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ABSTRACT 

 

 

Activated carbons (ACs) and activated carbon fibers (ACFs) have been 

extensively used for the removal of synthetic organic compounds (SOCs) that have been 

found to be toxic, carcinogenic, mutagenic or teratogenic. Adsorption of these 

compounds on ACs and ACFs are controlled by both physical factors and chemical 

interactions, which depend on the characteristics of the adsorbent (surface area, pore size 

distribution (PSD), and surface chemistry), the nature of the adsorbate (molecular weight 

and size, functional groups, polarity, solubility), and the condition of the background 

solution (pH, temperature, presence of competitive solutes, ionic strength). Since there 

are several mechanisms that can affect the adsorption, it is important to understand the 

role of these individual factors responsible for the adsorption of a given combination of 

adsorbate and adsorbent under certain background conditions.  

The main objective of this study was to conduct a systematic experimental 

investigation to understand the effects of physical factors on the adsorption of SOCs by 

different porous carbonaceous adsorbents. Three ACFs, with different activation levels, 

and three granular activated carbons (GACs) produced from two different base materials 

were obtained, characterized and used in the experiments. The single solute adsorption 

isotherms of the selected carbons were performed for benzene (BNZ), biphenyl (BP), 

phenanthrene (PHE) and 2-hydroxybiphenyl (2HB). 

First, the role of carbon structure on the adsorption was examined and the 

accessible pore size regions for BNZ, BP and PHE were determined. It was found that 

adsorption of the selected SOCs was higher for ACFs than those of GACs due to the 
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higher microporosity (more than 75%) and higher specific surface areas of ACFs. Both 

PSD and pore volume in pores less than 1 nm were important for the adsorption of BNZ, 

whereas accessible pore size regions for BP and PHE were determined to be 

approximately 1 - 2 nm. While adsorption of BNZ was found to be correlated with both 

surface areas and pore volumes, adsorption of BP and PHE was only related to the 

surface areas of carbons. These relationships showed that there was no restriction for 

BNZ molecules to access the pores of the carbons, whereas size exclusion effects were 

observed for BP and PHE adsorption.  

Second, the effects of the molecular structure, dimension and configuration of the 

selected SOCs were investigated. The adsorption uptake increased with decreasing 

molecular dimension of each compound, and the uptake was in the order of BNZ > BP > 

PHE for the six heat-treated carbons. The nonplanar BP had an advantage over the planar 

PHE, since it was more flexible, and thus, able to access deeper regions of the pores than 

the rigid PHE. It was observed that BP had higher adsorption capacities as expressed on 

mass-basis than those of 2HB at the same concentration levels. This was attributed to the 

different solubilities of these SOCs since they were very similar in molecular size and 

configuration. On the other hand, after their concentrations were normalized with 

solubility, at the same reduced concentration levels, the adsorption capacities of 2HB 

were higher than those of BP due to the π-π electron-donor-acceptor interactions that 

resulted from the hydroxyl group in the 2HB. 

Finally, to examine the role of surface oxidation, BP and 2HB adsorption 

isotherms on the heat-treated and oxidized ACFs were performed. The nitrogen 
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adsorption data demonstrated that heat treatment increased the microporous surface areas 

by 2 to 13% compared to the oxidation of the ACF samples. Comparing the oxidized to 

the heat-treated ACFs, oxidized ACFs had higher oxygen and nitrogen contents and 

water vapor uptakes, which confirmed that they were more hydrophilic, than the heat-

treated ACFs. Adsorption isotherm results demonstrated that the heat-treated ACFs had 

higher adsorption capacities than the oxidized ACFs, demonstrating that surface polarity 

had an important role in the adsorption of aromatic compounds.  
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CHAPTER ONE 

INTRODUCTION 

A large number of synthetic organic compounds (SOCs) have been produced for 

the purpose of industrial and domestic uses for many years. Most of them have been 

found to be toxic, carcinogenic, mutagenic or teratogenic. These compounds may enter 

the aquatic environment from atmospheric sources, industrial and municipal effluent, and 

agricultural runoff. Since the existence of these compounds in water sources has been 

detected, the Clean Water Act and its amendments have been promulgated by the United 

States Environmental Protection Agency (USEPA) to protect public health and natural 

resources [USEPA, 1995]. The Safe Drinking Water Act and its amendments followed 

the Clean Water Act in order to protect the public from exposure to some of these 

undesirable and harmful chemicals. Currently, nearly one hundred SOCs are classified as 

priority pollutants and regulated by the USEPA [2009]. 

The Safe Drinking Water Act Amendments of 1986 cited activated carbon (AC) 

adsorption as one of the “Best Available Technologies” to remove SOCs from aqueous 

environments [Le Cloirec et al., 1997; Karanfil and Kilduff, 1999; Moreno-Castilla, 

2004; USEPA, 2009]. In order to develop more effective ways for the removal of 

adsorbates by AC adsorption and to predict their control, fate and transport in the 

environment, it is critical to gain a fundamental understanding of the chemical 

interactions and physical factors involved in the adsorption of SOCs by ACs. In general, 

AC has a well developed porous structure and a large internal surface area (e.g., 800-

1000 m
2
/g). It consists of 87 to 97% carbon and such elements as oxygen, hydrogen, 
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sulfur and nitrogen as well as some inorganic components either originating from the raw 

materials or chemicals used in its production. A wide variety of materials can be used for 

producing AC, such as wood, coal, bituminous coal, rubber, almond shells, oil-palm 

stones, polymers, phenolic resins, and rice husks [Choma and Jaroniec, 2006].  

Recently, activated carbon fibers (ACFs) have gained increased popularity due to 

their unique pore structure properties that provide a higher adsorption capacity. ACFs 

exhibit narrower and more homogeneous pore size distributions (PSDs) than the 

heterogeneous pore structure of ACs. They are usually highly microporous (pores less 

than 2 nm are dominant in the pore structure), and these micropores are directly 

accessible from the external surface of the fiber. Therefore, without the additional 

diffusion resistance of macropores observed for ACs, molecules with small molecular 

sizes reach adsorption sites through micropores. Due to high microporosity, ACFs are 

selective for the adsorption of low-molecular-weight compounds [Kaneko et al., 1989; Le 

Cloirec et al., 1997; Moreno-Castilla, 2004].  

Adsorption of SOCs on ACs and ACFs are affected by both physical and 

chemical factors such as the characteristics of the adsorbent (surface area, PSD, surface 

chemistry) and the adsorbate (molecular weight, size, functional groups present, polarity, 

hydrophobicity, solubility), and the background solution conditions (pH, temperature, 

presence of competitive solutes, ionic strength) [Radovic et al., 1997; Li et al., 2002; 

Dabrowski et al., 2005; Villacanas et al., 2006; Guo et al., 2008].  

The accessible pore volume to a molecule of a given size is determined by PSD. 

In order to calculate the distribution of pore sizes, it is necessary to develop a model for 
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pore filling that relates the pore width to the condensation pressure [Lastoskie et al., 

1993a]. Pore filling is the main physical adsorption mechanism in small micropores 

because the overlapping of pore wall potentials results in stronger binding of the 

adsorbate, or enhanced adsorption. In the case of some organic molecules of a large size, 

molecular sieve effects may occur either because the pore width is narrower than the 

dimensions of the adsorbate molecules or because the shape of the pores does not allow 

the molecules of the adsorbate to penetrate into the micropores. Therefore, even though 

there are multiple contact points between the adsorbate and adsorbent, larger molecules 

do not experience this enhanced adsorption phenomenon. In addition, slit-shaped 

micropores formed by the spaces between the carbon layer planes are not accessible to 

molecules of spherical geometry that have a diameter larger than the pore width [Pelekani 

and Snoeyink, 2000; Menendez-Diaz and Martin-Gullon, 2006].  

Water cluster formation around the polar sites of carbonaceous adsorbent surfaces 

is also one of the important factors affecting the adsorption of SOCs. AC-water 

interactions are related to the surface polarity of the carbon. Hydrophilic surface sites, 

which may include both acidic (e.g., oxygen-containing) and basic (e.g., nitrogen-

containing) functionalities as well as inorganic (e.g., metal) species, cause the surface 

polarity. The functional groups existing on ACF surfaces are adsorption sites of water 

molecules and they are more likely to be found at the edge of carbon sheets [Kaneko et 

al., 1989; Salame and Bandosz, 1999]. The adsorbed water clusters may block carbon 

pores and reduce sorption capacity of hydrophobic compounds. Several studies have 

documented that water clusters can prevent SOC molecules access to the microporous 
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surface of carbonaceous adsorbents [Karanfil and Kilduff, 1999; Karanfil and Dastgheib, 

2004]. Since the majority of the AC surface area for adsorption is located within the 

micropores, water cluster formation is particularly important for adsorption of SOCs at 

low concentrations. 

Both molecular conformation and dimensions of an adsorbate affect the 

adsorption. The molecular dimension of a SOC with respect to the PSD of an adsorbent is 

important since it determines the accessible surface area or pore volume for adsorption. 

Depending on the molecular dimensions of a target SOC, there is an optimum carbon 

pore size region that maximizes the uptake of the SOC. The studies on the effects of 

molecular conformation of adsorbate in the adsorption process are relatively limited. A 

recent study performed by Guo et al. [2008] showed that planar molecules accessed and 

packed in the slit-shape pores more efficiently as compared to nonplanar molecules. 

Moreover, nonplanar molecular conformation weakened the interactions between 

adsorbate molecules and carbon surfaces. Results of the study by Guo et al. [2008] 

confirmed that molecular conformation of SOCs has an important effect on adsorption.   

Besides molecular dimension and conformation, solubility of an adsorbate also 

has significant effects on the adsorption. Compounds that have low solubilities prefer 

accumulating on the carbon surface rather than dissolving in water. As a result, the 

adsorption of an organic compound by AC or ACF increases with decreasing solubility in 

the solvent [Dowaidar et al., 2007].  

To date, many studies have been performed to understand and examine the 

chemical interactions in the adsorption of organic compounds. However, there has been 
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limited research about the role of physical factors in the adsorption process. The main 

objective of this study was to systematically investigate the effects of physical factors 

(surface area and pore structure of adsorbent, and molecular dimension and 

molecular configuration of adsorbate) on the adsorption of SOCs by different 

porous carbonaceous adsorbents. 

This study was a portion of a project funded by National Science Foundation that 

has examined and compared adsorption of SOCs by a range of carbonaceous adsorbents 

(AC, ACF, Single Walled Nanotubes, Multi Walled Nanotubes, and Graphite). Although 

not presented and discussed in this thesis, the results were also used to compare 

adsorption behavior of a selected number of SOCs with several carbonaceous adsorbents 

[Zhang et al., 2010].  
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CHAPTER TWO 

LITERATURE REVIEW 

 

The objective of this chapter is to provide a literature review on the preparations, 

structures and applications of ACs and ACFs, the interactions controlling the adsorption 

of SOCs, and the influencing factors in SOC – carbon interactions.     

 

2.1 Activated Carbons and Activated Carbon Fibers 

ACs are carbonaceous materials which have been efficiently used in several 

pollution control systems due to their high adsorption capacity. They can be found in the 

forms of granular activated carbon (GAC) and powdered activated carbon (PAC). They 

are typically produced from relatively heterogeneous base materials such as bituminous 

coal, charcoal, lignite, coconut shells, peat or wood, which are materials with high carbon 

content and low inorganic components [Dabrowski et al., 2005]. While the particles of 

GACs have irregular shapes with commercially available sizes ranging from 0.5 to 2.5 

mm, PACs are a pulverized form of GACs with a size predominantly less than 0.15 mm 

[Karanfil, 2006].  

ACFs are prepared from homogeneous polymeric materials such as 

polyacrylonitrile, cellulose or phenolic resin [Li et al., 2002]. They provide a number of 

advantages over conventional GACs and PACs. ACFs are highly microporous (> 90% by 

pore volume), with micropores directly on the external surface of fibers having an 

average diameter from 5 to 21 Å (Figure 2.1). Due to the high microporosities, ACFs are 

selective for the adsorption of low-molecular-weight compounds [Kaneko et al., 1989; 
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Moreno-Castilla, 2004]. Their unique pore structure properties make them very effective 

in removing contaminants from liquid or air with adsorption rates and capacities higher 

than those of GACs and PACs. Initial adsorption rates are 2.5-10 times larger with fibers 

[Le Cloirec et al., 1997; Guo et al., 2008]. In addition, the higher carbon and lower ash 

contents of ACFs make them more hydrophobic than GACs and PACs [Kaneko et al., 

1993]. Since ACFs are usually commercially available as fiber cloths, it is convenient to 

incorporate them into the existing treatment systems by immersion into tanks or pipes. 

However, the manufacturing cost is high [Shmidt et al., 1997], and the relatively high 

cost of ACF is currently a major barrier and prevents its widespread application in water 

and wastewater treatment. While the price of ACF can cost as much as $100 per pound, 

GAC is comparatively cheaper at only around $1 per pound [Economy‟s Group, 2003]. 

 

 

Figure 2.1 Schematic pore structures of GAC and ACF. 

 

 

 

< 20 Å 
20 – 500 Å 

> 500 Å 
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2.1.1   Preparation of Carbons 

Solid carbonaceous based materials, which are non-graphitic, are used as 

precursors for the preparation of ACs. The precursor is transformed or „activated‟ by 

means of medium to high temperature treatments. As a result, not only solid mass is 

removed but also pores are created where the removed mass was previously located. The 

precursor is very important for both the activation process and the final properties of a 

given carbon adsorbent [Menendez-Diaz and Martin-Gullon, 2006]. There are some 

criteria considered in the selection of the precursors [Dabrowski et al., 2005]: 

 low inorganic matter content, 

 ease of activation, 

 availability and cost, and 

 low degradation during storage. 

The production methods can be classified into two categories:  

(i) Thermal activation (or physical activation): Generally consists of two consecutive 

steps, thermal carbonization and activation. Thermal carbonization of the raw material is 

accomplished at medium or high temperatures and devolatilization takes place at this 

step. The aim of this is to produce a char rich in carbon. In the activation step, the 

remaining char is partially gasified with an oxidizing agent (mostly steam) in direct fired 

furnaces. If both steps are carried out simultaneously, the process is called direct 

activation [Menendez-Diaz and Martin-Gullon, 2006]. 

(ii) Chemical activation: The raw material is first impregnated by considerable amounts 

of a chemical agent such as phosphoric acid, zinc chloride, or alkaline hydroxides, and 
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then heated. After carbonization, the impregnated product must be washed to remove 

excess chemical agent [Menendez-Diaz and Martin-Gullon, 2006].  

The precursors of ACF are polyacrylonitrile fibers, cellulose fibers, phenolic resin 

fibers or pitch fibers, and cloths or felts. The ACFs are produced, mainly, by the thermal 

activation of carbonized carbon fibers. They are first carbonized at a temperature of 800 - 

1000 °C to remove noncarbonaceous components and to develop a limited pore volume, 

and then physically activated at 800 - 1100°C in an atmosphere of steam or CO2 to 

increase pore surface area and volume [Brasquet and Le Cloirec, 1997; Le Cloirec et al., 

1997]. Specific surface areas as high as 2500 m
2
/g or higher may be obtained by this way. 

However, ACFs with specific surface area of 2000 m
2
/g are usually the practical limit for 

most purposes because of the increased cost, reduced yield and decrease of textile 

properties, and ACFs with 1500 m
2
/g surface areas are adequate for many applications 

[Hayes, 1985]. 

 

2.1.2   Structures of Carbons 

The large surface area of an AC is almost only within the particles, and it is 

structurally considered to be made up of clusters (microcrystallites) that are rigidly 

interconnected, and each of them consists of a stack of graphitic planes [Snoeyink et al., 

1969]. Graphite is a layered structure in which the graphene layers (single graphite plane) 

are formed by atoms of carbon bonded by σ- and π- bonds to another three neighboring 

carbon atoms (sp
2
-based structure). The graphite planes tend to exhibit a parallel 

alignment which is maintained by dispersive and van der Waals forces (Figure 2.2).   
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Figure 2.2 Structure of graphite crystal [Electronics Cooling, 2001]. 

 

A carbon adsorbent has a porous structure, which is perhaps the main physical 

property that characterizes an AC. Pore size of adsorbents are classified into four groups 

according to the International Union of Pure and Applied Chemistry recommendations: 

(1) Macropores with a pore width larger than 500 Å, (2) Mesopores with widths from 20 

to 500 Å, (3) Secondary micropores with widths from 8 to 20 Å, and (4) Primary 

micropores with a pore width less than 8 Å [Lastoskie et al., 1993b; Pelekani and 

Snoeyink, 1999]. For example, coconut shell carbons are considered microporous 

because the majority of their total void volume is microporous, whereas wood-based 

carbons have a more even distribution of micro-, meso-, and macropores [Crittenden et 

al., 2005]. 

Various heteroatoms, such as oxygen, hydrogen, nitrogen, phosphorus and sulfur, 

are on the surface of ACs. These heteroatoms mainly originated from the starting 

material, and they are chemically connected to the carbon surface during the synthesis 
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process, forming carbon-heteroatom structures [Karanfil and Kilduff, 1999; Considine et. 

al., 2001]. Some ACs also contain variable amounts of inorganic matter (ash content) 

depending on the nature of the raw material used as precursor.  

Besides surface groups and inorganic ash, the heterogeneous surface of AC is also 

characterized by the carbon basal planes as an adsorption zone. The majority of the 

adsorption sites for liquid organics are on the basal planes, which forms more than 90% 

of the carbon surface [Franz et al., 2000]. The basal planes of the microcrystallites 

exposed within the micropore fissures during activation constitute the intraparticle 

surface of the AC. The edges of the graphitic planes include the sides of the 

microcrystallites. These microcrystallites are estimated to be a stack of 5 - 15 layers of 

graphitic planes with a diameter or height of about 2 - 5 nm [Wolff, 1959; Snoeyink and 

Weber, 1967].  

The pores of ACFs are relatively small and uniform. The nature of the precursor 

and the graphitic character of the ACFs provide narrow and uniform pore size 

distributions (PSDs). In order to examine both the surface and interior structure of 

phenolic resin-based ACFs, Daley et al. [1996] used scanning tunneling microscopy 

(STM). Elongated and ellipsoidal micropores and mesopores were observed at the fiber 

surface and the size of the surface mesopores increased with increasing degree of 

activation. Randomly distributed and homogeneous ellipsoidal micropores and small 

mesopores were present over the fiber cross-section [Daley et al., 1996; Pelekani and 

Snoeyink, 2000]. Once activation of ACFs is initiated, the gasification continues to the 

neighboring edge sites along the same graphene sheet creating pores that are confined 
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within two graphene sheets. As a result, the pores are approximately 7 - 10 Å in size and 

elongated within two graphene sheets. Also, the PSD and the pore size in the ACFs can 

be modified by adding a catalyst before activation [Freeman et al., 1989]. 

 

2.1.3   Properties and Application of Carbons 

Highly developed internal surface areas and porosities of ACs and ACFs allow 

them to adsorb large amounts and various types of chemicals from gases or liquids, and 

thus, making them highly preferential in many applications [Kyotani, 2000]. Applications 

include the production of high purity water in electronics manufacturing, hospitals and 

medical laboratories; industrial wastewater treatment; municipal water filtration; solvent 

recovery such as gasoline vapor recovery in gasoline loading facilities; 

chlorofluorocarbon recovery in foam blowing; separation of gas mixtures such as 

removal of hydrogen sulfide from natural gas; removal of sulfur dioxide and nitrous 

oxides from flue gases; removal of mercury vapor from air, hydrogen, methane and other 

gases; air conditioning systems; cigarette filters; military uses (gas masks and respirators, 

defence clothing etc.); automotive evaporation control systems; and in liquid-phase 

applications either for odor, color or taste removal from a solution or concentration or 

recovery of a solute from solution, and so forth. [Shmidt et al., 1997; Choma and 

Jaroniec, 2006; Przepiorski, 2006]. 

The physicochemical characteristics of PACs, GACs and ACFs make them useful 

in specific applications. For example, PACs have faster adsorption rates than GACs; 

however, PACs compact under flow, resulting in a strong flow resistance. Even though 

ACF has a high adsorption rate, its adsorption capacity of heavy metals is low. The 
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possibility of preparation of ACFs as woven cloth and non-woven mats provides new 

applications in small purification systems for city water and also as a refrigerator 

deodorizer in private houses [Inagaki and Tascon, 2006]. Both ACs and ACFs are used in 

heterogeneous catalysis because they can act as catalysts for many reactions and as 

supports for immobilization of different catalysts. They are excellent supports due to their 

resistance to acidic and basic media, high thermal stability in an oxygen free atmosphere, 

high surface area and tailorable PSD [Choma and Jaroniec, 2006].    

 

2.2 Adsorption of SOCs  

Three types of interactions control the adsorption of low-molecular-weight SOCs 

on ACs and ACFs. These are (i) SOC-carbon interaction which is controlled by the 

physicochemical properties of the carbons, the molecular structures of the SOCs, and the 

solution chemistry, (ii) SOC-water interaction which is related to the chemical 

compatibility between SOC molecules and water, and (iii) carbon-water interaction 

which depends on the polarity of the carbon. These interactions are discussed in detail in 

the following sections. 

 

2.2.1   SOC - Carbon Interactions   

The interactions between adsorbents and adsorbates are controlled by the 

physicochemical properties of the AC, the molecular structure of the SOC, and the 

solution chemistry. Physical, chemical and electrostatic interactions have been identified 

as the three types of interactions between the carbon surface and the adsorbates 
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[Summers and Roberts 1988a, 1988b; Weber et al., 1991; Radovic et al., 1997; Karanfil 

and Kilduff, 1999; Moreno-Castilla, 2004]. 

During physical adsorption, which is also called as physisorption, the electrons 

maintain their association with the original nuclei, whereas during chemical adsorption 

(i.e., chemisorption) there is a transfer and/or sharing of electrons between the adsorbate 

molecules and the carbon surface. Electrostatic interaction occurs between adsorbate ions 

and charged functional groups on the carbon surface [Weber and Van Vliet, 1980]. The 

relative strength of these interactions depends on the combination of adsorbate and 

adsorbent, as well as the background solution.  

 

2.2.1.1 Physisorption 

 There are four types of physical interactions: (1) London dispersive energy, (2) 

Debye energy, (3) Keesom energy, and (4) Coulombic (dipole-dipole) [Weber et al., 

1991]. Forces associated with interactions between the dipole moments of sorbate and 

sorbent molecules commonly underlie physical sorption processes. Dipole moments are 

caused by charge separation within a molecule and can be either permanent or induced. If 

molecules have a permanent dipole moment, they are referred to as polar molecules. 

Interactions between polar molecules or between polar molecules and nonpolar molecules 

represent one class of "physical" sorption.  

The physisorption of aromatics on the ACs mainly occurs through dispersive 

interactions between the aromatic molecules and the carbon basal planes. These 

dispersive interactions are basically in the form of van der Waals interactions [Franz et 

al., 2000]. 
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2.2.1.2 Chemisorption 

 Chemisorption occurs when there is a significant affinity between the solute and 

the carbon surface and as a result the molecular orbitals overlap in the respective phases. 

The bonds that form between solute molecules and surface chemical groups show all of 

the characteristics of true chemical bonds, and they are characterized by relatively large 

heats of sorption. The reactions may include a considerable amount of activation energies 

and be favored by high temperatures [Weber et al., 1991]. 

Chemisorption includes different kind of interactions such as electron donor-

acceptor interaction between the carbonyl oxygen on the carbon surface (donor) and the 

electron deficient aromatic ring of the solute (acceptor), and the hydrogen-bonding 

between the oxygen-containing surface functional groups (carboxylic and hydroxyl 

groups) and similar functional groups of the solute [Weber and Van Vliet, 1980]. 

 

2.2.1.3  Electrostatic Interactions 

Electrostatic interactions occur between ionized SOC and the charged functional 

groups on the carbon surface. Weak organic acids and bases dissociate in solution. The 

degree of this dissociation depends on the magnitude of the difference between the pKa of 

the SOC molecules and the pH of the solution. The surface of the carbon has a net 

positive or negative charge depending upon the pH of the solution and the pH of the point 

of zero charge (pHPZC) of the carbon. When the pH of the media is higher than the pHPZC, 

the surface charge is predominantly negative. In this case, electrostatic interactions are 

more important than the dispersive interactions. On the other hand, the surface charge 

will be predominantly positive if the pH is lower than the pHPZC. This suggests that 
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dispersion forces control the adsorption process [Radovic et al., 1997]. Overall, there will 

be either electrostatic attraction or repulsion between the carbon surface and the ionizable 

SOC depending on the pH of the media, pKa of the SOC molecules, and pHPZC of the 

carbon.  

 

2.2.2   SOC - Water Interactions 

The chemical compatibility between SOC molecules and water is the main factor 

that determines SOC - water interactions [Karanfil and Kilduff, 1999]. The hydrophobic 

characteristic of a SOC is the driving force for the molecule to escape to the interfaces 

between solvent and adsorbent surface because hydrophobic compounds are energetically 

favorable to accumulate at a soil-water interface rather than to remain in water. This 

phenomenon is called „Solvent Motivated Sorption‟ [Weber et al., 1991; Karanfil and 

Dastgheib, 2004]. The solubility of an organic compound decreases as the chain length of 

organic subunits increases, and consequently the adsorption increases [Weber, 1972]. 

This is valid only in the absence of the size exclusion effect, which limits the access of 

adsorbate molecules to the deeper region of carbon pores. 

The polarity of SOC molecules results from the difference in the 

electronegativities among the various atoms, which causes an unequal distribution of 

electron density. While nonpolar compounds are retained due to dispersive forces, the 

adsorption of polar compounds includes specific interactions via oxygen, nitrogen and 

other species on the surface [Ania et al., 2008]. The solubility of a compound decreases 

with increasing difference between its polarity and the polarity of the solvent. Therefore, 
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adsorption of a SOC by AC increases as its solubility in the solvent decreases [Dowaidar 

et al., 2007]. 

In order to eliminate the differences in hydrophobicity among the adsorbates, 

adsorption can be normalized with respect to the solubility. These normalized isotherms 

reflect the capacity for the adsorbent surface [Moreno-Castilla, 2004; Carrott et al., 

2005].   

 

2.2.3   Carbon - Water Interactions 

Carbon - water interactions depend on the polarity of the carbon surface. The 

presence of hydrophilic centers renders the carbon surface polar, and enhances the 

interaction with polar liquids such as water [Ania et al., 2008]. When water comes to the 

carbon surface, it adsorbs on the hydrophilic, polar oxygen groups located at the entrance 

of the carbon pores [Franz et al., 2000]. This enhanced interaction leads to formation of 

water clusters on the carbon surface, which reduces the accessibility and affinity of 

organic molecules to the inner pores where the majority of the carbon surface area is 

located. This is especially important for adsorption of SOCs at low concentrations, since 

water clusters clog the micropores which are the primary adsorption sites for SOC 

molecules [Karanfil and Dastgheib, 2004]. 

 

2.3 Influencing Factors in SOC - Carbon Interactions 

 Despite the fact that there have been many studies on the effects of chemical 

interactions in the adsorption process, limited studies have been performed on the role of 

physical factors, such as the effects of pore structure and molecular conformation of the 
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compounds. Therefore, besides the chemical interactions involved in the adsorption of 

SOCs, a fundamental understanding of the physical factors is critical to predict the fate 

and transport of SOCs in the environment.  

 

2.3.1   Pore Structure of Carbons  

2.3.1.1  Pore Size Distribution of Carbons 

The ACs (PACs and GACs) typically exhibit a heterogeneous pore structure 

where micropores, mesopores and macropores are present, whereas ACFs exhibit more 

uniform PSDs [Li et al., 2002]. As one of the most important properties which influence 

the adsorption process, the PSD determines the fraction of the total pore volume that can 

be accessed by an adsorbate of a given size [Pelekani and Snoeyink, 1999]. This 

influence occurs in two ways: (i) if pores are too small, size exclusion limits the 

adsorption of contaminants of a given size and shape; and (ii) adsorption strength 

increases with decreasing pore size. As pore size decreases, contact points between the 

adsorbate and the adsorbent surface increase, and adsorption potentials between opposing 

pore walls begin to overlap [Li et al., 2002; Karanfil and Dastgheib, 2004; Bandosz, 

2006]. When opposing pore walls are separated by little more than the diameter of an 

adsorbed molecule, the adsorption forces in micropores increase. Most of the adsorption 

of organics takes place within micropores, since they comprise the largest part of the 

internal surface area of carbon [Pelekani and Snoeyink, 1999]. The adsorption 

mechanism in micropores is considered to be mainly pore filling due to overlapping of 

pore wall potentials which results in stronger binding of the adsorbate. Even if there are 
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multiple contact points between the adsorbate and adsorbent, larger molecules do not 

experience this adsorption phenomenon because they are not able to access the 

micropores. In this case, adsorption selectivity or molecular sieve ability can develop in 

primary micropores. As the pore size increases, the selectivity for the primary micropores 

decreases and the selectivity may increase for most of the secondary micropores 

[Pelekani and Snoeyink, 2000]. For example, Le Cloirec et al. [1997] studied the 

selectivity of ACF by performing two adsorption experiments, one with a mixture of 

phenol and humic substances and one with phenol alone. Similar isotherm curves were 

obtained for both experiments, which showed humic substances were not being removed 

by ACF. The ACF exhibited selectivity for the phenol (low molecular weight molecules) 

compared to humic substances (macromolecules) due to its high microporosity. 

Kasaoka et al. [1989] found that when micropores were present, adsorption 

occurred only when the average micropore diameter increased to about 1.7 times the 

second widest dimension of the adsorbate‟s molecule. Li et al. [2002] observed that even 

small changes in the micropore size distribution of an adsorbent (e.g., 7 - 11 Å widths in 

ACF10 versus 9 - 13 Å widths in ACF15 and ACF20) altered the effectiveness of an 

adsorbent for a given micropollutant. Similarly, the study of Karanfil and Dastgheib 

[2004] demonstrated that the adsorption of trichloroethylene (TCE) by ACF and GAC 

increased as the pore volume in the micropore region of < 10 Å increased. While the 

optimum pore size region for TCE adsorption is pores < 10 Å, especially the 5 - 8 Å 

region, optimum adsorption pore size region for atrazine was determined to be 8 - 20 Å 

by Guo et al. [2007]. 
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2.3.1.2  Pore Geometry of Carbons   

Both the base material and activation conditions have an effect on the pore 

structure. Pore structure is important because it affects the accessibilities of the adsorbate 

molecules to the pores and subsequently their packing in the pores, such that slit-shaped 

micropores are not accessible to molecules of spherical geometry that have a diameter 

larger than the pore width [Menendez-Diaz and Martin-Gullon, 2006]. 

The measured PSDs depend on the shape of the model pores used in the analyses. 

There are three commonly used model pores: slit-shaped, square and rectangular. Slit-

shaped pores represent the simplest and the least complicated description of the internal 

structure when compared to square and rectangular model pores. However, slit-shaped 

pores are simplified representation of the void spaces within the adsorbent, because they 

do not include „„corners‟‟ that are likely to be present when two or more planes of carbon 

meet. On the other hand, in square and rectangular model pores, the corners show the 

same behavior as small pores in the analysis based on slit-shaped model pores. This leads 

to PSDs based on square and rectangular model pores to be flatter and moved to larger 

pore sizes compared to those determined using slit-shaped pores [Davies and Seaton, 

1998]. 

Pore structure shows significant differences between GACs and ACFs. Using 

STM analysis, both Stoeckli et al. [1995] and Paredes et al. [2003] demonstrated that 

GACs mainly contained two-dimensional slit pores and three-dimensional cross-linked 

spaces resulting from the deflection of carbon hexagons from the planes of graphene 
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layers. On the other hand, ellipsoidal micropores were observed in ACFs which range in 

size from several angstroms to as large as 2.5 nm in width by Daley et al. [1996].  

Li et al. [2002] investigated the effect of pore structure on the adsorption of TCE 

and methyl tertiary butyl ether (MTBE). They found that when the pores of the ACFs 

were elliptical, the flat TCE molecule was able to access pores with a smaller dimension 

along the minor axis than the MTBE molecule, which has a tetrahedron structure. In a 

recent study performed by Guo et al. [2008], it was demonstrated that SOC molecules 

could access and fill more efficiently the slit-shaped pores than ellipsoidal pores. While 

the access of SOC molecules to the slit-shaped pores was mainly restricted by one 

dimension (i.e., the thickness of the adsorbate molecules), their access to the ellipsoidal 

pores was restricted by two dimensions (i.e., both width and thickness of adsorbate 

molecules).  

 

2.3.2   Surface Chemistry of Carbons 

Surface chemistry is related to functional groups found on the carbonaceous 

adsorbent. These surface functional groups are important to the adsorption process 

because they influence the adsorption properties and reactivities of the carbons. Several 

techniques can be used to modify the surface chemistry of a carbon. Heat treatment, 

oxidation, amination, and impregnation with various inorganic compounds are some of 

the modification methods [Karanfil and Kilduff, 1999]. Beside surface reactivity, these 

methods may also change structural and chemical properties of the carbon including the 

extent of both electrostatic and dispersive interactions [Radovic et al., 1997; Karanfil and 

Kilduff, 1999]. For instance, oxidation of the carbon lowers pHPZC as well as reduces the 
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dispersive adsorption potential by decreasing the π-electron density in the graphene 

layers [Radovic et al., 1997]. 

Functional groups make the carbon surface either basic or acidic. While oxygen-

containing surface functional groups are related to acidity, nitrogen-containing functional 

groups increase the basicity of the carbon surface [Mangun et al., 2001]. With increasing 

oxygen-containing functional groups on the carbon surface, acidity and polarity of the 

surface increase [Karanfil and Kilduff, 1999]. AC can be modified by heat-treatment in 

order to remove the oxygen containing surface groups. It has been reported that the 

adsorption affinity of phenolic compounds increases with increasing basicity 

(hydrophobicity) of the carbon surface [Menendez et al., 1996; Stavropoulos et al., 2007]. 

Specifically, it has been demonstrated by several researchers that oxidized surfaces 

exhibit reduced uptakes of SOCs [Coughlin et al., 1968; Karanfil and Kilduff, 1999; Li et 

al., 2002; Garcia et al., 2004]. Water adsorption is the mechanism behind the decrease in 

the adsorption uptake with surface oxygenation. Water adsorbs through hydrogen-

bonding and causes built up of water clusters around hydrophilic oxygen groups [Franz et 

al., 2000]. 

Karanfil and Kilduff [1999] investigated the role of the GAC surface chemistry on 

the adsorption of TCE and 1,2,4-trichlorobenzene (TCB). The results indicated that TCE 

and TCB uptake by both coal based and wood-based carbon decreased with oxidation of 

the carbons due to the increasing surface acidity or polarity. After strong acidic functional 

groups were selectively removed from the surface by heat treatment following the surface 

oxidation, the adsorption capacities of TCE and TCB were increased. Performing 
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adsorption experiments by using phenanthrene, Garcia et al. [2004] observed that the 

surface chemistry of the activated carbons had an important role. The adsorption capacity 

was higher for ACs with a low concentration of surface oxygen groups than for ACs with 

a high concentration of surface oxygen groups. Similarly, Coughlin and co-workers 

[1968] found that both phenol and nitrobenzene sorption increased with reduction and 

decreased with oxidation of the AC surface. In the study of Kaneko et al. [1989], the 

adsorption capacities of untreated ACF and H2-gas-treated ACF were tested. Their 

findings showed that both the nonpolar molecule (e.g., benzene) adsorption and the polar 

molecule (e.g., nitrobenzene) adsorption were higher on the highly hydrophobic H2-gas-

treated ACF than on the untreated ACF.  

 

2.3.3   Molecular Properties of SOCs 

The physicochemical properties of an adsorbate have important effects on the 

adsorption as much as those of adsorbents because the capacity and rate of adsorption 

also depend on the nature of the adsorbed molecule [Ania et al., 2008]. While the 

molecular dimension and molecular conformation controls the accessibility to the pores, 

the solubility determines the hydrophobic interactions. It has been shown that the 

adsorption rate constant decreases with increasing molecular size of the adsorbate 

[Pignatello and Xing, 1996].  

 

2.3.3.1  Size and Configuration of SOCs 

The interaction efficiency between a hydrophobic adsorbate and a carbonaceous 

adsorbent is generally affected by two factors; (i) dispersive interactions between sorbate 
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and sorbent electron systems and (ii) the sorbate-sorbent separation distance (steric 

effects). Cornelissen et al. [2004] investigated the importance of black carbon (BC) 

sorption for planar and nonplanar molecules. They observed that among the two factors 

mentioned above, steric hindrance was the one that rendered the strong, specific BC 

sorption sites less accessible for nonplanar 2,2ʹ-dichlorobiphenyl (2,2ʹ-PCB). This 

probably indicated that nonplanar 2,2ʹ-PCB was too “thick” for fitting into the majority of 

narrow BC nanopores, whereas the thickness of the planar compounds was below the 

average BC nanopore size.  

Jonker and co-workers [2000, 2001 and 2002] conducted a series of adsorption 

experiments for planar and nonplanar PCBs. Their findings showed that coplanar PCBs 

exhibited stronger sorption on the soot and soot-like materials as compared to nonplanar 

congeners. The reason was attributed to the ability of the planar compounds to approach 

the flat sorption surface very closely, creating favorable π-cloud overlap and, thus, 

enhancing sorption in narrow pores.  

Guo et al. [2008] systematically investigated the effects of molecular 

conformation and molecular dimension on the adsorption of three different SOCs: 

biphenyl, 2-chlorobiphenyl and phenanthrene. The uptake of SOCs by the heat-treated 

ACF10 in water followed the order of biphenyl > phenanthrene ≈ 2-chlorobiphenyl. 

Among these SOCs, 2-chlorobiphenyl had the lowest uptake due to its nonplanar 

conformation. Even though the molecular configuration of phenanthrene and biphenyl 

were planar in the adsorbed state, biphenyl seemed to adjust its molecular conformation 
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and filled the pores more effectively than phenanthrene. Biphenyl had a higher 

accessibility to the pore because of its smaller width. 

 

2.3.3.2  Hydrophobicity and Polarity of SOCs 

Several studies have demonstrated that adsorption of a SOC by ACs and ACFs 

increases with decreasing solubility and/or increasing hydrophobicity in the solvent due 

to the development of driving forces for SOC molecules to escape to interfaces. In other 

words, adsorption of a hydrophilic compound is energetically less favored than 

adsorption of a hydrophobic one, for which solute/solvent interactions are weaker 

[Kaneko et al., 1989; Li et al., 2002; Karanfil and Dastgheib, 2004; Derylo-Marczewska 

et al., 2004; Villacanas et al., 2006; Dowaidar et al., 2007].  

Kaneko et al. [1989] investigated the adsorption of benzene derivatives in water. 

For both untreated ACF and H2-treated ACF, the amount of adsorbed organics increased 

with decreasing solubility in water (Table 2.1), which was benzene > nitrobenzene > 

benzoic acid > phenol. Similarly, Derylo-Marczewska et al. [2004] and Villacanas et al. 

[2006] also conducted adsorption experiments for benzene derivatives and found 

consistent results. Derylo-Marczewska et al. [2004] performed experiments with 

nitrobenzene, 4-nitrophenol, 4-chlorophenol, phenol. While nitrobenzene was adsorbed 

very strongly, 4-nitrophenol and 4-chlorophenol adsorption was weaker, and phenol 

adsorption was the weakest. Likewise, Villacanas et al. [2006] investigated the adsorption 

behavior of nitrobenzene, aniline and phenol. For the same equilibrium concentration, the 

amount adsorbed decreased from nitrobenzene >> aniline > phenol with increasing 

solubility. Li et al. [2002] evaluated TCE (relatively hydrophobic) and MTBE (relatively 
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hydrophilic) adsorption in water for assessment of adsorbate polarity effect. Regardless 

of the pore structure or surface chemistry, adsorbents always showed larger adsorptive 

affinities for TCE than for MTBE. The solubilities of above-mentioned SOCs are 

summarized in Table 2.1. 

Table 2.1 Water solubilities of the SOCs at 25°C. 

 

 

 

 

 

 

 

 

 

 
a
 CRC [1990-1991]; 

b 
Li et al. [2002]; 

c
 Villacanas et al. [2006]. 

 

In summary, it has been shown that physical factors affect the adsorption of SOCs 

by ACs and ACFs since they control the accessibility of the adsorbate molecules to the 

pores, and the subsequent packing of the adsorbate molecules in the pores. However, 

there is limited information about the quantitative relationship between physical factors 

and adsorption affinities. This study will provide this relationship as well as a further 

understanding of the effects of physical factors.   

Compounds Solubility 

(g/L) 

Benzene
a 

1.77 

TCE
b 

1.2   

Nitrobenzene
c 

2.1 

Benzoic acid
a 

3.4 

4-nitrophenol
a 

11 

4-chlorophenol
a 

27  

Aniline
c 

33.8 

MTBE
b 

50 

Phenol
c 

86.6 
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CHAPTER THREE 

RESEARCH OBJECTIVES  

 

The overall objective of this study was to conduct a systematic experimental 

investigation to examine the effects of physical factors on the adsorption of synthetic 

organic compounds (SOCs) by porous carbonaceous adsorbents. To accomplish this 

objective, three specific objectives were developed and experimental plans were designed 

and conducted for each of them. 

The first objective of the study was to examine the role of carbonaceous 

adsorbent physical characteristics (i.e., surface area, pore size distribution) on SOC 

adsorption. Benzene (BNZ), phenanthrene (PHE) and biphenyl (BP) were used as 

adsorbates. The heat-treated forms of three activated carbon fibers (ACFs) and three 

granular activated carbons (GACs) were used in order to minimize any impact that might 

be caused by the presence of surface functional groups on the diffusion of adsorbate 

molecules into deeper pore regions. The size of adsorbent pores affects the adsorption of 

organic contaminants in two ways. First, adsorption strength increases with decreasing 

pore size. Second, size exclusion limits the adsorption of contaminants of a given size 

and shape if pores are smaller than the adsorbate [Li et al., 2002]. For this objective, the 

accessible pore size regions of porous carbonaceous sorbents to the SOCs and pore size 

distributions (PSDs) were determined, and the roles of adsorbent structure on the 

adsorption of SOCs were examined.  
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The second objective was to investigate the role of SOC physical 

characteristics (structure, dimension and configuration) on adsorption by ACs. For 

this objective, BNZ, PHE, BP and 2-hydroxybiphenyl (2HB) were selected as adsorbates. 

While BNZ, PHE and BP were used to examine the effects of molecular dimension and 

molecular configuration, BP and 2HB adsorptions were compared to understand the 

hydrophobicity effect and investigate any specific interactions. Both BNZ and PHE are 

planar molecules, whereas BP has nonplanar configuration in water and planar 

configuration in adsorbed state [Guo et al., 2008]. BNZ has the smallest molecular size 

and highest solubility as compared to BP and PHE. The heat-treated ACFs and GACs 

were used as adsorbents in this phase. The properties of both adsorbents and adsorbates 

selected for this study resulted in the carbon basal plane (i.e., graphene layer) as the main 

adsorption sites, especially at low concentrations or low degrees of surface coverage. 

Other interactions that affect the adsorption, such as specific interactions with surface 

groups, electrostatic interactions, dipole-dipole interactions were minimized by the 

surface treatment. Thus, the simplification of the adsorption system made it possible to 

examine the effects of molecular configurations of adsorbates with respect to the pore 

structure or topography of graphene layers of adsorbents. The heat-treated and oxidized 

ACFs were also used as adsorbents to examine adsorption of BP and 2HB and the effect 

of SOC hydrophobicity on adsorption. While BP and 2HB are very similar in terms of 

molecular configuration and molecular dimension, their solubilities, and consequently 

hydrophobicity, are quite different.  
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Finally, the last objective was to investigate the impact of the carbonaceous 

adsorbent surface oxidation (i.e., oxidized vs. heat-treated ACs) on SOC adsorption. 

Although the main impact of oxidation is to change the surface characteristics of carbons, 

it may also impact physical characteristics. Adsorption of BP and 2HB on both heat-

treated and oxidized ACFs were performed and compared. Water adsorption isotherms 

and detailed characterization of the adsorbents were also obtained to interpret the 

experimental results.  
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CHAPTER FOUR 

MATERIALS AND METHODS 

 

4.1 Adsorbents 

Nine different carbons (Table 4.1) prepared from different precursor materials and 

with different physical characteristics were used for this study. Three heat-treated 

granular activated carbons (GACs) [a coconut shell-based: OLC (Calgon Carbon 

Corporation); two coal-based: F400 (Calgon Carbon Corporation) and HD4000 (Norit 

Inc.)), and three heat-treated and three oxidized phenol formaldehyde-based activated 

carbon fibers (ACF10, ACF15 and ACF20 (American Kynol Inc.)] were used in this 

study. The carbons were prepared by Dr. Shujuan Zhang, a post doctoral research 

associate in Dr. Tanju Karanfil‟s laboratory, using the methods described in one of the 

previous studies of Dr. Karanfil‟s research group [Dastgheib et al., 2004]. Carbons were 

treated under hydrogen flow for 2 hours at 1173 K in a quartz reactor. The purpose of 

heat treatment was to remove most of the functional groups, and to decrease the acidity of 

the carbon surface [Puri, 1970; Considine et al., 2001]. Many studies have shown that the 

presence of oxygen-containing surface functionalities has a negative impact on the 

adsorption of synthetic organic compounds (SOCs) due to the formation of water clusters 

on the surface of the carbons [Li et al., 2002; Karanfil et al., 2006]. The heat-treated 

samples were labeled as ACF10-H2, ACF15-H2, ACF20-H2, OLC-H2, F400-H2, and 

HD4000-H2, where H2 stands for the hydrogen treatment. 
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Adsorbent-water interactions were investigated by comparing three heat-treated 

ACFs with three oxidized ACFs. ACFs were oxidized by 4 M nitric acid for 1 h at 363 K 

in order to add surface functional groups. The increase in functional groups by the 

oxidation enhances the hydrophilic character of the carbon adsorbents, which is important 

for the purpose of this study [Corapcioglu and Huang, 1987; Considine et al., 2001; 

Dastgheib and Rockstraw, 2001]. The oxidized ACFs were labeled as ACF10-NO, 

ACF15-NO, and ACF20-NO.   

 

Table 4.1 Summary of the adsorbents used in this study. 

Adsorbent Full name Precursor Company 

ACF10-H2 

heat-treated         

activated carbon fiber  

ACF10*          

phenol 

formaldehyde-

based 

American Kynol 

Inc. 

ACF15-H2 

heat-treated         

activated carbon fiber  

ACF15 

phenol 

formaldehyde-

based 

American Kynol 

Inc. 

ACF20-H2 

heat-treated         

activated carbon fiber        

ACF20 

phenol 

formaldehyde-

based 

American Kynol 

Inc. 

ACF10-NO 

oxidized              

activated carbon fiber  

ACF10          

phenol 

formaldehyde-

based 

American Kynol 

Inc. 

ACF15-NO 

oxidized             

 activated carbon fiber  

ACF15 

phenol 

formaldehyde-

based 

American Kynol 

Inc. 

ACF20-NO 

oxidized              

activated carbon fiber  

ACF20 

phenol 

formaldehyde-

based 

American Kynol 

Inc. 

OLC-H2 

heat-treated  

granular activated carbon        

OLC 

coconut shell-based 
Calgon Carbon 

Corporation 

F400-H2 

heat-treated   

granular activated carbon        

Filtrasorb 400 

coal-based 
Calgon Carbon 

Corporation 

HD4000-H2 

heat-treated   

granular activated carbon       

Hydrodarco 4000 

coal-based Norit Inc. 

*
 Brand names given by the companies. 
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4.2 Adsorbates 

 The SOCs selected for this study have different molecular configurations (planar 

and nonplanar) and electrochemical properties including both single/polycyclic and 

substituted/unsubstituted aromatic hydrocarbons. The four compounds are benzene 

(BNZ, planar, 99.8+%), phenanthrene (PHE, planar with three aromatic rings, 97+%), 

biphenyl (BP, nonplanar in water but planar in adsorbed state, 99.5+%), and 2-

hydroxybiphenyl (2HB, nonplanar in both water and adsorbed state, with a strong 

hydrogen donating group at an ortho position, 99+%). Some of the properties of these 

SOCs are summarized in Table 4.2 and molecular structures are illustrated in Figure 4.1. 

Adsorption of BNZ, PHE and BP were compared for investigation of the pore structure 

and pore size distribution (PSD) effects because of their different molecular dimensions 

and molecular structures. In order to examine the hydrophobicity effect, adsorption of BP 

and 2HB were compared; because, they are very similar in terms of molecular 

configuration and molecular dimension, whereas their solubilities are quite different.  
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Table 4.2 Physicochemical properties of SOCs. 

*Nonplanar in water, planar in adsorbed state; 
a
 Simulated with ACDLABS11.0 (ChemSketch and ACD/3D Viewer); 

b
 Molecular weight; 

c
 Molecular 

volume; 
d  

Water solubility at 25
 o
C obtained from the Material Safety Data Sheet of each compound;

 e
 Simulated with ACDLABS11.0 (ChemSketch and 

ACD/3D Viewer). 

SOC 

 

Molecular 

Configuration 

Molecular size
a
 MW

b
 

 

Density 

 

MV
c
 Sw

d
 log Kow

e
 

  (Å × Å × Å) (g/mol) (g/cm
3
) (cm

3
/mol) (mg/L)  

BNZ Planar 7.4 × 6.7 × 3.4 78.11 0.879 88.86 1770 2.22 ± 0.15 

PHE Planar 11.7 × 8.0 × 3.4 178.23 1.063 167.67 1.1 4.68 ± 0.17 

BP* Nonplanar 11.8 × 6.8 × 4.7 154.21 0.992 155.45 6.1 3.98 ± 0.23 

2HB Nonplanar 11.8 × 7.8 × 5.4 170.21 1.213 140.32 700 2.94 ± 0.25 

3
3
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BNZ 

 

 

 

 

 

 
PHE 

 

BP 

 

2HB 

 

Figure 4.1 Molecular structures of SOCs (Simulated with ACDLABS 11.0).
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4.3 Characterization of Adsorbents 

The physicochemical properties of adsorbents were characterized by using 

various techniques: (i) Nitrogen adsorption for surface area and PSD (ASAP 2010 

Physisorption/Chemisorption Analyzer and Micromeritics‟ Density Functional Theory 

(DFT) model); (ii) elemental analysis for the determination of carbon, hydrogen, 

nitrogen, sulfur, and oxygen (CHNSO elemental analyzer); (iii) water vapor adsorption 

(ASAP 2010 physisorption/chemisorptions analyzer); and (iv) the pH of the point of zero 

charge (pHPZC). Carbon characterization was performed by Dr. Shujuan Zhang using the 

techniques described in Sections 4.3.1, 4.3.2, and 4.3.3. 

 

4.3.1   Surface Area and Pore Size Distribution  

Nitrogen gas adsorption isotherms, volumetrically obtained from a relative 

pressure range of 10
-6

 to 10
0
 at 77 K, were used to determine the surface area and PSD of 

the carbons. Surface areas of these carbons were calculated by the Brunauer-Emmett-

Teller (BET) equation using the adsorption data within 0.01 to 0.1 relative pressure 

ranges. Micromeritics DFT software was used to determine the PSD. A graphite model 

with slit shape pore geometry was assumed in the PSD calculation. While the total pore 

volume was determined by using the adsorbed volume of the nitrogen near the saturation 

point (P/Po = 0.98), the Dubinin-Redushkevich equation in the relative pressure range 10
-

5
 to 10

-1
 was used to determine the micropore volume. The difference between total and 

the micropore volumes was designated as the total mesopore and macropore volume. 

Triplicate results of randomly selected samples were used to determine the 



36 

 

reproducibility of the data and the relative standard deviation of the BET surface area, 

micropore volume and the total pore volume was lower than 10%. 

 

4.3.1.1  Brunauer-Emmett-Teller Model 

Brunauer et al. [1938] generalized a form of the Langmuir isotherm by 

incorporating the concept of multilayer adsorption to formulate the BET model. This 

model is used to determine the surface area of a sample, and it is based on the assumption 

that the forces responsible for the binding energy in multimolecular layer adsorption are 

the same as those involved in the condensation of gases. The BET equation is obtained by 

equating the rate of condensation of the molecules onto an already adsorbed layer to the 

rate of evaporation from that layer and summing for an infinite number of layers. 

Rearranging that equation in a linear form results in the following BET equation [Webb 

and Orr, 1997]:  

 

        
  

 

   
 
   

   
  
 

  
                                                   

Where, 

P0: Saturation pressure of the adsorption gas. 

Va: Quantity of gas adsorbed at pressure P. 

Vm: Quantity of gas adsorbed when the entire surface is covered with a 

monomolecular layer. 

C: Constant. 

The volume of the monolayer (Vm) can be obtained by plotting P/(Va(P0-P)) versus 

P/P0, where 1/VmC is the intercept and (C-1)/VmC is the slope of the linear plot. It is 
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possible to determine the surface area of the sample by knowing the volume of the 

monolayer adsorption and the area occupied by a single adsorbate molecule, such as 16.2 

Å
2
 for nitrogen, 21.0 Å

2
 for krypton, 14.2 Å

2
 for argon and 17.0 Å

2
 for CO2 [Webb and 

Orr, 1997]. 

 

4.3.2 pHPZC 

The pHPZC was determined according to the method described in Karanfil and 

Dastgheib [2004]. Distilled and deionized water (DDW) was boiled to remove dissolved 

CO2. The boiled DDW was used to prepare 0.1 M NaCl solutions with the pH in the 

range of 2 to 11 adjusted with either 0.5 N HCl or 0.5 N NaOH solutions. 75 mg of the 

carbon sample and 15 mL of the 0.1 M NaCl solutions with different pH values were 

added into 20 mL vials. On a table shaker at room temperature, the vials were shaken at 

200 rpm. After 48 hours contact time, they were left on a bench to allow the carbons to 

settle. The final pH of the solution was measured using a pH meter (Metrohm/702 SM 

Titrino). The pHPZC was determined as the pH of the NaCl solution which did not change 

after contacting the carbon samples. Duplicate runs were also performed for randomly 

selected samples and the reproducibility of the measurements was within ± 0.2 units. 

 

4.3.3 Water Vapor Adsorption 

Water vapor isotherms of the adsorbents used in this study were volumetrically 

obtained at 273 K by using the Micromeritics ASAP 2010 Physisorption/Chemisorption 

Analyzer. The experiments provided direct information about the surface hydrophilicity 

of the carbons. At the low relative pressure range (P/P0 = 0.0 to 0.4) the water vapor 
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uptake is related to the extent of water cluster formation around the hydrophilic sites 

[Mowla et al., 2003; Karanfil and Dastgheib, 2004; Karanfil et al., 2006]. In order to 

remove the moisture and other adsorbed vapors/gases, approximately 50-100 mg of 

carbon sample was degassed for a period of 1 hour at 363 K and overnight at 473 K. The 

degassed samples were then transferred to the analysis port and adsorption data points 

were collected. Data were collected in the relative pressure range of 10
-4

 - 10
0
 (P/P0).  

 

4.4 Isotherm Experiments 

Constant dose bottle point technique was used for the single solute isotherm 

experiments. Experiments were performed in 255 mL amber glass bottles with Teflon-

lined screw caps. One mg of ACFs and GACs were equilibrated in solutions with 

different concentrations of BNZ, BP and 2HB, whereas 0.5 mg of carbons was 

equilibrated in solutions of PHE due to its low solubility. Concentrated stock solutions of 

each adsorbate were prepared in methanol. The bottles were first filled with DDW to 

nearly full, and then were spiked with predetermined volumes of stock adsorbate 

solutions. The bottles were then placed on a tumbler for one week at room temperature 

(21 ± 3°C). After the equilibration period, remaining liquid phase concentrations were 

analyzed using both UV-Vis spectrophotometer and a high performance liquid 

chromatography (HPLC). A 4.6 x 150 mm and 5-micron size HPLC column (Agilent / 

Zorbax Extend-C18 type) was used at a flow rate of 1 ml/min for analyses. The 

maximum absorption wavelength and isocratic elution proportion of each SOC are 

presented in Table 4.3. The bottles without any adsorbent were used as blanks to monitor 

the loss of adsorbates during the experiments, which was found to be negligible. All 
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experiments were performed at room temperature (21 ± 3°C). The experimental matrix of 

SOC adsorption on the ACFs and GACs is shown in Table 4.4. 

Table 4.3 Analytical conditions for UV-Vis and HPLC for determination of SOCs. 

 UV HPLC 

SOCs (nm) 

Eluent 

DDW/MeOH
a
 

(%) 

FL-ex
b
  

(nm) 

FL-em
c
  

(nm) 

BNZ 254 20/80 254 280 

PHE 250 20/80 293 366 

BP 248 20/80 260 315 

2HB 245 40/60 290 340 

a
 Volumetric proportions of DDW and methanol (v:v); 

b
 Fluorescence excitation wavelength;  

c
 Fluorescence emission wavelength. 

 

Table 4.4 Experimental matrix.  

Adsorbates        
BNZ PHE BP 2HB 

Adsorbents 

ACF10-H2 3
a
 [10]

b 
3 [8] 3 [10] 3 [19] 

ACF15-H2 3 [10] 3 [8] 3 [10] 3 [10] 

ACF20-H2 3 [10] 3 [8] 3 [10] 3 [20] 

ACF10-NO NC NC 3 [20] 3 [30] 

ACF15-NO NC NC 3 [10] 3 [30] 

ACF20-NO NC NC 3 [20] 3 [20] 

OLC-H2 3 [10] 3 [15] 3 [10] NC 

F400-H2 3 [10] 3 [8] 3 [10] NC 

HD4000-H2 3 [10] 3 [8] 3 [10] NC 

a
 Number of isotherms conducted; 

b
 Number of data points used for regression analyses; NC: Not 

conducted. 
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4.5 Data Analysis 

 Four isotherm models, Freundlich, Langmuir, Langmuir-Freundlich, and Polanyi-

Manes models, were applied to the experimental data.  

The Freundlich model is an empirical equation, and perhaps the most widely used 

nonlinear sorption model because it accurately describes much adsorption data for 

heterogeneous adsorbent surfaces. This model is expressed as: 

         
                                                                      

Where, qe and Ce represent the solid-phase equilibrium concentration (mg/g) and the 

aqueous phase equilibrium concentration (g/L or mg/L), respectively. While KF is the 

Freundlich equilibrium affinity parameter ((mg/g)/Ce
n
), n represents the exponential 

parameter related to the magnitude of the driving force for the adsorption and the 

distribution of adsorption site energies, and ranges between 0 and 1 [Weber, 1972]. A 

larger KF value represents a larger adsorption affinity, whereas a larger n value indicates a 

more homogeneous surface of the adsorbent [Derylo-Marczewska et al. 1984; Carter et 

al. 1995; Pikaar et. al., 2006]. 

The Langmuir model has a theoretical basis and is perhaps conceptually the most 

straightforward non-linear isotherm model. The Langmuir equation often does not 

describe adsorption data by activated carbons as accurately as the Freundlich equation, 

probably because a homogeneous surface is assumed in the model. The Langmuir 

equation is 
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Where, qm represents the maximum adsorption capacity and corresponds to the surface 

concentration at monolayer coverage, and b is related to the energy of adsorption and 

increases as the strength of the bond increases [Snoeyink and Summers, 1999]. 

The Langmuir-Freundlich model is a composite of the Langmuir and the 

Freundlich isotherms, and it is capable of modeling both heterogeneous and 

homogeneous surfaces. The equation has the following form: 

     
      

 

       
                                                                    

Where, KS [(L/µg)
n
] is adsorption affinity coefficient, and n represents a nonlinear index 

[Sips, 1948]. 

The Polanyi adsorption potential theory was developed by several researchers 

including Manes and co-workers [Manes and Hofer, 1969; Chiou and Manes, 1973; 

Chiou and Manes, 1974]. The overall theory was later referred as the Polanyi-Manes 

model which is widely employed for adsorption surfaces with heterogeneous energy 

distribution: 

          
   

 
  
 
 
 
                                                          

Where, a and b are fitting parameters and Vs is molar volume of solute. ϵ is the Polanyi 

adsorption potential and can be expressed as ϵ = RT ln(Cs /Ce) [kJ/mol], where Cs is the 

water solubility of the adsorbate, R is the ideal gas constant and T is the absolute 

temperature. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

 

The results obtained in this study will be presented in this chapter. First, 

characterization of the carbons will be provided in order to describe the differences and 

similarities among them, which will be followed by the discussion of the modeling of 

experimental data with different isotherm equations. Subsequently, the results of the 

adsorption experiments will be presented for each objective of the study.   

 

5.1 Characteristics of Adsorbents 

 

5.1.1   Pore Structure of Carbons  

Pore structures and pore size distributions (PSDs) of the activated carbon fibers 

(ACFs) and granular activated carbons (GACs) were obtained from nitrogen adsorption 

isotherms, which are illustrated in Figures 5.1 and 5.2. For ACFs, nitrogen adsorption 

increased with increasing level of activation in the order of ACF10 < ACF15 < ACF20. 

Both heat-treated and oxidized ACF10 had the same nitrogen adsorption isotherms. Also, 

heat-treated and oxidized ACF15 exhibited very similar nitrogen adsorption behavior. 

However, nitrogen adsorption of the heat-treated ACF20 was higher than that of the 

oxidized one, which was attributed to the fragile structure of ACF20. It appears that some 

pores of ACF20 collapsed during oxidation and thus decreased the nitrogen adsorption. 

Nitrogen adsorptions of OLC-H2 and F400-H2 showed similar behaviors to the ACF10s 

(Figure 5.2).  
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Figure 5.1 Nitrogen adsorption/desorption isotherms of the heat-treated and oxidized ACFs. 
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Figure 5.2 Nitrogen adsorption/desorption isotherms of the heat-treated ACFs and GACs.
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A sharp increase of adsorption was observed for all nine carbons at relative 

pressures lower than 0.05, indicating the existence of micropores. It is noteworthy that 

among all the nitrogen isotherms, only the two coal-based GACs, F400-H2 and HD4000-

H2, showed desorption hysteresis, which were related to mesopore structure of these 

carbons [Foster, 1993; Derylo-Marczewska et al., 2004]. The slight hysteresis of F400-H2 

suggested a limited degree of mesoporosity. On the other hand, HD4000-H2 had a 

marked hysteresis which demonstrated that capillary condensation was one of the main 

adsorption mechanisms, and thus, HD4000-H2 was more mesoporous than the other 

carbons and had some degree of macropores.  

The surface areas and corresponding pore volumes for specific pore size ranges of 

the adsorbents are summarized in Tables 5.1 and 5.2, respectively. As shown in Table 

5.1, all carbons were highly microporous (< 1 nm) with large BET specific surface areas 

(SBET), with the exception of HD4000-H2. Among the heat-treated and oxidized ACFs, 

the surface areas of heat-treated ACFs were slightly higher than those of oxidized ACFs. 

Heat treatment resulted in higher microporous surface areas (Smic) by 2 to 13% compared 

to the oxidation of ACF samples. Furthermore, regardless of the surface modification 

characteristics, the BET surface area increased and PSD broadened in the order of ACF10 

< ACF15 < ACF20, which is consistent with the increasing level of activation. Also, Smic 

of both heat-treated and oxidized ACFs were higher than those of GACs. The same trend 

was observed for the surface areas of the pores less than 1 nm, which comprised the 

majority of the pore surface area of the carbons.  
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Table 5.1 Surface areas and surface area distributions of the adsorbents.
*
 

Adsorbent Surface area (m
2
 g

-1
) DFT Pore Surface Area (m

2
 g

-1
) 

 SBET
a
 Smic

b
 Sext

c
 SBJH

d
 Total <1 nm >1 nm 1-2 nm 2-3 nm >3 nm 

ACF10-H2 1066 971 95 55 883 789 94 94 0 0 

ACF15-H2 1512 1353 159 90 1253 1072 181 181 0 0 

ACF20-H2 1978 1483 495 249 1612 1056 556 505 40 9 

ACF10-NO 1058 946 112 64 879 757 122 118 3 1 

ACF15-NO 1526 1281 245 134 1229 926 303 288 12 3 

ACF20-NO 1766 1289 477 226 1472 1004 468 420 41 7 

OLC-H2 1080 883 197 117 879 680 199 180 14 5 

F400-H2 1075 662 415 262 899 603 296 231 40 25 

HD4000-H2 838 355 483 514 723 464 259 105 35 79 

*
 Zhang [2010];

 a ,b
 The specific surface area and microporous surface area obtained from BET; 

c
 The external surface area obtained from the difference 

between SBET
 
and  Smic ; 

d
 The specific surface area obtained from BJH model.   

 

 

 

 

 

 

4
6
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Table 5.2 Pore volumes and pore volume distributions of the adsorbents.
 *

 

Adsorbent Pore volume (cm
3
 g

-1
) DFT Pore Volume Distribution (cm

3
 g

-1
) 

Pore diameter 

(nm) 

 Vt
a
 Vmic

b
 Vm

c
 VBJH

d
 Total <1 nm >1 nm 1-2 nm 2-3 nm >3 nm DBJH

e
 DBET

f
 

ACF10-H2 0.445 0.381 0.064 0.038 0.347 0.278 0.069 0.061 0.000 0.009 1.67 0.56 

ACF15-H2 0.624 0.533 0.091 0.062 0.506 0.379 0.127 0.127 0.000 0.000 1.65 0.61 

ACF20-H2 0.900 0.608 0.292 0.188 0.741 0.303 0.438 0.361 0.046 0.031 1.82 0.74 

ACF10-NO 0.437 0.372 0.065 0.045 0.348 0.265 0.083 0.078 0.004 0.001 1.65 0.58 

ACF15-NO 0.655 0.511 0.144 0.096 0.533 0.309 0.224 0.200 0.014 0.009 1.72 0.65 

ACF20-NO 0.815 0.531 0.284 0.156 0.685 0.299 0.386 0.304 0.050 0.032 1.85 0.74 

OLC-H2 0.484 0.353 0.131 0.094 0.404 0.235 0.169 0.126 0.015 0.028 3.22 1.79 

F400-H2 0.596 0.277 0.319 0.243 0.511 0.180 0.331 0.165 0.049 0.114 3.72 2.22 

HD4000-H2 0.875 0.155 0.720 0.737 0.663 0.144 0.519 0.073 0.045 0.401 5.74 4.18 

*
 Zhang [2010]; 

 a ,b
 The total pore volume and micropore volume obtained from t-plot model; 

c
 The total of meso- and macropore volumes ; 

d
 The total 

pore volume obtained from BJH model; 
e , f

 Average pore diameters obtained from BJH and BET methods, respectively. 

4
7
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Table 5.2 shows the pore volumes and pore volume distributions of the carbons. 

Considering their dimensions (Table 4.2), pore volumes less than 2 nm might be the 

adsorption sites for the selected SOC molecules and comprised a large portion of the 

carbons, except that of HD4000-H2. While F400-H2 had some amount of pores larger 

than 3 nm, the volumes of pores larger than 3 nm were negligible for all ACFs and OLC-

H2. On the other hand, HD4000-H2 had a high amount of pores larger than 3 nm, and 

thus, was the least microporous carbon compared to the other carbons. Barrett-Joyner-

Halenda (BJH) and BET methods were employed to obtain average pore diameters of the 

carbons. The BJH method was used for pores with diameter in the range of 2 - 300 nm 

(DBJH). Both BET and BJH methods exhibited an identical order, which was larger for the 

GACs and smaller for the ACFs, and pore diameter increased with increasing level of 

activation. Furthermore, the results showed that modification of the ACFs by either heat-

treatment or oxidation did not change the pore diameters. Overall, pore diameters of the 

carbons decreased in the order of HD4000-H2 > F400-H2 > OLC-H2 > ACF20-H2 = 

ACF20-NO > ACF15-H2 ≈ ACF15-NO > ACF10-H2 ≈ ACF10-NO.    

 

5.1.2    Surface Chemistry of Carbons 

The surface chemistry characterization results of the adsorbents are provided in 

Table 5.3. In comparison to the oxidized carbons, the heat-treated carbons had 

significantly higher pHPZC values. However, when comparing within each group of 

carbons, i.e., the heat-treated ACFs versus heat-treated GACs, pHPZC values were 

relatively similar. The sum of the carbon, hydrogen, nitrogen, and oxygen contents 

represented approximately 87-98 % of the total carbon mass for all the carbons, which 



49 

 

indicated that the ash contents of the carbons were small. Lower ash content is preferable, 

since ash constituents can create hydrophilic sites on the carbon surface [Arafat et al., 

1999].  

Table 5.3 Chemical characteristics of the adsorbent surfaces. 

Adsorbent pHPZC 
Elemental Analysis (%) 

C H N O 

ACF10-H2 9.94 95.46 0.87 0.00 0.15 

ACF15-H2 10.08 96.11 0.64 0.00 0.10 

ACF20-H2 10.13 96.67 0.64 0.07 0.08 

ACF10-NO 3.15 75.79 1.79 0.68 16.62 

ACF15-NO 3.08 70.11 1.60 0.77 15.82 

ACF20-NO 3.15 75.09 0.72 0.88 10.61 

OLC-H2 10.26 96.10 0.62 0.26 0.08 

F400-H2 10.23 90.56 0.49 0.57 0.05 

HD4000-H2 9.93 90.02 0.78 0.74 0.27 

 

Oxygen and nitrogen contents of the studied carbons indicated that while the heat-

treated GACs and ACFs had similar oxygen contents, the heat-treated GACs had 

relatively higher nitrogen contents than those of ACFs. Compared to the oxidized 

carbons, the heat-treated carbons had significantly lower oxygen contents. As a 

consequence, low oxygen and nitrogen contents exhibited basic hydrophobic surfaces 

with high pHPZC values, whereas high oxygen and nitrogen contents resulted in carbons 

with acidic hydrophilic character and low pHPZC. 
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Water vapor adsorption experiments were conducted to obtain information about 

the surface hydrophobicity of the carbons, and the results are shown in Figures 5.3 and 

5.4. The water vapor uptakes at the low relative pressure range (P/P0 is below 0.4) 

suggest the presence of the surface functional groups, and thus, are related to the water 

cluster formation on the hydrophilic sites. Heat treatment causes the degradation of 

surface functionalities, and makes the carbons less hydrophilic [Kaneko et al., 1999; 

Karanfil and Dastgheib, 2004]. As displayed in Figure 5.3, at the low relative pressure 

range, the oxidized ACFs demonstrated higher affinities to water than the heat-treated 

ones. This confirms that the oxidized carbons were more hydrophilic, while the heat-

treated carbons were more hydrophobic. The comparison of the heat-treated ACFs and 

GACs is given in Figure 5.4. Both water vapor adsorption experiments and elemental 

analysis demonstrated that affinity of each heat-treated carbon to water was similar, 

indicating the six carbons had similar amounts of oxygen contents and low surface 

polarities.  
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Figure 5.3 Water vapor adsorption isotherms of the heat-treated and oxidized ACFs. 

 

     

Figure 5.4 Water vapor adsorption isotherms of the heat-treated ACFs and GACs. 
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5.2 Modeling of the Isotherm Data 

In order to investigate the objectives of this study, single-solute isotherm 

experiments were conducted for the selected synthetic organic compounds (SOCs) with 

heat-treated and oxidized ACFs, and heat-treated GACs. To quantitatively describe the 

isotherm results, four nonlinear isotherm models, Freundlich (FM), Langmuir (LM), 

Langmuir-Freundlich (LFM), and Polanyi-Manes model (PMM), and a linear isotherm 

model were applied to the experimental data by using Microsoft Office Excel 2007 

[Carter, 1993; Zhang et al., 2010]. Residual root mean square error (RMSE) and 

coefficient of determination (r
2
) were used to evaluate the goodness of the fits.  

       
 

 
                 
 

   

                                                    

Where, N is the number of experimental data points, m is the degree of freedom 

(m = N – 2 for the two-parameter LM and FM; m = N – 3 for the three-parameter LFM 

and PMM), qe,exp is the experimental equilibrium concentration and qe,fit is the fitted 

equilibrium concentration. 

The results of the nonlinear modeling for benzene (BNZ), biphenyl (BP), 

phenanthrene (PHE) and 2-hydroxybiphenyl (2HB) are summarized in the Appendix A. It 

was observed that for most of the isotherms, the three-parameter LFM and PMM had 

lower RMSE and higher r
2
 values than the LM and FM. However, the FM with two-

parameters had the lowest RMSE values for BNZ on three GACs and ACF20-H2, and 

had the highest r
2
 value on OLC-H2. For BP, the LM with two-parameters showed the 
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lowest RMSE values on ACF10-H2 and ACF15-NO, and the highest r
2
 values on the 

ACF10-NO and HD4000-H2. While the LM had the lowest RMSE values for PHE on 

three heat-treated ACFs, the FM had the lowest RMSE for PHE on the HD4000-H2. 

Finally, the FM had the highest r
2
 for 2HB on ACF10-H2. These exceptions demonstrated 

the overparametrization in some cases by the three-parameter LFM and PMM fitting. As 

a combination of the FM and the LM, the LFM converts to the LM at n = 1 and to the FM 

at low solute concentrations (KSCe
n
 << 1). The model estimation with the LM deviated 

from experimental data at a low concentration range. This suggested that the LM was not 

applicable to the collected experimental data, which also explained the failure of the LFM 

in some of the cases. PMM assumes that adsorption is controlled by nonspecific 

dispersive interactions, which means this model may be unable to predict adsorption that 

involves specific interactions, such as the formation of hydrogen-bond and electron 

donor-acceptor complexes between adsorbates and oxygen-containing functional groups 

of adsorbents. 

Overall, based on the results obtained from the data simulations, the linear form 

of the FM was selected to model the experimental data among the five isotherm models 

and its model parameters had meaningful results; therefore, it was used to analyze the 

data in this study. The linear form of Freundlich model used for simulating data is 

                                                                                   

Since KF is a unit-capacity parameter, it is sensitive to the concentration units 

which are employed to calculate it (e.g., mg/L or mmol/L). As a result, KF values may 

have no meaningful relationships to the studied range of the experimental data [Walters 
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and Luthy, 1984]. In order to overcome this problem, Carmo et al. (2000) proposed a 

modified Freundlich model (Equation 5.7) and suggested a unit-equivalent Freundlich 

coefficient by normalizing Ce to the water solubility (Cs) of the adsorbate.  

                
                                                                

Where, KFS is a parameter independent of the concentration units and represents the 

effective overall adsorption capacity of the adsorbent at saturated concentration. For 

adsorbates with high solubilities, an adjustment was made for calculating the KFS. To 

avoid the unreasonably higher values, 1% of the solubilities (Cs(1%)) were taken into 

account as reference points instead of using water solubility normalization data directly 

[Carrott et al., 2005]. The 95% confidence intervals and standard errors for the isotherms 

are provided in the Appendix B. 

 

5.3 The Role of Adsorbent Physical Characteristics on SOC Adsorption 

Adsorption of BNZ, BP and PHE on the heat-treated ACFs and GACs was 

compared to examine the effects of carbon physical characteristics (i.e., surface area, 

surface area distribution, pore size, pore distribution) on SOC adsorption by excluding 

the chemical interactions. The surface chemistries of the carbons were relatively similar. 

All six carbons had basic surfaces with pHPZC ≈ 10 and low amounts of oxygen (Table 

5.3) and low surface polarities (Figure 5.4). Mass-basis, solubility-normalized and 

surface area-normalized adsorption capacities of the adsorbates, along with r
2
 values, 

were examined to explain the adsorption phenomena, and capacities were represented by 

KF, KFS, and Q, respectively (Table 5.4). While KF values provide information for the 
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isotherm trends at low concentrations, KFS values (i.e., solubility-normalized isotherms) 

provide information about the overall available adsorption sites on the carbon surface at 

or near saturation capacities. The Q was obtained by dividing the KFS values by the SBET 

values of the carbons.  

 

Table 5.4 Freundlich isotherm parameters of BNZ, BP and PHE. 

a
 Mass-basis adsorption affinity expressed in different units; 

b
 Solubility normalized adsorption capacity 

(KF values at saturated concentrations of SOCs). Due to its high solubility, BNZ was simulated with 1% of 

its water solubility; 
c
 Surface area normalized adsorption capacity; 

d
 The volumes occupied by adsorbed 

SOCs; 
e
 The pore volume occupancy. 

 

SOC Adsorbent 
KF

a 

[(mg/g)/Ce
n
] 

KFS
b 

(mg/g) 

Q
 c 

(mg/m
2
) 

VO
d 

(mL/g) 
VO/Vt

e 

 

n
 

r
2 

 
 

(g/L) (mg/L)    
  

BNZ ACF10-H2 1.80  65  290  0.272 0.330 0.742 0.52  0.976 

 ACF15-H2 2.91  80  318  0.210 0.362 0.580 0.48  0.972 

 ACF20-H2 3.11  93  382  0.193 0.435 0.483 0.49  0.971 

 OLC-H2 1.39  54  245  0.227 0.279 0.576 0.53  0.979 

 F400-H2 0.95  43  212  0.197 0.241 0.404 0.55  0.972 

 HD4000-H2 0.32  25  156  0.186 0.177 0.203 0.63  0.984 

BP ACF10-H2 13.99 262  565  0.530 0.569 1.280 0.42 0.954 

 ACF15-H2 17.02 421  976  0.646 0.983 1.576 0.46 0.949 

 ACF20-H2 19.45 711  1825  0.923 1.840 2.045 0.52 0.946 

 OLC-H2 9.98 344  870  0.806 0.877 1.812 0.51 0.905 

 F400-H2 12.87 290  656  0.610 0.662 1.110 0.45 0.894 

 HD4000-H2 13.04 263  578  0.690 0.583 0.666 0.44 0.897 

PHE ACF10-H2 2.84  197  209  0.196 0.196 0.441 0.61 0.960 

 ACF15-H2 7.41  404  427  0.282 0.402 0.644 0.58 0.957 

 ACF20-H2 13.65  574  604  0.305 0.568 0.631 0.54 0.886 

 OLC-H2 0.67  384  419  0.388 0.367 0.759 0.92 0.989 

 F400-H2 2.12  239  255  0.237 0.240 0.403 0.68 0.982 

 HD4000-H2 1.86  303  325  0.388 0.306 0.349 0.74 0.898 
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For BNZ, the KF values indicated that ACFs had higher adsorption affinities than 

GACs, which was consistent with the higher specific surface areas and microporosity of 

ACFs. While more than 75% of the pores in ACFs are microporous (i.e., Smic/SBET in 

Table 5.1), the corresponding values are 40, 60, and 80% for HD4000-H2, F400-H2, and 

OLC-H2, respectively.  

Since the dimensions of the BNZ molecule is smaller than 1 nm (7.4 Å × 6.7 Å × 

3.4 Å), both PSDs of the adsorbents and the pore volume in pores less than 1 nm are 

important for the adsorption of BNZ. Therefore, pore filling in pores less than 1 nm is 

expected to be the main mechanism for the adsorption of BNZ. As indicated by the KF 

values in Table 5.4 and adsorption isotherms in Figure 5.5, BNZ uptake was in the order 

of ACF20-H2 ≥ ACF15-H2 > ACF10-H2 > OLC-H2 > F400-H2 > HD4000-H2. This order 

was consistent with the order of Smic, S (<1nm) and micropore volume (Vmic) of the 

carbons (Tables 5.1 and 5.2). Therefore, at low concentration range, BNZ adsorption 

increased with the increase in micropore volume or pore volume in pores < 1nm. The 

same conclusions were also obtained for KFS values. Because the aqueous solubility of 

BNZ is very high (Table 4.2), 1% of BNZ solubility was calculated and used in the 

solubility normalization for each carbon. The results indicated that there was no 

restriction for BNZ molecules to access into the pores; and thus, adsorption increased 

with increasing specific surface areas, especially with Smic.  
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Figure 5.5 BNZ adsorption isotherms for heat-treated ACFs and GACs. 

 

The volumes occupied by adsorbed SOCs (VO) were calculated by dividing the 

KFS values with the densities of SOCs. In order to examine the pore volume occupancy, 

ratios of VO to total pore volume (Vt) were calculated for each carbon. As indicated by the 

VO/Vt values in Table 5.4, the order of pore volume occupancy of BNZ was consistent 

with the order of micropore fractions (i.e., Smic/SBET in Table 5.1) of the carbons, which 

was ACF10-H2 (91%) > ACF15-H2 (89%) > OLC-H2 (82%) > ACF20-H2 (75%) > F400-

H2 (62%) > HD4000-H2 (42%). The carbons with higher micropore volumes had higher 

pore volume occupancies.  

To further analyze the BNZ adsorption, different relationships between structural 

parameters of the adsorbents and their adsorption capacities were examined. The KFS of 

each carbon was plotted to different structural parameters which were listed in Tables 5.1 
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and 5.2. These structural parameters were SBET, Smic, S (<1nm), S (>1nm), S (1-2 nm), 

Vtotal, Vmic, V (<1nm), V (>1nm), and V (1-2 nm). The observed strong correlations 

between KFS and these parameters are shown in Figures 5.6 to 5.10. The poor 

relationships are not shown in here; however, they are summarized in the Appendix C.  

BNZ adsorption was strongly correlated with SBET, Smic Vmic of the carbons, and 

especially surface areas and pore volumes that are in pores smaller than 1 nm. This is not 

surprising given that BNZ is a small molecule, and it can easily fill the micropores of 

adsorbents. These strong correlations independent of pore structures (slit-shaped GAC 

pores vs. elliptical ACF pores) also indicated that the type of pore structure did not play a 

major role in BNZ adsorption and pore filling was the main mechanism of adsorption. 

 

Figure 5.6 Correlation between the BET surface areas of the carbons and their BNZ 

adsorption capacities. (Error bars indicate the 95% confidence intervals.)  
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Figure 5.7 Correlation between the microporous surface areas of the carbons and their 

BNZ adsorption capacities. (Error bars indicate the 95% confidence intervals.) 

 

 

Figure 5.8 Correlation between the surface areas in pores less than 1 nm of the carbons 

and their BNZ adsorption capacities. (Error bars indicate the 95% confidence intervals.)  
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Figure 5.9 Correlation between the micropore volumes of the carbons and their BNZ 

adsorption capacities. (Error bars indicate the 95% confidence intervals.) 

 

 

Figure 5.10 Correlation between the pore volumes in pores less than 1 nm of the carbons 

and their BNZ adsorption capacities. (Error bars indicate the 95% confidence intervals.) 
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For BP, the mass-basis adsorption Freundlich affinities (KF values) followed the 

order of ACF20-H2 > ACF15-H2 > ACF10-H2 > HD4000-H2 ≈ F400-H2 > OLC-H2 

(Table 5.4). This order did not follow the order of the surface areas or the pore volumes 

of the carbons. The three ACFs showed similar uptakes at the low concentration range, 

while the capacity at high concentrations was in the order of ACF20-H2 > ACF15-H2 > 

ACF10-H2 (Figure 5.11). 

The solubility-normalized adsorption capacities (KFS) were in the order of 

ACF20-H2 > ACF15-H2 > OLC-H2 > F400-H2 > HD4000-H2 ≈ ACF10-H2. HD4000-H2 

had the lowest surface area among all the carbons, while ACF10-H2 had 75% of its pore 

volume in pores (11.8 Å × 6.8 Å × 4.7 Å) smaller than 1 nm. Therefore, their low KFS 

values were attributed to the molecular sieve effect on ACF10-H2 and low surface area of 

HD4000. For example, on a mass-basis isotherm, although ACF10-H2 has higher 

adsorption capacities than GACs at low concentrations, it exhibited the lowest BP 

uptakes at the highest concentrations, indicating that ACF10-H2 reached saturation and 

did not have more pore space to accommodate additional BP molecules. Coconut-based 

carbons exhibit better adsorptive capacities for small compounds than the coal-based 

carbons [Mangun et al., 1999]. In fact, the solubility normalized and surface area 

normalized adsorption capacities of coconut-based OLC-H2 were higher than those of 

coal-based F400-H2 and HD4000-H2 (Table 5.4).  

Correlations between BP adsorption and structural parameters of the carbons were 

also investigated. The best correlation was observed between KFS and SBET, if ACF10-H2 
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was left out of the correlation due to the molecular sieve effect observed for this 

adsorbent (Figure 5.12). 

 

 

Figure 5.11 BP adsorption isotherms for heat-treated ACFs and GACs. 
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Figure 5.12 Correlation between the BET surface areas of the carbons and their BP 

adsorption capacities (ACF10-H2 is shown but not included in the correlation). (Error 

bars indicate the 95% confidence intervals.) 

 

The adsorption isotherms for PHE are illustrated in Figure 5.13 and isotherm 
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However, as it was observed for BNZ and BP adsorption, highly microporous ACFs had 

higher adsorption affinities than those of the GACs. Based on the solubility and surface 

area normalized adsorption data, adsorption capacities (KFS and Q) of PHE on ACF10-H2 

was the lowest, even though Smic of ACF10-H2 was higher than that of GACs.  
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Figure 5.13 PHE adsorption isotherms for heat-treated ACFs and GACs. 

Results indicated that molecular sieving occurred on the adsorption of ACF10-H2, 

similar to BP. Since the molecular dimensions of PHE are 11.7 Å × 8.0 Å × 3.4 Å, pore 

volumes between 1-2 nm were the likely adsorption sites of PHE. As it was mentioned 

earlier, more than 75% of the pores in ACF10-H2 are less than 1 nm. Therefore, there are 

not enough available contact surfaces for all the PHE molecules to adsorb on ACF10-H2. 

The molecular sieve effect occurs when the pore width is narrower than the molecular 

size of the adsorbate or the shapes of the pores do not allow the molecules to enter into 

the micropores [Bandosz, 2006]. While it is the smallest dimension of the adsorbate that 
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As for BP, the best correlation between KFS and structural parameters for PHE 

was observed between KFS and SBET (Figure 5.14).  

 

Figure 5.14 Correlation between the BET surface areas of the carbons and their PHE 

adsorption capacities (ACF10-H2 is shown but not included in the correlation). (Error 

bars indicate the 95% confidence intervals.) 
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hand, accessible pore size regions for BP and PHE were determined to be approximately 

1 - 2 nm, and molecular sieving occurred on the adsorption of BP and PHE as a result of 

their molecular dimensions. 

5.4 The Role of SOC Characteristics on Adsorption by ACs 

The adsorption of BNZ, BP, PHE on the heat-treated ACFs and GACs, and the 

adsorption of BP and 2HB on the heat-treated and oxidized ACFs were compared to 

investigate the effects of the adsorbate characteristics on the adsorption. For the 

comparison, adsorption of different SOCs on one type of carbon was examined. The 

adsorption of SOCs was evaluated on the logarithmic scale by plotting the qe values as 

ordinate and the solubility normalized concentrations, Ce / Cs, as abscissa, to eliminate the 

differences induced from the different solubilities of the compounds. 

As mentioned earlier, the presence of the functional groups, molecular 

conformation, weight, size, polarity, and solubility of an adsorbate affect the adsorption. 

On the other hand, for an adsorbent, while pore and surface structures of the adsorbent 

determine the space availability to the adsorbates, its surface chemistry influences the 

chemical affinity to the adsorbates. Since the six heat-treated carbons had relatively 

comparable pHPZC values as well as oxygen and nitrogen contents, their surface areas and 

pore size distributions are expected to play an important role in the adsorption rather than 

their surface chemistries. Figures 5.15 and 5.16 display the adsorption of BNZ, BP, and 

PHE on the heat-treated ACFs and GACs. The uptakes of the SOCs followed the order of 

BNZ > BP > PHE for all heat-treated carbons. Such order of uptake clearly demonstrates 

the effects of molecular dimension and molecular conformation of these three SOCs.  
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Figure 5.15 Comparison of the BNZ, BP and PHE solubility-normalized adsorption 

isotherms on the ACFs. 
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Figure 5.16 Comparison of the BNZ, BP and PHE solubility-normalized adsorption 

isotherms on the GACs. 
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Not surprisingly, the uptakes increased with decreasing molecular dimension of each 

compound. The molecular dimension with respect to the PSD of an adsorbent determines 

the accessible surface area or pore volume for the adsorption of an adsorbate. BNZ (the 

smallest SOC in this study) adsorption was always higher than those of BP and PHE. 

Even though PHE and BP had similar physicochemical properties, the adsorption 

potentials of these compounds were significantly different. Adsorption affinities of BP 

were approximately two times higher than PHE for all six carbons (Table 5.4). Between 

these two compounds, BP has the smaller width, which is also considered as the second-

widest dimension of a compound. This feature provides BP a higher accessibility to the 

ACFs and pores can be filled better by BP than that of PHE, since it is the second-widest 

dimension of the adsorbate that determines its accessibility to the ellipsoidal pores. On 

the other hand, the smallest dimension, also known as the thickness, of an adsorbate 

determines its accessibility to the slit-shaped pores, such as pores of the GACs. Despite 

the fact that BP is thicker than PHE, its adsorption on the GACs was still higher than that 

of PHE. This was attributed to its nonplanar configuration, allowing the two aromatic 

rings of BP to adjust their relative position by rotating around the C–C (σ bond 

connecting them) [Guo et al., 2008]. In other words, the flexible nonplanar BP can 

change its molecular configuration and has more access to the small pores than the planar 

PHE molecule with a rigid structure. Overall, both BP and PHE adsorption are more 

sensitive to the pore geometry of the carbons than BNZ because their molecular sizes are 

larger and they have less access into the small pores.  
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To further investigate hydrophobic interactions, BP and 2HB adsorptions on the 

ACFs were compared (Figures 5.17 and 5.18). BP and 2HB have very similar molecular 

sizes but significantly different solubilities (Table 4.2). It was observed that 2HB had 

lower adsorption affinities than BP at the same concentration levels for each type of 

carbon. This is due to differences in the solubilities of these SOCs since they are very 

similar in molecular size and configuration. The substitution of a hydroxyl group in 2HB 

at an ortho position is the only difference between their molecular skeletons. This 

hydroxyl group in 2HB provides increased interactions of the compound with water via 

hydrogen-bond formation and increased water solubility and that, in turn, decreased the 

adsorption capacity. In other words, 2HB adsorption requires the disruption of relatively 

strong solute/solvent interactions, and therefore, adsorption of 2HB is energetically less 

favorable than adsorption of BP, which has weaker solute/solvent interactions.  

 

Figure 5.17 BP and 2HB adsorption isotherms on the heat-treated ACFs. 
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Figure 5.18 BP and 2HB adsorption isotherms on the oxidized ACFs. 
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Figure 5.19 Comparison of the BP and 2HB solubility-normalized adsorption isotherms 

on the heat-treated ACFs. 
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Figure 5.20 Comparison of the BP and 2HB solubility-normalized adsorption isotherms 

on the oxidized ACFs.  
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5.5 The Impact of the Carbon Surface Oxidation on SOC Adsorption 

To examine the impact of the carbon surface chemistry and water-adsorbent 

interactions on SOC adsorption, BP and 2HB isotherms were conducted with the heat-

treated and oxidized ACFs. Adsorption isotherms of BP and 2HB are illustrated in Figure 

5.21 and Figure 5.22, respectively. Adsorption isotherms showed a curved relationship 

between qe and Ce, which is possibly an indicator of two different adsorption regions: a 

continuous increase in adsorption was observed at low Ce values, and then adsorption 

reached the capacity of the carbons at high Ce values [Walters and Luthy, 1984]. The 

Freundlich isotherm parameters, expressed in two different units for comparison, are 

given in Table 5.5.  

The results showed that both BP and 2HB adsorptions by the heat-treated ACFs 

were higher than those of the oxidized ACFs. Furthermore, regardless of the surface 

modification characteristics, adsorption increased with increasing level of activation (i.e., 

ACF20> ACF15>ACF10). This is expected since the specific surface areas are positively 

correlated with increasing level of activation. 
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Figure 5.21 BP adsorption isotherms for heat-treated and oxidized ACFs. 

 

 

Figure 5.22 2HB adsorption isotherms for heat-treated and oxidized ACFs. 
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Table 5.5 Freundlich isotherm parameters of BP and 2HB. 

a
 Mass-basis adsorption affinity expressed in different units. 

 

The heat-treated and oxidized counterparts of ACFs had very similar (i.e., within 

10%) surface areas and pore volumes (Tables 5.1 and 5.2). Therefore, their physical 

structural parameters cannot explain their differences in adsorption behavior to BP and 

2HB. The major differences between these two groups of ACFs were in their oxygen and 

nitrogen contents (Table 5.3), which were higher for the oxidized ACFs and lower for the 

heat-treated ACFs. Low oxygen and nitrogen contents provided basic hydrophobic 

surfaces with higher pHPZC values, whereas high oxygen and nitrogen contents resulted in 

acidic hydrophilic surface character for the carbons with lower pHPZC values. As 

previously stated, oxygen and nitrogen functional groups impair the adsorption of organic 

compounds since they can serve as hydrogen-bond donor and/or acceptor sites which 

SOC Adsorbent 
KF

a 

[(mg/g)/Ce
n
] 

n
 

r
2 

 
 

(g/L) (mg/L) 
  

BP ACF10-H2 13.99 262  0.42 0.954 

 ACF15-H2 17.02 421  0.46 0.949 

 ACF20-H2 19.45 711  0.52 0.946 

 ACF10-NO 5.92 142  0.46 0.907 

 ACF15-NO 6.12 273  0.55 0.979 

 ACF20-NO 7.83 377  0.56 0.981 

2HB ACF10-H2 11.18 173 0.40  0.964 

 ACF15-H2 14.35 254 0.42  0.954 

 ACF20-H2 14.84 383 0.47  0.958 

 ACF10-NO 4.22 102 0.46  0.956 

 ACF15-NO 4.92 120 0.46  0.963 

 ACF20-NO 6.76 213 0.50  0.959 



77 

 

interact with water molecules more than they interact with organic compounds. The heat-

treated carbons with their low oxygen and nitrogen contents were more hydrophobic. 

Consequently, their affinities for organic compounds were higher; and thus, they showed 

better adsorption potentials, as observed in previous studies [Kaneko et al., 1989; Li et 

al., 2002; Karanfil and Dastgheib, 2004; Cheng, 2006].  

As displayed with the water vapor adsorption isotherms (Figure 5.3), the oxidized 

ACFs demonstrated higher affinities for water than the heat-treated ones at the low 

relative pressure range (below 0.4), which also supported the presence of the surface 

functional groups, and were related to the water cluster formation on the hydrophilic 

sites. Water clusters prevent organic compounds access to the basal planes of adsorbent 

and/or reduce the interaction energy between the compounds and the adsorbent surface, 

especially at low concentrations [Zhang et al., 2007]. In fact, both adsorption isotherms 

and Freundlich isotherm parameters well reflected the effects of functional groups and 

water cluster formation on the SOC adsorption. The isotherm differences between the 

oxidized and heat-treated ACFs were larger at low concentrations, whereas the isotherms 

converged at high concentrations. Furthermore, BP and 2HB uptakes were in the order of 

ACF20-H2 > ACF15-H2 > ACF10-H2 > ACF20-NO > ACF15-NO > ACF10-NO at low 

concentrations, while isotherms showed different trends at higher concentrations. The 

three oxidized ACFs remained separated from each other regardless of the concentration 

level. In contrast, the value of the three heat-treated ACFs overlapped at the lowest 

concentrations, whereas the differences in uptake increased as concentration increased. 
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Oxygen and nitrogen containing groups reduced the adsorption capacities of ACFs to 

aromatic compounds, and surface chemistry played a key role in the adsorption. 

To elucidate the effect of the adsorbent surface polarity, which was expressed by 

the sum of the oxygen and nitrogen contents, on the BP and 2HB adsorption, distribution 

coefficients (KD) were calculated. In the case of linear adsorption, the accumulation of a 

compound by the sorbent is directly proportional to the concentration of the compound in 

the aqueous phase as described below: 

                                                                            

Where, KD is referred as the constant of proportionality as well as the distribution 

coefficient, and expressed in terms of volume per unit mass [Weber et al., 1991].  

In the case of nonlinear adsorption, which can be described by the Freundlich 

model, at a given equilibrium concentration, KD can be recalculated by employing the 

following equation: 

            
                                                               

The KD values at two different equilibrium concentrations, 10 µg/L and 4 mg/L, 

were plotted against the surface area normalized oxygen and nitrogen contents 

[(O+N)/SBET] of the adsorbents, and are illustrated in Figures 5.23 and 5.24. Surface area 

normalization was considered since each carbon had different surface areas with different 

O+N contents. As displayed in Figures, regardless of the concentration level, KD values 

decreased with increasing (O+N)/SBET ratios, indicating that a negative relationship 

existed between the BP/2HB distribution coefficients and the polarity of the adsorbents. 
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The results confirmed the negative impact of the surface polarity and water cluster 

formation on the SOC adsorption.  

 

Figure 5.23 Relationships between distribution coefficients of the adsorbates and surface 

area normalized O+N contents of the adsorbents at Ce = 10 µg/L. 

 

Figure 5.24 Relationships between distribution coefficients of the adsorbates and surface 

area normalized O+N contents of the adsorbents at Ce = 4 mg/L.  
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CHAPTER SIX 

 CONCLUSIONS AND RECOMMENDATIONS 

 

The major conclusions obtained from this study are summarized below; 

 

Objective 1: To examine the role of carbonaceous adsorbent physical characteristics 

(i.e., surface area, pore size distribution, precursor) on SOC adsorption. 

 Activated carbon fibers (ACFs) exhibited higher adsorption capacities for the 

selected synthetic organic compounds (SOCs) than those of granular activated 

carbons (GACs) due to the higher specific surface areas and microporous 

structures of the ACFs. In addition, adsorption capacities increased with 

increasing activation level of the ACFs. Among the GACs, the coconut-based 

carbon demonstrated higher solubility- and surface area-normalized adsorption 

capacities than the coal-based carbons. 

 Depending on the molecular dimensions of a compound, there was a specific 

optimum pore size region for each SOC. Both pore size distribution (PSD) and 

pore volume of pores less than 1 nm was the dominant adsorption site for benzene 

(BNZ), whereas pores 1 - 2 nm were important for the adsorption of biphenyl 

(BP) and phenanthrene (PHE).  

 While adsorption of BNZ correlated with both surface areas and pore volumes, 

adsorption of BP and PHE was only related to the Brunauer-Emmett-Teller (BET) 

surface areas of the adsorbents. These relationships showed that there was no 
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restriction for BNZ molecules to access the pores because of its small size; 

however, size exclusion effects were observed for BP and PHE adsorption.  

 

Objective 2: To investigate the role of SOC characteristics (structure, dimension and 

configuration) on adsorption by ACs. 

 The adsorption uptake increased with decreasing molecular dimension of each 

compound and followed the order of BNZ > BP > PHE for the six heat-treated 

carbons. 

 The importance of the molecular configuration was proved by comparing the 

adsorptions of BP and PHE. Adsorption capacities of BP were approximately two 

times higher than those of PHE for the six carbons. The flexible nonplanar BP 

could change its molecular configuration, and thus, had more access into the small 

pores than the planar PHE molecule with a rigid structure.  

 BP had higher adsorption capacities than 2-hydroxybiphenyl (2HB) at the same 

concentration levels according to the mass-basis isotherms. The reason was 

attributed to the quite different solubilities of these SOCs since they were very 

similar in molecular size and configuration.   

 According to the solubility normalized isotherms, 2HB showed higher uptakes 

than BP due to the π-π electron-donor-acceptor interactions, which resulted from 

the substitution of a hydroxyl group in the 2HB. However, this interaction was not 

strong enough to compensate for the weak hydrophobic interactions between 2HB 

and ACFs because of the higher aqueous solubility of 2HB. 
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Objective 3: To investigate the impact of the carbonaceous adsorbent surface oxidation 

(i.e., oxidized vs. heat-treated ACs) on SOC adsorption. 

 The heat-treated ACFs had higher adsorption capacities than the oxidized ACFs, 

indicating that the oxygen and nitrogen containing groups reduced the adsorption 

capacities of ACFs to the selected SOCs. In other words, hydrophobic carbons 

were more effective for the removal of the both hydrophobic and hydrophilic 

compounds from aqueous solution. 

 Regardless of the surface modification characteristics of the ACFs, adsorption 

increased with increasing level of activation. This was expected since the specific 

surface areas were positively correlated with the activation level. 

 Oxygen and nitrogen containing groups reduced the adsorption capacities of 

ACFs to aromatic compounds, and surface chemistry played a key role in the 

adsorption. 

 
 

Recommendations 

Based on the results obtained in this study, the following recommendations are 

provided for applications and future research. 

 For practical applications, it is important to consider the molecular dimensions of 

SOCs and the PSD of carbonaceous adsorbents in selecting adsorbents for 

treatment applications. The preference should be given to the adsorbents that have 

high pore volume in pores that are comparable to the molecular dimensions of the 

target SOCs to be removed from water or wastewater. It is also important to select 
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adsorbents with low surface polarity since it has been shown that water adsorption 

can hinder the adsorption of SOCs.  

 Selecting additional organic compounds with different molecular sizes, 

solubilities, molecular configurations and different functional groups will be 

useful to further examine adsorption behavior of SOCs with different dimensions 

and structure.  

 Conducting experiments with other well characterized adsorbents such as carbon 

nanotubes and graphite will be valuable to learn more about the role of carbon 

structure on SOC adsorption.  

 It is important to investigate the adsorption behavior of these adsorbates and 

adsorbents in different background solutions, such as natural organic matter 

(NOM) or wastewater effluent organic matter in order to further extend the 

findings obtained in this study to practical applications. 

 The results of this research are only based on the single-solute isotherm 

experiment. It is also important to understand the influence of both carbon pore 

structure and adsorbate molecular configuration on adsorption kinetics. 

Furthermore, these results could be further confirmed by performing rapid small 

scale column tests, simulating fixed-adsorbents in practical applications. 
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APPENDIX A 

 

 
 

 
 

Figure A.1 Nonlinear Freundlich and Langmuir model isotherms of BP on ACF10-H2. 
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Figure A.2 Nonlinear Langmuir-Freundlich and Polanyi-Manes model isotherms of BP 

on ACF10-H2. 
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Table A.1 Nonlinear model fits for adsorption of BNZ. 

Adsorbents 
Freundlich  Langmuir Langmuir-Freundlich Polanyi-Manes  

KF n r
2
 RMSE qm  KL r

2
 RMSE qm KS n r

2
 RMSE qm a b r

2
 RMSE 

ACF10-H2 0.69 0.62 0.992 17.91 910 3.10
-5 

0.978 30.43 3950 12.10
-5 

0.67 0.991 20.71 77.10
4 

-7.36 0.37 0.995 16.11 

ACF15-H2 1.28 0.57 0.992 18.59 845 4.10
-5 

0.971 35.90 3980 22.10
-5 

0.62 0.991 21.84 77.10
4
 -6.90 0.34 0.995 15.26 

ACF20-H2 5.21 0.44 0.996 13.25 650 11.10
-5 

0.965 39.05 4194 97.10
-5 

0.47 0.996 14.15 77.10
4
 -5.97 0.28 0.991 21.77 

OLC-H2 1.73 0.51 0.997 23.36 513 7.10
-5 

0.971 26.23 4133 34.10
-5 

0.54 0.978 24.57 77.10
4
 -6.59 0.30 0.969 28.86 

F400-H2 1.93 0.48 0.992 10.60 398 8.10
-5 

0.971 20.86 4139 39.10
-5 

0.50 0.993 11.19 77.10
4
 -6.44 0.28 0.986 15.39 

HD4000-H2 0.39 0.61 0.987 12.51 464 3.10
-5 

0.973 17.98 4079 8.10
-5 

0.64 0.986 14.57 77.10
4
 -7.47 0.34 0.987 13.36 

KF [(mg/g)/(µg/L)
n
]: adsorption affinity coefficient; n: nonlinear index; r

2
:
 
coefficient of determination; RMSE: residual root mean square error; qm 

(mg/g): maximum adsorption capacity; KL (L/µg): adsorption affinity coefficient; KS [(L/µg)
n
]: adsorption affinity coefficient; a and b: fitting 

parameters; underlined numbers represent the unreasonable values of the models. 

 

  

8
7
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Table A.2 Nonlinear model fits for adsorption of BP. 

Adsorbents 
Freundlich  Langmuir Langmuir-Freundlich Polanyi-Manes  

KF n r
2
 RMSE qm  KL r

2
 RMSE qm KS n r

2
 RMSE qm a b r

2
 RMSE 

ACF10-H2 36.60 0.28 0.936 38.18 359 67.10
-4 

0.993 12.67 367 96.10
-4

 0.91 0.993 13.11 349 -298.8 2.43 0.992 14.59 

ACF15-H2 46.08 0.31 0.961 45.29 544 66.10
-4

 0.992 20.42 607 179.10
-4

 0.74 0.998 11.16 544 -100.7 2.01 0.997 12.78 

ACF20-H2 59.39 0.34 0.968 59.54 805 71.10
-4

 0.989 35.36 955 203.10
-4

 0.70 0.997 20.37 831 -77.4 1.90 0.997 20.09 

ACF10-NO 19.26 0.29 0.911 23.72 211 45.10
-4

 0.997 12.05 222 95.10
-4

 0.84 0.980 11.65 204 -148.2 2.11 0.982 10.94 

ACF15-NO 20.03 0.38 0.955 39.55 513 21.10
-4

 0.995 12.82 512 21.10
-4

 1.01 0.995 13.19 467 -198.4 2.06 0.995 14.19 

ACF20-NO 20.22 0.42 0.969 40.04 669 18.10
-4

 0.992 20.84 729 34.10
-4

 0.87 0.993 20.09 614 -92.4 1.77 0.992 20.91 

OLC-H2 35.65 0.32 0.951 42.30 460 61.10
-4

 0.993 16.00 492 125.10
-4

 0.82 0.996 13.19 452 -153.2 2.15 0.995 14.71 

F400-H2 30.76 0.32 0.979 24.23 388 72.10
-4

 0.943 40.35 754 281.10
-4

 0.45 0.985 22.06 439 -17.5 1.29 0.984 22.50 

HD4000-H2 31.17 0.30 0.980 21.18 355 64.10
-4

 0.994 35.61 602 328.10
-4

 0.47 0.989 16.58 386 -19.9 1.37 0.989 16.83 

KF [(mg/g)/(µg/L)
n
]: adsorption affinity coefficient; n: nonlinear index; r

2
:
 
coefficient of determination; RMSE: residual root mean square error; qm 

(mg/g): maximum adsorption capacity; KL (L/µg): adsorption affinity coefficient; KS [(L/µg)
n
]: adsorption affinity coefficient; a and b: fitting 

parameters; underlined numbers represent the unreasonable values of the models. 

 

  

8
8
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Table A.3 Nonlinear model fits for adsorption of PHE. 

Adsorbents 
Freundlich  Langmuir Langmuir-Freundlich Polanyi-Manes  

KF n r
2
 RMSE qm  KL r

2
 RMSE qm KS n r

2
 RMSE qm a b r

2
 RMSE 

ACF10-H2 4.77 0.53 0.963 12.15 209 36.10
-4 

0.964 11.87 294 64.10
-4

 0.78 0.967 12.45 173 -34.1 1.26 0.966 12.77 

ACF15-H2 14.69 0.46 0.963 21.37 335 67.10
-4

 0.989 11.81 333 65.10
-4

 1.01 0.989 12.93 285 -165.3 1.85 0.987 13.74 

ACF20-H2 27.90 0.41 0.942 34.83 394 134.10
-4

 0.980 20.54 380 108.10
-4

 1.08 0.980 22.28 352 -598.9 2.41 0.980 22.66 

OLC-H2 1.26 0.82 0.940 22.10 608 9.10
-4

 0.951 20.07 302 2.10
-4

 1.52 0.959 18.98 255 -321.6 1.82 0.958 19.14 

F400-H2 2.68 0.65 0.991 7.65 343 17.10
-4

 0.991 7.40 529 24.10
-4

 0.82 0.993 7.20 225 -35.5 1.19 0.993 7.19 

HD4000-H2 4.39 0.59 0.980 12.38 321 26.10
-4

 0.974 14.29 829 36.10
-4

 0.69 0.981 13.24 256 -24.3 1.11 0.981 13.33 

KF [(mg/g)/(µg/L)
n
]: adsorption affinity coefficient; n: nonlinear index; r

2
:
 
coefficient of determination; RMSE: residual root mean square error; qm 

(mg/g): maximum adsorption capacity; KL (L/µg): adsorption affinity coefficient; KS [(L/µg)
n
]: adsorption affinity coefficient; a and b: fitting 

parameters; underlined numbers represent the unreasonable values of the models. 

 

 

 

  

8
9
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Table A.4 Nonlinear model fits for adsorption of 2HB. 

Adsorbents 
Freundlich  Langmuir Langmuir-Freundlich Polanyi-Manes  

KF n r
2
 RMSE qm  KL r

2
 RMSE qm KS n r

2
 RMSE qm a b r

2
 RMSE 

ACF10-H2 22.87 0.30 0.993 28.31 299 27.10
-4

 0.970 19.11 327 80.10
-4

 0.78 0.974 18.31 334 -689.7 3.73 0.970 19.54 

ACF15-H2 33.99 0.30 0.944 38.87 437 31.10
-4

 0.976 25.37 480 102.10
-4

 0.76 0.979 24.18 511 -294.8 3.31 0.975 26.88 

ACF20-H2 41.92 0.32 0.929 62.00 610 35.10
-4

 0.970 40.72 646 75.10
-4

 0.84 0.971 40.59 667 -1097.3 4.01 0.968 42.98 

ACF10-NO 10.18 0.34 0.945 16.96 210 16.10
-4

 0.951 15.99 270 93.10
-4

 0.64 0.964 13.86 284 -100.1 2.56 0.963 14.05 

ACF15-NO 12.33 0.34 0.956 16.82 234 19.10
-4

 0.987 9.27 261 59.10
-4

 0.78 0.991 7.78 274 -376.6 3.31 0.989 8.67 

ACF20-NO 19.81 0.35 0.976 22.67 398 22.10
-4

 0.986 17.24 495 96.10
-4

 0.68 0.996 9.05 511 -180.9 2.92 0.997 8.23 

KF [(mg/g)/(µg/L)
n
]: adsorption affinity coefficient; n: nonlinear index; r

2
:
 
coefficient of determination; RMSE: residual root mean square error; qm 

(mg/g): maximum adsorption capacity; KL (L/µg): adsorption affinity coefficient; KS [(L/µg)
n
]: adsorption affinity coefficient; a and b: fitting 

parameters; underlined numbers represent the unreasonable values of the models. 

  

9
0
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APPENDIX B 

 

Table B.1 Freundlich coefficients for the adsorption isotherms of the SOCs along with 

the 95% confidence intervals and the standard errors. 

a
 Freundlich adsorption affinity expressed in different units. 

  

SOC Adsorbent 
KF

a
 

[(mg/g)/Ce
n
] 

n 

 
 

(g/L) 

95% 

confidence 

intervals 

(mg/L) 

95% 

confidence 

intervals 

(-) 

95% 

confidence 

intervals 

BNZ ACF10-H2 1.80 ± 0.08 2.88 - 1.13 65 ± 2.91 74 - 57 0.52 ± 0.03 0.57 - 0.47 

 ACF15-H2 2.91 ± 0.14 4.64 -1.82 80 ± 3.88 91 - 70 0.48 ± 0.03 0.53 - 0.43 

 ACF20-H2 3.11 ± 0.15 5.04 - 1.92 93 ± 4.39 106 - 81 0.49 ± 0.03 0.55 - 0.44 

 OLC-H2 1.39 ± 0.06 2.16 - 0.89 54 ± 2.43 61 - 47 0.53 ± 0.03 0.58 - 0.48 

 F400-H2 0.95 ± 0.05 1.64 - 0.55 43 ± 2.32 50 - 37 0.55 ± 0.03 0.61 - 0.49 

 HD4000-H2 0.32 ± 0.01 0.53 - 0.19 25 ± 1.01 29 - 22 0.63 ± 0.03 0.69 - 0.58 

BP ACF10-H2 13.99 ± 1.36 19.49-10.04 262 ± 25.47 331- 208 0.42 ± 0.03 0.49 - 0.36 

 ACF15-H2 17.02 ± 1.75 24.34-11.90 421 ± 43.30 564 - 315 0.46 ± 0.04 0.54 - 0.39 

 ACF20-H2 19.45 ± 2.31 28.38-13.33 711 ± 84.57 1015 - 499 0.52 ± 0.04 0.60 - 0.44 

 ACF10-NO 5.92 ± 0.45 8.40 - 4.18 142 ± 10.87 169 - 120 0.46 ± 0.03 0.52 - 0.40 

 ACF15-NO 6.12 ± 0.29 8.27 - 4.53 273 ± 12.98 323 - 230 0.55 ± 0.03 0.60 - 0.50 

 ACF20-NO 7.83 ± 0.34 9.27 - 6.61 377 ± 16.25 420 - 338 0.56 ± 0.02 0.59 - 0.53 

 OLC-H2 9.98 ± 1.37 17.71 - 5.62 344 ± 47.31 499 - 238 0.51 ± 0.06 0.62 - 0.40 

 F400-H2 12.87 ± 1.87 22.06 - 7.51 290 ± 42.24 419 - 201 0.45 ± 0.05 0.55 - 0.35 

 HD4000-H2 13.04 ± 1.79 21.97 - 7.74 263 ± 36.19 372 - 186 0.44 ± 0.05 0.53 - 0.34 

PHE ACF10-H2 2.84 ± 0.20 4.76 - 1.70 197 ± 13.51 248 - 156 0.61 ± 0.05 0.71- 0.51 

 ACF15-H2 7.41 ± 0.52 11.93 - 4.61 404 ± 28.16 524 - 312 0.58 ± 0.05 0.68 - 0.48 

 ACF20-H2 13.65 ± 1.62 27.52 - 6.77 574 ± 68.06 913 - 360 0.54 ± 0.08 0.69 - 0.39 

 OLC-H2 0.67 ± 0.02 0.84 - 0.53 384 ± 11.74 431 - 342 0.92 ± 0.03 0.97 - 0.87 

 F400-H2 2.12 ± 0.10 3.10 - 1.45 239 ± 11.55 285 - 201 0.68 ± 0.04 0.76 - 0.61 

 HD4000-H2 1.86 ± 0.23 5.08 - 0.68 303 ± 36.76 483 - 190 0.74 ± 0.10 0.93 - 0.54 

2HB ACF10-H2 11.18 ± 0.55 13.57 - 9.21 173 ± 8.57 192 - 157 0.40 ± 0.02 0.43 - 0.36 

 ACF15-H2 14.35 ± 0.88 20.11-10.24 254 ± 15.60 314 - 205 0.42 ± 0.03 0.48 - 0.36 

 ACF20-H2 14.84 ± 0.96 18.36-12.00 383 ± 24.74 445 - 329 0.47 ± 0.02 0.51 - 0.43 

 ACF10-NO 4.22 ± 0.18 5.15 - 3.46 102 ± 4.36  111 - 91 0.46 ± 0.02 0.49 - 0.43 

 ACF15-NO 4.92 ± 0.19 5.88 - 4.11 120 ± 4.58 129 - 111 0.46 ± 0.02 0.49 - 0.43 

 ACF20-NO 6.76 ± 0.42 8.63 - 5.29 213 ± 13.11 242 - 187 0.50 ± 0.02 0.54 - 0.46 
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APPENDIX C 

 

Table C.1 Correlation results between structural parameters of the adsorbents and their 

adsorption capacities. 

Structural 

Parameters 

r
2 

KFS for BNZ KFS for BP KFS for PHE 

SBET 0.801
a 

0.838 0.783 

Smic 0.750 0.598 0.271 

S (<1nm) 0.895 0.506 0.389 

S (>1nm) -1.746
b 

0.622 0.096 

S (1-2 nm) -1.388 0.781
c
 -0.022 

Vtotal -0.791 0.279 0.344 

Vmic 0.788 0.657 0.362 

V (<1nm) 0.663 0.224 0.051 

V (>1nm) -4.356 -0.634 -1.290 

V (1-2 nm) -1.544 0.754 -0.087 
a
 Bold numbers represent the strong correlations, which were r

2
 > 0.65; 

b
 Poor relationships were 

considered when  r
2
 < 0.65; 

c
 Underlined numbers were not taken into account because visual inspection of 

the data showed a good amount of scatter despite somewhat high r
2
 values.   
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