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ABSTRACT 
 
 

The work presented in this thesis focuses on simulating a speech recognizer which is 

trained by different people with different speaking styles and investigates how sensitive 

the training and recognition processes are to the variations in the training data. There are 

four main parts to this work. The first involves an experiment of weighting methods for 

training with multiple observation sequences. The second involves the testing of different 

initial parameters. The third part includes the first experiment involving training with 

multiple observation sequences. The model’s sensitivity to variations in training data was 

evaluated by comparing the cases of different values of ε . The final part varied the 

observation vectors with the variation restricted to only one of the eight positions in the 

sequence. The experiment was repeated for each of eight positions in the observation 

sequence, and the effect on recognition was evaluated. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

Since speech is the most efficient way to exchange information for most people, 

speech recognition has been an important research topic in the last few decades. The goal 

of speech recognition is to create machines which can receive spoken words and to 

recognize them. Generally, an environment without noise is required for accurate 

recognition. However, noise usually occurs in houses, supermarkets, vehicles or other 

locations where speech recognition might be useful. Furthermore, it is also necessary to 

recognize the spoken words from people with different speaking styles. To increase the 

probability of identifying the correct words or phonemes, speech recognition has become 

an important research area. 

The understanding of speech recognition has increased at a remarkable rate and has 

been implemented in various forms [1], including dynamic time warping (DTW), hidden 

Markov model (HMM), language modeling and artificial neural networks (ANNs). First 

of all, DTW [2] is a feature-matching scheme that accomplishes “time alignment” of the 

sets of test features and the sets of reference through a dynamic programming (DP) 

procedure. In other words, it is a dynamic programming method for extending or 

compressing observations to account for variations in length of time of phonemes or a 

spoken word. Secondly, HMM [2] is a “stochastic finite state automation” which can be 

used to model speech utterances. The probability of the observation sequence being 

produced over the model states are summed and compared for the maximum likelihood 

of a word or phoneme. In contrast, a second class of stochastic techniques based on the 
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ANN involve exploring an alternative computing architecture. Finally, language 

modeling is concerned with the recognition of large sentences by decomposing them into 

words according to rules that reduce entropy. Since a speech signal can be viewed as a 

short-time stationary signal or a piecewise stationary signal and can be trained 

automatically by using Hidden Markov Model, modern speech recognition systems are 

generally based on HMMs. 

 
1.1 Overview of Hidden Markov Model 

 
Hidden Markov Models are stochastic models which were first studied in the late 

1960s and early 1970s have become a successful machine learning technique for speech 

recognition [3]. There are several reasons why the model became so popular. Firstly, the 

models are very rich in mathematical structure and can form the theoretical basis for use 

in a wide range of applications. In addition, the model can be trained automatically. 

Moreover, the models work very well in practice for several important applications when 

they applied properly.  

The state is directly visible to the observer in the regular Markov Model, therefore, 

the state transition probabilities are the only parameters. In contrast, although the 

variables influenced by the states are visible, the states are not directly visible in the 

Hidden Markov Model. The sequence of tokens generated by the HMM gives some 

information about the sequence of states since each state has a probability distribution 

over the possible output tokens. 

Furthermore, Hidden Markov models are especially known for their applications to 

speech recognition, handwriting recognition and gesture recognition. 
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1.2 Motivation of Hidden Markov Model 
 

Three kinds of problems are associated with the Hidden Markov Model [2]. First of 

all, given the parameters of the model m , compute the probability ( | )P mO that an 

observation sequence O is produced, given the model m . The problem can be solved by 

the forward-backward algorithm [13]. This is called the “any path” method. Secondly, 

given the parameters of the model then find the most likely sequence of hidden states that 

could have generated a given output sequence by using the Viterbi algorithm [14]. This is 

called the “best path” method. Finally, given an output sequence and find the most likely 

set of state transition and output probabilities. In other words, the issue here is to train a 

particular HMM to correctly represent its designated word. The training problem, which 

can be solved by the Baum-Welch re-estimation algorithm, is a key aspect of speech 

recognition. 

One factor of interest for the HMM training is the choice of initial parameters [4]. 

Although the training procedure is guaranteed to reach a critical point of ( | )P mO , it is 

typically a local maximum. Therefore, different starting values of matrices A and B could 

yield models with higher or lower values of ( | )P mO . Besides, particle swarm 

optimization (PSO) [5] and genetic algorithm (GA) [6] have been developed to estimate 

optimal parameters of HMM. In order to improve system performance, finding the global 

maximum has become a focus of research. 
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1.3 Overview of Thesis 
 

In order to provide a more complete representation of the statistical variations likely 

to be present across utterances, it is necessary to train a given Hidden Markov Model 

with multiple training utterances [2]. The next chapter presents background material for 

the HMM. After the background discussion, the main work of the thesis is to simulate a 

speech recognizer which is trained by different people with different speaking styles. In 

addition, this thesis investigates how sensitive the training and recognition processes are 

to the variations in the training data. The main work of this thesis is presented in Chapters 

3 and 4, showing how sensitive the training model is. The first part discusses an 

experiment on training with multiple observation sequences and how to choose the initial 

parameters of the model. After that, the sensitivity of training to variations in the training 

data is determined by comparing the case of different values of ε . Finally, a summary 

discussion concludes the thesis. 
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CHAPTER TWO 
 

HIDDEN MARKOV MODEL FOR SPEECH RECOGNITION 

 
 

The hidden Markov model is a statistical model with unknown parameters. 

Furthermore, the challenge is to determine the hidden parameters from the observable 

data. Since the Markov chain was first constructed by a Russian scientist in the early 

1900s [7], it has become the most successful tool for speech recognition. Also, the 

extracted model parameters can be used to perform other analysis such as pattern 

recognition, handwriting recognition and gesture recognition. 

 
2.1 History and Development 

 
Hidden Markov Models were first described in a series of statistical papers by L.E. 

Baum and other authors in the 1960s [8]. The model precedes its use in speech processing 

and became widely used and known in the speech field starting in the mid-1970s [9]. 

Baker at Carnegie-Mellon University [10] and Jelinek and colleagues at IBM [11] are 

generally known as the first researchers to apply Hidden Markov Models to speech 

recognition. Similar work on the HMM was also developed at the Institute for Defense 

Analysis in the 1970s [12]. Finally, HMMs have become the most successful technique in 

speech recognition after the pioneering work in the 1970s and 1980s. Also, HMMs began 

to be applied to the analysis of biological sequences such as DNA in the second half of 

the 1980s. This chapter details the definition and assumptions of HMMs, how they are 

trained, and some other practical issues. 
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2.2 Definition of the Hidden Markov Model 
 

The hidden Markov model, which is an extension of the Markov chain is a double-

embedded stochastic process [13]. Since it models an observable stochastic process with 

a hidden stochastic process, it is called a doubly stochastic process. 

    The model is usually defined as a parameter set {S, A, B, π(1), O}. [14] [26] 

 States (S): S is the total number of states in the model that represents the state space. 

 Transition probabilities (A): A is a matrix specifies the transition probabilities 

between states. A(i|j) represents the probability of transitioning from state j to state i. 

The state transition probabilities are assumed to be stationary in time so that A(i|j) 

does not depend upon the time when the transition occurs.  

(1|1) (1| 2) (1| 1) (1| )

( | )

( |1) ( | 2) ( | 1) ( | )

a a a S a S

A a i j

a S a S a S S a S S

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

                       (2.1) 

The matrix is S-by-S where S is the total number of states in the model. The set is 

called the transition probability matrix. 

 Observation probabilities (B): B is a matrix which represents output probabilities. 

The observation probabilities are assumed to be dependent upon state but 

independent of time t. B(k|i) represents the discrete observation pdf for state i and 

takes the form k impulses on the real line. 
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(1|1) (1| 2) (1| 1) (1| )

( | )

( |1) ( | 2) ( | 1) ( | )

b b b S b S

B b k i

b k b k b k S b k S

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

                     (2.2) 

    S is the total number of states and k is the number of discrete observations in the model. 

The set is called the observation probability matrix. 

 Initial distribution (π(1)): π(1) is the initial probability distribution over states. 

The state probability vector at time t is defined as 

  

( ( ) 1)
( ( ) 2)

( )

( ( ) )

P x t
P x t

t

P x t S

π

=⎛ ⎞
⎜ ⎟=⎜ ⎟=
⎜ ⎟
⎜ ⎟

=⎝ ⎠

                                                 (2.3) 

    ( ( ) )P x t i= is the probability that the model will be in state i at time t. Some states j 

may have ( (1) ) 0P x j= = , which means that they can not be the initial states. 

 Observation sequence (O): O represents the possible output observations of the 

system being modeled. The observation sequence represents the information that is 

observed from the incoming speech utterance. 

Using HMMs for speech recognition includes training the parameters {A, B, π(1)} 

to match speech observations. The overview of training and speech recognition will be 

given in the following sections. 
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Figure 2.1 Hidden Markov Model for Speech Recognition 

 
2.3 Recognition Using Discrete Observation HMM 

 
There are two key issues associated with the Hidden Markov Model. The first one is 

the recognition problem. This involves determining the likelihood that each HMM 

produced an incoming speech observation sequence. The training problem is the second 

issue. This involves training Hidden Markov Models to represent words by using series 

of training observation sequence. The recognition problem will be discussed first. 

    Two measures of likelihood are used in recognition problems, which are “any path” 

method and “best path” method. We must consider them individually since each of them 

leads to its own recognition algorithm. 

 
2.3.1 “Any Path” Method 

 
The first method is the “any path” method. It is called “any path” is because the 

likelihood computed here is based on the probability that the observations could have 

been produced using any state sequence through the model. One measure of likelihood of 
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a given model m  would be ( | )P y m , which can be efficiently computed by the forward-

backward (F-B) algorithm [15]. 

At the beginning, we need to define a “forward-going” and a “backward-going” 

probability sequence [2]. α 1( , )ty i  is defined as the joint probability of having generated 

the partial forward sequence 1
ty and having arrived at state i  at the t th step, given the 

model m . On the other hand, β 1( , )T
ty i+  indicates the probability of generating the 

backward partial sequence 1
T
ty +  by using model m , given the state sequence appears in 

state i  at time t . 

Figure 2.2 shows that there is more than one state “ i ” at time t  through which we 

can get to j at time t +1, the probabilities should be summed. 

α 1
1( , )ty j+ =

1

S

i=
∑ α 1( , ) ( | ) ( ( 1) | )ty i a j i b y t j+                                  (2.4) 

 

 

Figure 2.2 Figure of Any Path Method 
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Finally, the desired likelihood can be obtained at any time in the lattice by summing 

the F-B products as in equation (2.5).  

  
1

( | )
S

i
P y m

=

=∑ α 1( , )ty i β 1( , )T
ty i+ =

_ _ _all legal final i
∑ α 1( , )Ty i                       (2.5) 

 
2.3.2 “Best Path” Method 

 
The “Best Path” method is an alternative likelihood measure, which is based on the 

probability that the Hidden Markov Model could generate the observation sequence using 

the best possible path. The goal is to find the value ( , * | )P y l m  where 

  * arg max ( , | )l P y l m=                                               (2.6) 

In which l  indicates any state sequence of length T. This problem can be considered a 

sequential optimization problem that is similar to dynamic programming. 

The Viterbi algorithm [16] which is used for the “best path” method was introduced 

by A. J. Viterbi in the context of decoding random sequences. In addition, the algorithm 

is also called the stochastic form of dynamic programming. 

Typically, 10% fewer computations are required with the Viterbi search. However, 

either the F-B or Viterbi algorithm can generate likelihoods for recognition problems. 

Both of the methods have been widely used in speech recognition. 
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Figure 2.3 HMM Viewed as a Dynamic Programming Problem 

 
2.4 Training Models 

 
The Baum-Welch (F-B) re-estimation algorithm is used for discrete observation 

Hidden Markov Model training. In addition, the algorithm was developed in a series of 

papers by Baum and colleagues in the 1960s [8]. It is also called the F-B algorithm 

because it is based on the forward and backward method which was reviewed in the 

previous section. Moreover, the goal of training a HMM is to correctly represent its 

desired word or utterance. 

 
2.4.1 Introduction to Discrete Observation HMM Training 

 
It is assumed that we have a string of the form 1 { (1),..., ( )}Ty y y y T= = taken from a 

training word, the issue is to use this string to find an appropriate model of 
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form { , , , (1), }m S A B Oπ= . In the case of training a specific model based on observations 

from the training data, the F-B algorithm intends to change the parameters { , , (1)}A B π of 

the model to find 

   * arg max ( | )m P y m=                                               (2.6) 

Initial values for the A and B matrices and for the state probability vector (1)π  are 

required at the beginning of the training. There is no known way to exactly compute these 

quantities from the observation sequence.  

After we have the observation sequence and the initial model parameters, we must 

compute the following four values. 

1 2( , ) ( | ) ( ( 1) | ) ( | ) , 1,..., 1
( , ; ) ( | )

0,

t T
ty i a j i b y t j y j t T

i j t P y m
otherwise

α β
ξ

+⎧ +
= −⎪= ⎨

⎪
⎩

             (2.7) 

1 1( , ) ( | ) , 1,..., 1
( ; ) ( | )

0,

t T
ty i y i t T

i t P y m
otherwise

α β
γ

+⎧
= −⎪= ⎨

⎪
⎩

                                                (2.8) 

1 1( , ) ( | ) , 1,...,
( ; ) ( | )

0,

t T
ty j y j t T

v j t P y m
otherwise

α β +⎧
=⎪= ⎨

⎪
⎩

                                                  (2.9) 

1 1( , ) ( | ) , ( ) _ _1
( , ; ) ( | )

0,

t T
ty j y j y t k and t T

j k t P y m
otherwise

α β
δ

+⎧
= ≤ ≤⎪= ⎨

⎪
⎩

                       (2.10) 

Both the forward and backward probability sequences α and β are used extensively 

in the equations. After that, four related key values need to be computed. 
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1

1

( , , ) ( , ; )
T

t

i j i j tξ ξ
−

=

= ∑i                                              (2.11) 

1

1
( , ) ( ; )

T

t
i i tγ γ

−

=

= ∑i                                                     (2.12) 

1
( , ) ( ; )

T

t
v j v j t

=

= ∑i                                                     (2.13) 

 
1

( , , ) ( , ; )
T

t
j k j k tδ δ

=

= ∑i                                             (2.14) 

Finally, the model’s parameters{ , , (1)}A B π can be re-estimated by equations (2.15), 

(2.16) and (2.17): 

( , ; )( | )
( ; )
i ja j i
i

ξ
γ

=
i
i                                                   (2.15) 

( , ; )( | )
( ; )
j kb k j

v j
δ

=
i
i                                                 (2.16) 

( (1) ) ( ;1)P x i iγ= =                                                (2.17) 

The algorithm is an iterative computation procedure for estimating a model m , 

which corresponds to a local maximum of the likelihood ( | )P y m . Also, as the iteration 

proceeds, the model m  has its parameters{ , , (1)}A B π updated to generate a new model 

*m . The model will always improve under the re-estimation algorithm unless its 

parameters have already represented a local maximum. 
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Figure 2.4 The Global Maximum of the HMM Likelihood 

 
( | )P y m is generally a nonlinear function, which will definitely have many local 

maxima and a global maximum in the multidimensional space [17]. However, this 

procedure does not guarantee to generate the optimal model *m . Therefore, it is better to 

run the algorithm several times with different initial sets of{ , , (1)}A B π , and extract the 

trained model m  that yields the largest value of ( | )P y m . The following section will 

discuss several ways to find the global maximum. 

 
2.4.2 Initial estimates of A and B Matrices 

 
The choice of initial estimates for the elements of the A and B matrices is also a 

factor of interest for the HMM training. The main problem of training is that although the 

algorithm is guaranteed to reach a peak of ( | )P y m , the value reached is typically a local 
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maximum. Different starting values of both A and B matrices could yield models with 

higher or lower values of ( | )P y m . Since the matrices must satisfy these restriction 

   ij
1

N

j

a
=
∑ = 1    i=1,2,…,N,                                                  (2.18) 

   jk
1

M

k
b

=
∑ =1    j=1,2,…,M.                                                  (2.19) 

L.R. Rabiner, S.E. Levinson and M.M. Sondhi brought up an alternative starting 

condition [5], 

  a ij = 1/N + δ                                                       (2.20) 

    b jk = 1/M + δ                                                        (2.21) 

where δ  is a uniformly distributed random variable whose peak is much smaller than 

either 1/N or 1/M. A larger local maximum might be obtained by using these initial 

parameters. 

 
2.4.3 Genetic Algorithms for HMM Training 

 
Many algorithms have been developed to optimize the model parameters to best 

represent the training observation sequence. However, no single method guarantees to 

reach the global maximum or other more optimized local maxima. 

Since the F-B algorithm starts from an initial guess of parameters, it is better to try 

different sets of initial{ , , (1)}A B π . To improve the training, a stochastic search method 

called Genetic Algorithm (GA) [6] was introduced by M.Srinivas and Lalit M. Patnaik 

for HMM training. The Genetic Algorithm imitates natural evolution and performs global 
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searching in the defined searching space. Experiments also showed that GA usually 

works better than the F-B algorithm. 

 

Figure 2.5 Genetic Representation of the HMM Model 

 
Genetic Algorithm Hidden Markov Model training uses the roulette wheel selection 

scheme as its selection structure [18]. Each solution is distributed to a sector of the 

roulette wheel with the angle subtended by the sector at the center of the wheel. In other 

words, the angle is equal to 2π multiplied by the appropriate value of the solution. A 

solution is selected as an offspring if a random number in the range 0 to 2π  falls into the 

sector corresponds to the solution. The Genetic Algorithm will select solutions by this 

method until the entire population of the next generation has been produced. 

Although experiments have shown that the HMMs trained by the GA can obtain 

better solutions than by using the F-B algorithm, one of the major drawbacks is that the 

GA requires lots more computation for global searching before it can converge. 
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Therefore, in order to improve the efficiency of the Genetic Algorithm, a parallel version 

of GA called Parallel Genetic Algorithm (PGA) [18] is presented by S. Kwong and C.W. 

Chau. The results also showed that using PGA for speech recognition provides 18% 

improvement in recognition rate with the same computation time. 

 
2.4.4 Particle Swarm Optimization for HMM Training 

 
Another method - Particle Swarm Optimization (PSO) [19] has been recently 

presented for HMM training. The method is designed to estimate optimal parameters of 

the Hidden Markov Model by finding the global solution or better optimal solutions. As 

mentioned in the previous section, it is known that the Genetic Algorithm has better 

results than the F-B algorithm but requires more computation. From the paper “A Particle 

Swarm Optimization for Hidden Markov model Training” [5], the experiment showed 

that the PSO-HMM training can provide better results than the GA-HMM training 

method and the Baum-Welch algorithm. Furthermore, PSO is also more efficient than the 

Genetic Algorithm since it has a flexible and well-balanced structure to find the global 

maximum. 

The four following equations are used in the PSO-HMM training. 

( ) log ( | )if x P y m=                                                              (2.22) 

arg max[ ( )]k h
p ppbest f x= ,   1,...,h k=                                (2.23) 

arg max[ ( )]k k
pgbest f x= ,   1 p P≤ ≤                                 (2.24) 

1| ( ) ( ) |k kf gbest f gbest ε−− <                                           (2.25) 
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The condition of termination is that the maximum number of iteration is reached or the 

increase of the probability is under the given threshold ε . Finally, gbest  is assumed to 

be the HMM parameters { , , , (1), }m S A B Oπ=  after the optimization process is stopped. 

Experiments have shown that the average log probabilities of the HMMs trained by PSO 

have higher values than those trained by Genetic Algorithm and Baum-Welch algorithm. 

 
2.4.5 Training With Multiple Observation Sequences 

 
Usually, training is performed on a large number of separate observation sequences, 

so it is better to train a Hidden Markov Model with multiple observations [2] in order to 

provide a more complete representation of the statistical variations likely to be present 

across utterances. Since we are interested in obtaining speaker-independent models, the 

observation sequence (1) (2) ( ){ , , , }Ky = O O O  actually includes several independent 

sequences ( ) , 1, 2,...,kO k K= , where ( )kO  is the training sequence for speaker k [4]. In 

addition, K is the number of speakers used for training. Moreover, the way to handle 

multiple observation sequences is to calculate ( | )kP O m  for each sequence, and 

maximize the product of the probability using equation (2.26). 

( )

1

( | )
K

k

k

P P O m
=

=∏                                             (2.26) 

The modification of the Baum-Welch algorithm is straightforward for the multiple 

observation sequences’ training. Instead of using equation (2.15) and (2.16), equation 

(2.27) and (2.28) has been used. 
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( )

1

( )
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( , ; )
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( ; )

L
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l
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l
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a j i
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ξ

γ

=

=

=
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i

i
                                             (2.27) 

   

( )

1

( )

1

( , ; )
( | )

( ; )

L
l

l
L

l

l

j k
b k j

v j

δ
=

=

=
∑

∑

i

i
                                             (2.28) 

Since the numerator and the denominator of equation (2.27) and (2.28) stand for an 

average number related to the model, they should be summed by all observations. l  

represents the result for the l th observation., also, L  observation sequences are used in 

the training. After using the results in equation (2.7)-(2.14), the final equations for 

adjusting the model parameters are 

1

1

1
( ) ( )

1 2
1 1

1
( ) ( )

1 1
1 1

( , ) ( | ) ( ( 1) | ) ( | )
( | )

( , ) ( | )

l

l

TL
Tl t l

k t
l t

TL
Tl t l

k t
l t

w y i a j i b y t j y j
a j i

w y i y i

α β

α β

−

+
= =

−

+
= =

+
=
∑ ∑

∑ ∑
                     (2.29) 
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1
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1
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1 1
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( | )

( , ) ( | )

l

t
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k t
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k t
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w y j y j

α β

α β
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=
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+
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=
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∑ ∑
                                                      (2.30) 

Rabiner proposed using a weight inversely proportional to the probability of the 

observation sequences, given the model [27]. 

   ( )

1
( | )k kw

P m
=

O                                                    (2.31) 
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The weighting method performs well but is not appropriate in all situations since it gives 

greater weight in the re-estimation to those training data that don’t fit the model well. 

Some other weighting methods are listed below [20] [25]. 

 Rabiner’s vector learning method, 1/k kw P=  

 Parameter averaging of all models, 1/ all
k kw P=  

 Parameter averaging of all models, k kw P=  

 Parameter averaging of all models, all
k kw P=  

 Windsorised method 

 Direct parameter averaging over the top 50% in terms of ,all kP , ,k all kw P=  

 Direct parameter averaging across the best 50% in terms of their ,all kP  score, 1kw =  

 Direct parameter averaging across all models, 1kw =  

 Most likely model 

 

No single method is guaranteed to reach the maximum probability. Although we 

assumed that we can obtain the correct phoneme sequences in the training set, this 

assumption is not valid in many cases. Therefore, it can be safer to use a weight of 1kw = . 

Several papers [21] [22] [23] [24] have presented some more modified methods for 

HMM with multiple observations based on the Baum-Welch algorithm, which is not the 

main issue in this section. 
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2.5 Summary 
 

Recognition and training are the main issues of the Hidden Markov Model. Having 

completed a background review, this thesis will now focus on multiple observation 

sequences’ training and test how sensitive the model is. The following chapter will be the 

statement of problem and method of research. 



 22

CHAPTER THREE 
 

STATEMENT OF PROBLEM AND METHOD OF RESEARCH 
 
 

After the background discussion, the main work of the thesis is to simulate a speech 

recognizer which is trained by different people with different speaking styles. This 

research also determines how sensitive the training and recognition process is to 

variations in the training data. 

 
3.1 Introduction of the Model 

 
In this experiment, the configuration of the HMM is a five state left-right model [2]. 

A set of 256 observation symbols is used, and the length of the observation sequence is 8. 

In particular, the model is defined by the matrices A and B, and the initial state 

probability vector, π(1), as described below. 

 

 

Figure 3.1 A Five States Left-Right Model 

 
Matrix A is a 5-by-5 state transition matrix, its elements at row i, column j are the 

probabilities A(i|j) of making the transition from state j to state i. Matrix B is a 5-by-256 

observation probability matrix, its elements at row k, column j are the probabilities B(j|k) 
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of observation symbol with index j emitted by current state k. The sum of each column in 

matrices A and B should always be 1. [18] 

π(1) is the initial state probability vector. The model is assumed to always starts at 

state 1 and end at state 5, therefore P(x(1) = 1) = 1, and the probabilities of starting at 

state 2 to 5 are zero. 

Eight sets of observation sequences (1) (2) (8){ , , , }y = O O O  are trained together 

during this experiment by the re-estimation formula [20] 

   

1
( ) ( ) ( )

1 1
1 1

1
( ) ( )

1 1

( ) ( ) ( )

( ) ( )

kTK
k k k

k t ij j t t
k t

ij K T
k k

k t t
k t

w i a b j
a

w i i

α β

α β

−

+ +
= =

−

= =

=
∑ ∑

∑ ∑

o

                             (3.1) 

By knowing which kw  fits best for the model, three kinds of kw  are used in this 

experiment. 

 The weight in Rabiner’s Vector Learning model method [27]  

   ( )

1
( | )k kw

P m
=

O                                                  (3.2) 

 Direct parameter averaging across all models, 1kw =  

 Equal weighting based on the mean 

  

( )
(1) (2) (8)

1

8

K
k

ij
ij ij ijk

ij

a a a a
a

K
=

+ + +
= =
∑

                                (3.3) 
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3.2 Initial Estimates of the Parameters 
 

From the overview in chapter 2, it is known that different starting values of both A 

and B could yield models with higher or lower values of ( | )P y m . Since the sum of each 

column in both of the matrices must be one, the alternative starting values could be 

  a ij = 1/N + δ x (1/N)                                                 (3.4) 

and 

  b jk = 1/M + δ x (1/M),                                              (3.5) 

whereδ is a uniformly distributed random variable which is much smaller than either 1/N 

or 1/M [4]. 

After choosing the best kw  for the model, it is also important to estimate the initial 

parameters. Eight different values of δ will be used to calculate the ( | )P y m  in this 

section. 

 The A and B matrices are randomly selected. 

 δ = 0 

 δ = 5% 

 δ = 10% 

 δ = 20% 

 δ = 30% 

 δ = 40% 

 δ = 50% 

It is necessary to choose the best weighting method and the A and B matrices before 

re-forming training with multiple observation sequences. 
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3.3 Multiple Observation Sequences’ Training 
 

The 256 possible observation symbols were assumed to be generated by the speech 

signal after cepstral analysis and vector quantization. In addition, the vector quantization 

includes 24 elements which are 12 cepstral parameters and 12 delta cepstral parameters. 

 

Figure 3.2 System of Generating 256 Possible Output Vectors 

 
It is assumed that if two speech signals have similar cepstra, the signal would have 

similar representation using vector quantization. Also, it is assumed that the codebook 

labeling has been performed in such way that two code vectors that are close to each 

other in vector space have code labels that are numerically close. It can be explained by a 

2-dimantional case in figure 3. 

 

Figure 3.3 Codebook Figure in 2-Dimantional Case 
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After getting the best parameters as described in section 3.1 and 3.2, we can now 

train the model with multiple observation sequences. In this section, eight sets of 

observation sequences close to {16,48,80,112,144,176,208,240} were created to train the 

model at the same time. Also, the sensitivity of training to variations in the training data 

is determined by comparing the cases of ε = ± 1, ± 2 and ± 4. Eight additional sets of 

observation sequences are generated and their model probabilities by the new A and B 

matrices were calculated. 

Moreover, since {16,48,80,112,144,176,208,240} is assumed to represent the most 

“standard signal”, it is also interesting to vary the observation vectors with the variation 

restricted to only one of the eight positions in the sequence. This experiment is repeated 

for each of eight positions in the observation sequence, and check whether the speech 

signal can be recognized or not. 
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CHAPTER FOUR 
 

RESULTS 
 
 

This chapter shows the results of the experiment and provides discussion and 

conclusions about the data. The first section compares three kinds of weighting methods 

by showing how well they worked for training using multiple observation sequences. 

Section 4.2 shows the effect of different initial model parameters. Finally, section 4.3 

discusses the main part of the research – how sensitive the Hidden Markov Model is to 

variations in training data. 

 
4.1 Training with Multiple Observation Sequences 

 
Eight sets of observation sequences (1) (2) (8){ , , , }y = O O O  would be trained 

together during this experiment by the re-estimation formula 
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Three kinds of kw  were used in the experiments. Firstly, Rabiner’s Vector Learning 

model method [3] uses the weight 
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  ( )

1
( | )k kw

P m
=

O                                                   (4.3) 

to train the model by using multiple observation sequences. 

Eight sets of observation sequences close to{16,48,80,112,144,176,208,240} (ε = 

± 1) were randomly created. 

 
O[1]={16,48,80,112,144,176,208,240} 
O[2]={17,47,79,113,145,176,208,241} 
O[3]={15,47,79,111,145,177,209,241} 
O[4]={16,47,79,112,144,176,209,240} 
O[5]={17,49,79,113,144,175,209,241} 
O[6]={17,47,79,111,145,176,208,241} 
O[7]={16,47,79,112,144,175,207,241} 
O[8]={17,49,81,113,143,176,207,239} 

 
Table 4.1 Eight Sets of Observation Sequences 

 
 

Table 4.2 is the initial model probabilities ( )( | )kP mO  calculated for each 

observation sequences where in table 4.1. 

P_initial [1]=4.770341788096512E-20 
P_initial [2]=6.953773577917202E-20 
P_initial [3]=3.256112445226284E-19 
P_initial [4]=1.048052547428113E-19 
P_initial [5]=3.689518372324197E-20 
P_initial [6]=5.548731292852398E-20 
P_initial [7]=3.360595980927690E-20 
P_initial [8]=8.476924081085776E-21 

 
Table 4.2 The Eight Initial Model Probabilities 

 
 

P_final[1]~P_final[8], shown below are the model probabilities ( )( | )kP mO  

calculated for each individual observation sequences after training the model by 

equations (4.1), (4.2) and (4.3). All of the model probabilities increased during the first 
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iteration. However, only one set of model probabilities increased during the second and 

third iteration while all others decreased. Therefore, the training was unsuccessful even 

though the average model probability kept increasing. 

// Iteration #1 
P_final[1]=2.3700678730789433E-11 
P_final[2]=7.766249740459384E-9 
P_final[3]=3.8669030934534955E-13 
P_final[4]=5.876757236211321E-10 
P_final[5]=8.199762412730577E-9 
P_final[6]=1.7436671294990661E-9 
P_final[7]=1.9720917917193845E-9 
P_final[8]=1.6631332340896878E-7 

 
P_averag=2.332585719700481E-8 

------------------------------------------------------------------------------------------- 
// Iteration #2 

P_final[1]=1.6886259085191051E-19 
P_final[2]=3.0242027579993064E-16 
P_final[3]=3.739251800629411E-5 
P_final[4]=4.9097614098059785E-14 
P_final[5]=4.200097166900856E-22 
P_final[6]=3.4415926183283323E-12 
P_final[7]=8.097928812990254E-18 
P_final[8]=2.6345172542854568E-39 

 
P_averag=4.674065187161879E-6 

------------------------------------------------------------------------------------------- 
 
// Iteration #3 

P_final[1]=1.9497256506268255E-140 
P_final[2]=1.4311466609236057E-103 
P_final[3]=2.235081990883815E-196 
P_final[4]=2.6749554642263157E-137 
P_final[5]=1.0319774417252415E-90 
P_final[6]=1.1206234927785088E-130 
P_final[7]=1.0760985492607772E-134 
P_final[8]=2.760012067803685E-4 

 
P_averag=3.450015084754606E-5 

 
Table 4.3 The Model Probabilities After Training by Using eq. (4.1) and (4.2) 
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The weighting of equation (4.3) gives greater weight in the re-estimation to those 

utterances that do not fit the model well [28]. Since the observation sequences were 

generated randomly, the above weighting method was not appropriate. It would be 

reasonable to use this method if one assumes that the model and data should always have 

a good fit in training. 

Two other methods can be used to train the model. First of all, giving each 

individual estimate equal weight by computing the mean (equation (4.4)). Secondly, set 

the weight wk to 1. 
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1
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ij
ij ij ijk
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a a a a
a

K
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+ + +
= =
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                               (4.4) 

The same eight sets of observation sequences and initial matrices A and B were used 

in the training. Results obtained by using this method became reasonable (table 4.4), as 

their model probabilities increased remarkably and converged after 20 training loops 

(table 4.4). 

 

P_final[1]=2.0599365234375008E-8 
P_final[2]=1.5449523925781257E-6 
P_final[3]=5.149841308593752E-8 
P_final[4]=6.179809570312503E-7 
P_final[5]=3.295898437500002E-7 
P_final[6]=1.0299682617187503E-6 
P_final[7]=4.119873046875002E-7 
P_final[8]=4.577636718750002E-9 

 
P_averag=5.013942718505862E-7 

 
Table 4.4 Training by Using eq. (4.4) 
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The model probabilities also increased remarkably and converged after 30 training 

loops by using the last method. Results were even better than for the previous method 

since the average model probability became larger (table 4.5).  

 

P_final[1]=2.514570951461792E-7 
P_final[2]=1.885928213596344E-5 
P_final[3]=6.28642737865448E-7 
P_final[4]=7.543712854385376E-6 
P_final[5]=4.023313522338867E-6 
P_final[6]=1.257285475730896E-5 
P_final[7]=5.029141902923584E-6 
P_final[8]=5.587935447692871E-8 

 
P_averag=6.120535545051098E-6 

 
Table 4.5 Training by Using wk = 1 

 
 

It is usually assumed that utterances involved in the training set are very similar. 

However, this may not be true in many cases. Also, when dealing with very small values 

of model probabilities, small changes in ( )( | )kP mO  can yield large changes in the 

weights as per equation 4.3. Therefore, it is safer to use a weight of wk = 1. 

 
4.2 Initial Estimates of A and B Matrices 

 
Equation (4.5) and (4.6) represents the initial A and B matrices, 

 a ij = 1/N + δ x (1/N)                                                  (4.5) 

 b jk = 1/M + δ x (1/M),                                               (4.6) 

where δ  is a uniformly distributed random variable which is much smaller than either 

1/N or 1/M [5]. Three randomly selected observation sequences and eight different δ  

values have been used for training in this section. 
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The variation in the A and B matrices involved adding 
N
δ (or

M
δ ) and 

N
δ− (or

M
δ− ) 

in successive terms. Therefore, the A and B matrices are 

 A=

0.2 / 0 0 0 0
0.2 / 0.25 / 0 0 0

0.2 0.25 / 0.33 / 0 0
0.2 / 0.25 / 0.33 0.5 / 0
0.2 / 0.25 / 0.33 / 0.5 / 1

N
N N

N N
N N N
N N N N

δ
δ δ

δ δ
δ δ δ
δ δ δ δ

+⎛ ⎞
⎜ ⎟− +⎜ ⎟
⎜ ⎟− +
⎜ ⎟

+ + +⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

                (4.7) 

and 

  B=

1/ 256 / 1/ 256 /
1/ 256 / 1/ 256 /
1/ 256 / 1/ 256 /

1/ 256 / 1/ 256 /

M M
M M
M M

M M

δ δ
δ δ
δ δ

δ δ

+ −⎛ ⎞
⎜ ⎟− +⎜ ⎟
⎜ ⎟+ −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− +⎝ ⎠

…

                                               (4.8) 

The experiment shows that the final probability is not significantly dependent on the 

exact pattern of positive and negative adjustments of A and B elements. δ  equals to 0, 

5%, 10%, 20%, 30%, 40% and 50% would be used in this experiment. 

 

Observation 1: O = {12,1,3,6,14,2,2,3} 

 
A & B matrices randomly selected δ = 0 δ = 5% δ = 10% 

Initial P 4.446 x 10-21 5.241 x 10-20 4.573 x 10-20 3.981 x 10-20 
Final P 9.765 x 10-4 0.015625 0.015625 0.015625 

 
A & B matrices δ = 20% δ = 30% δ = 40% δ = 50% 

Initial P 2.994 x 10-20 2.325 x 10-20 1.761 x 10-20 1.366 x 10-20 
Final P 0.015625 0.015625 0.00926 0.00926 

 
Observation 2: O = {126,253,38,96,149,234,12,186} 
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A & B matrices randomly selected δ = 0 δ = 5% δ = 10% 

Initial P 2.831 x 10-19 5.241 x 10-20 4.314 x 10-20 3.507 x 10-20 
Final P 3.2 x 10-4 0.00390625 0.00390625 0.00390625 

 
A & B matrices δ = 20% δ = 30% δ = 40% δ = 50% 

Initial P 2.205 x 10-20 1.322 x 10-20 7.099 x 10-21 3.424 x 10-21 
Final P 0.00390625 0.00390625 0.00390625 0.00390625 

 

Observation 3: O = {12,54,239,97,149,134,3,86} 

 
A & B matrices randomly selected δ = 0 δ = 5% δ = 10% 

Initial P 5.066 x 10-20 5.241 x 10-20 4.988 x 10-20 4.660 x 10-20 
Final P 3.2 x 10-4 0.00390625 0.00390625 0.00390625 

 
A & B matrices δ = 20% δ = 30% δ = 40% δ = 50% 

Initial P 3.891 x 10-20 2.912 x 10-20 2.068 x 10-20 1.212 x 10-20 
Final P 2.441 x 10-4 3.2 x 10-4 3.2 x 10-4 3.2 x 10-4 

 
Table 4.6 Training by Different Sets of Initial A and B Matrices 

 
 

It can be seen in table 4.6 that the model consistently has the lowest probability after 

training if the initial A and B matrices are randomly selected. On the other hand, the 

model has been trained better whenδ = 0~10%. 

Therefore, selecting δ = 0 would be a good choice in this experiment, and the 

corresponding A matrix is 

 

   A = 

0.2 0 0 0 0
0.2 0.25 0 0 0
0.2 0.25 0.33 0 0
0.2 0.25 0.33 0.5 0
0.2 0.25 0.33 0.5 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

.                                      (4.9) 

Also, the B matrix would be uniformly distributed: 
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  B = 

1/ 256 1/ 256

1/ 256 1/ 256

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

…

.                                            (4.10) 

 
4.3 Test the Effect of Multiple Observation Sequences’ Training 

 
After getting the best parameters as described in section 4.1 and 4.2, we can now 

train the model with multiple observation sequences. 

 
4.3.1 First Experiment 

 
In this section, eight sets of observation sequences close to 

{16,48,80,112,144,176,208,240} were used to train the model at the same time. Also, the 

model’s sensitivity to variations in training data was evaluated by comparing the cases of 

ε = ± 1, ± 2 and ± 4. After creating eight new sets of observation sequences and 

calculating their model probabilities using the new A and B matrices, we can demonstrate 

how the training works. The weight wk was set as 1, the A and B matrices are formed as 

described by equations (4.7) and (4.8) respectively. 

 

Set 1: ε = ± 1 

O[1]={16,48,80,112,144,176,208,240}  (“ideal” observation 
sequence) 

O[2]={15,49,80,111,143,177,209,240} 
O[3]={15,48,80,112,145,175,209,241} 
O[4]={16,48,80,113,145,175,209,239} 
O[5]={16,48,81,113,145,177,208,241} 
O[6]={16,49,79,113,143,176,208,241} 
O[7]={17,47,80,113,143,177,207,241} 
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O[8]={16,48,80,111,143,175,208,239} 
 

P_initial[1]=5.240666512816181E-20 
P_initial[2]=5.240666512816181E-20 
P_initial[3]=5.240666512816181E-20 
P_initial[4]=5.240666512816181E-20 
P_initial[5]=5.240666512816181E-20 
P_initial[6]=5.240666512816181E-20 
P_initial[7]=5.240666512816181E-20 
P_initial[8]=5.240666512816181E-20 

 
P_final[1]=1.1175870895385742E-6 
P_final[2]=8.046627044677734E-7 
P_final[3]=3.0174851417541504E-6 
P_final[4]=7.543712854385376E-6 
P_final[5]=3.3527612686157227E-6 
P_final[6]=1.1920928955078125E-6 
P_final[7]=2.682209014892578E-7 
P_final[8]=6.705522537231445E-6 

 
P_averag=3.000255674123764E-6 

 
Table 4.7. Set 1: ε = ± 1 

 
 

O[1]~O[8] are the eight training observation sequences. Since matrices A and B are 

uniformly distributed, the initial model probabilities would always be the same 

(5.240666512816181E-20). The average probability increased to 63x10−  after the training. 

(table 4.7) 

After training, eight new observation sequences (O_new[1]~O_new[8]) are created. 

In addition, P_new[1]~P_new[8] are the new model probabilities by using the trained A 

and B matrices as shown in the table below. 

 
O_new[1]={17,47,80,111,143,175,208,240} 
O_new[2]={16,49,80,111,145,175,209,239} 
O_new[3]={17,49,80,113,143,175,207,240} 
O_new[4]={17,47,81,113,143,175,208,240} 
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O_new[5]={16,49,81,112,145,177,207,241} 
O_new[6]={15,49,80,113,143,176,208,240} 
O_new[7]={16,48,79,113,143,175,208,239} 
O_new[8]={16,49,79,112,145,175,208,241} 

 
P_new[1]=2.682209014892578E-7 
P_new[2]=1.5087425708770752E-6 
P_new[3]=2.682209014892578E-7 
P_new[4]=8.940696716308594E-8 
P_new[5]=1.6763806343078613E-7 
P_new[6]=1.430511474609375E-6 
P_new[7]=2.2351741790771484E-6 
P_new[8]=6.705522537231445E-7 

 
P_new_averag=8.298084139823914E-7 

 
Table 4.8 Set 1: ε = ± 1, New Average ( )( | )kP mO  for 8 New Observation Sequences 
 
 

Although P_new_averag is a little smaller than P_averag, the training can still be 

considered successful since all probabilities could potentially lead to a recognition 

decision (table 4.8). 

 

Set 2: ε = ± 2 

 

O[1]={16,48,80,112,144,176,208,240} (“ideal”) 
O[2]={15,50,78,113,145,178,209,242} 
O[3]={16,49,80,114,146,176,207,238} 
O[4]={17,49,78,112,142,174,209,241} 
O[5]={14,49,82,113,142,177,210,239} 
O[6]={16,48,81,112,143,174,209,240} 
O[7]={18,50,79,110,142,174,207,240} 
O[8]={17,46,79,114,143,178,207,241} 

 
P_final[1]=5.029141902923584E-8 
P_final[2]=1.117587089538574E-8 
P_final[3]=5.029141902923584E-8 
P_final[4]=4.5262277126312256E-7 
P_final[5]=4.190951585769653E-9 
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P_final[6]=2.2631138563156128E-7 
P_final[7]=7.543712854385372E-8 
P_final[8]=4.470348358154296E-8 

 
P_averag=1.1437805369496346E-7 

 
O_new[1]={17,46,81,110,146,175,206,242} 
O_new[2]={16,46,78,114,142,177,209,240} 
O_new[3]={17,50,82,110,142,176,207,240} 
O_new[4]={14,50,79,112,143,176,210,242} 
O_new[5]={14,50,82,111,144,178,207,238} 
O_new[6]={15,47,81,111,143,175,210,240} 
O_new[7]={18,46,81,114,145,174,210,241} 
O_new[8]={14,46,79,113,146,175,208,240} 

 
P_new[1]=0.0 
P_new[2]=7.543712854385376E-8 
P_new[3]=5.029141902923582E-8 
P_new[4]=1.1175870895385739E-8 
P_new[5]=0.0 
P_new[6]=0.0 
P_new[7]=2.7939677238464347E-9 
P_new[8]=0.0 

 
P_new_averag=1.746229827404022E-8 
 

Table 4.9 Set 2: ε = ± 2, New Average ( )( | )kP mO  for 8 New Observation Sequences 
 
 

In the second set, the average of model probabilities is smaller since the observation 

sequences have larger range. After creating eight new observation sequences to calculate 

their individual ( )( | )kP mO  by the trained A and B matrices, there were approximately 

half of them can be considered as recognizable (The ones with probability = 0 cannot) 

(table 4.9). 

 

Set 3: ε = ± 4 
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O[1]={16,48,80,112,144,176,208,240} (“ideal”) 
O[2]={17,49,80,111,141,175,208,243} 
O[3]={12,49,78,110,141,175,212,243} 
O[4]={15,47,83,108,148,174,211,244} 
O[5]={17,52,81,113,141,176,206,241} 
O[6]={20,48,80,114,141,178,208,244} 
O[7]={13,50,77,108,147,179,206,236} 
O[8]={14,51,76,113,148,172,212,237} 

 
P_final[1]=8.381903171539307E-9 
P_final[2]=1.341104507446289E-7 
P_final[3]=1.4901161193847656E-8 
P_final[4]=1.862645149230957E-9 
P_final[5]=1.4901161193847656E-8 
P_final[6]=3.3527612686157227E-8 
P_final[7]=9.313225746154785E-10 
P_final[8]=1.862645149230957E-9 

 
P_averag=2.6309862732887268E-8 

 
O_new[1]={17,44,78,111,146,176,206,236} 
O_new[2]={13,49,84,114,148,174,211,244} 
O_new[3]={17,46,82,109,144,172,211,244} 
O_new[4]={14,48,78,116,142,175,204,240} 
O_new[5]={15,46,79,114,148,175,207,244} 
O_new[6]={16,51,77,114,144,179,211,244} 
O_new[7]={13,45,78,113,142,177,205,239} 
O_new[8]={13,50,77,110,142,175,208,243} 

 
P_new[1]=0.0 
P_new[2]=0.0 
P_new[3]=0.0 
P_new[4]=0.0 
P_new[5]=0.0 
P_new[6]=4.6566128730773926E-10 
P_new[7]=0.0 
P_new[8]=0.0 
 
P_new_averag=5.820766091346741E-11 
 

Table 4.10 Set 3: ε = ± 4, New Average ( )( | )kP mO  for 8 New Observation 
Sequences 
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Finally, most of the new observation sequences can not be recognized after the 

training for the case ofε = ± 4 since the training sets were not successful because of all 

the zero-probability cases. Consequently, set 1 works the best since the observation 

sequences fits better in the model ( ε  is smaller). In addition, two more sets of 

observations for each ε  were used in this experiment (ε = ± 1 in table 4.11 and 4.12, ε = 

± 2 in table 4.13 and 4.14, ε = ± 4 in table 4.15 and 4.16). The results are similar to those 

in table 4.8 - 4.10, and they also restate the conclusion. 

The following six tables (4.11-4.16) are the second and third trail for each sets ofε  

(ε = ± 1, ε = ± 2 andε = ± 4). 

 

Set 1: ε = ± 1, second trail 

 

O[1]={16,48,80,112,144,176,208,240} (“ideal”) 
O[2]={16,48,81,113,143,176,208,240} 
O[3]={16,49,81,111,145,177,209,240} 
O[4]={17,49,81,113,143,177,208,239} 
O[5]={15,47,79,111,143,176,208,239} 
O[6]={16,49,79,113,144,177,208,239} 
O[7]={15,49,80,112,144,177,209,239} 
O[8]={17,48,81,112,143,177,209,241} 

 
P_final[1]=2.263113856315613E-6 
P_final[2]=6.034970283508301E-6 
P_final[3]=1.3411045074462895E-6 
P_final[4]=8.940696716308594E-6 
P_final[5]=4.470348358154297E-7 
P_final[6]=6.705522537231445E-6 
P_final[7]=2.0116567611694336E-6 
P_final[8]=1.0058283805847168E-6 

 
P_averag=3.5937409847974777E-6 

 
O_new[1]={17,49,80,112,143,176,207,241} 
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O_new[2]={15,49,80,111,143,177,209,241} 
O_new[3]={15,47,80,112,145,176,209,239} 
O_new[4]={15,47,81,112,144,176,209,239} 
O_new[5]={15,48,81,113,145,176,209,240} 
O_new[6]={15,47,81,111,145,176,208,240} 
O_new[7]={15,47,80,112,145,176,209,241} 
O_new[8]={15,47,79,113,144,176,207,239} 

 
P_new[1]=0.0 
P_new[2]=4.470348358154297E-7 
P_new[3]=1.0058283805847172E-7 
P_new[4]=6.034970283508301E-7 
P_new[5]=4.526227712631227E-7 
P_new[6]=1.6763806343078619E-7 
P_new[7]=2.514570951461793E-8 
P_new[8]=0.0 

 
P_new_averag=2.2456515580415728E-7 
 

Table 4.11 Second Trail forε = ± 1 
 
 
Set 1: ε = ± 1, third trail 

 

O[0]={16,48,80,112,144,176,208,240} (“ideal”) 
O[1]={15,49,79,111,143,175,209,241} 
O[2]={16,49,79,112,144,177,209,239} 
O[3]={16,47,81,112,145,176,207,240} 
O[4]={17,47,79,113,144,177,207,241} 
O[5]={16,47,81,112,144,175,207,241} 
O[6]={17,47,80,112,144,176,209,241} 
O[7]={17,48,81,111,144,176,209,239} 

 
P_final[0]=8.940696716308594E-7 
P_final[1]=8.940696716308594E-8 
P_final[2]=2.682209014892578E-6 
P_final[3]=1.341104507446289E-6 
P_final[4]=1.2069940567016597E-6 
P_final[5]=8.046627044677734E-6 
P_final[6]=1.0728836059570312E-5 
P_final[7]=1.6093254089355469E-6 

 
P_averag=3.3248215913772583E-6 
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O_new[0]={16,49,79,111,143,177,207,239} 
O_new[1]={16,47,79,113,144,177,209,239} 
O_new[2]={17,49,81,111,144,175,207,241} 
O_new[3]={16,47,80,113,145,177,209,240} 
O_new[4]={15,48,81,111,144,176,207,241} 
O_new[5]={17,47,81,111,143,176,209,241} 
O_new[6]={16,47,79,113,144,175,208,240} 
O_new[7]={17,49,80,113,144,177,209,241} 

 
P_new[0]=1.341104507446289E-7 
P_new[1]=1.0728836059570308E-6 
P_new[2]=1.2069940567016602E-6 
P_new[3]=1.1920928955078122E-7 
P_new[4]=8.046627044677734E-7 
P_new[5]=1.0728836059570312E-6 
P_new[6]=2.682209014892577E-7 
P_new[7]=5.364418029785154E-7 
 
 
P_new_averag=6.51925802230835E-7 
 

Table 4.12 Third Trail forε = ± 1 
 
 
Set 2: ε = ± 2, second trail 

 

O[1]={16,48,80,112,144,176,208,240} (“ideal”) 
O[2]={15,48,80,110,142,175,207,239} 
O[3]={15,46,81,112,143,177,209,240} 
O[4]={14,49,80,112,146,174,208,242} 
O[5]={14,49,80,112,144,178,206,238} 
O[6]={18,48,79,114,144,178,206,239} 
O[7]={15,48,79,111,144,174,210,239} 
O[8]={14,47,80,113,142,177,210,241} 

 
P_final[1]=2.980232238769531E-7 
P_final[2]=8.381903171539307E-8 
P_final[3]=1.1175870895385742E-8 
P_final[4]=1.1175870895385742E-7 
P_final[5]=4.470348358154297E-7 
P_final[6]=8.940696716308594E-8 
P_final[7]=2.682209014892578E-7 
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P_final[8]=2.7939677238464355E-8 
 

P_averag=1.671724021434784E-7 
 

O_new[1]={17,49,82,111,142,175,206,241} 
O_new[2]={15,49,79,112,142,176,207,241} 
O_new[3]={18,47,80,113,146,178,210,242} 
O_new[4]={14,47,81,113,145,177,210,241} 
O_new[5]={15,50,80,114,145,175,208,240} 
O_new[6]={15,48,78,111,142,176,209,239} 
O_new[7]={16,47,80,111,143,177,208,241} 
O_new[8]={15,50,80,111,142,178,206,238} 

 
P_new[1]=0.0 
P_new[2]=2.2351741790771484E-8 
P_new[3]=4.6566128730773926E-9 
P_new[4]=0.0 
P_new[5]=0.0 
P_new[6]=0.0 
P_new[7]=4.6566128730773926E-9 
P_new[8]=0.0 

 
P_new_averag=3.958120942115784E-9 
 

Table 4.13 Second Trail forε = ± 2 
 
 
Set 2: ε = ± 2, third trail 

 

O[1]={16,48,80,112,144,176,208,240} (“ideal”) 
O[2]={18,46,80,114,145,178,208,238} 
O[3]={14,47,78,110,145,175,209,239} 
O[4]={14,47,79,110,143,175,208,242} 
O[5]={14,50,79,112,146,177,209,242} 
O[6]={16,49,78,114,144,174,207,239} 
O[7]={16,48,80,113,142,175,209,238} 
O[8]={17,50,81,114,144,178,207,239} 

 
P_final[1]=7.543712854385376E-8 
P_final[2]=5.029141902923582E-8 
P_final[3]=3.0174851417541504E-7 
P_final[4]=1.0058283805847168E-7 
P_final[5]=3.3527612686157227E-8 



 43

P_final[6]=7.543712854385376E-8 
P_final[7]=7.543712854385376E-8 
P_final[8]=5.029141902923584E-8 

 
P_averag=9.534414857625961E-8 

 
O_new[1]={17,48,78,110,146,178,208,238} 
O_new[2]={16,49,81,112,142,174,208,240} 
O_new[3]={14,49,78,110,144,176,207,242} 
O_new[4]={15,48,81,111,144,178,210,241} 
O_new[5]={14,50,81,114,144,175,206,238} 
O_new[6]={18,49,81,113,145,177,207,242} 
O_new[7]={17,46,82,111,145,177,208,240} 
O_new[8]={14,49,78,113,145,176,209,240} 

 
P_new[1]=2.2351741790771484E-8 
P_new[2]=4.190951585769653E-9 
P_new[3]=3.3527612686157227E-8 
P_new[4]=0.0 
P_new[5]=0.0 
P_new[6]=1.8626451492309568E-9 
P_new[7]=0.0 
P_new[8]=8.381903171539307E-9 

 
P_new_averag=8.789356797933578E-9 
 

Table 4.14 Third Trail forε = ± 2 
 
 
Set 3: ε = ± 4, second trail 

 

O[1]={16,48,80,112,144,176,208,240} (“ideal”) 
O[2]={16,51,84,115,143,180,205,241} 
O[3]={16,52,78,112,144,178,212,244} 
O[4]={19,52,81,115,147,179,207,244} 
O[5]={14,46,84,115,142,176,207,243} 
O[6]={18,50,84,116,141,173,211,236} 
O[7]={12,48,79,115,143,178,209,244} 
O[8]={19,49,80,116,142,179,212,238} 

 
P_final[1]=2.2351741790771484E-8 
P_final[2]=1.6763806343078613E-8 
P_final[3]=6.705522537231445E-8 
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P_final[4]=4.470348358154297E-8 
P_final[5]=2.2351741790771484E-8 
P_final[6]=1.3969838619232178E-9 
P_final[7]=2.2351741790771484E-8 
P_final[8]=1.4901161193847656E-8 

 
P_averag=2.648448571562767E-8 

 
O_new[1]={14,51,81,115,144,178,205,243} 
O_new[2]={15,47,81,108,148,174,209,236} 
O_new[3]={16,44,81,116,148,174,208,236} 
O_new[4]={19,50,77,116,148,175,205,241} 
O_new[5]={17,44,77,113,145,180,209,241} 
O_new[6]={18,51,83,113,140,179,206,244} 
O_new[7]={19,46,83,109,141,180,211,244} 
O_new[8]={13,44,77,111,140,172,208,237} 

 
P_new[1]=3.725290298461914E-9 
P_new[2]=0.0 
P_new[3]=0.0 
P_new[4]=0.0 
P_new[5]=0.0 
P_new[6]=0.0 
P_new[7]=0.0 
P_new[8]=0.0 

 
 

P_new_averag=4.6566128730773926E-10 
 

Table 4.15 Second Trail forε = ± 4 
 
 
Set 3: ε = ± 4, third trail 

 

O[1]={16,48,80,112,144,176,208,240} (“ideal”) 
O[2]={18,44,84,115,143,175,209,236} 
O[3]={20,52,81,116,144,177,207,238} 
O[4]={13,44,83,113,142,179,211,237} 
O[5]={17,46,84,112,142,172,210,237} 
O[6]={18,50,81,114,140,176,212,242} 
O[7]={14,46,84,115,146,180,204,238} 
O[8]={18,44,76,113,146,178,211,242} 
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P_final[1]=1.862645149230957E-9 
P_final[2]=1.257285475730896E-8 
P_final[3]=1.862645149230957E-9 
P_final[4]=1.1175870895385742E-8 
P_final[5]=1.1175870895385742E-8 
P_final[6]=5.587935447692871E-9 
P_final[7]=1.1175870895385742E-8 
P_final[8]=3.3527612686157227E-8 

 
P_averag=1.1117663234472275E-8 

 
O_new[1]={12,47,79,109,147,180,206,236} 
O_new[2]={19,46,81,113,141,173,210,242} 
O_new[3]={15,51,79,113,148,178,206,236} 
O_new[4]={16,44,83,115,143,180,212,241} 
O_new[5]={17,51,77,116,141,174,209,240} 
O_new[6]={20,46,81,116,146,174,212,243} 
O_new[7]={16,46,78,113,146,177,210,243} 
O_new[8]={20,45,81,112,142,180,209,239} 

 
P_new[1]=0.0 
P_new[2]=0.0 
P_new[3]=0.0 
P_new[4]=0.0 
P_new[5]=0.0 
P_new[6]=0.0 
P_new[7]=0.0 
P_new[8]=0.0 

 
P_new_averag=0.0 
 

Table 4.16 Third Trail forε = ± 4 
 
 

4.3.2 Second Experiment 
 

Since {16,48,80,112,144,176,208,240} is assumed to represent the most “standard 

signal”, it is also interesting to vary the observation vectors with the variation restricted 

to only one of the eight positions in the sequence. This experiment is repeated for each of 
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eight positions in the observation sequence, and check whether the speech signal can be 

recognized or not. 

 

Set 1: ε = ± 1 

 

training set: 
 

O[1]={16,48,80,112,144,176,208,240} 
O[2]={15,49,80,111,143,177,209,240} 
O[3]={15,48,80,112,145,175,209,241} 
O[4]={16,48,80,113,145,175,209,239} 
O[5]={16,48,81,113,145,177,208,241} 
O[6]={16,49,79,113,143,176,208,241} 
O[7]={17,47,80,113,143,177,207,241} 
O[8]={16,48,80,111,143,175,208,239} 

 
P_initial[1]=5.240666512816181E-20 
P_initial[2]=5.240666512816181E-20 
P_initial[3]=5.240666512816181E-20 
P_initial[4]=5.240666512816181E-20 
P_initial[5]=5.240666512816181E-20 
P_initial[6]=5.240666512816181E-20 
P_initial[7]=5.240666512816181E-20 
P_initial[8]=5.240666512816181E-20 

 
P_final[1]=1.1175870895385742E-6 
P_final[2]=8.046627044677734E-7 
P_final[3]=3.0174851417541504E-6 
P_final[4]=7.543712854385376E-6 
P_final[5]=3.3527612686157227E-6 
P_final[6]=1.1920928955078125E-6 
P_final[7]=2.682209014892578E-7 
P_final[8]=6.705522537231445E-6 

 
P_averag=3.000255674123764E-6 
 

Table 4.17 Training Set forε = ± 1 
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Table 4.17 is the training set forε = ± 1, which uses the same training observation 

sequences as table 4.7. Also, the initial parameters and weighting method are the same as 

the previous experiment. To reiterate, O[1]~O[8] are the training observation sequences, 

and P_initial[1]~ P_initial[8] are the ( )( | )kP mO  calculated by the original A and B 

matrices. Finally, P_final[1]~ P_final[8] are the final model probabilities calculated by 

the trained A and B matrices. 

 

case 1: 
 

O_new[1]={16,48,80,112,144,176,208,236} 
O_new[2]={16,48,80,112,144,176,208,237} 
O_new[3]={16,48,80,112,144,176,208,238} 
O_new[4]={16,48,80,112,144,176,208,239} 
O_new[5]={16,48,80,112,144,176,208,240} 
O_new[6]={16,48,80,112,144,176,208,241} 
O_new[7]={16,48,80,112,144,176,208,242} 
O_new[8]={16,48,80,112,144,176,208,243} 
O_new[9]={16,48,80,112,144,176,208,244} 

 
P_new[1]=0.0 
P_new[2]=0.0 
P_new[3]=0.0 
P_new[4]=1.1175870895385742E-6 
P_new[5]=1.1175870895385742E-6 
P_new[6]=2.2351741790771484E-6 
P_new[7]=0.0 
P_new[8]=0.0 
P_new[9]=0.0 
 

Table 4.18 Case 1 forε = ± 1 
 

For example, in table 4.18, O_new[1]~O_new[9] are the new observation sequences 

that were created to test the model, which are almost the same as 

{16,48,80,112,144,176,208,240} except a variation of ε = ± 4 for the last observation 
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component. The above experiment was repeated eight times by changing every column 

and determining the effect on P_news, which is the ( )( | )kP mO  by using the new 

observation sequences with the trained A and B matrices. 

 

case 2: 
 

O_new[1]={16,48,80,112,144,176,204,240} 
O_new[2]={16,48,80,112,144,176,205,240} 
O_new[3]={16,48,80,112,144,176,206,240} 
O_new[4]={16,48,80,112,144,176,207,240} 
O_new[5]={16,48,80,112,144,176,208,240} 
O_new[6]={16,48,80,112,144,176,209,240} 
O_new[7]={16,48,80,112,144,176,210,240} 
O_new[8]={16,48,80,112,144,176,211,240} 
O_new[9]={16,48,80,112,144,176,212,240} 

 
P_new[1]=0.0 
P_new[2]=0.0 
P_new[3]=0.0 
P_new[4]=2.7939677238464355E-7 
P_new[5]=1.1175870895385742E-6 
P_new[6]=8.381903171539307E-7 
P_new[7]=0.0 
P_new[8]=0.0 
P_new[9]=0.0 

 
--------------------------------------------------------- 

 
case 3: 
 

O_new[1]={16,48,80,112,144,172,208,240} 
O_new[2]={16,48,80,112,144,173,208,240} 
O_new[3]={16,48,80,112,144,174,208,240} 
O_new[4]={16,48,80,112,144,175,208,240} 
O_new[5]={16,48,80,112,144,176,208,240} 
O_new[6]={16,48,80,112,144,177,208,240} 
O_new[7]={16,48,80,112,144,178,208,240} 
O_new[8]={16,48,80,112,144,179,208,240} 
O_new[9]={16,48,80,112,144,180,208,240} 
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P_new[1]=0.0 
P_new[2]=0.0 
P_new[3]=0.0 
P_new[4]=1.6763806343078613E-6 
P_new[5]=1.1175870895385742E-6 
P_new[6]=1.6763806343078613E-6 
P_new[7]=0.0 
P_new[8]=0.0 
P_new[9]=0.0 

 
--------------------------------------------------------- 

 
case 4: 
 

O_new[1]={16,48,80,112,140,176,208,240} 
O_new[2]={16,48,80,112,141,176,208,240} 
O_new[3]={16,48,80,112,142,176,208,240} 

    O_new[4]={16,48,80,112,143,176,208,240} 
    O_new[5]={16,48,80,112,144,176,208,240} 
    O_new[6]={16,48,80,112,145,176,208,240} 
    O_new[7]={16,48,80,112,146,176,208,240} 
    O_new[8]={16,48,80,112,147,176,208,240} 
    O_new[9]={16,48,80,112,148,176,208,240} 

 
P_new[1]=0.0 
P_new[2]=0.0 
P_new[3]=0.0 

                                      P_new[4]=4.470348358154297E-6 
                                      P_new[5]=1.1175870895385742E-6 
                                      P_new[6]=3.3527612686157227E-6 
                                      P_new[7]=0.0 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
 
case 5: 
 
                                      O_new[1]={16,48,80,108,144,176,208,240} 
                                      O_new[2]={16,48,80,109,144,176,208,240} 
                                      O_new[3]={16,48,80,110,144,176,208,240} 
                                      O_new[4]={16,48,80,111,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
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                                      O_new[6]={16,48,80,113,144,176,208,240} 
                                      O_new[7]={16,48,80,114,144,176,208,240} 
                                      O_new[8]={16,48,80,115,144,176,208,240} 
                                      O_new[9]={16,48,80,116,144,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=0.0 
                                      P_new[4]=1.1175870895385742E-6 
                                      P_new[5]=1.1175870895385742E-6 
                                      P_new[6]=2.2351741790771484E-6 
                                      P_new[7]=0.0 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 6: 
 
                                      O_new[1]={16,48,76,112,144,176,208,240} 
                                      O_new[2]={16,48,77,112,144,176,208,240} 
                                      O_new[3]={16,48,78,112,144,176,208,240} 
                                      O_new[4]={16,48,79,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,81,112,144,176,208,240} 
                                      O_new[7]={16,48,82,112,144,176,208,240} 
                                      O_new[8]={16,48,83,112,144,176,208,240} 
                                      O_new[9]={16,48,84,112,144,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=0.0 
                                      P_new[4]=1.862645149230957E-7 
                                      P_new[5]=1.1175870895385742E-6 
                                      P_new[6]=1.862645149230957E-7 
                                      P_new[7]=0.0 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 7: 
 
                                      O_new[1]={16,44,80,112,144,176,208,240} 
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                                      O_new[2]={16,45,80,112,144,176,208,240} 
                                      O_new[3]={16,46,80,112,144,176,208,240} 
                                      O_new[4]={16,47,80,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,49,80,112,144,176,208,240} 
                                      O_new[7]={16,50,80,112,144,176,208,240} 
                                      O_new[8]={16,51,80,112,144,176,208,240} 
                                      O_new[9]={16,52,80,112,144,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=0.0 
                                      P_new[4]=2.2351741790771484E-7 
                                      P_new[5]=1.1175870895385742E-6 
                                      P_new[6]=4.470348358154297E-7 
                                      P_new[7]=0.0 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 8: 
 
                                      O_new[1]={12,48,80,112,144,176,208,240} 
                                      O_new[2]={13,48,80,112,144,176,208,240} 
                                      O_new[3]={14,48,80,112,144,176,208,240} 
                                      O_new[4]={15,48,80,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={17,48,80,112,144,176,208,240} 
                                      O_new[7]={18,48,80,112,144,176,208,240} 
                                      O_new[8]={19,48,80,112,144,176,208,240} 
                                      O_new[9]={20,48,80,112,144,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=0.0 
                                      P_new[4]=4.470348358154297E-7 
                                      P_new[5]=1.1175870895385742E-6 
                                      P_new[6]=2.2351741790771484E-7 
                                      P_new[7]=0.0 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

Table 4.19 Case 2~8 forε = ± 1 
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From the cases in table 4.18 and 4.19, it is interesting to observe that only 

P_new[4]~ P_new[6] have non-zero values. This is because the training data hasε = ± 1, 

and only the observation sequences which has variance less than 1 would have a non-zero 

value of model probability. For example, there are only 3 different observations in the 

last column in the training data, which are 239, 240 and 241. Therefore, in case number 1, 

the model probabilities will have a non-zero value only when the O_news are 

{16,48,80,112,144,176,208,239}, {16,48,80,112,144,176,208,240} or 

{16,48,80,112,144,176,208,241}. An additional experiment was performed to support 

this conclusion. 

In this experiment, a single observation sequence was used for training. We are 

interested in the values of the A and B matrices after training. 

 

O= {12,1,3,6,14,2,2,3} 

A matrix: 
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

B matrix: 
B[12,1] = 1 
B[1,2] = 1 
B[3,3] = 1 
B[6,4]=1 
B[2,5]=0.5 
B[3,5]=0.25 
B[14,5]=0.25 
Others Are Zero 
 

Table 4.20 Table Showing the A and B Matrices After Training 
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It is obvious that a row number which has a non-zero value in the B matrix must 

have appeared in the observation sequence. For instance, number 12, 1, 3, 6, 2 ,3 and 14 

all appear in {12,1,3,6,14,2,2,3}.  

Similar results are shown in tables 4.21 and 4.22 for the following observation 

sequence. 

 

O= {126,253,38,96,149,234,12,186} 

 

A matrix: 

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 1 1

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

B matrix: 

B[126,1]=1 
B[253,2]=1 
B[38,3]=1 
B[96,4]=1 
B[12,5]=0.25 
B[149,5]=0.25 
B[186,5]=0.25 
B[234,5]=0.25 

 Others Are Zero 
 

Table 4.21 Table Showing the A and B Matrices after Training (2nd Trail) 
 
 

O= {12,54,239,97,149,134,3,86} 

A matrix: 



 54

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

B matrix: 

B[12,1]=1 
B[54,2]=1 
B[239,3]=1 
B[97,4]=1 
B[3,5]=0.25 
B[86,5]=0.25 
B[134,5]=0.25 
B[149,5]=0.25 

 Others Are Zero 
 

Table 4.22 Table Showing the A and B Matrices after Training (3rd Trail) 
 
 

Now refer to table 4.18. Since observations 236, 237, 238, 242, 243 and 244 never 

appeared in the observation sequences, row number 236, 237, 238, 242, 243 and 244 in 

the B matrix will be zero after the training. Moreover, since 

1
( | )

S

i
P y m

=

=∑ α 1( , )ty i β 1( , )T
ty i+                                           (4.11) 

and                 α 1
1( , )ty j+ =

1

S

i=
∑ α 1( , ) ( | ) ( ( 1) | )ty i a j i b y t j+ ,                                           (4.12) 

the zeros in the B matrix would cause ( )( | )kP mO  to be zero. This is the reason why 

P_new[4]~ P_new[6] are the only non-zero values in each cases when the training data 

has variationε = ± 1. 
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After the above explanation, it is time to return to the main experiment for theε = 

± 2 and ε = ± 4 case. Table 4.22 is the training set for ε = ± 2, which uses the same 

training observation sequences as table 4.9. 

 

Set 2: ε = ± 2 

 

training set: 
 

O[1]={16,48,80,112,144,176,208,240} 
O[2]={15,48,80,110,142,175,207,239} 

                                      O[3]={15,46,81,112,143,177,209,240} 
                                      O[4]={14,49,80,112,146,174,208,242} 
                                      O[5]={14,49,80,112,144,178,206,238} 
                                      O[6]={18,48,79,114,144,178,206,239} 
                                      O[7]={15,48,79,111,144,174,210,239} 
                                      O[8]={14,47,80,113,142,177,210,241} 
 
                                      P_initial[1]=5.240666512816181E-20 
                                      P_initial[2]=5.240666512816181E-20 
                                      P_initial[3]=5.240666512816181E-20 
                                      P_initial[4]=5.240666512816181E-20 
                                      P_initial[5]=5.240666512816181E-20 
                                      P_initial[6]=5.240666512816181E-20 
                                      P_initial[7]=5.240666512816181E-20 
                                      P_initial[8]=5.240666512816181E-20 
 
                                      P_final[1]=2.980232238769531E-7 
                                      P_final[2]=8.381903171539307E-8 
                                      P_final[3]=1.1175870895385742E-8 
                                      P_final[4]=1.1175870895385742E-7 
                                      P_final[5]=4.470348358154297E-7 
                                      P_final[6]=8.940696716308594E-8 
                                      P_final[7]=2.682209014892578E-7 
                                      P_final[8]=2.7939677238464355E-8 
 
                                      P_averag=1.671724021434784E-7 
 

Table 4.23 Training Set forε = ± 2 
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case 1: 
                                      O_new[1]={16,48,80,112,144,176,208,236} 
                                      O_new[2]={16,48,80,112,144,176,208,237} 
                                      O_new[3]={16,48,80,112,144,176,208,238} 
                                      O_new[4]={16,48,80,112,144,176,208,239} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,112,144,176,208,241} 
                                      O_new[7]={16,48,80,112,144,176,208,242} 
                                      O_new[8]={16,48,80,112,144,176,208,243} 
                                      O_new[9]={16,48,80,112,144,176,208,244} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=1.4901161193847656E-7 
                                      P_new[4]=4.470348358154297E-7 
                                      P_new[5]=2.980232238769531E-7 
                                      P_new[6]=1.4901161193847656E-7 
                                      P_new[7]=1.4901161193847656E-7 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 2: 
 
                                      O_new[1]={16,48,80,112,144,176,204,240} 
                                      O_new[2]={16,48,80,112,144,176,205,240} 
                                      O_new[3]={16,48,80,112,144,176,206,240} 
                                      O_new[4]={16,48,80,112,144,176,207,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,112,144,176,209,240} 
                                      O_new[7]={16,48,80,112,144,176,210,240} 
                                      O_new[8]={16,48,80,112,144,176,211,240} 
                                      O_new[9]={16,48,80,112,144,176,212,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=2.980232238769531E-7 
                                      P_new[4]=1.4901161193847656E-7 
                                      P_new[5]=2.980232238769531E-7 
                                      P_new[6]=1.4901161193847656E-7 
                                      P_new[7]=2.980232238769531E-7 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
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--------------------------------------------------------- 
 
 
case 3: 
 
                                      O_new[1]={16,48,80,112,144,172,208,240} 
                                      O_new[2]={16,48,80,112,144,173,208,240} 
                                      O_new[3]={16,48,80,112,144,174,208,240} 
                                      O_new[4]={16,48,80,112,144,175,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,112,144,177,208,240} 
                                      O_new[7]={16,48,80,112,144,178,208,240} 
                                      O_new[8]={16,48,80,112,144,179,208,240} 
                                      O_new[9]={16,48,80,112,144,180,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=5.960464477539062E-7 
                                      P_new[4]=2.980232238769531E-7 
                                      P_new[5]=2.980232238769531E-7 
                                      P_new[6]=5.960464477539062E-7 
                                      P_new[7]=5.960464477539062E-7 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 4: 
 
                                      O_new[1]={16,48,80,112,140,176,208,240} 
                                      O_new[2]={16,48,80,112,141,176,208,240} 
                                      O_new[3]={16,48,80,112,142,176,208,240} 
                                      O_new[4]={16,48,80,112,143,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,112,145,176,208,240} 
                                      O_new[7]={16,48,80,112,146,176,208,240} 
                                      O_new[8]={16,48,80,112,147,176,208,240} 
                                      O_new[9]={16,48,80,112,148,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=1.4901161193847656E-7 
                                      P_new[4]=7.450580596923828E-8 
                                      P_new[5]=2.980232238769531E-7 
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                                      P_new[6]=0.0 
                                      P_new[7]=7.450580596923828E-8 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 5: 
 
                                      O_new[1]={16,48,80,108,144,176,208,240} 
                                      O_new[2]={16,48,80,109,144,176,208,240} 
                                      O_new[3]={16,48,80,110,144,176,208,240} 
                                      O_new[4]={16,48,80,111,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,113,144,176,208,240} 
                                      O_new[7]={16,48,80,114,144,176,208,240} 
                                      O_new[8]={16,48,80,115,144,176,208,240} 
                                      O_new[9]={16,48,80,116,144,176,208,240} 
 
                                      P_new[0]=0.0 
                                      P_new[1]=0.0 
                                      P_new[2]=7.450580596923828E-8 
                                      P_new[3]=7.450580596923828E-8 
                                      P_new[5]=2.980232238769531E-7 
                                      P_new[4]=7.450580596923828E-8 
                                      P_new[5]=7.450580596923828E-8 
                                      P_new[6]=0.0 
                                      P_new[7]=0.0 
 

--------------------------------------------------------- 
case 6: 
 
                                      O_new[1]={16,48,76,112,144,176,208,240} 
                                      O_new[2]={16,48,77,112,144,176,208,240} 
                                      O_new[3]={16,48,78,112,144,176,208,240} 
                                      O_new[4]={16,48,79,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,81,112,144,176,208,240} 
                                      O_new[7]={16,48,82,112,144,176,208,240} 
                                      O_new[8]={16,48,83,112,144,176,208,240} 
                                      O_new[9]={16,48,84,112,144,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
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                                      P_new[3]=0.0 
                                      P_new[4]=1.1920928955078125E-7 
                                      P_new[5]=2.980232238769531E-7 
                                      P_new[6]=5.9604644775390625E-8 
                                      P_new[7]=0.0 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 7: 
 
                                      O_new[1]={16,44,80,112,144,176,208,240} 
                                      O_new[2]={16,45,80,112,144,176,208,240} 
                                      O_new[3]={16,46,80,112,144,176,208,240} 
                                      O_new[4]={16,47,80,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,49,80,112,144,176,208,240} 
                                      O_new[7]={16,50,80,112,144,176,208,240} 
                                      O_new[8]={16,51,80,112,144,176,208,240} 
                                      O_new[9]={16,52,80,112,144,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=7.450580596923828E-8 
                                      P_new[4]=7.450580596923828E-8 
                                      P_new[5]=2.980232238769531E-7 
                                      P_new[6]=1.4901161193847656E-7 
                                      P_new[7]=0.0 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
 
 
case 8: 
 
                                      O_new[1]={12,48,80,112,144,176,208,240} 
                                      O_new[2]={13,48,80,112,144,176,208,240} 
                                      O_new[3]={14,48,80,112,144,176,208,240} 
                                      O_new[4]={15,48,80,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={17,48,80,112,144,176,208,240} 
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                                      O_new[7]={18,48,80,112,144,176,208,240} 
                                      O_new[8]={19,48,80,112,144,176,208,240} 
                                      O_new[9]={20,48,80,112,144,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=8.940696716308594E-7 
                                      P_new[4]=8.940696716308594E-7 
                                      P_new[5]=2.980232238769531E-7 
                                      P_new[6]=0.0 
                                      P_new[7]=2.980232238769531E-7 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

Table 4.24 Case 1~8 forε = ± 2 
 
 

Table 4.23 contains some predictable results. Since the training data has varianceε = 

± 2 and O_new[5] will always represent the “ideal” signal, the ( )( | )kP mO  have a chance 

to be a non-zero value between P_new[3] and P_new[7], sinceε = ± 2. However, the 

probabilities looks smaller than the previous case when ε = ± 1 because some of the 

training observations might be a little more different than the ideal one. 

The last one would be theε = ± 4 case. The training observation sequences would be 

the same as table 4.10. 

 

Set 3: ε = ± 4 

 

training set: 
 
                                      O[1]={16,48,80,112,144,176,208,240} 
                                      O[2]={17,49,80,111,141,175,208,243} 
                                      O[3]={12,49,78,110,141,175,212,243} 
                                      O[4]={15,47,83,108,148,174,211,244} 
                                      O[5]={17,52,81,113,141,176,206,241} 
                                      O[6]={20,48,80,114,141,178,208,244} 
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                                      O[7]={13,50,77,108,147,179,206,236} 
                                      O[8]={14,51,76,113,148,172,212,237} 
 
                                      P_initial[1]=5.240666512816181E-20 
                                      P_initial[2]=5.240666512816181E-20 
                                      P_initial[3]=5.240666512816181E-20 
                                      P_initial[4]=5.240666512816181E-20 
                                      P_initial[5]=5.240666512816181E-20 
                                      P_initial[6]=5.240666512816181E-20 
                                      P_initial[7]=5.240666512816181E-20 
                                      P_initial[8]=5.240666512816181E-20 
 
                                      P_final[1]=8.381903171539307E-9 
                                      P_final[2]=1.341104507446289E-7 
                                      P_final[3]=1.4901161193847656E-8 
                                      P_final[4]=1.862645149230957E-9 
                                      P_final[5]=1.4901161193847656E-8 
                                      P_final[6]=3.3527612686157227E-8 
                                      P_final[7]=9.313225746154785E-10 
                                      P_final[8]=1.862645149230957E-9 
 
                                      P_averag=2.6309862732887268E-8 
 

Table 4.25 Training Set forε = ± 4 
 
 
case 1: 
 
                                      O_new[1]={16,48,80,112,144,176,208,236} 
                                      O_new[2]={16,48,80,112,144,176,208,237} 
                                      O_new[3]={16,48,80,112,144,176,208,238} 
                                      O_new[4]={16,48,80,112,144,176,208,239} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,112,144,176,208,241} 
                                      O_new[7]={16,48,80,112,144,176,208,242} 
                                      O_new[8]={16,48,80,112,144,176,208,243} 
                                      O_new[9]={16,48,80,112,144,176,208,244} 
 
                                      P_new[1]=8.381903171539307E-9 
                                      P_new[2]=8.381903171539307E-9 
                                      P_new[3]=0.0 
                                      P_new[4]=0.0 
                                      P_new[5]=8.381903171539307E-9 
                                      P_new[6]=8.381903171539307E-9 
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                                      P_new[7]=0.0 
                                      P_new[8]=1.6763806343078613E-8 
                                      P_new[9]=1.6763806343078613E-8 
 

--------------------------------------------------------- 
 
case 2: 
 
                                      O_new[1]={16,48,80,112,144,176,204,240} 
                                      O_new[2]={16,48,80,112,144,176,205,240} 
                                      O_new[3]={16,48,80,112,144,176,206,240} 
                                      O_new[4]={16,48,80,112,144,176,207,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,112,144,176,209,240} 
                                      O_new[7]={16,48,80,112,144,176,210,240} 
                                      O_new[8]={16,48,80,112,144,176,211,240} 
                                      O_new[9]={16,48,80,112,144,176,212,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=5.587935447692871E-9 
                                      P_new[4]=0.0 
                                      P_new[5]=8.381903171539307E-9 
                                      P_new[6]=0.0 
                                      P_new[7]=0.0 
                                      P_new[8]=2.7939677238464355E-9 
                                      P_new[9]=5.587935447692871E-9 

--------------------------------------------------------- 
 
case 3: 
 
                                      O_new[1]={16,48,80,112,144,172,208,240} 
                                      O_new[2]={16,48,80,112,144,173,208,240} 
                                      O_new[3]={16,48,80,112,144,174,208,240} 
                                      O_new[4]={16,48,80,112,144,175,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,112,144,177,208,240} 
                                      O_new[7]={16,48,80,112,144,178,208,240} 
                                      O_new[8]={16,48,80,112,144,179,208,240} 
                                      O_new[9]={16,48,80,112,144,180,208,240} 
 
                                      P_new[1]=4.190951585769653E-9 
                                      P_new[2]=0.0 
                                      P_new[3]=4.190951585769653E-9 
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                                      P_new[4]=8.381903171539307E-9 
                                      P_new[5]=8.381903171539307E-9 
                                      P_new[6]=0.0 
                                      P_new[7]=4.190951585769653E-9 
                                      P_new[8]=4.190951585769653E-9 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 4: 
 
                                      O_new[1]={16,48,80,112,140,176,208,240} 
                                      O_new[2]={16,48,80,112,141,176,208,240} 
                                      O_new[3]={16,48,80,112,142,176,208,240} 
                                      O_new[4]={16,48,80,112,143,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,112,145,176,208,240} 
                                      O_new[7]={16,48,80,112,146,176,208,240} 
                                      O_new[8]={16,48,80,112,147,176,208,240} 
                                      O_new[9]={16,48,80,112,148,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=3.3527612686157227E-8 
                                      P_new[3]=0.0 
                                      P_new[4]=0.0 
                                      P_new[5]=8.381903171539307E-9 
                                      P_new[6]=0.0 
                                      P_new[7]=0.0 
                                      P_new[8]=8.381903171539307E-9 
                                      P_new[9]=1.6763806343078613E-8 
 

--------------------------------------------------------- 
 
case 5: 
 
                                      O_new[1]={16,48,80,108,144,176,208,240} 
                                      O_new[2]={16,48,80,109,144,176,208,240} 
                                      O_new[3]={16,48,80,110,144,176,208,240} 
                                      O_new[4]={16,48,80,111,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,80,113,144,176,208,240} 
                                      O_new[7]={16,48,80,114,144,176,208,240} 
                                      O_new[8]={16,48,80,115,144,176,208,240} 
                                      O_new[9]={16,48,80,116,144,176,208,240} 
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                                      P_new[1]=1.6763806343078613E-8 
                                      P_new[2]=0.0 
                                      P_new[3]=8.381903171539307E-9 
                                      P_new[4]=8.381903171539307E-9 
                                      P_new[5]=8.381903171539307E-9 
                                      P_new[6]=1.6763806343078613E-8 
                                      P_new[7]=8.381903171539307E-9 
                                      P_new[8]=0.0 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
case 6: 
 
                                      O_new[1]={16,48,76,112,144,176,208,240} 
                                      O_new[2]={16,48,77,112,144,176,208,240} 
                                      O_new[3]={16,48,78,112,144,176,208,240} 
                                      O_new[4]={16,48,79,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,48,81,112,144,176,208,240} 
                                      O_new[7]={16,48,82,112,144,176,208,240} 
                                      O_new[8]={16,48,83,112,144,176,208,240} 
                                      O_new[9]={16,48,84,112,144,176,208,240} 
 
                                      P_new[1]=2.7939677238464355E-9 
                                      P_new[2]=2.7939677238464355E-9 
                                      P_new[3]=2.7939677238464355E-9 
                                      P_new[4]=0.0 
                                      P_new[5]=8.381903171539307E-9 
                                      P_new[6]=2.7939677238464355E-9 
                                      P_new[7]=0.0 
                                      P_new[8]=2.7939677238464355E-9 
                                      P_new[9]=0.0 
 

--------------------------------------------------------- 
 
case 7: 
 
                                      O_new[1]={16,44,80,112,144,176,208,240} 
                                      O_new[2]={16,45,80,112,144,176,208,240} 
                                      O_new[3]={16,46,80,112,144,176,208,240} 
                                      O_new[4]={16,47,80,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={16,49,80,112,144,176,208,240} 
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                                      O_new[7]={16,50,80,112,144,176,208,240} 
                                      O_new[8]={16,51,80,112,144,176,208,240} 
                                      O_new[9]={16,52,80,112,144,176,208,240} 
 
                                      P_new[1]=0.0 
                                      P_new[2]=0.0 
                                      P_new[3]=0.0 
                                      P_new[4]=4.190951585769653E-9 
                                      P_new[5]=8.381903171539307E-9 
                                      P_new[6]=8.381903171539307E-9 
                                      P_new[7]=4.190951585769653E-9 
                                      P_new[8]=4.190951585769653E-9 
                                      P_new[9]=4.190951585769653E-9 
 

--------------------------------------------------------- 
 
case 8: 
 
                                      O_new[1]={12,48,80,112,144,176,208,240} 
                                      O_new[2]={13,48,80,112,144,176,208,240} 
                                      O_new[3]={14,48,80,112,144,176,208,240} 
                                      O_new[4]={15,48,80,112,144,176,208,240} 
                                      O_new[5]={16,48,80,112,144,176,208,240} 
                                      O_new[6]={17,48,80,112,144,176,208,240} 
                                      O_new[7]={18,48,80,112,144,176,208,240} 
                                      O_new[8]={19,48,80,112,144,176,208,240} 
                                      O_new[9]={20,48,80,112,144,176,208,240} 
 
                                      P_new[1]=8.381903171539307E-9 
                                      P_new[2]=8.381903171539307E-9 
                                      P_new[3]=8.381903171539307E-9 
                                      P_new[4]=8.381903171539307E-9 
                                      P_new[5]=8.381903171539307E-9 
                                      P_new[6]=1.6763806343078613E-8 
                                      P_new[7]=0.0 
                                      P_new[8]=0.0 
                                      P_new[9]=8.381903171539307E-9 
 

Table 4.26 Case 1~8 forε = ± 4 
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It is reasonable to have a non-zero value of ( )( | )kP mO  from P_new[1]~ P_new[9], 

since ε = ± 4 in this set of experiment. However, the model probabilities will be the 

smallest in the 3 situations (i.e., for the cases ofε = ± 1, ε = ± 2 andε = ± 4). 

Finally, another interesting fact has been discovered. The model probabilities 

( )( | )kP mO  are directly proportional to the number of times the corresponding 

observation appears in the training set. It can be easily viewed from table 4.26, and it is 

presented in all cases. 

 

ε = ± 1, case 1: 

Sequence # O_new[1] O_new[2] O_new[3] O_new[4] 

8th observation 236 237 238 239 

Appear times 0 0 0 2 
( )( | )kP mO  0 0 0 61.1176 10−×  

Ratio 0 0 0 2 

 

O_new[5] O_new[6] O_new[7] O_new[8] O_new[9] 

240 241 242 243 244 

2 4 0 0 0 
61.1176 10−×  62.2352 10−×  0 0 0 

2 4 0 0 0 
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ε = ± 2, case 1: 

Sequence # O_new[1] O_new[2] O_new[3] O_new[4] 

8th observation 236 237 238 239 

Appear times 0 0 1 3 
( )( | )kP mO  0 0 71.4901 10−×  74.4703 10−×  

Ratio 0 0 1 3 

 

O_new[5] O_new[6] O_new[7] O_new[8] O_new[9] 

240 241 242 243 244 

2 1 1 0 0 
72.9802 10−×  71.4901 10−×  71.4901 10−×  0 0 

2 1 1 0 0 

 

ε = ± 4, case 1: 

Sequence # O_new[1] O_new[2] O_new[3] O_new[4] 

8th observation 236 237 238 239 

Appear times 1 1 0 0 
( )( | )kP mO  98.3819 10−×  98.3819 10−×  0 0 

Ratio 1 1 0 0 

 

O_new[5] O_new[6] O_new[7] O_new[8] O_new[9] 

240 241 242 243 244 

1 1 0 2 2 
98.3819 10−×  98.3819 10−×  0 81.6764 10−×  81.6764 10−×  

1 1 0 2 2 

 
Table 4.27 Relation Between the Model Probabilities and the Training Observation 

Sequences. 
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CHAPTER FIVE 
 

SUMMARY AND CONCLUSIONS 
 

 
This thesis has described the motivation for recent work in the area of Hidden 

Markov Model speech recognition and has presented methods for improved multiple 

observation sequences’ HMM training. The goal of the work is to simulate a speech 

recognizer which is trained by different people with different speaking styles. This 

research has also investigated how sensitive the training and recognition process is to 

variations in the training data. 

 
5.1 Discussion of Thesis Work 

 
Firstly, from the overview in chapter 2, it is known that different starting values of 

both A and B could yield models with higher or lower values of ( | )P y m . Therefore, the 

choice of initial estimates for the elements of the A and B matrices is an important 

consideration for the HMM training. 

From table 4.6, it can be seen that the model has been trained better when the A and 

B matrices are: 

 

A = 

0.2 0 0 0 0
0.2 0.25 0 0 0
0.2 0.25 0.33 0 0
0.2 0.25 0.33 0.5 0
0.2 0.25 0.33 0.5 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,                                         (5.1) 

and 
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B = 

1/ 256 1/ 256

1/ 256 1/ 256

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

…

.                                                (5.2) 

 
Secondly, choosing an appropriate weighting method for multiple observation 

sequences’ training is also a key issue. It is usually assumed that utterances involved in 

the training set are very similar. However, this may not be true in some cases. Also, when 

dealing with very small values of model probabilities, small changes in ( )( | )kP mO  can 

yield large changes in the weights in Rabiner’s vector learning model method. Therefore, 

it is safer to use a weight of wk = 1. 

Thirdly, the set in which speakers speak similar to the standard signal (ε = ± 1) 

works the best since the observation sequences fits better in the model (ε  is smaller). 

Furthermore, the recognition can be improved if we increase the amount of training data. 

Finally, if recognition is performed on an observation sequence close to the ideal 

one, it is desired that the range in the training data be larger (ε  is larger). Since the 

training data includes speech spoken by people with different accents, the test data can 

still be recognized even though the observation sequence is a little different than the ideal 

one. Although the model probabilities would decrease because the training data has larger 

range, it can also be improved when the amount of training data increases. In addition, 

when the observation vectors were varied with the variation restricted to only one of the 

eight positions in the sequence, the results were very similar in all cases. 
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     Consequently, an ideal case for speech recognition is to recognize a signal which is 

close to the standard signal by a model trained by a large amount of data with larger 

range. 

 
5.2 Suggested Directions of Research 

 
From the research, it is known that the speech signal has a higher probability to be 

recognized if it is similar to the ideal signal. Also, it is encouraged to train the model by 

more training data with different speaking style. The speech signal which wants to be 

recognized is not controllable, the only element can be changed is the amount of training 

data. However, the training set with too much data could be a load to the system. The 

appropriate amount of data in the training set would be another interesting topic. 
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