

t3 2.000044 2.000032 2.000044 2.000039 2.000044 1.000031 

t4 2.000038 1.000028 2.000038 1.000027 2.000028 1.000026 

t5 2.000037 2.000036 2.000041 2.000033 2.000039 1.000029 

t6 2.000024 1.000054 2.000023 1.000024 2.000023 1.000024 

t7 2.000029 1.000028 2.000039 1.000027 2.000029 1.000027 

t8 2.000022 1.000023 2.000023 1.000022 2.000023 1.000023 

Charging 

Station 

Location = 

L2 

t1 2.00006 2.000056 2.000059 2.000059 2.000059 2.000058 

t2 2.00004 1.000029 2.00004 1.000029 2.000036 1.00003 

t3 2.000044 2.00004 2.000045 2.000036 2.000044 2.000039 

t4 2.000033 1.000027 2.000037 1.000027 1.000035 1.000027 

t5 2.000042 2.000033 2.000042 2.000035 2.000042 1.00003 

t6 2.000023 1.000025 2.000033 1.000025 2.000028 1.000024 

t7 2.000029 1.000028 2.000029 2.000036 2.000039 1.000025 

t8 2.000023 1.000022 2.000029 1.000022 2.000027 1.000015 

 

 

Table 6: Experimental Results for Time Windows Set R2 

 μ=8  
𝛿=100 

μ=8  
𝛿=150 

μ=2.5  
𝛿=100 

μ=2.5  
𝛿=150 

μ=1  
𝛿=100 

μ=1  
𝛿=150 

Charging 

Station 

Location = 

L1 

t9 2.000148 1.000122 2.000135 1.000121 2.000132 1.000121 

t10 1.000085 1.000026 1.00005 1.00003 1.000043 1.00003 

t11 2.000114 1.000112 2.00012 1.00011 2.000114 1.000112 

t12 1.00011 1.000108 1.000111 1.000107 1.00011 1.000108 

t13 2.000108 1.000109 2.000111 1.000109 2.000114 1.000109 

t14 1.00012 1.000117 1.00012 1.000118 1.00012 1.000117 

t15 2.000093 1.000087 2.000093 1.000086 2.00009 1.000087 

Charging 

Station 

Location = 

L2 

t9 2.000132 1.00012 1.000121 1.000122 1.000121 1.000121 

t10 1.000076 1.000029 1.000044 1.00003 1.000035 1.000028 

t11 1.000112 1.000112 1.000112 1.000113 1.000111 1.000112 

t12 1.000108 1.000108 1.000107 1.000108 1.000108 1.000108 

t13 1.000109 1.000108 1.000109 1.000108 1.000108 1.000109 

t14 1.000118 1.000117 1.000118 1.000118 1.000118 1.000118 

t15 1.000088 1.000087 1.000086 1.000086 1.000087 1.000085 
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Table 7: Relative Optimality Gap for Time Windows Set R1 

 μ=8  
𝛿=100 

μ=8  
𝛿=150 

μ=2.5  
𝛿=100 

μ=2.5  
𝛿=150 

μ=1  
𝛿=100 

μ=1  
𝛿=150 

Charging 

Station 

Location = 

L1 

t1 0.500970 0.002791 0.002791 0.500783 0.500970 0.002791 

t2 0.501004 0.002973 0.501000 0.002973 0.501004 0.002973 

t3 0.000048 0.501018 0.000086 0.501017 0.000096 0.000174 

t4 0.500963 0.002808 0.500962 0.002808 0.500961 0.002808 

t5 0.000100 0.001513 0.000090 0.001584 0.000077 0.500939 

t6 0.500818 0.002463 0.000874 0.002463 0.001185 0.002791 

t7 0.500970 0.002791 0.500970 0.002791 0.500970 0.002791 

t8 0.500783 0.002383 0.500783 0.002383 0.500783 0.002372 

Charging 

Station 

Location = 

L2 

t1 0.500963 0.001945 0.002808 0.001945 0.002808 0.001977 

t2 0.501002 0.002969 0.501004 0.002973 0.501002 0.002960 

t3 0.000069 0.000732 0.000075 0.000322 0.000097 0.000647 

t4 0.500963 0.002808 0.500963 0.002806 0.500962 0.002808 

t5 0.002305 0.001977 0.001191 0.471952 0.001945 0.001963 

t6 0.500820 0.000322 0.500822 0.002464 0.001870 0.002452 

t7 0.500970 0.002790 0.500970 0.002791 0.500970 0.002789 

t8 0.500783 0.002383 0.500783 0.002370 0.500783 0.002790 

 

 

Table 8: Relative Optimality Gap for Time Windows Set R2 

 μ=8  
𝛿=100 

μ=8  
𝛿=150 

μ=2.5  
𝛿=100 

μ=2.5  
𝛿=150 

μ=1  
𝛿=100 

μ=1  
𝛿=150 

Charging 

Station 

Location = 

L1 

t9 0.000985 0.012099 0.503452 0.010787 0.007017 0.010985 

t10 0.501004 0.002972 0.005359 0.002973 0.004245 0.002973 

t11 0.503044 0.011155 0.503045 0.011156 0.503045 0.011156 

t12 0.010975 0.010717 0.010975 0.010713 0.010975 0.010716 

t13 0.502915 0.010787 0.005968 0.010787 0.006066 0.010787 

t14 0.503114 0.011678 0.011925 0.011679 0.011937 0.011674 

t15 0.502455 0.008585 0.502333 0.008585 0.502334 0.008583 

Charging 

Station 

Location = 

L2 

t9 0.402777 0.012100 0.010786 0.012098 0.011679 0.010717 

t10 0.007534 0.002974 0.004484 0.002972 0.003663 0.011679 

t11 0.011295 0.011152 0.011145 0.011149 0.011155 0.011155 

t12 0.010716 0.010717 0.010716 0.010716 0.010717 0.011295 

t13 0.010985 0.010786 0.010786 0.010786 0.010784 0.011679 

t14 0.011679 0.011679 0.011679 0.011678 0.011677 0.010975 

t15 0.008731 0.008586 0.008586 0.008586 0.008586 0.005968 
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Table 9: Percentage of Instances Able to Use Only One Electric Vehicle 

 
Time Window Set R1 Time Window Set R2 

 
𝜹=100 𝜹=150 𝜹=100 𝜹=150 

μ=8  0 % 62 % 64 % 100 % 

μ=2.5  0 % 56 % 71 % 100 % 

μ=1  6% 81 % 71 % 100 % 
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CONCLUSIONS AND FUTURE WORK 

 

 

A mixed-integer programing (MIP) formulation is developed to solve the partially 

rechargeable electric vehicle routing problem with time windows and capacitated 

charging stations. The analysis of this model gives insights about the optimal design 

combination of charging stations and electric vehicle fleet sizing needed for parcel 

delivery. This analysis confirms that fewer vehicles are needed if systems designers are 

able to increase vehicle range, decrease recharge time, or increase their scheduling 

horizon. 

Due to the problem's NP-hard complexity (via reduction to the classical VRP), 

our solution is not optimal. In fact, for larger test instances with more than five 

customers, we may not reach even a good solution in an appropriate amount of time. In 

future work, this research can be extended to develop heuristic or metaheuristic 

algorithms to achieve better results for larger instances in a timely fashion. 
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