
Clemson University
TigerPrints

All Theses Theses

12-2008

Optimal and Heuristic Resource Allocation
Policies in Serial Production Systems
Ramesh Arumugam
Clemson University, rarumug@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Arumugam, Ramesh, "Optimal and Heuristic Resource Allocation Policies in Serial Production Systems" (2008). All Theses. 487.
https://tigerprints.clemson.edu/all_theses/487

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=tigerprints.clemson.edu%2Fall_theses%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/487?utm_source=tigerprints.clemson.edu%2Fall_theses%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Optimal and Heuristic Resource Allocation
Policies in Serial Production Systems

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Industrial Engineering

by

Ramesh Arumugam

December 2008

Accepted by:

Dr. Maria E. Mayorga and Dr. Kevin M. Taaffe, Committee Chair

Dr. William G. Ferrell

Abstract

We have studied the optimal server allocation policies for a tandem queueing

system under different system settings. Motivated by an industry project,we have

studied a two stage tandem queueing system with arrival to the system and having

two flexible servers capable of working at either of the stations. In our research,

we studied the system under two different circumstances: modeling the system to

maximize throughput without cost considerations, modeling the system to include

switching and holding costs along with revenue for finished goods. In the maximizing

throughput scenario, we considered two different types of server allocations: collab-

orative and non-collaborative. For the collaborative case, we identified the optimal

server allocation policies for the servers and have proved the structure of the optimal

server allocation policy using mathematical iteration techniques. Moreover, we found

that, it is optimal to allocate both the servers together all the time to get maximum

throughput. In the non-collaborative case, we have identified the optimal server al-

location policies and found that it is not always optimal to allocate both the servers

together.

With the inclusion of costs, we studied the system under two different scenar-

ios: system with switching costs only and system having both switching and holding

costs. In both the cases, we have studied the optimal server allocation policies for

the servers. Due to the complicated structure of the optimal server allocation policy,

ii

we have studied three different heuristics to approximate the results of the optimal

policy. We found that the performance of one of the heuristics is very close to the

optimal policy values.

iii

Dedication

For my family and friends, who offered unconditional love and support through-

out the course of my Masters program.

iv

Acknowledgments

I would like to sincerely thank both my advisors Dr. Maria Mayorga and

Dr. Kevin Taaffe for their constant support and advice in helping me complete my

Masters program with a thesis. I am very thankful to them to let me do real time

industry projects along with my course work and research work during the past two

years. Their wide knowledge in my research arena has been a great value to me and

have made my learning objective complete. I would also like to thank Dr. William

Ferrell for being one of my committee member and providing me with key inputs. I

would like to thank Dr. Mary Beth Kurz for her valuable suggestions to make my

thesis data processing easier.

I would like thank my department head Dr. Anand Gramopadhye and other

faculties and staff of the Industrial Engineering Department who helped me in various

times.

I kindly thank my friends Mr. Ping-nan Chiang, Ms. Lisa Bosman and Mr.

Vinoth Sankaran for their friendly help and support throughout the course of my

Masters program.

Finally, I would like to thank everybody who made my Life at Clemson pro-

ductive, useful and fun.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1

2 Inventory Based Allocation Policies for Flexible Servers in Serial
Systems with no costs . 4
2.1 Introduction . 4
2.2 Model Description for the Collaborative Case 8
2.3 Optimal Server Allocation Policy in the Collaborative Case 12
2.4 Sensitivity Analysis . 21
2.5 Non-Collaborative Servers . 23
2.6 Conclusions . 26

3 Inventory Based Allocation Policies for Flexible Servers in Serial
Systems with Switching cost, Holding cost and Positive reward . 28
3.1 Introduction . 28
3.2 Problem Description and Model Formulation 31
3.3 Optimal Policy Structures . 34
3.4 Heuristic Policies: Definition and Performance 39
3.5 Conclusions . 44

4 Conclusions . 47

Appendices . 49

vi

Bibliography . 75

vii

List of Tables

2.1 Server allocation policies for the collaborative case. 10
2.2 Throughput convergence values . 23
2.3 Server allocation policies for the non-collaborative case. 23

3.1 Server allocation policies for the collaborative case. 33
3.2 Summary of Experimental Results for all policies when h1 < h2. Num-

bers shown are in percent suboptimal. 42
3.3 Summary of Experimental Results for all policies when h1 > h2. Num-

bers shown are in percent suboptimal. 42

1 Appendix - Numerical Analysis when h1 = 0.01, h2 = 0.05; 69
2 Appendix - Numerical Analysis when h1 = 0.01, h2 = 0.05; continua-

tion 1 . 70
3 Appendix - Numerical Analysis when h1 = 0.01, h2 = 0.05; continua-

tion 2 . 71
4 Appendix - Numerical Analysis when h1 = 0.05, h2 = 0.01; 72
5 Appendix - Numerical Analysis when h1 = 0.05, h2 = 0.01; continua-

tion 1 . 73
6 Appendix - Numerical Analysis when h1 = 0.05, h2 = 0.01; continua-

tion 2 . 74

viii

List of Figures

2.1 Model description . 9
2.2 Optimal server allocation policy u when x = 1, λ = 3, µ1 = µ2 =

4, B1 = B2 = 20 and r = 1 . 14
2.3 Change in structure for different values of ρ when µ1 = 4, µ2 = 2, B1 =

B2 = 20, and r = 1 . 22
2.4 Optimal server allocation policy u when x = 1, λ = 3.9, µ1 = 6, µ2 =

2, B1 = B2 = 20 and r = 1 . 26

3.1 Model description . 32
3.2 Server allocation policy with switching cost only, (a)z = 0, (b)z =

1, (c)z = 2, (d)z = 3 . 36
3.3 Server allocation policy with holding and switching costs, h1 < h2, z =

0 . 37
3.4 Server allocation policy with holding and switching costs, h1 > h2, (a)z =

0, (b)z = 1, (c)z = 2, (d)z = 3 . 38
3.5 Optimality gap as switching cost increases for Collab. 44
3.6 Optimality gap as reward increases for Collab. 45

ix

Chapter 1

Introduction

In today’s world, running an industry with maximum efficiency is a challenging

task. When there are many resources like people and machines in an industrial

setting, allocating them optimally to get the maximum output or minimum cost is a

difficult task amongst other financial barriers. Most of the industries have traditional

methods for allocating these resources and carrying out the regular production process

in addition to the lack of knowledge on optimal allocations. We identified one such

inefficient server allocation in one of the industrial projects we did with TaylorMade

Adidas Golf.

In TaylorMade Adidas Golf, we modeled a 5 step serial production system.

In this system, one of the resources (servers) was shared at two stations. The server

starts working at one of the stations and moves to the other station to process the

jobs in queue depending on the requirement at that station. This server was moving

from one station to another at a random time by rule of thumb leading to inventory

built up at each of the stations. As we modeled the production process of TaylorMade

to address various capacity issues in their system, we started noticing this inefficiency

in the system. Therefore, our motivation to dive into this research started with this

1

industry project.

Thereafter, we started studying a simplified system of the above kind. Our

initial motivation was to model the system to enable us to study the different charac-

teristics of the system like throughput, utilization, queue length etc. We considered

two stations and two flexible servers capable of working at either of the stations and

studied the server allocation policies for the servers to maximize the number of fin-

ished products out of the system. We also considered an arrival to the system to

mimic the actuality. We used dynamic programming technique to model and analyze

the server allocation policies across this tandem queueing system. We have described

our detailed research in this area in Chapter 1.

We extended our research to model the server movement across stations more

realistically. In the real world, whenever a server moves from one station to another,

there is a loss of production time or some sort of cost associated with it affecting

the total output of the system. Therefore, we introduced a switching cost into the

model for whenever a server switches from one station to another. Along with that,

we included holding costs for the number of jobs waiting in the system. Also, when

the finished products leave the system, there is a reward associated with it. So, in

our extension, we studied the server allocation policies by minimizing all the costs

associated with the system including the positive reward. This scenario is the same as

maximizing the throughput with negative costs. Our chapter 2 describes our research

extension in detail.

We reviewed the literature to look for the past research in the arena of server

allocation to stations in maximizing throughput (initial motivation) and minimizing

cost (research extension). Extensive literature review on each of the topics is present

in their respective chapters. Also, the individual chapters describe the mathematical

formulation, analysis, results and conclusions in detail. Unlike past research, we

2

have studied the optimal server allocation policy for different scenarios and have also

shown the policy structure of all the cases studied. These policy structures are very

useful to industries in deciding their server allocation policies. Due to the complicated

structure of some of the policies, we studied some heuristic policies to substitute the

optimal server allocation policies. These heuristic policies are simple enough to make

it implementable in the real world. This makes our research useful and valuable to

various industries and researchers.

3

Chapter 2

Inventory Based Allocation

Policies for Flexible Servers in

Serial Systems with no costs

2.1 Introduction

Effectively managing a production system is not an easy task. Operational

considerations in industry today include workstation cycle time, server requirements,

and process flow, among others. With so many factors to consider, firms often im-

plement a customized production policy. Unfortunately, such policies are often based

on anecdotal experience or are legacy policies which, while they may have worked

well for a previous setting, do not work well as system parameters change. Such

a phenomenon was observed in the industry example that motivated the study of

our problem. In this firm the server allocation policy across machines appeared very

inefficient. Since the firm was not experiencing extremely high product demand,

this inefficiency was masked. As business rules change and resource limitations are

4

updated, firms must continue to re-evaluate their production policy to ensure they

are achieving the desired objective. We study a firm that would like to maximize

product throughput with their current set of resources. These resources have been

cross-trained to perform jobs at various workstations. In this paper, we limit our

discussion to the two station case.

Consider a two stage serial production system in which each stage requires

at least one server to perform the job. The servers are flexible, i.e., they can work

on jobs at either station, and their processing rates do not depend on each other.

There are two cases for how jobs are processed: collaborative performance, and non-

collaborative performance. The collaborative case assumes that the servers will work

together on a single job at either of the stations. The non-collaborative case assumes

that both of the servers will work on individual jobs when residing at the same

workstation. Moreover, there is a finite arrival rate to the system, and there is

infinite room after the second station to store finished product. We also assume

that travel times and costs required for servers to move from one station to another

station are negligible. We use a manufacturing blocking mechanism to account for

product queueing at each station. For the two queueing systems of the form described

above, we are interested in determining the dynamic server assignment policy that

maximizes the long-run average throughput. In this paper, we will present structural

analysis and numerical results for the case in which servers work collaboratively. After

a detailed treatment of collaborative servers, we will introduce the non-collaborative

case and provide insights based on numerical results only.

A significant amount of literature exists on static server assignment problems.

In such cases, the server assignment is permanent and is done ex-ante i.e., there is no

dynamic server allocation. In the context of static server assignment, different station

arrangements along with the server allocation in a serial production line have been

5

studied. Particular research of this interest can be found in Yamazaki, Sakasegawa

and Shanthikumar [14] and Hillier and So [16]. Yamazaki et al. [14] have found that

the station arrangements in the serial production line determine the throughput of

the system. Hillier and So [16] have simultaneously optimized server and work alloca-

tion to maximize throughput. Thereafter, considerable research on server allocation

has continued on both parallel and serial systems. More specifically, research has ex-

panded to include dynamic server allocation policies and tandem queueing systems.

Much of the existing work in the area of optimal dynamic assignment of servers

assumes a production system with parallel queues. A common objective when con-

sidering an optimal assignment of servers to multiple interconnected queues is to

minimize holding costs. Under a heavy traffic assumption, Harrison and Lopez [15],

Williams [38], Bell and Williams [35], and Mandelbaum and Stoylar [23] have devel-

oped optimal server-assignment policies that minimize infinite horizon holding costs

for variants of systems with parallel queues, flexible servers and outside arrivals. Un-

der similar assumptions, Squillante, Xia, Yao and Zhang [36] used simulation to study

the policies for a parallel queueing system. Farrar [12] and Pandelis and Teneket-

zes [29] studied the optimal allocation of servers to stations with two queues and

no arrivals thereby minimizing holding costs. In both the papers, they were con-

cerned with scheduling the jobs that were initially present in the system assuming

zero arrivals to the system.

Additionally, Rosberg, Varaiya, and Walrand [32], Hajek [8], and Ahn, Duenyas

and Lewis [1] have studied the service allocation to minimize holding costs in a two-

station setting with Poisson arrivals. Van Oyen and Teneketzis [28] provided an

optimal policy for the system where identical servers can work collaboratively to re-

duce the cycle time per job. However, Van Oyen and Teneketzis [28], Reiman and

Wein [31], and Buzacott [10] were concerned with static assignment of collaborative

6

servers. Other related works in this area have been completed by Ross, Wein and

Reiman [31], Oyen, Gel and Hopp [27], Irvani, Posner and Buzacott [19], Pandelis

and Teneketzes [29], and Duenyas, Gupta and Olsen [11].

In addition to the parallel queueing systems, researchers have addressed the

system configuration with serial queues (or workstations) with the objective of mini-

mizing cost. Ostolaza, Thomas and McClain [25] and McClain, Thomas, and Sox [24]

studied dynamic line balancing in tandem systems, where shared tasks can be per-

formed at either of two successive stations. Their work was extended by Zavadlav,

McClain, and Thomas [39], who studied several server assignment policies for sys-

tems with fewer servers than machines, where cross-functional working capabilities

were assumed for the servers. Also, Ahn, Duenyas and Zhang [2] have studied the

optimal allocation of servers for a two-class, two stage tandem queueing system with

parallel servers and no arrivals. Ahn, Duenyas and Lewis [1] have studied the opti-

mal allocation of servers for a two-class, two stage tandem queueing system with one

dedicated server, one flexible server and with external arrivals to the system. Both

these papers characterized the policies that minimized holding costs.

To the best of our knowledge, there are a limited number of works that study

server allocation policies that maximize throughput in serial systems. Bischak [9] pro-

posed a server assignment policy in which the servers can move between stations in

a U-shaped module. Considering high processing time variation, it was shown with

the use of simulation that higher throughput can be achieved for this system with

servers moving across stations than the system with fixed servers for each station.

Recently, Andradottir, Ayhan and Down [4, 5] and Andradottir and Ayhan [3] are

the have studied the dynamic assignment of servers to maximize the long-run average

throughput in queueing networks with flexible servers. In each case, it was assumed

that an infinite supply of jobs was available in front of the first station. Andradottir

7

et al. [4] characterized the optimal dynamic server assignment policy for a two-stage

finite tandem queue with two servers. They also presented a heuristic for the case in

which there are an equal number of servers and stations. Andradottir and Ayhan [3]

studied the allocation of M servers to two tandem stations and characterized the

optimal long term average throughput. Also, they developed heuristic server assign-

ment policies for systems with three or more servers. Lastly, Andradottir et al. [5]

proved that the optimal throughput is attained by having all servers flexible rather

than having dedicated servers to stations. All three papers [3, 4, 5] assume that

servers work collaboratively, i.e., all servers can work simultaneously on a single job.

Our research also focuses on maximizing throughput. We focus on dynamic server

allocation across a two-station tandem line with two flexible servers. Our work differs

from previous research in that we allow for finite buffers in front of both stations and

external arrivals to the system.

2.2 Model Description for the Collaborative Case

We consider a two-station tandem queueing system. All products arrive to the

system at station 1 according to a Poisson process with rate λ > 0. Each arriving

product should be processed by both of the stations in series before leaving the system

as a finished good. We assume that there are finite buffers, B1 and B2, in front of

stations 1 and 2, respectively. Service at each of the stations can be performed

by either of two flexible servers. The service time of each server i (i = 1, 2) is

exponentially distributed with rate µi. Without loss of generality, we assume that

µ1 ≥ µ2. We begin by studying the allocation policy for servers that can work

collaboratively. (The state representation of the system will remain the same when

we address the non-collaborative case in Section 2.5). A representation of the system

8

is provided in Figure 3.1.

Figure 2.1: Model description

Denote B1 and B2 as the buffer sizes in front of the first and second stations,

respectively. We define the following state variables:

X(t) =Status of station 1 at time t, X(t) ∈ {0, 1, 2},

where 0, 1, 2 represent station 1 being idle, working, or blocked, respectively;

N1(t) =Number in queue (not including those in service) at station 1 at time t,

N1(t) ∈ {0, 1, 2, ...B1},

N2(t) =Total number in queue and in service at station 2 at time t,

N2(t) ∈ {0, 1, 2, . . . B2 + 1}.

Note that not all combinations of states are part of the feasible region, for example,

when station 1 is idle, there can be no job waiting in queue 1; similarly station 1 can

only be blocked when the buffer at station 2 is full. The state space is then given

by X = {(i, j, k)|i ∈ {0, 1, 2}, j ∈ {0, 1, . . . , B1}, k ∈ {0, 1, . . . , B2 + 1}, if i = 0 then

j = 0, if i = 2 then k = B2 + 1}.

Let Π denote the set of Markov deterministic policies, and suppose that for

any u ∈ Π and t ≥ 0, that (Xu(t), Nu
1 (t), Nu

2 (t)) represent the state of the system

under policy u at time t. At time t, the production manager is able to control the

allocation of servers to stations. The different possible actions are: both servers at

station 1; server 1 at station 1 and server 2 at station 2; server 2 at station 1 and server

9

1 at station 2; and both servers at station 2. Call this the server allocation decision

u(t), and denote the four actions by 0, 1, 2, and 3, respectively. A control policy u

specifies the action taken at any time given the state of the system. Given a Markov

deterministic policy u, (Xu(t), Nu
1 (t), Nu

2 (t)) is a continuous time Markov chain. We

are interested in maximizing the system long-run average throughput. Most of the

literature tackles throughput problems by analyzing the departure process (a counting

process) and then using policy iteration to find the optimal policy. Instead we use

renewal reward theory (Ross [34]) to solve an equivalent value iteration problem,

where a reward is incurred every time a job departs the system.

Table 2.1: Server allocation policies for the collaborative case.

Policy (u) Service rate at Station 1 (s1) Service rate at Station 2 (s2)

0 µ1 + µ2 0
1 µ1 µ2

2 µ2 µ1

3 0 µ1 + µ2

Since the state transitions are Markovian, it suffices to consider policies where

decisions are made at discrete time epochs. Thus, instead of a continuous time control

problem, we apply uniformization in the spirit of Lippman [22] and solve an equivalent

discrete time problem. Define γ as the maximum rate of transitions: γ = µ1 +µ2 +λ.

Without loss of generality, we scale δ (the discount factor) and γ such that δ+γ = 1.

Starting with the collaborative case, we begin by describing the optimality equation

for the discrete-time equivalent finite horizon discounted reward problem. Later we

show that our results extend to the infinite horizon and average reward problems.

For the collaborative case, the servers work together (or collaboratively) on a single

job. That is, if both servers are at the same station, they process a part at a rate of

(µ1+µ2). Let s1 and s2 denote the service rates at stations 1 and 2, respectively, based

on the chosen server allocation policy u. The different policies result in the following

10

service rates at each station, presented in Table 3.1. Define vk(x, n1, n2) to denote

the value of being in state (x, n1, n2) in the kth iteration, and let v0(x, n1, n2) = 0 for

all x, n1, n2. Then the finite horizon (n-stage) discounted reward problem starting in

state (x, n1, n2) is written as follows:

vk+1(x, n1, n2) = max
(s1,s2)∈S

[λTavk(x, n1, n2) + s1Tp1vk(x, n1, n2) + s2Tp2vk(x, n1, n2)] ,

(2.1)

where k < n and S = {(µ1 + µ2, 0), (µ1, µ2), (µ2, µ1), (0, µ1 + µ2)}. In the above

equation Ta, Tp1 , and Tp2 are operators corresponding to arrival, production at station

1, and production at station 2, transitions, respectively. The operators are defined

as:

Tav(x, n1, n2) =

 v(x, n1, n2) if n1 = B1

v(x, n1 + 1, n2) otherwise

Tp1v(x, n1, n2) =



v(x, n1, n2) if x = 0 or 2

v(0, n1, n2 + 1) if x = 1, n1 = 0, n2 < B2 + 1

v(1, n1 − 1, n2 + 1) if x = 1, n1 ≥ 1, n2 < B2 + 1

v(2, n1, n2) if x = 1, n1 ≥ 0, n2 = B2 + 1

Tp2v(x, n1, n2) =



v(x, n1, n2) if x = 0 or n2 = 0

v(1, n1, n2 − 1) + r if x = 1, n1 ≥ 0, n2 ≤ B2 + 1

v(1, n1 − 1, n2 − 1 + 1) + r if x = 2, n1 ≥ 1, n2 = B2 + 1

v(0, n1, n2 − 1 + 1) + r if x = 2, n1 = 0, n2 = B2 + 1

Note that r = 1 since this implies that a reward is received every time that a

finished good leaves the system. However, we have retained it as ‘r’ in the formulation

11

for ease of exposition.

When queue 1 is full (reached the limit of B1), the state does not change if an

arrival event occurs. But if queue 1 is not full, an arrival event causes a transition from

(x, n1, n2) to state (x, n1 + 1, n2). Similarly, if station 1 is idle, a service completion

event at station 1 does not have any state transition. Depending on the number

of jobs in queue 2, however, a service completion at station 1 may involve a state

transition. If queue 2 is less than full, a service completion event at station 1 will

cause a state transition to (x, n1 − 1, n2 + 1). If queue 2 is full, a service completion

event at station 1 will cause a state transition to the blocked state (2, n1, n2). A state

tranisition resulting from a service 2 completion will depend on the size of queue 2,

and the number in queue and service at station 1.

Since for each policy u, the pair of service rates at each station is unique, we

can rewrite (2.1) in terms of a single control s, where s represents the service rate at

station 2 (and µ1 + µ2 − s represents the service rate at station 1).

vk+1(x, n1, n2) = max
s∈S′

[λTavk(x, n1, n2) + (µ1 + µ2 − s)Tp1vk(x, n1, n2)

+ (s)Tp2vk(x, n1, n2)],

where S ′ = {0, µ2, µ1, µ1 + µ2}. Without loss of generality, we have assumed that

µ1 ≥ µ2. Notice that this implies that the service rate at station 2 is increasing in s.

2.3 Optimal Server Allocation Policy in the Col-

laborative Case

Our first result shows that when maximizing throughput it is optimal for both

servers to always work together, either at station 1 or at station 2. This result is

12

summarized in Theorem 2.3.1.

Theorem 2.3.1 In the collaborative case, there exists an optimal server allocation

policy in which both servers are always either assigned to station 1 (s = 0) or to

station 2 (s = µ1 + µ2).

Proof 1 Let s∗k+1 denote the optimal server rate at station 2 at the (k+1)st iteration.

Then,

s∗k+1(x, n1, n2) = argmax
s∈S′

[λTavk(x, n1, n2) + (µ1 + µ2 − s)Tp1vk(x, n1, n2)

+sTp2vk(x, n1, n2)]

= argmax
s∈S′

[λTavk(x, n1, n2) + (µ1 + µ2)Tp1vk(x, n1, n2)

+s[Tp2vk(x, n1, n2)− Tp1vk(x, n1, n2)]]

= argmax
s∈S′

{s[Tp2vk(x, n1, n2)− Tp1vk(x, n1, n2)]}

Let fk(x, n1, n2) = [Tp2vk(x, n1, n2)− Tp1vk(x, n1, n2)]

Then s∗k+1(x, n1, n2) = argmax
s∈S′

{s fk(x, n1, n2)}

Clearly, if fk < 0, then s∗k+1 = 0, while if fk > 0, then s∗k+1 = µ1 + µ2. When fk = 0

all policies are optimal. Therefore, ∀ k ≥ 0, there exists s∗k(x, n1, n2) ∈ {0, µ1 +µ2}.�

From this theorem it follows that there always exists an optimal policy in which we

allocate both servers to the same workstation. That is, depending on the current

state of the system, the optimal policy alternates between these two options, and any

policy in which the servers do not work together can be ignored.

Next we discuss the structure of the optimal policy. Based on Theorem 2.3.1,

we can provide some very intuitive results. For example, if there is no product at

station 2 (n2 = 0), then we should place the servers at station 1; similarly, if there

13

are no products at station 1 or station 1 is blocked (x = {0, 2}) then we should place

the servers at station 2. In the case that station 1 is busy (x = 1), we expect that as

the workload to a station increases, we assign more servers to that station. This is

in fact the case, as depicted by the example in Figure 2.2. We see that the optimal

policy depends on the inventory level at each of the stations.

Figure 2.2: Optimal server allocation policy u when x = 1, λ = 3, µ1 = µ2 = 4, B1 =
B2 = 20 and r = 1

In the remainder of this section we will show that the optimal reward to-go

function vk(x, n1, n2) satisfies a set of properties and that there exists a structured

optimal policy for all finite horizon problems. To do this, we define ϑ to be the set

of functions from our state space X onto < satisfying the following properties.

14

Properties of the set ϑ

1. (a)vk(x, n1, n2) + r ≥ vk(x, n1, n2 + 1), ∀x, n1, 1 ≤ n2 ≤ B2 + 1;

(b)vk(1, B1, 1) ≥ vk(1, B1, 0)

2. (a)vk(1, n1, n2 + 1) ≥ vk(1, n1 + 1, n2), n1 ≥ 1;

(b)vk(0, 0, n2 + 1) ≥ vk(1, 0, n2), n2 < B2 + 1;

3. (a)vk(0, 0, B2 + 1) + r ≥ vk(2, 0, B2 + 1)

(b)vk(1, n1, B2 + 1) + r ≥ vk(2, n1 + 1, B2 + 1), n1 ≥ 1;

4. Submodularity in n1

(a)vk(1, n1, n2 − 1)− vk(1, n1 − 1, n2 + 1) ≥

vk(1, n1 + 1, n2 − 1)− vk(1, n1, n2 + 1), n1 ≥ 1, 1 ≤ n2 < B2 + 1;

(b)vk(1, n1, B2)− vk(2, n1, B2 + 1) ≥

vk(1, n1 + 1, B2)− vk(2, n1 + 1, B2 + 1), ∀n1;

5. Submodularity in n2

(a)vk(1, n1, n2 − 1)− vk(1, n1 − 1, n2 + 1) ≤

vk(1, n1, n2)− vk(1, n1 − 1, n2 + 2), n1 ≥ 1, 1 ≤ n2 < B2;

(b)vk(1, 0, n2 − 1)− vk(0, 0, n2 + 1) ≤

vk(1, 0, n2)− vk(0, 0, n2 + 2). 1 ≤ n2 < B2;

The above properties have intuitive meaning. Property 1 implies that it is bet-

ter to produce (and earn a reward when possible) now than to do nothing. Property 2

states that it is better to push products out of station 1 than to do nothing. Property

3 implies that if station 1 is blocked, it is better to send servers to station 2 (since they

are of no use at station 1). Lastly, Properties 4 and 5 state that the marginal gain in

reward between pushing product out of station 2 or out of station 1 is non-increasing

in n1 and non-decreasing in n2. Note that the set ϑ is closed under addition and

15

scalar multiplication. Also note that v0(x, n1, n2) = 0 ∈ ϑ, ∀(x, n1, n2) ∈ X .

We prove the structure of the optimal policy in several steps. In the first step

(Theorem 2.3.2), we will show that if vk ∈ ϑ then, there exists a structured optimal

policy for the k + 1 stage problem. In the second step (Theorem 2.3.3), we will show

that if vk ∈ ϑ then vk+1 ∈ ϑ ∀k. Finally, we will show in Theorem 2.3.4 that together

these results imply that there exists a structured optimal policy for the finite horizon,

infinite horizon, and average reward problems.

Theorem 2.3.2 If vk ∈ ϑ, there exists an optimal policy for the k+1 period problem

described as follows.

1. s∗k+1(0, 0, n2) = µ1 + µ2, ∀n2 ∈ X

2. s∗k+1(x, n1, 0) = 0, ∀x, n1 ∈ X

3. s∗k+1(2, n1, B2 + 1) = µ1 + µ2, ∀n1 ∈ X

4. s∗k+1 is non-increasing in n1,

i.e. s∗k+1(1, n1, n2) ≥ s∗k+1(1, n1 + 1, n2), ∀n1, n2 ∈ X

5. s∗k+1 is non-decreasing in n2,

i.e. s∗k+1(1, n1, n2) ≤ s∗k+1(1, n1, n2 + 1), ∀n1, n2 ∈ X

Proof 2 From Theorem 2.3.1, recall that fk(x, n1, n2) ≤ 0 implies s∗k+1 = 0 and

fk(x, n1, n2) ≥ 0 implies s∗k+1 = µ1 + µ+2. We use our knowledge about fk(x, n1, n2)

in determining the optimal policy.

Part 1: If suffices to show that fk(0, 0, n2) = Tp2vk(0, 0, n2)− Tp1vk(0, 0, n2) ≥ 0. To

see this note that

fk(0, 0, n2) =


vk(0, 0, 0)− vk(0, 0, 0), if n2 = 0;

vk(0, 0, n2 − 1) + r − vk(0, 0, n2), otherwise.

16

If n2 = 0 then fk = 0, otherwise it follows from Property 1(a) that fk ≥ 0.

Part 2: If suffices to show that fk(x, n1, 0) = Tp2vk(x, n1, 0)−Tp1vk(x, n1, 0) ≤ 0. To

see this note that

fk(x, n1, 0) =


vk(0, 0, 0)− vk(0, 0, 0), if x = 0, n1 = 0;

vk(1, n1, 0)− vk(1, n1 − 1, 1), if x = 1, n1 ≥ 1;

vk(1, 0, 0)− vk(0, 0, 1), if x = 1, n1 = 0.

In the last two cases, fk ≤ 0 from Property 2, and in the first case fk = 0.

Part 3: If suffices to show that fk(2, n1, B2+1) = Tp2vk(2, n1, B2+1)−Tp1vk(2, n1, B2+

1) ≥ 0.

fk(2, n1, B2 + 1) =


vk(1, n1 − 1, B2 + 1) + r − vk(2, n1, B2 + 1), if n1 ≥ 1;

vk(0, 0, B2 + 1) + r − vk(2, 0, B2 + 1), if n1 = 0.

We see from the above equations that, in both cases, fk ≥ 0 from Property 3.

Part 4: To prove that s∗k+1(1, n1, n2) ≥ s∗k+1(1, n1 + 1, n2) it suffices to show that if

fk(1, n1, n2) ≤ 0, then fk(1, n1+1, n2) ≤ 0. This implies that if s∗k(1, n1, n2) = 0,

then s∗k(1, n1 + 1, n2) = 0. Therefore, suppose, fk(1, n1, n2) = Tp2vk(1, n1, n2)−

Tp1vk(1, n1, n2) ≤ 0. We separate the state space into three regions to prove

Part 4.

1. If n1 ≥ 1, 1 ≤ n2 < B2 + 1, then

fk(1, n1, n2) = vk(1, n1, n2 − 1) + r − vk(1, n1 − 1, n2 + 1)

≥ vk(1, n1 + 1, n2 − 1) + r − vk(1, n1, n2 + 1) = fk(1, n1 + 1, n2),

17

where the inequality follows from Property 4(a). Thus, fk(1, n1+1, n2) ≤ 0.

2. If n1 ≥ 1 and n2 = 0, then by definition, fk(1, n1 + 1, 0) = vk(1, n1 +

1, 0) − vk(1, n1, 1). Therefore, from Property 2(a), we directly see that

fk(1, n1 + 1, 0) ≤ 0.

3. If n1 ≥ 1, n2 = B2 + 1, then

fk(1, n1, n2) = vk(1, n1, B2) + r − vk(2, n1, B2 + 1)

≥ vk(1, n1 + 1, B2) + r − vk(2, n1 + 1, B2 + 1) = fk(1, n1 + 1, n2)

where the inequality follows from Property 4(b). Thus, fk(1, n1+1, n2) ≤ 0.

Part 5: To prove that s∗k+1(1, n1, n2) ≤ s∗k+1(1, n1, n2 + 1), it suffices to show that if

fk(1, n1, n2) ≥ 0, then fk(1, n1, n2 + 1) ≥ 0. Therefore, suppose, fk(1, n1, n2) =

Tp2vk(1, n1, n2)−Tp1vk(1, n1, n2) ≥ 0. We divide the state space into two distinct

regions to prove Part 5.

1. If n1 ≥ 1, 1 ≤ n2 < B2, then

fk(1, n1, n2) = vk(1, n1, n2 − 1) + r − vk(1, n1 − 1, n2 + 1)

≤ vk(1, n1, n2) + r − vk(1, n1 − 1, n2 + 2) = fk(1, n1, n2 + 1),

where the inequality above follows from Property 5(a). Thus, fk(1, n1, n2 +

1) ≥ 0.

2. If n1 = 0, 1 ≤ n2 ≤ B2, then

fk(1, 0, n2) =vk(1, 0, n2 − 1) + r − vk(0, 0, n2 + 1)

≤ vk(1, 0, n2) + r − vk(0, 0, n2 + 2) = fk(1, 0, n2 + 1),

18

where the inequality above follows from Property 5(b). Thus, fk(1, n1, n2 +

1) ≥ 0. �

From Theorem 2.3.2, we see that if our reward-to-go function in period k

satisfies the properties in ϑ, then the optimal allocation policy for the (k+1)st period

follows a given structure. In the next step, we show that if the optimal policy described

in Theorem 2.3.2 will in turn result in a reward-to-go function in period k + 1 that

also satisfies the properties in ϑ, then vk+1 ∈ ϑ. We will prove this through a series

of Lemmas. We refer the reader to the Appendix A for the proofs of these lemmas.

Lemma 2.3.1 If vk ∈ ϑ, then Tvk ∈ ϑ, where

Tvk = max
s∈S′

[(µ1 + µ2)Tp1vk − sTp1vk + sTp2vk].

Lemma 2.3.2 If vk ∈ ϑ, then Tavk ∈ ϑ.

We can now present Theorem 3.

Theorem 2.3.3 If vk ∈ ϑ, then vk+1 ∈ ϑ for all k ≥ 0.

Proof 3 If vk ∈ ϑ then there exists a structured optimal policy for the k + 1 period

problem as described in Theorem 2.3.2 and Tvk, Tavk ∈ ϑ from Lemmas 2.3.1 and

2.3.2, respectively. Recall that the set of functions ϑ are closed under (non-negative)

scalar multiplication and addition; then the result immediately follows by definition

of vk+1.�

Thus far, we have shown that the optimality equation is in ϑ, and from this,

there exists a structured optimal policy for a finite-horizon problem. We show that

the result can be extended to the infinite-horizon and average reward cases. To this

19

end, define the optimality equation for the infinite-horizon discounted reward and

average reward cases as follows:

v(x, n1, n2) = max
s∈S′

[λTav(x, n1, n2) + (µ1 + µ2 − s)Tp1v(x, n1, n2)

+ sTp2v(x, n1, n2)],

g + w(x, n1, n2) = max
s∈S′

[λTaw(x, n1, n2) + (µ1 + µ2 − s)Tp1w(x, n1, n2)

+ sTp2w(x, n1, n2)],

where g is the optimal average expected reward per unit time and w(x, n1, n2) is the

relative value function in state (x, n1, n2) for the average reward case.

Theorem 2.3.4 For the infinite-horizon discounted reward case, the following results

hold:

1. v ∈ ϑ.

2. There exists an optimal policy described by Theorem 2.3.2 with the exceptions

that v(x, n1, n2) replaces vk(x, n1, n2) and s∗(x, n1, n2) replaces s∗k+1(x, n1, n2).

Proof 4 Beginning with the infinite-horizon discounted problem, we base our results

on Porteus [30]. First note that the set of functions ϑ is complete; using the L∞

metric, the limit of any convergent sequence of functions in ϑ is also in ϑ. Let

v∞(x, n1, n2) be the limit of any convergent sequence and let the set of structured

decision rules be the decision rules given in Theorem 2. We see that Theorem 2 implies

that there exists a structured optimal policy for the one-stage maximization problem

with terminal reward v∞(x, n1, n2). Furthermore, Properties 1 - 5 are preserved in

the optimality equation for the one-stage problem with terminal value v∞(x, n1, n2).

20

Hence, by Theorem 5.1 in Porteus [30], v ∈ ϑ and there exists a structured optimal

policy and the result follows.

For the average-reward case the arguments used will depend on whether the

system is finite or infinite. When B1, B2 < ∞ then the state space is finite and we

can use well known arguments to let δ → 0 (Ross [33]) and deduce that the results

follow for the average-reward problem.�

We point out that when the state-space is allowed to be infinite, results con-

cerning average-reward optimal policies are more difficult to establish since a direct

argument based on letting δ tend to 0 may no longer be valid.

2.4 Sensitivity Analysis

We have shown that the optimal policy is characterized by a monotone, state-

dependent switching curve. However, the exact point at which the curve switches

will depend on problem parameters. We are interested in finding trends of how the

switching curve shifts. In particular, we study changes in the arrival rate, λ, the

ratio of average sever completion rates µ1/µ2, and change in buffer sizes, B1, B2. We

performed more than 120 experiments in which we change one system parameter while

fixing the rest. These changes included small to large buffer sizes, µ1/µ2 ratios from 1

to 10 and increases in λ value. We found that only changes in λ, µ1 and µ2 affect the

location of the switching curve. In other words, the switching curve depends on the

effective traffic intensity ρ = λ

(µ1+µ2
2)

. Figure 2.3 illustrates how the switching curve

shifts as ρ increases.

We observe that while ρ < 1 and increasing, the switching curve shifts down

and there is a greater region over the state space in which it is optimal to place both

servers at station 1, i.e., policy u = 0, s∗ = 0 (Increased region over which u = 0 is

21

Figure 2.3: Change in structure for different values of ρ when µ1 = 4, µ2 = 2, B1 =
B2 = 20, and r = 1

optimal). When ρ > 1, the switching curve shifts back up as ρ increases, and there

is a greater region over the state space in which it is optimal to place both servers at

station 2, i.e., policy u = 3, s∗ = µ1 + µ2. To summarize, s∗(1, n1, n2) is decreasing in

ρ when ρ ≤ 1 and it is increasing when ρ > 1.

2.4.1 Throughput Calculations

In this section, we present the throughput results from the optimal server as-

signment policy discussed in Section 2.3. The long-run average throughput converges

to a particular value based on the arrival rate λ. When the arrival rate λ is less than

the average service rate of (µ1+µ2)
2

, the throughput solely depends on λ and the prob-

ability that the buffer in front of station 1 is not full. But when the arrival rate λ is

greater than the average service rate, the throughput is restricted by the service rates

of the servers. The different values of the long run average throughput are provided

in Table 2.2. The results follow from the fact the the optimal policy is non-idling as

stated in Theorem 2.3.1. When utilization is less than 1 the throughput is limited by

22

the arrival rate; on the other hand, when the utilization is greater than 1, the system

approaches the case that an infinite supply of jobs is available as in Andradottir et

al [4] and the throughput rate is limited by the rate of the servers. The proof is

therefore omitted.

Table 2.2: Throughput convergence values

Value of λ Throughput convergence value

λ < (µ1 + µ2)/2 λ[Pr{n1 < B1}]
λ ≥ (µ1 + µ2)/2 (µ1 + µ2)/2

2.5 Non-Collaborative Servers

In the case of non-collaborative servers each server will now work indepen-

dently on one job or part. Again, we assume there is no switching cost for the

servers. We follow the same state representation as described in Section 2.2. In this

case, the policy u represents, not a combined service rate, but the rate of service of

each server at each station, as shown in Table 2.3.

Table 2.3: Server allocation policies for the non-collaborative case.

Policy (u) Service rate at station 1 (s1) Service rate at Station 2 (s2)

0 µ1, µ2 0
1 µ1 µ2

2 µ2 µ1

3 0 µ1, µ2

Note that u = 1, 2 is the same as for the case of collaborative servers, since

when this control is in place the servers are split between the two stations. On the

other hand, in this non-collaborative case u = 0, 3 indicate that each server will work

at its own rate (and on a unique job), not at the collaborative rate shown in Section

2.2. For example, at u = 0, the first part arriving at station 1 will be processed at

23

rate µ1 by server 1, and server 2 will remain idle unless a second part arrives for

processing. Without loss of generality, we assume that if two servers are at a station

but there is only one part to process then the faster server will work on that part.

Given the above policies, the resulting throughput maximization equation can now

be shown as:

vk+1(x, n1, n2) = λTavk(x, n1, n2) + max



µ1Tp1vk(x, n1, n2) +µ2Tp11vk(x, n1, n2),

µ1Tp1vk(x, n1, n2) +µ2Tp2vk(x, n1, n2),

µ1Tp2vk(x, n1, n2) +µ2Tp1vk(x, n1, n2),

µ1Tp2vk(x, n1, n2) +µ2Tp22vk(x, n1, n2).


for k = 0, 1, . . . n− 1 and v0(x, n1, n2) = 0 for all (x, n1, n2) ∈ X

The four different policies are: both servers working on at station 1, server 1 working

at station 1 and server 2 working at station 2, server 1 working at station 2 and server

2 working at station 1, or both servers working on individual jobs at station 2.

Based on the above equation, the server allocation policy is decided. While

Ta, Tp1 , Tp2 remain as they were discussed in Section 2.2, we now introduce additional

24

state transition operators Tp11 and Tp22 :

Tp11v(x, n1, n2) =



v(x, n1, n2) if x = 0, 2.

v(1, n1, n2) if x = 1, n1 = 0, n2 ≤ B2 + 1

v(1, n1 − 1, n2 + 1) if x = 1, n1 ≥ 1, n2 < B2 + 1

v(2, n1, n2) if x = 1, n1 ≥ 1, n2 = B2 + 1

Tp22v(x, n1, n2) =



v(x, n1, n2) if n2 = 0, 1

v(1, n1, n2 − 1) + r if x = 1, n1 ≥ 0, 2 ≤ n2 ≤ B2 + 1

v(1, n1 − 1, n2 − 1 + 1) + r if x = 2, n1 ≥ 1, n2 = B2 + 1

v(0, n1, n2 − 1 + 1) + r if x = 2, n1 = 0, n2 = B2 + 1

Notice that the difference in the optimality equations of the non-collaborative

and collaborative cases is that in the former two parts may be worked on simultane-

ously at a station, one by each server, whereas in the latter both servers work on the

same part. However, in the collaborative case, a second server will increase the rate

at which that part is completed. Also note that as opposed to the collaborative case

in which we showed that it is always optimal to have servers work together, there

may be instances in the non-collaborative case in which it is optimal to separate the

servers. This is so that the servers do not remain idle.

Unlike the collaborative case, numerical results show that the optimal policy

for the non-collaborative case is a combination of all four policies u = {0, 1, 2, 3}.

There are three patterns embedded in the structure of policy. When we fix the number

in queue 1 such that there is one job in service at station 1, the policy switches from

splitting the servers between the two stations to having them work together at station

2 as the number in queue 2 increases. The second pattern exists when there is only

25

one job at station 2 and there is at least one part in queue 1, the policy switches from

splitting the servers between the two stations to having them work together at station

1 as the number in queue 1 increases. The third pattern exists when there is at least

one job in queue 1 and at least two jobs in station 2, the server assignment policy

alternates between allocating both servers to station 1 and allocating both servers to

station 2. The basic structure of the policy along with the three patterns is shown in

Figure 2.4. We can observe that when n1 ≥ 1 and n2 ≥ 2, the pattern is very similar

to structure of the collaborative case in Figure 2.2.

Figure 2.4: Optimal server allocation policy u when x = 1, λ = 3.9, µ1 = 6, µ2 =
2, B1 = B2 = 20 and r = 1

2.6 Conclusions

In this paper, we have modeled the two stage tandem queueing system with

two flexible servers in order to maximize throughput. In the case that servers work

collaboratively we identify a set of structural properties and prove that the optimal

reward-to-go function satisfies these properties, i.e., the optimal allocation policy

follows a set of structured rules. In particular, the optimal policy for the collaborative

case in the finite-horizon, infinite-horizon, and long-run average problems is such that

26

servers work together at a single station at any point in time. The results show that

a non-idling policy is optimal. When there are parts waiting to be processed at both

stations then the optimal allocation of servers follows a switching curve, i.e., the

policy switches from both servers at one station to both servers at the other station

depending on the number of waiting parts.

We have also found that the throughput of the tandem queueing system con-

verges to a particular value depending on system utilization. When the utilization is

greater than 1, then our model approaches the case of having an infinite supply of

jobs available to the system, as in Andradottir et al. [4], and the results are consistent.

For the case in which servers work non-collaboratively, we identified the server

allocation policies based on a numerical analysis. Unlike the collaborative case, the

optimal server allocation policy in the non-collaborative case may involve “splitting”

up servers. While this seems to contrast the collaborative case (in which servers are

always allocated to the same station), the optimal policy is also a non-idling policy,

and follows a switching curve.

This research expands previous work in the area in two ways. First, we find

the optimal policies for tandem systems in which there is not an infinite supply of

jobs but rather finite arrivals to the system. Furthermore, we seek to maximize

throughput rather than minimize cost. As opposed to other papers that also seek to

maximize throughput, we focus on the structure of the optimal policy (rather than

solely on the throughput value) by using a value-iteration approach (instead of a

policy iteration approach). In the future we plan to assess the impact of switching

costs and time-delays on the structure of the optimal server allocation policy.

27

Chapter 3

Inventory Based Allocation

Policies for Flexible Servers in

Serial Systems with Switching cost,

Holding cost and Positive reward

3.1 Introduction

In a serial production setting, cross-trained servers may work at more than one

station to complete production. These flexible servers may move from one station to

another (switch tasks) depending on system requirements or as mandated by pre-

defined production rules. However, whenever a server switches tasks there is often

some lost production time due to any of the following reasons: (1) the time to move

to the other task, (2) the time to set up at the other task, or (3) the “warm-up”

period necessary for the worker to become familiar with the new task. A switching

cost is often used as a way to indirectly account for lost production time due to re-

28

allocating servers. Such costs must be balanced with conventional costs/rewards such

as holding costs and sales profits. We find that the relationship between these costs

and reward can greatly influence the optimal server allocation policies. Motivated by

one such industry example, and building on previous work related to flexible servers,

we study a serial production system with flexible servers facing both costs (switching

and holding costs) and rewards (finished goods profits).

In this paper we present a stylized model of a firm which has the ability to

dynamically allocate flexible servers. In particular, we consider a make-to-order two-

station tandem queueing system in which each station requires at least one server to

perform the operation. There are two flexible servers capable of working at either of

the stations with service rates independent of each other. In this research, we assume

that servers may work collaboratively (i.e., servers can work at the same station at the

same time on the same job) with the objective of minimizing the total system-wide

costs. Moreover, we assume there is an infinite buffer in front of both the stations.

The possible costs to the system include: switching cost charged whenever a server

switches from one station to another (fixed cost); holding cost rate (per unit, per unit

time) for the number of jobs waiting in front of each of the stations; profit (positive

reward per unit) for a finished product leaving the system.

There has been a significant stream of literature related to allocation of cross-

trained (flexible) servers in different system settings. Early studies of server allocation

policies looked at static (fixed) server assignments across stations. In the context of

static server assignment problems, much work also exists which investigates how dif-

ferent station arrangements in a serial production line could affect costs or throughput

([14], [16]). Research was extended to include dynamic server allocation policies. In

this context, significant literature exists on how the servers should be allocated across

parallel, serial and tandem queueing systems. For a detailed literature review of the

29

optimal server assignment problems on serial and parallel queueing systems and static

server assignments, please refer to Arumugam, Mayorga and Taaffe [6]. Much of this

work focuses on minimizing conventional costs (holding costs, operating costs) in

make-to-stock systems. When considering the objective of maximizing throughput

(without cost considerations), please refer to Androdottir et al. [3, 4, 5], as well as

Arumugam et al. [6].

Researchers have quantified losses due to switching based either on the cost of

switching or the time to switch. Glazebrook [13] was first to consider switching cost

in allocating machines to jobs to determine their order of processing. Following this

initial contribution, Oyen and Teneketzis [26] and Oyen, Pandelis and Teneketzis [37]

studied the allocation of a single server across N parallel queues with switching cost

and switching delays. They determined the server allocation policy by minimizing the

holding and switching costs. Later Koole [21] considered two parallel stations with

arrivals and studied a single server allocation by minimizing the discounted costs.

Iravani, Posner and Buzacott [18] proposed a two station tandem queueing system

with arrivals and studied the optimal server allocation policy of a single server in

minimizing both the holding and switching costs. Kitaev and Serfozo [20] studied

the M/M/1 queues with switching costs where the switching costs are based on the

choice of arrival and service rates at decision epochs. Recently, Iravani, Buzacott

and Posner [17] considered a single machine scheduling problem and compared it to

a N -station tandem queueing system. They have considered holding, switching and

shipment costs for a batch of M jobs. Batta, Berman and Wang [7] considered a

service center with time-dependent demand. Dividing the entire set of customers into

small groups, they minimize the switching and staffing costs, where switching costs

are included whenever servers move between groups.

In this paper we account for losses due to switching through a fixed switching

30

cost. Our goal is to dynamically allocate servers in order to minimize costs under

different cost structures (switching, holding) when a positive reward exists for finished

jobs. The positive reward can be interpreted as profit in a make-to-order system or as

a way to account for throughput. While many researchers have considered the costs we

describe, no work (to our knowledge) studies how the allocation polices might change

when a positive reward is included. We will show that the inclusion of a reward for

finished goods alters the structure of the optimal policy. When the optimal policy

follows complex state-dependent structures we propose alternative heuristic policies.

In a detailed numerical study we assess the performance of the heuristic policies and

show that a simpler structure which keeps one server static yields close to optimal

results.

3.2 Problem Description and Model Formulation

Consider a make-to-order two-station tandem queueing system in which orders

for products arrive to the system according to a Poisson process with rate λ > 0. We

assume that there are infinite buffers in front of both stations, and each arriving job

must pass through both the stations in series before leaving the system. There are two

flexible servers with service rates µ1 and µ2, respectively, and the individual server

rates do not change based on their current station location. Without loss of generality,

we can assume µ1 ≥ µ2. Servers may work collaboratively at a station, and given

that we have two stations, the overall service rate at one station is dependent on the

overall service rate at the other station. Since the total service rate across the two

stations is µ1 +µ2, we let s denote the service rate at station 2 and µ1 +µ2−s denote

the service rate at station 1. A pictorial representation of the system is provided in

Figure 3.1.

31

Figure 3.1: Model description

We define the following state variables:

N1(t) = Number in queue and in service at station 1 at time t,

where N1(t) ∈ {0, 1, 2, . . .∞},

N2(t) = Total number in queue and in service at station 2 at time t,

where N2(t) ∈ {0, 1, 2, . . .∞},

Z(t) = Service rate at station 2 at time t, where Z(t) ∈ {0, µ2, µ1, µ1 + µ2}.

Let Π denote the set of Markov deterministic policies. For any u ∈ Π and

t ≥ 0, denote (Nu
1 (t), Nu

2 (t), Zu(t)) as the state of the system under policy u at time

t. Moreover, the production manager can control the allocation of servers to stations.

The different possible actions are: both servers at station 1; server 1 at station 1 and

server 2 at station 2; server 2 at station 1 and server 1 at station 2; and both servers

at station 2. We denote a particular allocation of servers to stations as policy u, and

the four policies available can be represented by 0, 1, 2, and 3 respectively. Therefore,

the different policies u result in the following service rates at each station, presented

in Table 3.1. Given a Markov deterministic policy u, (Nu
1 (t), Nu

2 (t), Zu(t)) can be

stated as a continuous time Markov chain, as these actions can be taken at any time

based on the state of the system.

Our goal is to minimize system-wide costs of this tandem queueing system

where we consider a fixed switching cost (c) incurred each time a server switches

32

Table 3.1: Server allocation policies for the collaborative case.

Policy (u) Service rate at Station 1 (µ1 + µ2 − s) Service rate at Station 2 (s)

0 µ1 + µ2 0
1 µ1 µ2

2 µ2 µ1

3 0 µ1 + µ2

from one station to another, holding cost rates (h1, h2) charged per unit per unit time

for the jobs waiting in front of stations 1 and 2, respectively, and a positive reward

(r) received when a finished product is completed. Since the state transitions are

Markovian, it suffices to consider policies where decisions are made at discrete time

epochs. Thus, instead of a continuous time control problem, we apply uniformization

in the spirit of Lippman [22] and solve an equivalent discrete time problem. Define

γ as the maximum rate of transitions: γ = µ1 + µ2 + λ. Without loss of generality,

we scale δ (the discount factor) and γ such that δ+ γ = 1. Define vk(n1, n2, z) as the

value of being in state (n1, n2, z), and let v0(n1, n2, z) = 0 for all (n1, n2, z).

Then the finite horizon discounted cost problem starting in state (n1, n2, z) is

written as follows:

vk+1(n1, n2, z) = min
s∈S

[λvk(n1 + 1, n2, z) + (µ1 + µ2 − s)vk(n1 − 1, n2 + 1, z)

+ s(vk(n1, n2 − 1, z) + r) + Tc(s, z) + h1n1 + h2(n2 − 1)+],

where k < n and S = {0, µ2, µ1, µ1 + µ2}. In the above equation, Tc represents the

switching cost operator and is calculated based on the following relationship between

33

s (the starting server allocation) and z (the new server allocation):

Tc(s, z) =


0 if |z − s| = 0

c if |z − s| = µ1 or µ2

2c if |z − s| = µ1 + µ2

For example, if both servers start at station 2 (s = µ1 + µ2), the switching cost will

be c if one server switches to station 1 or 2c if both servers switch to station 1.

3.3 Optimal Policy Structures

We study two variants of the switching cost problem: (1) Minimizing switching

costs only and (2) Minimizing both switching and holding costs. In both cases, there

is a positive reward for finished goods. We have characterized the structure of the

optimal allocation policies through a computational analysis and we have presented

the pictorial representation of these policies at the end of the paper for easy compar-

ison. It is interesting to note that, when we let all costs equal zero and the reward

equal one, our problem reduces to the maximizing throughput problem presented

in Arumugam et al [6], in which they show that the optimal policy is characterized

by a single monotone switching-curve, and in the collaborative case, it is optimal

two make both servers always work together. However, we show that the monotone

policy structure is lost when switching costs are introduced, whether or not holding

costs are present. We offer managerial insights by considering how the magnitude

(relative to the reward obtained for finished products) of these costs can affect the

policy structure for the flexible servers. In order to examine the structure of the op-

timal policy we conducted a computational analysis using dynamic programming in

a truncated state space. To do so, we initialize the relative value function such that

34

v0(n1, n2, z) = 0, for all (n1, n2, z), then using the recursive optimality equation we

apply the value iteration algorithm until the minimum average cost converges with an

accuracy of .0005, from this we extract the optimal policy. For tractability purposes

we truncate the state space to be of dimension (400× 400× 4).

Positive Switching costs and Reward. We begin by studying a system with hold-

ing costs set to zero (i.e., h1 = h2 = 0). To avoid the non-trivial solutions, we

assume that the switching cost c is greater than the reward value r (c > r).

The optimal policy specifies the optimal server location at every state. Since

we have a three dimensional state space we show the optimal policy as a func-

tion of the inventory level based on the initial location of the servers. Figure

3.2 presents the optimal server allocation policies for each of the four possible

initial states. Although the optimal policy is characterized by a set of switching

curves, in many cases, these are not necessarily monotone. Such a case is illus-

trated in Figure 3.2, in particular consider the pattern shown in the lower left

corner of panel (a), where we begin with both servers at station 1. When there

is no work-in-process at station 1 (n1 = 0), and there are some jobs at station

2 (n2 > 0), we want the slower server to be moved from station 1 to station 2.

Once n1 = 1, we expect the server to be re-allocated to station 1. However, due

to the magnitude of the switching cost, this re-allocation does not immediately

occur.

Positive Switching cost, Holding costs, and Reward. We now introduce hold-

ing costs, h1, h2 > 0, as in equation (3.2). We classify the tests into two cases:

h1 < h2, h1 > h2.

The conventional case is the case that h1 < h2. This holds, for example, when

the first station provides a value added operation. In this case, the optimal

35

Figure 3.2: Server allocation policy with switching cost only, (a)z = 0, (b)z = 1, (c)z =
2, (d)z = 3

policy is depicted in Figure 3.3. Notice that the system allocates both servers

to station 2 for all but the smallest work-in-process levels at station 2. When no

product is at station 2, both servers can work at station 1 to reduce the product

queue. For small queue sizes at station 2, only the faster server is moved to

station 2. However, once the work-in-process at station 2 increases sufficiently,

the slower server joins the faster server at station 2. The higher holding cost

at station 2 (in addition to the positive reward obtained from pushing product

36

out of station 2) encourages the servers to work at station 2 most of the time.

The most notable change with the addition of holding costs (where h1 < h2) is

that the servers will go to (or remain at) station 2 sooner (longer) than in the

case without holding costs.

Figure 3.3: Server allocation policy with holding and switching costs, h1 < h2, z = 0

Next, consider the case that h1 > h2. This situation may arise, for example,

if raw material is perishable, and the first operation alters such volatility. The

higher holding cost at station 1 results in both servers working at station 1 for

at least some states across all initial server locations. Once inventory builds at

station 2, the servers begin shifting to station 2. With inventory at station 2

reaching a threshold value, the holding cost at station 2 now becomes important

and has a more negative effect on profit than the larger holding cost at station

1. An illustration of this state-dependent optimal policy is provided in Figure

3.4. In particular, consider panel (b), in which the system starts with the faster

server at station 1. We see that due to the presence of switching costs, the

optimal policy attempts to keep the same server there for a long time. The

slower server is only moved to station 1 when no product is at station 2. Note

37

that, due to the higher holding costs at station 1, both servers will work at

station 1 when there is no product at station 2, regardless of the initial position

of the servers.

Figure 3.4: Server allocation policy with holding and switching costs, h1 > h2, (a)z =
0, (b)z = 1, (c)z = 2, (d)z = 3

In all these cases, we have shown that the optimal policy is not only state

dependent, but is also often not monotone. This is directly due to the inclusion

of switching costs. We know this because when c = 0, our problem either reduces

to the problem of maximizing throughput as shown by Arumugam et al. [6] (when

38

h1 = h2 = 0), or to the problem of minimizing costs tackled by Ahn et al. [2] (r = 0).

In both papers they were able to analytically prove the structure of the optimal

server allocation policy, which was characterized by a monotone, stepwise switching

curve. Therefore, the introduction of a switching cost results in a breakdown of a

well-structured policy, making an analytical approach intractable.

While it is possible to solve for the optimal policy numerically, such complex

policies can be difficult to implement in practice. Furthermore, successful execution

of a complicated optimal policy should be rewarded by a substantial reduction in cost

because implementing a complex set of rules in practice requires both financial and

administrative overhead. However, as we will show in Section 3.4, only a marginal

gain is realized by implementing the optimal policy, in which both servers are fully

flexible. We instead consider three simpler types of control policies, ones in which we

restrict the flexibility of the servers. These policies are described in detail in the next

section.

3.4 Heuristic Policies: Definition and Performance

Although the policies described in the previous section are optimal, they may

prove difficult to implement. Instead, we consider a number of implementable heuris-

tic policies and compare their performance against the optimal policy. These policies

have the merit of possessing fewer parameters to optimize which results in simpler

policy structures. Furthermore, by analyzing their performance, we will show how big

of a gain the manufacturer can realize if it is able to dynamically change the location

of either server. The feature that these alternative policies share is that each restricts

the flexibility of the servers.

1. Static In a static policy, servers fixed at each of the stations. This is the most

39

restrictive policy, in which the servers are allocated to a station a-priori and

remain there. There are two possible allocation policies: the faster server is

fixed at the first station, the faster server is fixed at the second station. The

Static policy chooses the best among these two options. We note that since the

servers are fixed at each of the stations, the arrival rate to the system should

be less than the minimum service rates of the two servers in order to maintain

stability (if the arrival rate is greater, it results in infinite queue). Therefore,

this heuristic will be infeasible for some test cases.

2. Flex1 In this heuristic we fix one server at one station and let the other remain

flexible. Therefore, there are four possible combinations: the faster server is

fixed at station 1, the faster server fixed at station 2, the slower server fixed at

station 1, and the slower server fixed at station 2. The Flex1 policy chooses the

best among these four possible options.

3. Collab In this policy servers are forced to collaborate, they may move dynam-

ically as long as they move together. This policy is motivated by the problem

studied in Arumugam et al. [6], in which is was optimal to move both servers

together. Note that since both the servers always move together from one sta-

tion to another, any move results in a fixed charged equal to twice the switching

cost, c.

Next we analyze the performance of the three heuristic policies presented

above. We compare the cost obtained by the optimal policy to that achieved by each

of the heuristic policies. The performance measure we use is percent suboptimality,

where

GapH =
gH − g∗

g∗
× 100.

40

That is, GapH denotes the deviation from optimality of heuristic policy H, where

where g∗ is the long-run-average cost of the optimal policy, and gH is the long-run-

average cost of applying heuristic policy H. As with the optimal problem, each

heuristic is formulated as a dynamic program except that for the heuristics the con-

trol space is restricted accordingly, again we apply the value iteration algorithm to

calculate the cost.

Our study tests the performance of the heuristic policies for all possible com-

binations of parameters of interest. We tested five parameters (c, r, h1/h2, µ1/µ2, ρ)

at different levels. The switching cost and reward were each varied by three dif-

ferent levels (c = {0.0, 0.5, 2.0}), (r = {1, 5, 10}). The holding cost rate and ser-

vice rate ratios were varied by two different levels (h1/h2 = {0.01/0.05, 0.05/0.01}),

(µ1/µ2 = {4, 2}, {6, 2}). The system utilization (ρ = λ
(µ1+µ2)/2

), was varied by four

different levels (ρ = {0.25, 0.50, 0.75, 0.90}). This is a total if 144 test cases. We

present the results in two separate tables, Table 3.2 gives the results for h1 < h2 and

Table 3.3 gives the results when h1 > h2. Each of the experiments listed in the tables

gives the average over eight individual test runs (two levels of µ1/µ2 and four levels

of ρ). Please refer to Appendix B for the whole list of test cases. Also, note that for

the Static policy, results shown are the average over all feasible cases, infeasible cases

result in an infinite gap.

From these results, we make several observations regarding the performance

of the heuristics. In particular We can see that when the switching cost is zero, the

Collab policy (forcing both the servers move together) is indeed optimal. This result

is interesting because while this has been proven to be the case when maximizing

throughput ([6]) and when minimizing holding costs only ([2]), it has never been

shown that a bang-bang policy such as this is optimal when both holding costs and

41

Table 3.2: Summary of Experimental Results for all policies when h1 < h2. Numbers
shown are in percent suboptimal.

Exp No. c r Static Flex1 Collab

1 0 1 3.84 0.37 0.00
2 0.5 1 2.77 0.05 20.56
3 2 1 2.77 0.00 46.40
4 0 5 0.76 0.07 0.00
5 2.5 5 0.54 0.00 9.62
6 10 5 0.55 0.00 20.29
7 0 10 0.37 0.04 0.00
8 5 10 0.27 0.00 6.90
9 20 10 0.29 0.01 14.35

Table 3.3: Summary of Experimental Results for all policies when h1 > h2. Numbers
shown are in percent suboptimal.

Exp No. c r Static Flex1 Collab

1 0 1 3.66 0.53 0.00
2 0.5 1 2.79 0.00 14.54
3 2 1 2.76 0.01 32.67
4 0 5 0.72 0.10 0.00
5 2.5 5 0.54 0.00 6.92
6 10 5 0.55 0.00 14.58
7 0 10 0.36 0.05 0.00
8 5 10 0.27 0.00 4.97
9 20 10 0.29 0.01 10.73

42

reward are present.

In the most interesting case, when the switching cost is positive, the Collab

policy no longer performs well. In this case the heuristic which fixed one server Flex1,

performs best. This is true, not only on average but also on an individual case-by-case

basis.

The Static heuristics is difficult to analyze, as it is infeasible for many test

cases. For the feasible cases it performs better ion average that heuristics Collab.

This is because the feasible cases occur when utilization is very low, in which cases

the servers need not be switched as often, yet the Collab policy forces two servers to

switch at once.

Recall that heuristics Static and Flex1 involve choosing the best among sev-

eral possible server configurations. While these results are not presented numerically,

we discuss the resulting server allocation here to provide insights to the reader.

In the case of the Static, we find that, when the holding cost at station 1 is

greater than the holding cost at station 2, it is optimal to have the faster server at

station 1. Whereas if the holding cost at station 2 is greater than the holding cost at

station 1, it is optimal to have the the faster server at station 2.

In the case of the Flex1 policy, we find that, fixing a server at station 2 is

always optimal. Which server is fixed depends on the relationship between holding

costs. When h1 > h2 the slower server is fixed at station 2, but when h1 < h2 the

faster server is fixed at station 2.

For both of these policies, we observe that the optimality gap is decreasing

both the switching cost and in the reward. This is illustrated in Figures 3.5 and 3.6.

This is because as switching cost increases, moving the server becomes less desirable

and both heuristic policies restrict the movement of the servers. Similarly, as reward

increases the optimal policy would like to keep the servers at station 2 as much as

43

possible, thus restricting server movement (as with the heuristics) takes less away

from the optimal policy.

Figure 3.5: Optimality gap as switching cost increases for Collab.

3.5 Conclusions

We have studied problem of allocating flexible servers for a firm that operates

a make-to-order serial production system. Our main objective was to characterize the

server allocation policies of the two-servers two-station station case while minimizing

costs. The costs considered include switching costs, for the servers to move from one

station to another; and holding costs for the number of jobs waiting in queue to be

processed. Furthermore, we include a positive reward, or revenue term, for stratifying

demand by completing production. In particular, we studied how the inclusion of the

different costs and a revenue terms affect the structure of the optimal policy. In every

44

Figure 3.6: Optimality gap as reward increases for Collab.

case, we observed that the inclusion of switching costs results in a state-dependent

policy. While these policies can be characterized by switching curves that depend

on the inventory level, they are difficult to implement in practice for two reasons.

First, since the policies are state-dependent, a different set of curves must be followed

depending on the initial allocation of servers to stations. Second, these curves may

not be monotone.

Due to the impracticality of applying such complicated policy structures in

practice, we developed three simple heuristic policies and compared the results of

these heuristics with the optimal policy. We found that a heuristic which fixes one

server to a station a-priori, while letting the other server remain flexible performs

close to optimal; within 0.05% of optimality on average (over 144 test cases). In

particular, in the presence of a positive reward it is optimal to to have the fixed

45

server working at station two. The the value of holding costs determine whether the

faster or the slower server is fixed at station two.

While fixing one server is always the best heuristic when switching costs are

present, we also point out that when system utilization (ρ) is low (< 0.5) a static

policy (in which both servers are fixed a-priori) performs reasonable well (within 4%

of optimality for all cases tested). However, applying the “wrong” heuristic policy

can lead to very poor results (almost 50% from optimality).

In the future, we would like to extend our research to incorporate switching

time directly into the model, by including a delay in service to begin when a server

moves from station to station, or by accounting for a warmup period for the server to

become familiar with the task. Lastly, it would be interesting to see how our results

change if processing times are not only server dependent but also task dependent.

46

Chapter 4

Conclusions

In our research, we have modeled and analyzed a two stage tandem queueing

system with two flexible servers. In our first chapter, we studied two different sce-

narios on how the servers should be allocated to maximize throughput of the system:

collaborative and non-collaborative. In the collaborative working of servers, we found

that it is optimal to allocate both the servers together at all times. Therefore, when

servers switch from one station to another, they move together. From our analysis, we

found that the switching pattern follows a monotone switching curve when there are

jobs processed at each of the stations. Whereas in the non-collaborative working of

servers, we found that it is no longer optimal to keep both the servers together. It is

optimal to split the servers across the two stations when needed to get the maximum

output. Also, in Chapter 1, we have proved the structure of the optimal policy for

the collaborative working of servers using mathematical iteration techniques.

In Chapter 2, we extended our research to include the switching cost for the

servers to move from one station to another and holding costs for the number of jobs

waiting at each of the stations. From our analysis, we studied that introducing any of

these costs makes the server allocation policy to lose its monotone switching pattern.

47

We studied the system with just the switching cost and also with having both the

switching and holding costs. Once we realized that the optimal server allocation

policy is hard to implement in the real-world, we studied 3 different heuristics for

the server allocation on the same system: fixing each of the servers at each of the

stations, fixing one server and making the other flexible and always moving both the

servers together. Among all the heuristics, fixing one server heuristic performed really

well and the convergence values of this heuristic was very close to the optimal server

allocation policy values.

Our research contribution in this arena has been significant in that, we have

described the mathematical formulation of all our problems and have shown the

optimal server allocation policies for the systems studied. For our initial maximizing

throughput case, we have proved the structure of the optimal server allocation policy.

In our extension, we have also compared our complex optimal policies with simple

heuristics for easy implementation of our research in the real world.

In the future, we are trying to incorporate switching time into the model.

Therefore, when the servers move from one station to another, there is a time lag

involved with it instead of having a quantified loss associated with it. This makes the

system more complicated and difficult to study. There is extensive literature available

on server allocation problems involving switching time.

48

Appendices

49

Appendix A

Here, we provide the proofs for Lemmas 1 and 2 in Section 2.3. We restate

the lemmas here for convenience.

Lemma 1

If vk ∈ ϑ, then Tvk ∈ ϑ where,

Tvk = max
s∈S′

[(µ1 + µ2)Tp1vk − sTp1vk + sTp2vk]

Proof 5 For the properties that define set v, we need to show that Tvk ∈ ϑ.

Property 1(a)

Let (sa, sb) = (s∗k+1(x, n1, n2), s
∗
k+1(x, n1, n2+1)). Since s∗k+1(x, n1, n2) ≤ s∗k+1(x, n1, n2+

1), from theorem 2, there are only three possible combinations for this pair. Therefore,

(sa, sb) ∈ {(0, 0), (0, µ1 + µ2), (µ1 + µ2, µ1 + µ2)}.

Case 1: Let (sa, sb) = (0, 0). Then,

Tvk(x, n1, n2) + r = r + (µ1 + µ2)vk(x, n1 − 1, n2 + 1)− 0 + 0

= r + (µ1 + µ2)vk(x, n1 − 1, n2 + 1)

≥ (µ1 + µ2)vk(x, n1 − 1, n2 + 2)

= Tvk(x, n1, n2 + 1),

50

where the inequality above follows from Property 1(a) and the fact that µ1+µ2 < r = 1.

Case 2: Let (sa, sb) = (0, µ1 + µ2). Then,

Tvk(x, n1, n2) + r = r + [(µ1 + µ2)vk(x, n1 − 1, n2 + 1)− 0 + 0]

= r + (µ1 + µ2)vk(x, n1 − 1, n2 + 1)

≥ (µ1 + µ2)[vk(x, n1, n2) + r]

= Tvk(x, n1, n2 + 1),

where the inequality above follows from Property 2 and the fact that r > (µ1 + µ2)r.

Case 3: Let (sa, sb) = (µ1 + µ2, µ1 + µ2). Then,

Tvk(x, n1, n2) + r = r + [(µ1 + µ2)vk(x, n1 − 1, n2 + 1)

− (µ1 + µ2)vk(x, n1 − 1, n2 + 1) + (µ1 + µ2)[vk(x, n1, n2 − 1) + r]

= r + (µ1 + µ2)[vk(x, n1, n2 − 1) + r]

≥ (µ1 + µ2)[vk(x, n1, n2) + r]

= Tvk(x, n1, n2 + 1),

where the inequality above follows from Property 1(a) and the fact that r > (µ1 +µ2)r.

Property 1(b)

Let (sa, sb) = (s∗k+1(1, B1, 1), s∗k+1(1, B1, 0)). Note that there are only three possible

combinations for this pair. Therefore, (sa, sb) ∈ {(0, 0), (µ1+µ2, 0), (µ1+µ2, µ1+µ2)}.

Case 1: Let (sa, sb) = (0, 0). Then,

Tvk(1, B1, 1) = (µ1 + µ2)vk(1, B1 − 1, 2)− 0 + 0

≥ vk(1, B1 − 1, 1)

= Tvk(1, B1, 0),

51

where the inequality above follows from Property 1(b).

Case 2: Let (sa, sb) = (µ1 + µ2, 0). Then,

Tvk(1, B1, 1) = (µ1 + µ2)vk(1, B1 − 1, 2)

− (µ1 + µ2)vk(1, B1 − 1, 2) + (µ1 + µ2)[vk(1, B1, 0) + r]

≥ (µ1 + µ2)vk(1, B1, 0)

= Tvk(1, B1, 0).

Case 3: Let (sa, sb) = (µ1 + µ2, µ1 + µ2). Then,

Tvk(1, B1, 1) = (µ1 + µ2)vk(1, B1 − 1, 2)

− (µ1 + µ2)vk(1, B1 − 1, 2) + (µ1 + µ2)[vk(1, B1, 0) + r]

≥ (µ1 + µ2)vk(1, B1, 0)

= Tvk(1, B1, 0).

Property 2(a)

Let (sa, sb) = (s∗k+1(x, n1, n2 + 1), s∗k+1(x, n1 + 1, n2)). Note that there are only three

possible combinations for this pair. Therefore, (sa, sb) ∈ {(0, 0), (µ1 + µ2, 0), (µ1 +

µ2, µ1 + µ2)}. In other words, s∗k+1(x, n1, n2 + 1) ≥ s∗k+1(x, n1 + 1, n2)

Case 1: Let (sa, sb) = (0, 0). Then,

Tvk(x, n1, n2 + 1) = [(µ1 + µ2)vk(x, n1 − 1, n2 + 2)− 0 + 0]

≥ [(µ1 + µ2)vk(x, n1, n2 + 1)]

= Tvk(x, n1 + 1, n2),

where the inequality above follows from Property 2(a).

52

Case 2: Let (sa, sb) = (µ1 + µ2, 0). Then,

Tvk(x, n1, n2 + 1) = [(µ1 + µ2)vk(x, n1 − 1, n2 + 2)

− (µ1 + µ2)vk(x, n1 − 1, n2 + 2) + (µ1 + µ2)[vk(x, n1, n2) + r]]

= (µ1 + µ2)[vk(x, n1, n2) + r]

≥ (µ1 + µ2)vk(x, n1, n2 + 1)

= Tvk(x, n1 + 1, n2),

where the inequality above follows from Property 1(a).

Case 3: Let (sa, sb) = (µ1 + µ2, µ1 + µ2). Then,

Tvk(x, n1, n2 + 1) = [(µ1 + µ2)vk(x, n1 − 1, n2 + 2)

− (µ1 + µ2)vk(x, n1 − 1, n2 + 2) + (µ1 + µ2)[vk(x, n1, n2) + r]]

= (µ1 + µ2)[vk(x, n1, n2) + r]

≥ (µ1 + µ2)[vk(x, n1 + 1, n2 − 1) + r]

= Tvk(x, n1 + 1, n2),

where the inequality above follows from Property 2(a).

Property 2(b)

Let (sa, sb) = (s∗k+1(0, 0, n2 + 1), s∗k+1(1, 0, n2)). Note that there are only two possible

combinations for this pair. Therefore, (sa, sb) ∈ {(0, 0), (µ1 + µ2, µ1 + µ2)}.

Case 1: Let (sa, sb) = (0, 0). Then,

Tvk(0, 0, n2 + 1) = (µ1 + µ2)vk(0, 0, n2 + 1)− 0 + 0

= (µ1 + µ2)vk(0, 0, n2 + 1)

= Tvk(1, 0, n2).

53

Case 2: . Let (sa, sb) = (µ1 + µ2, µ1 + µ2). Then,

Tvk(0, 0, n2 + 1) = (µ1 + µ2)vk(0, 0, n2 + 1)

− (µ1 + µ2)vk(0, 0, n2 + 1) + (µ1 + µ2)[vk(0, 0, n2) + r]

≥ (µ1 + µ2)vk(1, 0, n2 − 1)

= Tvk(1, 0, n2),

where the inequality above follows from Property 2(b).

Property 3(a)

Let (sa, sb) = (s∗k+1(0, 0, B2 + 1), s∗k+1(2, 0, B2 + 1)). Note that there are only one

possible combinations for this pair. Therefore, (sa, sb) ∈ {(µ1 + µ2, µ1 + µ2)}.

Case 1: Let (sa, sb) = (µ1 + µ2, µ1 + µ2). Then,

Tvk(0, 0, B2 + 1) + r = r + (µ1 + µ2)vk(0, 0, B2 + 1)

− (µ1 + µ2)vk(0, 0, B2 + 1) + (µ1 + µ2)[vk(0, 0, B2) + r]

≥ (µ1 + µ2)[vk(0, 0, B2 + 1) + r]

= Tvk(2, 0, B2 + 1),

where the inequality above follows from Property 1(a) and the fact that r > (µ1 +µ2)r.

Property 3(b)

Let (sa, sb) = (s∗k+1(1, n1, B2 + 1), s∗k+1(2, n1 + 1, B2 + 1)). Note that there is only one

possible combination for this pair. Therefore, (sa, sb) ∈ {(µ1 + µ2, µ1 + µ2)}.

Case 1: Let (sa, sb) = (µ1 + µ2, µ1 + µ2). Then,

54

Tvk(1, n1, B2 + 1) + r = r + [(µ1 + µ2)vk(2, n1, B2 + 1)

− (µ1 + µ2)vk(2, n1, B2 + 1) + (µ1 + µ2)[vk(1, n1, B2) + r]]

= r + (µ1 + µ2)[vk(1, n1, B2) + r]

≥ (µ1 + µ2)[vk(1, n1, B2 + 1) + r]

= Tvk(2, n1 + 1, n2),

where the inequality above follows from Property 1(a) and the fact that r > (µ1 +µ2)r.

Property 4(a)

Let (sa, sb, sc, sd) = (s∗k+1(1, n1−1, n2+1), s∗k+1(1, n1, n2+1), s∗k+1(1, n1, n2−1), s∗k+1(1, n1+

1, n2 − 1)). Note that there five possible combinations for this pair. Therefore,

(sa, sb, sc, sd) ∈ {(0, 0, 0, 0), (µ1 + µ2, 0, 0, 0), (µ1 + µ2, µ1 + µ2, 0, 0), (µ1 + µ2, µ1 +

µ2, µ1 + µ2, 0), (µ1 + µ2, µ1 + µ2, µ1 + µ2, µ1 + µ2)}

Case 1: Let (sa, sb, sc, sd) = (0, 0, 0, 0). Then,

Tvk(1, n1 − 1, n2 + 1)− Tvk(1, n1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− 0 + 0]− [(µ1 + µ2)vk(1, n1 − 1, n2 + 2)− 0 + 0]

= (µ1 + µ2)vk(1, n1 − 2, n2 + 2)− (µ1 + µ2)vk(1, n1 − 1, n2 + 2)

≤ (µ1 + µ2)vk(1, n1 − 1, n2)− (µ1 + µ2)vk(1, n1, n2)

= Tvk(1, n1, n2 − 1)− Tvk(1, n1 + 1, n2 − 1),

where the inequality above follows from Property 4(a).

Case 2: Let (sa, sb, sc, sd) = (µ1 + µ2, 0, 0, 0). Then,

55

Tvk(1, n1 − 1, n2 + 1)− Tvk(1, n1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− (µ1 + µ2)vk(1, n1 − 2, n2 + 2)

+ (µ1 + µ2)vk[(1, n1 − 1, n2) + r]]− [(µ1 + µ2)vk(1, n1 − 1, n2 + 2)− 0 + 0]

= [(µ1 + µ2)vk[(1, n1 − 1, n2) + r]− (µ1 + µ2)vk(1, n1 − 1, n2 + 2)]

≤ (µ1 + µ2)vk(1, n1 − 1, n2)− (µ1 + µ2)vk(1, n1, n2)

= Tvk(1, n1, n2 − 1)− Tvk(1, n1 + 1, n2 − 1),

where the inequality above follows from the fact that, when sa = µ1 + µ2,

fk(1, n1, n2 + 1) ≤ 0. This implies, r ≤ vk(1, n1 − 1, n2 + 2)− vk(1, n1, n2).

Case 3: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, 0, 0). Then,

Tvk(1, n1 − 1, n2 + 1)− Tvk(1, n1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− (µ1 + µ2)vk(1, n1 − 2, n2 + 2)

+ (µ1 + µ2)vk[(1, n1 − 1, n2) + r]]− [(µ1 + µ2)vk(1, n1 − 1, n2 + 2)

− (µ1 + µ2)vk(1, n1 − 1, n2 + 2) + (µ1 + µ2)[vk(1, n1, n2) + r]]

= (µ1 + µ2)vk[(1, n1 − 1, n2) + r]− (µ1 + µ2)[vk(1, n1, n2) + r]

≤ (µ1 + µ2)vk(1, n1 − 1, n2)− (µ1 + µ2)vk(1, n1, n2)

= Tvk(1, n1, n2 − 1)− Tvk(1, n1 + 1, n2 − 1),

Case 4: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, µ1 + µ2, 0). Then,

56

Tvk(1, n1 − 1, n2 + 1)− Tvk(1, n1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− (µ1 + µ2)vk(1, n1 − 2, n2 + 2)

+ (µ1 + µ2)vk[(1, n1 − 1, n2) + r]]− [(µ1 + µ2)vk(1, n1 − 1, n2 + 2)

− (µ1 + µ2)vk(1, n1 − 1, n2 + 2) + (µ1 + µ2)[vk(1, n1, n2) + r]]

= (µ1 + µ2)vk[(1, n1 − 1, n2) + r]− (µ1 + µ2)[vk(1, n1, n2) + r]

= (µ1 + µ2)vk(1, n1 − 1, n2)− (µ1 + µ2)vk(1, n1, n2)

≤ (µ1 + µ2)[vk(1, n1, n2 − 2) + r]− (µ1 + µ2)vk(1, n1, n2)

= Tvk(1, n1, n2 − 1)− Tvk(1, n1 + 1, n2 − 1),

where the inequality above follows from the fact that, when sc = µ1 + µ2,

fk(1, n1, n2 − 1) ≥ 0. This implies, r ≥ vk(1, n1 − 1, n2)− vk(1, n1, n2 − 2).

Case 5: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, µ1 + µ2, µ1 + µ2). Then,

Tvk(1, n1 − 1, n2 + 1)− Tvk(1, n1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− (µ1 + µ2)vk(1, n1 − 2, n2 + 2)

+ (µ1 + µ2)vk[(1, n1 − 1, n2) + r]]− [(µ1 + µ2)vk(1, n1 − 1, n2 + 2)

− (µ1 + µ2)vk(1, n1 − 1, n2 + 2) + (µ1 + µ2)[vk(1, n1, n2) + r]]

= (µ1 + µ2)vk[(1, n1 − 1, n2) + r]− (µ1 + µ2)[vk(1, n1, n2) + r]

= (µ1 + µ2)vk(1, n1 − 1, n2)− (µ1 + µ2)vk(1, n1, n2)

≤ (µ1 + µ2)vk(1, n1, n2 − 2)− (µ1 + µ2)vk(1, n1 + 1, n2 − 2)

= Tvk(1, n1, n2 − 1)− Tvk(1, n1 + 1, n2 − 1),

where the inequality above follows from Property 4(a).

Property 4(b)

57

Let (sa, sb, sc, sd) = (s∗k+1(2, n1, n2), s
∗
k+1(2, n1 + 1, n2), s

∗
k+1(1, n1, n2 − 1), s∗k+1(1, n1 +

1, n2 − 1)). Note that there are only three possible combinations for this pair. There-

fore, (sa, sb, sc, sd) ∈ {(µ1 +µ2, µ1 +µ2, 0, 0), (µ1 +µ2, µ1 +µ2, µ1 +µ2, 0), (µ1 +µ2, µ1 +

µ2, µ1 + µ2, µ1 + µ2)}

Case 1: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, 0, 0). Then,

Tvk(2, n1, n2)− Tvk(2, n1 + 1, n2) =

= [(µ1 + µ2)vk(2, n1, n2)− (µ1 + µ2)vk(2, n1, n2)

+ (µ1 + µ2)[vk(1, n1 − 1, n2) + r]]− [(µ1 + µ2)vk(2, n1 + 1, n2)

− (µ1 + µ2)vk(2, n1 + 1, n2) + (µ1 + µ2)[vk(1, n1, n2) + r]]

= (µ1 + µ2)[vk(1, n1 − 1, n2) + r]− (µ1 + µ2)[vk(1, n1, n2) + r]

= (µ1 + µ2)vk(1, n1 − 1, n2)− (µ1 + µ2)vk(1, n1, n2)

≤ vk(1, n1 − 1, n2)− vk(1, n1, n2)

= Tvk(1, n1, n2 − 1)− Tvk(1, n1 + 1, n2 − 1).

Case 2: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, µ1 + µ2, 0). Then,

58

Tvk(2, n1, n2)− Tvk(2, n1 + 1, n2) =

= [(µ1 + µ2)vk(2, n1, n2)− (µ1 + µ2)vk(2, n1, n2)

+ (µ1 + µ2)[vk(1, n1 − 1, n2) + r]]− [(µ1 + µ2)vk(2, n1 + 1, n2)

− (µ1 + µ2)vk(2, n1 + 1, n2) + (µ1 + µ2)[vk(1, n1, n2) + r]]

= (µ1 + µ2)[vk(1, n1 − 1, n2) + r]− (µ1 + µ2)[vk(1, n1, n2) + r]

= (µ1 + µ2)vk(1, n1 − 1, n2)− (µ1 + µ2)vk(1, n1, n2)

≤ [vk(1, n1, n2 − 2) + r]− vk(1, n1, n2)

= Tvk(1, n1, n2 − 1)− Tvk(1, n1 + 1, n2 − 1),

where the inequality above follows from the fact that, when sc = µ1 + µ2,

fk(1, n1, n2 − 1) ≥ 0. This implies, r ≥ vk(1, n1 − 1, n2)− vk(1, n1, n2 − 2)

Case 3: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, µ1 + µ2, µ1 + µ2). Then,

Tvk(2, n1, n2)− Tvk(2, n1 + 1, n2) =

= [(µ1 + µ2)vk(2, n1, n2)− (µ1 + µ2)vk(2, n1, n2)

+ (µ1 + µ2)[vk(1, n1 − 1, n2) + r]]− [(µ1 + µ2)vk(2, n1 + 1, n2)

− (µ1 + µ2)vk(2, n1 + 1, n2) + (µ1 + µ2)[vk(1, n1, n2) + r]]

= (µ1 + µ2)[vk(1, n1 − 1, n2) + r]− (µ1 + µ2)[vk(1, n1, n2) + r]

≤ (µ1 + µ2)[vk(1, n1, n2 − 2) + r]− (µ1 + µ2)[vk(1, n1 + 1, n2 − 2) + r]

= Tvk(1, n1, n2 − 1)− Tvk(1, n1 + 1, n2 − 1),

where the inequality above follows from Property 4(a).

Property 5(a)

Let (sa, sb, sc, sd) = (s∗k+1(1, n1−1, n2+2), s∗k+1(1, n1−1, n2+1), s∗k+1(1, n1, n2), s
∗
k+1(1, n1, n2−

59

1)). Note that there five possible combinations for this pair. Therefore, (sa, sb, sc, sd) ∈

{(0, 0, 0, 0), (µ1 +µ2, 0, 0, 0), (µ1 +µ2, µ1 +µ2, 0, 0), (µ1 +µ2, µ1 +µ2, µ1 +µ2, 0), (µ1 +

µ2, µ1 + µ2, µ1 + µ2, µ1 + µ2)}

Case 1: Let (sa, sb, sc, sd) = (0, 0, 0, 0). Then,

Tvk(1, n1 − 1, n2 + 2)− Tvk(1, n1 − 1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 3)− 0 + 0]− [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− 0 + 0]

= (µ1 + µ2)vk(1, n1 − 2, n2 + 3)− (µ1 + µ2)vk(1, n1 − 2, n2 + 2)

≤ (µ1 + µ2)vk(1, n1 − 1, n2 + 1)− (µ1 + µ2)vk(1, n1 − 1, n2)

= Tvk(1, n1, n2)− Tvk(1, n1, n2 − 1),

where the inequality above follows from Property 5(a).

Case 2: Let (sa, sb, sc, sd) = (µ1 + µ2, 0, 0, 0). Then,

Tvk(1, n1 − 1, n2 + 2)− Tvk(1, n1 − 1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− (µ1 + µ2)vk(1, n1 − 2, n2 + 2)

+ (µ1 + µ2)[vk(1, n1 − 1, n2 + 1) + r]]− [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− 0 + 0]

≤ (µ1 + µ2)vk(1, n1 − 1, n2 + 1)− (µ1 + µ2)vk(1, n1 − 1, n2)

= Tvk(1, n1, n2)− Tvk(1, n1, n2 − 1),

where the inequality above follows from the fact that, when sa = µ1 + µ2,

fk ≥ 0. This implies that, r ≤ vk(1, n1 − 2, n2 + 2)− vk(1, n1 − 1, n2)

.

Case 3: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, 0, 0). Then,

60

Tvk(1, n1 − 1, n2 + 2)− Tvk(1, n1 − 1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− (µ1 + µ2)vk(1, n1 − 2, n2 + 2)

+ (µ1 + µ2)[vk(1, n1 − 1, n2 + 1) + r]]− [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)

− (µ1 + µ2)vk(1, n1 − 2, n2 + 2) + (µ1 + µ2)[vk(1, n1 − 1, n2) + r]

= (µ1 + µ2)[vk(1, n1 − 1, n2 + 1) + r]− (µ1 + µ2)[vk(1, n1 − 1, n2) + r]

≤ (µ1 + µ2)vk(1, n1 − 1, n2 + 1)− (µ1 + µ2)vk(1, n1 − 1, n2)

= Tvk(1, n1, n2)− Tvk(1, n1, n2 − 1).

Case 4: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, µ1 + µ2, 0). Then,

Tvk(1, n1 − 1, n2 + 2)− Tvk(1, n1 − 1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)− (µ1 + µ2)vk(1, n1 − 2, n2 + 2)

+ (µ1 + µ2)[vk(1, n1 − 1, n2 + 1) + r]]− [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)

− (µ1 + µ2)vk(1, n1 − 2, n2 + 2) + (µ1 + µ2)[vk(1, n1 − 1, n2) + r]

= (µ1 + µ2)[vk(1, n1 − 1, n2 + 1) + r]− (µ1 + µ2)[vk(1, n1 − 1, n2) + r]

≤ (µ1 + µ2)[vk(1, n1, n2 − 1) + r]− (µ1 + µ2)vk(1, n1 − 1, n2)

= Tvk(1, n1, n2)− Tvk(1, n1, n2 − 1),

where the inequality above follows from the fact that, when sc = µ1 + µ2,

fk(1, n1, n2) ≥ 0. This implies that, r ≥ vk(1, n1 − 1, n2 + 1)− vk(1, n1, n2 − 1).

Case 5: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, µ1 + µ2, µ1 + µ2). Then,

61

Tvk(1, n1 − 1, n2 + 2)− Tvk(1, n1 − 1, n2 + 1) =

= [(µ1 + µ2)vk(1, n1 − 2, n2 + 3)− (µ1 + µ2)vk(1, n1 − 2, n2 + 3)

+ (µ1 + µ2)[vk(1, n1 − 1, n2 + 1) + r]]− [(µ1 + µ2)vk(1, n1 − 2, n2 + 2)

− (µ1 + µ2)vk(1, n1 − 2, n2 + 2) + (µ1 + µ2)[vk(1, n1 − 1, n2) + r]

= (µ1 + µ2)[vk(1, n1 − 1, n2 + 1) + r]− (µ1 + µ2)[vk(1, n1 − 1, n2) + r]

≤ (µ1 + µ2)[vk(1, n1, n2 − 1) + r]− (µ1 + µ2)[vk(1, n1, n2 − 2) + r]

= Tvk(1, n1, n2)− Tvk(1, n1, n2 − 1),

where the inequality above follows from Property 5(a)

Property 5(b)

Let (sa, sb, sc, sd) = (s∗k+1(1, n1−1, n2+2), s∗k+1(1, n1−1, n2+1), s∗k+1(1, n1, n2), s
∗
k+1(1, n1, n2−

1)). Note that there are only three possible combinations for this pair. Therefore,

(sa, sb, sc, sd) ∈ {(µ1 + µ2, µ1 + µ2, 0, 0), (µ1 + µ2, µ1 + µ2, µ1 + µ2, 0), (µ1 + µ2, µ1 +

µ2, µ1 + µ2, µ1 + µ2)}

Case 1: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, 0, 0). Then,

Tvk(0, n1, n2 + 2)− Tvk(0, n1, n2 + 1) =

= [(µ1 + µ2)vk(0, n1, n2 + 2)− (µ1 + µ2)vk(0, n1, n2 + 2)

+ (µ1 + µ2)[vk(0, n1, n2 + 1) + r]]− [(µ1 + µ2)vk(0, n1, n2 + 1)

− (µ1 + µ2)vk(0, n1, n2 + 1) + (µ1 + µ2)[vk(0, n1, n2) + r]]

= (µ1 + µ2)[vk(0, n1, n2 + 1) + r]− (µ1 + µ2)[vk(0, n1, n2) + r]

= (µ1 + µ2)vk(0, n1, n2 + 1)− (µ1 + µ2)vk(0, n1, n2)

≤ (µ1 + µ2)vk(0, n1, n2 + 1)− (µ1 + µ2)vk(0, n1, n2)

= Tvk(1, n1, n2)− Tvk(1, n1, n2 − 1).

62

Case 2: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, µ1 + µ2, 0). Then,

Tvk(0, n1, n2 + 2)− Tvk(0, n1, n2 + 1) =

= [(µ1 + µ2)vk(0, n1, n2 + 2)− (µ1 + µ2)vk(0, n1, n2 + 2)

+ (µ1 + µ2)[vk(0, n1, n2 + 1) + r]]− [(µ1 + µ2)vk(0, n1, n2 + 1)

− (µ1 + µ2)vk(0, n1, n2 + 1) + (µ1 + µ2)[vk(0, n1, n2) + r]]

= (µ1 + µ2)vk(0, n1, n2 + 1)− (µ1 + µ2)vk(0, n1, n2)

≤ (µ1 + µ2)[vk(1, n1, n2 − 1) + r]− (µ1 + µ2)vk(0, n1, n2)

= Tvk(1, n1, n2)− Tvk(1, n1, n2 − 1),

where the inequality above follows from the fact that, when sc = µ1 + µ2,

fk(1, n1, n2) ≥ 0. This implies that, r ≥ vk(0, n1, n2 + 1)− vk(1, n1, n2 − 1).

Case 3: Let (sa, sb, sc, sd) = (µ1 + µ2, µ1 + µ2, µ1 + µ2, µ1 + µ2). Then,

Tvk(0, n1, n2 + 2)− Tvk(0, n1, n2 + 1) =

= [(µ1 + µ2)vk(0, n1, n2 + 2)− (µ1 + µ2)vk(0, n1, n2 + 2)

+ (µ1 + µ2)[vk(0, n1, n2 + 1) + r]]− [(µ1 + µ2)vk(0, n1, n2 + 1)

− (µ1 + µ2)vk(0, n1, n2 + 1) + (µ1 + µ2)[vk(0, n1, n2) + r]]

= (µ1 + µ2)[vk(0, n1, n2 + 1) + r]− (µ1 + µ2)[vk(0, n1, n2) + r]

≤ [vk(1, n1, n2 − 1) + r]− vk[(1, n1, n2 − 2) + r]

= Tvk(1, n1, n2)− Tvk(1, n1, n2 − 1),

where the inequality above follows from Property 5(b).�

Lemma 2

If vk ∈ ϑ, then Tavk ∈ ϑ.

63

Proof 6 For the properties that define set ϑ, we need to show that Tavk ∈ ϑ.

Property 1(a)

Tavk(x, n1, n2) + r = vk(x, n1 + 1, n2 − 1) + r

≥ vk(x, n1 + 1, n2)

= Tavk(x, n1, n2 + 1),

where the inequality above follows from Property 1(a).

Property 1(b)

Tavk(1, B1, 1) = vk(1, B1, 1)

≥ vk(1, B1, 0)

= Tavk(1, B1, 0),

where the inequality above follows from Property 1(b).

Property 2(a)

Case 1: For 1 ≤ n1 < B1, n2 = 0. Then,

Tavk(x, n1 − 1, n2 + 1) = vk(x, n1, n2 + 1)

≥ vk(x, n1 + 1, n2)

= Tavk(x, n1, n2),

where the inequality above follows from Property 2(a).

Case 2: For n1 = B1, n2 = 0. Then,

64

Tavk(x, n1 − 1, n2 + 1) = vk(x, n1, n2 + 1)

≥ vk(x, n1, n2)

= Tavk(x, n1, n2),

where the inequality above follows from Property 1(b).

Property 2(b)

Tavk(0, n1, n2 + 1) = vk(1, n1, n2 + 1)

≥ vk(1, n1 + 1, n2)

= Tavk(1, n1, n2),

where the inequality above follows from Property 2(a).

Property 3(a)

Tavk(0, n1, n2) + r = vk(1, n1, n2) + r

≥ vk(2, n1 + 1, n2)

= Tavk(2, n1, n2),

where the inequality above follows from Property 3(b).

Property 3(b)

Tavk(1, n1 − 1, n2) + r = vk(1, n1, n2) + r

≥ vk(2, n1 + 1, n2)

= Tavk(2, n1, n2),

where the inequality above follows from Property 3(b).

65

Property 4(a)

Case 1: For 1 ≤ n1 ≤ B1 − 1, 1 ≤ n2 < B2 + 1. Then,

Tavk(1, n1 − 1, n2 + 1)− Tavk(1, n1, n2 + 1) =

= vk(1, n1, n2 + 1)− vk(1, n1 + 1, n2 + 1)

≤ vk(1, n1 + 1, n2 − 1)− vk(1, n1 + 2, n2)

= Tavk(1, n1, n2 − 1)− Tavk(1, n1 + 1, n2),

where the inequality above follows from Property 4(a).

Case 2: For n1 = B1 − 1, 1 ≤ n2 < B2 + 1. Then,

Tavk(1, n1 − 1, n2 + 1)− Tavk(1, n1, n2 + 1) =

= vk(1, n1, n2 + 1)− vk(1, n1 + 1, n2 + 1)

≤ vk(1, n1 + 1, n2 − 1)− vk(1, n1 + 1, n2)

= Tavk(1, n1, n2 − 1)− Tavk(1, n1 + 1, n2),

where the inequality above follows from Property 4(a).

Property 4(b)

To prove:

Tavk(2, n1, n2)− Tavk(2, n1 + 1, n2) ≤ Tavk(1, n1, n2 − 1)− Tavk(1, n1 + 1, n2 − 1)

Case 1: For 0 ≤ n1 < B2 − 1, n2 = B2 + 1. Then,

Tavk(2, n1, n2)− Tavk(2, n1 + 1, n2) =

= vk(2, n1 + 1, n2)− vk(2, n1 + 2, n2)

≤ vk(1, n1 + 1, n2 − 1)− vk(1, n1 + 2, n2 − 1)

= Tavk(1, n1, n2 − 1)− Tavk(1, n1 + 1, n2 − 1),

66

where the inequality above follows from Property 4(b).

Property 5(a)

Case 1: For 1 ≤ n1 < B1, 1 ≤ n2 < B2. Then,

Tavk(1, n1 − 1, n2 + 2)− Tavk(1, n1 − 1, n2 + 1) =

= vk(1, n1, n2 + 2)− vk(1, n1, n2 + 1)

≤ vk(1, n1 + 1, n2)− vk(1, n1 + 1, n2 − 1)

= Tavk(1, n1, n2)− Tavk(1, n1, n2 − 1),

where the inequality above follows from Property 5(a).

Case 2: For n1 = B1, 1 ≤ n2 < B2. Then,

Tavk(1, n1 − 1, n2 + 2)− Tavk(1, n1 − 1, n2 + 1) =

= vk(1, n1, n2 + 2)− vk(1, n1, n2 + 1)

≤ vk(1, n1, n2)− vk(1, n1, n2 − 1)

= Tavk(1, n1, n2)− Tavk(1, n1, n2 − 1).

Property 5(b)

Tavk(0, n1, n2 + 2)− Tavk(0, n1, n2 + 1) =

= vk(1, n1, n2 + 2)− vk(1, n1, n2 + 1)

≤ vk(1, n1 + 1, n2)− vk(1, n1 + 1, n2 − 1)

= Tavk(1, n1, n2)− Tavk(1, n1, n2 − 1),

where the inequality above follows from Property 5(b). �

67

Appendix B

Heu2-a - faster server fixed at station 1

Heu2-b - slower server fixed at station 1

Heu2-c - faster server fixed at station 2

Heu2-d - slower server fixed at station 2

68

Table 1: Appendix - Numerical Analysis when h1 = 0.01, h2 = 0.05;

No. λ c r µ1 µ2 Heu1 Heu2-a Heu2-b Heu2-c Heu2-d Heu3

1 0.75 0 1 4 2 0 0.0134 0.0134 0.0015 0.0004 0.0151
2 1.5 0 1 4 2 0 0.0704 0.019 0.0036 0.0023 0.075
3 2.25 0 1 4 2 0 2.7426 0.5279 0.0068 0.0084 n/a
4 2.7 0 1 4 2 0 2.4928 0.6202 0.0096 0.0254 n/a
5 1 0 1 6 2 0 0.0238 0.0238 0.0006 0.0002 0.0249
6 2 0 1 6 2 0 1.9974 0.2597 0.0015 0.001 n/a
7 3 0 1 6 2 0 2.3299 0.661 0.0025 0.0042 n/a
8 3.6 0 1 6 2 0 2.123 0.7164 0.0033 0.0123 n/a

avg 0 1.4742 0.3552 0.0037 0.0068 0.0383
9 0.75 0.5 1 4 2 0.3012 0.0092 0.0092 0 1 0.0092
10 1.5 0.5 1 4 2 0.2585 0.0553 0 0 0.0309 0.0553
11 2.25 0.5 1 4 2 0.1951 2.9018 0.4848 0 0.0101 n/a
12 2.7 0.5 1 4 2 0.1597 2.6926 0.5694 0.0027 0.0006 n/a
13 1 0.5 1 6 2 0.2628 0.0184 0.0184 0 1 0.0184
14 2 0.5 1 6 2 0.2031 2.0463 0.2243 0 0.0306 n/a
15 3 0.5 1 6 2 0.1434 2.4773 0.6234 0 0.0081 n/a
16 3.6 0.5 1 6 2 0.1203 2.2751 0.678 0.0009 0.0001 n/a

avg 0.2055 1.5595 0.3259 0.0004 0.26 0.0276
17 0.75 2 1 4 2 0.6386 0.0093 0.0093 0 1 0.0093
18 1.5 2 1 4 2 0.5595 0.0553 0 0 0.0472 0.0553
19 2.25 2 1 4 2 0.4668 3.0352 0.4487 0 0.0388 n/a
20 2.7 2 1 4 2 0.3982 2.9428 0.5057 0 0.0021 n/a
21 1 2 1 6 2 0.5555 0.0183 0.0183 0 0 0.0183
22 2 2 1 6 2 0.4571 2.0728 0.2047 0 0 n/a
23 3 2 1 6 2 0.3428 2.6552 0.5781 0 0.0406 n/a
24 3.6 2 1 6 2 0.2932 2.4848 0.625 0 0.0091 n/a

avg 0.464 1.6592 0.2987 0 0.1422 0.0276
25 0.75 0 5 4 2 0 0.0026 0.0026 0.0003 0.0001 0.003
26 1.5 0 5 4 2 0 0.0138 0.0037 0.0007 0.0004 0.0147
27 2.25 0 5 4 2 0 0.6346 0.1939 0.0013 0.0016 n/a
28 2.7 0 5 4 2 0 0.6985 0.3303 0.0019 0.0049 n/a
29 1 0 5 6 2 0 0.0047 0.0047 0.0001 0 0.0049
30 2 0 5 6 2 0 0.3986 0.0589 0.0002 0.0002 n/a
31 3 0 5 6 2 0 0.7311 0.3986 0.0005 0.0008 n/a
32 3.6 0 5 6 2 0 0.7758 0.498 0.0006 0.0024 n/a

avg 0 0.4075 0.1863 0.0007 0.0013 0.0075

69

Table 2: Appendix - Numerical Analysis when h1 = 0.01, h2 = 0.05; continuation 1

No. λ c r µ1 µ2 Heu1 Heu2-a Heu2-b Heu2-c Heu2-d Heu3

33 0.75 2.5 5 4 2 0.143 0.0018 0.0018 0 1 0.0018
34 1.5 2.5 5 4 2 0.1238 0.0107 0 0 0.0096 0.0107
35 2.25 2.5 5 4 2 0.0929 0.6228 0.1679 0 0.008 n/a
36 2.7 2.5 5 4 2 0.0716 0.6824 0.2945 0 0.0007 n/a
37 1 2.5 5 6 2 0.1242 0.0036 0.0036 0 0.0037 0.0036
38 2 2.5 5 6 2 0.0975 0.3898 0.0448 0 0.0145 n/a
39 3 2.5 5 6 2 0.0645 0.7189 0.3711 0 0.0082 n/a
40 3.6 2.5 5 6 2 0.0519 0.763 0.4694 0 0.002 n/a

avg 0.0962 0.3991 0.1691 0 0.1308 0.0054
41 0.75 10 5 4 2 0.2937 0.0019 0.0019 0 0.0019 0.0019
42 1.5 10 5 4 2 0.2558 0.0107 0 0 0.0108 0.0107
43 2.25 10 5 4 2 0.2019 0.6131 0.1465 0 0.0218 n/a
44 2.7 10 5 4 2 0.158 0.6654 0.2567 0 0.0082 n/a
45 1 10 5 6 2 0.2547 0.0038 0.0038 0.0001 0.0038 0.0038
46 2 10 5 6 2 0.2071 0.3852 0.0376 0 0.0281 n/a
47 3 10 5 6 2 0.1388 0.7056 0.3415 0 0.0264 n/a
48 3.6 10 5 6 2 0.1129 0.7485 0.4368 0 0.0095 n/a

avg 0.2028 0.3918 0.1531 0 0.0138 0.0055
49 0.75 0 10 4 2 0 0.0013 0.0013 0.0001 0 0.0015
50 1.5 0 10 4 2 0 0.0068 0.0018 0.0003 0.0002 0.0072
51 2.25 0 10 4 2 0 0.3725 0.1524 0.0006 0.0008 n/a
52 2.7 0 10 4 2 0 0.4784 0.2947 0.0009 0.0024 n/a
53 1 0 10 6 2 0 0.0023 0.0023 0 0 0.0024
54 2 0 10 6 2 0 0.1989 0.0342 0.0001 0.0001 n/a
55 3 0 10 6 2 0 0.5321 0.3659 0.0002 0.0004 n/a
56 3.6 0 10 6 2 0 0.6097 0.471 0.0003 0.0012 n/a

avg 0 0.2753 0.1654 0.0003 0.0006 0.0037
57 0.75 5 10 4 2 0.1026 0.0009 0.0009 0 0.001 0.0009
58 1.5 5 10 4 2 0.089 0.0052 0 0 0.0052 0.0052
59 2.25 5 10 4 2 0.0671 0.3592 0.1345 0 0.0065 n/a
60 2.7 5 10 4 2 0.0511 0.4594 0.2689 0 0.0015 n/a
61 1 5 10 6 2 0.089 0.0019 0.0019 0 0.0019 0.0019
62 2 5 10 6 2 0.0705 0.1918 0.0254 0 0.0101 n/a
63 3 5 10 6 2 0.0457 0.5173 0.3458 0 0.0073 n/a
64 3.6 5 10 6 2 0.0365 0.5942 0.45 0 0.0023 n/a

avg 0.0689 0.2662 0.1534 0 0.0045 0.0027

70

Table 3: Appendix - Numerical Analysis when h1 = 0.01, h2 = 0.05; continuation 2

No. λ c r µ1 µ2 Heu1 Heu2-a Heu2-b Heu2-c Heu2-d Heu3

65 0.75 20 10 4 2 0.2092 0.0011 0.0011 0.0002 0.0011 0.0011
66 1.5 20 10 4 2 0.1818 0.0053 0 0 0.0055 0.0053
67 2.25 20 10 4 2 0.1423 0.348 0.1194 0 0.0169 n/a
68 2.7 20 10 4 2 0.1094 0.4396 0.2421 0 0.0081 n/a
69 1 20 10 6 2 0.1811 0.0022 0.0022 0.0003 0.0022 0.0022
70 2 20 10 6 2 0.1479 0.1881 0.021 0 0.0188 n/a
71 3 20 10 6 2 0.0965 0.5016 0.3246 0 0.0206 n/a
72 3.6 20 10 6 2 0.0791 0.5772 0.427 0 0.0079 n/a

avg 0.1434 0.2579 0.1422 0 0.0101 0.0029

71

Table 4: Appendix - Numerical Analysis when h1 = 0.05, h2 = 0.01;

No. λ c r µ1 µ2 Heu1 Heu2-a Heu2-b Heu2-c Heu2-d Heu3

73 0.75 0 1 4 2 0 0.0028 0.0028 0.0003 0.0017 0.0139
74 1.5 0 1 4 2 0 0.0146 0.0714 0.0013 0.0044 0.0716
75 2.25 0 1 4 2 0 2.6274 2.1771 0.006 0.009 n/a
76 2.7 0 1 4 2 0 2.4996 2.1128 0.0221 0.015 n/a
77 1 0 1 6 2 0 0.0047 0.0047 0.0001 0.0008 0.024
78 2 0 1 6 2 0 1.0033 1.2495 0.0005 0.002 n/a
79 3 0 1 6 2 0 2.3163 1.979 0.0027 0.0036 n/a
80 3.6 0 1 6 2 0 2.1344 1.8466 0.0107 0.0055 n/a

avg 0 1.3254 1.1805 0.0055 0.0053 0.0365
81 0.75 0.5 1 4 2 0.224 0 0 0.0092 0 0.0093
82 1.5 0.5 1 4 2 0.1737 0.0005 0.0561 0.032 0 0.0561
83 2.25 0.5 1 4 2 0.1362 2.7166 2.2416 0.0275 0 n/a
84 2.7 0.5 1 4 2 0.1113 2.631 2.2103 0.015 0.0001 n/a
85 1 0.5 1 6 2 0.195 0 0 0.0177 0 0.0183
86 2 0.5 1 6 2 0.137 1.004 1.2576 0.0382 0 n/a
87 3 0.5 1 6 2 0.1005 2.407 2.0464 0.0207 0 n/a
88 3.6 0.5 1 6 2 0.0855 2.2341 1.921 0.0102 0 n/a

avg 0.1454 1.3741 1.2166 0.0213 0 0.0279
89 0.75 2 1 4 2 0.4763 0 0 0.0093 0 0.0093
90 1.5 2 1 4 2 0.3821 0 0.0552 0.0472 0 0.0552
91 2.25 2 1 4 2 0.3202 2.7951 2.2984 0.063 0 n/a
92 2.7 2 1 4 2 0.2813 2.779 2.3201 0.0323 0.0004 n/a
93 1 2 1 6 2 0.414 0 0 0.0183 0 0.0183
94 2 2 1 6 2 0.3056 1.0041 1.2633 0.0757 0 n/a
95 3 2 1 6 2 0.2287 2.5236 2.1331 0.0447 0 n/a
96 3.6 2 1 6 2 0.2046 2.3694 2.022 0.0199 0 n/a

avg 0.3266 1.4339 1.2615 0.0388 0 0.0276
97 0.75 0 5 4 2 0 0.0005 0.0005 0 0.0003 0.0027
98 1.5 0 5 4 2 0 0.0027 0.0141 0.0002 0.0008 0.0141
99 2.25 0 5 4 2 0 0.6074 0.5187 0.0011 0.0017 n/a
100 2.7 0 5 4 2 0 0.6901 0.6157 0.0042 0.0028 n/a
101 1 0 5 6 2 0 0.0009 0.0009 0 0.0001 0.0047
102 2 0 5 6 2 0 0.1995 0.2559 0.0001 0.0003 n/a
103 3 0 5 6 2 0 0.726 0.6592 0.0005 0.0007 n/a
104 3.6 0 5 6 2 0 0.7726 0.7167 0.002 0.001 n/a

avg 0 0.3749 0.3477 0.001 0.001 0.0072

72

Table 5: Appendix - Numerical Analysis when h1 = 0.05, h2 = 0.01; continuation 1

No. λ c r µ1 µ2 Heu1 Heu2-a Heu2-b Heu2-c Heu2-d Heu3

105 0.75 2.5 5 4 2 0.1067 0 0 0.0018 0 0.0018
106 1.5 2.5 5 4 2 0.0846 0 0.0107 0.0096 0 0.0107
107 2.25 2.5 5 4 2 0.0661 0.5993 0.5087 0.0129 0 n/a
108 2.7 2.5 5 4 2 0.0535 0.6792 0.6023 0.006 0.0001 n/a
109 1 2.5 5 6 2 0.0926 0 0 0.0036 0 0.0036
110 2 2.5 5 6 2 0.0659 0.1904 0.2474 0.0159 0 n/a
111 3 2.5 5 6 2 0.0452 0.7174 0.6485 0.0087 0 n/a
112 3.6 2.5 5 6 2 0.0385 0.7637 0.7056 0.0036 0 n/a

avg 0.0691 0.3687 0.3404 0.0078 0 0.0054
113 0.75 10 5 4 2 0.2196 0 0 0.0019 0 0.0019
114 1.5 10 5 4 2 0.1764 0 0.0107 0.0107 0 0.0107
115 2.25 10 5 4 2 0.1411 0.5913 0.4989 0.0252 0 n/a
116 2.7 10 5 4 2 0.1182 0.6668 0.5869 0.0122 0.0001 n/a
117 1 10 5 6 2 0.1903 0 0 0.0038 0.0001 0.0038
118 2 10 5 6 2 0.1399 0.1846 0.2419 0.0286 0 n/a
119 3 10 5 6 2 0.0947 0.7074 0.6361 0.017 0 n/a
120 3.6 10 5 6 2 0.0859 0.7531 0.6924 0.0073 0 n/a

avg 0.1458 0.3629 0.3334 0.0134 0 0.0055
121 0.75 0 10 4 2 0 0.0002 0.0002 0 0.0001 0.0013
122 1.5 0 10 4 2 0 0.0012 0.0069 0.0001 0.0004 0.007
123 2.25 0 10 4 2 0 0.3587 0.3145 0.0005 0.0008 n/a
124 2.7 0 10 4 2 0 0.4736 0.4367 0.0021 0.0014 n/a
125 1 0 10 6 2 0 0.0004 0.0004 0 0 0.0023
126 2 0 10 6 2 0 0.0993 0.1321 0 0.0001 n/a
127 3 0 10 6 2 0 0.5294 0.4961 0.0002 0.0003 n/a
128 3.6 0 10 6 2 0 0.6078 0.5799 0.001 0.0005 n/a

avg 0 0.2588 0.2458 0.0005 0.0005 0.0035
129 0.75 5 10 4 2 0.0766 0 0 0.0009 0 0.0009
130 1.5 5 10 4 2 0.0611 0 0.0053 0.0052 0 0.0053
131 2.25 5 10 4 2 0.0476 0.3495 0.3047 0.0089 0 n/a
132 2.7 5 10 4 2 0.0385 0.4607 0.4227 0.0041 0 n/a
133 1 5 10 6 2 0.0664 0 0 0.0018 0 0.0018
134 2 5 10 6 2 0.0476 0.0929 0.1258 0.0106 0 n/a
135 3 5 10 6 2 0.0317 0.5188 0.4847 0.0059 0 n/a
136 3.6 5 10 6 2 0.0274 0.5969 0.5682 0.0024 0 n/a

avg 0.0496 0.2523 0.2389 0.005 0 0.0027

73

Table 6: Appendix - Numerical Analysis when h1 = 0.05, h2 = 0.01; continuation 2

No. λ c r µ1 µ2 Heu1 Heu2-a Heu2-b Heu2-c Heu2-d Heu3

137 0.75 20 10 4 2 0.1565 0.0002 0.0002 0.0011 0.0002 0.0011
138 1.5 20 10 4 2 0.1283 0 0.0054 0.0054 0 0.0054
139 2.25 20 10 4 2 0.1028 0.3402 0.2947 0.0168 0 n/a
140 2.7 20 10 4 2 0.0868 0.4459 0.407 0.0084 0 n/a
141 1 20 10 6 2 0.1366 0.0003 0.0003 0.0022 0.0003 0.0022
142 2 20 10 6 2 0.1066 0.0888 0.1219 0.0187 0 n/a
143 3 20 10 6 2 0.0733 0.5069 0.472 0.0115 0 n/a
144 3.6 20 10 6 2 0.0669 0.5842 0.5547 0.005 0 n/a

avg 0.1072 0.2458 0.232 0.0086 0 0.0029

74

Bibliography

[1] H.S. Ahn, I. Duenyas, and M.E. Lewis. Optimal control of a two-stage tandem
queueing with flexible servers. Probability in the Engineering and Informational
Sciences, 16:453–469, 2002.

[2] H.S. Ahn, I. Duenyas, and R. Zhang. Optimal stochastic scheduling of a two-stage
tandem queue with parallel servers. Advances in Applied Probability, 31:1095–
1117, 1999.

[3] S. Andradottir and H.Ayhan. Throughput maximization for tandem lines with
two stations and flexible servers. Operations Research, 53:516–531, 2005.

[4] S. Andradottir, H.Ayhan, and D.G. Down. Server assignment policies for max-
imizing the steady-state throughput of finite queueing systems. Management
Science, 47:1421–1439, 2001.

[5] S. Andradottir, H.Ayhan, and D.G. Down. Dynamic assignment of dedicated
and flexible servers in tandem lines. Masters/Ph.D Thesis, 2006.

[6] R. Arumugam, M.E. Mayorga, and K.M. Taaffe. Inventory based allocation
policies for flexible servers in serial systems. Annals of Operations Research,
2008.

[7] R. Batta, O. Berman, and Q. Wang. Balancing staffing and switching costs in
a service center with flexible servers. European Journal of Operations Research,
177:924–938, 2007.

[8] B.Hajek. Optimal control of interacting service stations. IEEE Transactions on
Automatic Control, 29(6):491–499, 1984.

[9] D.P. Bischak. Performance of a manufacturing module with moving workers. IIE
Transactions, 28:723–733, 1996.

[10] J.A. Buzacott. Commonalities in reengineered business processes: Models and
issues. Management Science, 42:768–782, 1996.

[11] I. Duenyas, D. Gupta, and T.L. Olsen. Control of a single-server tandem queueing
system with setups. Operations Research, 46(2):218–230, 1998.

75

[12] T.M. Farrar. Optimal use of an extra server in a two station tandem queueing
network. IEEE Transactions on Automatic Control, 38:1296–1299, 1993.

[13] K.D. Glazebrook. On stochastic scheduling with precedence relations and switch-
ing costs. Journal of Applied Probability, 17(4):1016–1024, December 1980.

[14] G.Yamazaki, H. Sakasegawa, and J.G. Shanthikumar. On optimal arrangement
of stations in a tandem queueing system with blocking. Management Science,
38:137–153, 1992.

[15] J.M. Harrison and M.J. Lopez. Heavy traffic resource pooling in parallel server
systems. Queueing Systems, 33:339–368, 1999.

[16] F.S. Hillier and K.C. So. On the simulataneous optimization of server and work
allocations in production line systems with variable processing times. Operations
Research, 44:435–443, 1996.

[17] S.M.R. Iravani, J.A. Buzacott, and M.J.M. Posner. Operations and shipment
scheduling of a batch on a flexible machine. Operations Research, 51(4):585–601,
2003.

[18] S.M.R. Iravani, M.J.M. Posner, and J.A. Buzacott. A two-stage tandem queue
attended by a moving server with holding and switching costs. Queueing systems,
26:203–228, April 1997.

[19] S.M.R. Irvani, M.J.M. Posner, and J.A. Buzacott. A two-stage tandem queue
attended by a moving server with holding and switching costs. QUESTA, 26:203–
228, 1997.

[20] M.Yu. Kitaev and R.F. Serfozo. M/m/1 queues with switching costs and hys-
teretic optimal control. Operations Research, 47(2):310–312, 1999.

[21] G. Koole. Assigning a single server to inhomogeneous queues with switching
costs. Theoretical Computer Science, 182:203–216, September 1997.

[22] S.A. Lippman. Applying a new device in the optimization of exponential queue-
ing systems. Operations Research, 23(4):687–710, 1975.

[23] A. Mandelbaum and A.L. Stoylar. Scheduling flexible servers with convex delay
costs. Operations Research, 52:836–855, 2004.

[24] J.O. McClain, L.J. Thomas, and C. Sox. “on the fly” line balancing with very
little wip. International Journal of Production Economics, 27:283–289, 1992.

76

[25] J. Ostolaza, J.0. McClain, and L.J. Thomas. The use of dynamic (state-
dependent) assembly-line balancing to improve throughput. Journal of Man-
ufacturing Operations Management, Volume = 3, Number = , Pages = 105–133,
1990.

[26] M.P. Oyen and D. Teneketzis. Optimal stochastic scheduling of forest networks
with switching penalties. Proceedings of the 31st conference on decision and
control, pages 3328–3333, December 1992.

[27] M.P. Van Oyen, E.G.S. Gel, and W.J. Hopp. Performance opportunity for work-
force agility in collaborative and noncollaborative work systems. IIE Transac-
tions, 33:761–777, 2001.

[28] M.P. Van Oyen and D. Teneketzis. Optimal stochastic scheduling of forest net-
works with switching penalties. Advances in Applied Probability, 26:474–497,
1994.

[29] D.G. Pandelis and D. Teneketzes. Optimal multiserver stochastic scheduling of
two interconected priority queues. Advances in Applied Probability, 26:258–279,
1994.

[30] E.L. Porteus. Conditions for characterizing the structure of optimal strategies
in infinite horizon dynamic programs. Journal of Optimization Theory and Ap-
plications, 36:419–432, 1982.

[31] M.I. Reiman and L.M. Wein. Dynamic scheduling of a two-class queue with
setups. Operations Research, 46:532–547, 1998.

[32] Z. Rosberg, P.P. Varaiya, and J.C. Walrand. Optimal control of service in tandem
queues. IEEE Transactions on Automatic Control, 27(3):600–609, 1982.

[33] Sheldon M. Ross. Applied Probability Models with Optimization Applications.
Holden-Day, San Francisco, 1970.

[34] Sheldon M. Ross. Introduction to Probability Models. Academic press, 8 edition,
2003.

[35] S.L.Bell and R.J.Williams. Dynamic schduling of a system with two parallel
servers in heavy traffic with complete resource pooling: Asymptotoic optimality
of a continuous review threshold policy. Annals of Applied Probability, 11:608–
649, 2001.

[36] M.S. Squillante, C.H. Xia, D.D. Yao, and L. Zhang. Threshold based priority
policies for parallel-server systems with affinity scheduling. Proceedings of 2001
American Control Conference, pages 2992–2999, 2001.

77

[37] V.Oyen, D.G. Pandelis, and D. Teneketzis. Optimality of index policies for
stochastic scheduling with switching penalties. Journal of Applied Probability,
29(4):957–966, 1992.

[38] R.J. Williams. On dynamic scheduling of a parallel server system with complete
resource pooling. Proceedings of the Fields Institute Workshop on Analysis and
Simulation of Communication Networks, 28:49–71, 2000.

[39] E. Zavadlav, J.O. McClain, and L.J. Thomas. Self-buffering, self-balancing, self-
flushing production lines. Management Science, 42:1151–1164, 1996.

78

	Clemson University
	TigerPrints
	12-2008

	Optimal and Heuristic Resource Allocation Policies in Serial Production Systems
	Ramesh Arumugam
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Inventory Based Allocation Policies for Flexible Servers in Serial Systems with no costs
	Introduction
	Model Description for the Collaborative Case
	Optimal Server Allocation Policy in the Collaborative Case
	Sensitivity Analysis
	Non-Collaborative Servers
	Conclusions

	Inventory Based Allocation Policies for Flexible Servers in Serial Systems with Switching cost, Holding cost and Positive reward
	Introduction
	Problem Description and Model Formulation
	Optimal Policy Structures
	Heuristic Policies: Definition and Performance
	Conclusions

	Conclusions
	Appendices
	Bibliography

