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Abstract

In this thesis, we consider secret sharing schemes and network coding. Both of these

fields are vital in today’s age as secret sharing schemes are currently being implemented by

government agencies and private companies, and as network coding is continuously being

used for IP networks. We begin with a brief overview of linear codes. Next, we examine

van Dijk’s approach to realize an access structure using a linear secret sharing scheme;

then we focus on a much simpler approach by Tang, Gao, and Chen. We show how this

method can be used to find an optimal linear secret sharing scheme for an access structure

with six participants. In the last chapter, we examine network coding and point out some

similarities between secret sharing schemes and network coding. We present results from a

paper by Silva and Kschischang; in particular, we present the concept of universal security

and their coset coding scheme to achieve universal security.
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Chapter 1

Linear Codes

1.1 Linear Codes

Codes are implemented in communication for security and error correction purposes.

More specifically, private companies and federal agencies use codes to encode sensitive

material in order to prevent the information from falling into the wrong hands. A branch

of codes is linear codes. Linear codes provide a structural foundation for secret sharing and

network coding. In this section, we briefly discuss linear codes to better understand secret

sharing and network coding.

Let Fq be the field of q elements. An [n, k] linear code over Fq is a linear subspace

of Fnq of dimension k and can be defined by a matrix G ∈ Fk×nq of rank k:

C = {xG| x ∈ Fkq}.

Such a matrix G is called a generator matrix for C. A parity-check matrix for C is any

matrix H ∈ F(n−k)×n
q with rank n− k so that GH> = 0, i.e.

c ∈ C ⇔ cH> = 0.

Hence, H can be used to determine whether or not a codeword is in C. The dual code C>
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of C is defined as

C> = {v ∈ Fnq | cv> = 0 ∀c ∈ C} = {uH>| u ∈ Fn−kq }.

Thus, H is the generator matrix for the dual code. It can be easily shown that (C⊥)⊥ = C.

Let x, y ∈ Fnq . Then the Hamming distance d(x, y) between x and y is defined as the

number of coordinates in which x and y differ. The distance of C is the minimum distance

between two distinct codewords x, y ∈ C, i.e.

d(C) = min
x,y∈C
x 6=y

d(x, y).

The well-known Singleton bound relates the quantities n, k, and d: d ≤ n − k + 1. The

codes that achieve this bound, i.e., d(C) = n−k+1, are called maximum distance separable

(MDS) codes. MDS codes are mainly used in error-correction. They maximize the distance

between any two codewords, and thus, on receiving a codeword with slight perturbation,

one may determine the correct codeword. An example of an MDS code is the Reed-Solomon

code, which will be discussed in Section 1.3.

1.2 Shannon Entropy

We introduce the concept of Shannon entropy, which will be needed for the security

analysis of secret sharing and network coding. Let S be a (discrete) random variable with

probability distribution:

P (S = si) = qi, 1 ≤ i ≤ t

where s1, s2, . . . , st are all the possible values of S. Then the Shannon entropy of S is defined

as

H(S) =

t∑
i=1

qi log2

(
1

qi

)
= −

t∑
i=1

qi log2 qi.
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The entropy of S, H(S), measures the uncertainty of S. When the probability distribution

is uniform, the entropy of S is maximized. On the other hand, if there exists a qi such that

qi = 1, then H(S) = 0, i.e., S is easily predictable. Let W be another random variable

which takes values wj , 1 ≤ j ≤ m. The conditional entropy is defined as

H(S|W = wj) = −
∑
i

P (si|wj) log2 P (si|wj).

The proportion of unknown information of S when W is known is given by

H(S|W ) =
∑
j

P (wj)H(S|wj).

The mutual information of S and W is defined as

I(S,W ) = H(S)−H(S|W ).

If W contains information pertaining to S, then H(S|W ) < H(S) and I(S,W ) > 0; other-

wise, H(S|W ) = H(S) and I(S,W ) = 0.

1.3 Reed-Solomon Codes

One of the most important coding schemes utilized in electronic media, such as CDs,

DVDs, and QR codes, is the Reed-Solomon code, a cyclic error-correcting code, invented in

1960, by Irving Reed and Gustave Solomon.

A Reed-Solomon code C is an [n, k] linear code over Fq where k ≤ n ≤ q. Let

a1, a2, . . . , an ∈ Fq be fixed distinct numbers belonging to the corresponding players, and

let s = (s1, s2, . . . , sk) ∈ Fkq be a message. To encode s:

1. Form the polynomial p(x) =
∑k

i=1 six
i−1.

2. Compute p(ai), 1 ≤ i ≤ n.

3



Then the codeword for S is (p(a1), p(a2), . . . , p(an)), and the code is

C = {(p(a1), p(a2), . . . , p(an)) | p ∈ Fkq [x] of deg ≤ k − 1}.

The code C can be generated by the following Vandermonde matrix:

G =



1 1 . . . 1

a1 a2 . . . an

a2
1 a2

2 . . . a2
n

...
...

. . .
...

ak−1
1 ak−1

2 . . . ak−1
n


.

Note that a polynomial of deg< k over a field has at most k− 1 zeros. The distance

between any two codewords for C is at least d = n− (k − 1) = n− k + 1. Also, there is a

polynomial of deg< k (e.g., p(x) = Πk−1
i=1 (x − ai)) that has exactly k − 1 zeros. Therefore,

the minimum distance of C is d = n− k + 1. So, Reed-Solomon codes are MDS codes.
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Chapter 2

Secret Sharing Schemes

2.1 Introduction

Secret sharing consists of a set of players, a dealer, and a distribution scheme. In

1979, Blakely [3] and Shamir [26] independently proposed a secret sharing scheme (SSS)

where n participants each receive a share and any m or more of them can together recon-

struct the secret with their appointed shares. The construction prohibits fewer than the

designated number m to obtain the secret. Such a scheme is called an (m,n)-threshold

scheme. More generally, the desired result of secret sharing schemes is that the authorized

subsets of players, called an access structure, are the only groups to be able to reveal the

secret. Further, using the shares of an unauthorized group will not disclose the secret, or

any information pertaining to the secret. The objectives of an SSS are: 1) any subset of the

access structure may obtain the message, and 2) any subset in the unauthorized set may

not retrieve any information concerning the message. Following in Blakely’s and Shamir’s

footsteps, other mathematicians have developed schemes of their own and have also pointed

out the correlation between secret sharing schemes and coding. One such correlation, dis-

covered by Massey, is the construction of secret sharing schemes employing linear error

correcting codes.

Massey utilized linear codes for secret sharing schemes and pointed out the relation-
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ship between the access structure and the codewords. Two questions then naturally arise:

which access structures can be realized by linear codes, and how does one construct a code

that realizes an access structure? In his paper, van Dijk [37] proposed a few solutions to

these problems by focusing his attention on linear codes. As a response to van Dijk’s ap-

proach, other means of characterizing the access structure realized by linear codes entered

the picture.

The argument presented in this thesis is that there exists a linear code for a given

access structure if and only if the system of quadratic equations GH> = 0 is consistent,

where the matrices G and H are constructed from the access and adversary structures. As

we shall see, there exists a monotone span program computing the access structure if and

only if the system of quadratic equations has a solution. Utilizing these techniques, we

discuss characteristics of such an access structure and briefly discuss the upper and lower

bounds of the number of shares required.

2.2 Background

Recall that a secret sharing scheme consists of a dealer, a set of participants, and a

distribution scheme so that certain subsets of the set of participants, called authorized sets,

can reconstruct the secret, but any other subsets of participants, called unauthorized sets,

cannot reconstruct the secret. The authorized sets form an access structure. More precisely,

let P = {1, 2, . . . , n} be the set of participants. An access structure Γ on P is a collection

of subsets of P that is monotone increasing, i.e., every subset B of P that contains a subset

A ∈ Γ must be in Γ. The complement of Γ, denoted by R, is called the adversary structure,

i.e., the union of Γ and R consists of all of the subsets of P . Then R is a collection of all

the unauthorized sets that is monotone decreasing. (Monotone decreasing means that if

A ⊂ B and B ∈ R, then A ∈ R.)
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Example 1 Let P = {1, 2, 3, 4} and

Γ = {(1, 2), (1, 3), (1, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), (1, 2, 3, 4)}.

Then the complement of Γ is R = {(1), (2), (3), (4), (2, 3), (2, 4), (3, 4)}. One may note that

Γ is monotone increasing and R is monotone decreasing. For example, (1, 2) ∈ Γ implies

(1, 2, 3) ∈ Γ and (2, 3) ∈ R implies (2) ∈ R.

The access structure Γ can be completely determined by the minimal subsets, i.e., the

subsets that no longer have access to the secret s if any member is removed from the group.

We define

Γ− = {X|X is minimal in Γ}.

Similarly, R can be completely determined by the maximal subsets, i.e., the subsets Y that

can reconstruct the secret when any player i /∈ Y is added to the group. We define

R+ = {Y | Y is maximal inR}.

For Example 1 above,

Γ− = {(1, 2), (1, 3), (1, 4), (2, 3, 4)} and

R+ = {(1), (2, 3), (2, 4), (3, 4)}.

Let Γ be any access structure on P = {1, 2, . . . , n}. Let S be a space of the messages

to be shared and Si be the space of shares for participant i, 1 ≤ i ≤ n. Also, let V be a

finite set used for randomization purposes. Let τ be any map

τ : S × V → S1 × S2 × · · · × Sn,
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called a distribution scheme. A dealer can then use τ to distribute a message s ∈ S as

follows:

1. Pick a random vector a ∈ V .

2. Compute τ(s, a) = (k1, k2, . . . , kn).

3. Securely distribute the share ki to player i, 1 ≤ i ≤ n.

We use Shannon’s entropy to define security for a distribution scheme. For this

purpose, we view s, a, and ki as random variables. More precisely, assume the message

space S has an arbitrary probabilistic distribution, not necessarily uniform, so s can be

viewed as a random variable on S under this distribution. In practice, the dealer picks a

vector a ∈ V according to a uniform random distribution independent of s. Through τ , this

induces a random variable k = (k1, k2, . . . , kn) on S1 × S2 × · · · × Sn. A distribution map τ

gives a secret sharing scheme (SSS) for Γ if the following conditions are satisfied:

1. Correctness (zero-error communication): H(s|kX) = 0 if X ∈ Γ, and

2. Privacy : H(s|kX) > 0 if X /∈ Γ,

where kX = (ki)i∈X denotes the collection of shares belonging to the group X. In the

first condition, H(s|kX) = 0 implies that the group X can determine the secret s using

only the shares ki, i ∈ X. The second condition means that only using the shares ki,

i ∈ X, one cannot completely determine s (no matter how much computing power one

may have), even though one may obtain some partial information on s. A more specific

type of privacy is perfect secrecy: for perfect secrecy, H(s|kX) = H(s) for all s ∈ S and

for X /∈ Γ, i.e., the mutual information I(s, kX) = 0. In other words, the group X cannot

obtain any information pertaining to the secret. A secret sharing scheme is called a perfect

secret sharing scheme (PSSS) if it achieves perfect secrecy: H(s|kX) = H(s) for all X /∈ Γ,

i.e., the participants in an unauthorized set X cannot get any information on s.

In practice, we take S, Si and V to be linear spaces over Fq, and τ to be a linear map.

In this case, τ can be described more explicitly. Specifically, suppose S = Fkq , V = F`−kq ,
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and Si = Fpiq , where pi is the number of shares given to player i, 1 ≤ i ≤ n and ` ≥ k.

For 1 ≤ i ≤ n, let Gi be an ` × pi matrix over Fq of player i, which can be made public.

We represent τ by a block matrix G = (G1, G2, . . . , Gn) so that with a message s and a

randomly chosen vector a, the dealer computes

τ(s, a) = (s, a)G = (k1, k2, . . . , kn)

and then distributes ki secretly to player i. In this scenario, the SSS is called a linear secret

sharing scheme (LSSS).

This scheme can be viewed in the context of linear codes. In fact, G = [G1, G2, . . . , Gn]

is an ` × N matrix over Fq where N =
∑n

i=1 pi and G generates a linear code C over Fq,

i.e.,

C = {xG| x ∈ F`q} ⊆ FNq ,

where each player i receives the pi corresponding coordinate(s) of a codeword c ∈ C. While

not the focus of this thesis, we direct the reader to an interesting use of algebraic geometric

codes for SSS that achieves a low number of distributed shares found in [5].

A desirable goal when constructing a secret sharing scheme is to minimize the num-

ber of distributed shares. More concretely, an ideal secret sharing scheme occurs when

|S| = |Si| for 1 ≤ i ≤ n, i.e., each player receives the same number of shares as the length

of the message s. However, not all access structures can be realized by an ideal scheme;

therefore, we would like to minimize the number of shares distributed. A concept closely

tied to the number of distributed shares is the information rate. If the number of shares

given to each player is equal, the information rate of an SSS is defined as

ρ =
log2 |S|
log2 |Si|

.
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However, if one player receives more shares than another, then the information rate is

defined as

ρ =
log2 |S|

maxi∈P (log2 |Si|)
,

i.e., ρ represents the inbalance in the size of the message and the sizes of the distributed

shares. Notice that in a perfect secret sharing scheme, ρ ≤ 1, and in the ideal SSS, ρ = 1.

Hence, we would like to create a scheme realizing Γ with information rate ρ as close to 1 as

possible.

An important question then arises: given any access structure Γ, how does one find

an LSSS that realizes Γ with the optimal information rate, i.e., a scheme which minimizes

the number of shares distributed?

2.3 Explicit Constructions

In order to answer this question in depth, we need to better understand the concept

of linear secret sharing schemes. We first examine established constructions of LSSSs. The

first and foremost is Shamir’s SSS, which is based on a Reed-Solomon code.

2.3.1 Threshold schemes via Reed-Solomon Codes

In 1979, Shamir [26] constructed one of the most famous LSSSs. In Shamir’s scheme

for n players, any set of m players makes up an authorized subset. To use his scheme:

1. Let ci ∈ Fq represent a publicly known number of player i, 1 ≤ i ≤ n, where each ci

is distinct.

2. Let s ∈ S = Fq be any message, where q exceeds the number of players n.

3. Randomly choose m− 1 elements a1, a2, . . . , am−1 ∈ Fq where m < n.

4. Construct a degree (m− 1) polynomial f(x) ∈ Fq[x] such that

f(x) = s+ a1x+ a2x
2 + . . .+ am−1x

m−1.
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5. Compute the shares f(ci), 1 ≤ i ≤ n.

6. Distribute the share f(ci) to participant i, 1 ≤ i ≤ n.

Through the process of Lagrange interpolation, any m holders of these shares may recon-

struct f(x) and thus find s = f(0). This scheme is an (m,n)-threshold scheme: the dealer

creates n shares from the secret and only m of them are needed to retrieve the message.

Shamir’s scheme only permits one share per participant, making it an ideal SSS.

Nonetheless, this limits the number of access structures the scheme can realize. Ito et al.

[11] constructed the multiple assignment (m,n)-threshold, which allows more shares per

participant. Let P = {1, 2, . . . , t} and Gi = {x1, x2, . . . , xpi} be the publicly known vector

of participant i, where pi is the number of shares participant i acquires. In addition, let

f(x) be a constructed polynomial as described in Shamir’s scheme. Then each player i

receives a set of shares:

ki = {f(x1), f(x2), . . . , f(xpi)},

where xj ∈ Gi for 1 ≤ j ≤ pi, 1 ≤ i ≤ t, and
∑t

i=1 pi = n.

It follows that a group X ⊆ P = {1, 2, . . . , t} may reconstruct the secret if and only

if
∑

i∈X pi ≥ m. An access structure may be defined as:

Γ = {X ⊆ P :
∑
i∈X

pi ≥ m}.

Example 2 Let P = {1, 2, 3, 4} and let Γ− = {(1, 2), (1, 3), (1, 4), (2, 3, 4)}. Then it follows

that on giving player 1 two shares and the others only one share, the (3,5)-threshold scheme

computes the desired authorized subsets.

However, neither of these schemes can realize an arbitrary access structure; thus,

we turn to a more general construction.
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2.3.2 Schemes for General Access Structures

Ito et al. [11] constructed an extremely general (though impractical) secret sharing

scheme which realizes any given access structure Γ−. Let P = {1, 2, . . . , n} and Γ− be any

access structure. Let the message s ∈ S = Fq. Then the dealer does the following:

1. For each X ∈ Γ−, the dealer randomly and independently picks |X| shares r(X, i) ∈ Fq

for i ∈ X, so that ∑
i∈X

r(X, i) = s,

(Note: only |X| − 1 of the shares are chosen randomly with the last share being

determined by the above relation).

2. The dealer distributes the vector (r(X, i))X∈Γ to participant i, 1 ≤ i ≤ n.

For any authorized set X ⊆ P , the participants in X can reconstruct the secret as follows:

s =
∑
i∈X

r(X, i).

Notice that an unauthorized set is just a subset of an authorized set. As a result, the shares

belonging to an unauthorized set are randomly and independently chosen. So, one can show

that, for any X ∈ R, the unauthorized set will not be able to reconstruct the secret s nor

glean any information pertaining to s.

Though this scheme can compute any given access structure, the number of shares

required is large. For example, in the (m,n)-threshold scheme, the number of shares for i

using the described scheme for Γ− is

 n− 1

m− 1

 ,

which is exponential in n when m ≈ n/2. In comparison, using linear codes in Shamir’s

scheme, each participant i receives only one share. Thus, the question still remains: how
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does one construct an LSSS that minimizes the number of distributed shares? van Dijk

attempts to answer this question by giving a method for finding a matrix G that realizes

Γ, i.e., a matrix that defines a SSS for Γ.

2.4 van Dijk’s Approach

Before we look at van Dijk’s scheme, we need to first revisit the structure of an

LSSS. Let S = Fkq be the message space, V = F`−kq be a finite set, and Si = Fpiq be the share

space for participant i, 1 ≤ i ≤ n, where ` ≥ k. Recall the linear map

τ : S × V → S1 × S2 × . . .× Sn

that transforms messages to shares. We can represent τ as a matrix form by a block matrix

G = [G1, G2, . . . , Gn] so that for message s ∈ S and vectors a ∈ V , the shares for player i

are given by (s, a)Gi where Gi is a publicly known matrix of player i ∈ P = {1, 2, . . . , n}.

Let Γ− be any access structure and X ⊆ P . Let

GX = (Gj1 , Gj2 , . . . , Gjm) =

G(1)
X

G
(2)
X


represent the concatenation of the publicly known matrices Gi for i ∈ X where G

(1)
X ∈

Fk×p{X}q , G
(2)
X ∈ F(`−k)×p{X}

q , and p{X} =
∑

i∈X pi. (Note that G
(1)
X has k rows, which is the

size of the secret.)

Lemma 1 ([37], Theorem 1) The construction based on the matrices Gi, i ∈ P , defines a

perfect secret sharing scheme for access structure Γ on P and space of possible secrets S if

and only if

1. for every X ∈ Γ there exists a B ∈ Fp{X}×kq such that (Ik, 0)> = GXB, and

2. for every X /∈ Γ, rank(G
(2)
X ) = rank(GX).
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A set of matrices Gi that satisfies the above properties is called suitable.

Proof: The first direction is obvious due to the definiton of a PSSS. We will then move on

to the converse. Let Γ− be an access structure on a set P . Let s ∈ S be a message to be

distributed by the dealer and Gi be the publicly known matrices of players i ∈ P . Suppose

the above two conditions hold. Then with the encoded shares, the process of revealing the

secret is two-fold:

1. The authorized subset X finds the unique and obtainable matrix B such that

Ik
0

 = GXB.

2. With the acquired matrix B, the participants in X may compute

(s, a)GXB = (s, a)

Ik
0

 = s

to reveal the secret s ∈ S.

Consequently, H(s|kX) = 0 and the scheme achieves correctness.

Another facet to examine is perfect secrecy. Suppose X /∈ Γ−. Then by the second

condition, rank(G
(2)
X ) = rank(GX) implies

GXB =

Q 0

D 0


where D is of rank m for some m ≤ `− k and Q ∈ Fk×kq . Hence,

(s, a)GXB = sQ+ aD

is a uniform random vector for any s ∈ S since D has m linearly independent columns and

the vector a is chosen randomly. Thus, perfect secrecy is attained. �
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Example 3 Let P = {1, 2, 3, 4} and the access structure Γ− = {(1, 2), (1, 3), (1, 4), (2, 3, 4)}.

Let S = (s1, s2) and choose a = (a1, a2). Then the shares are the following:

1. (s, a)G1 = (a1, a2) with p1 = 2

2. (s, a)G2 = (s1 + a2, s2 + a1) with p2 = 2

3. (s, a)G3 = (s2 + a2, s1 + a1) with p3 = 2

4. (s, a)G4 = (s1 + a1 + a2, s2 + 2a2) with p4 = 2

where G =



0 0 1 0 0 1 1 0

0 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0

0 1 1 0 1 0 1 2


It is easy to verify that for every subset of Γ−, the secret s = (s1, s2) can be recovered. Also,

since the length of the secret is two and each player receives two shares, the scheme is an

ideal secret sharing scheme for Γ−.

As mentioned earlier, an LSSS can be described in terms of a code C. van Dijk uses

this approach to introduce and prove his major theorem. Let C be a linear code over Fq

and let the parity-check matrix for C be

H =

Ik
0

∣∣∣∣∣∣∣G
 ∈ F`×(k+N)

q , (2.1)

where G = [G1, G2, . . . , Gn] is the concatenation of the publicly known matrices and N =∑n
i=1 pi is total number of shares distributed. The code C can then be defined as follows:

C = {c ∈ F(k+N)
q | cH> = 0}.

One can view the lastN coordinates of a codeword c ∈ C as a representation of an authorized

subgroup X ∈ Γ− when using the support of c. With this thought in mind, we define the
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support of c.

Definition 1 ([37]) Let c = (c1, c2, . . . , cn) ∈ FNq where ci ∈ Fpiq represents the coordinates

of the vector belonging to player i. The support of c, Supp(c), is defined as the set of

coordinates i, 1 ≤ i ≤ n, for which ci 6= 0, i.e.,

Supp(c) = {i : ci 6= 0}.

The support of the codeword c can then be viewed as the set of participants i which obtain

at least one share. Similar to the concept of suitable matrices, the set of vectors C can also

define a PSSS.

Definition 2 ([37]) Let Γ− = {X1, X2, . . . , Xr} be a minimal access structure and let c(i) =

(c1, c2, . . . , cn) ∈ FNq . Then the set of vectors K = {c(1), c(2), . . . , c(r)} ⊆ FNq is said to be

suitable for the access structure Γ if K satisfies the following properties:

1. Supp(c(j)) = Xj for 1 ≤ j ≤ r.

2. For any vector (µ1, . . . , µr) ∈ Frq, such that
∑r

j=1 µi 6= 0, there exists a set X ∈ Γ−

satisfying X ⊆ Supp(
∑r

j=1 µjc
(j)).

(Note that the last condition helps define the monotonicity of an access structure.) Both

a set of matrices and a set of vectors can then define access structures. A few questions

then arise: Is there any correlation between a suitable set of matrices and a suitable set

of vectors for an access structure Γ? If there exists a suitable set of matrices for Γ−, does

there exist a suitable set of vectors, and vice versa? van Dijk answers these questions with

the following theorem:

Theorem 1 ([37], Theorem 5) Let Γ = {X1, ..., Xr}. Let Gi, i ∈ P , be an l × pi matrix

over Fq such that the set {G1, G2, . . . , Gn} is suitable. Define H as in Equation 2.1 and

I as the set {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ k}. Then there exists a suitable set of vectors
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{c(i,j) ∈ FNq : (i, j) ∈ I} such that G′H> = 0, where G′ is a generator matrix of the code

defined by the linear span of the vectors (ej , c(i,j)), (i, j) ∈ I.

A partial converse is as follows:

Let the vectors ci,j ∈ FNq , (i, j) ∈ I, define a suitable set of vectors for Γ. Let H be a

parity-check matrix of the code defined by the linear span of the vectors (ej , c(i,j)), (i, j) ∈ I,

i.e., H is of the form Ik
0

∣∣∣∣∣∣∣G
 . whereG = [G1, G2, . . . , Gn]

Then the set of matrices {G1, G2, . . . , Gn} is suitable for Γ.

Hence, we can construct a suitable set of vectors given suitable matrices for Γ, and

given a suitable set of vectors for Γ, we can easily construct a suitable set of matrices.

2.4.1 Direct Approach

van Dijk’s approach is complex due to the difficulty of finding the suitable vectors

or matrices. In the following, we present a simpler method for finding G and H when the

size of the secret is k = 1.

Let the block matrix G = [G1, G2, . . . , Gn] be the concatenation of the publicly

known matrices of the participants. Let s ∈ S be a message. Recall the linear map τ :

τ(s, a) = (s, a)G = (k1, k2, . . . , kn).

For the direct approach, the code C̃ is generated by

[g0, G1, G2, . . . , Gn].

where g0 = [1, 0, . . . , 0]>. Suppose C̃ defines an SSS for an access structure Γ. Then X ∈ Γ

if and only if g0 ∈ span{Gi| i ∈ X}; otherwise, X /∈ Γ. Hence, the access structure can be
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defined as:

Γ = {X ⊆ P | g0 ∈ span(Gi |i ∈ X)}. (2.2)

One may also define an authorized set by the support of a dual codeword.

Lemma 2 Let C̃ with generator matrix G̃ define an SSS for an access structure Γ. Let

X ⊆ P . Then X ∈ Γ if and only if there exists h = (h0, h1, . . . hn) ∈ C̃⊥ such that h0 = 1

and Supp(h \ {h0}) = X.

Another way of defining an unauthorized or an authorized set is the following:

Lemma 3 ([6]) For Y ⊆ P , Y ∈ R if and only if there exists a codeword c = (c0, c1, . . . , cn) ∈

C̃ such that c0 = 1 and ci = 0 for all i ∈ Y , i.e., Supp(c) ∩ Y = ∅.

With the access and adversary structures, we show a method to decide if there

is a code C̃ that realizes the access structure Γ. Let P = {1, 2, . . . , n} be the set of

participants, Γ− = {X1, X2, . . . , Xr} be any access structure, and R+ = {Y1, Y2, . . . , Ys} be

the corresponding adversary structure. Then we construct G̃ from R+ and H from Γ−.

First, let s × (1 + N) matrix G̃ generate code C̃. Then G̃ must have the following

form in order for the code C̃ to realize an access structure Γ:

G̃ = [1, G̃1, G̃2, . . . , G̃n], where G̃` =


g`1,1 . . . g`1,p`

...
. . .

...

g`s,1 . . . g`s,p`

 .

Letting (gi)
` = (g`i,1, . . . g

`
i,p`

) denote the ith row of G̃`, which belongs to player `, we require

(gi)
` = 0 if and only if ` ∈ Yi. In this construction, the columns (g1)`, (g2)`, . . . , (gp`)` of G̃`

belong to player ` and each entry gi,j 6= 0 of G̃ is unknown at the moment. Additionally,

the number of shares, p`, distributed to player `, is chosen to minimize the total number of

shares distributed. Note that
∑n

`=1 p` = N .
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Similarly,

H = [1, H1, H2, . . . ,Hn], whereH` =


h`1,1 . . . h`1,p`

...
. . .

...

h`r,1 . . . h`r,p`


Letting (hi)

` denote the ith row of H` that belongs to player `, we require (hi)
` 6= 0 if and

only if ` ∈ Xi. The entries hi,j 6= 0 of H are also unknown.

Using the above constructed matrices from Γ andR, we create a linear secret sharing

scheme that realizes the access structure Γ.

Theorem 2 ([6]) Given access structure Γ and the number of distributed shares pi to player

i, there exists a linear code C̃ over Fq if and only if G̃H> = 0 has a solution over Fq, where

G̃ and H are constructed from Γ− and R+ respectively.

Using Lemmas 2 and 3 and Equation 2.2, we now prove Theorem 2.

Proof of Theorem 2:

Suppose C̃ is a linear code with generator matrix G̃ = [g0, G̃1, G̃2, . . . , G̃n], which computes

an access structure Γ. Then by Lemma 3, for all Yi ∈ R = {Y1, . . . , Yt} there exists a

codeword gi = (g0, g1, . . . , gn) ∈ C̃ such that g0 = 1 and gj = 0 for all j ∈ Yi, i.e.,

Supp(gi) ∩ Yi = ∅. By Lemma 2, there exists h1, h2, . . . , hr ∈ C̃⊥ such that h0
j = 1 and

Supp(h) = X for X ∈ Γ. Hence, we can construct matrices G and H such that GH> = 0

Suppose G̃H> = 0 for the constructed matrices G̃ and H. Then we know

Supp(gi \ {g0
i }) ⊆ P \ {Yi} and Supp(hi \ {h0

i }) = Xi

by construction. Let C̃ be a linear code with G̃ as the generator matrix. Note that <

g, h >= 0 implies 1 + g1h1 + . . . gnhn = 0. Obviously, g0 = 1 ∈ span{gj \ {g0}} for

j ∈ Supp(h \ {h0}). Recall Equation 2.2

Γ = {X ⊆ P | g0 ∈ span(G̃i |i ∈ X)}.
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Then Supp(hi \ {h0
i }) = Xi ∈ Γ. It follows that P \ {Supp(gi)} = Yi ∈ R. �

Example 4 Let Γ− = {(1, 2), (1, 3)} and R+ = {(1), (2, 3)}. Suppose each participant

receives only one share, i.e., each player owns one column of G̃ and H. Then

G̃ =

1 0 g2
1,2 g3

1,3

1 g1
2,1 0 0

 andH =

1 h1
1,1 h2

1,2 0

1 h1
2,1 0 h3

2,3

 .
It follows that

G̃H> =

1 + g2
1,2h

2
1,2 1 + g3

1,3h
3
2,3

1 + g1
2,1h

1
1,1 1 + g1

2,1h
1
2,1


Letting the field be F5, a solution to the quadratic system of equations G̃H> = 0 will be

G̃ =

1 0 2 2

1 2 0 0

 andH =

1 2 2 0

1 2 0 2

 .
Hence, there is a linear code for the given access structure Γ− and N = 3 shares.

Example 5 Imagine that a research facility contains a top-secret research lab and in that

lab are deadly diseases, which may only be accessed when the following groups are present:

the president and vice-president; the president and two committee members; the vice-president

and two committee members; or all four committee members of the research facility. In this

scenario, we have the set P = {1, 2, 3, 4, 5, 6}, an access structure

Γ− ={(1, 2), (1, 3, 4), (1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (1, 5, 6), (2, 3, 4), (2, 3, 5),

(2, 3, 6), (2, 4, 5), (2, 4, 6), (2, 5, 6), (3, 4, 5, 6)},
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and an adversary structure

R+ ={(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4, 5), (3, 4, 6), (3, 5, 6),

(4, 5, 6)}.

Concerning this example, finding the solution to the system GH> = 0 is difficult and

tedious. However, one may find that the system is inconsistent for N = 6 and for N = 7,

where N is the total number of shares distributed. On the other hand, when N = 8 = n+ 2,

the access structure can be realized by a (4, 8)-threshold scheme where the president (player

1) and the vice-president (player 2) each receive two shares and the committee members each

receive one. Hence, by Theorem 2, GH> = 0 has a solution over Fq for some prime power

q. The specifics may be found in Section 4.1 along with the code constructed to narrow down

variables and equations.

2.4.2 Monotone Span Programs

Theorem 2 guarantees that a linear secret sharing scheme exists if GH> = 0 is

consistent. Once we know there is an LSSS realizing Γ, a natural inclination is to find such

an LSSS.

A monotone span program (MSP) is another approach to computing access struc-

tures, and it consists of four parameters: a field, a matrix M , a labeling function, and a

target vector. More specifically,

Definition 3 ([21]) A monotone span program M is given by a quadruple (F,M, φ, ε), where

F is a field, M is a (m×d) matrix over F with a labeling function

φ : {1, . . . ,m} → {1, . . . , n},

which assigns to every row of M a participant in P, and ε is a fixed non-zero vector, called

the target vector.
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Similar to linear secret sharing schemes, we can utilize an MSP to realize any given

access structure. Let the set of players be denoted as P = {1, 2, . . . , n}. Let A ⊆ P

be an arbitrary set and MA ∈ Ft×d represent the submatrix of M formed by the rows

of the participants in A. Then an MSP accepts A ⊆ P if and only if the target vector

ε ∈ span(MA) where MAi denotes the ith row of MA. Otherwise, the MSP rejects A.

Without loss of generality, we let ε be the concatenation of 1 ∈ Fk and 0 ∈ F`−k.

If A is accepted, there exists a recombination vector λ such that M>A λ = ε. Similar

to LSSSs, the players in possession of the recombination vector are able to decipher the

secret:

〈λ,MA(s, a)>〉 = 〈M>A λ, (s, a)>〉 = 〈ε, (s, a)>〉 = s

It follows that in order to utilize an MSP as an SSS for any access structure Γ, one

creates a matrix M that accepts each authorized set X and rejects each unauthorized set

Y .

Example 6 Let the monotone span program be (F5,M, ρ, ε) where

M =



1 2 3

1 4 1

3 1 2

1 1 1


and

ρ(1) = ρ(2) = 1, ρ(3) = 2, and ρ(4) = 3.

Note that d1 = 2, d2 = d3 = 1.

There exists a vector v ∈ F1×3
5 such that vM{1,2} = e1; specifically v =

[
2 4 0

]>
.

In addition, vM{1,3} = e1 where v =

[
2 4 0

]>
. Thus, the MSP M accepts the sets

{1, 2} and {1, 3}. On the other hand, there is no linear combination of the rows of either of

the submatrices M{1} and M{2,3} that produces e1. Thus, the MSP M rejects the sets {1}
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and {2, 3}. In conclusion, the MSP M computes the access structure Γ− = {(1, 2), (1, 3)}.

Now, we have the means to know when an MSP realizes an access structure Γ. Let

G be the matrix constructed from the adversary structure R+ and M = (G \ {g0})>. Then

we have the equivalence to Theorem 2:

There is an MSP with matrix M = (G \ {g0})> for Γ if and only if GH> = 0 is

consistent over F, where G and H are constructed from Γ− and R+ respectively.

Example 7 Recall Example 4. Setting M = (G \ {g0})>, we obtain an MSP with matrix

M =

0 2 2

2 0 0


which realizes the access structure Γ−.

2.5 Lower and Upper Bounds

An open question concerning secret sharing schemes concerns the efficiency of a

scheme, i.e., the number of shares distributed and the information rate. At the moment, the

available optimal schemes have information ratio (the inverse of information rate) of 2O(n),

where n is the cardinality of the access structure. Utilizing Shannon inequalities, Csirmaz

produced and proved a nearly optimal lower bound: “For every n there exists an n-party

access structure Γn such that every secret sharing scheme realizing it has information ratio

Ω(n/ log n)” [2]. Before this result, Karnin [13] made an observation that the number of

shares distributed to an authorized group must equal or exceed the secret’s size.

Additionally, Karchmer and Wigderson [12] used the concept of an MSP to find

a lower bound for the information ratio. An underlying feature of MSPs is the fact that

the rank of a matrix represents both the communicational complexity in an LSSS and the

computational complexity for reconstructing keys. Consequently, the rank of the MSP

matrix, otherwise known as the MSP complexity, provides the best means of determining
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the efficiency of an LSSS and as a result, it is a focal point in research of secret sharing

schemes. More specifically, in [12], Karchmer and Wigderson proved that if there is an MSP

of size N for some function, then there exists a scheme for the corresponding secret sharing

problem in which the sum of the lengths of the shares of all the parties is N . Thus, every

lower bound on the total size of shares in a secret sharing scheme is also a bound on the

size of MSPs for the same function. As a result, finding the best lower bound of an MSP

correlates to finding the best lower bound of the corresponding secret sharing scheme.

Additionally, graph theory, specifically polymatroids, comes into play.

Definition 4 ([23]) A polymatroid is a pair (Q, f), where Q is a finite set, and f is a map

f : P (Q)→ R satisfying the following properties.

1. f(∅) = 0.

2. f is monotone increasing: if A ⊆ B ⊆ Q, then f(A) ≤ f(B).

3. f is submodular: f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for all A, B ⊆ Q.

Employing polymatroids, the exact optimal information ratio has been found for all tree

defined access structures. Furthermore, the optimal information ratio of the majority of the

access structures with fewer than six players, and of the “access structures defined by graphs

with at most six vertices,” has been proven [23]. More information concerning polymatroids

and optimal bounds may be found in [23].

2.6 Conclusion

For any given access structure Γ, there is a secret sharing scheme realizing Γ. The

schemes discussed have been the traditional schemes, Reed-Solomon based schemes, and

monotone span programs. The question of optimality enters each scenario and has been

shown to be nearly Ω(n/logn) by Csirmaz. However, moving away from the established

Shannon’s inequalities, a better optimal information rate is yet to be shown. Thus, we have

the following open problems:
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• What are the characteristics of ideal structures?

• Can the current lower bound Ω(n/logn) be improved?

• Can we create an access structure where the number of shares linearly depends on the

number of participants?
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Chapter 3

Network Coding

3.1 Introduction

Recently, communication has rapidly moved to the area of IP networks. Messages

can be sent to any location in the world as long as one has connection to the internet. This

progression of technology has greatly changed the field of coding and brought about the

invention of network coding. Networking is generally pictured as a directed graph with the

sender represented as the initial (source) node, the vehicle as the edges, the intermediate

devices as the intermediate nodes, and the recipient as a receiver node. The sender initiates

the coding process by splitting a message into n packets and sending them to multiple

destinations. The packets are then transmitted from point to point throughout the network

until they reach their final destination. In the beginning of network coding, the packets were

unchanged during the transmission process and thus, collected little or no error. However,

the described process is highly susceptible to eavesdroppers, giving rise to the necessity

of encoding the packets. One solution is to let each intermediate node encode each of its

outgoing packets by sending a fixed linear combination of the packets received rather than

the uncoded packets. Consequently, information may be lost, and thus there is a need for

error-correcting codes. Cai and Yeung [4] took this challenge and found a means of using

the Hamming distance to produce an error-correcting code for a network code.
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At the turn of the 21st century, noncoherent networks became a possibility. In this

case, the intermediate nodes no longer have any knowledge of the underlying system, i.e.,

they are blind to the structure of the network and, as a result, are not able to retrieve

the message sent over the network. As one can imagine, this result has its benefits in the

internet world. In the noncoherent network, each intermediate node creates a random linear

combination of its received packets and sends those to the next destination.

Koetter and Kschischang [16] furthered the work on error control for a noncoherent

network, followed by Silva and Kschischang [33]. The remainder of this thesis will be

dedicated to Silva’s method, coset coding. Coset coding utilizes the rank metric and achieves

both correctness and privacy. One of the key factors of coset coding is the characteristic of

universal security when the eavesdropper is not allowed to tap a link more than once. In

[27], Shioji et al. prove that a network may not satisfy the condition of universal security

if the eavesdropper is permitted to tap a link on multiple occasions.

3.2 Rank Metric Codes

In this thesis, we examine network codes, specifically coset coding. A couple of

building blocks of network codes are the rank distance and the rank metric code. Let

X,Y ∈ Fn×mq . The rank distance between X and Y is defined as

dR(X,Y ) = rank(Y −X).

A rank metric code is a matrix code C ⊆ Fn×mq , which utilizes the rank metric. The distance

of C is the minimum distance between two distinct codewords X,Y ∈ C, i.e.,

dR(C) = min
X,Y ∈C
X 6=Y

(dR(X,Y )).

To ensure universal security (discussed in Section 3.4), we assume m ≥ n for the duration of

this thesis. Also, we only consider linear matrix codes in this thesis. Hence, the Singleton
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bound applies. Let C ⊆ Fn×mq be a matrix code with dimension k. Then

dR(C) ≤ n− k + 1.

Equivalently,

|C| = qk ≤ qn−d+1.

If dR(C) = n− k + 1, C is called a maximum rank distance (MRD) code. Note that when

m ≥ n, MRD codes are MDS codes. Three examples of an MRD code are the Gabidulin

code, the generalized Gabidulin, and the Cartesian product of an MRD code as described

in [8]. The Gabidulin code will be referenced later in Section 3.6.

3.3 Network Coding Layout

In this section, we describe the process of a network code. Suppose we want to send

n packets of size m from the source node I to designated receivers R1, . . . , Rt. Let G be

a directed graph composed of the source node, the receivers, the intermediate nodes, and

the unit capacity edges, which must have min-cut of at least n, i.e., the max flow rate is at

least n. Let s ∈ S be a message to be transmitted to the receivers. First, the source node

I splits the message s into n packets, each of length m. Let

X =



−X1−

−X2−
...

−Xn−


∈ Fn×mq

be the row concatenation of the n packets.

Then I sends linear combinations of X1, X2, . . . , Xn to the receivers through the

directed graph G. More specifically, for each adjacent edge e, the source node I does the

following:
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Figure 3.1: General Network Layout

I

r1 r2 . . .

. . . . . .

...
...

...
...

...

. . . . . .

R1 . . . . . . Rt

1. Computes a random linear combination

Pe = ceX

where ce represents the corresponding linear combination and is called the global coding

vector for edge e.

2. Transmits the packet Pe over edge e to the corresponding intermediate node r.

On obtaining the incoming packets, an intermediate node r:

1. Computes a random linear combination Pe = ceX of its received packets for each

outgoing edge e.

2. Transmits Pe over the corresponding edge e.

For simplicity, we denote the collection of receivers as R = {R1, R2, . . . , Rn}, the collection

of edges as ε = {e1, e2, . . . , en} and we let

C̃ =



−ce1−

−ce2−
...

−cen−
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be a row concatenation of the global coding vectors ce ∈ Fnq . Each receiver R can be

uniquely identified by the set Re of its incoming edges. Let C̃R be the submatrix of C̃,

composed of the global coding vectors ce such that e ∈ Re. Then the combination of the

received packets of R is defined as

Y (R) = C̃RX.

However, the linear combinations that a node receives may contain error. For example, if

C̃R does not have full rank, information pertaining to a packet Xi is lost. In this case,

the code C is called rank-deficient for R; otherwise, the code is called feasible. The rank

deficiency ρ of the network is defined as

ρ = n− min
R∈R

rank(C̃R)

where n ≤ s and n is the number of columns of C̃R.

3.4 Coset Coding

We now consider the scheme coset coding, which was constructed by Ozarow and

Wyner, and remodified by Silva and Kschischang [33]. A coset code C is an [n, n−k] linear

code over the field Fmq with a parity-check matrix H ∈ Fk×nq . Let Ŝ = Fkqm be the message

space for C. Then for each message S ∈ Ŝ, the sender (source node) does the following:

1. Chooses an arbitrary matrix X ∈ Fnqm such that

S = HX.

2. Transmits X through a network to designated receivers R ∈ R as described in Section

3.3.
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In a noiseless network, the receiver R reconstructs S by simply evaluating HX, i.e., the

network achieves the condition correctness and H(S|Y (R)) = 0. In this section, we assume

the network is noiseless and thus, correctness holds.

Though we assume correctness, the network might not be private. Let µ denote

the maximum number of edges that an eavesdropper may intercept. Without loss of gen-

erality, we assume the eavesdropper intercepts exactly µ edges. Let the observation of the

eavesdropper be defined as

W = BX

where B ∈ Fµ×nq is a matrix composed of µ altered, intercepted linear combinations ce. As a

result, the eavesdropper obtains µ linear combinations of the n sent packets, X1, X2, . . . , Xn.

However, note that X, H, and S contain entries in the extension field Fqm ; whereas,

the entries of B are in Fq. This feature allows us to fix a parity-check matrix H such

that H(S|W ) = H(S), i.e., the observation W does not provide the eavesdropper with any

information pertaining to S.

Definition 5 ([33]) A coding scheme is universally secure under µ observations if H(S|W ) =

H(S) for each eavesdropper observation W = BX, for all B ∈ Fµ×nq

If m = 1, then the entries of B lie in the same field as the entries of H, X, and S.

Hence, it is impossible to create a universally secure coding scheme when m = 1. Suppose

m > 1. In [33], Silva and Kschischang prove there exists a universally secure coding scheme

and provide a means of construction. Before we provide a proof of the existence of a

universally secure coding scheme, we introduce a few theorems.

Theorem 3 (Theorem 4, [33]) If I(S;W ) = 0, then H(S) ≤ n− µ. Moreover, if H(S) =

k = n− µ, then

I(S;W ) = 0 ⇔ 〈H〉 ∩ 〈B〉 = 0.

Recall S = HX and W = BX. If H and B have any rows in common then some

information pertaining to S has been revealed. So, if 〈H〉 ∩ 〈B〉 = 0, then the rows are

linearly independent. We then obtain the following:
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Theorem 4 (Theorem 5, [33]) Let C be an [n,n-k]-linear code over Fqm with parity-check

matrix H ∈ Fk×nqm . If dR(C) = k + 1 and µ ≤ n− k, then

rank

H
B

 = rank(H) + rank(B), ∀B ∈ Fµ×nq

Conversely, if µ = n− k, then the above holds only if dR(C) = k + 1.

Proof: [33]

Let C be an [n, n − k]-linear code over Fqm with parity-check matrix H ∈ Fk×nqm . We are

going to first prove the forward direction by contradiction. Suppose dR(C) = k + 1 and

suppose there exists B ∈ Fµ×nq for µ ≤ n− k such that

rank

H
B

 < rank(H) + rank(B).

Let r = rank(B). Let T ∈ Fr×µq where T is full-rank such that

rank(TB) = r.

In addition, let D ∈ F(n−k−r)×n
q be of full rank such that 〈D〉 ∩ 〈TB〉 = 0, i.e.,

TB
D

 ∈ F(n−k)×n
q

is full rank. Let

B′ =

TB
D

 .
Let the matrix

M =

H
B′

 .
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Then it follows that

rank(M) = rank


H

TB

D

 ≤ rank

H
B

+ rank(D)

< rank(H) + rank(B) + rank(D)

= n.

Hence, rank(M) < n, i.e., there exists an x ∈ Fnq \ {0} such that Mx = 0. It follows that

H
B′

x = 0

giving usHx = 0. (Recall, H is a parity-check matrix for C, resulting in x ∈ C.) In addition,

B′x = 0, which implies that some information has been retrieved and thus, dR(C) ≤ k.

This contradicts our first assumption that dR(C) = k + 1. Therefore, if dR(C) = k + 1 and

µ ≤ n− k, then

rank

H
B

 = rank(H) + rank(B), ∀B ∈ Fµ×nq .

To prove the converse, let µ = n − k and suppose dR(C) ≤ k. Then there exists a

codeword x ∈ C \ 0 such that the rank(x) ≤ k, which implies that there exists a matrix

B ∈ F(n−k)×n
q with full rank such that Bx = 0. Clearly, Hx = 0 since x ∈ C and H is the

parity-check matrix. So, CS(B) ∩ CS(H) 6= ∅ where CS denotes the column space. This

implies that

rank

H
B

 < n = rank(H) + rank(B).
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Therefore, if µ = n− k and

rank

H
B

 = rank(H) + rank(B),

then dR(C) = k. �

It then follows that we may construct a universally secure network.

Theorem 5 (Theorem 7, [33]) Consider an (n × m,n)q linear coded network. Let C be

an [n,n-k]-linear code over Fqm with parity-check matrix H ∈ Fk×nqm . A coset coding scheme

based on H is universally secure under µ observations if k ≤ n−µ, m ≥ n, and C is MRD.

Conversely, in the case of a uniformly distributed message, the scheme is universally secure

under n− k observations only if C is an MRD code with m ≥ n.

In order to prove the above theorem, we will need the following lemma:

Lemma 4 (Lemma 6, [33]) Let H ∈ Fk×nqm and B ∈ Fµ×nq . Let X ∈ Fnqm be random, and

let S = HX and W = BX. Let

Ŝ = {Hx : x ∈ Fnqm}

and, for all s ∈ Ŝ, let

X̂s = {x ∈ Fnqm : s = Hx}.

1.) If X is uniform over X̂s, then

I(S;W ) ≤ rank(H) + rank(B)− rank

H
B

 .
2.) If S is uniform over Ŝ, then

I(S;W ) ≥ rank(H) + rank(B)− rank

H
B

 .
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Proof of Theorem 5:

Let k ≤ n− µ, m ≥ n and C be MRD. Assuming X is uniform, then by Lemma 1 part 1,

I(S;W ) ≤ rank(H) + rank(B)− rank

H
B

 .
In addition, since C is MRD,

rank

H
B

 = rank(H) + rank(B)

for all B ∈ Fµ×nq by Theorem 2. As a consequence, I(S;W ) = 0 and we have a universally

secure coset coding scheme based on H under µ observations. Concerning the converse, let

S be uniformly distributed and I(S;W ) = 0 with n − k observations. Then by Lemma 1

part 2,

0 = I(S;W ) ≥ rank(H) + rank(B)− rank

H
B

 ≥ 0

which implies

rank(H) + rank(B) = rank

H
B

 .
By the converse of the previous theorem, dR(C) = k + 1 and thus, C is MRD and m ≥ n.

�

3.5 Similarities between Coset Coding and Secret Sharing

We will now briefly point out some similarities between coset coding and secret

sharing schemes. Recall that in a linear secret sharing scheme, we have the following: Let

S = Fkq be the message space, V = F`−kq be a finite field, and Si = Fpiq be the share space of

participant i, where 1 ≤ i ≤ n and ` ≥ k. For 1 ≤ i ≤ n, let Gi be a publicly known `× pi

matrix over Fq of player i. We represent τ by a block matrix G = [G1, G2, . . . , Gn] so that
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with a message s and a randomly chosen vector a, the dealer computes

τ(s, a) = (s, a)G = (k1, k2, . . . , kn)

and then distributes ki secretly to player i.

In the case of coset coding, let Ŝ ∈ Fkqm be the message space, S ∈ Ŝ be the message,

and H ∈ Fk×nqm be the parity-check matrix. Then the sender chooses an arbitrary X ∈ Fnqm

such that S = HX.

Now, let X be chosen such that X> = S>Y for some fixed Y . Then X> =

[X>1 , X
>
2 , . . . , X

>
n ] can be viewed as the shares (k1, k2, . . . , kn) to be transmitted.

Additionally, in coset coding, if the eavesdropper has a linear combination of µ or

less shares, he is not able to obtain any information pertaining to the secret S. This closely

relates to the mutlitple sharing (µ, n)-threshold scheme.

3.6 Characteristics of Parity-Check Matrix H

The question that still remains is how to construct a universally secure scheme. In

this section, our goal is to construct a parity-check matrix H ∈ Fk×nqm with rank k such that

the coset coding scheme is universally secure. We utilize theorems from Section 3.4 and

ideas from other works to construct a matrix H such that H(S|W ) = H(S).

Let C be an [n, n − k] linear code unless otherwise specified. Let µ represent the

number of observations and W = BX be the information gleaned from the observations

made by the eavesdropper. In the following, we present a few approaches in constructing a

universally secure network.

1. Let µ ≤ n − k and m ≥ n. Let H be a parity-check matrix for an MRD code over
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Fqm . Then by Theorem 5, C is universally secure. For example, let

H =



g1 . . . gn

gq1 . . . gqn
...

. . .
...

gq
k−1

1 . . . gq
k−1

n


where gi ∈ Fqm . The Vandermonde matrix H is the parity-check matrix of the

Gabidulin code, which is an MRD code. Hence, the coset coding scheme is universally

secure.

2. Let C be an MDS code with the parity-check matrix H ∈ Fk×nqm such that any linear

combination of µ or less global coding vectors ci ∈ C will not be in 〈H〉. If this holds

true, then 〈H〉 ∩ 〈B〉 = ∅ since B is composed of the rows of linear combinations of

the global coding vectors. Letting µ ≤ n− k, then by Theorem 3, the coding scheme

is universally secure [25].

3. Another characteristic that arises in [25] is quite similar. Let K be a generator matrix

of a linear α-error-correcting code of dimension (n− 2α). Let Cw be a matrix of rank

µ with rows composed from the global coding vectors corresponding to the µ observed

edges. Let H ∈ Fk×nqm such that

rank

 H

CwK

 = k + µ

for all Cw. As a result,

rank

H
B

 = k + µ = rank(H) + rank(B)

for all B. Then by Part 2) from above, C is universally secure.
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4. Yet another strategy constructed was by Feldman et al. [7]. They concluded that a

universally secure code is formed by the following procedure:

Let T be an invertible n × n matrix over the field Fq. Let H ∈ Fk×nq be the matrix

composed of the first k rows of T−1. Then security “holds if and only if any set of

vectors consisting of:

1.) at most µ linearly independent edge coding vectors and/or

2.) any number of vectors from the first k rows of T−1

is linearly independent” [25].

3.7 The Problematic Eavesdropper

However, the coset coding scheme derived by Silva and Kschischang [33] did not

take into account the possibility of the eavesdropper tapping into the same link multiple

times. In [27], the authors point out the flaws of the above described network codes. More

specifically, they point out the fact that “each symbol is transmitted over multiple time

slots” [27]. In other words, X is split and the vector (X
(t)
1 , X

(t)
1 , . . . , X

(t)
1 )> is sent over the

network through m time slots where 1 ≤ t ≤ m.

In [27], Shioji et al. provide the following example to disprove universal security

when when an eavesdropper is permitted to tap into a link multiple times.

Let q = 2, k = 1, n = 2, and m = 2 over the field F4 = F2(α) where α is a root of the

irreducible polynomial f(x) = x2 + x+ 1. Let H = [1,α] be the parity-check matrix.

Then we obtain a [2,1] MRD code with S = X1 +αX2. Since the length is 2, we have

the following global coding vectors:

(0, 1)>, (1, 0)>, (1, 1)>
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X1 X2 X1 +X2 S

0 = (0, 0) 0 = (0, 0) 0 = (0, 0) 0
0 = (0, 0) α0 = (0, 1) α0 = (0, 1) α1

0 = (0, 0) α1 = (1, 0) α1 = (1, 0) α2

0 = (0, 0) α2 = (1, 1) α2 = (1, 1) α0

α0 = (0, 1) 0 = (0, 0) α0 = (0, 1) α0

α0 = (0, 1) α0 = (0, 1) 0 = (0, 0) α2

α0 = (0, 1) α1 = (1, 0) α2 = (1, 1) α1

α0 = (0, 1) α2 = (1, 1) α1 = (1, 0) 0

α1 = (1, 0) 0 = (0, 0) α1 = (1, 0) α1

α1 = (1, 0) α0 = (0, 1) α2 = (1, 1) 0
α1 = (1, 0) α1 = (1, 0) 0 = (0, 0) α0

α1 = (1, 0) α2 = (1, 1) α0 = (0, 1) α2

α2 = (1, 1) 0 = (0, 0) α2 = (1, 1) α2

α2 = (1, 1) α0 = (0, 1) α1 = (1, 0) α0

α2 = (1, 1) α1 = (1, 0) α0 = (0, 1) 0
α2 = (1, 1) α2 = (1, 1) 0 = (0, 0) α1

Figure 3.2: Chart for possible messages given the received values X1 and X2. Underlined

messages are the possible messages given the values X
(1)
1 and (X1 +X2)(2).

and the possible outgoing packets:

X1, X2, andX1 +X2.

Assume the eavesdropper obtains the following observation:

(X
(1)
1 , (X1 +X2)(2)) = (0, 1).

Then the only possible values for s are α0 and α, implying the message α2 was

eliminated from the possible choices (see Table 3.2). Consequently,

H(S|(X(1)
1 , (X1 +X2)(2))) 6= H(S),

eliminating the possibility of universal security.

In [27], a more general proof is provided that demonstrates the impossibility of
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obtaining a universally secure network coding scheme where the eavesdropper has the power

to re-select a link. In addition, Shioji et al. [27] give a scheme that is universally secure

under the more powerful eavesdropper.

3.8 Noisy Networks

We are now going to briefly discuss coset coding in a noisy network. Let R =

{R1, R2, . . . , Rt} denote the designated receivers and ε = {e1, e2, . . . , e|ε|} denote the edges

of the network. Let C̃ be the global coding matrix. Let X be the matrix of the n packets

created by the initial node I.

Recall that in a noiseless network, the received packets of R were represented by

Y (R) = C̃RX where C̃R was the route of the obtained packets. In the scenario of a noisy

network, some of the packets may become distorted or deleted. When either of these occur,

error has been added to the packet. As a result, the received packets of R are denoted as

Y (R) = C̃RX + FRZ,

where Z ∈ F|ε|×mq consists of the injected error packets, and FR ∈ F|ε|×|ε|q represents the

route to the node R of those injected error packets. So, the number of non-zero rows in

Z may be viewed as the number of erroneous packets. Let t be the maximum number of

erroneous packets injected into the network by either a malicious node or an eavesdropper,

and let ρ be the number of packets deleted.

In the following, we are going to construct a coset coding scheme with universal

security and correctness. First, let us consider universal security. Let C be an (n×m,n−ρ)q

linear code with t errors and µ observations where m ≥ n. Note that (n×m,n−ρ)q implies

that C has ρ rank deficiency. Let S′ ∈ F(n−µ)
qm and T ∈ Fn×nqm be nonsingular. Let

X = T

S′
V

 ,
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where V ∈ Fµqm is picked randomly and independently from S′. Let G be the last µ rows of

T>. Then we have the following:

Proposition 1 (Proposition 9, [33]) The above is universally secure under µ ≤ n − k

observations if the last n − k rows of T> form a generator matrix of an [n, n − k] linear

MRD code over Fqm with m ≥ n.

We now have two options to consider when creating a universally secure code:

1. If G is a generator matrix for an [n, µ]-linear MRD code over Fqm , then by Proposition

1 we have universal security for µ eavesdropped links.

2. If S′ =

[
0 S

]>
and k ≤ n − µ, then the resulting code is universally secure by

Theorem 5.

Now, let us consider correctness, i.e., H(S|Ri) = 0 for 1 ≤ i ≤ t. To be able

to achieve correctness, we introduce the term universally t-error-ρ-erasure-correcting codes

and a theorem concerning it.

Definition 6 ([33]) A coding scheme for an (n ×m)q linear coded network is universally

t-error-ρ-erasure-correcting if it is zero-error under the fan-out set

Yx = {(A, y) ∈ Fn×nq × Fm×nq |y = Ax+ Z, rank(A) ≥ n− ρ, rank(Z) ≤ t, Z ∈ Fn×mq }

The following theorem and its proof can be found in [33].

Theorem 6 (Theorem 2, [33]) Consider a deterministic encoder X = E(S), where E : Ŝ →

X̂, and let C = E(S) : S ∈ Ŝ. Then the encoder is universally t-error-ρ-erasure-correcting

if and only if dR(C) ≥ 2t+ ρ.

Let U =

S
V

. Then let E(S) = G>U = X where G is the matrix composed of the

last k + µ rows of T>. By Theorem 6, the code achieves correctness if dR(C) ≥ 2t+ ρ.

Hence, we have a method of creating a code which achieves correctness and is

universally secure.
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3.9 Conclusion

In this section, we have shown that a universal secure network is achievable for no

more than µ observations of distinct links. We have proven that coset coding is universally

secure when an eavesdropper is only allowed to tap a link once. Also, we have shown how

one can construct a parity-check matrix H to make the scheme perfectly secure for every

set of µ or less observations. Some open problems and future work pertaining to network

coding, specifically coset coding, are the following:

• Can one generalize the described results beyond multicast networking?

• How can one improve the scheme proposed in [27], which allows the eavesdropper to

tap links multiple times?

• Can the coset coding scheme be improved?
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Chapter 4

Appendix

4.1 Secret Sharing Example

Recall the secret sharing scenario in example 2 (pg 20): Imagine that a research

facility contains a top-secret research lab and in that lab are deadly diseases, which may

only be accessed when the following groups are present: the president and vice-president;

the president and two committee members; the vice president and two committee members;

or all four committee members of the research facility.

Given the above framework, we are able to then construct the access structure

Γ− ={(1, 2), (1, 3, 4), (1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (1, 5, 6), (2, 3, 4), (2, 3, 5),

(2, 3, 6), (2, 4, 5), (2, 4, 6), (2, 5, 6), (3, 4, 5, 6)},

and adversary structure

R+ ={(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4, 5), (3, 4, 6), (3, 5, 6),

(4, 5, 6)}.

Initially, we would like to determine whether or not there is an LSSS which will

realize the access structure where N = 6, i.e., each person receives one share.
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With N = n = 6, we obtain the corresponding Γ− matrix

1 h1,1 h1,2 0 0 0 0
1 h2,1 0 h2,3 h2,4 0 0
1 h3,1 0 h3,3 0 h3,5 0
1 h4,1 0 h4,2 0 0 h4,6

1 h5,1 0 0 h5,4 h5,5 0
1 h6,1 0 0 h6,4 0 h6,6

1 h7,1 0 0 0 h7,5 h7,6

1 0 h8,2 h8,3 h8,4 0 0
1 0 h9,2 h9,3 0 h9,5 0
1 0 h10,2 h10,3 0 0 h10,6

1 0 h11,2 0 h11,4 h11,5 0
1 0 h12,2 0 h12,4 0 h12,6

1 0 h13,2 0 0 h13,5 h13,6

1 0 0 h14,3 h14,4 h14,5 h14,6


and the associated R+ matrix

1 0 g1,2 0 g1,4 g1,5 g1,6

1 0 g2,2 g2,3 0 g3,5 g2,6

1 0 g3,2 g3,3 g3,4 0 g3,6

1 0 g4,2 g4,3 g4,4 g4,5 0
1 g5,1 0 0 g5,4 g5,5 g5,6

1 g6,1 0 g6,3 0 g6,5 g6,6

1 g7,1 0 g7,3 g7,4 0 g7,6

1 g8,1 0 g8,3 g8,4 g8,5 0
1 g9,1 g9,2 0 0 0 g9,6

1 g10,1 g10,2 0 0 g10,5 0
1 g11,1 g11,2 0 g11,4 0 0
1 g12,1 g12,2 g12,3 0 0 0


The system of quadratic equation GH>=0 is found to be inconsistent when one

runs it through the program (further on in the appendix). The code determines that the

variables such as h6,6 must be zero, which is a contradiction to the construction of the

matrices.

In the substitution process, the quadratic equation g4,4h6,4 +1 = 0 becomes h6,6 = 0

through the following steps:

• Substitute 1: h6,4 = g1.6h2,4h6,6 + h2,4

• Result: g4,4g1,6h2,4h6,6 + g4,4h2,4 + 1 = 0
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• Substitute 2: g1,6 = −1/h4,6

• Result: −g4,4h2,4h6,6 + g4,4h2,4h4,6 + h4,6 = 0

• Substitute 3: h4,6 = h6,6

• Result: h6,6 = 0

As a result, there is no linear secret sharing scheme which realizes the given access

structure for N = n = 6. Thus, we move on to the next system and set N = n + 1 = 7.

In this case, we have two different scenarios: the president (vice-president) receives two

shares or a committee member receives two shares. Hence, we obtain the following when

the president receives two shares:



1 h1,1a h1,1b h1,2 0 0 0 0
1, h2,1a h2,1b 0 h2,3 h2,4 0 0
1 h3,1a h3,1b 0 h3,3 0 h3,5 0
1 h4,1a h4,1b 0 h4,2 0 0 h4,6

1 h5,1a h5,1b 0 0 h5,4 h5,5 0
1 h6,1a h6,1b 0 0 h6,4 0 h6,6

1 h7,1a h7,1b 0 0 0 h7,5 h7,6

1 0 0 h8,2 h8,3 h8,4 0 0
1 0 0 h9,2 h9,3 0 h9,5 0
1 0 0 h10,2 h10,3 0 0 h10,6

1 0 0 h11,2 0 h11,4 h11,5 0
1 0 0 h12,2 0 h12,4 0 h12,6

1 0 0 h13,2 0 0 h13,5 h13,6

1 0 0 0 h14,3 h14,4 h14,5 h14,6




1 0 0 g1,2 0 g1,4 g1,5 g1,6

1 0 0 g2,2 g2,3 0 g3,5 g2,6

1 0 0 g3,2 g3,3 g3,4 0 g3,6

1 0 0 g4,2 g4,3 g4,4 g4,5 0
1 g5,1a g5,1b 0 0 g5,4 g5,5 g5,6

1 g6,1a g6,1b 0 g6,3 0 g6,5 g6,6

1 g7,1a g7,1b 0 g7,3 g7,4 0 g7,6

1 g8,1a g8,1b 0 g8,3 g8,4 g8,5 0
1 g9,1a g9,1b g9,2 0 0 0 g9,6

1 g10,1a g10,1b g10,2 0 0 g10,5 0
1 g11,1a g11,1b g11,2 0 g11,4 0 0
1 g12,1a g12,1b g12,2 g12,3 0 0 0
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We similarly can construct G and H for the scenario of when a committee member

receives two shares. Concerning both of these cases, one finds that certain variables must

equal zero in order for the system GH> = 0 to hold. Thus, there is no solution over any

field, resulting in the fact that there is no linear secret sharing scheme which computes the

access structure for N = n+ 1 = 7.

Again, we add one to the number of shares dealt and obtain N = n + 2 = 8. We

have already briefly discussed the result in the content of this paper, but now we can go

into the details.

Let N = n+ 2 = 8. Then we have four choices:

1. The vice-president or president receives 3 shares.

2. The vice-president and president each receive an extra share.

3. Two of the chairmen receive an extra share.

4. A chairmen receives 2 shares.

Using the concept of the weighting system, we find 2.) to be more likely as it

resembles the multiple assignment scheme. Using option 2, we find that there is a solution

for a big enough field Fq. However, due to the complexity of the system, we revert to the

multiple assignment scheme. Let players 1 and 2 each receive two shares while the rest of

the players (3-6) each receive only one share.

Let the number of shares required to obtain the secret be 4. Then we have a (4,8)-

threshold. We can easily see that with the chosen weights, one obtains the access structure:

Γ− = {(1, 2), (1, 3, 4), (1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (1, 5, 6), (2, 3, 4), (2, 3, 5),

(2, 3, 6), (2, 4, 5), (2, 4, 6), (2, 5, 6), (3, 4, 5, 6)}

which is the desired access structure. Also, note that the adversary structure using the
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(4,8)-threshold would give us

R+ ={(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4, 5), (3, 4, 6), (3, 5, 6),

(4, 5, 6)}.

Thus, we may conclude that the linear secret sharing scheme (4,8)-threshold computes the

appropriate access structure for the given scenario and therefore, the quadratic system

GH> = 0 has a solution over a big enough field Fq.

If one returns to the four choices presented earlier, it may be found that the other

three choices are not realizable by an LSSS due to similar results of the previous scenarios

where N = n and N = n+ 1.

4.2 Code for Narrowing Choices (Sage)

The following code was compiled for the situation where N = n + 2 and players 1

and 2 receive two shares each. There were no contradictions found. However, due to the

vast number of fields and extension fields, it did not yield any concrete solutions.

from sage.all import *
import operator

varstr = (reduce(operator.add, [’greduce(operator.add, [’h

RR = PolynomialRing(QQ, 116, varstr)
Rvars = RR.gens()

class conv(object):
def init (self):
for i in range(116):

self. dict [” ”+str(i)] = Rvars[i]

R = conv()
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G = matrix([[1, 0, 0, R. 0, R. 1, 0, R. 2, R. 3, R. 4],

[1, 0, 0, R. 5, R. 6, R. 7, 0, R. 8, R. 9],

[1, 0, 0, R. 10, R. 11, R. 12, R. 13, 0, R. 14],

[1, 0, 0, R. 15, R. 16, R. 17, R. 18, R. 19, 0],

[1, R. 20, R. 21, 0, 0, 0, R. 22, R. 23, R. 24],

[1, R. 25, R. 26, 0, 0, R. 27, 0, R. 28, R. 29],

[1, R. 30, R. 31, 0, 0, R. 32, R. 33, 0, R. 34],

[1, R. 35, R. 36, 0, 0, R. 37, R. 38, R. 39, 0],

[1, R. 40, R. 41, R. 42, R. 43, 0, 0, 0, R. 44],

[1, R. 45, R. 46, R. 47, R. 48, 0, R. 49, 0, 0],

[1, R. 50, R. 51, R. 52, R. 53, R. 54, 0, 0, 0],

[1, R. 55, R. 56, R. 57, R. 58, 0, 0, R. 59, 0]]);

H = matrix([[1, R. 60, R. 61, 0, 0, R. 62, R. 63, 0, 0],

[1, R. 64, R. 65, 0, 0, R. 66, 0, R. 67, 0],

[1, R. 68, R. 69, 0, 0, R. 70, 0, 0, R. 71],

[1, R. 72, R. 73, 0, 0, 0, R. 74, R. 75, 0],

[1, R. 76, R. 77, 0, 0, 0, R. 78, 0, R. 79],

[1, R. 80, R. 81, 0, 0, 0, 0, R. 82, R. 83],

[1, 0, 0, R. 84, R. 85, R. 86, R. 87, 0, 0],

[1, 0, 0, R. 88, R. 89, R. 90, 0, R. 91, 0],

[1, 0, 0, R. 92, R. 93, R. 94, 0, 0, R. 95],

[1, 0, 0, R. 96, R. 97, 0, R. 98, 0, R. 99],

[1, 0, 0, R. 100, R. 101, 0, R. 102, R. 103, 0],

[1, 0, 0, R. 104, R. 105, 0, 0, R. 106, R. 107],

[1, 0, 0, 0, 0, R. 108, R. 109, R. 110, R. 111],

[1, R. 112, R. 113, R. 114, R. 115, 0, 0, 0, 0]])

K = G*H.transpose()

def find linear monomial(eqns, Rvars):
(var,val, i, eq) = (None,None,None,None)
for i in xrange(len(eqns)):

if eqns[i] == 0:
continue

coeffs = [ eqns[i].coefficient(Rvars[j]) for j in range(len(Rvars)) ]
degs = [c.degree() for c in coeffs]
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try:
ind = degs.index(0)
var = Rvars[ind]
other = (eqns[i] - var*coeffs[ind])
val = -1*coeffs[ind]*other
eq = eqns[i]
break

except:
pass

if var: print ’found LINEAR eq return (var, val, i, eq)

def find k monomial(eqns, k):
(var, val, ind, eq) = (None, None, None, None)
for i in xrange(len(eqns)):

if var: break;
if len(eqns[i].monomials()) > k: continue;
for v in eqns[i].variables():

if eqns[i].degree(v) ==1:
var = v
coeff = eqns[i].coefficient(var:1)
# make sure we only divide by a single monomial
if len(coeff.monomials()) !=1:

var = None
continue

val = -(eqns[i]-var*coeff)/coeff
ind = i
eq = eqns[i]
if val ==0:

print ind
(var,val, ind, eq) = find k monomial([coeff],k)
(ind, eq) = (i, eqns[i])

if var:
break

if var: print ’found eq return (var, val, ind, eq)

if name == ’ main ’:
eqns = reduce(operator.add, [list(row) for row in K])
subs count = 0
k=2
while k < 15:

var = None
# first find a variable that appears only in a linear monomial
(var, val, i, eq) = find linear monomial(eqns, Rvars)
# no linear monomial – look for a degree 1 appearing in fewer than k terms
if not var:

(var, val, i, eq) = find k monomial(eqns, k)
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if var:
subs count += 1
for j in xrange(len(eqns)):

if eqns[j] == 0:
continue

#print i,j
eqns[j] = eqns[j].substitute(var:val).numerator().change ring(QQ)

else:
print ”vars left:%d” % (116-subs count)
k += 1
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