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Abstract

New analytical bounds are developed for the probability of code-word error in a

communication system with convolutional coding and soft-decision Viterbi decoding. The

bounds are applicable to communications in channels with asynchronous interferers which

are modeled as independent, partial-time white Gaussian interference sources. This model

is often used in simulations to reflect the circumstances encountered in many packet ra-

dio communication networks. The new results include both purely analytical bounds and

offline-simulation-aided bounds that permit implementation of accurate communication-link

models with much lower online computational and storage requirements than are required

with traditional Monte Carlo simulations of link performance. They significantly improve

the trade-off that has previously existed between model fidelity and simulation complex-

ity in Monte Carlo simulations of large-scale wireless communication networks with links

employing convolutional coding.
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Chapter 1

Introduction

Research in protocols for mobile ad hoc radio networks typically uses simulation of

the network as a necessary tool in performance evaluation due to the analytical intractability

of the evaluation. The large-scale Monte Carlo simulations require severe tradeoffs between

the computation time required and the fidelity of the network model; consequently, com-

promises are often made in the model that lead to uncertainty about the usefulness of the

simulation results. The focus of the tradeoffs in most simulations is the model of the radio

link. Bit-level modeling of each radio link in the network leads to highly accurate simulation

results but is generally infeasible. Computationally efficient, high-fidelity network simula-

tion is thus achievable only if we can develop computationally simple, accurate means of

modeling each radio link under the range of channel conditions considered in the simulation.

In this thesis, we investigate the link-level performance of a communication system

using a binary convolutional code, binary antipodal modulation, and soft-decision Viterbi

decoding. Our goal is the development of simple, but accurate, bounds on the probability of

code-word error in the link which will permit computationally feasible simulation of mobile

ad hoc networks with higher fidelity than has been possible until now. Convolutional codes

enjoy widespread use in digital communication systems, including satellite communications

and mobile wireless communications. The Viterbi algorithm is the most commonly used

decoding algorithm for convolutional codes in noisy communication channels. Convolutional
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codes and Viterbi decoding are used in CDMA and GSM digital cellular networks, deep-

space satellite communications, 802.11 wireless LANs, and mobile ad hoc packet radio

networks.

Interference is the dominant factor in link errors in many wireless communication

systems, including many mobile ad hoc packet radio networks. Each transmission may be

subjected to partial-time jamming and unintentional interference from sources outside the

network. It may also be subjected to multiple-access interference from sources within the

network [1], and the level of multiple-access interference can vary across the duration of

a single packet if the network employs an asynchronous channel-access protocol. Inten-

tional jammers often employ a Gaussian noise source. Under some conditions, the effect of

multiple-access interference or non-network interference on the probability of error at the

receiver can be approximated with reasonable accuracy using the decision statistics that

would arise from appropriately chosen Gaussian interference [2]. We consider a channel

in which one or more independent, partial-time white Gaussian interference sources par-

tially overlap the interval of the transmission of interest, and we consider the effect of the

channel on the probability of code-word error in the link. (The accuracy of the Gaussian

approximation for any particular form of interference is not part of the investigation.)

In the thesis, we focus on the development of bounds and approximations for the

probability of code-word error in a link that is subjected to non-stationary additive Gaussian

noise. It builds in some respects on the earlier work of others. Bounds on the probability of

code-word error for convolution codes and Viterbi decoding are developed in [3] which are

based of the union bound on the first-event error probability, Pu (which is presented in [4].

Two bounds are presented in [3]: one which is a linear function of Pu, and another which is a

concave function of Pu. The proof of the latter depends heavily on combinatorial arguments.

The results in [3] are applicable to hard-decision Viterbi decoding and communications over

an independent, identically distributed (i.i.d.) Gaussian noise channel. It has been used in

large-scale simulations of direct-sequence spread-spectrum packet radio networks (e.g., [5]).

Some of the new bounds we develop here are expressed in the same functional form
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as the two bounds derived in [3]. The new results are applicable to soft-decision Viterbi

decoding, however, and they are obtained using different analytical techniques than were

employed in the earlier work. Moreover, they are applicable to a broader class of Gaussian

noise channels (which includes the i.i.d. Gaussian channel as a special case). We also

present bounds based on the actual (simulated) first-event error probability. Furthermore,

we examine the accuracy of the bounds if the time-varying multiple-access interference

is approximated by an i.i.d. Gaussian channel. The collection of results provides a wide

range of options for bounds and approximations that represent various tradeoffs between

offline computation prior to the network simulation, online computation during the network

simulation, and the accuracy of the bound or approximation.

In Chapter 2, we introduce the system and channel models, and in Chapter 3 we

develop the notation used in the subsequent chapters. In Chapters 4 and 5, we give a

comparative analysis of two interleaving schemes and develop a an equivalent stationary

non-Gaussian channel model that represents the effect of a pseudo-random interleaver used

over a non-stationary Gaussian channel. In Chapter 6, new analytical bounds on the prob-

ability of code-word error are developed. The accuracy of the bounds is examined by their

comparison with simulation results for a variety of channels. In Chapter 7, we consider the

approximation of the non-Gaussian interference channel by an equivalent i.i.d. Gaussian

channel, and we examine the accuracy of the approximation.
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Chapter 2

System Description

The system we consider in the thesis is shown in Fig. 2.1. It employs binary con-

volutional encoding and soft-decision Viterbi decoding. Two models of the additive noise

channel are considered in the thesis.

Figure 2.1: System model.
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2.1 System Model

The transmitter employs a rate- kn binary convolutional encoder of memory order m.

Information bits form an information word

b = (b0, . . . , bk−1, bk, . . . , b(L−m)k−1)

which is encoded into the code word denoted by

c = (c0, . . . , cn−1, cn, . . . , cnL−1)

according to the generator polynomial G [6] where L is the block length of the transmission.

Tail bits are used to force the encoder to the all-zeros state at the end of the transmission [6].

We use two rate-12 convolutional codes as examples in this thesis: the memory-order-three

encoder with G = (13, 15) (octal representation) [6], and the memory-order-six CCSDS

(NASA standard) encoder [7] with G = (171, 133).

The encoded bits of the code word are interleaved using an nL-bit interleaver to

mitigate the effect of time-varying channel quality. The interleaver is defined by the vector

π = (π0, π1, . . . , πnL−1)

such that c̃i = cπi for 0 ≤ i ≤ nL− 1, where

c̃ = (c̃0, . . . , c̃nL−1)

denotes the interleaved codeword.

The interleaved code word c̃ is transmitted using binary antipodal modulation with

symbol energy Ec; the energy per bit of information is thus Eb = Ec · nk · L
L−m . We consider
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a discrete-time additive channel with noise process

ñ = (ñ0, . . . , ñnL−1)

and parameter process

Θ̃ = (Θ̃0, . . . , Θ̃nL−1)

such that {ñ0, ñ1, . . . , ñnL−1} are conditionally independent, Gaussian random variables

given Θ̃. The received sequence

r̃ = (r̃0, . . . , r̃nL−1)

is given by

r̃i =
√

Ec (−1)c̃i + ñi

for 0 ≤ i ≤ nL− 1.

The received word r̃ is passed through a de-interleaver defined by the vector

π̃ = (π̃0, π̃1, . . . , π̃nL−1)

where π̃πi = i for 0 ≤ i ≤ nL− 1 and the de-interleaved received word

r = (r0, . . . , rnL−1)

is given by ri = r̃π̃i for 0 ≤ i ≤ nL− 1. We assume that the receiver is able to estimate the

channel quality for each received symbol accurately, and it weights the received symbols

according to maximal-ratio combining [8]. The weighted, de-interleaved received word

r̂ = (r̂0, . . . , r̂nL−1)

6



is thus given by

r̂i = airi

= ai
√

Ec (−1)ci + aini

for 0 ≤ i ≤ nL− 1, where ni = ñπ̃i , ai = [Var(ni | Θi)]
−1, and Θi = Θ̃π̃i .

The code word is decoded by applying the soft-decision Viterbi algorithm with the

squared-Euclidean distance metric [6] to r̂ so that the detected code word is given by

ĉ = argmax
c∈C

Z(c)

where

Z(c) =

nL−1∑
i=0

r̂i(−1)ci

is the correlator form of the path-metric [6] and C is the set of valid code words of length

nL code symbols. The receiver thus provides maximum-likelihood detection of the code

word (and the information word) based on the continuous-valued channel outputs [6] with

perfect channel estimates for each symbol interval. The detected code word is denoted by

ĉ, and the detected information word is denoted by b̂.

2.2 Channel Models

We consider two statistical models of the discrete-time additive channel in the thesis.

The first is a block-interference model that reflects explicitly the effect of one or more

independent, partial-time white Gaussian interference sources that partially overlap the

interval of the transmission of interest. The second model approximates the behavior of the

channel in the first model but is more amenable than the first model to tractable analysis

of the decoder’s performance.
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2.2.1 Block-interference channel model

The block-interference channel model is a discrete-time channel with time-varying

noise power. The noise process in the block-interference channel is independent of the

parameter vector Θ̃. The (non-stationary) noise random process ñ thus consists of inde-

pendent, zero-mean Gaussian random variables with variances that differ in general.

The channel exhibits J interference epochs over the interval of the transmission,

with the noise variance remaining constant within a given epoch. The duration of the jth

epoch is a fraction ηj of the transmission duration, where 0 < ηj ≤ 1 and nLηj is an integer

for 0 ≤ j ≤ J − 1, and
∑J−1

j=0 ηj = 1. The noise variance within the jth epoch is
Nj

2 .

Consequently,

Var(ñi) =


N0
2 if 0 ≤ i < l0,

Nk
2 if lk−1 ≤ i < lk, for 1 ≤ k ≤ J − 1.

where lk =
∑k

j=0 ηjnL.

Two special cases of the block-interference channel are considered as examples in

the thesis, though the analytical results apply to the general block-interference channel. If

J = 1, the channel is an independent, identically distributed (i.i.d.) additive Gaussian noise

channel. If J = 2, the noise variance is N0 for the first η0nL code symbols and is N1 for

the remaining η1nL code symbols. In this case, we simplify the notation to η = η0 so that

η1 is given by 1− η. Without loss of generality, N1 ≥ N0 in the two-epoch channel.

The two-epoch channel can be considered as a channel in which only ambient white

Gaussian noise is present for part of the transmission and a single white Gaussian interferer

is also present for the remainder of the transmission. Under this premise, we refer to η

as the interference-free fraction (of the transmission). The relative noise power in the two

epochs is referred to as the noise power ratio of the channel; it is given by

γ = 10 log10

(
N1

N0

)
(dB).
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The (ambient) signal-to-noise ratio in the received signal is defined as Eb
N0

.

2.2.2 Mixed-distribution channel model

The mixed-distribution channel is a (stationary) i.i.d. discrete-time channel that is

non-Gaussian in general. It is intended to approximate the effect of the block-interference

channel on a communication system with interleaving. The channel is thus characterized

by the parameters J, η0, . . . , ηJ−1, N0, . . . , and NJ−1 as defined in the previous subsection.

It is additionally characterized by the parameter process Θ̃ with

Pr(Θ̃i = j) = ηj , 0 ≤ j ≤ J − 1, 1 ≤ i ≤ nL− 1

for the independent (and identically distributed) random variables Θ̃0, . . . , Θ̃nL−1. The ran-

dom variables ñ0, ñ1, . . . , ñnL−1 are conditionally zero-mean, independent Gaussian random

variables given Θ̃ with

Var(ñi | Θ̃ = θ̃) = Var(ñi | Θ̃i = j) =
Nj

2
.

Two special cases of the mixed-distribution channel are considered as examples in

this thesis, though the analytical results apply to the general mixed-distribution channel.

If J = 1, the channel is an i.i.d. additive Gaussian noise channel. If J = 2, each random

variable Θ̃i follows a Bernoulli distribution with parameter η and

Var(ñi) =


N0
2 with probability η,

N1
2 with probability 1− η

.

The mixed-distribution channel with parameters J, η0, . . . , ηJ−1, N0, . . . , andNJ−1 is

said to be equivalent to the block-interference channel characterized by the same parameters.

The terms interference-free fraction, noise power ratio, and signal-to-noise ratio (and their

respective notation) are adopted from the terminology for the block-interference channel

9



for the special case J = 2. Note that the choice of the interleaver π has no effect on

the performance of the system in the mixed-distribution channel model since the channel

symbols are subjected to i.i.d. noise.
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Chapter 3

Statistics used in Performance

Analysis

The performance of the system under consideration does not depend on the transmit-

ted code word with either the block-interference channel or the mixed-distribution channel.

Consequently, in the remainder of the thesis, we assume without loss of generality that the

all-zeros code word is transmitted. Thus

r̂i = ai
√

Ec + aini for all i.

Two types of error statistic arise in our analysis: one related to error events, and

the other related to code-word errors. Suppose

cl+p
l = (cln, . . . , c(l+p)n−1),

for some 0 ≤ l ≤ l + p ≤ L, denotes a subsequence of a code word which corresponds to a

single excursion from the all-zeros path in the code trellis. (I.e., the encoder is in state zero

at the start of the lth time step, it is in state zero after the (l+ p)th time step, and its state

is non-zero in the interim.) The corresponding error event at time l [6] is given by {X < 0}

11



where the pairwise error-event statistic for cl+p
l is given by

X =
∑

ln≤i≤(l+p)n−1:ci=1

r̂i .

Suppose El denotes the set of νl error events starting at time l, 0 ≤ l ≤ L − 1, and E

denotes the set of all ν error events (where ν = ν0 + . . .+ νL−1). The error events in El are

indexed by i, 1 ≤ i ≤ νl. The first event error at time l is given by

Fl = [∪l−1
j=0 ∪

νj
i=1 {Xi,j > 0}] ∩ [∪νl

i=1{Xi,l < 0}] (3.1)

where Xi,l is the pairwise error-event statistic of the ith error event in El. Similarly, the

event error at time l is given by

Gl = [∪νl
i=1{Xi,l < 0}] . (3.2)

(Note that F0 = G0.) In many instances we focus on error events and first event errors

at time zero in which case we omit the time reference if there is no resulting ambiguity.

The pairwise error-event probability of cl+p
l is given by Pr(X < 0). Similarly, the first-event

error probability at time l is given by Pr(Fl), and the event error probability at time l is given

by Pr(Gl). The event error probability at time zero and the first-event error probability at

time zero are equal, and they are denoted by p for simplicity in the development in later

chapters.

Similarly, if c is a valid non-zero code word, the pairwise code-word error probability

is given by

Pr(X(c) < 0)
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where the code-word error statistic is given by

X(c) =
1

2
(Z(0)− Z(c))

=
∑

0≤i≤nL−1:ci=1

r̂i .

(Note that a non-zero code word may contain several error events.) The probability of

code-word error, Pe, can be expressed in either of two ways:

Pe = Pr(∪c∈C:c 6=0{X(c) < 0}), (3.3)

or

Pe = Pr(∪L−1
l=0 ∪νl

i=1 {Xi,l < 0}). (3.4)

Under the condition that the all-zeros code word is transmitted, the random variables

{X(c)|c 6= 0} are jointly Gaussian and the random variables {Xi,l : 0 ≤ l ≤ L−1, 1 ≤ i ≤ νl}

are also jointly Gaussian. For both collections of random variables, each pair of random

variables has a non-negative covariance.
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Chapter 4

Interleaver Designs for the

Block-Interference Channel

Many time-varying channels of practical interest (including the block-interference

channels) produce a sequence of several consecutive channel outputs which result from

poorer than average channel conditions. This leads to clustering of low-quality channel

outputs at the decoder’s input, which in turn results in a high probability of error at the

decoder’s output if the system uses convolutional coding and Viterbi decoding without inter-

leaving. Interleaving is intended to distribute the low-quality channel outputs evenly across

the sequence of inputs to the Viterbi decoder, which results in better decoder performance

in general.

The choice of interleaver in Fig. 2.1 is an important design decision that can have a

significant impact on the system’s performance. In this chapter, we consider the effect of the

interleaver design on the probability of code-word error, Pe, at the output of the decoder.

Two commonly used interleaver designs are considered in this chapter: the rectangular

interleaver [6] and the pseudo-random interleaver [9]. The performance with each interleaver

is illustrated using examples of the block-interference channel with two interference epochs.
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4.1 Rectangular Interleaver

The rectangular interleaver re-orders code symbols based on their placement in an

M -by-N rectangular matrix, where MN = nL. The code symbols are written column-wise

into the interleaving matrix (beginning with the left-most column) in the order in which

they are produced by the encoder. They are read row-wise out of the matrix (beginning

with the top row) and transmitted across the channel in that order. We investigate the

probability of code-word error of convolutional codes on the block-interference channel for

different dimensions of the interleaving matrix.

The performance of the system using the rate-12 , memory-order-three convolutional

encoder is shown in Figs. 4.1-4.3 for each of several choices of the interleaver’s row dimension

and for various two-epoch channels. The block length of each code word is 1000 (so that

the code word contains 2000 code symbols), and the noise power ratio of each channel is

γ = 3 dB.

The performance of the system is highly sensitive to the choice of the interleaver

if the interference-free fraction η = 0.75 (i.e., 25% of the symbols are subjected to inter-

ference), as illustrated in Fig. 4.1. For example, there is a difference in performance of

approximately 2 dB between the best and the poorest choice of interleaver at a probability

of code-word error of Pe = 10−3. The relationship between the row dimension (M) and the

performance is not simple, however. The poorest performance results from no interleaving.

It improves as M is increased to 5, then degrades as M is increased to 10, improves again

as M is increased to 20, and degrades with further increase in M . The small multiplicity

of low-weight error events (all of similar spans) in the memory-order-three code appears to

be responsible for this complicated sensitivity to the precise interleaver structure.

The effect of the interleaver’s structure on performance diminishes as the interference-

free fraction is reduced. This is illustrated in Figs. 4.2 and 4.3 for η = 0.5 and η = 0.25,

respectively. The difference in performance using the best and the poorest rectangular in-

terleavers is 1 dB if η = 0.5, but the difference is only 0.5 dB if η = 0.25. Furthermore, the

15



occurrence of dual local minima in Pe as a function of M is less pronounced if η = 0.5 than

if η = 0.75, and the second local minimum does not occur if η = 0.25.

The performance of the system using the NASA-standard code is shown in Figs. 4.4-

4.6 for the channels considered in Figs. 4.1-4.3, respectively. The difference in the probability

of code-word error using the best and the worst rectangular interleavers with each channel

is similar to the corresponding difference with the memory-order-three code. There is no

occurrence of the dual local minima observed with the weaker code, however; in fact, the

performance changes very little as M is varied between 5 and 20. The large multiplicity of

low-weight error events (many with very different spans) in the more powerful code appears

to be responsible for the reduced sensitivity to the precise interleaver structure.

4.2 Pseudo-Random Interleaver

The pseudo-random interleaver re-orders the code symbols before transmission on

the channel according to a sequence generated by a pseudo-random-number generator al-

gorithm. The receiver has the knowledge of the pseudo-random interleaving pattern used

in the transmission of each code word; thus it can perform the de-interleaving operation

on the received word. We consider several example pseudo-random interleavers for a code-

word of length 2000 symbols, each obtained via a pseudo-random-number generator. The

probability of code-word error is evaluated as a function of the signal-to-noise ratio for each

interleaver, each of the two codes and each of the three channels considered in the previous

section. For a given code and channel, the performance plots with the different interleavers

are indistinguishable. This indicates that, with a high probability, the performance obtained

with a pseudo-random interleaver is close to the average performance obtained with a uni-

form interleaver. A uniform interleaver is an interleaver that is selected at random among

all possible interleavers (of the relevant block size) according to a uniform distribution [10].
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4.3 Comparison of the Two Interleaving Schemes

A pseudo-random interleaver typically yields performance comparable to the perfor-

mance obtained with the optimal rectangular interleaver. This is illustrated in Figs. 4.7 and

4.8 for an example of the block-interference channel and the two encoders with a block length

of 1000. The channel has an interference-free fraction of one-half, and the noise power ratio

is 3 dB. The pseudo-random interleaver is one of those mentioned in the previous section.

The probability of code-word error as a function of the signal-to-noise ratio is shown

in Fig. 4.7 for the memory-order-three code using the pseudo-random interleaver and two

choices of the rectangular interleaver: M = 5 (the best choice), and M = 10. The perfor-

mance using the pseudo-random interleaver is within 0.15 dB of the performance using the

best rectangular interleaver if Pe = 10−3. The same comparison is illustrated in Fig. 4.8

for the system using the NASA-standard code. The pseudo-random interleaver results in

better performance than the best rectangular interleaver.

The pseudo-random interleaver has the further advantage that it can be used effec-

tively with any encoder (and by truncation, with any block length), whereas the optimal

row dimension of the rectangular interleaver differs between codes and for different block

lengths in general. The pseudo-random interleaver and de-interleaver have the disadvantage

of requiring unstructured memory accesses (in comparison with structured accesses for a

rectangular interleaver). De-interleaver memory access is unlikely to be the limiting factor

in decoder performance, however. In addition, the uniform interleaver allows for tractable

analytical results in the performance evaluation of the system; hence, the subsequent work

deals with the analysis of the performance of convolutional codes with a uniform interleaver.
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Figure 4.1: Performance with the memory-order-three code and rectangular interleaving
(η = 0.75).
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Figure 4.2: Performance with the memory-order-three code and rectangular interleaving
(η = 0.5).
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Figure 4.3: Performance with the memory-order-three code and rectangular interleaving
(η = 0.25).

20



0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

Signal−to−Noise Ratio, E
b
/N

0
 (in dB)

P
ro

ba
bi

lit
y 

of
 c

od
e−

w
or

d 
er

ro
r,

 P
e

 

 

M=1 (no interleaving)
M=5
M=10
M=20
M=50
M=100

Figure 4.4: Performance with the NASA-standard code and rectangular interleaving (η =
0.75).
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Figure 4.5: Performance with the NASA-standard code and rectangular interleaving (η =
0.5).
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Figure 4.6: Performance with the NASA-standard code and rectangular interleaving (η =
0.25).
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Figure 4.7: Performance with rectangular and pseudo-random interleavers for the memory-
order-three code (η = 0.5).
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Figure 4.8: Performance with rectangular and pseudo-random interleavers for the NASA-
standard code (η = 0.5).
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Chapter 5

Mixed-Distribution Approximation

to the Block-Interference Channel

In this chapter we show the asymptotic equality of the performance of a system with

a block-interference channel and a uniform interleaver and the performance of a system with

the equivalent mixed-distribution channel. We define the channel state for each code symbol

in a code word as the interference epoch in which it lies in the block-interference channel.

We show that the joint distribution of the channel states for any fixed set of code symbols

with a uniform interleaver approaches their joint distribution with the equivalent mixed-

distribution channel. A similar result is shown for each pair-wise error-event probability as

well. In addition, it is shown by simulation that the performance with the block-interference

channel and a typical pseudo-random interleaver is close to the performance in the equivalent

mixed-distribution channel.

5.1 Joint Distribution of Channel States

Consider the J-epoch block-interference channel with parameters η0, . . . , ηJ−1 and

N0, . . . , NJ−1 and any d symbols from the de-interleaved received word r of length nL

symbols. Let the interference epoch in which the channel experiences noise density Nj be
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represented by Aj for 0 ≤ j ≤ J − 1. Also, let q0, . . . , qJ−1 be non-negative integers such

that qj ≤ ηjnL for all 0 ≤ j ≤ J − 1 and
∑J−1

j=0 qj = d. With the uniform interleaver,

Pr(q0 symbols ∈ A0 , . . . , qJ−1 symbols ∈ AJ−1 ) =

(
η0nL

q0

)
. . .

(
ηJ−1nL

qJ−1

)
(
nL

d

) ,

which is a multivariate hypergeometric distribution [11].

For a given d, as the block length L increases,

lim
L→∞

Pr(q0 symbols ∈ A0 , . . . , qJ−1 symbols ∈ AJ−1 )

= lim
L→∞

∏J−1
j=0

(
ηjnL

qj

)
(
nL

d

)

= lim
L→∞

∏J−1
j=0

ηjnL · · · (ηjnL− qj + 1)

qj(qj − 1) · · · 1
nL(nL− 1) · · · (nL− d+ 1)

d(d− 1) · · · 1

= lim
L→∞

∏J−1
j=0

(ηjnL)
qj (1 · · · (1− qj−1

ηjnL
))

qj !

(nL)d(1 · (1− 1
nL) · · · (1−

d−1
nL ))

d!

=
d!

q0! . . . qJ−1!

∏J−1
j=0 (ηjnL)

qj

(nL)d
lim
L→∞

∏J−1
j=0 1 · · · (1− qj−1

ηjnL
)

1 · (1− 1
nL) · · · (1−

d−1
nL )

=

(
d

q0 . . . qJ−1

)
ηq00 . . . η

qJ−1

J−1 (5.1)

27



which is a multinomial distribution [11].

The latter is the expression for the corresponding distribution in the equivalent

mixed-distribution channel. Hence, as the block length approaches infinity, the joint distri-

bution of the channel states for any fixed set of symbol positions in the block-interference

channel with uniform interleaving approaches their joint distribution in the equivalent

mixed-distribution channel. For the special case of the two-epoch (J = 2) channel with

the interference-free duration η, the above distribution simplifies to

Pr(q symbols ∈ A0 , . . . , d− q symbols ∈ A1 ) =
d!

q!(d− q)!
ηq(1− η)(d−q)

= Binomial(d, η).

5.2 Pairwise Error-Event Probability

The pairwise error-event probability of an error event with Hamming weight d in an

AWGN channel with two-sided power spectral density N0
2 is given by [4],

Pd = Q

(√
2dEc

N0

)
.

In case of the J-epoch block-interference channel, the pairwise error-event probability also

depends on how the non-zero code symbols in the error event are distributed among the

J epochs. Suppose the weighted code subsequence cl+p
l represents an excursion from state

zero with weight qj among its code symbols transmitted in the jth epoch, 0 ≤ j ≤ J − 1,

so that
∑J−1

j=0 qj = d. If X denotes the pairwise error-event statistic for cl+p
l , the pairwise

error-event probability is

Pq0,...,qJ−1 = Pr(X < 0) = Pr
( ∑

i:ci=1

r̂i < 0
)
.
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The mean and variance of X are given by

E[X] = a0q0
√

Ec + a1q1
√

Ec + . . .+ aJ−1qJ−1

√
Ec

=
√

Ec

( q0
N0

+ . . .+
qJ−1

NJ−1

)

and

Var(X) =
a20q0N0

2
+ . . .+

a2J−1qJ−1NJ−1

2

=
1

2

( q0
N0

+ . . .+
qJ−1

NJ−1

)
.

Since X is a Gaussian random variable,

Pq0,...qJ−1 = Q

(
E[X]√
Var(X)

)

= Q

(√
2Ec

√
q0
N0

+ . . .+
qJ−1

NJ−1

)
. (5.2)

Thus for a given error event of Hamming weight d and block length L, the pairwise error-

event probability with a uniform interleaver is

Pd(L) =

min{η0nL,d}∑
q0=0

min{η1nL,d−q0}∑
q1=0

. . .

min{ηJ−2nL,d−q0−...−qJ−3}∑
qJ−2=0

(
η0nL

q0

)
· · ·
(
ηJ−1nL

qJ−1

)
(
nL

d

) Pq0,...qJ−1 .
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The quantity Pq0,...,qJ−1 is not a function of the block length. Therefore,

Pd = lim
L→∞

Pd(L)

= lim
L→∞

min{η0nL,d}∑
q0=0

min{η1nL,d−q0}∑
q1=0

. . .

min{ηJ−2nL,d−q0−...−qJ−3}∑
qJ−2=0

(
η0nL

q0

)
· · ·
(
ηJ−1nL

qJ−1

)
(
nL

d

) Pq0,...qJ−1

=

d∑
q0=0

d−q0∑
q1=0

. . .

d−q0−...−qJ−3∑
qJ−2=0

Pq0,...qJ−1 lim
L→∞

(
η0nL

q0

)
· · ·
(
ηJ−1nL

qJ−1

)
(
nL

d

)

=
d∑

q0=0

d−q0∑
q1=0

. . .

d−q0−...−qJ−3∑
qJ−2=0

Pq0,...qJ−1

(
d

q0 . . . qJ−1

) J−1∏
j=0

η
qj
j , (5.3)

where the last step follows from equation (5.1). Hence, the pairwise error-event probability

for a given error event with the block-interference channel and the uniform interleaver

approaches the pairwise error-event probability for the same error event in the equivalent

mixed-distribution channel as the block length approaches infinity. For the special case of

the two-epoch channel with interference-free duration η, the pairwise error-event probability

simplifies to

Pd =

d∑
i=0

Pr(q = i)Pq,d−q

=

d∑
i=0

(
d

i

)
ηi(1− η)d−iQ

(√
2Ec

N0

√
i+ (d− i)

N0

N1

)
. (5.4)

Equations (5.2), (5.3), and (5.4) are equally applicable to the pairwise code-word error prob-

ability for a code word of Hamming weight d. We will assume in the analytical development

in Chapters 5 and 6 that the block length is sufficiently large that the asymptotic result in

equation (5.3) is highly accurate. We will use it in developing the bounds in both chapters.
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5.3 Probability of Code-Word Error

Figs. 5.1 and 5.2 compare the probability of code-word error for one choice of pseudo-

random interleaver in the block-interference channel with the performance in the equivalent

mixed-distribution channel for the memory-order-three encoder and the NASA-standard

encoder, respectively, with a block length of 1000. The pseudo-random interleaver is one

of the randomly generated interleavers discussed in Section 4.2. The two-epoch channel

considered in the simulation has an interference-free fraction of 0.5 and the noise power

ratio γ is 3 dB. The figures also include the performance with a rectangular interleaver

using a 1000-by-2 interleaving matrix. As observed in Section 4.1, this choice of dimension

of the interleaving matrix gives approximately the worst performance among all rectangular

interleaver matrices; hence, it serves as an example of the performance resulting from a

poor choice of the interleaver. As suggested by the analysis in the previous sections, the

simulation results show that performance in the mixed-distribution channel matches closely

the performance in the block-interference channel with a typical pseudo-random interleaver.
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Figure 5.1: Performance in the block-interference and mixed-distribution channels for the
memory-order-three encoder (η = 0.5).
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Figure 5.2: Performance in the block-interference and mixed-distribution channels for the
NASA-standard encoder (η = 0.5).
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Chapter 6

Bounds on the Probability of

Code-word Error with

Soft-Decision Viterbi Decoding

In this chapter, we derive tight bounds on the probability of code-word error for

the system of Fig. 2.1 in the mixed-distribution channel. As illustrated in Chapter 5, the

performance in the mixed-distribution channel closely approximates the performance in the

block-interference channel with a uniform interleaver. The bounds derived in this chap-

ter thus also serve approximately as bounds on the performance in the block-interference

channel with a typical pseudo-random interleaver.
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6.1 Union Bounds Using the Code-WordWeight-Enumerating

Function

The probability of code-word error can be bounded in terms of the pairwise code-

word error probabilities. From equation (3.3),

Pe = Pr(∪c∈C:c 6=0{X(c) < 0})

≤
∑

c∈C:c 6=0

Pr(X(c) < 0)

=
∑
d

A
′
dPd

where A
′
d is the number of code words of length nL and Hamming weight d and Pd is the

pairwise code-word error probability for a code word of Hamming weight d. This union

bound on Pe is the (code word) weight-enumerator bound.

The number of code words of each Hamming weight is obtained by noting that each

possible non-zero detected code word results from one or more error events. The error-event

weight-span enumerating function of the code, A(W,L), gives the number of error events

of each Hamming weight W and span L that start at time zero [6]. It can be determined

from Mason’s Theorem applied to the encoder’s modified state-event diagram with each

branch labeled with a bivariate label that denotes the Hamming weight and span (always

one) associated with the corresponding state transition [12].

Using the technique in [10], we can determine the number of code words with mul-

tiple error events using the corresponding weight-enumerating functions. Specifically, an

auxiliary code-word weight-span enumerating function

A(i)(W,L) = [A(W,L)]i

is used which enumerates the non-zero code words of each Hamming weight and total error-

event span that consist of i error events that occur consecutively beginning at time zero.
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Accounting for non-zero code words in which the error events do not all occur consecutively,

there are

c[l, i] =

(
nL− l + i

i

)
code words consisting of i error events of total error-event span l for each code word counted

in A(i)(W,L). Thus the weight-enumerating function is given by

A(W ) =
∑

A
′
dW

d

=

(∑
i

∑
l

c[l, i]A(i)(W,L)

)∣∣∣∣∣
L=1

(6.1)

=

(∑
l

c[l, 1]A(1)(W,L) +
∑
l

c[l, 2]A2(W,L) + . . .

)∣∣∣∣∣
L=1

The weight-enumerating function has finitely many terms since the block length L

is finite. Unless the block length is very small, however, it is impractical to determine A
′
d

for large values of d using this method. Thus in practice, the weight-enumerator bound

is approximated by considering only terms with small values of i in equation (6.1). For

sufficiently large signal-to-noise ratios,

Pe /
d
′∑

d=dfree

A
′
dPd

where dfree is the minimum free Hamming distance of the code [6] and d
′
is somewhat larger

than dfree. Thus enough terms in equation (6.1) are utilized to account for all code words

of Hamming weight d
′
or less in practice. Note that the approximation is not guaranteed

to provide an upper bound on Pe.

Even if all the terms in A(W ) are known, the resulting expression for the weight-

enumerator bound using the exact expression for Pd is difficult to evaluate. Two bounds on

Pd and one alternative form of expression for Pd can be used to simplify the evaluation of

the weight-enumerator bound or its approximation.
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6.1.1 Chernoff Weight-Enumerator Bound

An upper bound on the pairwise error-event probability or the code-word error-event

probability Pd given by equation (5.3) can be obtained using the Chernoff bound [6]. It is

given by

Pd =

d∑
q0=0

d−q0∑
q1=0

. . .

d−q0−...−qJ−3∑
qJ−2=0

(
d

q0 . . . qJ−1

)
ηq00 . . . η

qJ−1

J−1 Q

(√
2Ec

√
q0
N0

+ . . .+
qJ−1

NJ−1

)

≤
d∑

q0=0

d−q0∑
q1=0

. . .

d−q0−...−qJ−3∑
qJ−2=0

(
d

q0 . . . qJ−1

)
ηq00 . . . η

qJ−1

J−1 exp
(
− Ec

( q0
N0

+ . . .+
qJ−1

NJ−1

))

=

d∑
q0=0

d−q0∑
q1=0

. . .

d−q0−...−qJ−3∑
qJ−2=0

(
d

q0 . . . qJ−1

)(
η0 exp

(
− Ec

N0

))q0

. . .

(
ηJ−1 exp

(
− Ec

NJ−1

))qJ−1

=

(
η0 exp

(
− Ec

N0

)
+ . . .+ ηJ−1 exp

(
− Ec

NJ−1

))d

.

Consequently, the Chernoff-weight-enumerator bound on the probability of code-word error

is

Pe ≤
∑
d

A
′
dPd

≤
∑
d

A
′
d

(
η0 exp

(
− Ec

N0

)
+ . . .+ ηJ−1 exp

(
− Ec

NJ−1

))d

= A(W )
∣∣∣
W=η0 exp

(
−Ec

N0

)
+...+ηJ−1 exp

(
− Ec

NJ−1

) .

In practice, the bound is approximated by truncating the infinite series.

6.1.2 Tighter Chernoff Weight-Enumerator Bound

The bound on Pd can be improved by using the improved Chernoff bound [13],

Q(
√
x+ y) ≤ Q(

√
x) exp

(
−y

2

)
.
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Then

Pd =

d∑
q0=0

d−q0∑
q1=0

. . .

d−q0−...−qJ−3∑
qJ−2=0

(
d

q0 . . . qJ−1

)
ηq00 . . . η

qJ−1

J−1 Q

(√
2Ec

√
q0
N0

+ . . .+
qJ−1

NJ−1

)

≤ Q

(√
2dfreeEc

Nmax

)
exp

(
Ecdfree
Nmax

)(
η0 exp

(
− Ec

N0

)
+ . . .+ ηJ−1 exp

(
− Ec

NJ−1

))d

where Nmax = max0≤j≤J−1Nj . Consequently, the tighter Chernoff-weight-enumerator

bound on the probability of code-word error is

Pe ≤
∑
d

A
′
dPd

≤
∑
d

A
′
dQ

(√
2dfreeEc

Nmax

)
exp

(
Ecdfree
Nmax

)(
η0 exp

(
− Ec

N0

)
+ . . .+ ηJ−1 exp

(
− Ec

NJ−1

))d

= Q

(√
2dfree

Ec

Nmax

)
exp

(
dfree

Ec

Nmax

)
A(W )

∣∣∣
W=η0 exp

(
−Ec

N0

)
+...+ηJ−1 exp

(
− Ec

NJ−1

) .

In practice, the bound is approximated by truncating the infinite series.

6.1.3 Integral Form of the Weight-Enumerator Bound

The expression for the pairwise error-event probability or the code-word error-event

probability Pd can be rewritten using an identity from [14],

Q(x) =
1

π

∫ π
2

0
exp

(
− x2

2 sin2 θ

)
dθ .

Thus

Pd =

d∑
q0=0

d−q0∑
q1=0

. . .

d−q0−...−qJ−3∑
qJ−2=0

(
d

q0 . . . qJ−1

)
ηq00 . . . η

qJ−1

J−1 Q

(√
2Ec

√
q0
N0

+ . . .+
qJ−1

NJ−1

)

=
1

π

d∑
q0=0

d−q0∑
q1=0

. . .

d−q0−...−qJ−3∑
qJ−2=0

(
d

q0 . . . qJ−1

)
ηq00 . . . η

qJ−1

J−1

∫ π
2

0
exp

(
−Ec

sin2 θ

( q0
N0

+ . . .+
qJ−1

NJ−1

))
dθ

=
1

π

∫ π
2

0

(
η0 exp

(
− Ec

N0 sin
2 θ

)
+ . . .+ ηJ−1 exp

(
− Ec

NJ−1 sin
2 θ

))d

dθ .
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Note that the above expression gives the exact pairwise error-event probability. Hence this

expression along with the code-word weight-enumerator function yields an exact integral-

form expression for the union bound on the code-word error probability. We refer to it as

the integral weight-enumerator bound. It is given by

Pe ≤
∑
d

A
′
dPd

=
1

π

∫ π
2

0

∑
d

A
′
d

(
η0 exp

(
− Ec

N0 sin
2 θ

)
+ . . .+ ηJ−1 exp

(
− Ec

NJ−1 sin
2 θ

))d

dθ

=
1

π

∫ π
2

0
A(W )

∣∣∣
W=η0 exp

(
− Ec

N0 sin2 θ

)
+...+ηJ−1 exp

(
− Ec

NJ−1 sin2 θ

)dθ . (6.2)

In practice, the bound is approximated by truncating the infinite series in the integrand.

6.1.4 Simulation Results

In Fig. 6.1, the simulated probability of code-word error is compared with approxi-

mations to each of the three weight-enumerator bounds for the memory-order-three encoder

and the two-epoch channel with η = 0.5. The block length is 1000, and the noise power

ratio γ is 3 dB. Each approximated bound is determined by truncating the bound to in-

clude only code words composed of error events of Hamming weight sixteen or less. The

approximation accounts for all code words of total error-event span of ten or less (as well

as some with a larger total error-event span), but it excludes all code words composed of

three or more error events.

As seen in Fig. 6.1, the approximated Chernoff-weight-enumerator bound is quite

loose. The approximated tighter Chernoff-weight-enumerator bound is approximately 1 dB

better than the approximated Chernoff-weight-enumerator bound, and the approximated

integral weight-enumerator bound is even better. The latter two approximated bounds are

accurate for a probability of code-word error of 10−2 or less. No corresponding results

are available for the NASA-standard code since calculation of the weight-span enumerating

function of the code requires substantial effort [12].
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6.2 Linear Bounds Using the First-Event Error Probability

and Its Union Bound

The probability of code-word error can be expressed in terms of the first-event errors

defined by equation (3.1). Two bounds are expressed in the following two theorems. An

analogous result to Theorem 6.2 for hard-decision Viterbi decoding in i.i.d. Gaussian noise

is given in [3].

Theorem 6.1: Suppose p denotes the first-event error probability at time zero for a trans-

mission of block length L. Then

Pe ≤ Lp.

Proof : See Appendix A.

The probability of code-word error is thus bounded by a union bound in terms of

the first-event error probability at time zero. The latter probability can be determined only

through simulation, however. An upper bound on the first-event error probability is given

by the first-event union bound

Pu =
∞∑

dfree

AdPd

where the coefficient Ad denotes the number of error events of Hamming weight d that begin

at time zero. The coefficients {Ad} together determine the code-generating function [6] of

the convolutional code given by

T (W ) =
∞∑

d=dfree

AdW
d.

A closed-form expression for the code-generating function can be determined by using Ma-

son’s Theorem [6]. The union bound on the probability of code-word error is given by the
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following theorem.

Theorem 6.2:

Pe ≤ LPu. (6.3)

Proof : See Appendix A.

The first-event union bound can be bounded or expressed exactly in closed-form using

the respective bounds and exact expression for Pd presented in the previous section.

6.2.1 Union-Chernoff Bound

The Chernoff bound on Pd results in

Pe ≤ LPch (6.4)

where

Pch = T (W )|
W=η0 exp

(
−Ec

N0

)
+...+ηJ−1 exp

(
− Ec

NJ−1

) . (6.5)

We refer to equation (6.4) as the union-Chernoff bound on Pe.

6.2.2 Tighter Union-Chernoff Bound

The tighter Chernoff bound on Pd results in

Pe ≤ LPt-ch (6.6)

where

Pt-ch = Q

(√
2dfreeEc

Nmax

)
exp

(
Ecdfree
Nmax

)
T (W )

∣∣∣
W=η0 exp

(
−Ec

N0

)
+...+ηJ−1 exp

(
− Ec

NJ−1

) . (6.7)

We refer to equation (6.6) as the tighter union-Chernoff bound on Pe.
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6.2.3 Integral Form of the Union Bound

The integral expression for Pd can be used to obtain an exact expression for the

union bound on the first-event error probability, resulting in equation (6.3), where the

first-event union-bound Pu is expressed as

Pu =
1

π

∫ π
2

0
T (W )

∣∣∣
W=η0 exp

(
−Ec

N0

)
+...+ηJ−1 exp

(
− Ec

NJ−1

)dθ . (6.8)

We refer to equation (6.3) expressed in this form as the union-integral bound on Pe. Note

that this is a union-bound that differs from the union bound in equation (6.2).

6.2.4 Simulation Results

The accuracy of each union bound is illustrated in Figs. 6.2 and 6.3 for the memory-

order-three encoder and the NASA-standard encoder, respectively, and the two-epoch chan-

nel with η = 0.5. The block length is 1000 and the noise power ratio is 3 dB. Once again,

the use of the integral bound leads to the tightest bound on the probability of code-word

error. The union-integral bound is almost 0.4 dB better than the tighter union-Chernoff

bound at Pe = 10−3 for the memory-order-three encoder. The tighter union-Chernoff

bound is almost as tight as the union-integral bound for the NASA-standard encoder. The

union-integral bound provides approximately the same accuracy as the approximate inte-

gral weight-enumerator bound for the memory-order-three encoder, as seen by comparing

Figs. 6.1 and 6.2.

6.3 New Concave Bounds Using the First-Event Union Bound

The best of the union bounds in the previous two sections are loose if the probability

of code-word error is much above 10−1 for the memory-order-three encoder. The union-

integral bound is loose if the probability of code-word error is much above 5× 10−2 for the

NASA-standard code, and the integral weight-enumerator bound is difficult to obtain for
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convolutional codes of complexity equal to or greater than the NASA-standard code. In

this section we consider new bounds which are uniformly tighter than the corresponding

union bounds and can be determined in practice for codes of the complexity of the NASA-

standard code. The bounds are analogous in form to one derived earlier for hard-decision

Viterbi decoding [3], though the proof requires a different approach than the combinatorial

argument used in [3].

The new bound is given by the following theorem.

Theorem 6.3:

Pe ≤ 1− (1− Pu)
L . (6.9)

Proof : See Appendix B.

The bound given by equation (6.9) is a concave function of the first-event union bound,

Pu, in contrast with the union bound of equation (6.3), which is a linear function of Pu. It

is easily shown that the concave bound is strictly tighter than the linear bound. Several

variants of the bound can be obtained using bounds on Pd.

6.3.1 Concave-Chernoff Bound

The Chernoff bound on each pairwise error-event probability results in

Pe ≤ 1− (1− Pch)
L (6.10)

where Pch is given by equation (6.5). We refer to the bound of equation (6.10) as the

concave-Chernoff bound. It is uniformly tighter than the union-Chernoff bound.

6.3.2 Tighter Concave-Chernoff Bound

The tighter Chernoff bound on each pairwise error-event probability results in

Pe ≤ 1− (1− Pt-ch)
L (6.11)
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where Pt-ch is given by equation (6.7). We refer to the bound of equation (6.11) as the tighter

concave-Chernoff bound. It is uniformly tighter than the tighter union-Chernoff bound.

6.3.3 Integral Form of the Concave Bound

The integral expression for Pd can be used to represent the bound of Theorem 6.3

exactly as

Pe ≤ 1− (1− Pu)
L (6.12)

where Pu is expressed as in equation (6.8). We refer to the bound of equation (6.12) as the

concave-integral bound. It is uniformly tighter than the union-integral bound.

6.3.4 Simulation Results

The probability of code-word error is shown in Figs. 6.4 and 6.5 for the memory-

order-three encoder and the NASA-standard encoder, respectively, both with the two-epoch

channel with η = 0.5. The block length is 1000 and the noise power ratio is 3 dB. For both

the encoders, the concave-integral bound gives a tight bound on the probability of code-

word error. The bound is in error by only 0.1 dB at a probability of code-word error of

0.1 for the memory-order-three encoder, and it is in error by only 0.2 dB if the probability

of error is 0.5. The concave-integral bound is not as tight for the NASA-standard code.

It is accurate to within 0.2 dB if the probability of code-word error is 0.1, but it is much

less accurate if the probability of code-word error is 0.5. It is noticeably tighter than the

union-integral bound in this range, however, as seen by comparing Figs. 6.3 and 6.5.

6.4 New Concave Bound Using the First-Event Error Prob-

ability

The use of the union bound on the first-event error probability contributes some

looseness to the bounds of the previous section, since the error events making up the first

event error are not disjoint. A result of Slepian [15] can be used to remove this factor in the
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looseness of the concave-integral bound. The tighter bound is given in the following theorem.

Theorem 6.4:

Pe ≤ 1− (1− p)L .

Proof : See Appendix C.

We refer to this bound as the concave-first-event bound. Theorem 6.3 and the concave-

union bounds follow immediately from Theorem 6.4 since 1 − (1 − x)L is an increasing

function of x for 0 ≤ x ≤ 1.

Unlike the concave-union bounds, the concave-first-event bound is not analytically

tractable. Instead, the first-event error probability p must be obtained through simulation

for each channel of interest. Once it is known for a given channel and code, however, it can

be used to bound the probability of code-word error for any block length.

6.5 Comparison of the Derived Bounds

In this section, we present a comparison of the bounds developed in the previous

sections. Four bounds are considered: the simulation-aided concave-first-event bound of

Section 6.4, and the three integral form bounds or approximations from Sections 6.1-6.3.

Each of the integral-form bounds is the best from its respective section, which is expected

since it uses an exact expression for the pair-wise error event probability or pairwise code-

word error probability as opposed to an upper bound on the same. Simulation results are

shown in Figs. 6.6 - 6.9 for the memory-order-three encoder and Figs. 6.10 - 6.13 for the

NASA-standard encoder. In each example, the block length is 1000 and the noise power

ratio is 3 dB. Interference-free intervals of 0.25, 0.5, 0.75, and 1.0 are included.

For the memory-order-three encoder, the concave-first-event bound is the tightest; it

is accurate to within 0.05 dB for all channel conditions. The bound is particularly useful at
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low signal-to-noise ratios for which the other bounds become less accurate and then diverge

below a critical signal-to-noise ratio. This is a consequence of its use of the simulated

(actual) first-event error probability, instead of the (infinite-series) first-event union bound

used in the other bounds.

The concave-integral bound gives the best estimate of the code-word error proba-

bility among the (purely) analytical bounds, followed by the approximate integral weight-

enumerator bound and the union-integral bound (both of which are equally good). Note

that differences between the bounds is limited to low signal-to-noise ratios. For higher

signal-to-noise ratios, the bounds match closely and all agree closely with the simulated

system performance. These observations are common the all the channel conditions in

Figs. 6.6 - 6.9.

For the NASA-standard encoder, the concave-first-event bound again provides the

best estimate of the code-word error probability (within 0.1 dB). The effect of the divergence

of other bounds at low signal-to-noise ratios is more pronounced than with the weaker code.

The analytical bounds are not accurate if the channel is such that the probability of code-

word error is more than 0.1.

The union-integral bound is comparable to the concave-integral bound if the signal-

to-noise ratio is high, though it is slightly poorer at lower signal-to-noise ratios. Both

bounds result in an error of at least 0.5 dB for a probability of code-word error of 0.5.
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Figure 6.1: Weight-enumerator bounds for the memory-order-three encoder (η = 0.5).
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Figure 6.2: Linear bounds using the first-event union bound for the memory-order-three
encoder (η = 0.5).
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Figure 6.3: Linear bounds using the first-event union bound for the NASA-standard encoder
(η = 0.5).
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Figure 6.4: Concave bounds using the first-event union bound for the memory-order-three
encoder (η = 0.5).
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Figure 6.5: Concave bounds using the first-event union bound for the NASA-standard
encoder (η = 0.5).
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Figure 6.6: Comparison of bounds for memory-order-three encoder (η = 1).
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Figure 6.7: Comparison of bounds for memory-order-three encoder (η = 0.75).
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Figure 6.8: Comparison of bounds for memory-order-three encoder (η = 0.5).
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Figure 6.9: Comparison of bounds for memory-order-three encoder (η = 0.25).
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Figure 6.10: Comparison of bounds for NASA-standard encoder (η = 1).
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Figure 6.11: Comparison of bounds for NASA-standard encoder (η = 0.75).
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Figure 6.12: Comparison of bounds for NASA-standard encoder (η = 0.5).
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Figure 6.13: Comparison of bounds for NASA-standard encoder (η = 0.25).
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Chapter 7

Stationary Gaussian

Approximation to the

Mixed-Distribution Channel

The concave-integral and concave-first-event bounds developed in Chapter 6 for

the mixed-distribution channel provide very accurate approximations to the probability

of code-word error which can be calculated very simply during a network simulation for

any block length. Each requires numerous offline calculations for each code represented in

the simulation and correspondingly large storage space for calculated values. High-fidelity

use of the concave-integral bound requires computation of the first-event union bound for a

sufficiently dense sampling of the following parameters: number of epochs, epoch durations,

relative noise power levels, and signal-to-noise ratios. Greater offline computation is needed

for the concave-first-event bound, which requires a simulation to obtain the first-event error

probability for each combination of the channel parameters. (A strictly simulation-based

performance evaluation for each combination of the channel parameters and each possible

block length requires even greater offline computation and online storage.)

In this chapter, we consider an approximation to the mixed-distribution channel
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which dramatically reduces the offline computation and the online storage required to model

link performance in a network simulation. Specifically, the mixed-distribution channel is

approximated by an i.i.d. (stationary) Gaussian noise channel in which the noise variances

are given by

Var(ñi) = EΘi [Var(ñi | Θi)].

Thus

Var(ñi) =
N

2

where

N =

J−1∑
i=0

ηiNi.

7.1 Bounds on the Probability of Code-word Error

The channel based on the stationary Gaussian approximation is itself a mixed-

distribution channel in which there is only one epoch. Thus each of the results developed

in Chapter 6 is applicable. As in the earlier examples, the concave-integral bound and the

concave-first-event bound are of greatest interest.

7.2 Accuracy of the Stationary Gaussian Approximation

The accuracy of the stationary Gaussian approximation is illustrated by considering

an example of a two-epoch channel and its stationary approximation. The two-epoch chan-

nel has an interference-free fraction of 0.5 and a noise power ratio of 3 dB. For a given noise

variance N0
2 in the interference-free epoch, the noise variance throughout the transmission

with the Gaussian approximation is thus

N

2
=

N0 + 2N0

4
=

3

2

N0

2
.

The performance in the two channels is shown in Fig. 7.1 for the memory-order-three
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encoder. The actual performance in the stationary Gaussian channel is slightly worse than

the performance in the mixed-distribution channel if the probability of code-word error is

high, whereas it is slightly better if the probability of code-word error is low. Across the

range of error probabilities from 10−1 to 10−4, the two differ by less than 0.2 dB. If the

probability of error is above 10−1, the two differ by less than 0.25 dB.

The concave-integral bound and the concave-first-event bound both result in tight

bounds on the performance in the stationary Gaussian channel. The concave-first-event

bound for the Gaussian channel differs from the performance of the mixed-distribution

channel by no more than 0.3 dB if Pe ≥ 10−4. The concave-integral bound for the Gaussian

channel differs from the performance of the mixed-distribution channel by no more than 0.4

dB if Pe ≥ 10−4.

Similar results are shown in Fig. 7.2 for the standard-NASA encoder. The actual

performance in the stationary Gaussian channel differs by no more than 0.3 dB from the

performance of the mixed-distribution channel if Pe = 10−4. The concave-first-event bound

for the stationary Gaussian channel is at most 0.1 dB poorer than this over the same range.

The concave-integral bound for the Gaussian channel is almost 0.5 dB poorer than the actual

performance in the mixed-distribution channel if Pe = 0.1, but the difference decreases to

0.1 dB if Pe = 10−4.

Similar levels of accuracy using the stationary Gaussian channel approximation and

its concave bounds are observed for the two encoders if η = 0.25 or η = 0.75.
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Figure 7.1: Accuracy of the stationary Gaussian approximation for the memory-order-three
encoder (η = 0.5).
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Figure 7.2: Accuracy of the stationary Gaussian approximation for the NASA-standard
encoder (η = 0.5).
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Chapter 8

Conclusion

The performance of convolutional codes and interleaving in the presence of block

interference is investigated in this thesis. It is seen that the pseudo-random interleaver

performs as well as optimal rectangular interleaving, and we develop an equivalent, analyt-

ically tractable statistical model for a system with pseudo-random interleaving and block

interference. Using this model, we derive new bounds on the probability of code-word error

for convolutional codes and soft-decision Viterbi decoding. The best of the bounds are

highly accurate, as is illustrated for two rate-12 convolutional codes and various channel

conditions. The new bounds permit accurate link modeling in simulations of ad hoc packet

radio network that are subjected to partial-time Gaussian interference. The bounds require

much less off-line computation and on-line storage than is required for off-line Monte Carlo

simulation of each combination of channel conditions and packet format.

We also consider a simpler stationary Gaussian approximation for a system with

pseudo-random interleaver and block interference. The approximation is useful for eval-

uating network performance when the memory available for storing the look-up tables of

off-line simulation results is limited. The approximation leads to results which significantly

reduce the memory requirements, though at the cost of a moderate penalty in the accuracy

of the result.
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Appendix A Proofs of Theorems 6.1 and 6.2

The form of the bound in Theorem 6.2 has previously been shown to hold for hard-

decision Viterbi decoding and an i.i.d. Gaussian noise channel [3]. In contrast, Theorems

6.1 and 6.2 are proven in this appendix to hold for soft-decision Viterbi decoding and any

symmetric i.i.d. channel (including the mixed-distribution channel).

Theorem 6.1: Suppose p denotes the first-event error probability at time zero for a trans-

mission of block length L. Then

Pe ≤ Lp .

Proof. From equation (3.4),

Pe = Pr(∪L−1
l=0 ∪νl

i=1 {Xi,l < 0})

= Pr(∪L−1
l=0 Fl)

=

L−1∑
l=0

Pr(Fl)

since the {Fl} are disjoint.

The event error at time l, defined by equation (3.2), contains the first event error

at time l. (That is, Fl ⊆ Gl.) Thus

Pe ≤
L−1∑
l=0

Pr(Gl).

Moreover, Pr(G0) ≥ Pr(Gl) for l > 0 since the encoder is shift invariant and the noise

process is i.i.d. , and G0 = F0. Thus

Pe ≤
L−1∑
l=0

Pr(F0) = LPr(F0) = Lp.
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Theorem 6.2:

Pe ≤ LPu

Proof.

p = Pr(∪ν0
i=1{Xi,l < 0})

≤
ν0∑
i=1

Pr(Xi,l < 0)

≤
∞∑

d=dfree

AdPd = Pu

since Pr(Xi,l < 0) depends only on the Hamming weight of the corresponding code word.

Thus from Theorem 6.1,

Pe ≤ LPu.

68



Appendix B Proof of Theorem 6.3

Consider n jointly Gaussian random variables, Xn = (X1, X2, . . . , Xn), with vector

of mean values µ
n
and covariance matrix B where

µ =



µ1

µ2

...

µn


andB =

 Σn−1 Σn−1,1

Σ1,n−1 Σ1

 =



σ2
1 ρ12σ1σ1 . . . . . . ρ1nσ1σn

ρ21σ2σ1 σ2
2 . . . . . . ρ2nσ2σn

ρ31σ3σ1 . . . . . . . . .
...

...
. . .

...

...
. . .

...

...
. . .

...

ρn1σnσ1 . . . . . . . . . σ2
n



,

Σn−1 is an (n− 1)× (n− 1) matrix, Σn−1,1 is a column vector of length n− 1,

Σn−1,1 = ΣT
1,n−1, and Σ1 = σ2

n is a scalar. The joint distribution of first n − 1 Gaussian

variables, Xn−1 = (X1, X2, . . . , Xn−1), is given as

Xn−1 ∼ N


µ
n−1

=



µ1

µ2

...

µn−1


,Σ =



σ2
1 ρ12σ1σ1 . . . ρ1,n−1σ1σn−1

ρ21σ2σ1 σ2
2 . . . ρ2,n−1σ2σn−1

...
. . .

...

ρn−1,1σn−1σ1 . . . . . . σ2
n−1




where Σ = Σn−1. The joint distribution of same n − 1 Gaussian variables conditioned

on Xn = α is given as

X̂n−1(α) = Xn−1 | (Xn = α) ∼

N
(
µ̂(α) = µ

n−1
+Σn−1,1Σ

−1
1 (α− µn), Σ̂ = Σ− Σn−1,1Σ

−1
1 Σ1,n−1

)
.

First consider the case in which all of the (n − 1) entries in Σn−1,1 are strictly

positive. (The case in which any of the entries is zero is dealt with separately.)
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Lemma B.1: Suppose Σn−1,1 is strictly positive. If

g(α) = Pr(X̂n−1(α) ≥ 0) = Pr(Xn−1 ≥ 0 | (Xn = α)),

then g(α) is a strictly increasing function of α.

Proof. Let α1 < α2 and εi = µ̂i(α2)− µ̂i(α1) for 1 ≤ i ≤ n− 1. Note that for all i, εi > 0.

g(α1) = Pr(Xn−1 ≥ 0 | Xn = α1)

=

∫
x≥0

fX̂n−1
(x) dx

=

∫
x≥0

1√
(2π)n−1|Σ̂|

exp

(
− 1

2

(
x− µ̂(α1)

)T
Σ̂−1

(
x− µ̂(α1)

))
dx

=

∫
x≥0

1√
(2π)n−1|Σ̂|

exp

(
− 1

2

(
x− µ̂(α2) + ε

)T
Σ̂−1

(
x− µ̂(α2) + ε

))
dx.

Making the substitution x+ ε = x′,

g(α1) =

∫
x′≥ε

1√
(2π)n−1|Σ̂|

exp

(
− 1

2

(
x′ − µ̂(α2)

)T
Σ̂−1

(
x′ − µ̂(α2)

))
dx′

<

∫
x′≥0

1√
(2π)n−1|Σ̂|

exp

(
− 1

2

(
x′ − µ̂(α2)

)T
Σ̂−1

(
x′ − µ̂(α2)

))
dx′

= g(α2).

Hence g(α) is a strictly increasing function of α.
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Lemma B.2: Suppose Σn−1,1 is strictly positive. Then,

lim
α→−∞

g(α) = 0 and lim
α→∞

g(α) = 1.

Proof. For the joint distribution of X̂n−1(α), consider the (n − 1)-dimensional ellipsoid

of a given fixed probability density centered at µ̂(α) and let the interior of the ellipsoid

be denoted by Ec(α) (i.e., Ec(α) = {x : (x − µ̂(α))Σ̂−1(x − µ̂(α)) < c}). Also, since

the covariance matrix Σ̂ is positive semi-definite, we can write Σ̂ = AAT where A is an

(n − 1) × (n − 1) matrix. Suppose n ∼ N (0, In−1) and Ŷn−1(α) = An + µ̂(α). Then

Ŷn−1(α) ∼ X̂n−1(α) (i.e. they have the same joint distribution).

Consider Pr(X̂n−1(α) ∈ Ec(α)) for some c.

Pr(X̂n−1(α) ∈ Ec(α)) =

∫
Ec(α)

fX̂n−1(α)
(x) dx

=

∫
Ec(α)

1

(2π)
n−1
2 |Σ̂|

1
2

exp
(
− 1

2
(x− µ̂(α))T Σ̂−1(x− µ̂(α))

)
dx .
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Making the substitution x− µ̂(α) = An and letting Êc = {n|nTn < c},

Pr(X̂n−1(α) ∈ Ec(α)) =

∫
Êc

|A|
(2π)

n−1
2 |Σ̂|

1
2

exp
(
− 1

2
(An)T Σ̂−1(An)

)
dn

=

∫
Êc

|A|
(2π)

n−1
2 |AAT |

1
2

exp
(
− 1

2
(An)T (AAT )−1(An)

)
dn

=

∫
Êc

1

(2π)
n−1
2

exp
(
− 1

2
nTn

)
dn

= Pr(n ∈ Êc)

= Pr(
n−1∑
i=1

n2
i < c) .

Let Z =
∑n−1

i=1 n2
i . Then Z has a central chi-square distribution with (n − 1) degrees of

freedom [11]. Hence

Pr(X̂n−1(α) ∈ Ec(α)) = Pr(Z < c)

=
1

Γ(n−1
2 )

γ

(
n− 1

2
,
c

2

)

where Γ(k) is the Gamma function and γ(k, z) is the lower incomplete Gamma function

[11].

For any ε > 0, c can be chosen such that

1− ε <
1

Γ(n−1
2 )

γ

(
n− 1

2
,
c

2

)
.

Choose some finite value of c which satisfies the above equation.

Let λ denote the largest eigenvalue of Σ̂. Then the largest (semi-principal) axis of
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the ellipsoid is a =
√
cλ. For 1 ≤ i ≤ n− 1, we know that

µ̂i(α) = µi + ρi,n
σi
σn

(α− µn).

Let αi = (
√
cλ−µi)

σn
σiρi,n

+µn for all 1 ≤ i ≤ n−1. Choose α∗ = max{α1, . . . , αn−1}. Then

µ̂i(α
∗) ≥

√
cλ for all i and Ec(α

∗) ⊂ {X̂n−1(α
∗) ≥ 0}. Therefore, for all α > α∗,

Pr(X̂n−1(α) ≥ 0) ≥ Pr(X̂n−1(α) ∈ Ec(α)) > 1− ε

⇒ lim
α→∞

Pr(X̂n−1(α) ≥ 0) = 1

⇒ lim
α→∞

g(α) = 1.

Similarly, let αi = (−
√
cλ − µi)

σn
σiρi,n

+ µn for all 1 ≤ i ≤ n − 1 and choose α∗∗ =

min{α1, . . . , αn−1}. Then µ̂i(α
∗∗) ≤ −

√
cλ for all i and Ec(α

∗∗) ⊂ {X̂n−1(α
∗∗) ≤ 0}.

Therefore, for all α < α∗∗,

Pr(X̂n−1(α) ≤ 0) ≥ Pr(X̂n−1(α) ∈ Ec(α)) > 1− ε

⇒ 1− Pr(X̂n−1(α) ≥ 0) ≥ 1− ε

⇒ Pr(X̂n−1(α) ≥ 0) ≤ ε

⇒ lim
α→−∞

Pr(X̂n−1(α) ≥ 0) = 0

⇒ lim
α→−∞

g(α) = 0.
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Now consider the case where at least one of the entries in Σ21 is zero. Let

Xn = (Xp, Xn,Xm)T such that p+m = n− 1. The vector of mean values of Xn is

(µ
p
, µn,µm

)T

and the covariance matrix is 
Σp Σp,n Σp,m

Σn,p σ2
n Σn,m

Σm,p Σm,n Σm

 ,

where Σk is a k×k matrix, Σi,j is a i×j matrix, and Σi,j = ΣT
j,i. Without loss of generality,

each of the m random variables in Xm is uncorrelated with Xn and each of the p random

variables in Xp is positively correlated with Xn. (I.e., all entries in Σp,n are positive and

all entries in Σn,m are zero.) Then,

Pr(Xn−1 ≥ 0 | Xn = α) = Pr(Xm ≥ 0,Xp ≥ 0 | Xn = α)

=

∫
x≥0

fXm
(x) Pr(Xp ≥ 0 | Xm = x, Xn = α)dx

=

∫
x≥0

fXm
(x)h(x, α)dx .

Let

X̃p+1 = (Xp, Xn) | Xm = x .

The mean of X̃p+1 is

 µ̃(x)

µn

 =

 µ
p
+ΣpmΣ−1

m (x− µ
m
)

µn


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and the covariance matrix can be written as

B =

 Σ̃p Σ̃p,1

Σ̃1,p Σ̃1

 ,

where Σ̃ = Σ̃p = Cov(Xp,Xp | Xm = x), Σ̃1 = σ2
n and Σ̃1,p = Σ̃T

p,1 = (ρ1,nσ1σn . . . ρp,nσpσn),

where ρi,n is the correlation coefficient between Xi and Xn for 1 ≤ i ≤ p.
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Lemma B.3: Pr(Xn−1 ≥ 0 | Xn = α) is a strictly increasing function of α if p > 0.

Proof. Xp is positively correlated with Xn (i.e., ρi,n > 0 for all 1 ≤ i ≤ p). Hence, all

entries of Σ̃1,p are positive. This is the same problem considered in the previous section

with n = p+ 1 and h(x, α) = Pr(Xp ≥ 0 | Xm = x, Xn = α). Thus, using Lemma B.1, we

can conclude that h(x, α) is strictly increasing in α for each x.

Let α1 < α2. Then h(x, α1) < h(x, α2) for each x. Also, fXm
(x) > 0 for all x,

hence,

fXm
(x)h(x, α1) < fXm

(x)h(x, α2)

⇒
∫
x≥0

fXm
(x)h(x, α1)dx <

∫
x≥0

fXm
(x)h(x, α2)dx

⇒ Pr(Xn−1 ≥ 0 | Xn = α1) < Pr(Xn−1 ≥ 0 | Xn = α2)

⇒ Pr(Xn−1 ≥ 0 | Xn = α) is strictly increasing in α.

Note that if p = 0, Pr(Xn−1 ≥ 0 | Xn = α) = Pr(Xn−1 ≥ 0) for all α.
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Lemma B.4:

lim
α→−∞

Pr(Xn−1 ≥ 0 | Xn = α) = 0

and

lim
α→∞

Pr(Xn−1 ≥ 0 | Xn = α) = Pr(Xm ≥ 0) .

Proof. Let X̃p(x) = Xp | (Xm = x) ∼ N (µ̃(x), Σ̃) and ˆ̃Xp(x, α) = X̃p(x) | (Xn = α) ∼

N (ˆ̃µ(x, α), ˆ̃Σ).

Pr(Xn−1 ≥ 0 | Xn = α) = Pr(Xm ≥ 0,Xp ≥ 0 | Xn = α)

=

∫
x≥0

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx

=

∫
0≤x≤xM

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx

+

∫
{x≥0}/{0≤x≤xM}

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx .

For any ε > 0, we can choose xM such that

∫
{x≥0}/{0≤x≤xM}

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx < Pr(Xm ≥ xM ) <

ε

2

and let Pr(0 ≤ Xm ≤ xM ) = δ.

For the joint distribution of ˆ̃Xp(x, α), consider the p-dimensional ellipsoid of a given

fixed probability density centered at ˆ̃µ(x, α) and let the interior of the ellipsoid be denoted

by Ec(x, α). Using the method developed in the proof of Theorem 2, for any ε > 0, c can

be chosen such that

1− ε

2δ
< Pr( ˆ̃Xp(x, α) ∈ Ec(x, α)) .

Let λ denote the largest eigenvalue of ˆ̃Σ. Then the largest (semi-principal) axis of the

ellipsoid is a =
√
cλ. For 1 ≤ i ≤ p, we know that

ˆ̃µi(x, α) = µ̃i(x) + ρi,n
σi
σn

(α− µn)
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and

µ̃(x) = µ
p
+ΣpmΣ−1

m (x− µ
m
)

= µ
p
− ΣpmΣ−1

m µ
m
+ΣpmΣ−1

m x .

Let ΣpmΣ−1
m xM = q′ and for each i, qi = min{0, q′i}. Then for 0 ≤ x ≤ xM , µ̃i(x) ≥ gi + qi

for all i, 0 ≤ i ≤ p, where g = µ
p
− ΣpmΣ−1

m µ
m
. Let αi(x) = (

√
cλ− µ̃i(x))

σn
σiρi,n

+ µn for

all 1 ≤ i ≤ p. Then for 0 ≤ x ≤ xM , αi(x) ≤ (
√
cλ− gi − qi)

σn
σiρi,n

+ µn = αi < ∞. Choose

α∗ = max{α1, . . . , αp}. Then ˆ̃µi(x, α
∗) ≥

√
cλ for all i and Ec(x, α

∗) ⊂ { ˆ̃Xp(x, α
∗) ≥ 0} for

each x,0 ≤ x ≤ xM . Therefore, for all α > α∗ and 0 ≤ x ≤ xM ,

1− ε

2δ
< Pr( ˆ̃Xp(x, α) ∈ Ec(x, α)) ≤ Pr( ˆ̃Xp(x, α) ≥ 0) .
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Pr(Xn−1 ≥ 0 | Xn = α) =

∫
0≤x≤xM

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx

+

∫
{x≥0}/{0≤x≤xM}

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx

>

∫
0≤x≤xM

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx

>
(
1− ε

2δ

)∫
0≤x≤xM

fXm
(x)dx

=
(
1− ε

2δ

)
Pr(0 ≤ Xm ≤ xM )

> Pr(Xm ≥ 0)− ε

2δ
δ − ε

2

= Pr(Xm ≥ 0)− ε .

⇒
∣∣∣Pr(Xm ≥ 0)− Pr(Xn−1 ≥ 0 | Xn = α)

∣∣∣ < ε.

Similarly, for proving the lower limit on Pr(Xn−1 ≥ 0 | Xn = α), let qi = max{0, q′i}

for each i so that for 0 ≤ x ≤ xM , µ̃i(x) ≤ gi + qi for all i, 0 ≤ i ≤ p, where g and q′ are

as defined previously.

Let αi(x) = (−
√
cλ − µ̃i(x))

σn
σiρi,n

+ µn for all 1 ≤ i ≤ p. Then for 0 ≤ x ≤ xM ,

αi(x) ≥ (−
√
cλ − gi − qi)

σn
σiρi,n

+ µn = αi > −∞. Choose α∗∗ = min{α1, . . . , αp}. Then

ˆ̃µi(x, α
∗∗) ≤ −

√
cλ for all i and Ec(x, α

∗∗) ⊂ { ˆ̃Xp(x, α
∗∗) ≤ 0} for each x,0 ≤ x ≤ xM .
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Therefore, for all α < α∗∗ and 0 ≤ x ≤ xM ,

Pr( ˆ̃Xp(x, α) ≤ 0) ≥ Pr( ˆ̃Xp(x, α) ∈ Ec(x, α)) > 1− ε

2δ

⇒ 1− Pr( ˆ̃Xp(x, α) ≥ 0) ≥ 1− ε

2δ

⇒ Pr( ˆ̃Xp(x, α) ≥ 0) ≤ ε

2δ
.

Pr(Xn−1 ≥ 0 | Xn = α) =

∫
0≤x≤xM

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx

+

∫
{x≥0}/{0≤x≤xM}

fXm
(x) Pr( ˆ̃Xp(x, α) ≥ 0)dx

<
ε

2δ

∫
0≤x≤xM

fXm
(x)dx+

ε

2

= ε .

⇒
∣∣∣Pr(Xn−1 ≥ 0 | Xn = α)− 0

∣∣∣ < ε.
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Lemma B.5:

Pr(Xn−1 ≥ 0 | Xn ≥ 0) ≥ Pr(Xn−1 ≥ 0)

Proof. Consider the unconditional distribution of Xn−1. Then

Pr(Xn−1 ≥ 0) = Pr(Xm ≥ 0,Xp ≥ 0)

= Pr(Xm ≥ 0) Pr(Xp ≥ 0 | Xm ≥ 0) .

Since 0 ≤ Pr(Xn−1 ≥ 0) ≤ Pr(Xm ≥ 0) ⇒, it follows from Lemmas B.3 and B.4, there

exists some α′ such that

Pr(Xn−1 ≥ 0) = Pr(Xn−1 ≥ 0 | Xn = α′) .

For all α < α′, Pr(Xn−1 ≥ 0 | Xn = α) < Pr(Xn−1 ≥ 0),

and for all α ≥ α′, Pr(Xn−1 ≥ 0 | Xn = α) ≥ Pr(Xn−1 ≥ 0).

Case I: α′ ≥ 0.
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Then for all α < 0

∫
x≥0

fX1,...,Xn−1|Xn=α(x) dx <

∫
x≥0

fX1,...,Xn−1(x) dx

⇒
∫
α<0

fXn(α)

∫
x≥0

fX1,...,Xn−1|Xn=α(x) dx dα <

∫
α<0

fXn(α)

∫
x≥0

fX1,...,Xn−1(x) dx dα

⇒
∫
α≥0

fXn(α)

∫
x≥0

fX1,...,Xn−1|Xn=α(x) dx dα ≥
∫
α≥0

fXn(α)

∫
x≥0

fX1,...,Xn−1(x) dx dα

⇒Pr(Xn ≥ 0) ≥ Pr(Xn−1 ≥ 0) Pr(Xn ≥ 0)

⇒Pr(Xn−1 ≥ 0 | Xn ≥ 0) ≥ Pr(Xn−1 ≥ 0).

Case II: α′ < 0.

Then for all α ≥ 0

∫
x≥0

fX1,...,Xn−1|Xn=α(x) dx ≥
∫
x≥0

fX1,...,Xn−1(x) dx

⇒
∫
α≥0

fXn(α)

∫
x≥0

fX1,...,Xn−1|Xn=α(x) dx dα ≥
∫
α≥0

fXn(α)

∫
x≥0

fX1,...,Xn−1(x) dx dα

⇒Pr(Xn ≥ 0) ≥ Pr(Xn−1 ≥ 0) Pr(Xn ≥ 0)

⇒Pr(Xn−1 ≥ 0 | Xn ≥ 0) ≥ Pr(Xn−1 ≥ 0).
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Hence,

Pr(Xn−1 ≥ 0 | Xn ≥ 0) ≥ Pr(Xn−1 ≥ 0).
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The result stated as Theorem 6.3 is given in [3] for hard-decision Viterbi decoding

and i.i.d. Gaussian noise channel. The theorem as stated here hold for soft-decision Viterbi

decoding and any symmetric i.i.d. channel - in particular, the mixed-distribution channel.

Theorem 6.3: Pe ≤ 1− (1− Pu)
L.

Proof. Consider the mixed-distribution channel with parameter vector Θ̃. From equa-

tion (3.4),

Pe | (Θ̃ = θ̃) = Pr(∪L−1
l=0 ∪νl

i=1 {Xi,l < 0} | Θ̃ = θ̃) .

If Pc denotes the probability of correct decision,

Pc | (Θ̃ = θ̃) = Pr(∩L−1
l=0 ∩νl

i=1 {Xi,l ≥ 0} | Θ̃ = θ̃) .

The pairwise error-event statistics are conditionally jointly Gaussian given Θ̃ = θ̃. Thus,

by repeated application of Lemma B.5,

Pc | (Θ̃ = θ̃) ≥
L−1∏
l=0

νl∏
i=1

Pr(Xi,l ≥ 0 | Θ̃ = θ̃) .

All of the probabilities Pr(Xi,l ≥ 0 | Θ̃ = θ̃) are non-decreasing functions of Var(nj) for

each j. (I.e., they are comonotonic in Var(nj) for each j.) Since Θ̃ determines the values
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of Var(nj) for each j,

Pc = EΘ̃

[
L−1∏
l=0

νl∏
i=1

Pr(Xi,l ≥ 0 | Θ̃ = θ̃)

]

≥
L−1∏
l=0

νl∏
i=1

EΘ̃

[
Pr(Xi,l ≥ 0 | Θ̃ = θ̃)

]
=

L−1∏
l=0

νl∏
i=1

(1− EΘ̃

[
Pr(Xi,l < 0 | Θ̃ = θ̃)

]
≥

L−1∏
l=0

(1−
νl∑
i=0

EΘ̃

[
Pr(Xi,l < 0 | Θ̃ = θ̃)

]
≥

L−1∏
l=0

(1− lim
L→∞

νl∑
i=0

EΘ̃

[
Pr(Xi,l < 0 | Θ̃ = θ̃)

]
=

L−1∏
l=0

(1− Pu)

= (1− Pu)
L .

Hence,

Pe ≤ 1− (1− Pu)
L .
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Appendix C Proof of Theorem 6.4

Consider the mixed-distribution channel with parameter vector Θ̃.

Theorem 6.4:

Pe ≤ 1− (1− p)L .

Proof. As in the proof of Theorem 6.3,

Pc | (Θ̃ = θ̃) = Pr(∩L−1
l=0 ∩νl

i=1 {Xi,l ≥ 0} | Θ̃ = θ̃) .

Since the pairwise error-event statistics are conditionally jointly Gaussian given Θ̃ = θ̃, it

follows from Corollary 2 of Lemma 2.1.1 in [16] (following a result of [15]) that

Pc | (Θ̃ = θ̃) ≥
L−1∏
l=0

Pr(∩νl
i=1{Xi,l ≥ 0} | Θ̃ = θ̃) .

All of the probabilities Pr(∩νl
i=1{Xi,l ≥ 0} | Θ̃ = θ̃) are comonotonic in Var(nj) for each j.

Thus,

Pc ≥ EΘ̃

[
L−1∏
l=0

Pr(∩νl
i=1{Xi,l ≥ 0} | Θ̃ = θ̃)

]

≥
L−1∏
l=0

EΘ̃

[
Pr(∩νl

i=1{Xi,l ≥ 0} | Θ̃ = θ̃)
]

≥
L−1∏
l=0

lim
L→∞

EΘ̃

[
Pr(∩νl

i=1{Xi,l ≥ 0} | Θ̃ = θ̃)
]

=

L−1∏
l=0

(1− p) = (1− p)L .

Thus,

Pe ≤ 1− (1− p)L .
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