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Abstract

Analytical chemistry uses high performance liquid chromatography (HPLC) to sep-

arate desired macromolecules from a fluid. This thesis is concerned with monolithic column

environments used in HPLC separations. The monolithic column environment under con-

sideration consists of many long polymer fibers suspended in a tube. Between the fibers are

voids (interstices) which regulate the separation process. The goal of this thesis is both to

identify interstices of a size such that the interstice contributes to the separation process,

and to identify the boundaries of the fibers along such interstices. We model the cross

section of the column environment with a collection of polygons. We define the desired

interstices and boundaries in the model. We implement (using C++) an algorithmic ap-

proach to identify the desired boundaries from which we generate images and summarize

relevant data.
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Chapter 1

Introduction

The work presented in this thesis is motivated by active research in analytical chem-

istry. One aspect of analytical chemistry studies how to improve purification processes using

high performance liquid chromatography [13, 14, 16]. This thesis focuses on the column en-

vironment used in this purification process. The column environment is described in Section

1.1; a cross section of the column environment can be seen in Figure 1.1. In this thesis,

we create a mathematical model to study the column environment. Our model is used

to find regions in the column environment which make an appreciable contribution to the

purification process. These regions are explained in Section 1.2. We offer two calculations

on our model which identify and quantify these regions. To complete these calculations, we

use the C++ library CGAL which is discussed in Section 1.3.

1.1 Motivation from Chemistry

The column environment we study is a monolithic column which consists of a tube,

a large number of thin polymer fibers that extend the length of the tube, and a fluid. The

fluid contains macromolecules which must separated for desired purifications. The fibers

inside the tube create and determine the location and sizes of the voids (interstices) through

which the fluid may flow. The positions of the numerous fibers do not exhibit a regular
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(a) (b)

Figure 1.1: The Column Environment: Cross sectional images of the column environment
showing the fibers and interstices, images taken from [14]. In (a), we see the tube containing
the fibers. In (b), we see that the fibers have the same shape and are not arranged in any
regular pattern. The size of the interstices are irregular and depend on the position of the
fibers.

pattern and thus the interstices are varisized, see Figure 1.1. In [14], the author notes that

the positions of the fibers are assumed to remain nearly constant throughout the length of

the tube. Therefore, we assume all cross sections of the column environment are the same.

The boundaries of the fibers along the interstices and the interstices, are the regions

in the column environment which contribute to the purification process. The size of the

interstices determines if the molecules in the interstice diffuse to the boundary of the fiber,

a crucial step in the purification process. When a macromolecule just barely fits into

an interstice, it experiences the most amount of interaction with the surrounding fibers.

When a macromolecule experiences large amounts of interaction, the macromolecule passes

though the column relatively slowly and diffuses more rapidly to the boundary of a fiber.

Interstices of large size allow the macromolecule to pass through the column more rapidly,

which results in less interaction with the surrounding fibers. Due to the reduced interaction,
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the macromolecule takes longer to diffuse to the boundary of a fiber, or is unlikely to do so.

The size of some interstices may be too small or too large to separate the desired

macromolecules in the fluid. Given a macromolecule, we let τmin be the size of an interstice

for which the macromolecule is too large to enter; and, we let τmax be the smallest size of

an interstice for which the macromolecule is unlikely to diffuse, because the interstice is too

large. Therefore, interstices of size smaller than τmin or larger than τmax are unlikely to

contribute to the separation process. We call the interstices of sizes between τmin and τmax

channels. The boundaries of the fibers along the channels are called the channel-walls.

Our model of a column environment is of a representative cross section of the column

wall, fibers, and interstices under the assumption that all cross sections of the column

environment are the same, i.e., we study the column environment by studying a cross

section. Our first computation identifies the channel-walls and calculates the lengths of

the channel-walls. Our second computation identifies the channels and calculates the total

area of the channels. The latter computation determines the area of the interstices through

which macromolecules flow and may diffuse to a channel-wall.

1.2 A Mathematical Model

In this section, we present our model and calculations. Our model consists of a set

of polygons, see Figure 1.2. A regular polygon is used to approximate the column wall.

Polygons are used to represent the boundaries of the fibers’ cross sections and take the

shape exhibited in Figure 1.1. These polygons are called fiber-polygons.

Notation 1.2.1. We use CALLIGRAPHIC font to indicate sets of sets, CAPITAL

ROMAN letters to denote sets of points, and lower case roman letters to denote points.

Definition 1.2.2. Let C be a regular polygon representing the inner boundary of the

column wall in the cross section. Let P be a collection of fiber-polygons. Then P :=
⋃
{Pi}

where Pi is a fiber-polygon. Let P be the points from the collection of fiber-polygons. Then

P :=
⋃
Pi, where the union is taken over all fiber-polygons Pi. Let D be the collection of

3



Figure 1.2: The column wall is represented by a polygon which approximates a circle. The
disjoint fiber-polygons are arranged in a similar way as the fibers in Figure 1.1. The inner
column wall has a diameter of 215 µm. The polygon-fibers have a diameter, cf. Definition
2.2.2, of 30 µm. The data for this diagram is from [7].

polygons which includes the fiber-polygons and the regular polygon in the plane representing

the inner boundary of the column wall. We call this collection of polygons the domain. The

domain is given by D := P ∪ {C}.

Definition 1.2.3. Let X be any geometric object (point, line segment or polygon) or

collection of geometric objects that can be formed from the objects in the domain D. We

define the collection of polygons in D which are disjoint from X to be

D−X :=
⋃
Pi∈D

Pi∩X=∅

Pi

Our next definition, studied further in Section 2.4, identifies the channel-walls, which

are boundaries of the fibers necessary for the separation process; that is, the portion of the

boundaries of the polygons which form interstices of size between τmin and τmax.

Definition 1.2.4. Let P and D be given as in Definition 1.2.2. We define

Pτmin,τmax(D) :=
{
x ∈ P : τmin < d(x,D−x ) ≤ τmax

}
.

4



Observe that Pτmin,τmax(D) can be expressed as a union of maximal disjoint line segments

Sτmin,τmax(D).

Definition 1.2.5. The sum of the lengths of the line segments in Sτmin,τmax(D) quantifies

the amount of the fiber boundaries where there is likely interaction with macromolecules,

we refer to this value as the perimeter-distance of the domain,

`τmin,τmax(D) :=
∑

Si∈Sτmin,τmax (D)

length(Si)

Definition 1.2.6. In Section 5.1, we identify a collection, A, of disjoint polygons which

approximate the collection of channels. The total area of these polygons quantifies amount

of cross sectional area through which macromolecules in a fluid experience interaction, we

refer to this value as the channel-area of the domain,

aτmin,τmax(D) :=
∑
Ai∈A

area(Ai).

1.3 Programming

To implement the calculations developed in this thesis, I used the Computational

Geometry Algorithms Library (CGAL) [2], an open source software library written in the

programming language C++. The classes of CGAL represent geometric objects such as

points, line segments, circles, and polygons. The geometric operations on these objects

include the intersection of lines and circles, the construction of supporting lines for line

segments and perpendicular lines to a given line, the computation of the length of line

segments, the construction of convex hulls of given points, and the construction of the

union and intersection of polygons. In this thesis, these operations are used to compute

`τmin,τmax(D) and aτmin,τmax(D).

Due the amount of computation needed to collect the data for Figure 4.4, I used the

Clemson University Palmetto Cluster [4]. My real computation time was substantially re-
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duced due to the parallelization effects of the job array feature which runs multiple instances

of the same program simultaneously.

The computations used to produce Figure 4.4 used the number type CORE in

CGAL. CORE is an exact geometric and arithmetic computation library. CORE is main-

tained by the Exact Geometric Computation Group within the Computer Science Depart-

ment of the Courant Institute for Mathematical Sciences in NYU [3].

The images in this thesis depicting the model and fiber-polygons were rendered

using Qt4 [1].

6



Chapter 2

Distances

In Chapter 1, we explained how the channel-walls of the domain represent the bound-

aries of the cross section necessary for macromolecule separation. We show that minimum,

maximum and Hausdorff distances are not useful for identifying the channel-walls, identify-

ing the channels, or calculating the length or area of these regions. We exhibit the limitation

for each in Figures 2.1, 2.2, and 2.3, respectively. We offer a mathematical definition for

the identification of channel-walls and perimeter-distance in Section 2.4.

2.1 Minimum Distance

Definition 2.1.1. Let M and N be compact sets. The minimum distance between M and

N is defined by

d(M,N) = min
x∈M,y∈N

d(x, y).

This distance is useful for identifying when two objects are far apart, but this calculation

fails to capture geometric information (e.g., shape and size) that is not represented by the

nearest points of these objects.

Example 2.1.2. Let τmax > 0 and τmin = 0. Let P1 and P2 be disjoint fiber-polygons. If

the minimum distance between the polygons is large enough, (i.e., d(P1, P2) ≥ τmax), then

there are no points on either polygon such that a point on the other polygon is nearby, and
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thus there are no channels, as shown in Figure 2.1(a).

Example 2.1.3. A limitation to minimum distance is that it is not sensitive to differences

in channel size due to changes in position or orientation. Let τmax > 0 and τmin = 0.

Let P1 and P2 be disjoint fiber-polygons. Let P3 and P4 be disjoint fiber-polygons where

d(P1, P2) = d(P3, P4) < τmax. In Figures 2.1(b) and 2.1(c), the polygons are nearly touching

and the minimum distances are the same. Under these conditions, the fiber-polygons P1

and P2 can be arranged such that the interstice of size smaller than τmax has a large area,

while P3 and P4 can be arranged to form an interstice of significantly smaller area. Hence,

minimum distance is not able to distinguish between channels of large or small area.

(a) (b)

(c) (d)

Figure 2.1: Examples of Minimum Distance: In these figures, τmax is specified as the length
of the line segment in each of the figures and τmin = 0. In (a), the minimum distance is
greater than τmax; we see that no points on the boundary of either polygon are close to the
other polygon. The minimum distances between the polygons in (b) and (c) are the same,
but the area of the shaded region in (b), the interstice of size less than τmax, is significantly
greater than the shaded region in (c). The difference in area of the these shaded regions, and
length of the channel-walls, demonstrates the limitation of minimum distance calculations.
This limitation becomes more apparent when several polygons are near to one another, as
in (d).

8



2.2 Maximum Distance

Definition 2.2.1 (cf. [10]). Maximum distance between compact sets M and N is defined

to be

dmax(M,N) = max
x∈M,y∈N

d(x, y).

This distance, like minimum distance, is useful for identifying when objects are far

apart. In Example 2.2.5, we see how these calculations fail to capture geometric information

that is not represented by the two furthest points on the geometric objects.

Definition 2.2.2. Let X be a compact set. The diameter of X is given by the distance

between the points in X which are the furthest apart. We denote the diameter of X to be

Diam(X) := max
x,y∈X

d(x, y).

Maximum distance can be used to find when fiber-polygons are far apart as in the

following lemma:

Lemma 2.2.3. Let τmax > 0 and τmin = 0. Let P1 and P2 be polygons of the same diameter.

If τmax + 2(Diam(P1)) < dmax(P1, P2), then τmax < d(P1, P2).

Proof. Let v1 and w1 be points on P1 and P2 respectively which give the maximum distance

between P1 and P2. Let v2 and w2 be points on P1 and P2, respectively, which give the

minimum distance between P1 and P2. By the triangle inequality, the length of the direct

path from v1 and w1 is the same length or longer than the one given by v1 → v2 → w2 → w1.

Equivalently,

dmax(P1, P2) ≤ d(P1, P2) + d(v1, v2) + d(w2, w1).

Given that Diam(P1) = Diam(P2) and the definition of diameter of sets, it follows that

d(v1, v2), d(w2, w1) ≤ Diam(P1). Therefore,

dmax(P1, P2) ≤ d(P1, P2) + 2Diam(P1).

9



From the statement of the lemma, τmax + 2Diam(P1) < dmax(P1, P2). Hence,

τmax + 2Diam(P1) < d(P1, P2) + 2Diam(P1).

Therefore,

τmax < d(P1, P2),

as desired.

Example 2.2.4. Let τmax > 0 and τmin = 0. Let P1 and P2 be disjoint fiber-polygons, so

Diam(P1) = Diam(P2). Then if we position P1 and P2 such that τmax + 2(Diam(P1)) ≤

dmax(P1, P2) then the distance between a pair of points taken from each polygon is greater

than τmax, so there is no channel, as shown in Figure 2.2(a).

Example 2.2.5. Let τmax > 0 and τmin = 0. Let P1 and P2 be disjoint fiber-polygons. Let

P3 and P4 be disjoint fiber-polygons where dmax(P1, P2) = dmax(P3, P4). The length of the

interstices boundaries along the polygons P1 and P2, see Figure 2.1(b), may be significantly

longer than the length of the interstice along the channel between P3 and P4, cf. Figure

2.1(c).

2.3 Hausdorff Distance

Definition 2.3.1. Let M and N be compact sets. The Hausdorff distance between M and

N is defined as

dH(M,N) = max

{
max
x∈M

min
y∈N

d(x, y), max
y∈N

min
x∈M

d(x, y)

}
.

In Lemma 2.5.4, we exhibit a similarity between Hausdorff distance and our calcu-

lation, perimeter-distance. Hausdorff distance has been utilized in several computational

applications including image pattern recognition [11]. Hausdorff distance has also been

studied to find distances between two spatially separate objects [8]. By definition, for two

10



(a)

(b)

(c)

Figure 2.2: Examples of Maximum Distance: These figures show that maximum distance
provides limited information about the geometry of neighboring polygons. In these figures,
τmax is given as the length of the line segment in each of the figures and τmin = 0. The
shaded regions shows the space bounded by the channel-walls. In Figure (a), we see that
when the maximum distance (shown with large calipers) between two polygons is large
enough there is no channel. A sufficient condition that no channel is present between a
pair of polygons is given by τmax + Diam(P1) + Diam(P2) ≤ dmax(P1, P2). The diameter
of the fiber-polygons are equal, shown with the smaller calipers in (a). The limitations of
maximum distance are demonstrated by comparing (b) and (c). The maximum distances
of the polygons (shown with calipers) are the same, but in (c) there are points along the
boundaries of the polygons which are within τmax of another polygon (identified by the
shaded region). However, in (b), no such points along the boundaries exists, and thus no
channels exist.

sets X and Y , d(X,Y ) ≤ dH(X,Y ) ≤ dmax(X,Y ). For these reasons one might be inclined

to believe that Hausdorff distance could be used to identify the channels in the domain

and would not suffer from the same issues found with maximum and minimum distance.

However, this distance also fails to be sensitive to significant differences in the area of the

channels and the length of the channel-walls.

Example 2.3.2. Let τmax > 0 and τmin = 0. Let P1 and P2 be disjoint fiber-polygons.

Let P3 and P4 be disjoint fiber-polygons where dH(P1, P2) = dH(P3, P4). In Figures 2.3(a)

and 2.3(b), the Hausdorff distances are the same. In Figure 2.3(a), a channel is present

11



and there are pairs of points from P1 and P2 which are within τmax of the other polygon.

All pairs of points taken from P3 and P4 may have a distance greater than τmax, so no

channel is present, as in Figure 2.3(b). These differences in geometry demonstrate similar

limitations as with minimum and maximum distance calculations.

(a) (b)

Figure 2.3: Examples of Hausdorff Distance: In these figures, τmax is given as the length
of the line segment in both of the figures, and τmin = 0. All the calipers in (a) and (b)
measure the same length, they measure the distance between two points where the first
point is on one fiber-polygon that is furthest point from other fiber-polygon and where the
second point comes from the fiber-polygon which does not contain the first point and is
the closest to the first point. Since all the calipers show the same distance, the Hausdorff
distance between the fiber-polygons is the same for both (a) and (b). However, in (a) there
is a shaded region which denotes the presence of a channel, in (b) no channel is present.
Therefore, Hausdorff distance does not identify where separation will occur in the column
environment.

2.4 Perimeter Distance

For a domain D and set of the points in the fiber-polygons P , the calculation of

perimeter-distance, Pτmin,τmax(D) ⊆ P , begins by identifying points which satisfy the fol-

lowing conditions. A point p ∈ P is included in Pτmin,τmax(D) if

1. The distance to some other polygons is less than or equal to τmax, and,

2. The distance to all other polygons is greater than τmin.

We formalize this with the following remarks:

12



Remark 2.4.1. Let X and Y be sets and τmin > 0. τmin < d(X,Y ) if and only if τmin <

d(x, y) for all x ∈ X and for all y ∈ Y .

Remark 2.4.2. Let X and Y be sets and 0 < τmin < τmax. We say d(X,Y ) ≤ τmax, if there

exist x ∈ X and y ∈ Y such that d(x, y) ≤ τmax.

Observe, the negation of τmax < d(X,Y ) is d(X,Y ) ≤ τmax.

Definition 2.4.3. Let 0 < τmin < τmax. Let P and D be given as in Definition 1.2.2.

Based on Remarks 2.4.1 and 2.4.2, we define the channel-walls of D to be

Pτmin,τmax(D) :=
{
x ∈ P : τmin < d(x,D−x ) ≤ τmax

}
where D−x is given as in Definition 1.2.3.

Recall from Section 1.2 that Pτmin,τmax(D) can be expressed as a union of maximal

disjoint line segments Sτmin,τmax(D).

Definition 2.4.4. We define perimeter-distance of D to be

`τmin,τmax(D) :=
∑

Si∈Sτmin,τmax (D)

length(Si).

In Proposition 3.3.1, the expression in Definition 2.4.4 is separated into two simpler

calculations.

Example 2.4.5. Let C be the axis-aligned square in the first quadrant with vertices at

the origin and the point (10, 10), see Figure 2.4. Let P0, P1 be the axis-aligned rectangles

where P0 has vertices

{(5.5, 1), (8.5, 1), (8.5, 4), (5.5, 4)},

and, P1 has vertices

{(5.5, 4.5), (5.5, 6.5), (2.5, 6.5), (2.5, 4.5)}.

13



Let P consist of the two rectangles P0 and P1, P = {P0} ∪ {P1}. Let D = P ∪ {C}. Then,

S1,2(D) = {(17/2, 1), (17/2, 4), ((11 +
√

3)/2, 4), ((11 +
√

15)/2, 4), (8, 4), (17/2, 4), (11/2, 1), (11/2, 2),

(11/2, 5/2), (11/2, 7/2), ((11−
√

15)/2, 9/2), ((11−
√

3)/2, 9/2), (11/2, 5), (11/2, 6)}.

x

y C

P0

P1

Figure 2.4: Perimeter Distance Example: In this figure, the two smaller rectangles, P1 and
P2, are polygons in P. The large square is C. The line segments in S1,2(D) are shown as the
bold lines. The sum of the length of these line segments is value of the perimeter-distance
`(1,2)(D).

Definition 2.4.6. Let τmin = 0 and 0 < τmax. Let P and D be given as in Definition 1.2.2.

We define the interstice-walls of D of size τmax to be P0,τmax(D).

Example 2.4.7. Let P be a collection of disjoint fiber-polygons. Let τmin = 0. Then the

points which are part of the line segments on the boundaries of the polygons whose length is

summed to compute perimeter distance are points along the boundary of the polygons which

are within τmax of another polygon, Figure 2.5(a) shows these boundaries using CGAL and

Qt4.
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(a) (b)

Figure 2.5: Perimeter Distance: In (a), we see segments which are used to compute
perimeter-distance performed on many fiber-polygons where τmin = 0. In (b), we show
how these lines connect to form channels, the method illustrated here is discussed in Chap-
ter 5.

2.5 Properties and Inequalities for Perimeter Distance

In the following proposition, we obtain a lower bound on the radius of a disk shaped

macromolecule that touches two channel-walls. In Proposition 2.5.2, we also find an upper

bound for the distance between channel-walls.

Proposition 2.5.1. Let R0 and R1 be segments in Sτmin,τmax(D). Let B be a disk with

radius r. If B ∩R0, B ∩R1 6= ∅, then r ≥ τmin/2.

Proof. Let p0 ∈ B ∩R0 and p1 ∈ B ∩R1. Let h be the center of the disk B. By definition

of the diameter of B, d(p0, p1) ≥ τmin. On the other hand, d(p0, h) ≤ r and d(p1, h) ≤ r.

By the triangle inequality, d(p0, p1) ≤ d(p0, h) + d(p1, h). Therefore,

τmin ≤ d(p0, p1) ≤ d(p0, h) + d(p1, h) ≤ 2r.

It follows that r ≥ τmin/2, as desired.

In the following proposition, we obtain an upper bound on the radius of a disk

shaped macromolecule that touches two channel-walls.
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Proposition 2.5.2. Let S0 and S1 be segments in P with respective supporting lines l0 and

l1. Consider the line segment R∗0 := {x ∈ l0 : d(x, l1) ≤ τmax} which consists of the points

on the supporting line l0 which are within τmax of the supporting line l1. Let R∗0 be the

maximal segment of {x ∈ l0 : d(x, l1) ≤ τmax}, and let R∗1 be defined similarly. Let B be a

disk with radius r which is tangent to l0 and l1 such that B ∩R∗0, B ∩R∗1 6= ∅. If l0||l1, then

r ≤ τmax/2. If l0 and l1 are not parallel, then

r ≤ τmax
2
·max

{
sec2

(
θ

2

)
, csc2

(
θ

2

)}
,

where θ is the angle formed by l0 and l1, see Figure 2.6(b).

Proof. If l0||l1, then either (R∗0 = l0 and R∗1 = l1) or R∗0 = R∗1 = ∅. It was given that

B ∩R∗0 6= ∅, so (R∗0 = l0 and R∗1 = l1). Since R∗0 = l0 and R∗1 = l1, then d(l0, l1) ≤ τmax. It

was given that B is tangent to the lines l0 and l1, and we have assumed l0||l1; therefore, the

radius of B is half the distance between the lines, i.e., r = d(l0, l1)/2. Hence, r ≤ τmax/2.

If l0 is not parallel to l1, let θ be the measure of the acute angle formed between

l0 and l1 and let O be the intersection of l0 and l1. Let h be the center of the disk B.

Let q be the point of tangency of the disk with l0, i.e., q = B ∩ l0. Define l⊥1q be the line

perpendicular to l1 that passes through q. Let m be the intersection of l1 and l⊥1q .

∠Oqm = π/2 − θ because ∠Omq is a right triangle. By definition, sin θ = d(q,m)
d(O,q) .

By the construction of R∗0, we have d(q,m) ≤ τmax, since m is the closest point on l1 to q.

Hence,

d(O, q) ≤ τmax
sin θ

.

Since h is the center of the circle tangent to l0 and l1, symmetry implies that the line

segment from O to h is the bisector of the angle formed between l1 and l0 and ∠Oqh is a

right angle. Therefore, d(h,q)
d(O,q) = tan (θ/2). Equivalently,

r

d(O, q)
= tan (θ/2).
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By combining the previous equality with the previous inequality, we have bounded the

length of the radius; r ≤ tan(θ/2)(τmax/ sin θ). Equivalently,

r ≤ τmax
2

sec2 (θ/2)

using the double angle formula, which immediately gives the desired inequality. Using

the same trigonometry arguments for the supplementary angle π − θ, we obtain r ≤
τmax
2 csc2

(
θ
2

)
.

p0 S0

R0

p1
S1

R1

(a)

R∗0

R∗1

h

O

q

m

l0

l1

θ/2

θ

(b)

O
R∗0

R∗1

(c)

Figure 2.6: Separation of Nearby Segments in Sτmin,τmax(D): In these figures, the circles
are the boundaries of disks. In (a), the circle has a radius which is too small to touch both
red segments from Sτmin,τmax ; however, the circle does touch both supporting edges S0 and
S1. In (b) and (c), the disks are tangent to the supporting lines of R∗0 and R∗1, the points
along these line segments are within τmax of the other; and, we illustrate some of the steps
in the proof of Proposition 2.5.1.

The following proposition allows for a simpler calculation of `τmin,τmax(D).
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Proposition 2.5.3. Let 0 < τmin < τmax and let P and D be given as in Definition 1.2.2.

Pτmin,τmax(D) = P0,τmax(D) \ P0,τmin(D)

where the right hand side is a set difference.

Proof. Let x ∈ Pτmin,τmax(D). Equivalently, τmin < d(x,D−x ) ≤ τmax. This is true if and

only if both x ∈ P0,τmax(D) and x /∈ P0,τmin(D), since x and D−x are disjoint and by definition

τmin < d(x,D−x ). Equivalently, x ∈ P0,τmax(D)\P0,τmin(D). Therefore, we have the equality

Pτmin,τmax(D) = P0,τmax(D) \ P0,τmin(D).

In the following proposition, we see that the upper bound on nearby channel-walls

is similar in form to Hausdorff distance, cf. Definition 2.3.1.

Proposition 2.5.4. Let P and D be given as in Definition 1.2.2.

w = max
x∈P

min
y∈D−

x

d(x, y)

is the smallest value such that P0,w(D) = P .

Proof. Let x ∈ P . By the definition of w there exists y ∈ D−x such that d(x, y) ≤ w.

Hence, x ∈ P0,w(D). Thus, P ⊆ P0,w(D). By the definition of P0,w(D), it follows that

P0,w(D) ⊆ P . Therefore, P0,w(D) = P . No u such that u < w can satisfy P0,u(D) = P , for

by the definition of w there exists a x ∈ P such that d(x,D−x ) = w > u. So, x /∈ P0,u(D).

Therefore, w is the smallest value such that P0,w(D) = P .

This result immediately can be understood in terms of perimeter-distance in the

following corollary:

Corollary 2.5.5. Let τ > 0 where P and D as in Definition 1.2.2. Let w be defined as in

Proposition 2.5.4, w is the smallest value such that

`0,w(D) = Perimeter(P)
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where Perimeter(P) is the sum total of the perimeters of the polygons in P.

Proof. The equality follows from Proposition 2.5.4.

In Chapter 1, we determined that macromolecule separations for the purpose of

purification require channels of size between τmin and τmax. It was also stated the molecules

diffuse to the channel-walls. In this chapter, we have seen how existing distances, such as

minimum, maximum and Hausdorff, are not able to adequately identify channels or channel-

walls. In Section 2.4, we developed Pτmin,τmax(D) which identifies the channel-walls. We also

developed `τmin,τmax(D) which calculates the length of the channel-walls. By determining

the total length of the channel-walls, we have a quantification of the utility of the column

environment. In Chapter 5, we see how our identification of channel-walls of the domain is

consistent with our identification of the channels of the domain. In Chapter 4, we provide

algorithms for computing perimeter-distance and one approach to reduce the computational

resources needed to compute perimeter-distance.
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Chapter 3

Theoretical Computation of

Perimeter Distance

In the previous chapter, we created a precise definition for perimeter-distance which

is the length of the boundaries of the fiber-polygons which represent the boundaries of

the cross sections of the fibers in the column environment to which the macromolecules

may diffuse during the separation process. Our definition, however, offers little suggestion

on how to compute perimeter-distance. In this chapter, our goal is to show how to use

Minkowski sums to simplify the calculation of perimeter-distance. The actual implementa-

tion of perimeter-distance uses the theoretical results in this chapter in an efficient algorithm

for computing perimeter-distance. In Section 3.1, we fix notation, which is analogous to

that in CGAL, that makes the proofs of this chapter more streamlined. In Section 3.2, we

see that the computation of perimeter-distance can be reduced to computations between

pairs of edges on the fiber-polygons. In Proposition 3.2.6, we see that these calculations

involve only operations on line segments and circles. This, in turn, makes for a manageable

implementation of perimeter-distance, discussed in Chapter 4.
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3.1 Notation

In this section we fix notation, similar to that used in CGAL, for finding endpoints

of line segments. We also fix a total order on line segments.

Notation 3.1.1. Let p1 = (x0, y0) and p2 = (x1, y1) be points in the plane.

We say p0 < p1, if x0 < y0 or (x0 = x1 and y0 < y1). We define > similarly; ≤

and ≥ are defined in the usual way.

Observe that this is a total order on points in the plane.

Notation 3.1.2. Let S be a line segment. We denote the two endpoints of S by S[0] and

S[1] where S[0] ≤ S[1].

Example 3.1.3. Let S = (20, 0)(20,−1), then S[0] = (20,−1).

Notation 3.1.4. Let S0 and S1 be line segments. We say S0 < S1, if S0[0] < S1[0] or

(S0[0] = S1[0] and S0[1] < S1[1]).

Observe that this is a total order on line segments in the plane.

Definition 3.1.5 (cf. [5]). A set is convex if it contains all the line segments between any

pair of its points.

Definition 3.1.6 (cf. [5]). Let X be a bounded set in the plane, we define the convex hull

to be

CH(X) =
⋂
X⊆H

H is convex

H.

3.2 Minkowski Sum

In this section, we use Minkowski sums to build up a foundation for a more practical

way to compute perimeter-distance.

Definition 3.2.1. Let A and B be sets, then the Minkowski sum of A and B is the set

A+B := {a+ b : a ∈ A, b ∈ B}.
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Remark 3.2.2. It follows immediately from the definition of the Minkowski sum that

A+ (B ∪ C) = (A+B) ∪ (A+ C).

We can obtain more useful geometric interpretation for certain Minkowski sums.

Let S be a line segment and τ > 0, define Bτ to be the disk centered at the origin of radius

τ . Then, geometrically, we know that

Bτ + S = {x ∈ R2 : d(x, S) ≤ τ}, (3.1)

see Figure 3.1.

SB

S +B

x

y

Figure 3.1: Minkowski Sum: The Minkowski sum S+B is shown, where B is the unit disk
centered at the origin and S is the line segment.

Proposition 3.2.3. Let τ > 0 where P and D as in Definition 1.2.2. Let Bτ be a closed

disk of radius τ centered at the origin. Then

P0,τ (D) =
⋃
Pi∈P

((D−Pi +Bτ ) ∩ Pi).

Proof. Let x ∈
⋃
Pi∈P((D−Pi + Bτ ) ∩ Pi). Without loss of generality, we may assume x ∈

(D−Pi+Bτ )∩Pi. Equivalently, there exists y in D−Pi such that d(x, y) ≤ τ . By our assumption,

D−Pi = D−x ; so, d(x,D−x ) ≤ τ . Because x∩D−x = ∅, we have that 0 < d(x,D−x ) ≤ τ . And, 0 <
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d(x,D−x ) ≤ τ if and only if x ∈ P0,τ (D). Therefore,
⋃
pi∈P ((D−Pi +Bτ ) ∩ Pi) = P0,τ (D).

Proposition 3.2.4. Let Bτ be a disk centered at the origin of radius τ and S a line segment.

The boundary of Bτ +S is given by two perpendicular translations of the line segments and

two half circles of radius τ centered at S[0], S[1].

Proof. Let
−→
d be a vector in the plane. We use the fact that the boundary points of the

Minkowski sum which are maximal in the direction
−→
d are given by the sum of points on

the boundary of each object maximal in the direction
−→
d , see [9]. Each point in the line

segment S is maximal in both perpendicular directions to the supporting line of S, see

Figure 3.2(a); we let ±Sd be unit vectors in the perpendicular directions to the supporting

line of S. In these directions, there are unique maximal points in Bτ , since the boundary

of Bτ is a circle, see Figure 3.2(b). Hence, we obtain translations of S by a magnitude of τ .

S[0] is maximal in the direction of any
−→
d such that the dot product of

−→
d and

−−−−−→
S[1]S[0]

is positive, see Figure 3.2(b). These directions correspond to the half-circle HS[0] ⊆ Bτ .

HS[1] is defined similarly. Then HS[0] +S[0] and HS[1] +S[1] are half circles which complete

the closed boundary of Bτ + S, see Figure 3.2(c).

S

Sd

B

Sd

(a)

S
HS[0] B

(b)

SB.5
x

y

(c)

Figure 3.2: The Boundary of a Minkowski Sum: In Proposition 3.2.4, we describe the
boundary of the Minkowski sum of the line segment S and the disk B. In (a), we can see
how all points along the line segment S are maximal in the two perpendicular directions
to S, we show one perpendicular direction Sd. For each point in the segment S, we add
the point of the circle which is maximal in the same direction to form the perpendicular
translation of the line segment S. In (b), we see that the endpoints are also maximal in the
direction of the line segment, and all positive combinations, as shown. In (c) we complete
the process for the disk of radius .5, B.5, and the line segment S = (2, 1), (3, 1).
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x

y

S

S +Bτmin

S +Bτmax

Bτmin
Bτmax

Figure 3.3: Minkowski Sums of a Line Segment and Two Disks: The boundary of Bτmax is
the outer blue circle, the boundary of Bτmin is the inner circle, shown in green, and S is the
red line segment. The Minkowski sum S + Bτmax contains S + Bτmin . The region bound
between the two pill-shapes are the points whose distance from S is between τmin and τmax.

Proposition 3.2.5. Let Q be a closed and bounded convex set which has a nontrivial

interior. Let S be a line segment. Let l be the supporting line segment of S and ∂Q be

the boundary of Q. Then, ∂Q determines S ∩Q in the following way.

1. If l ∩ ∂Q is a point, then S ∩Q is either the same point or the empty set.

2. If l ∩ ∂Q contains exactly two points p and q then S ∩Q ⊆ pq.

3. l ∩ ∂Q contains more than two points if and only if l ∩Q is forms an edge of ∂Q and

S ∩Q ⊆ l ∩ ∂Q.

Proof. We observe that S∩Q ⊆ l∩Q. Since Q is convex and bounded, l∩Q = CH(l∩∂Q).

Assume first l ∩ ∂Q is a point. Because l ∩Q = CH(l ∩ ∂Q), l ∩Q is a point. Since

S ∩Q ⊆ l ∩Q, S ∩Q is either the point l ∩ ∂Q or the empty set.

Assume second that l∩ ∂Q contains exactly two points p and q. Then since l∩Q =

CH(l ∩ ∂Q), pq = l ∩Q. Since S ∩Q ⊆ l ∩Q, S ∩Q ⊆ pq.

For the final statement, the converse direction is obvious. If l∩∂Q is a line segment

then it contains the two endpoints and the midpoint.

On the other hand, if R := l ∩ ∂Q contains more than two points. Define R[0] :=

min {l ∩ ∂Q} the minimal element of the set R and R[1] := max {l ∩ ∂Q} the maximal

element. Then let r∗ ∈ R be the third guaranteed point where R[0] < r∗ < R[1]. We
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know that R[0], R[1] ⊆ Q. Recall that Q is not a line segment. Therefore, we may let x

be a point not on the line l and in the interior of Q. Then x is in the interior of one of

the half planes determined by l. If l ∩ ∂Q is not an edge of ∂Q, then there exists y in

the interior of Q in the other half plane determined by l. But then r∗ is in the interior of

CH({R[0], R[1], x, y}). But, CH({R[0], R[1], x, y}) ⊆ Q and thus r∗ is in the interior of Q,

a contradiction. Therefore, l ∩Q = l ∩ ∂Q is an edge of Q. Since S ∩Q ⊆ l ∩Q, it follows

that S ∩Q ⊆ l ∩ ∂Q.

We have seen in Proposition 3.2.3 that perimeter-distance can be computed by

intersections of line segments and Minkowski sums of disks with line segments. In the

following proposition, we see that these computations can be performed with geometric

operations on lines and circles.

Proposition 3.2.6. Let τ > 0, Bτ be the disk centered are the origin of radius τ . Let S1

and S2 be line segments. Then S1∩ (Bτ +S2) can be determined using a ruler and compass.

Proof. The boundary of Bτ + S2, ∂(Bτ + S2), is given by two line segments and two half

circles by Proposition 3.2.4. We consider two cases S1 ∩ ∂(Bτ + S2) is the empty set or is

not the empty set. If the intersection is the empty set then by the convexity of Bτ +S2 the

segment S1 is either contained within or entirely outside (Bτ + S2).

On the other hand, suppose S1 ∩ ∂(Bτ + S2) is not the empty set. Let l be the

supporting line of S1. We now consider three further cases; either l ∩ ∂(Bτ + S2) consists

of one point, two points or more than two points.

If e := l ∩ ∂(Bτ + S2) consists of one point, then S1 ∩ (Bτ + S2) ⊆ e by Proposition

3.2.5. Since S1 ∩ ∂(Bτ + S2) is not the empty set, then S1 ∩ (Bτ + S2) = e.

If l∩∂(Bτ +S2) consists of two points p and q where p < q, then S1∩(Bτ +S2) ⊆ pq

by Proposition 3.2.5. If S1 6= pq, then because p, q ∈ ∂(Bτ +S2) and S1 ∩ ∂(Bτ +S2) is not

the empty set then either p < S1[0] or S1[1] < q. Hence, S1 ∩ (Bτ + S2) = S1[0]q or pS1[1],

receptively.
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If l ∩ ∂(Bτ + S2) consists of more than two points then by Proposition 3.2.5, S1 ∩

(Bτ+S2) is a subset of one of the edges of (Bτ+S2). Let E be the edge of (Bτ+S2) such that

S1 ∩ (Bτ +S2) ⊆ E. First, if S1 6= E and if neither endpoint of E is in S, i.e., E1[0] < S1[0]

and S1[1] < E1[1], then S1 ∩ (Bτ + S2) = S1. Second, if S1 6= E and either E1[0] < S1[0]

or S1[1] < E1[1], then S1 ∩ (Bτ + S2) = S1[0], E[1] or E[0], S1[1], respectively. Third, if

S1 6= E, then the last case is S1[0] < E1[0], and E1[1] < S1[1]. Hence, E = S1 ∩ (Bτ + S2)

We have determined S1∩ (Bτ +S2) in each case using only intersections of lines and

circles. These intersections can be performed using ruler and compass, as desired.

3.3 Minkowski Sums and Perimeter-Distance

In this section, we show how to reduce perimeter-distance to many simple calcula-

tions of finding the intersection of a line segment and a Minkowski sum of a disk and line

segment.

Proposition 3.3.1. Let 0 < τmin < τmax. Let P and D as in Definition 1.2.2. Then

`τmin,τmax(D) = `0,τmax(D)− `0,τmin(D).

Proof. By Proposition 2.5.3,

Pτmin,τmax(D) = P0,τmax(D) \ P0,τmin(D).

By Proposition 3.2.3,

Pτmin,τmax(D) =
⋃
Pi∈P

(Pi ∩ (D−Pi +Bτmax)) \
⋃
Pi∈P

(Pi ∩ (D−Pi +Bτmin)) (3.2)

by Proposition 2.5.3.
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We now consider only the first union of the right hand side,

⋃
Pi∈P

(Pi ∩ (D−Pi +Bτmax)).

Let ei,j be the jth edge of polygon Pi. Hence,

⋃
Pi∈P

(Pi ∩ (D−Pi +Bτmax)) =
⋃
Pi∈P

⋃
ei,j⊆Pi

(ei,j ∩ (D−Pi +Bτmax)).

Let ek,l be the lth edge of polygon Pk ∈ D−Pi .

⋃
Pi∈P

(Pi ∩ (D−Pi +Bτmax)) =
⋃
Pi∈P

⋃
ei,j⊆Pi

ei,j ∩
 ⋃
Pk∈D−

Pi

⋃
ek,l⊆Pk

ek,l +Bτmax


 .

Then,

⋃
Pi∈P

(Pi ∩ (D−Pi +Bτmax)) =
⋃
Pi∈P

⋃
ei,j⊆Pi

⋃
Pk∈D−

Pi

⋃
ek,l⊆Pk

(ei,j ∩ (ek,l +Bτmax)). (3.3)

The constructive process to compute the intersection of a line segment with the Minkowski

sum of a line segment and a disk centered at the origin of fixed radius is described in

Proposition 3.2.6. The inner union over k and l in Equation (3.3) is over the intersection

of several Minkowski sums, (ek,l +Bτmax) with the same line segment ei,j . We define

Ei,j(τmin) :=
⋃

Pk∈D−
Pi

⋃
ek,l⊆Pk

(ei,j ∩ (ek,l +Bτmax)).

By Proposition 4.2.1 we explicitly obtain the maximal disjoint line segments of Ei,j(τmin) ⊆

ei,j , Ei,j(τmin).

The same construction yields Ei,j(τmax). In this way, each segment ek,l is used to

form two Minkowski sums ek,l + Bτmax and ek,l + Bτmin . Observe, each ek,l + Bτmax and

ek,l +Bτmin intersect the same line segment, ei,j , see Figure 3.4, where each intersection is

27



contained in some segment from Ei,j(τmin) and Ei,j(τmax), respectively.

Then we have

⋃
Pi∈P

(Pi ∩ (D−Pi +Bτmax)) =
⋃
Pi∈P

⋃
ei,j⊆Pi

Ei,j(τmax),

and, ⋃
Pi∈P

(Pi ∩ (D−Pi +Bτmin)) =
⋃
Pi∈P

⋃
ei,j⊆Pi

Ei,j(τmin).

By substitution into Equation 3.2, we obtain

Pτmin,τmax(D) =
⋃
Pi∈P

⋃
ei,j⊆Pi

(Ei,j(τmax) \ Ei,j(τmin)).

Notice that the line segments of Ei,j(τmax) and Ei,j(τmin) are contained on the jth edge of

polygon Pi ∈ P. Because the edges of the fiber-polygons of P are pairwise disjoint,

`τmin,τmax(D) =
∑
i

∑
j

length(Ei,j(τmax))−
∑
i

∑
j

length(Ei,j(τmin)).

Equivalently,

`τmin,τmax(D) =
∑

Sk∈
⋃
i,j Ei,j(τmax)

length(Sk)−
∑

Sl∈
⋃
i,j Ei,j(τmin)

length(Sl).

By Definition 2.4.4,

`τmin,τmax(D) = `0,τmax(D)− `0,τmin(D).

We now have a construction to find the total length of the channel-walls. The

length of the interstice walls which form interstices which are narrow enough to allow

macromolecules to diffuse to the walls is calculated first. Then the length of the interstice

walls which form interstices which are too narrow to allow macromolecules to diffuse to the
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walls is calculated is subtracted from the previous sum. Using this computation, we have a

quantification of the utility of the column environment.

S0

S1Rmax

(a)

S0

S1Rmin

(b)

S0

S1
Rmax \Rmin

(c)

Figure 3.4: Computing Segments for Pτmin,τmax(D): In these figures, two segments are shown
where S0 is an edge taken from a fiber-polygon or the column wall and S1 is taken from
a disjoint fiber-polygon. In (a), the boundary of the Minkowski sum of the line segment
S0 and a disk centered at the origin of radius τmax is shown. Rmax (in red) is the part of
the line segment S1 which is within τmax of the line segment S0, i.e., Rmax is included in
P0,τmax(D). In (b), the boundary of the previous Minkowski sum along with the boundary
of a smaller Minkowski sum is shown. The smaller boundary is of the Minkowski sum of
the same line segment, S0, with a disk centered at the origin of radius τmin, i.e., Rmin is
the part of S1 which is within τmin of the line segment S0. Rmin is included in P0,τmin(D).
Moreover, Rmin ⊆ Rmax. In (c), we show the maximal segments of Rmax \Rmin.
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Chapter 4

Practical Computation of

Perimeter-Distance

Equation (3.3), under the conditions of Proposition 3.3.1, and Proposition 3.2.6

together provide an indication that our definition of perimeter-distance can be computed

algorithmically. If we implement this directly with a brute force approach, there are a large

number of intersections which are unnecessary. We provide a heuristic in Section 4.1 to

reduce the computational resources needed to compute perimeter-distance. In Section 4.2

we provide the important functions used to compute perimeter-distance on the model and

the results of these computations.

4.1 A Heuristic for Perimeter-Distance

Following Equation (3.3), the number of intersections of a line segment and a

Minkowski sum of a disk and line segment needed to compute perimeter-distance is O(n2m2)

where n is the number of fiber-polygons in P and m is the number of edges in each fiber-

polygon. We describe a comparatively cheap test between pairs of polygons in P, consisting

of O(n2) tests, to reduce the number of intersections of a line segment and a Minkowski sum

of a disk and line segment from O(n2m2) to O(nm2). The test is based on the condition
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in Corollary 4.1.8 which gives a sufficient spacing for fiber-polygons to exclude them from

perimeter-distance calculations.

Definition 4.1.1. Let X be a bounded subset of the plane. An axis-aligned rectangle in

the plane is determined by two points, the lower left and upper right corner, LL and UR

respectively. We denote the axis-aligned rectangle determined by points LL and UR by

R(LL,UR). We define

BBox(X) :=
⋂
X⊆B

B is an axis-
aligned rectangle

B

and we denote the center of BBox(X) by cX .

Example 4.1.2. Let C be a circle centered at the origin with radius r. BBox(C) =

R((−r, r), (r,−r)).

Remark 4.1.3. If X and Y are bounded sets in the plane, then

dmax(X,Y ) ≤ dmax(BBox(X), BBox(Y )).

Lemma 4.1.4. Let τ , s, α and β > 0. If

τ2 <
s2 − 3α2 − 3β2

3

then

τ < s− α− β.

Proof. τ2 < s2−3α2−3β2

3 if and only if

3
(
τ2 + α2 + β2

)
< s2.

By the Cauchy-Schwartz inequality, (τ · 1 + α · 1 + β · 1)2 ≤ (τ2 + α2 + β2)(12 + 12 + 12).

Therefore,

(τ + α+ β)2 ≤ 3
(
τ2 + α2 + β2

)
.
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Hence, (τ + α+ β)2 < s2. Because all the terms are positive, we obtain (τ + α+ β) < s

Therefore, τ < s− α− β.

Proposition 4.1.5. Let X and Y be bounded sets in the plane. Let BBox(X) and BBox(Y )

have centers cX and cY . If

τ2 <
d(cX , cY )2 − 3dmax(cX , BBox(X))2 − 3dmax(cY , BBox(Y ))2

3
,

then,

τ < d(X,Y ).

Proof. Let CX be the disk with center cX and radius dmax(cX , BBox(X)), let CY and cY

be defined similarly. BBox(X) ⊆ CX because cX is the center of the axis-aligned rectangle

BBox(X), see Figure 4.1. Similarly, BBox(Y ) ⊆ CY . Therefore, X ⊆ CX and Y ⊆ CY .

Hence, d(CX , CY ) ≤ d(X,Y ).

By Lemma 4.1.4,

τ < d(cX , cY )− dmax(cX , BBox(X))− dmax(cY , BBox(Y )).

The minimum distance between circles is the distance from the respective centers minus the

radii, hence, d(cX , cY ) − dmax(cX , BBox(X)) − dmax(cY , BBox(Y )) = d(CX , CY ). There-

fore,

τ < d(CX , CY ).

We already showed, d(CX , CY ) ≤ d(X,Y ). Thus,

τ < d(X,Y ),

as desired.

In the previous proposition, we presented a test to determine when two sets are far
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Figure 4.1: Bounding Circles: There are two fiber-polygons shown with bounding boxes of
the respective fiber-polygons. The distance between the centers of the bounding boxes cX
and cY of the fiber-polygons is easy to compute. In Proposition 4.1.5, we make use of the
fact that the disks CX and CY contain both the boxes and fiber-polygons.

apart using bounding boxes. In the remaining part of this section, we show how this test

reduces the complexity of the algorithm used when computing perimeter-distance.

Lemma 4.1.6. Let α be the area of a fiber-polygon. Let P be a collection of fiber-polygons

in the plane. Let τ > 0, and Bτ be a disk of radius τ in the plane. Then, the number of

polygons completely contained in the disk bounded above by bπτ2α c.

Proof. The area of the polygons completely contained in the disk cannot exceed the total

area of the disk because the polygons are disjoint. The area of the disk is πτ2. If the

fiber-polygons cover the disk, bπτ2α c is the number of whole fiber-polygons in the disk, our

upper bound.

We can use the above lemma to determine the number of fiber-polygons which

intersect a disk of a given size. We use the following result in Corollary 4.1.8.

Lemma 4.1.7. Let α be the area of a fiber-polygon and η be the diameter of fiber-polygon.

Let P be a collection of fiber-polygons in the plane. Let τ > 0, and Bτ be a disk of radius
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τ in the plane. Then, the number of polygons which intersect the disk Bτ is bounded above

by bπ(η+τ)
2

α c.

Proof. From any point on a fiber-polygon, all points of the fiber polygon are within η of

that point. If a point of the fiber-polygon is inside the disk, Bτ , then all points of the fiber-

polygon are within η of the disk, Bτ , see Figure 4.2. But then they are contained entirely

inside Bη+τ , the disk with radius η+ τ , which has the same center as Bτ . By Lemma 4.1.6,

the number of polygons which intersect the disk, Bτ , is bounded above by bπ(η+τ)
2

α c, as

desired.

Corollary 4.1.8. Let P and D as in Definition 1.2.2. Let η be the diameter of a fiber-

polygon and let α be the area of a fiber polygon. Let τmax > 0. Let Pi be a fiber polygon in

P. Let N be the set of polygons which pass the bounding box heuristic from Pi, N := {Pj ∈

P : Pj 6= Pi and d(cPi , cPj )
2 − 3dmax(cPi , BBox(Pi))

2 − 3dmax(cPj , BBox(Pj))
2 ≤ 3τ2max},

where cPi is the center of BBox(Pi) and similarly for cPj . Let N be the number of polygons

in N . Then,

N ≤

⌊
π(η + (3(τ2max + η2/2))1/2)2

α

⌋
.

Proof. Let Pj ∈ N . If d(cPi , cPj )
2 − 3dmax(cPi , BBox(Pi))

2 − 3dmax(cPj , BBox(Pj))
2 ≤

3τ2max then, d(cPi , cPj )
2 ≤ 3(τ2max+dmax(cPi , BBox(Pi))

2+dmax(cPj , BBox(Pj))
2). Because

the diameter of the fiber-polygons is greater than or equal to the lengths of the sides of the

bounding box, it follows that, d(cPi , cPj )
2 ≤ 3(τ2max + (

√
2η/2)2 + (

√
2η/2)2). Both sides of

the inequality are squares of positive terms therefore, d(cPi , cPj ) ≤ (3(τ2max + η2))1/2. This

is an upper bound on how far the centers of the boxes can be from one another. Then the

disk Bβ of radius (3(τ2max + η2))1/2 centered at cPi contains some point of BBox(Pj).

By Lemma 4.1.7, the upper bound on the number of Pj ∈ P such that Pj ∩Bβ 6= ∅

is given by N where

N ≤

⌊
π(η + (3(τ2max + η2/2))1/2)2

α

⌋
.
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Figure 4.2: Partial Fiber-Polygons in a Disk: The radius of the inner disk, Bτ , is τ . The
outer disk, Bτ+η, has been extended by the diameter of a fiber-polygon, η. This shows that
all fiber-polygons which intersect with the inner disk are totally contained in the larger disk.

In Corollary 4.1.8, we showed that for τmax > 0 the number of polygons within τmax

of a fiber polygon is a constant, N , which depends on τmax. Therefore, the number of pairs

of intersections for every polygon is N times m2, where m is the number of edges in the

polygon, i.e., the complexity of the algorithm is O(n ·m2) in intersections. Therefore, the

complexity of the algorithm is O(n2 + nm2), where the first additive term is for the test in

Proposition 4.1.5 and the later additive term is for the intersections between pairs of edges.

In practice, the test exhibits a great reduction in the computational resources needed to

compute perimeter distance.

4.2 Algorithms

In Chapter 3, we showed theoretical methods to compute perimeter-distance. This

section contains pseudo-code to illustrate how to compute perimeter-distance algorithmi-

cally.

Let S0 and S1 be two line segments. Let Bτ be a disk centered at the origin. In

Algorithm 3, we compute the intersection of a line segment and the Minkowski sum of a

disk and a line segment, S0 ∩ (Bτ + S1). This follows Proposition 3.2.6.

In Algorithm 2, we compute the collection of maximal line segments used in Propo-
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sition 4.2.1. In Algorithm 1, we see the algorithm of our heuristic, which reduces the

number of intersections needed to compute perimeter-distance. The amount of time needed

to compute the perimeter-distance `τmin,τmax(D), where the data for D is taken from [7] is

shown in Figure 1.2, without the bounding-box heuristic the computation was projected

to take several days using a laptop with a AMD A6-5200 processor. By implementing our

heuristic, the length of time to compute `τmin,τmax(D) decreased to about 20 minutes on the

same machine for most practical values of τmin and τmax.

Algorithm 1: Perimeter-Distance Algorithm: The first nested loop calls
push back O(n2) times where n is the number of polygons in P. This al-
gorithm performs a constant number of push backs that can occur for each
polygon. The effect of implementing the test is that Perimeter Distance() calls
intersect minkowski() O(nm2) times.

Function Perimeter Distance is
Input: tausqrd min, tausqrd max
domain //The fiber-polygons and the column wall, D
Output: perimeter-distance //`τmin,τmax(D)
for poly in fiber polygons do

//In this loop, every fiber-polygon is assigned a list of nearby polygons
for neighbor poly in domain do

if poly 6= neighbor poly and
box distance sqrd(poly, neighbor poly)< tausqrd max then

polys near to current poly.push back(poly);
end

end
//In this loop, we find Sτmin,τmax(D).
for edge in polygon do

max = subsegment(polys near to current poly, edge, tausqrd max);
min = subsegment(polys near to current poly, edge, tausqrd min);
edge segments in S min max = max take away min(max, min);
for segment in edge segments in S min max do

segments.push back(segment);
end

end

end
Return total length(segments);

end

In the following proposition, we show how to find the maximal line segments in a

union of many line segments, as illustrated in Figure 4.3.
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Algorithm 2: Subsegment Function: This function uses calculations between
pairs of edges to compute perimeter-distance.

Function subsegment is
Input: nearby polygons, tausqrd, current edge (using CE for current edge)
Output: A collection of line segments which are within tau of a point on a

polygon in nearby polygon
for polygon in nearby polygons do

for E in polygon do
if d(E,CE) ≤ tausqrd then

subsegs of CE.push back(intersect minkowski(E,CE,tausqrd));
end

end

end
Return union subsegments(order subsegments(subsegs of CE));

end

Figure 4.3: The Union of Line Segments: In this figure, we illustrate how to form maximal
line segments from a union of overlapping ordered line segments. The segments S1, . . . , S8
are subsegments of the lower line segment, S. S has endpoints S[0] and S[1]. The lightly
green shaded parts of the lower line segment represent the maximal line segments of the
union of the smaller line segments. The algorithm to find the maximal line segment is
explained in Proposition 4.2.1.

Proposition 4.2.1. Let S be a line segment with supporting line l. Let S1 ≤ · · · ≤ Sn

be line segments on the line segment S, i.e., Si ⊆ S for i = 1, . . . , n. Suppose there are

exactly k integers 1 ≤ a1 < · · · < ak < n such that for all j = 1, . . . , k and i = 1, . . . , aj,

Si[1] < S(aj)+1[0]. Then there are k + 1 maximal line segments in
⋃n
i=1 Si.

Furthermore, let a0 = 0 and ak+1 = n. We show the starting point of the k + 1

maximal segments are given by S1[0] and S(aj)+1[0] for j = 1, . . . , k and the terminal point

for the k + 1 maximal segments are given by

mj = max {Si[1]}(aj)+1≤i<a(j+1)
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Algorithm 3: The Intersection of a Line Segment and a Minkowski Sum of a
Line Segment and a Disk.

Function intersect minkowski is
Input: minkowski segment, current edge, tausqrd
Output: A line segment which represents the points on current edge which

are within tau of minkowski segment
MC = The pair of circles with centers at the respective endpoints of
minkowski segment and of squared radius tausqrd;
ME = The pair of segments which form the two straight edges of the
Minkowski sum of the disk centered at the origin of squared radius tausqrd
and minkowski segment;
if d(ME intersect current edge)>0 then

Return ME intersect current edge;
else

if The squared distance of either end points of current edge to ME is
less than tausqrd then

return points.push back(respective endpoints)
end
if return points has both endpoints of current edge then

Return current segment
end
circle points = intersections of MC with current edge;
for point in circle points do

if squared distance from point to current edge is equal to tausqrd
then

return points.push back(point);
end

end
return points.push back(intersections of ME with current edge);
min point=Min( return points );
max point=Max( return points );
Return The line segment with endpoints min point and max point;

end

end

38



where j = 0, . . . , k; and,
n⋃
i=1

Si =

k⋃
i=0

Sai+1[0]mi.

Proof. Let x ∈
⋃n
i=1 Si without loss of generality let x ∈ Si where Saj+1 ≤ Si ≤ Sa(j+1)

.

Because Saj+1 ≤ Si, Saj+1[0] ≤ Si[0]. By the construction of mj , Si[1] ≤ mj . Therefore,

Si ⊆ Saj+1mj . It follows that
⋃n
i=1 Si ⊆

⋃k
i=0 Sai+1[0]mi.

For the converse containment, let x ∈
⋃k
i=0 Sai+1[0]mi. Without loss of generality,

x ∈ Sai+1[0]mi. By construction, Sai+1[0] ≤ x ≤ mi, but we only consider the strict

inequalities for otherwise the containment holds obviously, i.e., Sai+1[0] < x < mi. By

the construction of Sai+1[0]mi, we know that
⋃a(i+1)

q=ai+1 Sq ⊆ Sai+1[0]mi. We show that this

containment is an equality to complete our proof.

Assume, for the purpose of a contradiction, x /∈
⋃a(i+1)

q=ai+1 Sq. Let mi = Sai+h+1[1],

then 0 ≤ h ≤ (a(i+1) − ((ai) + 1)).

Then from x /∈
⋃a(i+1)

q=ai+1 Sq, it follows that x < Sai+h+1[0]. Let p be the least element

of the set {ai+1, . . . , a(i+1)} such that x < Sp[0]. Then x > Sz[0] for all z = ai+1, . . . , p−1.

Since x /∈
⋃a(i+1)

q=ai+1 Sq, it follows that x > Sz[1] for all z = ai + 1, . . . , p − 1. Therefore,

Sz[1] < Sp[0] for z = ai + 1, . . . , p− 1.

From the statement of this proposition, for all z = 1, . . . , ai , Sz[1] < Sai+1[0].

Hence, Sz[1] < Sp[0] for z = 1, . . . , p− 1.

Because p 6= ai for i = 1, . . . , k, there are k + 1 integers such that 1 ≤ a1 < · · · <

ak+1 < n such that for all j = 1, . . . , k and i = 1, . . . , aj , Si[1] < S(aj)+1[0], a contradiction

to conditions of this Proposition. Thus x ∈
⋃a(i+1)

q=ai+1 Sq and so x ∈
⋃n
i=1 Si which gives the

equality,
⋃a(i+1)

q=ai+1 Sq = Sai+1[0]mi.

Therefore,
⋃k
i=0 Sai+1[0]mi are the k + 1 maximal line segments of

⋃n
i=1 Si.

In Chapter 1, we presented our model of the domain D in Figure 1.2, data from

[7]. In Figure 4.4, we present the values of `0,τmax(D) for τmax = 0, .05, . . . , 15.6 µm and we

show that `0,15.6 µm(D) = Perimeter(P). In Figure 4.5, we show the marginal increase of

`0,τmax for step size .05 µm. The marginal increase in perimeter-distance is `τmax−.05,τmax(D),
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where 0 ≤ τmax ≤ 15.6 by a step size of .05 µm. We see that there are diminishing marginal

increasing value for `0,τmax(D) for 2.09 ≤ τmax.

We can summarize the data shown in Figure 4.5 by using the statistical software

program R [12]. In order to use R, we created sample data designed to mimic the marginal

increases in perimeter-distance given by `τmax,τmax+.05(D), where 0 ≤ τmax ≤ 15.6 by a step

size of .05 µm.

Using the summary command in R, we found that the average interstice size is

3.97 µm and that half of all interstices are smaller than or equal to 3.30 µm, using the mean

and median respectively. This information about the channel-walls of the interstices can

be used to understand the useful amount of the fiber boundaries where the macromolecules

diffuse in the separation process.

We then used the Maximum-likelihood Fitting of Univariate Distributions function,

MASS::fitdistr, to fit a chi-squared distribution to our sample data. We plotted a chi-squared

probability distribution aligned to the units of perimeter-distance in Figure 4.5 and layered

this with the marginal increases in perimeter-distance given by `τmax,τmax+.05(D), where

0 ≤ τmax ≤ 15.6 with a step size of .05 µm in Figure 4.5. The chi-squared parameter

provided by MASS::fitdistr was 4.09, using 3 as an initial guess for the parameter. This

implies that perimeter-distance is increasing the most around τmax = 2.09 µm, the mode

obtained from the parameter estimation.

In this chapter, we have shown how to practically implement a calculation of perimeter-

distance. We have used an algorithm that reduces the complexity to achieve significant

savings of computational resources. We have shown and explained an extensive summary

of perimeter-distance calculations using data from [7].
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Figure 4.4: Calculations of Perimeter-Distance: In this figure, τmin = 0, and τmax is the
input for the graph. We see monotonic increasing behavior of `0,τmax(D) with respect to
τmax. The value of `0,τmax(D) remains constant for 15.6 ≤ τmax. The data used for these
calculations is taken from [7], cf. Figure 1.2.
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Figure 4.5: Chi-Squared Distribution and Perimeter-Distance: In this figure we see the
marginal increases of perimeter-distance. We see that `0,τmax(D) increases very rapidly
and then increases more slowly until τmax = 15.6. This figure also shows the maximum-
likelihood fit for a chi-squared distribution using MASS::fitdistr from the statistical software
package R. We can obtain an estimation of the greatest increase to perimeter-distance from
the mode of the chi-squared distribution, τmax = 2.09.
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Chapter 5

Channel-Area

In Chapter 4, for a domain D, we showed how to identify the channel-walls via

Sτmin,τmax(D). In this chapter, we construct the channels, see Figure 5.1(b), using the line

segments of S0,τmin(D) and S0,τmax(D).

(a) (b)

Figure 5.1: The Channels of the Domain: In (a), the model of the column environment is
exhibited as the domain of fiber-polygons in the regular polygon approximating the inner
column wall with a diameter of 215 µm where the polygon-fibers have a diameter of 30 µm.
In (b), we have identified the channels of the column environment where τmin = 1.5 µm
and τmax = 4 µm. In Figure 5.7, we show a larger image of (b).
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5.1 Channel Distance

Let P and C define a domain D as in Definition 1.2.2. In this section, we compute the

area of the cross section through which macromolecules flow and may ultimately diffuse to

some channel-wall. We start by identifying the interstices smaller than τmax. We define these

interstices in Definition 5.1.1 using the boundaries of S0,τmax(D). From these interstices, we

remove the interstices which are smaller than τmin, using Definition 5.1.1. An example of

the resulting channels of this process is shown in Figure 5.1(b). The area of the channels is

defined to be channel-area, cf. Definition 5.1.8.

Definition 5.1.1. Let P and C define a domain D as in Definition 1.2.2. Let τmax > 0.

In order to form the interstices which are smaller than or equal to τmax, we define for

Si ∈ S0,τmax(D) the nearby points on the polygons in the domain, D−Si , which are within

τmax of Si by

Rτmax(Si,D) := {x ∈ D−Si : d(x, Si) ≤ τmax}.

We can find Rτ (Si,D) using a Minkowski sum by applying Equation 3.1,

Rτmax(Si,D) = D−Si ∩ (Si +Bτmax) (5.1)

where Bτmax is a disk of radius τmax centered at the origin. We define the set of maximal

segments of Rτmax(Si,D) to be Rτmax(Si,D).

Definition 5.1.2. Let P and C define a domain D as in Definition 1.2.2. Let τmax > 0.

A0,τmax(D) =
⋃
Si∈S

⋃
Rj∈Rτmax (Si,D)

CH(Si, Rj).

Observe, the convex hull constructs triangles or quadrilaterals between line segments which

are nearby to one another.

Example 5.1.3. Let D and P contain two triangles and τ > 0. In Chapter 3, we discussed

how to find S0,τ (D). For a given Si ∈ S0,τ (D) we can use a Minkowski sum, according to
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Equation 5.1, to find an Rj ∈ Rτ (Si,D). The convex hull of Si and Rj is contained in

A0,τ (D), by Definition 5.1.2. In Figure 5.2(a), we show how to use the Minkowski sum to

find Rj . In Figure 5.2(b), we show the convex hull of Si and Rj .

Example 5.1.4. Let P and C define a domain D as in Definition 1.2.2. Let 0 < τmin <

τmax. The interstices smaller than τmax, A0,τmax(D), consist of points, x, in the column

environment where there is a line between polygons in the domain passing through x of

length less than or equal to τmax, see 5.3(a). So, the channels Aτmin,τmax(D), consist of

points, x, in the column environment where there is a line between polygons in the domain

passing through x of length less than or equal to τmax but greater than τmin, see 5.3(b).

(a) (b)

Figure 5.2: Identifying Channels: In these figures, we show a convex hull used to determine
the channel between the triangles. In (a), we have constructed an interstice-wall on the left
triangle, Si; the boundary of Si +Bτ that surrounds the interstice-wall on the left triangle,
is used to identify Rj on the right triangle. In (b), we construct the convex hull of the
interstice-wall, Si on the left triangle with Rj on the right triangle.

Lemma 5.1.5. Let P and C define a domain D as in Definition 1.2.2. Let 0 < τmin < τmax.

Then

A0,τmin(D) ⊆ A0,τmax(D).

Proof. By Proposition 2.5.3 and Definition 1.2.4, it follows that S0,τmin(D) ⊆ S0,τmax(D).

In particular, for each line segment in Si ∈ S0,τmin(D), Si is a subset of a line segment

in S0,τmax(D), say Sj . By Definition 5.1.1, Rτmin(Si,D) ⊆ Rτmax(Sj ,D). Therefore, each
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(a) (b)

Figure 5.3: The Boundary of the Channels: In (a), we shade A0,τmax(D). In (b), we shade
the channel, Aτmin,τmax(D). The boundaries of the channels are not naively connected to
channel-walls; notice, the line segments L and N have endpoints which are endpoints of
maximal line segments of the channel-walls in (b), however, L and N are not boundaries
of the channels. τmax is the length of the line segment M , and thus x is included in the
interstice in (b). In the upper right corner of the figures, the curve C is part of the circle
of radius τmax centered at the point t. There is an unshaded region bounded by the line
segment N and the shaded channel; i.e., this region is not part of the channel. Any point
y in this region is not part of the channel because the length of any line segment passing
though y with endpoints on the respective channel-walls is greater than τmax. We see that
the line segment N starts at the center of the circle, C, and extends beyond the circle, i.e.,
the length of N is greater than τmax. Since N starts and ends on opposite channel-walls
and is of length greater than τmax there must be some point in N which is not part of the
channel.
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convex hull in A0,τmin(D) is a subset of a convex hull of A0,τmax(D), hence the containment.

(a) (b)

(c) (d)

Figure 5.4: Building Channel Distance: In (a), the interstices of size less than τmax,
A0,τmax(D), are shaded. In (b), the interstices of size less than τmin, A0,τmin(D), are
shaded. In (c), we show A0,τmin(D) ⊆ A0,τmax(D). In (d), the channels, Aτmin,τmax(D) =
A0,τmax(D) \A0,τmin(D), are shown, from which channel-area can be computed.

Definition 5.1.6. Let P and C define a domain D as in Definition 1.2.2. Let 0 < τmin <

τmax. We define

Aτmin,τmax(D) := A0,τmax(D) \A0,τmin(D)

where the right hand side is a set difference. We define the set of maximal polygons of

Aτmin,τmax(D) to be Aτmin,τmax(D).

Example 5.1.7. Let P and C define a domain D as in Definition 1.2.2. Let 0 < τmin <

τmax. We see that A0,τmin(D) ⊆ A0,τmax(D) in Figure 5.4(a) with those of smaller size in

Figure 5.4(b). Channels are formed by computing A0,τmin(D) and removing A0,τmax(D) as

in Figure 5.4. The interstices with sizes smaller than τmin, A0,τmin(D), may contain holes,
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(a) (b)

Figure 5.5: Channel Holes: As shown in Figure 5.3, points in the interstices are not included
in A0,τmin(D) when no line segment can passes though the point and connect to two polygons
in the domain with length less than τmin. Hence, in (a) the unshaded regions consists
of a collection of points which are not too close to the fiber-polygons. In (b), we show
Aτmin,τmax(D) where A0,τmax(D) (not shown) contains all the interstices of the domain.
Therefore, all of the unshaded regions from (a) are included in Aτmin,τmax(D).

see Figure 5.5(a). When A0,τmin(D) is removed from A0,τmax(D) the holes form floating

regions included in the channels, Aτmin,τmax(D), as seen in Figure 5.5(b).

Definition 5.1.8. Let P and C define a domain D as in Definition 1.2.2. Let 0 < τmin <

τmax. We define channel-area of D to be

aτmin,τmax(D) :=
∑

Ai∈Aτmin,τmax (D)

area(Ai).

Remark 5.1.9. By Lemma 5.1.5,

aτmin,τmax(D) =

 ∑
Ai∈A0,τmax (D)

area(Ai)

−
 ∑
Ai∈A0,τmax (D)

area(Ai)

 .

Example 5.1.10. Let P and C define a domain D as in Definition 1.2.2. Let 0 < τmin <

τmax. The interstice-walls, S0,τmax(D) and S0,τmin(D), found when computing perimeter-

distance are used to find the boundaries of the channels. This establishes a connection

between perimeter-distance and channel-area. The interstice-walls are shown in Figure 5.6.

In this chapter, we showed how to use the channel-walls of the model to find the

channels which represents the cross sectional flow regions of the column environment which

contain macromolecules with may diffuse to the fibers. We showed how the computation

of channel-area can be performed in a similar manner as perimeter distance, cf. Remark
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5.1.9 and Proposition 3.3.1. We found a simple geometric interpretation of the channels,

Example 5.1.4.

(a) (b)

(c) (d)

Figure 5.6: Channel Distance: We show a detailed image of the visualizations of perimeter
and channel-area calculations performed on many polygons where τmin = 0. In (a), we
shade the interstices of size smaller than τmax, A0,τmax(D). In (c), we show the collection
of interstice-walls S0,τmax(D). In (b), we shade the interstices of size smaller than τmin,
A0,τmin(D). In (d), we show the collection of interstice-walls S0,τmin(D).
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Figure 5.7: Channel Distance on the Domain: We show a larger image of Figure 5.1 where
the model is of a column environment with an inner diameter of 215 µm where the polygon-
fibers have a diameter of 30 µm. The shaded channels represent the cross sectional area
through which macromolecules flow and may diffuse to a fiber boundary.
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Chapter 6

Conclusion and Future Work

In this chapter, we explain the ways in which our calculations can be applied to

purification processes using high performance liquid chromatography. We also explain some

areas for future work with perimeter-distance and channel-area.

6.1 Conclusion

The efficiency of purification processes using high performance liquid chromatogra-

phy are determined by the positions of the fibers in the column environment. We identified

the channel-walls which represents the boundaries of fibers in the cross section of the column

environment where macromolecules may diffuse. In Section 2.4, we define the total length

of the boundaries of the fiber-polygons to be perimeter-distance. In Chapter 4, we showed

how to compute perimeter-distance with an implementation in C++ with CGAL.

In Chapter 5, we identified the interstices in our model, the channels, which represent

the regions of the cross section of the column through which macromolecules contained in

a fluid travels before it may diffuse to a boundary of a fiber. In Chapter 5, we show the

geometrical connection between the channel-walls and the channels of our model. We also

defined, channel-area which gives an approximation of the flow regions of a cross section of

the column environment through which macromolecules pass in a fluid before diffusing to
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the fibers.

For a given instance of a column environment D and a molecule with empirically

determined τmin and τmax, we have created software that approximates the useful bound-

aries of the fibers of the column environment. Perimeter-distance gives an approximation

of the length of the useful boundaries of the fibers.

6.2 Future Work

The example of the column environment, from [7] and shown in Figure 1.2, used in

the previous chapters was of a smaller diameter than the sizes of column diameters currently

in use. We would like to obtain examples of column environments which contain as many

fibers as commonly used column environments and are of full size. These computations

may provide more relevant data for the purification process.

In the cross-section of a column environment, the total area of all the interstices

divided by the area of the column is called the interstitial fraction. Current research shows

that for the fibers in the column environment the optimal interstitial fraction for purification

processes in columns of various diameter sizes is approximately 63%, see [13]. We can

calculate perimeter-distance on domains D which approximate the column environments

for which experimental data of the efficiency of the separation in column environment has

already been found. We can then use a statistical software to test if there is a significant

correlation between perimeter-distance calculations and the existing column environment

efficiency data. This would validate the ability of perimeter-distance to predict the efficiency

of the separation process in the column environment.

Computation of perimeter-distance can be applied to column environments with

different fiber specifications, including size and shape. There appears to be limited ex-

perimental results where other shaped fibers are used in monolithic columns. Perimeter-

distance calculation can perform calculations on examples with available alternative fiber

shapes. These calculations may help determine which alternative fiber shapes merit further
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research and experimentation.

The example of the column environment in Figure 1.2 was created with assistance of

human decisions. It would be advantageous to develop a program that simulates filling the

column environment with fiber-polygons. Perimeter-distance could be used to determine

if the results of the simulation were consistent or if significant variations among repeated

constructions of column environments occur in the formation of channel-walls.

Perimeter-distance may also be used to create new fiber shapes. By using a genetic

algorithm, it is possible to optimize the fiber shape for the separation of molecules in the

column environment during the purification process. This could be realized by allowing the

algorithm to make incremental changes to polygons in each generation. Each variation of

the polygon would fill a respective example of a column environment. Perimeter-distance

can then identify the fiber, or fibers, among each generation which would be best for the

column environment. By preforming this process repeatedly optimized fiber shapes for the

column environment could be found.

Extensive use of perimeter-distance in any of these applications would make it more

advantageous to develop parallelized code for perimeter-distance calculations. The imple-

mentation of perimeter-distance used the exact number type CORE in CGAL. Currently,

programs using CORE are not able to be parallelized. However, a parallelization compatible

version is in development [6].

To reduce the total runtime of an application using perimeter-distance, one could

also pursue an alternative to the heuristic for reducing the number of intersections com-

puted. A bucket sort or quad-tree could be used, as described in [15]. Recall that the

complexity, in tests, for the heuristic for reducing the number of intersections between line

segments and the Minkowski sum of a disk and line segment was O(n2) where n is the num-

ber of polygons. A bucket sort may be implemented on polygons in the domain which results

in a lower complexity, see [17]. A quadtree, a commonly used spatial indexing structure,

would be a beneficial option since the paths in the tree determine the distance between the

objects. Furthermore, with a few modifications, either of these approaches may be applied
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to the edges of the polygons which could significantly reduce unnecessary calculations.

The major limitation in our development of the program to compute channel-area is

the use of memory. Memory usage increases prohibitively when computing channel-area via

the aggregate union of polygons. It is possible that the excessive memory consumption is due

to coefficient swell associated with computing resultants, due to the algebraic computation

in CORE. One possible way to reduce the amount of memory used is to use intersections

instead of unions. Channel-area can then be computed by using the inclusion-exclusion

principal.
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