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Dr. Hervé L. M. Kerivin, Committee Chair

Dr. Matthew Saltzman
Dr. Doug Shier

Dr. Warren Adams



Abstract

When examined through polyhedral study, the resource-constrained scheduling problems have always

dealt with processes which have the same priority. With the Steiner Linear Ordering problem, we can address

systems where the elements involved have different levels of priority, either high or low. This allows us greater

flexibility in modeling different resource-constrained scheduling problems. In this paper, we address both

the linear ordering problem and its application to scheduling problems, and provide a polyhedral study of

the associated polytopes.
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Chapter 1

Introduction

This paper focuses on the Steiner Linear Order Problem, which arises in the context of distributed

systems. A distributed system can be defined as a collection of independent components (e.g., processors,

servers, stations, units) that appear to function as a single system. Examples of distributed systems are

common in daily life, in every area from banking to videoconferencing, avionics to cellular phone systems.

Because of the crucial role that these systems play, it is important that they maintain their operability even if

there is some failure due to a defect in the system; this is called fault-tolerance. To maintain fault-tolerance,

the most widely accepted approach is the primary/backup redundancy approach. In the primary/backup

redundancy approach, a task is represented by two processes, the primary process and the backup process,

which are present on two different components. The backup process is run only if there is a failure in the

primary process. Generally, the entire approach is controlled by fault-tolerance software that handles the

actions of these processes, such as the creation of the primary and the fully-synchronized backup processes,

and termination or move of a process from one component to another. Fault-tolerance software attempts a

strategy of minimum disruption while it works to restore the load distribution on the components as close

as possible to the initial distribution. Due to this strategy, the repetition of faults and recoveries slowly

deteriorates the structure of the load distribution and eventually arrives at a system whose performance

may be far from optimal. At this point, the system must have some down-time, during which serious

reconfiguration procedures can be applied to the distribution. For this paper, we study a reconfiguration

procedure which will likely require a non-neglible number of both process moves and possible temporary

outages of some tasks [23].

During the reconfiguration procedure, a process which is moved is either moved by migration or
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moved by interruption. If a process is migrated, it consumes resource on the component it is moving from

(its source) and the component it is moving to (its target) for the duration of the move. However, the

migration of a process is not trivial, and so it is desirable to keep the number of migrations to one per

process. If a process is interrupted, it is removed from its source component and so consumes no resource.

At a later point, that process will be restarted on a different component. This move by interruption causes

a disruption in service, and so this is not the preferred method of moving a process. Since a process which

is interrupted is no longer in the distribution (for the time being), and each migrated process is only moved

once, we can state that each process is moved (migrated or interrupted) exactly once. Also, throughout the

reconfiguration, it is required that no movement of a process creates an overflow on any component, and

as such, the final state must always be feasible. This reconfiguration procedure yields the following load

balancing problem:

Given an arbitrary load distribution of the processes, find the least disruptive sequence of process

moves which fulfills the foregoing constraints, and at the end of which the system ends up with

another predefined load distribution.

Although a first inclination might be to solve the load balancing problem all at once, it is better, from a

theoretical and computational aspect, to solve the problem in two stages: first determining the set of process

moves, which is an assignment problem, and then scheduling those process moves. The second stage is called

the Process Move Programming (PMP) problem, and is an application that we will examine in detail in

Chapter 3.

Before continuing, we must define the notation and phrasing that will be used in the discussion of

the PMP, the majority of which is borrowed from [15] and [26]. Consider a distributed system with a set

U of components where each unit u offers a set amount cu ∈ N of resource. Also in this system is a set P

of processes which consume the resource available through each unit. For each process p in P , we denote

the set amount of resource used by that process as wp ∈ N . A state is admissible if there is a mapping

f : P → U ∪ {u∞} so that
∑
p∈P (u,f) wp ≤ cu for every u ∈ U ∪ {u∞}, where u∞ denotes a “dummy”

component that has infinite resource, and P (u, f) = {p ∈ P : f(p) = u} for every unit u of U . If we are

given two admissible states, fs and ft, define M to be the set of processes which have to be migrated to get

from fs to ft. That is, M = {p ∈ P : ∃u ∈ U so that p ∈ P (u, fs) \ P (u, ft)}. Note that P (u∞, fi) = ∅ for

all states i. If a process p in P is interrupted, that interruption will incur a cost, or penalty of ip ∈ R +.

Furthermore, if a process i is scheduled to be migrated before j, we will denote that as i ≺ j.
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When the PMP problem has previously been studied, all processes have been given the same priority:

all processes were eligible for interruption [22, 24, 25]. A similar problem was also studied, in which all

processes are not allowed to be interrupted [11]. In that case, solving the PMP problem is equivalent to

scheduling the migrations of all processes in P . As each process is moved exactly once, this scheduling

must be a linear ordering, and this problem is known as the Linear Ordering (LO) problem. Finding the

optimal linear ordering of n elements is NP-complete [11], and this problem has been studied by Reinelt

[20] and Grötschel et al. [11] using a polyhedral approach. If all processes are eligible for interruption,

we must first find the set of interrupted processes, and then a partial linear ordering for the processes not

interrupted. Such is the case of the Partial Linear Ordering (PLO) problem, which has been investigated

by Sirdey et al. [22]. Kerivin [15], Sirdey and Kerivin [24, 25, 26] have also studied the problem through the

use of the associated polytope. The PLO is NP-complete in the strong sense [22], although there are some

polynomial-time solvable cases [22].

In this paper, we are approaching the PMP problem from a different vantage point. For the Steiner

Linear Ordering (SLO) problem, we assume that the set of processes N can be partitioned into two sets, L

and H, where L is the set of low-priority processes that are interruptible, and H is the set of high-priority

processes that cannot be interrupted. By characterizing the processes as such, we can better model systems

that have processes of different priority levels, making our models more accurate and our results more helpful.

We will call the convex hull of the feasible solutions of the SLO the Steiner linear ordering polytope and

denote it as PSLO(H,L). Notice that if the set L is empty, we are dealing with SLO(H, ∅) where no process

is allowed to be interrupted, and so this problem is equivalent to the Linear Ordering Problem (LO(H,L))

with |H| = n, in which we have to find a linear ordering for all processes. If the set H is empty, so we are

working with SLO(∅, L) with |L| = n, all processes are candidates for interruption and this is equivalent to

working with the Partial Linear Ordering problem (PLO(H,L)).

The Steiner Linear Ordering problem is so named for its similarities to the Steiner Tree Problem,

(STP). The STP is defined on a simple, undirected graph G = (V,E), where V is the set of vertices, E is

the set of edges, and there exists an edge weight function w : E → Q +. For the STP, you are also given

a partition of V : T ⊆ V called terminals and S = V \ T called Steiner vertices. A Steiner Tree on [G,T ]

is a minimal weight tree covering T [19]. Steiner vertices can be used to reduce the cost of the tree, or to

provide connectivity when appropriate. This problem is NP-hard [17], although there are some instances of

the STP that can be solved in polynomial time. Similar to the STP, an instance of a SLO provides a set

H of “Terminal Processes”, and a set L = P \H of “Steiner Processes”. The goal of the SLO is to find a
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linear ordering for the terminal processes, a linear ordering which may include Steiner processes in the linear

ordering or not, although there is a penalty for not ordering the low-priority processes.

In this paper, we will cover the Steiner Linear Ordering problem in detail, examining its formulation,

the dimension of its convex hull, and several facet-defining inequalities. We will also discuss how the SLO is

related to the LO and PLO problems, with respect to dimension and facet-defining inequalities. Chapter 3

will focus on applying the SLO to the Process Move Programming (PMP ) problem, and several additional

inequalities that apply. The third chapter will also examine the existence of feasible solutions, special

structures that yield feasible solutions, and necessary conditions for the dimension of the convex hull of the

PMP with respect to the SLO. In the conclusion, we will call attention to further areas of study, as well as

additional applications that the SLO can be useful for.
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Chapter 2

The Steiner Linear Ordering Problem

2.1 Formulation

Let N be the set of elements in the Steiner Linear Ordering problem SLO with |N | = n. The set N

can be partitioned into two sets, L and H. The set H is the set of terminal elements which must be ordered,

and L is the set of Steiner elements that may be in the ordering. We can define M to be the set of elements

in N that are ordered, and define I to be the elements in N \M , those elements not in the ordering. Let

X be the set of feasible solutions. We say that a solution is in the set X if and only if it satisfies the total

linear ordering relation on M . That is, for all i, j ∈M , the solution must be

• Reflexive: i ≺ i

• Antisymmetric: If i ≺ j and j ≺ i, then i = j

• Transitive: If i ≺ j and j ≺ k, then i ≺ k

• Total: For every (i, j) pair, either i ≺ j or j ≺ i

First, we must define our variables x ∈ {0, 1}p with p = |M |2 − |H| to be such that

xll =


1 if element l is not ordered

0 otherwise

5



for all l in L, and

xij =


1 if element i is ordered before element j

0 otherwise

for all i, j in N \ I.

With these variables, we can define the set I(x) as I(x) = {l ∈ L|xll = 1} and we can define a one-to-

one function σ(x) : M → {1, . . . , |N\I(x)|} where σi(x) = 1+
∑
j∈M

xji for i ∈M . Thus we can define the set of

feasible solutions mathematically as X = {x ∈ {0, 1}p
∣∣(I(x), σ(x)) is feasible}, where feasiblity implies that

the total linear ordering and priority restrictions are satisfied. Let R = {x ∈ R p
∣∣A=x = b=, Ax ≤ b, x ≥ 0},

where A=x = b= is given by

xij + xji = 1 ∀{i, j} with i, j ∈ H, i 6= j (2.1)

xij + xji + xjj = 1 ∀{i, j} with i ∈ H, j ∈ L (2.2)

and Ax ≤ b is composed of

xij + xji + xjj ≤ 1 ∀{i, j} with i, j ∈ L, i 6= j (2.3)

xij + xji + xjj + xii ≥ 1 ∀{i, j} with i, j ∈ L, i 6= j (2.4)

xij + xjk − xik ≤ 1 ∀{i, j, k} with i, j, k ∈M (2.5)

(Note that we maintained the direction of (2.4) to avoid dealing with all non-positive variable

coefficients.)

We now show that R is a formulation for X, by showing that if x is a solution in X, then x ∈ R ∩ {0, 1}p,

and also the reverse [30].

Claim 1 R is a formulation for X.

Proof: We begin by demonstrating that the inequalities (2.1) through (2.5) are valid for our formulation.

That is, x ∈ X implies that x ∈ R ∩ {0, 1}. Let x be a feasible solution of X. We know I(x) and σ(x), and

we know I(x) ∩ H = ∅. Since σ(x) is a one-to-one mapping, we know that, for h, h′ ∈ H, h 6= h′, either

h ≺ h′ or h′ ≺ h, and so (2.1) is satisfied. We turn our attention to l ∈ L. If xll = 1, then l ∈ I(x) and l is

not assigned an index in σ(x), so xlj = xjl = 0 for all j ∈ M , as l is not part of the ordering. Thus (2.2) is
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valid. If xll = 0, l must be part of the ordering, and so (2.3) is valid. For l, l′ ∈ L, if both l and l′ are not

in I(x), they must be ordered, and xll′ + xl′l = 1, and l, l′ /∈ I(x), so (2.4) is satisfied. If one or both of l

and l′ are in I(x), xll′ = xl′l = 0, and so the inequality is also satisfied. Thus (2.4) is valid. As transitivity

must hold for x ∈ X, we know that if i, j, k ∈ M , and if i ≺ j and j ≺ k, it must be the case that i ≺ k,

then clearly (2.5) must hold. Thus x ∈ X implies that x ∈ R ∩ {0, 1}.

We will now show that x ∈ R ∩ {0, 1}p implies that x ∈ X. Let x̄ be a feasible solution of R ∩ {0, 1}. Then

it satisfies (2.1) through (2.5). For h, h′ ∈ H with h 6= h′, it is the case that either h ≺ h′ or h′ ≺ h, as x̄

must satisfy (2.1). Similarly, if l ∈ L is such that l /∈ I(x), it must be the case that either l ≺ h or h ≺ l for

every (l, h) pair. Finally, supposing that l′ ∈ L is such that l′ /∈ I(x), with l′ 6= l, we see from (2.3) and (2.4)

that either l ≺ l′ or l′ ≺ l, and thus a solution x̄ must be antisymmetric with respect to all element pairs

(i, j) ∈M , and also totally ordered with respect to all elements of M , and thereby reflexive. For all cases of

i 6= j, we see that if an element l ∈ L is such that l ∈ I(x), l is not assigned to a position in σ(x), by (2.2)

and (2.3). Inequality (2.5) clearly enforces transitivity of all elements of M , and so x ∈ R ∩ {0, 1}p implies

that x ∈ X, and thus our formulation is complete.

2.2 Dimension and Technical Lemmas

In order to better understand our problem, we can examine

PSLO(H,L) := conv{x ∈ {0, 1}p
∣∣A=x = b=, Ax ≤ b, x ≥ 0}

which is the convex hull of our polytope. The goal with any polyhedral study is to obtain a complete descrip-

tion of the convex hull of a polytope, thereby easing our work in finding a solution [7]. Part of understanding

a polytope is discerning its dimension, which is useful for identifying the facet-defining inequalities which

make up the description of our convex hull. For PSLO(H,L), as long as the set H is not empty, the Steiner

element move polytope is not full-dimensional, due to the system of equations (A=, b=). Before we examine

the facet-defining properties of Ax ≤ b, and other related inequalities, we have some technical lemmas that

will ease our representation of the proofs that follow.

We begin by introducing some notation that will be used in the technical lemmas. Let x be a point

in PSLO(H,L). We denote I(x) as the subset of elements of L which are not ordered for a point x. That is,

I(x) = {l ∈ L
∣∣xll = 1}. Consider two distinct elements i and j in N . We denote i ≺x j whenever i is ordered
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before j for point x; that is, whenever xij = 1. We denote i ≺≺x j whenever i is immediately ordered before

j; that is, xij = 1 and xik + xkj = 0 for all k ∈ N \ {i, j}.

Lemma 2 Let F = {x ∈ PSLO(H,L)
∣∣A0x = b0} be a face of PSLO(H,L), and let i and j be two distinct

elements in N . If there exist two points in F , say x1 and x2, so that

(a) i ≺≺x1 j,

(b) j ≺≺x2 i,

then αij = αji for every equation αTx = α0 of (A0, b0).

Proof:

α0 = αTx1

= αTx2 − αji + αij

= α0 − αji + αij

and so we see that αij = αji for every equation αTx = α0 of (A0, b0), for i, j ∈ N , i 6= j.

Lemma 3 Let F = {x ∈ PSLO(H,L)
∣∣A0x = b0} be a face of PSLO(H,L), and let l be an element in L. If

there exist two points in F , say x1 and x2 so that

(a) I(x1) = I(x2) ∪ {l} and I(x1) 6= I(x2)

(b) i ≺x2 j if and only if i ≺x1 j for distinct i and j in N \ I(x1)

(c) l ≺x2 i for i ∈ N \ I(x1)

then αll =
∑
i∈N\I(x1) αli for every equation αTx = α0 of (A0, b0).

Proof:

α0 = αTx1

= αTx2 −
∑

i∈N\I(x1)

αli + αll

= α0 −
∑

i∈N\I(x1)

αli + αll

and so αll =
∑
i∈N\I(x1) αli for every equation αTx = α0 of (A0, b0), for all l ∈ L.
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Corollary 4 Let F = {x ∈ PSLO(H,L)
∣∣A0x = b0} be a face of PSLO(H,L), and let l and l′ be two distinct

elements in L. If there exists three points in F , say x1, x2, and x3 so that

(a) x1 and x3 satisfy conditions (a), (b), and (c) of Lemma 3 with respect to l′

(b) x2 and x3 satisfy conditions (a), (b), and (c) of Lemma 3 with respect to l′

(c) x1 and x2 satisfy condition (a) of Lemma 2

then αl′l = 0 for every equation αTx = α0 of (A0, b0).

Proof: From Lemma 3 for x1, x3, with respect to some l′, we see that

αl′l′ =
∑

i∈N\I(x1)

αl′i

From Lemma 3 for x2, x3, with respect to some l′, we see that

αl′l′ =
∑

i∈N\I(x2)

αl′i

Since I(x1) = I(x2) ∪ {l}, we also have that

αl′l′ =
∑

i∈N\I(x2)

αl′i + xl′l

and therefore, then αl′l = 0 for every equation αTx = α0 of (A0, b0), for l, l′ ∈ L, l 6= l′.

When discussing the partitions of N = H ∪ L, we let |H| = nH and |L| = nL, and define [nH ] =

{1, . . . , nH} and [nL] = {1, . . . , nL}. With this notation in mind, we approach the next lemma.

Lemma 5 The system (A=, b=) is a minimal system for PSLO(H,L) with rank of nH(nH−1)
2 + nLnH

Proof: There are nH(nH−1)
2 equations in (2.1) and nLnH equations in (2.2). Each equation of (A=, b=)

introduces a variable which is not present in the other equations of (A=, b=). Therefore, the matrix (A=, b=)

is of full row rank. Thus rank(A=, b=) = nH(nH−1)
2 + nLnH .

To prove that (A=, b=) is minimal for PSLO(H,L), assume there exists another equation, say αTx = α0,

not included in (A=, b=), and so that PSLO(H,L) ⊆ F = {x ∈ PSLO(H,L)
∣∣αTx = α0} and α is a non-zero

vector. Since PSLO(H,L) is a face for itself, Lemma 2 can be applied to any pair of distinct elements in N ,
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that is,

αij = αji for distinct i, j ∈ N (1)

Moreover, we can also apply Lemma 3 to any element in L and get

αll =
∑
h∈H

αlh (2)

Finally, using Corollary 4 for every pair of distinct elements in L, we then obtain

αll′ = 0 for distinct l, l′ ∈ L (3)

From (1), (2), and (3), we can write

αTx =
nH−1∑
i=1

nH∑
j=i+1

αhihj (xhihj + xhjhi) +
∑
l∈L

∑
h∈H

αlh(xlh + xhl + xll)

and αTx = α0 is a linear combination of the equations in (A=, b=). Consequently, (A=, b=) is a minimal

system for PSLO(H,L).

We are now prepared to examine the dimension of our polytope PSLO(H,L).

Claim 6 Let |H| = nH and |L| = nL, so that |N | = nH + nL. Then dimPSLO(H,L) = (nL + nH)2 − nH −(
nH(nH−1)

2 + nHnL

)
.

Proof: We know that the dimension of a polyhedron is at most equal to the difference between the number

of variables and the rank of the matrix representing a minimal system of equalities satisfied by every point

in the system [17]. The number of variables in our polyhedron is (nH +nL)2−nH , and so dimPSLO(H,L) ≤

(nH+nL)2−nH . As we have shown in the previous lemma, the system (A=, b=), generated by (2.1) and (2.2),

is a minimal system with rank(A=, b=) =
(
nH(nH − 1)

2
+ nHnL

)
. Thus the dimension of our polytope is

written dimPSLO(H,L) = (nL + nH)2 − nH −
(
nH(nH − 1)

2
+ nHnL

)
.

2.3 Facet-Defining Property Inequalities

We now delve more deeply into our investigation of the PSLO(H,L). We will begin that investigation

by examining whether some inequalities do or do not define facets for the PSLO(H,L). Before we start,

however, as we have shown that our polytope is not full-dimensional, it is important to note that there may
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be sets of inequalities that define equivalent facets.

Proposition 7 Inequalities π1x ≤ π1
0 and π2x ≤ π2

0, denoted (π1, π1
0) and (π2, π2

0), are equivalent with

respect to our polytope if we can find some (λ, µ) ∈ (R + × R m) such that (π2, π2
0) = λ(π1, π1

0) + µ(A=, b=)

where m = rank(A=, b=). [17]

We note some obvious instances of Proposition 7, although we will not list all equivalent inequalities. Also

note that we will define H = {h1, . . . , hnH
} to be an ordered set where |H| = nH , and if hi ≺ hj , the indices

are ordered i < j, and similarly for L.

Claim 8 Let i and j be two distinct elements in N . The inequality xij ≥ 0 defines a facet for PSLO(H,L).

Proof: Let F = {x ∈ PSLO(H,L)
∣∣xij = 0}, and assume that there exists a valid inequality αTx ≤ α0 so

that F ⊆ F∗ = {x ∈ PSLO(H,L)
∣∣αTx = α0}. Lemma 2 can be applied to any pair of distinct elements in

N \ {i, j}, and then

αuv = αvu for distinct {u, v} ∈ N , {u, v} 6= {i, j} (1)

Using Lemma 3 and Corollary 4, we see that

αll =
∑
h∈H

αlh for l ∈ L, l 6= i (2)

αii =
∑
h∈H

αhi if i ∈ L, l 6= i (3)

We must examine three separate cases. First consider the case where i and j belong to H. As i, j ∈ H, we

see that Corollary 4 can be applied to any pair of distinct elements in L, and then

αll′ =0 for distinct {l, l′} ∈ L (4)

Using the coefficients we have determined from (1)− (4), we can write the equality αTx = α0 as

αTx =
∑

h,h′∈H,{h,h′}6={i,j},h 6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H,l∈L

αhl(xhl + xlh) +
∑
l∈L

αllxll + αji(xij + xji)

11



As xij = 0, we can drop αijxij . Also, we can make substitution and we have

αTx =
∑

h,h′∈H,{h,h′}6={i,j},h6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H,l∈L

αhl(xhl + xlh) +
∑
l∈L

∑
h∈H

αhlxll + αjixji

=
∑

h,h′∈H,{h,h′}6={i,j},h6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H,l∈L

αhl(xhl + xlh + xll) + αjixji

Thus the equality in F∗ can be written as a linear combination of equations from our minimal system

(A=, b=), and one additional equality, xji = 1, which is equivalent to xij = 0, for i, j ∈ H. Thus F defines a

facet for PSLO(H,L).

We now consider the case where i and j are both in L. As j ∈ L, we can apply Corollary 4, and we see that

αuv = 0 for all {u, v} 6= {i, j}, with {u, v} ∈ L, (5)

(2.6)

and,

αji = 0 (6)

Using what we have learned about the variable coefficients from (1)− (3) and (5)− (6), we can write αTx as

αTx =
∑

h,h′∈H,h 6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H,l∈L\{i,j}

αhl(xhl + xlh) +
∑

l∈L\{i,j}

αllxll + αiixii + αjjxjj

=
∑

h,h′∈H,h 6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H,l∈L\{i,j}

αhl(xhl + xlh + xll) + αiixii + αjjxjj + αjixji

=
∑

h,h′∈H,h 6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H,l∈L\{i,j}

αhl(xhl + xlh) +
∑

l∈L\{i,j}

∑
h∈H

αhlxll +
∑
h∈H

αhixii

+
∑
h∈H

αhixjj + αjixji

=
∑

h,h′∈H,h 6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H,l∈L

αhl(xhl + xlh + xll) + αjixji

Thus the equality in F∗ can be written as a linear combination of equations from our minimal system

(A=, b=), and one additional equality, xji = 1, which is equivalent to xij = 0, for i, j ∈ H. Thus F defines a

facet for PSLO(H,L).
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We conclude our proof by considering the case where i is in L and j is in H. Consider the points x′ with

x′ii = 1, and x
′′

with x
′′

ii = 0 and x
′′

ji = 1. As these points are feasible and therefore in F∗, we see that

αii = αji +
∑

h∈H\{j}

αih (7)

Using the information gathered from (1)− (3) and (7), we can now write αTx as

αTx =
∑

h,h′∈H,h 6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H\{j},l∈L\{i}

αhl(xhl + xlh) +
∑

l∈L\{i}

αllxll + αiixii + αjixji

=
∑

h,h′∈H,h 6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H\{j},l∈L\{i}

αhl(xhl + xlh) +
∑

l∈L\{i}

∑
h∈H

αhlxll

+
∑

h∈H\{j}

αihii+ αjixji

=
∑

h,h′∈H,h 6=h′

αhh′(xhh′ + xh′h) +
∑

h∈H\{j},l∈L

αhl(xhl + xlh + xll) + αjixji

Thus the equality in F∗ can be written as a linear combination of equations from our minimal system

(A=, b=), and one additional equality, xji = 1, which is equivalent to xij = 0, for i, j ∈ H. Thus F defines a

facet for PSLO(H,L).

Corollary 9 Let i and j be distinct elements in H. The inequality xji ≤ 1 defines the same facet as the

inequality xij ≥ 0 for PSLO(H,L).

Proof: We apply Proposition 7, and let (Ā=, b̄=) be a subset of (A=, b=) such that Ā=x = xij + xji and

b̄= = 1, and let π1x = xij and π1
0 = 0. Then, with (λ, µ) = (1,−1), we see that xji ≤ 1 is an inequality

equivalent to xij ≥ 0.

Claim 10 Let i be an element in L, and let j be an element in N . The inequality xij ≤ 1 does not define a

facet for PSLO(H,L).

Proof: We must examine two cases. First, let i 6= j. Then we can define F = {x ∈ PSLO(H,L)
∣∣xij = 1},

and for all x ∈ F , xii = 0. Thus we can also define F ′ = {x ∈ PSLO(H,L)
∣∣xii = 0}, and we see F ( F ′, as

there exists a point x′ such that x′ji = 0, so x′ ∈ F ′, but x′ /∈ F . We can also examine a point x∗ such that

x∗ii = 1. Clearly x∗ /∈ F ′, but x∗ ∈ PSLO(H,L). Then F ( F ′ ( PSLO(H,L), and the inequality xij ≤ 1

does not define a facet if i 6= j.
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Additionally, we must examine the case where i = j. Then we can define F = {x ∈ PSLO(H,L)
∣∣xii = 1},

and for all x ∈ F , xij = 0. Thus we can also define F ′ = {x ∈ PSLO(H,L)
∣∣xij = 0}, and we see F ( F ′, as

there exists a point x′ such that x′ji = 0, so x′ ∈ F ′, but x′ /∈ F . We can also examine a point x∗ such that

x∗ji = 1. Clearly x∗ /∈ F ′, but x∗ ∈ PSLO(H,L). Then F ( F ′ ( PSLO(H,L), and the inequality xij ≤ 1

does not define a facet if i = j.

Claim 11 Let l be an element of L. The inequality xll ≥ 0 defines a facet if and only if L = {l}.

Proof:

If nL ≥ 2: Let F = {x ∈ PSLO(H,L)
∣∣xii = 1}. For every x̄ ∈ F , x̄ii = 0, and so we can define, for j ∈ L\{i},

F∗ = {x ∈ PSLO(H,L)
∣∣xij + xji + xii + xjj = 1}, and notice that F ⊆ F∗. However, for x̄∗ corresponding

to interrupting every element in l ∈ L \ {j}, x̄∗ ∈ F∗ but x̄∗ /∈ F , and thus F ( F∗. Additionally, we can

consider a point x′ corresponding to interrupting all elements l ∈ L. Then x′ ∈ PSLO(H,L), but x′ /∈ F∗.

Thus F ( F∗ ( PSLO(H,L), and the constraint xii ≥ 0 does not define a facet for PSLO(H,L).

If nL = 1: Lemma 2 applied for any pair of distinct elements in N yields αij = αji. Then

αTx =
nh−1∑
i=1

nH∑
j=i+1

αhihj (xhihj + xhjhi) +
∑
h∈H

αhl(xhl + xlh) + αllxll

=
nh−1∑
i=1

nH∑
j=i+1

αhihj
(xhihj

+ xhjhi
) +

∑
h∈H

αhl(xhl + xlh) + αllxll +
∑
h∈H

(αhl − αlh)xll

=
nh−1∑
i=1

nH∑
j=i+1

αhihj
(xhihj

+ xhjhi
) +

∑
h∈H

αhl(xhl + xlh) +
∑
h∈H

αhl(xhl + xlh + xll)

+ (αll −
∑
h∈H

αhl)xll

so α is a linear combination of the equations in F .

Claim 12 Let i and j be distinct elements of L. The inequality xij + xji + xjj ≤ 1 defines a facet for

PSLO(H,L).

Proof: Let F = {x ∈ PSLO(H,L)
∣∣xij +xji+xjj = 1}, and assume that there exists an inequality αTx ≤ α0

such that F ⊆ F∗ = {x ∈ PSLO(H,L)
∣∣αTx = α0}. Lemma 2 can be applied for any pair of distinct elements

in N \ {i, j}, yielding

αuv = αvu for distinct {u, v} ∈ N , {u, v} 6= {i, j} (1)
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From application of Lemma 3 and Corollary 4, we see that

αll =
∑
h∈H

αlh for l ∈ L \ {i} (2)

αij = αji (3)

αuv = 0 for distinct {u, v} ∈ L, {u, v} 6= {i, j} (4)

Using the information gathered from (1)− (4), we can now complete our proof by showing that we can write

αTx as

αTx =
∑

h,h′∈T,h≺h′

αhh′(xhh′ + xh′h) +
∑

l∈L\{j}

αllxll +
∑

h∈H,l∈L

αlh(xlh + xhl) + αijxij

+ αjixji + αjjxjj

=
∑

h,h′∈T,h≺h′

αhh′(xhh′ + xh′h) +
∑

h∈H,l∈L\{j}

αlh(xlh + xhl + xll) + αij(xij + xji + xjj)

Thus F defines a facet for PSLO(H,L).

Claim 13 Let i and j be distinct elements of L. The inequality xij + xji + xii + xjj ≥ 1 defines a facet for

PSLO(H,L).

Proof: Let F = {x ∈ PSLO(H,L)
∣∣xij+xji+xjj = 1}, and assume that there exists the inequality αTx ≤ α0

such that F ⊆ F∗ = {x ∈ PSLO(H,L)
∣∣αTx = α0}. We begin by applying Lemma 2 to all distinct pairs of

N , not equal to {i, j}, and we see that

αuv = αvu for all distinct {u, v} ∈ N , {u, v} 6= {i, j} (1)

Additionally, through application of Lemma 3, we see that

αij = αji (2)

When we consider Lemma 3 in conjunction with Corollary 4, we find that

αll′ = 0 for all {l, l′} ∈ L, {l, l′} 6= {i, j} (3)
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We use this information about the variable coefficients from (1)− (3), and now write out αTx as

αTx =
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑
l∈L

∑
h∈H

αlh(xlh + xhl) +
∑

l∈L\{i,j}

αllxll + αiixii + αjjxjj

+ αijxij + αjixji

=
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑

l∈L\{i,j}

∑
h∈H

αlh(xlh + xhl + xll) + αijxii +
∑
h∈H

αihxii

+ αijxjj +
∑
h∈H

αjhxjj + αij(xij + xji)

=
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑
l∈L

∑
h∈H

αlh(xlh + xhl + xll) + αij(xij + xji + xii + xjj)

We see that αTx = α0 can be written as a linear combination of equations from the minimal system and the

one additional equality defined by our face F , and thus F is facet-defining for PSLO(H,L).

Claim 14 Let i, j, and k be distinct elements, with j ∈ H and i, k ∈ P . The inequality xij + xjk − xik ≤ 1

defines a facet for PSLO(H,L).

Proof: Let F = {x ∈ PSLO(H,L)
∣∣xij +xjk−xik = 1}, and assume that there exists an inequality αTx ≤ α0

such that F ⊆ F∗ = {x ∈ PSLO(H,L)
∣∣αTx = α0}. We begin by applying Lemma 2 to all applicable {u, v}

pairs in N , and we see that

αuv = αvu for all {u, v} ∈ N with {u, v} /∈
{
{i, j}, {j, k}, {i, k}

}
(1)

By an argument similar to the proof for Lemma 3, we see that

αll =
∑

h∈H∪{i,k}

αlh for all l ∈ L \ {i, k}, (2)

and Corollary 4, we know

αll′ = 0 for all {l, l′} ∈ L \ {i, k} (3)

The remainder of our proof is divided into three cases. We must now concern ourselves with the ordering

of {i, j, k}. We will examine three points x1, x2, and x3 where the orderings are k ≺ i ≺ j, j ≺ k ≺ i, and

i ≺ j ≺ k respectively. As all three of these points are valid for F , we know that αkj − αjk = αji − αij =

αik − αki. We need to make some modifications, and so we will add a particular form of zero to each pair
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of {i, j, k}, yielding the following representation

αijxij + αjixji = αijxij + αjixji + αjixij − αjixij

αjkxjk + αkjxkj = αjkxjk + αkjxkj + αkjxjk − αkjxjk

αikxik + αkixki = αikxik + αkixki + αkixik − αkixik.

The remainder of our work is divided into three cases.

If i, j, and k are all in H, our examination is complete, and using the information found in (1)− (4), we can

now write αTx as

αTx =
∑

h,h′∈H\{i,j,k},h≺h′

αhh′(xhh′ + xh′h) +
∑

l∈L,h∈H}

αlh(xlh + xhl)

+
∑
l∈L

αllxll + (αij − αji)(xij + xjk − xik) + αji(xij + xji) + αjk(xjk + xkj) + αik(xik + xki)

=
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑

l∈L,h∈H}

αlh(xlh + xhl + xll) + (αij − αji)(xij + xjk − xik)

Thus αTx = α0 can be written as a linear combination of equations from the minimal system and the one

additional equality defined by our face F , and thus F is facet-defining for PSLO(H,L).

We also examine the case where i is in L and k is in H. We must consider a fourth point x4 where i is

interrupted and j ≺ k. As this point is valid for our face, we see that, when compared to x3, we can write

αii =
∑

h∈H∪{k,j}

αih + αij + αik (4)

Using information from (1)− (4), we can now write αTx as

αTx =
∑

h,h′∈H\{j,k},h≺h′

αhh′(xhh′ + xh′h) +
∑

l∈L\{i},h∈H}

αlh(xlh + xhl) +
∑
l∈L

αllxll

+ (αij − αji)(xij + xjk − xik) + αji(xij + xji) + αjk(xjk + xkj) + αik(xik + xki) + αiixii

=
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑

l∈L,h∈H}

αlh(xlh + xhl + xll) + (αij − αji)(xij + xjk − xik)

Thus αTx = α0 can be written as a linear combination of equations from the minimal system and the one

additional equality defined by our face F , and thus F is facet-defining for PSLO(H,L).
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If we examine the case where k ∈ L, i ∈ H, we see that this case is similar to the previous case.

Corollary 15 Let i, k be distinct elements in H, and j in L. The face defined by xij + xjk + xki ≤ 2 is

equivalent to the face defined by xij + xjk − xik ≤ 1.

Proof: Let (Ā=, b̄=) be a subset of (A=, b=), such that Ā=x = xik + xki and b̄= = 1, and let π1x =

xij + xjk − xik and π1
0 = 1. Then, with (λ, µ) = (1, 1), we see that xij + xjk + xki ≤ 2 is an inequality

equivalent to xij + xjk − xik ≤ 1.

Remark: As the following inequality has not been previously studied, we first show that it is

valid for PSLO(H,L), and then prove that it is facet-defining.

Claim 16 Let i, j, and k be distinct elements with j ∈ H and i, k ∈ L. The inequality xij + xjk + xki +

xii + xkk ≤ 2 is valid for and defines a facet of PSLO(H,L).

Proof:

Validity: Let x̄ be a point in F = {x ∈ PSLO(H,L)
∣∣xij + xjk + xki + xii + xkk = 2}, with x̄ii = x̄kk = 1.

Then by (2.2) and (2.3), x̄ij = x̄jk = x̄ki = 0, and the left-hand side has at most a value of two. Now let

x̃ be a point in F with x̃ii = 1 and x̃kk = 0. Again, by (2.2) and (2.3), we see that x̃ij = x̃ki = 0, and the

left-hand side has at most a value of two, with a similar argument for x̃′ with x̃ii = 0 and x̃kk = 1. Finally,

we examine x′ where x′kk = x′ii = 0. Due to the transitivity inequality (2.5), we know that the left-hand side

has value at most two, and our inequality is valid for PSLO(H,L).

Facet-Defining: Let F = {x ∈ PSLO(H,L)
∣∣xij + xji + xjj = 1}, and assume that there exists an inequality

αTx ≤ α0 such that F ⊆ F∗ = {x ∈ PSLO(H,L)
∣∣αTx = α0}. We begin by applying Lemma 2 to all

applicable {u, v} pairs in N , and we see that

αuv = αvu for all {u, v} ∈ N with {u, v} /∈
{
{i, j}, {j, k}, {i, k}

}
(1)

By application of Lemma 3, we see that

αll =
∑

h∈H∪{i,k}

αlh for all l ∈ L, (2)

and from Corollary 4, we know

αll′ = 0 for all {l, l′} ∈ L. (3)
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If we assume i and k are not interrupted, we must concern ourselves with the ordering of {i, j, k}. Through

examination of F , we see that there are three feasible orderings: either i ≺≺ j ≺≺ k or k ≺≺ i ≺≺ j or

j ≺≺ k ≺≺ i. By examining all three of these orderings, we see that it must be the case that

αij + αjk + αik = αki + αij + αkj = αjk + αki + αji

which in turn yields αkj −αjk = αki −αik = αji −αij . With this information, along with (1)− (3), we now

turn to writing αTx as

αTx =
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑

l∈L\{i,k}

αllxll + αiixii + αkkxkk

+
∑

h∈H\{j}

∑
l∈L\{i,k}

αhl(xhl + xlh) +
∑

l∈L\{i,k}

αjl(xjl + xlj) +
∑

h∈H\{j}

αih(xih + xhi)

+
∑

h∈H\{j}

αhk(xhk + xkh) + αijxij + αjixji + αikxik + αkixki + αijxij + αjkxjk + αkjxkj

By intelligently adding particular forms of zero as seen below, we have

αTx =
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑

l∈L\{i,k}

αllxll + αiixii + αkkxkk

+
∑

h∈H\{j}

∑
l∈L\{i,k}

αhl(xhl + xlh) +
∑

l∈L\{i,k}

αjl(xjl + xlj) +
∑

h∈H\{j}

αih(xih + xhi)

+
∑

h∈H\{j}

αhk(xhk + xkh) + αijxij + αjixji + αikxik + αkixki + αijxij

+ αjkxjk + αkjxkj +
(
αjixij − αjixij + αikxki − αikxki + αkjxjk − αkjxjk

)
After much algebra, this condenses to

αTx =
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑

h∈H\{j}

∑
l∈L\{i,k}

αhl(xhl + xlh + αll)

+
∑

l∈L\{i,k}

αjl(xjl + xlj) +
∑

h∈H\{j}

αih(xih + xhi + xii) +
∑

h∈H\{j}

αhk(xhk + xkh + xkk)

+ αiixii + αkkxkk + (αij − αji)xij + αji(xij − xji) + (αki − αik)xki

+ αik(xik + xki) + (αjk + αkj)xjk + αkj(xkj + xjk)
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Again, we add a convenient form of zero, and we have

αTx =
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑

h∈H\{j}

∑
l∈L\{i,k}

αhl(xhl + xlh + αll)

+
∑

l∈L\{i,k}

αjl(xjl + xlj) +
∑

h∈H\{j}

αih(xih + xhi + xii) +
∑

h∈H\{j}

αhk(xhk + xkh + xkk)

+ αiixii + αkkxkk + (αij − αji)xij + αji(xij − xji) + (αki − αik)xki

+ αik(xik + xki) + (αjk + αkj)xjk + αkj(xkj + xjk) +
(
(αij − αji)xii − (αij − αji)xii

+ (αik − αki)xkk − (αik − αki)xkk
)

This simplifies to

αTx =
∑

h,h′∈H,h≺h′

αhh′(xhh′ + xh′h) +
∑

h∈H\{j}

∑
l∈L\{i,k}

αhl(xhl + xlh + αll)

+
∑

l∈L\{i,k}

αjl(xjl + xlj) +
∑

h∈H\{j}

αih(xih + xhi + xii) +
∑

h∈H\{j}

αhk(xhk + xkh + xkk)

+ (αij − αji)(xij + xjk + xki + xii + xkk) + αji(xij + xji + xii) + αkj(xjk + xkj + xkk)

Thus αTx = α0 can be written as a linear combination of equations from the minimal system and the one

additional equality defined by our face F , and thus F is facet-defining for PSLO(H,L).

Notice that using Claims 14 and 16, we have shown that transitivity is a facet-defining property for

our problem.

2.4 Trivial Lifting

In Grötschel et al. [11], we are introduced to trivial lifting as a method for extending facets of a

polytope of degree n to be facets for a polytope of degree n+ 1 for the PnLO. This subject also comes up in

Sirdey and Kerivin’s paper [24] with respect to the PnPLO. For our paper, we examine a modified form of

trivial lifting that satisfies the requirements of our polytope PSLO(H,L).

Proposition 17 Let αTx ≤ α0 be a facet-defining inequality for PSLO(H,K). If we introduce a new element
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u ∈ H, and set

ᾱij =


αij for all i, j ∈ {1, . . . , n}, i 6= j,

αii for all i ∈ L,

0 if i = u or j = u

then the inequality ᾱTx ≤ α0 defines a facet of PSLO(H ∪ {u}, L).

Proof: When we add an element u into H, we increase the dimension of our polytope by |N | = |H ∪L| = n,

as evidenced by Proposition 6. Let dimPSLO(H,L) = k. We first show that we can extend the affinely

independent points in F = {x ∈ PSLO(H,L)
∣∣αTx ≤ α0} to be points in PSLO(H ∪ {u}, L), and still retain

the affine independence of these points. Suppose we extend these points by letting xup = 1 for all p ∈ N , for

all x ∈ F . We know that the points in F are affinely independent, and so if
∑k
i=1 α

ixi = 0 and
∑k
i=1 α

i = 0,

then αi = ~0 for all i = 1, . . . , k. If, by the proposed extension, we lose the affine independence of these

points, that would mean that even if
∑k
i=1 ᾱ

ixi = 0 and
∑k
i=1 ᾱ

i = 0, it could be the case that ᾱi 6= ~0 for

all i = 1, . . . , k. However, by definition, we know that ᾱiup = 0 for all αi, for all p ∈ N , and this implies that

we could have
∑k
i=1 α

ixi = 0 and
∑k
i=1 α

i = 0, but αi 6= ~0. This is clearly a contradiction to starting with

affinely independent points, and so our method of extension must maintain the independence of the points.

We now want to show that we can create n more affinely independent points. Begin by partitioning N into

N1, N2, . . . , Nk where

Ni =
{
p0 ∈ N

∣∣ ∑
p∈N\{p0}

xp0p = n− i, and p0 /∈ ∪i−1
j=1Nj

}
.

For each p0 ∈ Ni, let p0 ≺ u and u ≺ p for all p ∈ N \ {p0}. This point is the first point for which xp0u = 1,

and thus it must be affinely independent of the previous points. Also, we have created n new points, as

N1, N2, . . . , Nk creates a complete partitioning of N . If it did not, there would be a p ∈ N with p /∈ ∪ki=1Ni.

Thus there would not be a point where xpu = 1, and since from Claim 10, we know that the inequality

xii ≤ 1 does not define a face, the facet created by the inequality αTx ≤ α0, would be included within the

face where xpu = 0. This contradicts αTx ≤ α0 defining a facet for N ∪{u}, and thus we must create n new

points.
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2.4.1 Additional Facet-Defining Inequalities

We now examine two families of inequalities, the k-clique inequality and the k-unicycle inequality,

presented in [24] with respect to the PnPLO.

Let I ⊂ {1, . . . , p} with |I| = k. The k-clique inequality is

∑
i∈I

∑
j∈I

xij ≥ |I| − 1 (2.7)

Let I ⊂ {1, . . . , p} with |I| = k and i0 ∈ {1, . . . , n} \ {I}. The k-unicycle inequality is

xi0i0 +
∑
i∈I

(xii0 + xioi)−
∑
i∈I

∑
j∈I\{i}

xij ≤ 1 (2.8)

Claim 18 If I ⊆ L the k-clique inequality is valid for the PSLO(H,L).

Proof: Observe that the PnPLO is equivalent to an instance of the PSLO(H,L) where H = ∅, and so it is

clearly feasible if H = ∅ and I ⊆ L. If H is not empty, it does not effect the inequality at all, and thus it

remains valid.

Claim 19 If I ⊆ L the k-unicycle inequality is valid for the PSLO(H,L).

Proof: Observe that the PnPLO is equivalent to an instance of the PSLO(H,L) where H = ∅, and so it is

clearly feasible if H = ∅ and I ⊆ L. If H is not empty, if i0 /∈ H, then H does not influence the inequality

at all, and the inequality remains valid. If i0 ∈ H, we cannot have xi0i0 as the variable does not exist, so

we confine ourselves to examining only the interactions between i0 and elements of I. Let I(x) denote the

elements of x that are not ordered. Then by (2.2), we know that the sum

∑
i∈I

(xii0 + xi0i) = |I| − |I(x)| (2.9)

When we examine the next sum, we see that, by (2.3),

∑
i∈I

∑
j∈I\{i}

xij ≤ |I| − |I(x)| − 1

and so the inequality is valid.
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We will focus on applying the trivial lifting technique to the k-clique and k-unicycle inequalitieslNo-

tice that we have already been introduced to the basic form of the k-clique and k-unicycle inequalities in

(2.4) and (2.3), respectively. We desire to show that we can apply Proposition 17 to make the k-clique and

k-unicycle inequalities facet-defining for PSLO(H,L). However, following the statement of the proposition,

we must first know that the inequalities are facet-defining for the lower-dimensional polytope. To that effect,

we will reproduce the necessary proofs from [24] for the two inequalities.

Proposition 20 The k-clique inequality is a facet of PnPLO.

Proof: Let DI denote the complete digraph having N as a node set, with |N | = n. Let us consider the

following points of PnPLO:

1. The points which only order node k, for each k ∈ N (i.e., xkk = 0 and xll = 1 for all l ∈ N \ {k}).

There are |N | such points, and so it is clear that inequality (2.7) is tight for them.

2. The points which only order node k1 before k2 for each k1, k2 ∈ N , k1 6= k2. There are |N |(|N | − 1)

such points and again, it is clear that inequality (2.7) is tight for them.

Linear, and hence affine, independence of the above |N |2 points is straightforward. Hence, as they all belong

to PnPLO, inequality (2.7) is facet-defining for PnPLO.

Proposition 21 The k-unicycle inequality is a facet of PnPLO.

Proof: Let us consider the following points of PnPLO where i0 ∈ N and |N | = n:

1. The point which orders no nodes (i.e., xii = 1 for all i ∈ N), and for which inequality (2.8) is obviously

tight.

2. The points which only order node k, for each k ∈ N . There are n such points and inequality (2.8) is

obviously tight for them (only the 1-valued loop of node i0 is selected). Linear independence follows

from the fact that a point in this set is the only point so far such that xkk = 0.

3. The points which order either only node i0 before node k or only node k before i0, for each k ∈ N .

There are 2n such points and inequality (2.8) is obviously tight for them (only one 1-valued arc is

selected, in-between i0 and k). Linear independence follows from the fact that a point in this set is the

only point so far such that either xki0 = 1 or xi0k = 1.
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4. The points which order only node i0 before node k1, node i0 before node k2 and either node k1 before

node k2 or node k2 before node k1, for each {k1, k2} ⊆ N (i.e., xi0k1 = xi0k2 = 1, xk1k2 = 1, or

xk2k1 = 1, and xii = 1 for all i ∈ N \ {k1, k2}). There are n(n− 1) such points and inequality (2.8) is

tight for them (two 1-valued arcs and one (−1)-valued arc are selected). Linear independence follows

from the fact that a point in this set is the only point so far such that either xk1k2 = 1 or xk2k1 = 1.

Hence, we have we have exhibited n2 linearly, and therefore affinely, independent points of PnPLO for which

inequality (2.8) is tight. It follows that inequality (2.8) is facet-defining for PnPLO.

Claim 22 Let I ⊂ {1, . . . , p} with |I| = k. If I ⊆ L, the k-clique inequality,
∑
i∈I
∑
j∈I xij ≥ |I| − 1 is

facet-defining for PSLO(H,L).

Proof: Let it be noted that the k-clique inequality is facet-defining for PnPLO. We can write this instance

of the PLO as an instance of the SLO, and so the k-clique inequality is facet-defining for PSLO(∅, L) where

L = N . By application of Proposition 17, we can add elements into H until we reach the final (H,L) set,

and the inequality remains facet-defining.

Claim 23 Let I ⊂ {1, . . . , p} with |I| = k and i0 ∈ {1, . . . , n} \ I. If I ⊆ L, the k-unicycle inequality

xi0i0 +
∑
i∈I(xii0 + xioi)−

∑
i∈I
∑
j∈I\{i} xij ≤ 1 is facet-defining for PSLO(H,L).

Proof: Let it be noted that the k-unicycle inequality is facet-defining for PnPLO. We can write this instance

of the PLO as an instance of the SLO, and so the k-unicycle inequality is facet-defining for PSLO(∅, L)

where L = N . By application of Proposition 17, we can add elements into H until we reach the final (H,L)

set, and the inequality remains facet-defining.
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Chapter 3

Process Move Programming Problem

3.1 Introducing the PMP with respect to H and L

The Process Move Programming (PMP ) problem is the study of a resource-constrained scheduling

problem which arises when studying the fault-tolerance and operability of certain distributed systems [22].

Sirdey et al. described it as, starting with an arbitrary distribution of processes on processors in a distributed

system, we try to find a least-disruptive sequence of moves (interruptions or migrations) which ends with the

system in another predefined arbitrary state. Recall that a migration is performed by removing a process

from one component, and restarting it on a different component, where for the time of the migration, the

process consumes capacity on both components. An interruption is performed by removing a process from

one component, and not restarting until after the reconfiguration. When phrased in the context of our two

sets H and L, we say that H must be migrated, and L can be migrated or interrupted. The goal of the PMP

is to reach the predefined final state with a minimum of interruptions, as those moves have a cost associated

with them. One of the most important requirements of this problem is that we do not exceed the capacity of

any processor at any point in the reconfiguration, and we assume that the final state is always feasible (i.e.,

no processor’s capacity is exceeded). We will now discuss how the PMP can be formulated with respect to

the SLO, present some inequalities which are specific to the PMP (H,L), examine the existence of feasible

solutions and dimension of the convex hull of those feasible solutions, and end our discussion with a specific

class of feasible solutions, the Unitary case.

We begin the formulation for the PMP (H,L) by defining F to be the set of feasible solutions to

the Process Move Programming problem. A solution is in F if
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1. Every process in N is moved exactly once

2. All interruptions are performed before the first migration

3. Two migrations cannot be performed simultaneously

4. the capacity on all components is not exceeded at any point in the reconfiguration.

Notice that a feasible solution to (1), (2), and (3) is a feasible solution for the SLO(H,L). Let N be the

complete set of processes, partitioned into two sets H and L, defined as for the SLO. We can let M ⊆ N

be the set of processes which are migrated, I ⊆ L be the set of processes which are interrupted. Let

p = |N |2 − |H|, and define the set X to be X = {x ∈ {0, 1}p
∣∣(1), (2), (3), and (4) are satisfied}. We will

retain the definition of the variables from the SLO, where

xmm =


1 if process m is interrupted

0 otherwise

for all m in L, and

xmm′ =


1 if process m is migrated before process m′

0 otherwise

for all m,m′ in M = N \ I, as well as the retaining wp to denote the amount of resource consumed

by process p. We also define Ku to denote the amount of resource available on component u. Define

I = {m ∈ N
∣∣xmm = 1}. For every processor p ∈ P , with p /∈ I, there exists S(p), the source component, and

T (p), the target component of p. Let R denote the set of vectors in R p, such that for all processes m0 ∈ H,

ktm0
+

∑
h∈S(tm0 )∩H

whxhm0 +
∑

l∈S(tm0 )∩L

wl(xll + xlm0)−
∑

p∈T (tm0 )

wpxpm0 ≥ wm0 (3.1)

and for all processes m0 ∈ L,

Ktm0
+

∑
h∈S(tm0 )∩H

whxhm0 +
∑

l∈S(tm0 )∩L

wl(xll + xlm0)−
∑

p∈T (tm0 )

wpxpm0 ≥ wm0(1− xm0m0) (3.2)

As any feasible solution to PMP (H,L) must also be a feasible solution to SLO(H,L), all that remains to be

shown is that inequalities (3.1), (3.2) enforce that no unit’s capacity is exceeded. We will denote the convex
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hull of the feasible points of the PMP (H,L) to be PPMP (H,L) where N = H ∪ L, and |N | = n.

Claim 24 Inequalities (3.1) and (3.2) are sufficient to ensure that the resource consumed on each unit is

never more than the available capacity.

Proof: Let x be a solution to PPMP (H,L). If m0 ∈ L and m0 ∈ I, then m0 cannot create an overflow

problem. We know that our final state is always feasible, and we see that (3.2) enforces that the capacity

freed by interrupting the processes on the target of m0, tm0 , is always greater than or equal to zero. If

m0 ∈ L\ I, or m0 ∈ H, we need to check that the combination of the processes that migrate from tm0 before

m0, and the processes that migrate to tm0 before m0 leave enough resource to accommodate m0. Without

loss of generality, we see that (3.1) requires that the residual capacity on tm0 plus the sum of the capacity

that is freed by processes in H migrating before m0 and the capacity that is freed by processes in L being

interrupted or migrating before m0, minus the capacity used by processes in H ∪ L that migrate to tm0

before m0 must be less than the resource required for m0. Thus we see that the inequalities (3.1) and (3.2)

do ensure that there is never any overflow.

3.2 Cover and Cover-based Inequalities

We now examine the general topic of covers, and also more problem-specific applications of covers.

First, however, we must define what a cover is. Covers are generally discussed in terms of the 0-1 knapsack

problem, where the 0-1 knapsack polytope is defined as

P := conv{x ∈ {0, 1}n
∣∣atx ≤ b},

a set C ⊆ N = {1, . . . , n} defines a cover if it satisfies
∑
i∈C ai > b. That is, in terms of the knapsack problem,

all elements in C cannot be chosen at the same time, as their combined weights exceed the maximum value

allowed by the constraint. We now examine the definition of a cover in our problem with respect to a

component u. Without loss of generality, let there be two distinct processes i and j, where the source

processor of i is also the target processor of j, so S(i) = T (j) = u. Suppose that the amount of resource

consumed by j is greater than the sum of the residual resource on u plus the amount of resource consumed

by process i, and so both i and j cannot exist on u at the same time. Then the two processes, i and j, define

a cover, with respect to the unit u, and we write (i, j) ∈ C. Thus the process j cannot migrate to u before

i migrates from u for any feasible solution of the PMP . We can expand the generalities of this case, but
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the same idea holds if we assume i to be the set of processes in the cover for which si = u, and similarly for

j. In our notation, we would write: j 6≺ i and so xji = 0 for all x ∈ PSLO(H,L). Derived from the idea of

cover, either directly or indirectly, we now have four sets of inequalities from [15] that we consider in detail.

3.2.1 Source and Target Cover Inequality

Let m0 be a process move of M and u be a processor of {sm0 , tm0}. Consider two subsets S ⊆ S(u)

and T ⊆ T (u) so that (m0, S, T ) induces a cover; that is, (S ∪ {m0}, T ) or (S, T ∪ {m0}) is a cover with

respect to u = sm0 or u = tm0 respectively. If m0 ∈ H, the cover inequality is given as

∑
m∈S

xm0m +
∑
m∈T

xmm0 ≤ |S|+ |T | − 1, (3.3)

whereas, if m0 ∈ L, the cover inequality is given as

∑
m∈S

xm0m +
∑
m∈T

xmm0 + (|S|+ |T | − 1)xm0m0 ≤ |S|+ |T | − 1, (3.4)

We will show that these cover inequalities are valid for PPMP (H,L). These inequalities express that if all

processes that share a target with m0 migrate to u before m0, at least one process whose source is u must

migrate before m0 can migrate, thus enforcing the principle of cover.

Proposition 25 Inequalities (3.3) and (3.4), known as the cover inequalities, are valid for the PPMP (H,L).

Proof: Let x be a solution of PPMP (H,L). If m0 ∈ L, and xm0m0 = 1, validity is obvious, as xmm0 =

xm0m = 0 for all m ∈ N \ {m0}. If m0 ∈ L, but xm0m0 = 0, or if m0 ∈ H, the maximum value of the

right-hand side is |S|+ |T |. However, if it takes that value, it must be the case that all process moves of S

have been migrated before any process moves of T , which violates (m0, S, T ) as cover-inducing. Thus the

maximum value of the left-hand side is strictly less than |S|+ |T |, and the inequality is valid.

3.2.2 Overload Inequalities

Let u be a processor of U , and consider two non-empty subsets S ⊆ S(u) and T ⊆ T (u) so that

(S, T ) induces a cover with respect to u. Then for some processes ms ∈ S and mt ∈ T , the overload inequality

is given as ∑
m∈S\{ms}

xmsm +
∑

m∈T\{mt}

xmmt
+ xmtms

≤ |S|+ |T | − 2 (3.5)
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if ms, mt ∈ H,

∑
m∈S\{ms}

xmsm +
∑

m∈T\{mt}

xmmt + xmtms + (|T | − 1)xmtmt ≤ |S|+ |T | − 2 (3.6)

if ms ∈ H, mt ∈ L,

∑
m∈S\{ms}

xmsm +
∑

m∈T\{mt}

xmmt + xmtms + (|S| − 1)xmsms ≤ |S|+ |T | − 2 (3.7)

if ms ∈ L, mt ∈ H, and

∑
m∈S\{ms}

xmsm +
∑

m∈T\{mt}

xmmt
+ xmtms

+ (|S| − 1)xmsms
+ (|T | − 1)xmtmt

≤ |S|+ |T | − 2 (3.8)

if ms, mt ∈ L. We will present the proof for the validity of inequalities (3.5), (3.6), (3.7), and (3.8) in the

same four cases as above.

Claim 26 If ms,mt ∈ H, then inequality (3.5) is valid for PPMP (H,L).

Proof: Let x be a solution of PPMP (H,L). If xmsmt = 1, then validity follows from the maximum possible

sums. That is, ∑
m∈S\{ms}

xmsm ≤ |S| − 1, and
∑

m∈T\{mt}

xmmt
≤ |T | − 1,

and so the maximum value of the left-hand side is |S| + |T | − 2. If instead, xmtms
= 1, then at least one

of the previous inequalities is not tight, else all process moves of S would be migrated before any process

moves of T , contradicting (S, T ) as cover-inducing. Therefore the inequality must be valid.

Claim 27 If ms ∈ H, mt ∈ L, then inequality (3.6) is valid for PPMP (H,L).

Proof: Let x be a solution of PPMP (H,L). If xmtmt
= 1, then xmmt

= 0 for all m ∈ T \ {mt}, and

xmtms = 0. Thus the maximum value of the left-hand side is the maximum value of
∑
m∈S\{ms} xmsm plus

|T |−1. As seen in the previous case, the maximum value of the sum is |S|−1, and so the inequality is valid.

If xmtmt = 0, we are in the same situation as Claim 26, and thus the inequality must be valid.

Claim 28 If ms ∈ L, mt ∈ H, then inequality (3.7) is valid for PPMP (H,L).

Proof: The proof is similar to claim 27.

Claim 29 If ms,mt ∈ L, then inequality (3.8) is valid for PPMP (H,L).
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Proof: Let x be a solution of PPMP (H,L). If xmsms = xmtmt = 1, then the validity is obvious, as

xmsm = xmmt
= 0 for all m ∈ N \ {ms,mt}, and so the two sides are equal. All other cases have been

covered above, and thus the inequality must be valid.

In all possible cases, the overload inequality is valid for the PPMP (H,L).

3.2.3 Source Excess Inequality

Let u be a processor of U . Consider two non-empty subsets S ⊆ S(u) and T ⊆ T (u) so that

(S \ {m}, T ) induces a cover with respect to u for every m ∈ S and (S, T \ {m}) induces a cover with respect

to u for every m ∈ T . For two distinct processes m0,ms ∈ S, if m0 ∈ H, we have the following inequality

∑
m∈S\{m0

xm0m}+
∑
m∈T

xmm0 + xmsm0 −
∑
m∈T

xmsm ≤ |S|+ |T | − 3, (3.9)

whereas if m0 ∈ L, we have

∑
m∈S\{m0

xm0m}+
∑
m∈T

xmm0 + xmsm0 −
∑
m∈T

xmsm + (|S|+ |T | − 3)xm0m0 ≤ |S|+ |T | − 3. (3.10)

Proposition 30 Inequalities (3.9) and (3.10), called the source excess inequalities, are valid for PnPMP .

Proof: Let x be a solution of PMPMP . If m0 ∈ L and xm0m0 = 1, then as xm0m = xmm0 = 0 for all

m ∈ N \ {m0}, the maximum value of the left-hand side for (3.9) and (3.10) is equal to the right-hand side

value, and so both inequalities are valid. Let m0 ∈ L and xm0m0 = 0, or m0 ∈ H. Then if xmsms = 1, as

(S \ {ms}, T ) defines a cover with respect to u, the cover inequalities (3.3) and (3.4), with a cover induced

by (mo, S \ {mo,ms}, T ), implies validity.

Assume xmsms
= 0. If at least two processes from (S \ {m0,ms}) ∪ T are interrupted, then the left-hand

side of the inequality is bounded above by

∑
m∈S,m 6=m0

xm0m +
∑
m∈T

xmm0 + xmsm0 ≤ |S|+ |T | − 3

as the sum of the first three terms cannot exceed |S|+|T |−3. If exactly one process among (S\{m0,ms})∪T

is interrupted, say m′ ∈ S, then as (S \ {m′}, T ) defines a cover, the above inequality continues to hold.
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If
∑
m∈T xmsm > 1, then validity obviously holds, as it decreases the left-hand side value, and at least negates

the possible addition of one by xmsm0 = 1. Suppose that
∑
m∈S,m 6=m0

xm0m +
∑
m∈T xmm0 + xmsm0 =

|S| + |T | − 2, and
∑
m∈T xmsm = 0. This would mean that we have all process moves of T migrated to u

before any process moves in S \ {m′} are migrated, which contradicts (S \ {m′}, T ) being a cover.

Now assume that no process in S ∪ T is interrupted. If all of the process moves in S \ {m0} are migrated

after m0, we cannot have more than |T | − 2 process moves in T migrated to u before m0, since (S, T \ {m})

is a cover. Thus the validity of the source excess inequality holds. If all process moves in S \ {m0} but

m′ 6= ms are migrated after m0, we have
∑
m∈S,m 6=m0

xm0m = |S| − 2 and xmsm0 = 0, and as (S \ {m′}, T )

induces a cover, we also have
∑
m∈T xmm0 ≤ |T | − 1.

If all the processes in S \{m0} but ms are migrated after m0, we then have
∑
m∈S,m 6=m0

xm0m = |S|−2 and

xmsm0 = 1 and as (S\{ms}, T ) induces a cover, we also have
∑
m∈T xmm0 ≤ |T |−1 and

∑
m∈T xmsm ≥ 1. If

two processes in S\{m0} are migrated before m0, one of them being ms, we then
∑
m∈S,m 6=m0

xm0m = |S|−3

and xmsm0 = 1 and again, as (S \ {ms}, T ) defines a cover,
∑
m∈T xmm0 ≤ |T | and

∑
m∈T xmsm ≥ 1, and

the validity then follows.

Let us examine a solution where one process move in T , say m̄ is interrupted, and no process move of S is

interrupted. Since (S, T \ {m̄}) defines a cover, we have

∑
m∈S,m 6=m0

xm0m +
∑
m∈T

xm0 + xmsm0 ≤ |S|+ |T | − 2

Let the above inequality be tight, and
∑
m∈T xmsm = 0. If xmsm0 = 1, then

∑
m∈S,m 6=m0

xm0m = |S| − 2,

and we have |T | − 1 processes in T migrated to u before any process moves of S leave u, which contradicts

(S, T \ {m̄}) inducing a cover. Thus the source excess inequalities are valid.

3.2.4 Target Excess Inequality

Let u be a processor of U . Consider two non-empty subsets S ⊂ S(u) and T ⊂ T (u) so that

(S \ {m}, T ) defines a cover for every m ∈ S and (S, T \ {m}) defines a cover for every m ∈ T . For two

distinct processes m0,mt ∈ T , if m0 ∈ H, we have the following inequality

∑
m∈S

xm0m +
∑

m∈T\{m0}

xmm0 + xm0mt −
∑
m∈S

xmmt ≤ |S|+ |T | − 3, (3.11)
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whereas, if m0 ∈ L, we have

∑
m∈S

xm0m +
∑

m∈T\{m0}

xmm0 + xm0mt −
∑
m∈S

xmmt + (|S|+ |T | − 3)xm0m0 ≤ |S|+ |T | − 3 (3.12)

These inequalities guarantee that when both m0 and mt are migrated to their target u, enough resource has

been freed on u to allow the migration.

Proposition 31 Inequalities (3.11) and (3.12), called the target excess inequalities, are valid for PPMP (H,L).

Proof: Let x be a solution of PPMP (H,L). If m0 ∈ L and xm0m0 = 1, validity is obvious as xmm0 =

xm0m = 0 for all m ∈ N \{m0}, and thus the maximum value of the left-hand side is equal to the right-hand

side value. Let m0 ∈ L and xm0m0 = 0, or m0 ∈ H. If xmtmt
= 1, then, as (S, T \ {mt}) defines a cover

with respect to u, then the cover inequality from above induced by (m0, S, T \ {m0,mt}) implies validity.

Assume xmtmt = 0. Then from the cover inequality induced by either (m0, S, T \ {m0}) if xmtm0 = 1 or by

(m0, S, T \ {m0,mt}) if xm0mt
= 1, we have

∑
m∈S

xm0m +
∑

m∈T\{m0}

xmm0 + xm0mt
≤ |S|+ |T | − 2. (∗)

If (*) is tight, then there exists a process move m′ of S ∪T such that either xm′m0 = 1 if m′ ∈ T \ {m0,mt},

or xm0m′ = 0 if m′ ∈ S. Since validity is obvious if
∑
m∈S xmmt

> 0, we complete our proof by considering

the case where
∑
m∈S xmmt = 0. From (*) being tight, the definition of m′, and setting

∑
m∈S xmmt = 0,

we deduce that all the process moves of (S ∪ T ) \ {m′} are present at the same time on the processor u.

If m′ ∈ S (respectively m′ ∈ T \ {m0,mt}), the vector x is not feasible, since (S \ {m′}, T ) (respectively

(S, T \ {m′})) defines a cover with respect to u. Thus validity holds.

There is a situation to be considered: Let (i, j) ∈ C(N, 2), so j 6≺ i. Suppose, however, that at the

time j needs to migrate, i is unable to. If i ∈ L, this is not a problem, as we can interrupt i, thus creating

enough capacity for j to move, and the problem still has a feasible solution. However, if i ∈ H, the process

cannot be interrupted, and there is no solution. This leads us to wonder exactly what situations guarantee

a feasible solution.
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3.3 Existence of Feasible Solutions

It is important to be able to discern when a feasible solution to the PMP (H,L) exists. One necessary

condition is that, if we interrupt all processes in L, we need to be able to feasibly migrate all processes in H.

This question is the same question asked by the Zero-Impact Process Move Programming (ZIPMP) problem.

Similar to what Sirdey et al. stated in [22], given a set of moves, H we want to know if there exists a bijection

σ : H → {1, . . . , nH} such that for all m ∈ H,

wm ≤ Ktm +
∑

m′∈S(tm),σ(m′)≤σ(m)

wm′ −
∑

m′∈T (tm),σ(m′)<σ(m)

wm′ (3.13)

This problem was shown to be NP-complete in the strong sense, as the classic 3-partition problem (which

is known to be NP-complete in the strong sense [9]) can be solved by an algorithm able to solve the ZIPMP

problem, and the ZIPMP can be restricted to the 3-partition problem [22].

There are two polynomially solvable special cases of the PMP problem which have been studied by

Sirdey et al., although not in the context of the PMP (H,L). Below we introduce those cases, adapting

the wording and some of the proofs to fit the PMP (H,L) instead of the general PMP . However, we must

first introduce notation, also borrowed from Sirdey et al. [22], that allows us to associate an instance of the

PMP (H,L) with a directed multigraph. Let D = (H,AH) be the directed multigraph, called the transfer

multigraph, whose vertices represent the all processes in H, and all arcs are ordered (sh, th) for all processes

h ∈ H. We are only interested in determining when the process moves in H have a feasible solution, since

it is unavoidable for these processes to consume resource, and the consumption of resource is the cause of

infeasible solutions.

3.3.1 The Acyclic Transfer Digraph

The first case we desire to examine is the case where the transfer multigraph is acyclic. Recall that

there exists a topological ordering of the vertices of any acyclic graph G = (V,A), defined as a bijection

φ : V → {1, . . . , |V |} such that φ(v) < φ(w) for all arcs (v, w) ∈ A. We will refer to D as the transfer graph,

where D is defined as D = (N,AN ) where AN is the set of all (sp, tp) pairs for all p ∈ N . We will also denote

|N | = n. Any similar notation is likewise defined.

Claim 32 If D = (H,AH) is acyclic, a zero-impact process move program exists and can be found in linear

time.
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Proof: Let the graph D = (H,AH) be acyclic. Then we know that D has a topological ordering of its

vertices. By definition of a topological ordering, the final vertex in the ordering, call it unh
, has only

incoming arcs, and so S(φ−1(nh)) = ∅. As our final state is always feasible, there is sufficient capacity

on unh
to accommodate all processes m for which tm = unh

. Perform that migration. Then uhn has no

more incoming arcs, and S(φ−1(nh−1)) = ∅. We repeat our argument, migrating moves until we reach

u2 = φ(2). Once we migrate all incoming arcs to u2, we are left with u1. By definition of a topological

ordering, the root vertex, in this case u1 does not have any incoming arcs. Thus we have reached a point

where S(φ−1(1)) = T (φ−1(1)) = ∅, and we have performed all migrations. This reconfiguration is equivalent

to obtaining a topological ordering, which is known to be derivable in linear time [9].

Before we look at our next case, we conclude this topic of acyclic digraphs by recalling that a directed

multigraph G = (V,A) is strongly connected if either

a. |V | = 2, or

b. G contains a path from v to w and from w to v for all (v, w) ∈ V, v 6= w.

We can extend the above idea, knowing that even if D = (H,AH) contains some cycles, we may still be able

to obtain a topological ordering on H ⊂ N by examining the strongly connected components of D. If we let

C1, . . . , Cm denote the strongly connected components of D and assume that they are topologically ordered,

Sirdey et al. [22] proved the following:

Proposition 33 Assuming that given 1 < i ≤ n, the moves having both their source and target in
m⋃

j=i+1

Cj

have been performed and that the corresponding arcs have been removed from D = (H,AH). Then a process

move program over H which first schedules the moves having their source in Ci and target not in Ci, then

moves internal to Ci followed by the remaining moves, dominates any other program not satisfying this

property.

3.3.2 The Homogeneous PMP

The next case that we concern ourselves with is the Homogeneous case, in which all processes

m ∈ N consume the same amount of resource. Without loss of generality, we can scale that set amount so

that wm = 1 for all m ∈ N . To discuss the special aspects of this case, we must first recall that a directed

multigraph G = (V,A) is Eulerian if it is connected (without respect to direction) and the in-degree of a

vertex is equal to its out-degree, for all vertices v ∈ V .
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Algorithm 34 An algorithm for the homogeneous case when D = (N,AN ) is strongly connected and non-

Eulerian.

While N 6= ∅

Let C denote the set of vertices in the last of the topologically ordered strongly con-

nected components of D.

(a) If C contains only one vertex, say v, then perform all the moves targeting v in an

arbitrary order, remove them from M , remove the corresponding arcs from AN , and

remove v from N .

(b) Else choose a vertex, say v0, in C whose remaining capacity is non-zero and a maxi-

mal Eulerian sub-digraph rooted at v0. Perform the moves in the sub-digraph in reverse

order of an Eulerian tour, removing them from M and removing the corresponding arcs

from N .

End.

The above algorithm is very useful, and allows us to solve the homogeneous case, if D is non-Eulerian and

strongly connected; we can not only solve it, but can do so in polynomial time, as shown by the following.

Corollary 35 Assume that D = (H,AH) is connected. Then, if D is non-Eulerian, a zero-impact admissible

process move program exists and can be found in polynomial time.

Proof: If D = (H,AH) is Eulerian, then we proceed to Proposition 36. Let us assume that D is connected

and not Eulerian, and let C1, . . . , Cn denote the strongly connected components of D, topologically ordered.

Algorithm 34 considers these components of D as implied by Proposition 33. Assume that |Cn| > 1. If

the transfer multigraph associated with the moves internal to Cn, call it D′n, is not Eulerian, we can use

Algorithm 34 to find a zero-impact process move program of D′n. Otherwise, if D′n is Eulerian, then the

in-degree is equal to the out-degree of each vertex in D′n. However, since D is connected, at least one vertex

in Cn, say v0, is the head of an arc whose tail is not in Cn, and it follows that the in-degree of v0 is greater

than its out-degree, and thus Kv0 > 0. This provides a vertex from which an Eulerian tour can be started.

When the moves internal to Ci (i < n, |Ci| > 1) are considered, as D is connected, at least one move with

source in Ci and target not in Ci has been performed, ensuring that one unit of resource is available on at

least one of the vertices of Ci. Let D′i denote the transfer digraph associated with the moves internal to Ci.

35



It follows that a zero-impact process move program is given by either an Eulerian tour (if D′i is Eulerian) or

by Algorithm 34 otherwise, which is clearly polynomial.

If D is Eulerian, we have a feasible solution only if the following proposition holds.

Proposition 36 If D = (H,AH) is Eulerian, then the homogeneous case can be solved in linear time if and

only if there exists a processor u ∈ U such that Ku ≥ 1.

Proof: If there exists a processor u ∈ U such that Ku ≥ 1, then a zero-impact process move program over H

is obtained by performing the moves in the reverse order of an Eulerian tour on D = (H,AH), starting with

any of the moves targeting u. Otherwise, as no process of H can be interrupted, the problem is infeasible.

Although we have been dealing with the Homogeneous case, we can similarly consider a non-

homogeneous case under special circumstances.

Proposition 37 Consider the PMP (H∪{m0}, L), and let the amount of resource consumed by all processes

m ∈ H ∪L be such that wm = 2k for some k ∈ Z +, and let wm0 = 1. If there exists at least two components

ui, uj ∈ U with ci, cj odd, then m0 is free. Additionally, solving a zero-impact process move problem for

PMP (H ∪ {m0}, L) equivalent to finding a feasible solution for PMP (H,L) in the homogeneous case, and

thus is polynomial solvable.

Proof: Let sm0 = ui with odd initial capacity. As m0 is consuming resource on sm0 , its residual capacity

is even. Suppose we desire to migrate any process m′ ∈ H to ui before migrating m0. If there is sufficient

residual capacity, there is no conflict. If there is not sufficient residual capacity on ui, then the residual

capacity on ui must be Ki ≤ wm′−2. If we let m0 ≺ m′, the updated residual capacity would beKi ≤ wm′−1,

which we see is still not sufficient for the migration of m′. Let tm0 = uj with odd initial capacity, and let

Sj = {m ∈ H \ {m0}
∣∣sm = uj} and Tj = {m ∈ H \ {m0}

∣∣tm = uj}. The residual capacity on uj before the

migration of m0 can be written as Kj = cj −
∑
m∈Sj

wmxm0m −
∑
m∈Tj

wmxmm0 . As wm = 2k for some

k ∈ Z +, for any feasible solution, Kj ≥ 1 after any set of migrations of m ∈ H \ {m0}, and so there is

always sufficient capacity for m0 to migrate. Thus the process m0 can never create any overflow issues, and

the problem is equivalent to finding a feasible solution for PMP (H,L), which is the homogeneous case and

thereby polynomial, under the restrictions in the propositions above.
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3.4 Dimension

Assume that we have a feasible solution with respect to H; that is, there is a ZIPMP for H. If we

do not make this assumption, then PSLO(H,L) = ∅, and we have nothing to work with. We begin by stating

that dimPPMP (H,L) ≤ dimPSLO(H,L), as the PMP is a restriction of the SLO. The tightness of that

bound needs to be considered, and so we will introduce some necessary conditions for the dimension of the

PPMP (H,L). First, though, we need to introduce some notation, similar to that presented in Sirdey and

Kerivin [25]. The process move polytope over (H,L) is written

PPMP (H,L) = conv{xp ∈ R p
∣∣x satisfies items (1) through (4) in our formulation}

where |H| = nH and |L| = nL, and nH+nL = n = |N |. We are given two subsets of moves {m1, . . . ,mr} ⊆M

and X ⊆ M with 1 ≤ r ≤ n, H ∩ (X ∪ {m1, . . . ,mr}) = H, and X ∩ {m1, . . . ,mr} = ∅. We denote an

incomplete process move program, by [m1, . . . ,mr;X], where the only specified ordering is on {m1, . . . ,mr}

with mi ≺ mj if i < j, and X ⊆ M = N \ I. If X = ∅, each incomplete program defines a unique point,

and if X 6= ∅, it defines a family of points, not necessarily unique, satisfying the specified ordering on

{m1, . . . ,mr}. An incomplete process move program [m1, . . . ,mr;X] is admissible if and only if there exists

a point x ∈ PPMP (H,K) such that

xmm =


0 if m ∈ {m1, . . . ,mr} ∪X

1 otherwise

xmimj =


1 if mi,mj ∈ {m1, . . . ,mr} with i < j

0 if mi,mj ∈ {m1, . . . ,mr} with i ≥ j

3.4.1 Necessary Conditions for Dimension

We now define several sets that partition the possible set of incomplete processes, and give some

necessary conditions for them.

DH ={(h, h′) ∈ H distinct ordered pairs : [h, h′;H \ {h, h′}] is not admissible}

|DH | = dH

DL ={l ∈ L : [∅;H ∪ {l}] is not admissible}
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|DL| = dL

DHL ={(h, l) ∈ H × L : [h, l;H \ {h}] is not admissible, but [∅;H ∪ {l}] is admissible
}

|DHL| = dHL

DLH ={(l, h) ∈ L×H : [l, h;H \ {h}] is not admissible, but [∅;H ∪ {l}] is admissible
}

|DLH | = dLH

DLL ={(l, l′) ∈ L distinct ordered pairs : [l, l′;H] is not admissible, but l, l′ /∈ DL}

|DLL| = dLL

Proposition 38 If there are two distinct h, h′ ∈ H such that (h, h′) ∈ DH , then

1. PPMP (H,L) ⊆ {x ∈ R p
∣∣xhh′ = 0}, and

2. dimPPMP (H,L) ≤ dimPSLO(H,L)− 1

Proof: If the specified ordering is not admissible, then it never occurs in any feasible solution x̄ ∈

PPMP (H,L). Thus for all x̄ ∈ PPMP (H,L), xhh′ = 0, and so the polytope is included in the face

{x ∈ R p
∣∣xhh′ = 0}.

If xhh′ = 0 for all feasible points of PPMP (H,L), then we add that equation to our minimal system (A=, b=),

thereby increasing its dimension by 1, as this equation is the first to mention only xhh′ . Thus our dimension

decreases by 1, as shown in Claim 6.

Proposition 39 If there exists l ∈ L such that l ∈ DL, then

1. PPMP (H,L) ⊆ {x ∈ R p
∣∣xll = 1}, and

2. dimPPMP (H,L) ≤ dimPSLO(H,L)− (nH + 1)

Proof: If migrating process l is not admissible, then it never occurs in any feasible solution x̄ ∈ PPMP (H,L).

Thus for all x̄ ∈ PPMP (H,L), xll = 1, and so the polytope is included in the face {x ∈ R p
∣∣xll = 1}.

If xll = 1 for all feasible points of PPMP (H,L), we know that this also specifies, without loss of generality,

xhl = 0 for all h ∈ H. We must add all of those equations and also xll = 0 to our minimal system (A=, b=),

thereby increasing its dimension by nH + 1, as these equations are the first to mention only xhl or xll. We

need not specify xlh = 0, as the equation already in our minimal system (2.2) takes care of that. Thus our

dimension decreases by (nH + 1), as shown in Claim 6.
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Proposition 40 If there are two distinct l, l′ ∈ L such that (l, l′) ∈ DLL, then

1. PPMP (H,L) ⊆ {x ∈ R p
∣∣xll′ = 0}, and

2. dimPPMP (H,L) ≤ dimPSLO(H,L)− 1

Proof: If the specified ordering is not admissible, then it never occurs in any feasible solution x̄ ∈

PPMP (H,L). Thus for all x̄ ∈ PPMP (H,L), xll′ = 0, and so the polytope is included in the face {x ∈

R p
∣∣xll′ = 0}.

If xll′ = 0 for all feasible points of PPMP (H,L), then we add that equation to our minimal system (A=, b=),

thereby increasing its dimension by 1, as this equation is the first to mention only xll′ . Thus our dimension

decreases by 1, as shown in Claim 6.

Proposition 41 If there exist h ∈ H and l ∈ L such that (h, l) ∈ DHL, then

1. PPMP (H,L) ⊆ {x ∈ R p
∣∣xhl = 0}, and

2. dimPPMP (H,L) ≤ dimPSLO(H,L)− 1

Proof: If the specified ordering is not admissible, then it never occurs in any feasible solution x̄ ∈

PPMP (H,L). Thus for all x̄ ∈ PPMP (H,L), xhl = 0, and so the polytope is included in the face {x ∈

R p
∣∣xhl = 0}.

If xhl = 0 for all feasible points of PPMP (H,L), then we add that equation to our minimal system (A=, b=),

thereby increasing its dimension by 1, as this equation is the first to mention only xhl. Thus our dimension

decreases by 1, as shown in Claim 6.

Proposition 42 If there exist h ∈ H and l ∈ L such that (l, h) ∈ DLH , then

1. PPMP (H,L) ⊆ {x ∈ R p
∣∣xlh = 0}, and

2. dimPPMP (H,L) ≤ dimPSLO(H,L)− 1

Proof: Proof is similar to that of Proposition 41.

When we assemble all of these different parts of the set of incomplete process move programs, we

arrive at the following bound on our dimension:

dimPPMP (H,L) ≤ dimPSLO(H,L)− (dH + dL(nH + 1) + dHL + dLL) (3.14)
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This bound is helpful, but gives no insight as to how tight a bound it is. To gain some information on that,

we examine an instance of the SLO problem where H = ∅. This problem is equivalent to an instance of the

PLO where |L| = n, whose convex hull is known to have

dimPnPLO = n2 − |C(M, 2)|

from [15]. The notation |C(M, 2)| denotes the covers of size two over the set M of processes which are

migrated. As discussed previously, a cover of size two occurs between l and l′ with respect to a component

u when, without loss of generality, l ≺ l′ for all x ∈ PnPLO due to capacity restrictions. We draw the reader’s

attention to the fact that definition of covers of size two is equivalent to the definition for a set of processes

(l, l′) ∈ L to be in DLL. If we look to those sets to try and draw any other similarities, we see that, as

H = ∅, DH = DHL = ∅ as well. Also, as our final state is always feasible, DL is also empty. Thus we could

rewrite our dimension in (3.14) as

dimPPMP (∅, L) ≤ dimPSLO(H,L)− (dLL), (3.14’)

which is exactly the dimension of the P |L|PLO, and so we see that our bound is quite good.
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Chapter 4

Conclusion

This paper has introduced the Steiner Linear Ordering problem, and shown how it can be applied

to resource-constrained scheduling problems, specifically the PMP . In the introduction, we first informally

introduced the idea of handling two sets of processes, H and L, which have different priorities. That is, for

scheduling issues and reconfigurations, the processes in H cannot be interrupted, while the processes in L can

be interrupted. Chapter 2 focused on formally writing the SLO problem, as well as presenting facet-defining

inequalities for the convex hull of the SLO. We introduced a modified form of trivial lifting, and applied

it to some well-known inequalities for the Linear Ordering problem, in turn making them facet-defining for

the SLO. In Chapter 3, we introduced the PMP with respect to the SLO’s structure, namely, in terms

of H and L. From the additional capacity restrictions imposed, we were able to present some cover-based

inequalities that are known to be valid for the PMP with a partial linear ordering, and show that they

are valid for the PSLO(H,L). Also in Chapter 3, we outlined necessary conditions for the existence of a

feasible solution, shared some polynomial solvable instances of the problem, and developed a bound on our

dimension, which we proved is quite good.

However, there are still many areas of the SLO which could be investigated. In Chapter 2, while

we introduced a modified form of trivial lifting, we allowed an element to be added to H. While this let us

show that some facet-defining inequalities for the PnPLO are facet-defining for the PSLO(∅, N), there are other

well-known facet-defining inequalities for the PnPLO for which this lifting can be applied. Also, we did not

complete the trivial lifting that would allow us to trivially lift elements into L. Showing that such a trivial

lifting is valid would enable us to lift inequalities that are facet-defining for the PnLO to be facet-defining for

the PSLO(H,L), such as the Möbius Ladder inequalities and the k-fence inequalities, presented in [11]. We
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have already begun to work on finding facet-defining variations of the inequalities listed in the trivial lifting

section, which may be included in a following paper.

Future research stemming from Chapter 3 includes examining the separation problem for the in-

equalities listed, as well as any ramifications that might arise due to the two priority levels. The cover and

cover-based inequalities still need to be examined to determine what conditions make them facet-defining,

for both the PSLO(H,L) and the PnPLO. While we did mention the homogeneous case with respect to feasible

solutions, there is a wealth of discovery yet to be made with respect to that instance. Proposition 37 may

be able to be generalized, and this opens up a whole area of future research for reconfiguration problems in

which one or more processes are free to migrate at will, and others must be constrained.
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