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ABSTRACT 
 
 

Vehicle Infrastructure Integration (VII) program (also known as IntelliDrive) has 

proven the potential to improve transportation conditions by enabling the communication 

between vehicles and infrastructure, which provides a wide range of applications in 

transportation safety and mobility. Plug-in hybrid electric vehicles (PHEVs) that utilize 

both electrical and gasoline energy are a commercially viable technology with potential 

to contribute to both sustainable development and environmental conservation through 

increased fuel economy and reduced emissions. Considering positive potentials of 

PHEVs and VII in ITS, a framework that integrates PHEVs with VII technology was 

created in this research utilizing vehicle-to-vehicle and vehicle-to-infrastructure 

communications for transmitting real time and predicted traffic information. This 

framework aims to adjust the vehicle speed at each time interval on its driving mission 

and dynamically optimize the total energy consumption during the trip. Equivalent 

Consumption Minimization Strategy (ECMS) was utilized as the control strategy of 

PHEVs energy management for minimization of the equivalent energy. It was found that 

VII traffic information has the capability to benefit energy management, as presented in 

this thesis, while supporting the broader national transportation goals of an active 

transportation system where drivers, vehicles and infrastructure are integrated in a real 

time fashion to improve overall traffic conditions. 
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CHAPTER ONE 

INTRODUCTION 

 

The increasing demand for travel on highways in the United States is causing the 

transportation system to reach the limits of its existing capacity, which in turn has 

resulted in increased fuel demand and congestion, and degrading air quality. Today, 

nearly 60% of total U.S. petroleum consumption is satisfied by imported oil, and more 

than 60% of the petroleum is dedicated to transportation. In addition, the rapidly 

expanding petroleum consumption rates in developing countries may also threaten the 

sustainability of petroleum in the future (Markel and Simpson 2006). Based on 2007 

Urban Mobility Report, congestion is getting worse in regions of every size in the U.S., 

which caused Americans an extra 4.2 billion hours in travel time and an extra 2.9 billion 

gallons of fuel consumption.  The total cost of nationwide congestion amounts to$78 

billion (Schrank and Lomax 2007).  

Considering significant traffic increases anticipated in the coming decades, the 

United States and other countries have been working on technologies that can reduce the 

congestion and energy demand, and also maintain and improve the environmental 
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condition.  During the last few years, there has been an increasing concern over vehicle 

fuel efficiency in developed countries. There are several alternatives to petroleum for 

automobile use including hydrogen, ethanol, biodiesel, and electricity. Plug-in hybrid 

electric vehicles (PHEVs), which utilize both electrical and gasoline energy, is one of the 

commercially available options that may potentially contribute to a sustainable 

development of fuel resources, and improve the environment by increases in fuel 

economy and reductions in emissions.  

PHEVs are considered a significant advancement of hybrid vehicle technology 

(Zorpette 2004). The biggest benefit of PHEVs is its advanced dual-fuel power train 

technology that combines the benefits of pure electric vehicle and hybrid electric vehicles 

(HEVs). Conventional HEVs are charge-sustaining, which means batteries are 

maintained at a roughly constant state of charge (SOC) (e.g., SOC = 0.3) while driving, 

and they are recharged only from on-board electricity generation by their respective 

internal combustion engines and the recapture of kinetic energy through regenerative 

mode of braking. PHEVs can operate in either charge-sustaining or charge-depleting 

mode, and they have a high energy density battery pack that can be externally charged 

and operated solely on electric power for a range longer than conventional HEVs, which 
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results in a better fuel efficiency. (Williamson et al. 2006). Compared with other new 

vehicle technologies, the ability of PHEVs’ dual-fuel power train technology has 

contributed significantly to energy utilization efficiency within the vehicle by reducing 

the consumption of liquid fuels. According to Environmental Protection Agency (EPA) 

data, PHEVs could reduce the consumption of fuel by at least 70 percent compared with 

other conventional vehicles.  

Recently, highway congestion is not only the recurring “rush hour” delays in 

major cities, more than half of all congestion is non-recurring, caused by crashes, 

disabled vehicles, adverse weather, work zones, special events and other temporary 

disruptions to the highway transportation system. Reducing the number and severity of 

congestion is one of the major top priorities facing by the US Department of 

Transportation. Intelligent Transportation Systems (ITS) applications have been 

contributing to ease those increasing transportation limitations with modern information 

technologies and communication systems. Vehicle Infrastructure Integration (VII) 

program (also known as IntelliDrive) has the potential to improve transportation 

conditions by enabling the communication between vehicles and infrastructure, which 

provides a wide range of applications in transportation safety and mobility. As 
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envisioned, a VII system involves equipping vehicles and roadside infrastructure with 

wireless communication interfaces that provide constantly changing data, such as speed, 

acceleration/deceleration, and position, to the traffic surveillance system, which can 

contribute to an accurate assessment of existing and predicted travel conditions.  

Many existing studies have examined the feasibility of Dedicated Short Range 

Communication (DSRC) for VII. DSRC is one of the promising communication 

technologies for ITS. It is a short to medium range wireless protocol based on IEEE 

802.11p (Chen and Cai 2005). It is considered as an accepted wireless communication 

technology for enhancing transportation safety and highway efficiency in VII application 

(Bai and Krishnan 2006). DSRC technology for ITS applications works at 5.9 GHz to 

support information transmission between vehicles and roadside devices. DSRC also 

enables any two DSRC-equipped vehicles to exchange information via ad-hoc networks 

that are set up spontaneously between vehicles as the need arises; examples include 

traffic signal violation warning, emergency brake notification, and cooperative collision 

avoidance (Chen and Cai 2005). Most existing studies have mainly focused on traffic 

safety applications. For examples, Chan (2005) and the California VII research group 

have come up with an on-board VII pedestrian safety system that enables vehicle-to-
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vehicle and vehicle-to-infrastructure communication for transmitting a pedestrian 

detection signal. Servin et al. (2006) studied different vehicle speed adoption strategies 

under various freeway congestion conditions and found that intelligent speed adoption 

technologies can lead to lower fuel consumption and pollutant emission. 

Because of the current battery technology limitation, PHEVs can only sustain 

limited all electric range. Based on prototypes from the last decade, the all-electric range 

(AER) of PHEVs is in the range of 10 to 60 miles. The 2001 national household travel 

survey (NHTS) indicates that the majority of daily mileages are around 30 miles. 

However, the utility factor (UF), which indicates the fraction of total vehicle miles 

traveled (VMT) and occurs within the 30 miles of daily travel, is approximately 43%. 

This means that a PHEV which has 30 miles of AER can displace petroleum 

consumption equivalent to 43% of VMT. Higher AER can be obtained by using larger 

battery packs, however, further occupied in-vehicle space and total weight will result in 

higher energy consumption. Therefore, research is needed to optimize the power 

management strategies for PHEVs because of the limitations of space and vehicle weight.  

As previously discussed, the difference of PHEVs from HEV is the added 

capability to recharge the battery with electricity from an off-board source. Energy 
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management strategy is one of the most important issues in PHEV research. The basic 

strategy of energy management is to optimize the total energy in the vehicle, i.e., electric 

power and gasoline. The strategy also determines the power distribution between the fuel 

converter and electricity storage system at any time for different vehicle speeds. 

The basic strategy of PHEVs is to optimize the charge-depleting mode which 

means to assure optimal utilization and regeneration of the total energy in PHEVs. A very 

simple strategy is operating PHEVs in the charge-depleting mode until energy system 

reaches a pre-defined threshold of SOC. Then PHEVs are operated in the charge-

sustaining mode for maintaining the SOC until the end of the trip (Gong et al. 2008).  

Recently, many power management studies have been conducted by using the 

global optimization approach that aims at minimizing the cumulative energy loss through 

the entire trip. A study by the Argonne National Laboratory on PHEVs power 

management with the approach of global optimization showed that a significant 

improvement in fuel economy is achieved when the global optimization method is 

applied (Karbowski et al. 2006). However, global optimization approach relies on the 

prior knowledge of the driving cycle. Therefore, this method is not applicable for real-

time implementation. Another power management approach is called adaptive equivalent 
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consumption minimization strategy (A-ECMS) (Musardo et al. 2005). This strategy is 

developed based on the online adaptive estimation of an equivalence factor which 

requires current and past driving information, which makes this method more suitable for 

charge-sustaining operation.  

According to the power management strategies previously described, traffic 

information takes an important role in most of them. Traffic information such as travel 

speed, travel time, acceleration and deceleration, and roadway geometric information can 

be can be easily obtained by the traffic surveillance systems. With the assistance of ITS 

technologies, people are able to make smart travel choices through utilizing these 

information. For example, travelers can get geometric information of their intended route, 

such as spatial profile, from Traffic Management Center (TMC) or roadside units by 

vehicle to infrastructure communication. Meanwhile, drivers can send and receive traffic 

information such as travel time, and speed. Then the alternative routes can be calculated 

based on the travel cost in terms of travel time and energy consumption. All the historical 

or real time traffic information will contribute greatly to PHEVs for optimizing the power 

management strategy. Many studies have been undertaken to develop PHEVs power 

management strategies based on traffic information provided by ITS technologies. Gong 
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et al. (2007, 2008) concluded that with the assistance of on-board Global Positioning 

System (GPS), PHEVs can predict traffic by utilizing real time and historical traffic 

information. Then PHEVs may attain a nearly global optimal power management with 

least fuel consumption. Manzie et al. (2006) analyzed fuel economy of hybrid vehicles 

and telematics-enabled vehicles, which receive real time traffic information to adjust their 

drive cycle, through a simulation analysis. The telematics-enabled vehicles are equipped 

with on-board sensors and are able to communicate with roadside units to receive traffic 

flow information. They found that hybrid vehicles improve fuel economy about 15% to 

25% compared to baseline vehicles, whereas vehicles with telematics capabilities had 

improved fuel economy similar to that of hybrid vehicles with less than 60 seconds 

preview of traffic information. The vehicles with telematics capabilities exhibited 

improved fuel economy up to 33% compared to the baseline vehicles with a preview of 

traffic flow information up to 180 seconds.  

A reliable analysis of historical trend and real-time data of traffic condition is an 

important element to a traffic management and control system. Over the last decades, 

traffic condition prediction has played an important role for various ITS applications. 

There are three different types of traffic condition forecasting: long-term traffic 
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forecasting, short-term traffic forecasting and mid-term traffic forecasting. In this study, 

short-term traffic prediction is considered to determine the traffic volume, travel speed, 

and travel time in the next time window, which means predicted traffic conditions. With 

the increasing deployment of ITS, the demand for the accurate short-term traffic 

condition forecasting is increasing. Relying on the historical and real-time data of the 

traffic system obtained by traffic infrastructure, traffic management centers have the 

ability to predict future traffic conditions on the roadways.  

VII has been evaluated in the U.S. for traffic condition monitoring, emergency 

message dissemination, dynamic route scheduling, and safe driving through field 

operational tests. It has also provided an opportunity to directly collect the historical and 

real-time traffic data and process those data for traveler information system. In a VII 

system, the equipped vehicles and roadside infrastructure with wireless communication 

interface will make it possible to constantly sample the travel time, flow, and density of 

the travel population (Ma et al. 2009). The expected availability and quality of the traffic 

information would in turn increase the performance and capability of the traffic condition 

prediction system. It is obvious that the VII coverage depends on the deployment of 

roadside infrastructure over the network. In this thesis, it is assumed that roadside 
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equipment (RSE) is installed in the entire network and that the VII information can be 

transferred to RSE without error and loss. 

In this thesis, artificial neural network (ANN) is utilized for a VII based short-

term online travel speed and time prediction. Travel time prediction is becoming 

increasingly important in traffic operations (Chen and Chien 2001). Providing travel time 

information on available alternative routes to travelers is believed to be an effective 

factor on influencing driver behavior and route/departure time decisions, which in could 

contribute to overall time savings and the reliability of predicted travel times on the travel 

network (Lint 2008). Thus, travel time prediction is an important function of the VII 

system for generating the alternative routes between origins and destinations. In the past, 

various approaches have been developed to predict traffic conditions. Some algorithms 

are based on statistical analysis of historical and real-time data with linear models (Zhang 

and Rice 2003) or Kalman filtering theory (Rice and Van Zwet 2004, Chen and Chien 

2001), simulation based dynamic traffic assignment model (Ben-Akiva et al. 2002, 

Mahamassani 2004), and neural network models (Park et al. 1998, Vanajakshi and Rilett 

2004, Van Lint 2005, Yasdi 1999). In this thesis, a multi-layer perception artificial neural 

network (ANN) with back propagation algorithm is used in the prediction model because 
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of its excellent predictive capacity with learning capability. Various traffic variables can 

be used as input to the ANN in the short-term traffic condition prediction problems. The 

short-term prediction is based on the current incoming data which treats historical data or 

real-time data as the input of the ANN for prediction of the future traffic condition. The 

first predicted output value is used as one of the lagged inputs for the next prediction. 

This procedure is continued until the end of predictions.  

Considering the positive potentials of PHEVs and VII in ITS, a framework that 

integrates PHEVs with VII technology will be created, which utilizes vehicle-to-vehicle 

and vehicle-to-infrastructure communications for transmitting real time traffic 

information. Such a system would actually guide these vehicles dynamically to optimize 

the total energy consumption during the trip. At the same time, the VII enabled PHEVs 

are expected to receive predicted traffic information for adjusting the vehicle speed at 

each point on its driving mission. Corresponding to the predicted travel time and energy 

consumption, PHEVs can be able to take the optimized traffic routes with the continuous 

knowledge of real-time changes in traffic loadings.  

Therefore, the objective of this thesis is to derive a flexible and easy-to-

implement in-vehicle energy management control strategy that uses microscopic online 
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trip data derived through VII to optimize vehicle fuel and energy consumption to 

minimize total trip costs. The remaining chapters of the thesis are organized as follows. 

Chapter 2 presents a literature review related to this thesis. Chapter 3 describes the 

research methodology and the development of the integrated framework of the proposed 

VII-enabled PHEVs traffic prediction and energy management systems. Chapter 4 

presents the results from a case to evaluate and analyze the performance of the proposed 

framework. The last chapter presents conclusions derived from this study and 

recommendations for the further research. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

The capability of obtaining traffic information is expected to improve the 

performance of PHEVs by reducing energy consumption, emissions, and travel time from 

their origins and destinations. In this chapter, the first section provides a review of the 

previous studies of the applications of the VII system. The second section discusses 

different power control strategies of PHEVs. The third section presents previous research 

on traffic condition prediction. Finally, a summary of the previous studies on integrating 

traffic management with power management is provided. 

2.1 Vehicle Infrastructure Integration (VII) 

Since 2003, FHWA has sponsored several Vehicle Infrastructure Integration (VII) 

projects nationwide. Many states have participated in the VII program. California and 

Michigan have conducted field tests for evaluating the feasibility of different applications 

of VII, and identifying the architecture of a full-scale VII deployment.   

VII California has tested various VII applications for on-line traffic condition 

assessment (VII California 2006). Under the California Partners for Advanced Transit 
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and Highways (PATH) program, an on-board VII safety system has been implemented 

that enables vehicle-to-vehicle and vehicle-to-infrastructure communications for 

transmitting a pedestrian detection signal (Chan and Bu 2006) and a cooperative active 

safety warning system for slippery road warnings (Misener 2005). VII Michigan 

proposed a VII Data Use Analysis and Processing (DUAP) system that includes a 

framework for identifying usages of the VII data in management and operation of the 

transportation system in Michigan.VII enabled vehicles are expected to collect location, 

speed, and headway data, and transmit the data through the supporting VII and private 

networks. Under this framework, other data, such as braking status, accelerations, and 

weather conditions, can be provided by vehicle sensors.  The DUAP system receive and 

process the information with a consistent set of traffic, environmental, and asset data, 

which is then merged with traditional traffic data used for providing traveler information 

(Cole 2007).  

Some studies focused on vehicle-to-vehicle communication for generating travel 

time information. Xu and Barth (2006) evaluated different algorithms that estimated 

travel times through inter-vehicle communication (IVC). Relying on vehicle-to-vehicle 

DSRC-based communication, link travel time estimation is updated by the vehicle when 
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it exits that link. This research found that 97% of the links in the network have estimated 

link travel time errors of less than 10%. Wunderlich et al. (2007) performed experiments 

utilizing vehicle trajectory data from the field to simulate the VII probe process and 

characterize the capability of using VII probe data to estimate travel time. The trajectory 

data is a snapshot that contains a record of vehicle position, current speed, and vehicle 

status information. The snapshots are generated at various rates depending on the current 

speed of VII-enabled probe vehicles. This experiment revealed that severe congestion can 

impact the availability of snapshot data for travel time calculation. The accuracy of travel 

time estimation decreases with a reduced snapshot rates.  

Currently, VII is called IntelliDirve, and it combines advanced wireless 

communications, vehicle sensors, GPS navigation, on-board computer processing, and 

smart infrastructure that give vehicles the capability to identify threats and hazards on the 

roadways and give alerts and warnings to drivers (IntelliDriveSM 2009). The core concept 

of IntelliDrive is an intelligent network operation that supports high speed data 

transmission among vehicles, and between vehicles and infrastructure components, or 

hand held devices. IntelliDrive has the potential to improve transportation safety and 

mobility, and reduce environmental impact (IntelliDriveSM 2009).  
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2.2 Energy Management Strategies of Plug-in Hybrid Electric Vehicle (PHEV) 

Plug-in hybrid electric vehicles’ fuel economy and emission rate not only depend 

on battery capacity, but also rely on the energy management strategy. The basic function 

of energy management is to assure optimal use and regeneration of the total energy in the 

vehicle. At any time and for any vehicle speed, the control strategy has to determine the 

power distribution between primary fuel converters (FC)—internal combustion engine 

(ICE) and renewable electrical storage system (ESS) or the battery (Pisu and Rizzoni 

2007).  

Basically, there are two constraints in energy management. First, the motive 

power requested by the driver must always be satisfied up to a known maximum power 

demand.  Secondly, the state of charge of the ESS must be maintained within preferred 

limits, allowing the vehicle to be charge-sustaining. A charge-sustaining strategy is an 

energy management scheme such that the energy stored in the ESS at the beginning and 

at the end of the trip is the same, while a charge-depleting strategy is such that the energy 

stored in the ESS at the end of the trip is less than at the beginning of the trip. Within 

these constraints, the first objective is to operate the power train to achieve the maximum 

fuel economy.  Ideally the motive power must be split between ESS and fuel converter at 
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each time to minimize the overall fuel consumption over a given trip according to the 

Equation (2.1).  

                                      { }( ), ( ), ( ) 0

min ( )
T

f
P t P t tfc el

m d
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where: T is the duration of the trip,  

( )fm t  is the fuel flow rate at time t,  

γ(t) is the gear selection, 

Pel

P

(t) is the power provided by the ESS at time t,  

fc

P

(t) is the power provided by the fuel converter (engine only, engine plus 

generator or fuel cell depending on the configuration) at time t,  

req(t) 

SOC is the state of charge of the ESS. 

is the power requested by the driver and  

Generally, energy management strategies can be classified into three types: global 

optimization methods, heuristic methods, and instantaneous optimization methods. 

Global optimization methods are based on dynamic programming (DP) technology. It 
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seeks a global optimal solution for the complete driving trip. However, prior knowledge 

of the driving cycle for global optimal solution is required. Thus, the application of this 

method is very limited. Many studies implemented various methods to make up this 

limitation of global optimization. Lin et al. (2003) designed a rule-based controller that 

extracts rules from DP control results. Rule-based power management strategy aims to 

find the optimal power split between the engine and motor for a parallel hybrid electric 

truck during charge sustaining mode. A power split ratio is defined as PSR = Peng/Preq, 

where Peng is the power from the engine and Preq

Heuristic methods are more oriented to real-time implementation and have the 

advantage of not requiring precise equations or models for the system. They are often 

non-portable, require extensive calibration, and do not provide a global optimal solution. 

Schouten et al. (2002) provided a fuzzy logic controller (FLC) for parallel hybrid 

 is the power requested from the driver. 

Different values of PSR correspond to different operating modes including motor only 

(PSR=0), engine only (PSR=1), power-assist (0<PSR<1), and recharging mode (PSR>1). 

This study demonstrated that the power management strategy for HEVs, by extracting 

rules from the Dynamic Programming, has the clear advantage of being near-optimal, 

accommodating of multiple objectives.  
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vehicles. The power controller first converts the accelerator and brake pedal inputs of the 

driver into a driver power command. Then the driver power command, state of charge of 

the battery, and electric motor speed are used by a fuzzy logic controller to compute the 

optimal generator power and a scaling factor for the electric motor. The driver power 

command, optimal generator power, and scaling factor are used to compute the optimal 

ICE and EM power. Furthermore, the efficiency of the ICE for a given power level is 

optimized by using an optimal speed-torque curve, and gear shifting to control the speed 

of the ICE. The efficiency of FLC was compared to the default controller without 

intelligent control strategy, which indicated that FLC could improve the efficiency of 

power train. 

Instantaneous optimization methods, based on the local minimization of a fuel 

consumption function, are advantageous in deriving a local optimal solution that is 

charge-sustaining, easy to implement, portable and easy to calibrate. The complexity is 

shifted to off-line calculations and the challenge arises in the correct formulation of the 

fuel consumption function, especially when several objectives must be optimized 

simultaneously (e.g. fuel consumption, emission, and battery life) for the energy 

minimization. Equivalent Consumption Minimization Strategy (ECMS) (Paganelli et al., 
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2002; Sciarretta et al., 2004; Pisu et al., 2007) is one of the instantaneous methods. 

Because it is intrinsically charge-sustaining and requires only current and past driving 

information, this strategy is widely applied for optimizing HEVs energy consumption.  

In ECMS approach, the global criterion given in Equation (2.1) is replaced by a 

local criterion (Equation 2.2), thusly reducing the problem to minimized an equivalent 

fuel consumption function , ( )f eqm t , which contains information regarding actual fuel 

consumption and future fuel saving/cost. 

                                    
{ } ,

( ), ( ), ( )
min ( )f eq

P t P t tfc el

m t t
γ

∀                        (2.2) 

Although, the global minimization problem represented in Equation (2.1) is not 

strictly equal to the local minimization shown in Equation (2.2).  However, local 

minimization results in a formulation amenable to real-time control, while the use of the 

equivalent fuel flow rate indirectly accounts for the non-local nature of the problem. In 

this thesis, ECMS is utilized as the control strategy of PHEVs energy management for 

minimization of the equivalent energy consumption as given by Equation (2.2).  

2.3 Online Traffic Condition Prediction 

With the development of ITS, there has been an increased interest in the use of 

predicted traffic conditions to positively influence travelers’ departure time and route 
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choice. Many approaches have been developed on short-term forecasting algorithms. 

Some methods are based on statistical methods such as time series analysis (Sun et al. 

2005), the Kalman filtering method, and linear regression techniques (Kwon et al. 2000, 

Zhang and Rice 2003). Kwon et al. (2000) explored using linear regression and advanced 

statistical methods for prediction of travel time based on historical and real-time traffic 

flows and densities. They derived a simple linear regression model to provide appropriate 

short-term travel time forecasting by collecting the current travel time of probe vehicles. 

Similarly, Zhang and Rice (2003) proposed a short-term freeway travel time prediction 

method based on a linear regression model. The implementation of this methodology 

included off-line computation and storage of the estimated model coefficients for 

different departure time and prediction horizons. The model was able to predict the travel 

time utilizing the incoming data and model coefficients. However, this linear regression 

travel time prediction model used linear relationships between measured speed at each 

sensor location and travel time between two installed loop detectors. Thus, the accuracy 

of those applications is limited by the availability and reliability of loop detectors.  

Artificial intelligent techniques have been extensively used in traffic flow, speed 

and travel time prediction. Vanajakshi and Rilett (2004, 2007) presented travel time and 
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speed prediction models by means of artificial neural network (ANN) and support vector 

machine (SVM) methods. The authors found that ANN prediction models have the 

disadvantage of providing no information about the relative importance of the various 

parameters, unlike statistical models. ANN prediction models depend strongly on the 

amount of available data for training the network. For limited or missing data, the trained 

ANN data cannot represent all situations. To address these problems, the authors 

explored support vector regression (SVR) model, which combines pattern classification 

and regression techniques. Vanajakshi and Rilett (2004, 2007) demonstrated that traffic 

speed and travel time prediction for the next two minutes using SVR performed better 

than ANN. Van Lint et al. (2005) proposed freeway travel time prediction framework 

using a state-space neural network (SSNN) that predict travel time in each roadway 

section to derive the future travel time of the entire route. They found that SSNN is not 

sensitive to missing data, and is robust to either random or structural absence of input 

data. They concluded that the SSNN model can provide satisfactory results in real-time 

applications even though part of the data is missing.  

Previous studies demonstrated that SVR is applicable to travel time predictions. 

Wu et al. (2004) proposed to use SVR for short-term travel time prediction. They found 
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that SVR requires less computational resources, and can rapidly converge without local 

minimization. An effective prediction algorithm must consider both recurring traffic 

patterns and non-recurring spontaneous traffic events. Castro-Neto et al. (2008) provided 

an on-line support vector regression (OL-SVR) model to predict traffic flow under typical 

and atypical traffic conditions. They pointed out that OL-SVR has the advantage to 

predict nonrecurring traffic compared with other algorithms. Park (2002) employed a 

hybrid neural-fuzzy methodology that used fuzzy C-mean (FCM) to classify traffic 

patterns into clusters, and then used radial basis function (RBF) NNet to predict future 

traffic conditions within clusters.  

Typically travel time prediction method uses historical mean traffic flow 

variables, such as speed, flow and density being measured by inductive loop detectors or 

by other roadside sensors as input variables to predict travel time. The indirect estimation 

of travel time by those inputs may introduce additional errors into the travel condition 

prediction.  

The majority of existing travels condition prediction methods use densely-placed 

traffic sensors, such as video and loop detectors, to estimate travel time (Zou, 2007).  

These sensors are typically placed at a spacing ranging from every half mile to a quarter 
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of a mile. With these methods, travel time is predicted indirectly based upon traffic 

sensor measurements, such as volume, density and speed, which may introduce additional 

errors into the travel condition prediction. In addition, existing travel time prediction 

models perform poorly under the impact of unexpected incidents (Van Lint, 2005).  

Oak Ridge National Lab (ORNL) energy division researchers along with 

researchers at the University of Texas at Austin and the Massachusetts Institute of 

Technology developed a real-time Traffic Estimation and Prediction System (TrEPS). 

TrEPS uses traffic surveillance data to estimate and predict traffic network conditions, 

and to provide information that helps travelers to select the best routes, and TMCs to 

anticipate and avert traffic congestion. Using real-time traffic data from roadside sensors, 

TrEPS can be utilized predict short term traffic conditions and traffic flow patterns to 

assist TMCs in producing proactive traffic control actions that reduce congestion.  

2.4  Integration of Traffic Management with Power Control Management  

Many studies have been undertaken to develop PHEVs power management 

strategies based on traffic information provided by ITS. Gong, Q., et al (2007) (2008) 

developed a global optimization scheme of PHEV power management under a trip 

modeling framework that implemented ITS technology, such as communication between 
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PHEV and transportation infrastructures. With the assistance of an on-board Global 

Positioning System (GPS), PHEVs can predict the travel/driving profile by utilizing real 

time and historical traffic information sent by roadside sensors. Manzie et al. (2006) 

analyzed the fuel economy of hybrid and telematics-enabled vehicles, through a 

simulation analysis, which receive traffic flow information to adjust their drive cycle. The 

telematics-enabled vehicles are equipped with on-board sensors, and are able to 

communicate with roadside units. They found that hybrid vehicles had an improved fuel 

economy of 15% to 25% compared to baseline vehicles, whereas vehicles with telematics 

capabilities had an improved fuel economy similar to that of hybrid vehicles with less 

than 60 seconds preview of traffic information. The vehicles with telematics capabilities 

exhibited improved fuel economy up to 33% compared to the baseline vehicles with a 

preview of traffic flow information up to 180 seconds. 

National Renewable Energy Laboratory (NREL) implemented an approach that 

employs route-based control to improve HEV efficiency at minimal additional costs 

(Gonder 2008). Gonder evaluated a range of route-based control approaches and 

identified look-ahead strategies (using input from “on-the-fly” route predictions) as an 

area meriting further analysis.   
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2.5 Summary of Literature Review 

The literature review revealed the following limitations related to research on 

energy management of PHEVs using real time traffic data. First, previous studies on 

PHEVs power control strategy utilized standard driving cycles that can not reflect the real 

operating conditions on roadways. Although the global optimization method has 

demonstrated great potential for achieving good fuel economy, it is difficult to know all 

of the trip information in advance. Another difficulty is the computational load for global 

optimization algorithms in the microprocessor of PHEVs. Considering the feasibility of 

online PHEVs energy management control, ECMS is a better control strategy for VII 

enabled PHEVs because of its characteristic of local minimization control.  

Most travel time prediction approaches were based on historical and real-time 

macroscopic traffic data collected by loop detectors. Limited research has been 

undertaken on using VII generated microscopic traffic data to predict roadway 

conditions. This study propose to utilize historical and real-time traffic data collected by 

VII enabled vehicles to predict travel time and traffic speed. For predicting speed profile, 

VII generated speed data has been proven to be more accurate in presenting the real 
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driving conditions, which in turn provides better energy management for VII-enabled 

PHEVs.  
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CHAPTER THREE 

METHODOLOGY 

 

This chapter discusses the methods employed to conduct the study on VII enabled 

PHEVs. As shown in Figure 3.1, the methodology has two main parts; VII transportation 

system modeling for predicting traffic condition, and PHEV QSS modeling for 

optimizing energy consumption. 

 

Figure 3.1 Research Methodology  
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3.1 Traffic Condition Prediction Model 

To achieve an effective and economic trip, the prior knowledge of traffic 

conditions is quite useful. In this thesis, a short-term prediction of traffic conditions is 

developed by utilizing artificial neural network (ANN). 

ANN is an intelligent computing technique that is composed of a hierarchy of 

processing units, which organized in a series of two or more mutually exclusive sets of 

neurons or layers. Particularly, multilayer feed forward artificial neural networks (MLFF-

ANN) that utilize a back propagation algorithm have been applied successfully to solve 

some complex problems by training them in a supervised learning environment. As 

shown in Figure 3.2, a MLFF-ANN model consists of one input layer for distributing a 

set of input data into the next layer, one output layer to point the overall mapping results 

of the available inputs, and one or more hidden layers to process the back propagation 

algorithm by adjusting weights between all neurons repeatedly until the actual output 

maps the desired target in a certain error range. The repeating process is called training, 

which aims to solve several issues for the MLFF-ANN. One of them is selecting the 

number of hidden layers and neurons in the hidden layers. Another issue is finding 
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globally converging solution to avoid local minimization in a reasonable period of time. 

At last, validating the MLFF-ANN is necessary by inputting the testing data set.  

 

Figure 3.2 Multilayer Feed Forward Artificial Neural Networks Structure 

With the learning capability, ANN model is suitable for solving problems like 

prediction of traffic parameters (e.g., travel time, flow and speed). Hence, in this thesis, a 

MLFF-ANN with back propagation algorithm was considered to predict travel time and 

speed.  

For predicting travel time, the architecture of MLFF-ANN was composed as 

follows: five neurons in the input layer, single hidden layer with 10 neurons and 1 output 

neuron for output layer. A typical online time series prediction procedure was used with a 
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prediction horizon time step of 1 minute. Given the travel time in a time series x(t), t = 1, 

2, … and the prediction target x(t+1) that is generated, a set of training samples were used 

to train the MLFF-ANN model. The MLFF-ANN training procedure was done in the 

following fashion:   

In each of the travel time profiles from origin to destination (OD), the first 5 data 

points (OD travel time departure at 16:00, 16:01, 16:02, 16:03, 16:04) were used as input, 

with the 6th data point (OD travel time departure at 16:05) being the target. Then the 5 

data point input window moves ahead, incorporating the 6th data point to generate a new 

5 data points input (OD travel time departure at 16:01, 16:02, 16:03, 16:04, 16:05). 

Meanwhile, the 7th data point (OD travel time departure at 16:06) is considered the target. 

This procedure continues until the last data point (OD travel time departure at 19:00) 

becomes the target. The OD travel time profiles of each route during three days were 

utilized to train the MLFF-ANN model. The model was tested on the 4th

To evaluate the prediction performance of the MLFF-ANN model, absolute 

percent error (APE) and mean absolute percent error (MAPE) were employed (Equations 

3.1and 3.2, respectively). 

 day of OD travel 

time data. 
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                                     APE(%) = |yi−yi� |
yi

× 100%                                  (3.1) 

                                 MAPE(%) = 1
n
∑ |yi−yi� |

yi
× 100%n

i=1                          (3.2)      

where yi�  is the predicted OD travel time for observation i; yi  is the actual OD travel time 

for observation i; n is the number of predictions.  

Since the driving cycle input of PHEV QSS model is functioned in one second 

time step, the speed profile prediction should be also in one second time step. It is 

impossible to get speed data in each second along the roadways by loop detectors 

economically. In this thesis, VII generated speed data was considered as the traffic data 

source. VII enabled vehicles are viewed as mobile sensors that can collect real-time 

traffic data in every time step. The data will be stored and send in package in every 

prediction time window from VII enabled vehicles to roadside infrastructure agents.  

Similar to OD travel time prediction model, speed profile prediction model also 

utilizes a typical online time series prediction procedure to predict traffic speed. The 

architecture of this MLFF-ANN speed profile prediction model has 60 neurons in the 

input layer, 50 neurons in single hidden layer, and 120 output neurons. Assuming the 

current time is t, the input neurons include a set of speed data f(t), f(t-1), …, and f(t-59) at 

time t, t-1, …, t-59 respectively. Based on these historical and real-time data, the future 
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speed values of f(t+1), f(t+2), …, f(t+120) can be predicted. Then the predicted speed 

values of f(t+61), f(t+62), …, f(t+120) will be used as the input data for next prediction 

step to predict speed values of f(t+121), …, f(t+240). This procedure continues until the 

last speed of the trip is predicted. The author utilized 80% of the speed samples in 

training and the remaining samples were used in the testing the MLFF-ANN model. 

3.2 PHEV QSS Modeling 

In this section, a series PHEV model was built up using QSS Toolbox (QSS-TB). 

QSS-TB is MATLAB/Simulink based software that contains general structures of 

common elements of vehicles, such as the internal combustion engine, electric motor, 

battery system, etc. It is quite flexible in combining different energy components to 

feature the drivetrain of any types of existing vehicle model.  

3.2.1 Series PHEV 

In series PHEVs, traction force is provided by the electric motor. The power 

sources of this motor are an engine-generator set and electricity storage system as shown 

in Figure 3.3. The arrows indicate the energy flows among all the components of a series 

PHEV. There are two forms of energy, mechanical power and electric power. The 

double-headed arrows signify that it is possible for the electric power flowing in both 
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directions at different times. The energy flow from the internal combustion engine (ICE) 

is unidirectional because it represents the irreversible engine process (Pisu and Rizzoni 

2005). The output of the generator is connected to the electric motor through a Power 

Converter. The electric storage system can be recharged by the off-board power grids or 

by the ICE to extend the range of charge depleting mode. While the vehicle is driven at 

low speeds, the electricity from the battery system draws power to drive the electric 

motor that is in full electric vehicle mode. During acceleration or high speed driving, in 

addition to the power drawn from the battery system, the generator, which is powered by 

the ICE, also provides extra energy to drive the vehicle.  

 

Figure 3.3 Series PHEV Components and Power Flows  
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Table 3.1 indicates the main specifications used in the PHEV model. The model is 

characterized as mid-size sedan with 70 horse power (hp) of engine and 8.11 kilowatt 

hour (kWh) battery system. The battery system is constructed by 18 packs that is 2.23 Ah 

current and 201.6 voltages. Each of battery pack is combined by 61 cells in series. Thus, 

the total energy that the battery system can provide is 8.11kWh.  

Table 3.1 Parameters of Resistance and Vehicle Model Specifications 

Total weight (M) 1256 kg 

Projected frontal area (Af 2.16 m) 

Aerodynamic drag coefficient (C

2 

d

Ambient air density (ρ

) 

a

0.26  

) 1.18 kg/m

Rolling friction coefficient (C

3 

r 0.007 ) 

Transmission efficiency 0.98 

Final gear ratio 3.5 

Engine power 70 hp 

Motor/Generator power 67 hp 

Motor/Generator efficiency 0.95 

Battery construction 61 cells of 2.23-Ah cylindrical battery in series for 
each pack 

Battery packs 18 

Battery capacity 8.11 kWh 

SOC window 30% ~ 80% 
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Assume a vehicle moves on a straight roadway with speed v and acceleration a, 

the tractive force to propel the vehicle forward must overcome the opposing forces that 

are air resistance, rolling resistance, grade resistance, and inertial resistance as shown in 

Figure 3.4 and Equation 3.3.  

 

Figure 3.4 Force Diagram of Vehicle 

                              ( ) l r g bF t F F F F= + + +                                        (3.3) 

Based on the predicted velocity and acceleration profiles over the desired driving 

route by the in-vehicle processors and the known road grade, it is possible to determine 

an estimate of the vehicle power demand at the wheels expressed as Equation 3.4, 

31ˆ ˆˆˆˆˆˆ( ) ( ) ( ) ( ) co s ( ) ( ) sin ( ) ( ) ( ) ( )
2TR a d f rP t F t v t C A v t Mg t C v t Mg t v t Ma t v tρ α α= = + + +       

                                                                                                                     (3.4)
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where ρa is the ambient air density, Cd is the aerodynamic drag coefficient, Af is the 

projected frontal area of the vehicle, Cr

ˆ( )v t

 is the rolling friction coefficient, M is the vehicle 

total mass, g is the gravity, α(t) is the road grade, is the predicted vehicle velocity, 

and ˆ( )a t is the predicted vehicle acceleration. Table 3.1 indicates the values of those 

parameters. 

The power required during each time step is calculated directly from the estimated 

drive cycles. The required power is then translated into torque and the required speed of 

the electric motor.  Taking into consideration the losses of the electric motor and 

transmission losses between each energy component, like the generator and ICE, the 

power flow is calculated backward through the drive train.  Lastly, the use of fuel or 

electric energy is computed for the given drive cycle.  

As the engine-generator set contributes most of the power for the propulsion 

system, it is reasonable to focus on optimizing the engine and generator efficiencies 

(Baumann et al.). The mechanical power Pice and electric power Pfc

         𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜔𝜔𝑠𝑠𝑇𝑇𝑠𝑠 = 𝜂𝜂𝑖𝑖(𝜔𝜔𝑠𝑠𝑇𝑇𝑠𝑠) 𝑃𝑃𝑇𝑇𝑇𝑇 = 𝜂𝜂𝑖𝑖(𝜔𝜔𝑠𝑠𝑇𝑇𝑠𝑠) �̇�𝑚𝐻𝐻𝐿𝐿𝐻𝐻𝐿𝐿                            (3.5) 

 generated by the 

engine-generator set can be expressed by Equations 3.5 and 3.6. 

                                 𝑃𝑃𝑓𝑓𝑖𝑖 = 𝜂𝜂𝑔𝑔(𝜔𝜔𝑠𝑠𝑇𝑇𝑠𝑠) 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖                                                   (3.6) 
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where Ts and ωs are the engine output torque and speed respectively, ηe(Ts, ωs) and 

ηg(Ts, ωs) are the efficiency maps of the engine and generator respectively, �̇�𝑚 and HLHV

�
0 ≤ 𝑇𝑇𝑠𝑠 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (𝜔𝜔𝑠𝑠)

max�𝜔𝜔𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑚𝑚 ,𝜔𝜔𝑔𝑔,𝑚𝑚𝑖𝑖𝑚𝑚 � ≤ 𝜔𝜔𝑠𝑠 ≤ min�𝜔𝜔𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑚𝑚 ,𝜔𝜔𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 �
�            

 

are the fuel mass flow rate and the corresponding fuel low heating value. The torque and 

speed of the engine have the constraints as follows. 

where Tmax(ωs) is the maximum engine torque output as a function of the engine speed, 

ωe,min and ωe,max are the minimum and maximum angular speeds respectively of the 

engine, and ωg,min and ωg,max

For the power of a 80kW engine and 80kW generator, within the operational 

space defined by Equations 3.3 and 3.4, the engine efficiency map η

 are the minimum and maximum angular speeds respectively 

of the generator (Gao et al. 2009). 

e(Ts, ωs) can be 

presented in the speed-torque plane as shown in Figure 3.5.  
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Figure 3.5 Engine Efficiency Map 

The torque and speed of the engine associated with the best efficiency curve 

defines the optimal engine operating points that implies the minimum fuel consumption 

of the engine under certain speeds. Figure 3.6 indicates the optimal efficiency curve that 

defines the optimal speed and torque of the engine that operates under a most efficient 

situation.  
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Figure 3.6 Optimal Engine Torques vs. Speeds Curve with Best Efficiencies 

3.2.2 PHEV Energy Management Strategy  

In this thesis, the PHEV energy control was designed using ECMS algorithm. 

PHEV control strategy is similar to the one used in HEV. The main difference between 

PHEV and HEV is that the battery system of PHEV is depleted to the minimum state of 

charge (SOC) and then sustained by the ICE as a conventional HEV. As described in the 

previous chapter, ECMS control strategy solves the local optimization problem of HEV 

considering the total energy consumption. It is based on the fact that the energy 

consumption from the battery of a hybrid vehicle is replenished by running the engine. 

Therefore, the battery discharge at any time is equivalent to some fuel consumption in the 
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future (Tulpule et al. 2009). Given a power demand at the wheels, the ECMS algorithm 

searches for the best power split between the engine and battery that minimizes the 

equivalent fuel consumption. The basic function of ECMS algorithm can be expressed as 

Equation 3.7 and 3.8. 

                   , , , ,( ) ( ) ( )f eq f FC f ESS eqm t m t m t= +                                        (3.7) 

, , ,
,

( )1( ) (1 ) ( ( ))
( ( ))

el
f ESS eq chg dis el chg el

el dis el LHV

P tm t s s P t
P t Q

γ γ η
η

 
= ⋅ ⋅ + ⋅ − ⋅ ⋅  
 

      (3.8) 

where, elP : power provided by the electricity storage system,     

1 0
0 0

el

el

if p
if p

γ
≥

=  < , 
 

, , ( )f ESS eqm t : equivalent fuel consumption,  

,chg diss s : equivalent factors,  

, ( )f FCm t : fuel flow rate at time t,  

, ( )f eqm t : equivalent cost/saving associated to battery,  

elη : efficiency of the electrical path, values are different between charge 

mode and discharge mode. 

The equivalence factors chgs  and diss are determined by the future driving 

conditions. Generally speaking, they can be seen as parameters to be optimized in order 
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to obtain optimal fuel consumption and charge sustaining behavior. Therefore, the total 

fuel consumption of a series PHEV at a given moment can be expressed as the sum of 

actual fuel consumption of the engine-generator set and the equivalent fuel consumption 

of the battery pack (Gao et al. 2009). The objective of ECMS energy control is to 

determine a mechanism for the adaptation of the equivalence factors based on the traffic 

data provided by the VII network and predicted by the PHEV-VII in-vehicle processors.  

3.2.3 QSS Modeling 

As previously discussed, this study used a backward approach to model vehicle 

energy flow. Generally, backward model begins from a given driving cycle at the wheels. 

The tractive power is calculated in terms of the known parameters. Then the needed 

power flow is traced back through the power train to find how much power that each 

involved component has to provide. In backward model, driver behavior is not required. 

Thus, the power required at the wheels of the vehicle through the time step is calculated 

directly from the known drive cycles. The required power is then translated into the 

torque and speed of electric motor, and moves up stream to estimate the power required 

at the power source, ICE and battery at the end. Figure 3.7 shows the backward PHEV 

simulation modeling.  
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Figure 3.7 QSS Model of Series PHEV 

In this model, the “Desired power is within limits” block is used for identifying 

the optimal choice of the equivalent factors that minimizes the fuel consumption under 

charge-sustaining conditions. This backward modeling assumes that the future vehicle 

power is equal to the driver power request in the future driving conditions. The optimal 

equivalent factors can be pre-computed off-line based on the predicted driving profiles.  
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3.3 Integrated Simulation 

In this section, the integration of PHEV energy control with VII systems is 

discussed. Since traffic conditions may change with time, an accurate traffic condition 

prediction system should be adopted within a prediction horizon k. Every k seconds, the 

calculation of the equivalence factors will be repeated using the new prediction of 

velocity and acceleration for the remainder of the road trip.  

One major objective of the VII transportation system considered in this thesis is to 

provide traffic information to VII-PHEV to minimize the overall fuel consumptions and 

costs. To achieve this target, the integrated system not only calculates the equivalent 

factors to reach the minimum energy consumption, but also keeps track of the battery’s 

SOC every k seconds to sustain the charge depleting range as long as possible for the trip.  

Simulation is a comparatively cost-effective process for evaluation due to the 

complexity and cost in conducting a field test. In this study, the actual driving conditions 

were generated by Paramics microscopic simulation tool, which is a time step and 

behavior-based microscopic traffic simulation software (Quadstone 2008). The real 

traffic condition of the selected study site was simulated by Paramics, which covers 

interstate highways and urban streets in the North Charleston area, South Carolina. The 
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travel time and speed profiles of three available routes between an origin and destination 

were predicted using historical and real-time information supplied by VII enabled 

vehicles and traffic infrastructure agents. By knowing the future traffic information, the 

PHEV model will give the final SOC of the battery, amount of fuel consumed, and travel 

time between alternate travel paths of the PHEV-VIIs. 
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CHAPTER FOUR 

VII-PHEV ANALYSIS 

 

This chapter presents the analysis of an ANN algorithm based traffic prediction 

model, energy consumption impact, and traffic impact of PHEVs. The performance of the 

ANN model was evaluated with the prediction of travel time and speed profile between 

the selected origin and destination. The energy management strategy of PHEVs was 

evaluated by comparing SOCs and fuel consumptions by utilizing QSS PHEV simulink 

modeling in different optimization scenarios on three alternative routes.  

4.1 Traffic Prediction Model Performance  

In this section, the travel times and traffic speed profiles between the origin and 

destination along three different routes were predicted using the ANN-based prediction 

model. The predicted results were evaluated with the actual traffic data of the selected 

study site, which was obtained by microscopic traffic simulation. Figure 4.1 shows the 

study site located in North Charleston. Three alternative routes were selected: Route 1 is 

a major route along I-26, Route 2 is an alternate route along US 78 and Route 3 is a 

combination of the first two routes along I-26 and US 78.  
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Figure 4.1 Traffic Network of Study Site 

4.1.1 Travel Time Prediction 

This section presents the performance of travel time prediction model which was 

built utilizing an ANN algorithm. Utilizing microscopic traffic simulation, the variations 

of the OD travel time between departure times 16:00 to 19:00 for four days were obtained. 

Those data were grouped into a training data set and a testing data set as described in 

chapter 3.  Figures 4.2 to 4.4 present the testing results by comparing the actual and 

predicted OD travel times on Routes 1, 2 and 3, respectively. APE values of all the routes 
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are shown in Figure 4.5.  The OD travel time prediction method indicates that using the 

previous travel time intervals of 5 minutes to predict the next 5 minute travel time 

interval an accurate prediction can be made. Figure 4.2 indicates that the travel time 

prediction for Route 1 at time 18:00 to 19:00 has relatively large error. This is due to the 

large amount of traffic flow on the interstate highway during the peak hour.  Therefore, a 

different traffic pattern should be compared to the previous period to attain a more 

accurate prediction.   

 

Figure 4.2 Actual and Predicted Travel Time for Route 1 
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Figure 4.3 Actual and Predicted Travel Time for Route 2 

 

 

Figure 4.4 Actual and Predicted Travel Time for Route 3 
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Figure 4.5 Travel Time Prediction Performance Measured by APE 

For each route, mean absolute percent error (MAPE) was computed by simply 

averaging the absolute percent error (APE) over all the predicted data points. The MAPE 

values are shown in Table 4.1. Route 3 has better prediction performance compared to 

Routes 1 and 2. This is because Route 3 is a low volume street and has limited travel time 

variations during the peak hour.    

Table 4.1 Travel Time Prediction Performance Measured by MAPE 

Route MAPE (%) 
1 0.62 
2 0.55 

3 0.14 
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4.1.2 Speed Profile Prediction 

This section presents the performance of the speed profile prediction model 

developed utilizing an ANN algorithm Variations of  speed profiles from day to day in 

the afternoon peak hour were obtained through a microscopic traffic simulation 

PARAMICS . The speed profile reflects vehicles driving speed in each second on the 

roadways. In this thesis, speed profiles for three available routes were predicted and all 

speed observations are based on normal traffic conditions.  

Figures 4.6 to 4.7 show the actual and predicted driving speed profiles for Route 1 

and 3. As shown in Figures 4.6 and 4.7, the predicted speeds are close to the actual 

conditions. It indicates that using a 60 second prediction horizon window of speed data to 

predict the future speed can achieve almost accurate performance.  
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Figure 4.6 Actual and Predicted Traffic Speed Profile for Route 1 

 

Figure 4.7 Actual and Predicted Traffic Speed Profile for Route 3 
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in Routes 2 and 3.  The sudden changes in speeds occur on urban streets due to the stops 

at signaled intersections. 

Table 4.2 Traffic Speed Prediction Performance Measured by MAPE 

Route MAPE (%) 
1 6.2 
2 8.02 

3 30.8 

4.2 Impact Assessment 

In this section, the traffic and energy consumption impacts are discussed. 

Different scenarios of VII enabled PHEVs were considered in the analysis, such as with 

and without an ECMS optimization algorithms.  

4.2.1 PHEV Energy Consumption Impact Assessment 

This section discusses the performance of VII enabled PHEVs integrated with 

ECMS energy control strategy. By utilizing PHEV QSS model, the fuel and electricity 

consumptions of VII-PHEVs with ECMS control strategy were compared with the 

baseline PHEVs. Baseline PHEVs are those types of vehicles being operated under 

default energy control strategy. In such a case, PHEVs firstly run in the mode of 

consuming only electricity and try to avoid turning internal combustion engine on only 
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when extra power is needed to assist driving vehicles. Thus, charge depleting time is 

shorter than other cases. Based on the predicted speed profiles introduced in the previous 

section, the driving cycles were created as the input of the PHEV QSS model. One way to 

analyze the performance of VII-PHEVs and baseline PHEVs is examining the SOC of the 

electricity storage system versus travel distance. Figures 4.8 to 4.10 present the SOC of 

the electrical storage system for driving on Route 1, 2 and 3 respectively. Figure 4.9 and 

4.10 indicate that the battery systems of the baseline PHEVs do not perform well. On one 

hand, the charge depleting rate of the baseline PHEVs is too fast. On the other hand, the 

SOC for Route 3 oscillated aggressively. However, the VII-PHEVs with energy 

management control have better performance relative to the baseline PHEVs. Since the 

driving cycles of the three routes are short, SOCs do not reach charge sustaining 

threshold. In order to observe the performance of battery in both charge depleting and 

charge sustaining modes, the driving cycles were extended by repeating an additional 

cycle for all the routes.  
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Figure 4.8 Comparisons of SOCs of VII-PHEV and Baseline PHEV on Route 1 

 

Figure 4.9 Comparisons of SOCs of VII-PHEV and Baseline PHEV on Route 2 
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Figure 4.10 Comparisons of SOCs of VII-PHEV and Baseline PHEV on Route 3 
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changing rate. It can be seen in Figures 4.8 to 4.10 that the whole trip optimization and 60 

sec window size optimization have much better performance than baseline PHEVs 

without ECMS energy control. The slow discharging behavior of the two optimization 

methods is due to the blended control of battery energy with engine power. Since the 

three routes considered in this study have different travel distances, the discharge rates 

varies accordingly.  

In Figure 4.10, two types of 60 sec window size optimizations for VII-PHEVs 

associated with different groups of equivalent factors are shown. It can be seen that, 

different pairs of equivalent factors can cause the performance of the battery system to 

vary. Hence, finding the best pair of equivalent factors is the key point in ECMS control 

strategy. Table 4.3 lists the equivalent factors for the 60 sec window size optimization 

and the whole route optimization scenarios. 

Table 4.3 Equivalent Factors in Different Optimization Scenarios for Route 3 

 Equivalent Factors (schg = sdis) 
Window 

Sequence # 
60 sec Window Size 

Optimization 1 
60 sec Window Size 

Optimization 2 
Whole Trip 

Optimization 
    

1 0.450 0.450 0.470 
2 0.430 0.430 0.470 
3 0.990 0.990 0.470 
4 0.810 0.790 0.470 
5 0.450 0.450 0.470 
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6 0.510 0.510 0.470 
7 0.010 0.010 0.470 
8 0.490 0.490 0.470 
9 0.640 0.640 0.470 
10 0.780 0.790 0.470 
11 0.500 0.500 0.470 
12 0.990 0.990 0.470 
13 0.760 0.760 0.470 
14 0.790 0.790 0.470 
15 0.470 0.470 0.470 
16 0.350 0.460 0.470 
17 0.360 0.460 0.470 
18 0.360 0.600 0.470 
19 0.810 0.490 0.470 
20 0.740 0.490 0.470 
21 0.710 0.470 0.470 
22 0.490 0.460 0.470 
23 0.430 0.420 0.470 
24 0.470 0.450 0.470 
25 0.500 0.530 0.470 
26 0.450 0.480 0.470 
27 0.550 0.630 0.470 
28 0.600 0.640 0.470 
29 0.460 0.470 0.470 
30 0.430 0.460 0.470 

In addition, fuel consumptions of Route 1, 2, and 3 were calculated by the QSS 

PHEV model in different scenarios. As shown in Figure 4.11, fuel consumption of the 

VII-PHEVs with ECMS control saves more energy than the baseline PHEVs without 

ECMS control. The simulation result also indicates that the longer traveling, the more 

percent of fuel consumption saving.  



 59 

 

Figure 4.11 Fuel Consumptions for One and Two Driving Cycle in Different Scenarios 

The whole trip optimization strategy has slightly less fuel consumption relative to 

the 60 sec window size optimization, however, it is based on the entire known route 

speed information and it’s difficult to implement in the real world. Thus, the 60 sec 

window size optimization is easy to process given the 60 second predicted speed profile.   

4.2.2 Traffic Impact Assessment 

In this section, the analysis of traffic impacts of the VII enabled PHEVs is 

analyzed. As discussed in previous sections, advanced knowledge of traffic information 

plays a very important role for optimizing PHEVs energy consumption and rerouting 

PHEVs to save travel time, even to avoid traffic incidents. In this study site, three 
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available routes connect the origin and destination. Route 1 is an interstate highway, so 

travel along this road is much faster. Route 2 is half interstate highway and half urban 

street and Route 3 is entirely an urban street. Table 4.4 demonstrates the travel distance 

and travel time for driving along the three routes. The economic cost for different energy 

control scenarios were calculated by assuming costs of $2.5 per gallon of gasoline and 

$0.1 per kWh of battery charging.  

Table 4.4 Travel Times and Economic Costs for Different Routes 

 
Distance 

(mile) 

Travel Time 

(sec) 

Cost (dollar) 

VII-PHEV 
(whole trip) 

VII-PHEV 
(60 sec) 

Baseline 
PHEV 

Route 1 12.89 678 0.697 0.711 0.831 

Route 2 13.17 918 0.812 0.865 1.084 

Route 3 13.84 1160 0.768 0.826 1.058 

Route 2 

(10 min 

incident) 

13.17 1518 0.868 0.837 N/A 

In regular traffic conditions, Route 1 is the best choice because of the travel time 

and lower cost of operations.  However, incidents or congestion may occur on a high 

density interstate highway during peak hours. Thus, advanced knowledge of traffic 
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conditions is quite valuable for travelers. Figures 4.12 and 4.13 indicate the battery SOC 

and fuel consumption by taking Route 2 when a 10 min congestion occurs in the middle 

of the travel way. In this case, assume PHEVs have run into a congested traffic network 

in result of a small accident. Since the traffic is interrupted, upstream PHEVs have to be 

stopped until the incident is handled and cleared. The obstructed PHEVs should work 

more efficiently if the prior traffic information can be obtained. As shown in Table 4.4, 

PHEVs with the 60 sec window size optimization costs less fuel than whole trip 

optimization with constant equivalent factors. However, the whole trip optimization 

keeps charge depleting mode for a longer distance, which is the preferred battery working 

condition.  

Therefore, in order to achieve time and fuel consumption savings, integrating VII 

traffic information with the intelligent energy control strategy will contribute more 

compared to separate implementation of each.  
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Figure 4.12 SOC vs. Driving Distance with 10 min Incident 

 

Figure 4.13 Fuel Consumptions with 10 min Incident  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 

The first section of this chapter presents the conclusions developed from the 

research. The second section lists recommendations for future work.  

5.1 Conclusions  

Connecting PHEVs with highway infrastructure to benefit energy management, as 

presented in this thesis, supports the broader national transportation goals of an active 

transportation system where drivers, vehicles and infrastructure are integrated in a real 

time fashion to improve mobility. The benefit of such an active transportation system is 

revealed in this research where vehicles and infrastructure are connected though a real 

time system to improve energy consumptions and trip predictability. 

The ANN algorithm based traffic prediction models, which utilize VII generated 

data, proposed in this research were found suitable for predicting OD travel time and 

traffic speed. Only a minor difference of errors existed between the prediction on 

freeways and urban streets. The analysis suggests that ANN based prediction model can 

be applied to the entire roadway network that includes roads of different functional 
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classes. It was found that a 60 second speed profile could be predicted with small error 

under an earlier knowledge of 60 second traffic information.  

The look-ahead traffic estimation is expected to be shared between VII-PHEVs 

and traffic infrastructure, which can highly improve traffic efficiency. Based on the 

predicted traffic information, VII-PHEVs have ability to adjust the speed profiles and 

optimize the power split between electricity and gasoline. The analysis revealed that 

PHEVs integrated with VII system improves energy consumption compared to PHEVs 

without VII and energy optimization capabilities.  

It was found that fuel consumptions of VII-PHEV could be improved between 17% 

and 25% relative to the baseline PHEVs on roadways of different functional classes. Fuel 

consumption of VII-PHEV on urban driving has relatively more savings than on freeway 

driving. The simulation results indicated that local optimization in 60 seconds interval 

based on VII predicted traffic information performs similarly under global optimization, 

and it performs better under unpredictable traffic conditions, such as those results in due 

to incidents. The reliability of predicted traffic information enables ECMS energy 

controller to optimize PHEVs energy consumption in real time, which improves the 

PHEVs’ energy management performance.  
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5.2 Recommendations for Future Work 

The following work is recommended to expand the research presented in this 

thesis:      

 This research used a series PHEV power configuration, which translates to 

a larger engine and relatively smaller electricity storage system. This limits the range of 

all electric-mode and reduces the economic efficiency when compared with larger 

electricity storage system and smaller engine. The follow-up research should include a 

revised PHEV model configuration that considers a larger electrical storage system. This 

will improve economic efficiency of PHEVs as this will support the extension of charge 

depleting range. 

 This research considers one type of PHEV system, which is a series 

PHEVs. The author did not consider other two types of PHEVs, which are parallel and 

series-parallel. Future research can include many diverse types of PHEVs. 

 The traffic prediction model developed in this research could be improved 

by considering diverse traffic conditions that are expected on different types of roadways. 

For predicting accurate future driving speeds, a roadway feature recognition method is 

recommended that identifies different roadway characteristics, such as ramps, curvature, 
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and distance to signal controlled intersections. The existing ANN model needs to be 

further expanded and evaluated for saturated traffic conditions. 

 This research did not include dynamic assignment of PHEVs in the 

network based on traffic and energy demands. Future research should include dynamic 

assignment of PHEVs based on available routes, traffic and energy demands, and driver 

preferences regarding energy and travel time savings. 

 The author utilized ANN algorithm to predict traffic conditions. Other 

Artificial Intelligence (AI)-based tools, such as SVR, SVM, Bayesian NN, genetic 

algorithms, could also provide reliable predictions of traffic conditions. Future research 

should evaluate the performance of ANN with other AI tools in predicting traffic 

conditions.        

 Field experiment of the research presented in this paper would validate the 

estimated benefit derived through computer simulations. The author proposes future field 

experiments with PHEVs equipped with VII capabilities for operational verifications of 

the concept presented in this thesis. This will expedite the deployment of the PHEV-VII 

system.       
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