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ABSTRACT	
  
 

 
Phase change materials (PCM) are generally used in building construction 

materials for their ability to absorb and release large amounts of energy when their phase 

change happens at their specific melting temperature.  This results in a significant 

increase in thermal mass of the building, a reduction in temperature fluctuations and 

therefore a reduction in heating and cooling loads. However, in order to properly select a 

PCM and optimize its integration in a specific building, the properties of building 

construction materials enhanced with PCM must be known. This research focuses on 

studying the effects of the concentration of a micro-encapsulated PCM on the physical, 

thermal, and mechanical properties of plaster mixtures. A series of gypsum wallboard 

samples with integrated Microtek 18D of varying concentration up to 40% in weight 

were prepared and analyzed using macro-scale analysis methods (i.e., thermal pile and 

flash method for measuring thermal conductivity, Thermogravimetric Analysis, 

Differential Scanning Calorimetry, and three-point bending test) and micro-scale analysis 

methods (i.e., Scanning Electron Microscopy, Energy Dispersive Spectroscopy) to 

evaluate the effect of PCM on the properties of gypsum wallboards, and the effect of the 

curing process on the properties of gypsum wallboards. The results suggest that the 

curing process has an impact on the effect of the PCM concentration on material 

properties.  
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CHAPTER ONE 

INTRODUCTION 
 

1.1 Background 

The building industry is known to be the largest energy consumption sector with 

more than 40% of the energy consumption and greenhouse gas emissions in the United-

States [1]. The continuously increasing energy consumption drives wide research efforts 

on renewable resources and energy saving solutions in buildings [2, 3]. The major part of 

energy consumption in buildings is electrical energy due to heating, ventilation, and air-

conditioning (HVAC), which varies by industrial, commercial or residential activity, 

extreme hot or cold climates, and time during the day [3]. Thus there is an increasing 

need of study on efficient energy storage HVAC systems. Among these approaches, 

natural energy source (i.e., solar energy) and thermal energy storage (TES) [4, 5] are 

considered two of the most promising ways to reduce thermal energy consumption. Solar 

thermal energy, concentrated solar power, biomass, cogeneration (i.e., combined heat and 

power), heat pumps and district heating are possible technologies that enable thermal 

energy storage.  TES is a heat or cool storage that allows “thermal energy to be stored 

temporarily for later use” [1]. TES technologies can be categorized as sensible, latent and 

chemical. While sensible heat refers to thermal energy due to a change in temperature, 

latent heat is heat absorbed or release during a process (such as phase transition) without 

temperature change, and chemical heat is heat released or absorbed through chemical 

reactions. While the principle of sensible heat storage is to increase thermal capacity, the 
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principle of latent heat storage is based on phase change (such as melting and 

crystallization).  Heat storage systems are characterized by their operating temperature, 

specific energy density, and the rate of energy storage.  

Phase change materials (PCM) are considered a latent heat storage technology. By 

comparing with other types of technology including conventional thermal storage 

materials, PCMs have some distinct advantage [6,7]: applications in cold storage, 

overheat protection, comfort temperature control, and optimized building systems. 

However, only a few products are available on the market due to the lack of knowledge 

on how to efficiently integrate PCM to construction materials such as concrete, gypsum 

wallboard, and plaster.  

PCM-enhanced building components have several anticipated advantages over 

conventional materials [7-9]: the ability to reduce energy consumption for space 

conditioning and reduce peak load, improvement of occupant comfort, compatibility with 

traditional technologies, and potential for applications in retrofit projects. A recent 

research project demonstrated that using PCM can achieve up to 25% energy savings in 

U.S. residential buildings [10]. Thus PCM-enhanced construction materials might have a 

high impact on the U.S. energy consumption. 

Many factors influence the successful use of PCM. These includes which the type 

of PCM and amount of PCM, encapsulation method, and building system design are the 

most important. Thus a good understanding on the characteristics of PCM and its effect 

on construction materials are crucial to help architects and builders gain greater 

knowledge of potential energy savings and select appropriate design options.  
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Research on the application of PCM in buildings has a history of more than 50 

years. In the 1940s, Telkes [10, 11] began to investigate the use of sodium sulfate 

decahydrate to store solar energy for space heating and solar energy storage in buildings. 

Since the 1970s and 1980s, several experimental approaches [7] were carried out on the 

application of different types of PCMs for solar energy storage, reduce peak loads and 

heating/cooling energy consumption. Since then, a considerable amount of relatively 

successful research efforts have been published that demonstrated the potential of PCMs 

for HVAC in various climate conditions [8]. Also, there has been some research on the 

development of new PCMs, the thermal properties of PCMs, the encapsulation of PCMs 

and numerical modeling. The function of PCM in buildings can be either passive, when 

PCM is included in building components, or active, when PCM is included in a 

circulating refrigerant for physically transporting heat to or from occupied building 

spaces. The goals of these two types of application of PCM in buildings are to make the 

best use of natural energy (mainly solar energy) for space heating and cooling [1]. This 

research focuses on passive applications, more specifically, on the integration of PCM in 

plaster gypsum boards. 

Several commercial PCMs with specific properties have been developed for 

applications in buildings. These materials are generally encapsulated in polymeric micro-

capsules, which allow them to be incorporated into construction materials. However, 

these products are few on the market due to the lack of knowledge on how to efficiently 

integrate PCM in construction materials [12]. In addition, there are no or limited national 

and international standards developed for integrating PCM into construction materials 
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[13]. Therefore, additional research is needed to understand how PCMs can impact the 

properties of these construction materials and increase their uses. 

1.2 Research Objectives 

This thesis is part of a larger project whose overall goal is to develop design 

guidelines for efficiently integrating PCM in buildings. This thesis focuses specifically on 

the characterization of the physical, thermal and mechanical properties of building 

construction materials enhanced with PCM, more specifically PCM-integrated gypsum 

wallboards. The goals of this research can be listed as follows: 

• Conduct a review of the development of laboratory and commercial PCMs 

about their use as construction materials, and their characterization 

methods. 

• Investigate the physical and thermal properties of different types of PCMs 

available (including Microtek 18D, Microtek 28D, Microtek 37D, 

Micronal DS5001) to evaluate their appropriate use in gypsum 

manufacturing. Products from these two manufacturers are selected due to 

their outstanding micro-encapsulation techniques which maintain the PCM 

thermally stable to a relatively high temperature. 

• Use macro-scale analysis methods (i.e., thermal pile and flash method for 

measuring thermal conductivity, Thermogravimetric Analysis (TGA), 

Differential Scanning Calorimetry (DSC), and three-point bending test) 

and micro-scale analysis methods (i.e., Scanning Electron Microscopy 

(SEM), Energy Dispersive Spectroscopy (EDS)) to evaluate: 
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• the effect of PCM on the properties of gypsum wallboards, and  

• the effect of the curing process on the properties of gypsum 

wallboards. 

The effect of PCM is evaluated by varying its concentration in the gypsum-PCM 

mixture system. Different curing processes are studied in order to achieve an 

optimization of the properties and productivity.  

1.3 Description of the Remaining Chapters 

The second chapter provides a literature review on research in this field. The third 

chapter discusses the details of the experimental methods used to carry out this research 

on the PCM integration with gypsum, which covers the preparation and test methods of 

the materials. The fourth chapter provides experimental results and analysis. The fifth 

chapter includes the conclusions from the research and presents future work. 
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CHAPTER TWO 

LITERATURE REVIEW 
 

2.1 Introduction to Phase Change Materials (PCM) 

Phase change material (PCM) is a type of latent heat storage (LHS) material. 

Unlike conventional materials, PCMs can be used to store and release a large amount of 

energy at a certain temperature at which their solid-liquid phase change occurs. When the 

ambient temperature of the PCM falls, the stored latent heat is released.  To be 

considered for building applications, there are a wide variety of PCMs which have a 

melting temperature lying in the human comfort temperature range of 20° to 30°C. 

However, for their use in buildings, they need to meet thermal-dynamical and kinetic 

requirements, be chemically stable, nontoxic and non-corrosive. Moreover, cost also need 

to be taken into consideration. 

The ideal PCM that can be used in thermal storage systems design should meet 

the following criteria [2]: 

• Thermal dynamical properties 

• Proper phase-transition temperature 

• High latent heat 

• High specific heat 

• High thermal conductivity 

• Kinetic properties 

• Minimum subcooling 
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• Sufficient crystallization rate 

• Physical properties 

• Appropriate density 

• Small volume change 

• Small vapor pressure 

• Economic considerations 

• Large scale availability 

• Low cost 

The melting point of PCM should be within the building operating temperature 

range. During daytime, when PCMs are heated to reach their melting temperature, they 

melt to liquid and absorb a large amount of heat from the environment while keep the 

temperature constant. When the temperature falls at night, the PCMs solidify and the 

stored latent heat is released to maintain the temperature constant. The latent heat and 

specific heat must be high to store a large amount of thermal energy and prevent 

subcooling. High thermal conductivity ensures the efficient charging and discharging of 

the stored energy. Subcooling of more than a few degrees may affect the efficiency of the 

system as it may shift the heat storage process out of the expected operating range [2]. A 

high enough density will allow a small size container. To reduce containment, small 

volume changes and small vapor pressure on phase transformation are required at 

operating temperatures. Thermal stability of PCM over time, which is related to the 

degradation of the PCM, is necessary to meet the life expectancy of the building. The 
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PCM should be nontoxic and noncorrosive to be safe for the human body and the 

environment. Also, availability and low cost of PCMs will dictate their use. 

2.2 Classification of PCM 

Generally, phase change materials are divided into three groups based on their 

composition: organic PCM compound, inorganic PCM compound, organic or inorganic 

eutectics [9]. A classification of PCMs is given in Figure 2.1. 

 
Figure 2.1 Classification of phase change materials [2] 

 
The typical melting temperature range of each group is shown in Figure 2.2. From 

this figure it can be noticed that the melting point of several types of paraffin and salt 

hydrate lie in the comfortable room temperature, which make them appropriate for 

building applications. According to The American Society of Heating, Refrigerating, and 

Air-Conditioning Engineers (ASHRAE) [14], the comfortable room temperature has been 

listed for different types of buildings and environments. For instance, the comfortable 
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room temperature for a single office that has an occupancy ratio of 0.1 per square meter 

is listed as 21.1°C (70°F). An overview of phase change materials is given in Table 2.1 

[15]. Many phase change materials are available in the required temperature range. 

However, a majority of phase change materials do not meet all the required criteria listed 

above. 

 
Figure 2.2 The melting enthalpy and melting temperature for the different groups of 

phase change materials (redrawn from [16]) 
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Table 2.1 Overview of the main phase change materials [17] 

Organic 
Compound 

Paraffins Inorganic 
compounds 

(Inorganic) Eutectics 

Polyglycol E 400 Paraffin C14 H2O 58.7%Mg(NO)3.6H2O 
+ 41.3%MgCls 

Polyglycol E 600 Paraffin C15-
C16 

LiClO3.3H2O 66.6%CaCl2.6H2O + 
33.3%MgCl2.6H2O 

Polyglycol E 
6000 

Paraffin C16-
C18 

Mn(NO3)2.6H2O 48%CaCl2 + 4.3%NaCl 
+0.4%KCl +47.3H2O 

Dodecanol Paraffin C13-
C24 

LiNO3.3H2O 47%Ca(NO3)2.4H2O + 
53%Ma(NO3)2.6H2O 

Tetradodocanol Paraffin C16-
C28 

Zn(NO3)2.6H2O 60%Na(CH2COO).3H2
O + 40%CO(NH2)2 

Biphenyl Paraffin C18 Na2CO3.10H2O 66.6%Urea + 
33.4%NH4Br 

HDPE Paraffin C20-
C33 

CaBr2.6H2O  

Trans-1,4-
polybutadiene 

Paraffin C22-
C45 

Na2HPO4.12H2O  

Propianide Paraffin C23-
C50 

Na2S2O3.5H2O  

Naphtalene Paraffin wax Na(CH3COO).3H2O  
Erthitol Octadecane Na2P2O7.10H2O  

Dimenthl-
sulfoxide 

 Ba(OH)2.8H2O  

Capric acid  Mg(NO3)2.6H2O  
Capricnic acid  (NH4)Al(SO4).6H2O  
Laurinic acid  MgCl2.6H2O  
Miristic acid  NaNO3  

Lakisol  KNO3  
Palmitic acid  KOH  
Stearic acid  MgCl2  
Acetamid  NaCl  

Propionamid  Na2CO3  
  KF  
  K2CO3  

 

Organic Compounds 

Paraffin waxes generally have a structure of CH3(CH2)nCH3 which is mostly a 

straight chain. Paraffin waxes could release a large amount of heat during the 
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crystallization of the (CH3)-chain. Both the melting point and the latent heat of alkane 

increases when the number of carbon atoms increases. Paraffins have several favorable 

characteristics [4] such as a wide range of melting temperatures from 20°C to 70°C and 

low vapor pressure in the melt. They do not undergo phase segregation and do not 

significantly degrade with thermal cycling. They are safe, reliable, predictable, less 

expensive and non-corrosive. However, they have some undesirable properties that limit 

their use such as their low thermal conductivity, non-compatibility with the plastic 

container and moderately flammable. 

Non-paraffin organic compounds [4] include wide organic materials such as fatty 

acids (caprylic, capric, lauric, myristic, palmitic and stearic, which contain between 8 and 

18 carbon atoms per molecule), esters, alcohols and glycols. Their melting temperature 

varies between 16°C and 65°C. However, they are relatively expensive [4]. 

Inorganic Compounds 

Salt hydrates and metallics are two common types of inorganic compounds [2]. 

Salt hydrates are inorganic salts associated with water. They usually have good thermal 

storage density, high thermal conductivity and are available at a reasonable price. 

However, they may loose thermal storage capacity as they melt congruently. 

Supercooling and phase segregation might also limit their efficient use. Metallics are 

metal compounds that are not extensively considered as phase change materials due to 

their weight disadvantage. However, they still have some attracting features, such as high 

heat of fusion per unit volume and high thermal conductivity [17]. 

Eutectics 
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There are three groups of eutectics: organic-organic, inorganic-inorganic, and 

organic-inorganic. Eutectics are mixtures which consist of two or more components in 

proportions such that the melting temperature is lower than that of any mixture composed 

of the same constituents in other proportions. They have sharper melting peaks and 

slightly higher thermal storage density per volume than organic compounds. However, 

there is currently limited research focused on the thermo-physical properties of eutectics 

such as chemical composition, latent heat, and thermal stability. 

2.3 PCM Integration into Support Materials 

Cai et al. [18-20] prepared several PCM materials based on high density 

polyethylene (HDPE)/paraffin nano-composites with organophilic montmo-rillonite 

(OMT), expandable graphite (EG) and different additives using a twin screw extruder. 

Their chemical composition, latent heat, and thermal stability were investigated. 

Intercalation of paraffin into the layers was observed, and the incorporation of OMT, EG 

and other additives greatly influenced the fire resistance and thermal stability. Hong et al. 

[21] prepared a series of form-stable phase change material polyethylene (as supporting 

materials)-paraffin (as dispersed phase) compound (PPC). Different types of HDPE that 

has different melting index and density were blended with refined or semi-refined 

paraffin of different weight percentage. It was found that the type of HDPE, rather than 

mass percentage of the HDPE plays an important role in phase change behavior of the 

material. There is also no significant difference observed in the phase change range of the 

materials while using different types of paraffin.  
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Karaipekli et al. [22-24] continuously explored form-stable phase change 

materials for thermal energy storage. They first prepared expanded graphite (EG) and 

carbon fiber (CF)/stearic acid (SA) PCMs with different mass fractions and studied their 

thermal conductivity. The result indicated that thermal conductivity could be greatly 

improved by adding EG/CF while the latent heat storage capacity was not significantly 

reduced. Then they prepared a eutectic mixture of capric acid (CA) and myristic acid 

(MA) incorporated with expanded perlite (EP) and evaluated the chemical compatibility 

and thermal properties. The result indicated that the phase change temperatures of CA–

MA/EP composite decreased, which can be due to “interaction between the carboxyl 

groups of CA and MA and the alkaline region in the EP such as K2O, Na2O, and CaO”. 

Later, their group prepared another type of phase change material which was made of 

capric acid (CA) and myristic acid (MA) incorporated with vermiculite (VMT). Their 

research successfully increased the thermal conductivity of the paraffin and eutectics by 

the addition of EG, CF, and VMT. They also demonstrated improved thermal and 

chemical stability of these materials. Sari et al. [25-31], who are co-researchers of the 

previous group, carried out research on several microencapsulated PCMs for latent heat 

thermal energy storage, which include paraffin/EG, paraffin/HDPE, n-octacosane, 

PMMA/n-heptadecane, capric acid (CA)/palmitic acid (PA) eutectic mixture, CA/EP, and 

SMA/fatty acid composites (stearic acid (SA), palmitic acid (PA), myristic acid (MA) 

and lauric acid (LA) composites such as SMA/SA, SMA/PA, SMA/MA and SMA/LA). 

The thermal properties such as proper melting temperatures, high latent heat storage 
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capacities, and improved thermal conductivity indicate their promising applications in 

TES. 

Wang [32] prepared and characterized fatty acid eutectic/polymethyl methacrylate 

PCM. The fatty acid eutectics were prepared by capric acid (CA), lauric acid (LA), 

myristic acid (MA) and stearic acid (SA) by self-polymerization. The fatty acid eutectics, 

CA–LA, CA–MA, CA–SA and LA–MA act as PCM while PMMA acts as the supporting 

material. There is no chemical reaction between the fatty acid eutectic and PMMA, and 

good compatibility between the fatty acid eutectic and PMMA was observed by FTIR. 

The latent heat and bending strength of these PCM demonstrated their potential use for 

energy saving in buildings.  

Wang [33, 34] improved the thermal conductivity of polyethylene glycol 

(PEG)/Silica dioxide (SiO2) composites by adding b-Aluminum nitride (b-AlN) powder, 

which has a higher thermal conductivity. They investigated the structure and thermal 

properties of the blends. The XRD pattern indicated a crystallite structure due to its close 

molecular packing and regular crystallization. Adding b-Aluminum nitride additive as a 

heat transfer promoter effectively improved the thermal conductivity of the material. 

However, latent heat decreased significantly. 

Liu et al. [35] prepared a microencapsulated form-stable PCM consisting of 

paraffin (as PCM core) and inorganic silica gel polymer (as hydrophilic coating) in 

different weight percentage via in situ polymerization. It was observed that the 

hydrophilic–lipophilic properties of this material tested using Washburn equation could 

be improved with higher silica gel weight percentage, and phase change temperature 
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increased with a higher amount of paraffin, which is promising for fire resistant 

applications.  

Zhang et al. [36, 37] tried to improve the thermal conductivity of form stable 

PCMs by introducing the same mass fraction of several kinds of additives among which 

exfoliated graphite was found to be most effective. The thermal conductivity increased 

with the mass fraction of exfoliated graphite, though the mechanical properties decreased. 

The experiment results matched well with numerical studies in the change of thermal 

conductivity. The same researchers then prepared n-tetradecane with different shell 

materials including acrylonitrile–styrene copolymer (AS), acrylonitrile–styrene–

butadiene copolymer (ABS) and polycarbonate (PC) by phase separation method [38]. 

Low molecular weight microcapsules with high phase change enthalpies were obtained, 

but their mechanical properties remained poor. 

2.4 Building Applications 

PCM in Wallboard 

Ahmad et al. [39] compared three different types of wallboards with PCM: “a 

polycarbonate panel filled with paraffin granulates, a polycarbonate panel filled with 

polyethylene glycol PEG 600, and a polyvinyl chloride (PVC) panel filled with 

polyethylene glycol PEG 600 and coupled to a vacuum isolated panel”.	
  Numerical 

simulation was conducted to compare with experiment results. Several experiments were 

set up to determine the heat response of wallboard products. The final results show that 

PVC panels filled with PEG 600 had a high heat capacity storage, which better fit the 

desired properties. Ahmad et al. [40] then studied the incorporation of PCM into light 
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envelopes, which are frequently used in buildings. They researched the different heat 

efficiencies of test-cell wallboard with and without PCMs by experiment methods and 

numerical simulation. 

Manz et al. [41] investigated an external wall system composed of transparent 

insulation material (TIM) and translucent PCM (CaCl2 · 6H2O), which “allows selective 

optical transmittance of solar radiation”. Experiments and calculations confirmed that the 

use of PCM has a positive effect on the utilization of solar gains. It showed that the 

thermal-optical properties of this TIM PCM material were very promising. 

Athenitis et al. [42] conducted an experimental and numerical simulation of PCM 

in building envelope materials. Gypsum wallboard impregnated with PCM was 

investigated under a full-scale outdoor test. The result showed that the temperature of the 

passive solar test room decreased significantly during daytime. It is effective in reducing 

energy consumption and peak load. Chen et al. [43] established a one-dimensional non-

linear mathematical model to analyze the heat conduction of wallboard with PCM. It was 

found that the energy storage and releasing properties of PCM wallboard results in the 

improvement of indoor comfort, solar radiation utilization and at least 17% in energy 

savings during the heating season. 

Heim et al. [44] studied the effect of the PCM on heat capacity of a PCM 

incorporated gypsum panels system. As PCM was used for the room lining, latent heat 

and the temperature of the air and surface were measured to compare with the gypsum 

plasterboard with no PCM. The energy required was also evaluated at the beginning and 
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at the end of the heating season. In conclusion, the PCM/gypsum panels resulted in 

considerable solar energy storage. 

In Borreguero’s research [45], experimental and mathematical model were built to 

test the Fourier heat conduction of different PCM concentration in the gypsum wall. The 

result showed that with the increase of PCM concentration and lower wall thickness, the 

thermal energy storage capacity increased. The thermal conductivity was independent 

from the PCM content. This research showed that the use of PCM in energy savings 

would be promising. Darkwa et al. [46] evaluated different phase change zones (narrow, 

intermediate, and wide) of laminated PCM drywall samples for passive-solar buildings. 

The result indicated that the PCM drywall sample with a narrow phase change zone 

performed most efficiently in utilizing heat energy and increased the minimum 

temperature at night. Yan [47] researched paraffin, including, n-heptadecane, n-

octadecane, n-eicosane, 46# paraffin, 48# paraffin and liquid paraffin in different 

concentration, for the application of PCM in the building envelope. Their phase change 

temperatures and latent heat varied with their composition and proportion, which could 

be used as a reference for PCM to be used in buildings. 

PCM in Concrete 

Bentz et al. [48] studied pre-wetted light weight aggregates (LWA) filled with 

PCMs in concrete technology.  The LWA has a relatively high porosity and heat 

absorption capacity, and they can be filled with PCM. Applications of PCM-filled LWA 

were investigated by experimental and numerical study: the increased energy storage 

capacity, reducing temperature rise which prevent cracking during the curing process, 
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and reducing the freeze/thaw cycles of concrete used in residential and commercial 

applications. Cabeza et al. [49, 50] developed concrete with PCM, which can achieve 

great energy savings in construction. They studied the thermal aspect of two real size 

concrete cubicles with PCM which has a melting temperature of 26.8°C. The result 

showed that adding PCM improved the thermal inertia as well as lowered the inner 

temperatures. 

Hunger et al. [51] evaluated the behavior of self-compacting concrete containing 

micro-encapsulated phase change materials. After evaluating the properties of fresh 

concrete, different amounts of microencapsulated PCM were mixed into the concrete, 

which decreased the thermal conductivity and increased the heat capacity. Significant 

bending strength had been observed, and a large amount of PCM was destroyed during 

the manufacturing process. However, the mechanical properties still satisfied most 

applications. 

PCM in insulation materials (foaming plastic) and other materials 

Chen et al. [52-54] prepared several types of PCM composite fibers by 

electrospinning. They used polyethylene terephthalate (PET) as supporting materials, and 

a series of fatty acids, lauric acid (LA), myristic acid (MA), palmitic acid (PA), stearic 

acid (SA) and stearyl stearate (SS) as PCMs. It was showed that fiber diameter, the 

surface quality of fiber, and latent heat were greatly influenced by the PCM/polymer 

mass ratio, but the type of PCM contributed more to determine the phase change 

temperature and latent heat. These fibers were found to “have good stable and reliable 

thermal properties”. Chen et al. [55,56] also investigated ultrafine fibers of PEG/ 
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cellulose composites. Polyethylene glycol/cellulose acetate (PEG/CA) composite were 

prepared by electrospining and its thermal storage and release properties were studied. A 

cylindrical structure with a smooth surface was obtained in which PEG distributes both 

on the surface and the core of the fibers. In their following research, the PEG/CA were 

prepared by crosslinking with toluene-2, 4-diisocyanate (TDI). The thermal stability was 

improved but enthalpy decreased. 

Castell et al. [57] tested the properties of macroencapsulated phase change 

materials with conventional and alveolar brick in real conditions. The result showed that 

the PCM can reduce the peak temperature up to 18°C and apparently prevent heat 

fluctuation in summer, which resulted in a large amount of electrical energy savings and 

CO2 emission reduction. 

Other building applications of PCM focus on heat transfer enhancement [59, 60], 

pipe insulation [60-63], phase change material floors and roofs [65-68], and hybrid 

heating system [68, 69].  
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CHAPTER THREE 

EXPERIMENTAL METHODS 
 
 

This chapter provides the materials used and experimental procedures of this 

research. The materials that are used to study the effect of PCM on gypsum wallboard 

include plaster of Paris and four different types of PCMs. The PCMs were characterized 

to gain a better understanding of their chemical composition and properties by Fourier 

Transform Infrared Spectroscopy (FTIR) and optical microscopy. Thermogravimetric 

Analysis (TGA) and Differential Scanning Calorimetry (DSC) were applied to detect the 

thermal stability of the PCMs. Then MPCM 18D, which was demonstrated to be 

appropriate for the curing process, was used to conduct an experiment to reproduce the 

industrial manufacturing process of gypsum wallboards. The control parameters include 

the weight percentage of PCM, the addition of aluminum powder, and the temperature 

and duration of the baking stage of the manufacturing processes. Other additives such as 

starch, glass fiber, and foaming agents are not added in this research in order to maximize 

the effect of PCM. However, these additives are suggested to be studied in the future. 

3.1 Preparation of Gypsum Wallboard with PCM  

3.1.1 Materials 

(a) Plaster of Paris 

The plaster of Paris (product name: USG® White Moulding Plaster) [70] was 

obtained from United States Gypsum Company. The material contains 95% plaster of 

Paris (CaSO4·nH2O, n=0.5-0.8) and 5% Crystalline Silica. 
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(b) PCM 

The four types of PCMs used were purchased from Microtek Laboratories and 

from BASF [71, 72]. As illustrated in Figure 3.1, these PCMs have a micro-encapsulated 

structure which consist of 85-90% PCM core, which usually are alcanes, and 10-15% 

polymer shell (which is listed as proprietary). Microencapsulation is a process to embed 

droplets of PCM into a spherical coating or shell. The micro-encapsulation technology 

has several advantages, such as preventing leakage and maintaining the PCM thermally 

and structurally stable. Research on PCMs encapsulated into shells of other shapes such 

as irregular shape, multi-walled PCM, and cores embedded in a matrix, or multi-cores 

PCM do exist [73]. However, the spherical PCMs are the most common among the 

different shapes due to its more convenient preparation and applications. The polymer 

shell is used to contain the PCMs when melted. The Microtek products are MPCM 18-D, 

MPCM 28-D, MPCM 37-D, which are named based on their melting temperature of 

18°C, 28°C, and 37°C, respectively.  The BASF product is Micronal® DS 5001 which has 

a melting temperature of 26°C. These PCMs exist as white dry powder similar to flour. 

The physicals properties of the PCMs are listed in Table 3.1. 

 
Figure 3.1 Microencapsulated PCM structure 
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The chemical composition and physical properties listed on their product 

technical data sheet are given in Table 3.1. 

Table 3.1 Listed chemical composition and physical properties of PCM used in this 
research [72, 73] 

Product 
Number 

Melting 
Point (C) 

Latent 
Heat 

(kJ/kg) 
Density 
(g/cm3) 

Core 
Material 

Particle 
Size 

(micron) 

Thermal 
Stable 

Temperature 
MPCM 

18D 18 
163 to 

173 0.9 
n-

Hexadecane 17 to 20 250 
MPCM 

28D 28 
180 to 

195 0.9 
n-

Octadecane 17 to 20 250 
MPCM 

37D 37 
190 to 

200 0.9 n-Eicosane 17 to 20 250 
Micronal 
DS5001 26 110 

0.25-
0.35 n-Alcane 

Not 
applicable 

Not 
applicable 

 

Fourier Transform Infrared spectroscopy (FTIR) analysis was done on the four 

PCMs using a Thermo-Nicolet Magna 550 FTIR in order to determine the chemical 

compositions of both the core and the polymer shell materials. The scans were done by a 

previous Master’s student (i.e., Esvar Subramanian). However the analysis of the scan 

data was done in this research and is presented in this thesis. FTIR [74] is used to identify 

functional groups of unknown substance by measuring the infrared spectrum of a 

substance. A list of possible bonds can be identified by comparing the experimental 

absorption spectrum with literature database. Multiplex techniques, i.e., gas 

chromatography-infrared spectrometry-mass spectroscopy (GC-IR-MS), and 

thermogravimetry-infrared spectrometry (TG-IR) open up possibilities to get more 

accurate information of substances.  
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Figure 3.2 shows the FTIR graphs of the chemical composition of the Microtek 

18D MPCM and BASF Micronal DS5001.  

 
(a) Microtek PCM 18D 

 
(b) BASF Micronal DS5001 

 
Figure 3.2 FTIR spectrum of PCMs 

 
The FTIR results of the functional group that the PCMs included were identified and 

listed in Table 3.2  
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Table 3.2 FTIR analysis of the PCMs [74-77] 
 

Sample name 
Significant Peaks at 
wavenumber (cm-1) 

 
Related Functional Groups 

3339 O-H  stretch 
2956 N-H  stretch 
2921 C-H  stretch 
2852 C-H  stretch 
1544 C=O stretch, N-H  stretch 
1495 N-H  stretch 
1493 N-C-N  stretch 
1485 O-H  stretch 
1466 -CH2- (deformation) stretch 
1336 -CH2- wagging 
1017 -CH2-OH 
1156 -N-C-N  stretch, C-O-C of -CH2-O-

CH2- 
812 C-N bending 

 
 
 
 
 

Microtek 18D 

720 C-H bending 
3442 O-H  stretch 
2915 C-H  stretch 
2849 C-H  stretch 
1730 C=O stretch 
1466 C-H  stretch 
1378 C-H  stretch 
1109 C-O  stretch 

 
 
 

Micronal DS5001 

720 -CH- bending 
 

For the Microtek 18D PCM, the spectrum of Hexadecane was subtracted from the 

graph to extract the chemical composition of the polymer shell. According to the library 

search, the remaining spectrum matches the chemical Melamine-urea-formaldehyde to a 

degree of 81.37%, which is sufficient to conclude a match.  Also, the chemical 

composition of BASF Micronal matches the structure of Monoglyceride and Diglyceride 
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to 82.23%. These FTIR peaks match the result of several published papers that 

successfully prepared and characterized PCM with melamine-formaldehyde shell [75-77]. 

The particle sizes of the PCMs were measured using the optical microscope 

Olympus BX60 as showed in Figure 3.3. The particle size and its distribution were 

measured to acquire information about how the particles would mix with the particles of 

plaster. 

         
(a) Microtek 18D                                            (b) Microtek 28D 

         
(c) Microtek 37D                                            (d) BASF Micronal DS5001 

 
Figure 3.3 Optical microscope image of PCM (5X). The particles of the BASF 

product (d) are about 10 times larger than those of the Microtek products.  
 

The measured diameter (mean) of these four PCMs listed in Figure 3.3 are: 6.26 

µm, 9.20 µm, 23.03 µm, 182.00 µm, respectively. The particles have a large size range 

by comparing their standard deviations, which are 6.05µm, 3.37µm, 4.42µm, and 
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101.54µm, respectively, with their average diameter. These values match the information 

listed on their technical data sheet. Figure 3.4 shows the particle distribution of the 

PCMs.  Sizing of particles was done by manually counting of particles of specific size 

ranges under optical microscope. It is observed that the BASF particles are about 20 

times larger then the Microtek PCMs, so it is suspected that they would have a different 

effect on the mixture compared with the Microtek PCMs, which has similar size to the 

plaster particles.  

     
(a) Microtek 18D                                            (b) Microtek 28D 

     
(c) Microtek 37D                                            (d) Micronal DS5001 

 
Figure 3.4 Particle distribution of PCM 

 
Thermogravimetric analysis (TGA) was run using a TA Instruments 2950 TGA to 

determine the degradation temperature of the PCM in order to ensure that it can survive 
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the baking stage, which requires a temperature of 260oC, of the manufacturing process of 

gypsum plaster boards. TGA [78] is carried out to record weight change in relation to 

temperature change. The equipment consists of a microbalance, a pan (usually Platinum) 

loaded with the sample placed in a small oven with thermocouple to measure the 

temperature accurately.  The samples were heated to 800°C at a heating rate of 10°C/min 

in an inert atmosphere (N2). The weight percentage-temperature curve was created as 

shown in Figure 3.5. 

 
(a) Microtek MPCM 



 28 

 
(b) Micronal DS5001 

 
Figure 3.5 TGA results 

 
The results show that only Microtek MPCM 18D degraded less than 5% when 

heated at 260°C, which means that it is the only PCM among the four tested that could 

handle the manufacturing process without degradation. 

Also, isothermal TGA was conducted to evaluate the decomposition reaction at a 

constant temperature. The isothermal TGA was run on the same equipment and condition 

to detect whether the sample lost weight when the temperature was maintained at a 

particular temperature (260°C). After being heated to this temperature at a rate of 

10°C/min in an inert atmosphere (N2), the weight percentage-temperature curve was 

created as shown in Figure 3.6. 
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(a) Microtek MPCM 

 
(b) Micronal DS5001 

 
Figure 3.6 Isothermal TGA at 260°C of PCM 

 
The isothermal TGA results agree with the TGA results and confirm that only 

Microtek MPCM 18D can be used up to 260°C. The weight loss from 100°C to 200°C is 

mainly due to the core proliferation while the weight loss at a higher temperature is due 



 30 

to the “formation of the higher thermal stability of cross-linked polymer yielded by the 

core material” as described the research of Tong [76]. 

The detailed thermal behavior of MPCM 18D was detected by TA Instruments 

Q1000 DSC.  Samples (less than 10mg) were heated at a constant rate of 10°C/min to 

260°C in a N2 atmosphere to detect the phase transition of both the alcane core and 

polymer shell of the PCM.  

DSC analysis was used to determine the energy storage ability of PCM. The 

principle of DSC [79] is to measure the difference in the amount of heat flux of a sample 

and a reference required to maintain the same temperature of the sample and the 

reference (which is mostly made of certified Indium metal), when they are heated or 

cooled at a constant rate.  The difference of heat absorbed or emitted between the 

reference and the sample is then recorded as a curve versus temperature or versus time. 

DSC is used to observe melting temperature and latent heat of PCM during the 

exothermic or endothermic phase transition process. DSC has been applied to conduct 

accelerated thermal cycling test by measuring the melting point and latent heat of fusion 

“in the laboratory with a hot plate or similar system” [80]. According to the second law 

of thermodynamics, specific heat capacity can be determined by the amount of 

transferred heat: 

                                                    (1) 

The results are shown in Figure 3.7.  
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Figure 3.7 DSC curve of MPCM 18D 

 
Melting peaks of the Alcane core of the PCM can be observed at 34.1 °C. The 

three distinct exothermic peaks at 180.1°C, 194.1°C, and 201.0°C may result from the 

“repaid polymerization reaction of core material triggered by the urea-derivatives and the 

gaseous products” released by the polymer shell, and the thermal decomposition of the 

polymer shell followed by its self-etherification. This result is very similar to that of 

Tong’s research [81]. Since this PCM has a listed melting temperature of 18oC, the 

melting peak of 34.1oC, which is too high for this material, is suspected to be due to 

experimental inaccuracies and limitations at low temperature. The encapsulation of PCM 

prevents it from catching on fire easily. 

(c) Additives 

The aluminum used to control thermal behavior of plaster board samples is 99.5% 

pure aluminum and consists of particles 30 micrometers in diameter and smaller. 
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3.1.2 Procedure for Making PCM-Integrated Drywall Samples 

The industrial production of gypsum wallboards can be achieved in four steps: 

mixing, forming, drying, and finishing [82, 83]. The first step is mixing the gypsum 

powder with additives, such as starch, paper pulp, unexpanded vermiculite, glass fiber, 

water, emulsion, and foaming agent.   The mixture is poured onto a large board machine. 

In this machine, there are two layers of unrolling paper on the upper side and the bottom 

side, which make the slurry a “sandwich” structure. The sandwich then passes through a 

roller system to make the product to appropriate thickness. After setting, the panel is put 

into an oven at 500°F (260°C) in which temperature and humidity are carefully 

controlled. The panels are heated at this temperature for 35-40 minutes in order to 

remove excess water. After this process, more than 95.5% of water is evaporated. Also, 

the water evaporated will leave the panel through pores that account for more than 50% 

of the volume on average. Finally, the edges are finished using the automated assembly 

lines and cutting the panels. This process is showed in Figure 3.8. 

 
Figure 3.8 Industrial manufacturing process of gypsum wallboard [82, 83] 
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The main chemical reaction that occurs during this process corresponds to the 

powder hemihydrate (CaSO4.1/2H2O) that reacts with water and forms less soluble 

(interlocking crystalline) dihydrate (CaSO4.2H2O) as follows, 

CaSO4.1/2H2O + 1-1/2H2O → CaSO4.2H2O                               (2) 

This is an exothermic reaction in which there is an induction period happening in the 

setting reaction during which the mixture is stirred and fills the mould. This is followed 

by the curing process, which dries the plaster as a solid and makes the sample ready to be 

removed from the mould. 

However, it is difficult to reproduce the industrial manufacturing process in 

laboratory due to lack of proper equipment, such as a board and rolling machine. An 

attempt was to make samples manually by controlling the quantities of the ingredients 

and the time and temperature of the curing process. This procedure can be achieved as 

follows: the plaster powder, PCM and the other additives were weighted separately with 

precision of 0.1g and then uniformly mixed with the addition of 50% water in weight of 

the mixture. After stirring the material for 3 to 5 minutes, the resulting mixture was 

poured into 120mm x 55mm x 45mm corrosion-resistant moulds. After 10 minutes, the 

mixture was placed into a resistance oven Furnace-Linberg BF51733C for the curing 

process (i.e., baking stage).  

The controlled parameters in this research include: 

(a) The concentration of PCM. PCM varied from 0, 10, 20, 30 and 40% in weight 

of the mixture system before water was added to study the effect of PCM concentration 

on the mechanical and thermal properties of plaster wallboard integrated with PCM. 



 34 

(b) Additive of Aluminum powder. 2% of Aluminum powder in weight was 

attempted to control the thermal behavior of the samples due to its apparently higher 

thermal conductivity (250 W/(m.K) compared to 0.17 W/(m.K) of gypsum powder).  

(c) Manufacturing Process. Four different curing processes were studied in this 

research: (1) Curing the sample at 260°C at the rate of 10°C/min for 40 minutes; (2) 

Curing the sample at 240°C at the rate of 10°C/min for 50 minutes; (3) Curing the sample 

at 100°C at the rate of 10°C/min for 3 hours; (4) Curing the sample at 60°C at the rate of 

10°C/min for 24 hours.  It should be noted that the temperature and curing time had to be 

adjusted to have the similar effect as the conventional manufacturing process. The 

duration of baking was increase with decreasing temperature. Since the temperature of 

processes (1) and (2) was above the flash point of the alcane (i.e., 130oC), aluminum was 

only added to the systems (3) and (4) in order to reduce the risk of the samples catching 

on fire. All the samples were then cut and polished to dimensions of 1mm x 50mm x 

10mm for characterization.   

Tables 3.3 and 3.4 list the final mixture compositions for each process. The 

quantities listed in these tables are the mass of materials mixed before curing. The PCM 

percentage labels (i.e, 0%, 10%, 20%, 30% and 40%) are approximate percentages that 

correspond to the weight percentage of PCM of the plaster/PCM mixture without water. 

For instance, the 20% PCM sample #3 for Process 1 includes 120g of plaster and 30g of 

PCM. The total mass of the plaster/PCM mixture without water is 150g, which leads to a 

20% concentration of PCM. 
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Table 3.3 Mixture compositions without Aluminum powder 
Process 1 260°C/40min    
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Plaster (g) 150 135 120 105 90 
Water (g) 75.0 75.2 74.8 75 74.9 
PCM (g) 0 15 30 45 60 
Process 2 240°C/50min    
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Plaster (g) 120 108 96 84 72 
Water (g) 60 60 75.4 76 80.1 
PCM (g) 0 12 24 36 48 
Process 3 100°C/3h    
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Plaster (g) 120 108 96 84 72 
Water (g) 60 60 75.6 75.6 79.1 
PCM (g) 0 12 24 36 48 
Process 4 60°C/24h    
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Plaster (g) 120 108 96 84 72 
Water (g) 60 60 76 75.5 80 
PCM (g) 0 12 24 36 48 

 

Table 3.4 Mixture compositions with Aluminum powder 
Process 3 100°C/3h    
Sample # 1 2 3 
PCM% 0 40 40 

Al% 0 0 2 
Plaster (g) 120 72 69.6 
Water (g) 60 100 100 
PCM (g) 0 48 69.6 

Al (g) 0 0 2.4 
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Process 4 60°C/24h  
Sample # 1 2 3 
PCM% 0 40 40 

Al% 0 0 2 
Plaster (g) 120 72 69.6 
Water (g) 60 100 100 
PCM (g) 0 48 69.6 

Al (g) 0 0 2.4 
 

3.2 Experimental Characterization of Properties 

Various macro-scale and micro-scale tests were conducted to investigate the 

properties of PCM integrated plaster wallboard samples. 

3.2.1 Macro-scale Characterization 

Physical Property: Density, Water Content and Porosity 

The density of the prepared samples was calculated by dividing the mass by the 

volume of each sample.  

The water content and porosity are then calculated based on the values of density. 

Water content represents the mass of water remaining after being cured. Water content u 

(%) can be calculated by the following equation: 

u=!mw/!mb                                                                                             (3) 

 where !mw is the mass difference between the initial amount of water added and water 

evaporated during heating, and !mb is the total mass of the sample. 

The porosity of the sample is determined as the fraction of void space over the 

total volume of the sample [84].  
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φ=VV/VT                                                                 (4) 

where φ (%) is the porosity, which is the fraction of the volume of void-space VV and the 

total or bulk volume of material VT . The pore volume can be measured by the “water 

evaporation method” [83], in which pore volume is the weight difference between the 

saturated sample and the dried sample divided by the density of water. Then this value is 

modified by taking into account the measured volume change between before and after 

drying. 

Mechanical Properties: Stiffness and Strength 

Flexural properties of gypsum panel products were evaluated using a three-point 

bending system. This test was used to determine the flexural (bending) strength and the 

stiffness. The three point bending beam is showed in Figure 3.9 as following. 

 
Figure 3.9 Three point bending beam 

 
In this test, the geometry of materials and strain rate are important experimental 

parameters. The flexural stress, σf, strain εf and modulus Ef can be calculated using the 

following equations [85]: 

                                                      (5) 

                                                       (6) 

                                                       (7) 
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▪ σf = Stress in the outer surface at the midpoint, (MPa) 

▪ εf = Strain in the outer surface, (mm/mm) 

▪ Ef = Flexural modulus, (MPa) 

▪ P = Load at a given point on the load deflection curve, (N) 

▪ L = Length of the support span, (mm) 

▪ b = Width of the test beam, (mm) 

▪ d = Depth of the test beam, (mm) 

▪ D = maximum deflection of the center of the beam, (mm) 

▪ m = The gradient (i.e., slope) of the initial straight-line portion of the load 

deflection curve, (N/mm) 

The stiffness and strength of the PCM integrated plaster wallboard samples were 

measured using a three-point bending machine, shown in Figure 3.10. It was installed 

with the help of Dr. Shweisinger based on modified ASTM C473 (Standard Test Methods 

for Physical Testing of Gypsum Panel Products) [86]. This machine could bear up to 50 

lb force.  
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Figure 3.10 Three-point bending testing machine 

 
In this test, the precision of the measurement is limited by the accuracy of the 

equipment. There are two main sources of error: the force measurement error and the 

displacement measurement error. An effective way to ensure the equipment is set up 

correctly is to record the zero point of the force measurement and to use a video camera 

to monitor this fracture experiment. The other unavoidable error may come from the 

place of the tip, which is marked and is reset before each measurement is taken. Also, the 

three point bending test is very sensitive to the testing specimens and their geometry. The 

experimental results were modified to account for the dimension of each specimen. The 

presence of air bubbles in the samples and inhomogeneity may also cause discrepancy in 

the results.  

Thermal Properties: Thermal Conductivity and Thermal Diffusivity 
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Thermal conductivity is an important property, which characterizes the rate of 

conduction of thermal energy through the material. It can be measured using a steady-

state method (absolute method) or transient techniques [87]. In a steady-state method, “a 

temperature gradient across the sample is measured in response to an applied amount of 

heating power”, which usually measures the heat flow through the sample [88]. 

According to the Fourier’s Law of thermal conduction, the heat flux density, which is 

“the amount of heat energy passed through a unit area per unit time”, is equal to the 

product of thermal conductivity and the negative local temperature gradient, as: 

                                                     (8) 

where 

• q= the local heat flux density (W·m−2), 

• k= the material's conductivity, (W·m−1·K−1), 

• ∇T= the temperature gradient (K·m−1), 

• ∆T= the temperature difference (K), 

• L= the thickness of the specimen (m). 

For a plate of thermal conductivity k, area A and thickness L, thermal 

conductance is kA/L, measured in W·K−1. 

Thermal conductivity was measured based on the ASTM standard C518-04 [88] 

(Standard Test Method for Steady-State Thermal Transmission Properties by Means of 

the Heat Flow Meter Apparatus).  This method measures steady state thermal 

transmission through flat specimens by using a heat flow meter apparatus. This test 

method could be used to efficiently determine the thermal conductivity of a wide range of 
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materials with high accuracy once appropriate calibration in thermal conductance, 

dimensions, mean temperature and temperature gradient was carried out.  

The general equipment set up is shown as Figure 3.11 as follows. 

 
Figure 3.11 Thermal pile experimental set-up for measuring thermal conductivity 

 
The apparatus is referred to as a thermal pile as it consists of a series of layers, 

namely, a hot plate (i.e., heat source), a 1000 ml beaker filled with ice water as cold plate 

(i.e., heat sink), and the sample to be tested sandwiched between two commercial plaster 

layers of known conductivity. The hot plate was set to 60°C which is above the melting 

temperature of the PCM and the cold plate was maintained at 0°C. Four type-K 

thermocouples were used to measure the temperature at the four interfaces between the 

hot plate, the commercial layers and the sample. The thermocouples were connected to an 

Analog/Digital Input/Output InstruNET® data acquisition system to record the 

temperatures as functions of time, as shown in Figure 3.12. A set of double-layered 

Styrofoam insulation walls was used around the three central layers in order to prevent 

heat loss. 
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Figure 3.12 Thermal conductivity equipment 

 
The three layers of specimens consist of two commercial products and one 

experimental sample. The experimental specimens for the thermal conductivity test were 

acquired from the broken pieces of the three point bending test.  All samples were cut and 

polished to dimensions of 50mm x 50mm x 10mm. 

Neglecting heat losses, the heat fluxes through the three layers should be mutually 

equal, as defined in the standard, as long as all samples and layers of known conductivity 

are produced with the same dimensions. The thermal conductivity of the sample can be 

calculated by direct comparison with samples of known conductivity. If the temperatures 

at the four interfaces are noted T1, T2, T3, T4, the condition of equal heat fluxes through 

the three layers can be written as: 

 ko(T2-T1)/Lo = k(T3-T2)/L = ko(T4-T3)/Lo (9) 

where  

 ko = known conductivity of the two commercial layers, namely ko = 0.17 

W/(m.K); 

 k = unknown conductivity of the sample; 
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 Lo = thickness of the two commercial layers; 

 L = thickness of the sample; 

 T1 to T4 = temperatures at the four interfaces. 

From this equation, the conductivity of the sample can be estimates as: 

 k = ko(T2-T1)L/((T3-T2)Lo) = ko(T4-T3)L/((T3-T2)Lo) (10) 

The thermocouples are first calibrated by attaching them to the hot and cold plate 

to ensure they provide temperature readings (less than 5% difference). After steady state 

is reached (after around 10 minutes), the average temperatures were recorded. The main 

source of error of this test is due to the non-uniform dimensions of the samples and their 

surface roughness. High temperature high thermal conductivity paste (Omegatherm 201) 

was used between each layer in order to reduce the effect of gap conductance. Additional 

experimental error is due to the potential presence of bubbles in the samples. Finally, the 

insulation does not prevent all heat loss perfectly during the measurements. 

The experimental results can be compared with the thermal conductivity predicted 

by Maxwell’s relation [89, 90]. 

                                            (11) 

where  κeff  is the effective thermal conductivity of the system, κp is the thermal 

conductivity of the PCM, κm is the thermal conductivity of the gypsum; δp is the volume 

fraction of PCM. The PCM is assumed to be a homogeneous material with negligible 

temperature gradient inside the material if the thermal resistance inside the microcapsules 

is lower than the thermal resistance between the PCM and the surroundings. 
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Thermal diffusivity is another important property in heat transfer as well. It is 

defined as the thermal conductivity divided by the product of density and specific heat 

capacity [91]: 

                                                             (12) 

where k is the thermal conductivity (W/(m·K)), ρ is the density (kg/m³), and Cp is the 

specific heat (J/(kg·K)). 

Thermal diffusivity can be measured by “the Flash method” as ASTM E1461-07 

(Standard Test Method for Thermal Diffusivity by the Flash Method) [92]. In this 

method, the specimen is placed under a “high intensity short duration radiant energy 

pulse” as showed in Figure 3.13.  

 
Figure 3.13 Schematic of the flash method [92] 

 
The surface temperature raised by the energy pulse is recorded as function of time 

(showed as Figure 3.14). Once the temperature is raised to the maximum value, the 

thermal diffusivity can be calculated from “the half-rise time” and thickness, as: 
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                                                             (13) 

 
Figure 3.14 Characteristic thermogram for the Flash Method (normalized time and 

temperature) [92] 
 

The Clemson University Complex and Advanced Materials Laboratory of Dr. 

Terry Tritt acquired a state-of-the-art Laser flash system to measure thermal diffusivity 

from which conductivity can be deduced at temperatures ranging from -100oC to 1100oC. 

However, the system is appropriate for homogeneous dust-free samples, which is not 

suitable for the plaster/PCM samples. Therefore, a pseudo flash method was devised 

based on the same principle using a heat lamp as shown in Figure 3.15. The temperatures 

on both sides of the sample are measured using two type-K thermocouples as functions of 

time. High temperature high thermal conductivity paste (Omegatherm 201) was applied 

to reduce the effect of surface roughness and gap conductance between the samples of the 

thermocouples. Insulation wool was used around the sample in order to reduce the 

convective heat transfer between the two sides of the sample. The slope of the curve 

obtained by a given sample is proportional to the conductivity, which can then be 
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deduced by direct comparison with known samples with appropriate compensation to 

account for the differences in density and specific heat between samples. The tests were 

conducted at a temperature greater than the PCM’s melting temperature in order to make 

sure that the latent heat of the PCM does not interfere with the diffusivity measurement. 

 
Figure 3.15 Flash method experiment set-up 

 
3.2.2 Micro-scale Characterization 

Optical microscopy images were captured on Olympus BX 60 to detect the 

thermal behavior of the PCM. The PCM was heated to 50°C, 100°C, 150°C, 200°C, 

250°C separately at the rate of 10°C/min for an hour before being observed.  

The scanning electron microscope (SEM) analysis was performed at room 

temperature using Hitachi TM-3000 apparatus to study the surface morphology plaster 

samples integrated with PCM. It is a technique to detect the morphology and size of 

materials by “scanning the sample with a high-energy beam of electrons” [93]. The 

electrons interact with the atoms that make up the sample which produces signals “that 
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contain information about the sample's surface topography, composition, and other 

properties such as electrical conductivity”. This technology is often combined with 

Energy-dispersive X-ray spectroscopy (EDS) for elemental analysis by detecting 

characteristic X-ray excitation.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 
 
 

Effect of manufacturing process and PCM concentration on the mechanical and 

thermal properties of plaster boards are discussed by addressing their density, bending 

strength, and thermal conductivity. 

4.1 Effect of PCM on Properties in Different Manufacturing Processes 

The industrial manufacturing process of plaster drywall requires curing samples at 

260°C for 40 minutes. Since this temperature is fairly high and may degrade most 

microencapsulated PCMs, other curing processes were considered with lower 

temperature and longer periods of time even though this may result in loss of 

productivity. Four different curing processes are considered: (1) Curing the sample at 

260°C at the rate of 10°C/min for 40 minutes; (2) Curing the sample at 240°C at the rate 

of 10°C/min for 50 minutes; (3) Curing the sample at 100°C at the rate of 10°C/min for 3 

hours; (4) Curing the sample at 60°C at the rate of 10°C/min for 24 hours.  These 

different curing processes were conducted in order to achieve a balance between 

desirable properties and productivity. 

4.1.1 Effect on Physical Properties 

For each sample corresponding to different PCM concentrations and different 

curing processes, the density (ρ) was calculated using mass and volume, the water 
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content (u) was calculated using Equation (3) and the porosity (Φ) was calculated using 

Equation (4). All results are graphed and listed in Figures 4.1 to 4.3 and Tables 4.1 to 4.3.  

      
(a) Curing at 260°C for 40 minutes                       (b) Curing at 240°C for 50 minutes 

    
(c) Curing at 100°C for 3 hours                        (d) Curing at 60°C for 24 hours 

 
Figure 4.1 Density of plaster samples with different concentration of PCM 
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Table 4.1 Density of plaster with different concentration of PCM (g/cm3)  

Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Process 1: 
260°C /40min  1.26 1.05 1.10 0.96 0.80 

stdv 0.17 0.03 0.14 0.09 0.21 
Process 2: 

240°C /50min  1.22 1.05 0.96 0.88 0.77 
stdv 0.23 0.05 0.05 0.03 0.12 

Process 3: 
100°C /3h 1.37 1.25 1.07 0.95 0.85 

stdv 0.09 0.05 0.18 0.07 0.09 
Process 4: 
60°C /24h 1.42 1.23 1.11 0.87 0.76 

stdv 0.09 0.03 0.05 0.02 0.03 
 

     
(a) Curing at 260°C for 40 minutes                       (b) Curing at 240°C for 50 minutes           

      
(c) Curing at 100°C for 3 hours                        (d) Curing at 60°C for 24 hours 

 
Figure 4.2 Water content of plaster samples with different concentration of PCM 
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Table 4.2 Water content of plaster samples with different concentration of PCM 
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Process 1: 
260oC/40min  0.7 3.7 -0.5 -3.4 5.9 

Process 2: 
240oC/50min  0.8 -0.9 2.4 3.1 1.8 

Process 3: 
100oC/3h 12.7 11.5 11.4 7.9 9.6 
Process 4: 
60oC/24h 15.4 13.3 12.2 10.8 11.3 

 

      
(a) Curing at 260°C for 40 minutes                       (b) Curing at 240°C for 50 minutes           

           
(c) Curing at 100 °C for 3 hours                        (d) Curing at 60 °C for 24 hours 

 
Figure 4.3 Porosity of plaster with Different Concentration of PCM 
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Table 4.3 Porosity of plaster with different concentration of PCM 

Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Process 1: 
260°C/40min  51.3 43.8 40.5 36.9 31.2 

Process 2: 
240°C/50min  40.9 32.1 38.5 38.7 32.8 

Process 3: 
100°C/3h 41.8 36.5 38.4 45.8 44.1 
Process 4: 
60°C/24h 36.7 33.1 42.8 36.6 34.5 

 

Figure 4.1 shows that the density of the plaster samples decreases with increasing 

PCM concentration. First, this can be explained by the density of PCM (0.9g/cm3) being 

smaller than that of plaster (2.32-2.96g/cm3). It indicates that the structure of plaster 

matrix is changed by the addition of water and PCM, which results in the increase in 

porosity.  

The results of Figure 4.2 (a) and (b) show large differences between PCM 

percentages. For instance, the water content for 30% and 40% PCM are significantly 

different even though they are not expected to be that different. This suggests that 

experimental error should be reduced by increasing the population of samples and tests 

per sample. Nevertheless, these results are sufficient to capture the difference between 

curing processes. 

Although there is no apparent trend of water content and porosity with increasing 

PCM concentration (based on Figures 4.2, 4.3 and Tables 4.2, 4.3), it should be noticed 

that curing the samples at a relatively higher temperature and shorter time yields a lower 

water content and higher porosity. When the sample was cured at 240°C for 50 minutes, 
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the water content of the plaster sample with 10% PCM is below 0. This means that the 

sample lost more water than the amount that was initially added to the hemihydrate. This 

suggests that a possible process called “inter-conversion” will occur between these 

structures due to their nearly identical crystal structures, which contain "channels that can 

accommodate variable amounts of water, or other small molecules". β-anhydrite or 

"natural" andydrite (CaSO4) which is completely anhydrous forms when the temperature 

is even higher (above 250°C). These reactions might lead to the different properties of the 

samples. But since only one set of samples were tested, more measurements are needed to 

reach statistical significance to conclude these reactions. 

4.1.2 Effect on Mechanical Properties 

The flexural strength was measured in order to evaluate the mechanical properties 

of the plaster samples with increasing PCM concentration (0, 10%, 20%, 30% and 40%) 

in the different curing processes. Two specimens were measured for the same process and 

each specimen broke after being tested. The broken samples were then prepared to a 

suitable dimension for the thermal properties measurements. 

Results of flexural strength are presented in Table 4.4. 
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(a) Curing at 260°C for 40 minutes                       (b) Curing at 240°C for 50 minutes 

      
(c) Curing at 100°C for 3 hours                        (d) Curing at 60°C for 24 hours 

 
Figure 4.4 Maximum stress of plaster with different concentration of PCM 

 

      
(a) Curing at 260°C for 40 minutes                       (b) Curing at 240°C for 50 minutes 
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(c) Curing at 100°C for 3 hours                        (d) Curing at 60°C for 24 hours 

 
Figure 4.5 Young’s modulus of plaster with different concentration of PCM 

 
Table 4.4 Flexural properties of plaster with different concentration of PCM 

Process 1: 260°C/40min 
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Maximum 
Stress (MPa) 2.046 2.241 1.765 3.043 3.632 

stdv 0.723 0.998 0.205 1.289 0.072 
Young's 

modulus(GPa) 0.111 0.098 0.118 0.116 0.177 
stdv 0.067 0.048 0.072 0.070 0.151 

Process 2: 240°C/50min 
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Maximum 
Stress (MPa) 1.956 2.333 1.957 3.021 2.252 

stdv 1.030 0.174 0.067 1.320 1.102 
Young's 

modulus(GPa) 0.170 0.166 0.164 0.155 0.196 
stdv 0.055 0.038 0.006 0.014 0.011 
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Process 3: 100°C/3h 

Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Maximum 
Stress (MPa) 5.831 3.861 3.104 2.684 2.158 

stdv 2.690 2.335 0.570 0.670 0.968 
Young's 

modulus(GPa) 0.150 0.137 0.124 0.171 0.130 
stdv 0.056 0.019 0.033 0.042 0.067 

Process 4: 60°C/24h 
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 

Maximum 
Stress (MPa) 6.472 4.174 3.947 2.110 2.119 

stdv 3.128 0.694 0.223 0.090 0.219 
Young's 

modulus (GPa) 0.174 0.150 0.224 0.146 0.184 
stdv 0.077 0.005 0.023 0.032 0.006 

 

The results vary significantly due to the inaccuracy of the equipment and the 

uncertain nature of brittle fracture. However, based on the measurements, the same trend 

can be observed in each repeated experiment. From Figures 4.4, 4.5 and Table 4.5, It can 

be noticed that the stress of the gypsum board sample without PCM is significantly lower 

when cured at 260°C for 40 minutes and 240°C for 50 minutes than cured at relatively 

lower temperature (100°C and 60°C). These results correlate with the results of the water 

content measurement. The results indicate that when the samples are cured at a higher 

temperature, there is more water evaporated and less water retained which led to the 

reduction in mechanical properties. The possible reason is the reverse reaction and 

dehydration reaction may prevent hydration, which is the most important reaction for the 

development of strength.  
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Also from the given data different trends can be observed for different curing 

processes.  It suggests that when the samples were cured at 260°C for 40 minutes, the 

maximum stress decreased with the first introduction of PCM but then increases with the 

addition of PCM continuously. When the samples were cured at 240°C for 50 minutes, 

the concentration of PCM did not have significant influence on the stress and Young’s 

modulus of the samples. When the samples were cured at 100°C for 3 hours or 60°C for 

24 hours, the addition of PCM particles results in a decrease in maximum stress. No 

apparent trend was observed for Young’s modulus for these two processes. These results 

show that both the concentration of PCM and curing processes have some effect on the 

mechanical properties of the samples by influencing water evaporation. 

4.1.3 Effect on Thermal Properties 

The thermal conductivity of the standard plaster sample and samples with 10%, 

20%, 30%, and 40% PCM in different curing process was measured in order to evaluate 

the thermal properties. Two or three samples were prepared for each curing process and 

five repeated tests were conducted on each sample. The normalized results are presented 

in Figure 4.6 and Table 4.5. 
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(a) Curing at 260°C for 40 minutes                       (b) Curing at 240°C for 50 minutes           

     

      
(c) Curing at 100°C for 3 hours                        (d) Curing at 60°C for 24 hours 

 
Figure 4.6 Thermal conductivity of plaster with different concentration of PCM 
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Table 4.5 Thermal conductivity of plaster with different concentration of PCM 

(W/(m·K))  

Sample # 1 2 3 4 5 

PCM% 0 10 20 30 40 
Process 1: 

260°C/40min 0.170 0.107 0.115 0.117 0.168 
stdv 0.063 0.018 0.012 0.015 0.034 

Process 2: 
240°C/50min 0.170 0.180 0.178 0.190 0.186 

stdv 0.000 0.009 0.005 0.000 0.031 
Process 3: 
100°C/3h 0.170 0.166 0.127 0.099 0.085 

stdv 0.026 0.036 0.032 0.015 0.022 
Process 4: 
60°C/24h  0.170 0.131 0.119 0.089 0.093 

stdv 0.027 0.012 0.013 0.013 0.001 
      

 

The results indicate that when the samples were cured at 260°C for 40 minutes, 

the thermal conductivity increased with the addition of PCM. When the samples were 

cured at 240°C for 50 minutes, the concentration of PCM does not have significant 

influence on the thermal conductivity of the samples. When the samples were cured at 

100°C for 3 hours or 60°C for 24 hours, the addition of PCM particles results in a 

decrease of thermal conductivity. 

The thermal conductivity of the samples can be predicted by Maxwell’s relation 

(Eq. (9)) as a theoretical check. This model calculates the effective conductivity of a 

mixture based on two conductivity values and their respective volume fractions. One of 

the conductivity values is that of gypsum (0.17 W/(m.K)) and the other should be that of 

the PCM. Since the PCM is made of micro-capsules composed of two materials (i.e., the 
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hexadecane core and the Melamine-urea-formaldehyde shell), the conductivity of the 

PCM is a value between that of these two materials. Therefore the effective conductivity 

of the mixture can be estimated by considering either the thermal conductivity of the core 

material or that of the polymer shell. It is reported in the literature [79] that while the heat 

capacity microencapsulated PCM is more related to the core material, the thermal 

conductivity depends significantly on the chemical composition of the polymer shell. 

Thermal conductivity of Hexadecane (0.16 W/(m·K)) is reported to be higher than that of 

Melamine-urea-formaldehyde (0.04 W/(m·K)). The predicted results are showed as Table 

4.6. Note that Maxwell’s model accountS for the volume fraction of the different 

constituents of the mixture and does not account for the effects of the curing process. 

Therefore, the experimental results show the limitations of Maxwell’s model.  

Table 4.6 Thermal conductivity predicted by Maxwell’s relation (W/(m·K))  
Sample # 1 2 3 4 5 
PCM% 0 10 20 30 40 
Using 

hexadecane’s 
conductivity 0.170 0.167 0.164 0.161 0.159 

Using  
MUF’s 

conductivity* 0.170 0.144 0.123 0.106 0.092 
*MUF: Melamine-urea-formaldehyde 

With increasing PCM concentration, the thermal conductivity predicted by 

Maxwell’s model has the opposite trend of that of the measured thermal conductivity of 

the samples cured at high temperature. One of the possible reasons is the potential rupture 

of the polymer shell at high temperature and leakage of the hexadecane throughout the 

gypsum matrix. The interaction between the hexadecane (which has a higher 

conductivity) and the gypsum may increase the overall conductivity of the mixture. At 
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low curing temperatures, the conductivity of the mixture seems to be governed by the 

shell’s conductivity (which is lower) which would explain why Maxwell’s model and the 

experimental results follow the same trend with increasing PCM concentration. 

The results of thermal diffusivity measurement using the flash method are shown 

in Figure 4.7 as the difference between temperatures at the front and back of the samples. 

The plaster samples with 0%, 10% and 40% PCM in weight were cured at 260°C for 40 

minutes and 60°C for 24 hours. Two specimens of each sample were tested and three 

measurements were taken for each specimen. These results were adjusted to account for 

the differences in thickness of the samples [92]. 

 
(a) Curing at 260°C for 40 minutes 
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(b) Curing at 60°C for 24 hours 

 
Figure 4.7 Thermal diffusivity measurements of gypsum-PCM samples 

 
It can be observed that when the samples were cured at 260°C for 40 minutes, the 

slope of the samples with 40% PCM is higher than with 10% PCM, and the slope of the 

samples with 10% PCM is higher than with no PCM. When the samples were cured at 

60°C for 24 hours, the slope of the plaster samples with 40% PCM is higher than with no 

PCM, and the slope of the plaster samples with 10% PCM is higher than with 40% PCM. 

The curves of the samples with no PCM made by these two processes agree well with 

each other.  

As a higher thermal diffusivity means the samples can adjust its temperature to its 

surroundings faster, adding PCM will speed the heat conduction and require less energy 

compared with their “volumetric heat capacity” [92]. Based on the experimental study, 

the density greatly decreases as the PCM concentration increases. And according to some 

research [51], the specific heat increases with increasing concentration of PCM, but since 

all the samples are tested at the same temperature (which is above the PCM's melting 

temperature), the effect of the two curing processes on specific heat can be neglected. 
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However, the different curing processes leads to a different trend in thermal conductivity. 

For the samples cured at 260°C for 40 minutes, thermal conductivity first decreased with 

increasing PCM concentration and then increases with PCM concentration. For the 

samples cured at 60°C for 24 hours, the trend is different. The thermal conductivity 

decreases with increasing PCM concentration. These results confirm the experimental 

results obtained using the thermal pile experiment of the previous section.  

4.1.4 Possible Mechanisms 

The effect of the heating processes on the microencapsulated PCM was studied 

using microscope inspection. The PCM for analysis was heated to a certain temperature 

ranging from 50°C to 250°C and then it was observed under the microscope. The 

microscope images are shown in Figure 4.8. 

 
(a) 50°C 

 
(b) 100°C 
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(c) 150°C 

 
(d) 200°C 

 
(e) 250°C 

 
Figure 4.8 Optical micrographs of Microtek 18D PCM at different temperatures. As 

the temperature increases, the particles become increasingly distorded and 
agglomerated. 

 
The structure of the capsules is observed to be stable when the samples are heated 

to a temperature lower than 100°C. When the samples are heated to a temperature above 

150°C, the shell of the microspheres begins to deform and eventually rupture. Above 
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200°C, the micro-capsules appear to be damaged and agglomerated to a large extent. As 

the samples are heated at 250°C, the destroyed polymer shells can be observed.  

To further understand the mechanism of how PCM interact with plaster matrix 

and influence the mechanical and thermal properties, standard sample and plaster sample 

with 10% and 40% PCM cured at 260°C for 40 minutes ware examined by optical and 

scanning electron microscopy (SEM) to visually characterize the microstructure, bond 

region topography, and porosity. Energy dispersive x-ray spectroscopy (EDS) was 

applied to gather information about the chemical composition of different points. Plaster 

samples with 0%, 10% and 40% PCM cured at 260°C for 40 minutes were observed. The 

SEM images are showed in Figure 4.9. 

 
(a) Reference Mixture 
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(b) 10% PCM Mix 

 
(c) 40% PCM Mix 

 
Figure 4.9 SEM micrographs of gypsum-PCM samples. The particles of PCM (dark 

rounded regions) are dispersed within the particles of gypsum (lighter shade), 
sometimes fill voids and are damaged (such as seen in (b)).  

 
The SEM analysis shows a porous micro-structure of the plaster sample (white 

particles) with the microencapsulated PCM (sphere and darker spaces). As paraffin has a 

low melting temperature of 18°C, it melts earlier than the polymer shell during the 

heating process. It can be assumed that this segregation could cause solidification at the 

cavity and pores of the plaster matrix due to the immiscibility between the PCM and the 

plaster matrix [52], which result in the change of the mechanical and thermal properties. 
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The SEM suggests that there is leakage of the paraffin and the shell is damaged to some 

extent.  

The elemental composition of PCM in different parts of the plaster sample with 0, 

10%, and 40% PCM was determined by energy dispersive X-ray analysis (EDS). Three 

scans were taken and analyzed for each of the three samples. The points are selected at 

the plaster particles, sphere PCM particles, dark spaces, and the boundary where PCM 

and plaster particles contact with each other. EDS analysis results are provided in Figure 

4.10. 

 
(a) Reference Mixture 

 
(b) 10% PCM Mix 
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(c) 40% PCM Mix 

 
Figure 4.10 EDS Spectra of plaster samples with different concentration of PCM 

 
In the plaster sample without PCM, the main composition is Calcium, Oxygen, 

and Sulfur as expected. The level of Carbon of plaster sample with 10% PCM varies from 

22.9 to 49.0% in weight at different point compared with the level of Calcium from 

15.1% to 25.2%. When the content of PCM is increased to 40%, the level of Carbon is 

further increased, which ranges from 53.9% to 68.1%, against 5.9 to 10.3% of Calcium. 

The distinct peak of Carbon is due to the presence of PCM, and the level of Carbon 

increases with the addition of PCM. These results indicate that PCM interacted and 

formed a complex with the plaster particles that changed the structure of plaster at this 

temperature. 

These results show that both the PCM particles and curing process both have 

some effects on the mechanical properties of the samples by influencing the water 

evaporation process. 
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4.2 Effect of Aluminum Powder in Controlling Thermal Conductivity 

Low thermal conductivity may result in slower charging and discharging time 

which may limit the use of PCM. Aluminum particles have been reported to improve the 

thermal conductivity in several publications since they have an obviously higher thermal 

conductivity than PCM and plaster [33, 34]. In order to control the thermal conductivity, 

Aluminum powder is introduced in the plaster samples with 40% PCM in contrast with 

plaster samples with no PCM and 40% PCM. Because the temperatures of 260°C and 

240°C are too high for the mixture system, the samples were only cured at 60°C for 3h or 

100°C for 24h for safety reasons. Then the density, flexural strength, and thermal 

conductivity of the samples were measured. 

The density of the samples was measured and reported in Figure 4.11. 

     
Figure 4.11 Density of plaster samples with Aluminum powder 
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Table 4.7 Density of plaster with Aluminum powder (g/cm3) 

Sample # 1 2 3 
PCM% 0 40 40 

Al% 0 0 2 
Process 1: 
100°C/3h  1.30 0.79 0.74 
Process 2: 
60°C/24h  1.36 0.74 0.78 

 

Then the bending strength of the samples was measured by the same instrument.  

The results of maximum stress (MPa) and Young’s Modulus (GPa) are given as Figure 

4.12 and Figure 4.13 below. 

         
Figure 4.12 Maximum stress of plaster samples with Aluminum powder 
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Figure 4.13 Young’s modulus of plaster with Aluminum powder 

 
Table 4.8 Flexural properties of plaster with Aluminum powder 

Process 1: 100°C/3h 
Sample # 1 2 3 
PCM% 0 40 40 

Al% 0 0 2 
Break Force (lb) 30.00 14.00 15.00 
Break Force (N) 133.45 62.28 66.72 
Maximum Stress 

(MPa) 4.55 2.12 2.28 
Maximum Strain 0.032 0.012 0.016 

Young's 
modulus(GPa) 0.141 0.176 0.141 
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Process 2: 60°C/24h 

Sample # 1 2 3 
PCM% 0 40 40 

Al% 0 0 2 
Break Force (lb) 34.00 15.00 14.00 
Break Force (N) 151.24 66.72 62.28 
Maximum Stress 

(MPa) 4.26 2.27 2.74 
Maximum Strain 0.036 0.012 0.011 

Young's 
modulus(GPa) 0.119 0.188 0.255 

 

The thermal conductivity of the standard plaster sample and the samples with 2% 

Aluminum powder and 40% PCM was measured to compare with the thermal 

conductivity of the plaster samples with 40% PCM without Aluminum powder in order to 

evaluate the effect of Aluminum powder on thermal properties (Figure 3.14).  

         
Figure 4.14 Thermal conductivity of plaster with Aluminum powder 

 
This result is then compared with the thermal conductivity predicted by 

Maxwell’s relation listed in Table 4.9.  
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Table 4.9 Thermal conductivity of plaster with Aluminum powder (W/(m·K)) 
Experimental Result 

Sample # 1 2 3 
PCM% 0 40 40 

Al% 0 0 2 
Process 1: 
100°C/3h  0.170 0.109 0.108 
Process 2: 
60°C/24h  0.170 0.106 0.109 

Result Predicted by Maxwell’s relation 
Sample # 1 2 3 
PCM% 0 40 40 

Al% 0 0 2 
core 0.170 0.159 0.169 
shell 0.170 0.092 0.098 

 

It can be concluded that the addition of Aluminum powder did not affect the 

density and the bending strength significantly. Also, it did not have as much influence on 

increasing the thermal conductivity as expected. This may be due to the low 

concentration of Aluminum powder. Also, the powder may not disperse uniformly due to 

its low concentration. Since only one sample is tested for each of the processes, statistical 

significance should be included by conducting tests on more than one sample. Also, 

increased concentration of Aluminum powder under safety conditions should be tested 

and compared in order to achieve the control of the thermal conductivity of the samples.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 
 

In this research, the first objective is to investigate the physical and thermal 

properties of various PCMs in order to determine whether they can handle the industrial 

manufacturing process of gypsum wallboards. The second objective is to evaluate the 

effect of the concentration of PCM on the physical, thermal and mechanical properties of 

the gypsum wallboards. The third objective is to study the effect of different curing 

processes on the properties of the gypsum wallboards.  

The experimental study of this research can be summarized as following: 

• Studied the curing process of plaster drywall and then investigated the physical 

and thermal properties of four different types of PCMs available (including 

Microtek 18D, Microtek 28D, Microtek 37D, Micronal DS5001) to demonstrate 

their use for these processes by FTIR, Electron Microscope, TGA and DSC, since 

the industrial manufacturing process requires heating up the system to 260°C. 

• Prepared gypsum wallboard samples with 0, 10, 20, 30, and 40% of Microtek 18D 

in weight using four different curing processes in laboratory scale. The four 

different curing processes in this research are: (1) Curing the sample at 260°C at 

the rate of 10°C/min for 40 minutes; (2) Curing the sample at 240°C at the rate of 

10°C/min for 50 minutes; (3) Curing the sample at 100°C at the rate of 10°C/min 

for 3 hours; (4) Curing the sample at 60°C at the rate of 10°C/min for 24 hours.   
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• Prepared PCM integrated gypsum samples with 2% Aluminum powder. The 

samples are only prepared by processes (3) and (4) due to safety reasons. 

• Developed bending strength and thermal conductivity testing according to 

modified ASTM standards to evaluate the effect of the PCM and Aluminum 

powder.  Density, flexural strength, and thermal conductivity are measured.  

• Used SEM-EDS and Electron Microscope to study the mechanisms at the micro-

scale level.  

The main conclusions of this research include: 

• Only Microtek 18D is found to be thermally stable to the temperature generally 

used in the commercial curing process (i.e., 260oC). Other PCMs lose more than 

5% of their weight when heated to 260 °C, which means that they cannot be used 

in the typical manufacturing process. Exothermic peaks of PCM can be observed 

at 34.14 °C and around 200°C, which refer to the melting behavior of the paraffin 

core and the polymerization of the polymer shell separately. The encapsulation of 

the PCM is suspected to prevent it from catching on fire easily when heated to a 

temperature that is above the flash point of hexadecane. 

• The density decreases with increasing concentration of PCM due to the lower 

density of PCM and the added porosity of the mixture.  

• The manufacturing process seems to affect the bending strength and the thermal 

conductivity significantly based on the limited experimental data:  

• when the samples are cured at 260°C for 40 minutes, the strength seems to  

decrease with the first introduction of PCM and then increases with the 
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addition of PCM continuously. The thermal conductivity seems to increase 

with the addition of PCM. 

• when the samples are cured at 240°C for 50 minutes, the concentration of 

PCM does not have significant influence on the strength and thermal 

conductivity of the samples according to the measurements.  

• when the samples are cured at 100°C for 3 hours or 60°C for 24 hours, the 

addition of PCM particles results in a decrease of the strength and thermal 

conductivity.  

• the strength of the gypsum board samples without PCM is significantly 

lower when cured at 260°C for 40 minutes and 240°C for 50 minutes than 

cured at relatively lower temperature.  

• Aluminum powder is not detected to have much impact on the overall properties 

due to its low concentration.  

PCM is suspected to experience rupture and leakage at temperature higher than 

200°C. Also, PCM is detected to agglomerate and interact with plaster particles 

according to the SEM and EDS results. The hydration reaction, which plays an important 

role in developing mechanical and thermal properties, is suspected to be influenced by 

the manufacturing process.  These processes may lead to the change in the physical and 

thermal properties of the samples. 

Based on these results, the following work is suggested to be done in the future. 

Firstly, more reliable instruments are needed to improve the accuracy of the results. 

Secondly, more repeated experiments are needed to reach statistically significant results. 
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Thirdly, different concentration of Aluminum powder and other additives need to be 

studied in controlling the properties of the samples. 
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