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Abstract

Teaching an autonomous agent to perform tasks that are simple to humans can be complex,

especially when the task requires successive steps, has a low likelihood of successful completion with

a brute force approach, and when the solution space is too large or too complex to be explicitly

encoded. Reinforcement learning algorithms are particularly suited to such situations, and are

based on rewards that help the agent to find the optimal action to execute given a certain state.

The task investigated in this thesis is a modified form of the Block Design (BD) and Block Design

Multiple Choice (BDMC) subtests, used by the Fourth Edition of the Wechsler Intelligence Scale

for Children (WISC-IV) to partially assess childrens’ learning abilities. This thesis investigates

the implementation, training, and performance of two reinforcement learning architectures for this

problem: Soar-RL, a production system capable of reinforcement learning, and a Q-learning neural

network. The objective is to help define the advantages and disadvantages of solving problems using

these architectures. This thesis will show that Soar is intuitive for implementation and is able to find

an optimal policy, although it is limited by its execution of exploratory actions. The neural network

is also able to find an optimal policy and outperforms Soar, but the convergence of the solution is

highly dependent on the architecture of the neural network.
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Chapter 1

Introduction

1.1 Automated Learning

The increasing demand for responsive and interactive technologies such as unmanned vehi-

cles, challenging video games, predictive software, and robotic assistants requires software able to

accommodate a variety of requests made by the user. Predicting and encoding this much information

for millions of possible states or situations is at least daunting and painstaking, if not practically

impossible. Even worse, the software is fixed; there is no adaptation to different users, needs, or

unexpected situations. The missing link between rigid and flexible software systems is something all

humans are equipped with: the ability to learn. Endowed with the ability to find or determine the

best action to take in a given situation based on its own experience, a software agent could provide

greater functionality, more tailored responses to the user, and better performance of a task.

How can an automated agent be taught to learn a new task? The main ways in which

agents learn are analogous to the methods by which humans learn. The most straightforward type

of learning is supervised learning in which the agent is shown examples and informed of what the

correct response should be, and eventually the agent learns to respond with the same answers.

Another type of learning is unsupervised learning, in which the agent finds patterns in the dataset

to model the data. The final type of learning is reinforcement learning, in which an agent interacts

with the environment and figures out by trial-and-error the best action to take based on how the

environment responds to its actions. This final type of learning is the focus of this thesis.

Reinforcement learning is a particularly powerful learning algorithm because a single feed-
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back in the form of a reward can be administered at the end of its sequence of actions, and indicates

whether the outcome was desirable or undesirable. From this reward, agents are able to learn the

optimal action to take based on its current state. For problems with large state spaces, this requires

a representation that is compact enough to meet the agent’s memory requirements, allows fast recall

of desired actions in states it has already seen, and enables informed decision-making for states it has

not seen. The question then becomes - what is the best architecture for facilitating reinforcement

learning for problems with a large state space?

This thesis seeks to address these two questions by comparing two architectures, a produc-

tion system and a neural network, to implement the well-known reinforcement learning algorithm

Q-learning[22], and evaluates their performance on a test problem. The problem to be solved is the

Block Design - Disembodied (BD-DE) test, a derivative the Block Design (BD) and Block Design -

Multiple Choice (BDMC) subtests from the Fourth Edition of the Wechsler’s Intelligence Scale for

Children, an intelligence test that is used to assess the intelligence of school-age children. These

tests on the WISC-IV help identifiy deficiencies in problem solving and sequential reasoning; an

automated agent that solves this problem is therefore required to have both of these capabilities.

1.1.1 The BD-DE Problem and Complexity

The BD-DE problem involves reconstructing a goal image given a set of blocks that contain

subpatterns of the goal puzzle, and each block is of 6 different types. This is described explicitly

in Chapter 3, and shown in Figure 3.1. For most children, this is a simple task, and in fact, was a

game in the early 1990s, but for others, it can be quite a challenge. According to [3], some children

attempt to solve the puzzle by trial-and-error, whereas others add the pieces haphazardly and do

not learn from their previous mistakes. Some children plan out their designs, while others are more

impulsive. Children twist their bodies to gain more perspective on the puzzle, work from different

directions to establish order, and also employ other strategies to fill in the puzzle correctly.

For automated agents, this task can be even more challenging. The agent is merely given a

goal puzzle, an empty puzzle, and blocks with no further instructions (although some constraints are

imposed as described in Chapter 3), and is expected to learn what to do with the blocks to maximize

the reward given from the environment. Mathematically speaking, given a goal pattern that has

been subdivided into 9 sections with 9 blocks available to reconstruct this pattern, this represents 9!

or 362,000 possible solutions. The probability of randomly achieving a correct configuration is then

2



3×10−6. This is the problem that will be solved by the production system, as well as variations on

the puzzle size and the number of blocks provided. However, if all 6 block types are available at

each step for each square, the solution space increases to 1.1×107, and the probability of randomly

achieving the goal configuration or by a brute force approach is 9.9×10−8 for a single configuration.

The neural network will be used to solve this task. The exponential increase in difficulty experienced

by these agents to solve this problem is shown in Figure 1.1. The outcome of this work will aid

in the determination of the best architectures to use for a given task, as well as demonstrate the

effectiveness of automated agents using reinforcement learning to navigate problems that have a

large solution space.
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Figure 1.1: Difficulty of BD-DE Problem as a Function of the Puzzle Size and Number of Blocks

1.1.2 Reinforcement Learning Using Soar and Artificial Neural Networks

Reinforcement learning with these architectures has been used to solve a number of puzzles

in varying capacities. The Soar production system, together with its reinforcement learning module

has been used to solve the missionaries and cannibals problem [11] which involves finding an optimal

solution to a problem that humans solve with great difficulty; the Eaters problem [11], which requires

an agent in a maze to maximize the food rewards it receives; and the taxicab problem, which requires

the agent to find the optimal path to the destination with the constraint of gas consumption [1].

These implementations have achieved varying degrees of success.

Furthermore, neural networks have also been quite successfully used in concert with rein-
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forcement learning algorithms. Gerald Tesauro’s agent [19] plays Backgammon at a level very close

to that of the best human players in the world [20] using a temporal difference (TD) reinforcement

learning algorithm. TD-Gammon 3.0, the lastest iteration of the neural network, receives the raw

state of the board as well as other heuristics as input to the network, and has a hidden layer with

logistic activation functions for both the hidden and output layers. Training required 1,500,000

games to achieve expert play. The original research in 1992 found also found that although su-

pervised learning neural networks suffer from overfitting when the number of units in the hidden

layer is increased, TD-learning neural networks increase their performance with increased numbers

of hidden units.

A Q-learning neural network was specifically used in the research done by Eck and Wezel

for playing the game of Othello[21]. Their research contrasted two 3-layer feedforward architectures

for the neural networks: a single neural network with Q-values as output for all actions (single-NN),

and several distinct networks, each outputting the Q-value for one specific action (multi-NN). Each

network had one hidden layer and hyperbolic tangent activation functions. The action selection

method used was the Boltzmann distribution which eventually transitioned to greedy selection after

12,000,000 games. For each step, the reward was 0, except at the end of the game when the agent

received -1 for a loss, and +1 for a win. The research concluded that both single-NN and multi-NN

Q-learning agents perform better than agents with fixed strategies, although the single-NN was able

to learn to play Othello faster than the multi-NN.

Q-learning neural networks have also been used for mobile robots to learn the tasks of

obstacle avoidance and wall following. The work of Ganapathy and Liu in [5] explored a Q-learning

neural network to implement a number of controllers. The architecture for both these controllers

was a 3-layer feedforward network, with 8 linear input units, 16 tangent sigmoid hidden units,

and 5 linear output units. The action selection method used the Boltzmann distribution, a set of

intermediate rewards ranging from -0.1 to 0.3 for each of the 5 actions, and terminal rewards of

-10 and +1 depending on the controller. Both these implementations were successful, and allowed

the robot to learn the tasks of wall following and obstacle avoidance. The flexibility of the reward

system can be shown by contrasting the sensor-based obstacle avoidance reward function in [5] with

the reward system in [6]. Both systems use the same architecture and action selection mechanism,

but differ in the magnitude of the rewards. In both cases, the system was able to learn to move in

the environment without colliding with obstacles.

4



1.2 Thesis Overview

The rest of this thesis will provide an answer to the two research questions proposed. Chap-

ter 2 will provide an overview of reinforcement learning concepts as well as Soar and neural networks.

Chapter 3 will formally describe the BD-DE problem, and Chapter 4 will describe the details of the

design of the agents used to solve it. Results of the tests used to assess architecture performance

will be reported in Chapter 5, and this section will also provide insight on the implications of these

results. Finally, Chapter 6 describes the conclusions of this research.

5



Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning is the method by which an agent learns to interact with the envi-

ronment in order to maximize the rewards it expects to recieve in the future if it executes a certain

set of actions. Unlike supervised learning, the agent is not provided the correct answer such that

the agent can tailor its responses to match those given by the expert annotations in the training

set; rather, the agent’s learning strategy is based on a trial-and-error search to determine the best

actions for maximized rewards. Figure 2.1 illustrates this difference approaches to learning between

these two paradigms. In general, numerical rewards are returned to the system as a final assessment;

that is, +1 for a favorable outcome, -1 for an unfavorable outcome, and 0 otherwise, for example.

Intermediate rewards, that is, rewards that are given at non-terminal states, are also frequently

given in order to guide the agent’s actions towards a more favorable outcome and speed convergence

as described in [9].

In addition to the large state space and related problems identified in Chapter 1, supervised

learning techniques also frequently cannot be used because even the most seasoned experts do not

always know or have the best strategies to maximize future rewards[19]. These considerations render

explicit programming and even supervised learning infeasible techniques for solving the problem.

Thus, reinforcement learning algorithms are of great use in problems where an agent must

navigate wisely through successive states. Because of their inherent sequential nature, these problems

lend themselves to formulation within the Markov Decision Process (MDP) framework. The major

6
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Figure 2.1: Comparison of Supervised Learning and Reinforcement Learning Techniques

points of theory underlying MDPs will be outlined briefly in Section 2.1.1 and solutions of the MDP

formulation will be described in 2.1.2. Information on reinforcement learning, deeper mathematical

development of MDPs, and more analysis with relationship to reinforcement learning can be found

in [18], [13], and [16].

2.1.1 Markov Decision Processes

MDPs are extensions of Markov chains. Markov chains are sequences of random variables

s0, s1,. . . , sn which for this framework are considered states of a system at time n to form the set of

states S. For each state s, there is a fixed probability P (s′|s) that the system will transition to state

s′. MDPs have the additional characteristic that they have a finite set of actions A = {a1, a2, . . . , an}

that represent all the possible actions that can be taken in the state space. Thus, given a state s at

time n, the action an causes a transition to state s′, the successor state, with probability P (s′|s, an).

Furthermore, in each state s, the agent receives a scalar, finite, bounded reward r(s) ∈ R. The

scalar discount factor γ defines the relative balance between the immediate reward and the future

reward, and is used also to reduce difficulties in evaluating sequences of states[16]. Thus, an MDP

that describes a sequential decision problem is a quintuple defined by S, A, P (s′|s, a), R, and γ.

7



MDPs in reinforcement learning are also assumed to satisfy the Markov property,

P (sn|s0:n−1) = P (sn|sn−1),

which states that the current state depends only on the previous state and not on the sequence

of states that preceded it. The significance of the Markov property for RL problems formulated

through this framework is that the previous state encodes all the information necessary to make

a decision to reach the successive state, and the history of all the states previously are implicitly

represented by the previous state. This significantly reduces computational complexity.

As previously stated, the goal of the MDP formulation is to determine the best action to

perform in each state such that E[
∑n=∞
n=n0

γnrn], or the expected sum of discounted future rewards is

maximized. The formulation of a value function U(s) logically follows, and is defined for each state

by Bellman’s equation:

U(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a)U(s′).

These value functions can be regarded as the utility, or ”goodness” of that state. Solving Bellman’s

equations therefore produces the utility of each state which can be used to determine an optimal

policy. Any set of actions defines a policy π : S → A, though the optimal policy π∗ defines the set

of actions that maximize the future expected reward. If the utilities of each state are known, π∗ is

simply choosing the actions which leads to the successor state with the highest utility. Formally,

π∗ = arg max
π

Uπ(s) ∀s ∈ S.

The non-linearity of Bellman’s equations due to the max operator makes the solution of these

equations difficult for non-trivial problems, and methods of determining the optimal policy will be

described in the following section.

2.1.2 Algorithms for Calculating Optimal Policies for MDPs

There are two main approaches to solving Bellman’s equations: dynamic programming and

model-free approaches. Dynamic programming (DP) requires a complete and accurate model of the

system, so R and P (s′|s, a) must be known to calculate U for each state[18]. These algorithms solve

for U(s) iteratively and can reliably compute the optimal policies and value functions[21]. There
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are two main DP algorithms: value iteration, which starts with arbitary values for the utilities of

the states in Bellman’s equations, and then iteratively recalculates the utilities to select an optimal

action in each state; and policy iteration, which begins with an arbitary policy, executes the policy

to calculate new state utilities, and then uses these utilities to identify an updated policy.

In the absense of a model, Watkins Q-learning[22] can also be used to calculate an optimal

policy based on Q-values. Q-values differ from state utilities in that Q : S × A → R whereas

U : S → R, and thus Q-values are defined as state-action pairs. Q-learning is similar to value

iteration in that it is based on calculating state utilities to dictate the policy, but uses temporal

difference (TD) learning to adjust Q(s, a) towards Q(s′|a). The Q-function is defined as the sum

of immediate reward received having executed action a and the discounted reward garnered if an

optimal policy is followed thereafter. This constraint equation is shown below:

Q(s, a) = R(s) + γmax
a′

Q(s′, a′),

and holds when the correct Q-values have been reached[16]. Then, the optimal policy is defined as:

π∗ = arg max
a∈A

Q(s, a) ∀s ∈ S.

Employing this algorithm for one-step Q-learning requires iterative updates of the form

Q(s, a)← Q(s, a) + α(r(s′) + γmax
a′

Q(s′, a′)−Q(s, a))

to update the utilities of the state-action pairs when an action a is taken in state s.

An important component of reinforcement learning algorithms is the balance between ex-

ploratory and exploitative actions. The above algorithms have been described in their greedy for-

mulation; that is, the action that leads to the state with the highest utility is always selected to

be taken. In practice, this action selection mechanism rarely converges to the optimal policy be-

cause of the limited portion of the state space the agent explores. However, executing a non-greedy

action while the agent is training can provide information about states that could possibly lead to

higher rewards in the future. There are several selection methods that allow for a balance between

exploration and exploitation including using the Boltzmann distribution to probabalistically select

actions, and ε-greedy approaches that involves selecting a random action with probability ε. These
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action selection methods should be greedy in the limit of infinite exploration (GLIE); that is, the

method should eventually become greedy so that the agent is able to choose the optimal actions to

take in each state[16].

Q-learning is an off-policy control method, meaning that the state with the highest Q-

value used to update the equation may not necessarily be taken in the next step of the algorithm.

This is because of the necessity for exploration in training described above; exploration in training

requires not executing the optimal action used in the Q-value update equation. This has a number of

implications with respect to convergence when Q-values are represented by a function approximator

even though Q-learning has the best convergence guarantees of all control methods[18].

Finally, the utilities or Q-values must be represented in such a way that the information can

be recalled and applied to situations that were not present in the training set. One method to rep-

resent these utilities is through lookup tables, where each entry in the lookup table represents U(s),

or in the case of Q-learning, Q(s, a). For problems that are particularly complex with many states

and many actions that could be performed in a state, the size of these lookup tables quickly makes

this representation infeasible because each possible entry must be known. In these cases, function

approximators such as neural networks are extremely useful because they are able to approximate

the underlying functional form at a set of data points and also provide generalization.

2.2 Cognitive Architecture: Soar

Automated learning can also be accomplished by using a production system, which uses

rules to govern the agent’s interaction with the environment such that goal-based behavior can be

achieved. Soar is an example of such a learning agent. Soar an open-source software, and is often

termed a cognitive architecture because its design seeks to utilize the mechanisms and structures that

underly human cognition to imitate human problem solving and reasoning. Thus, the architecture

also allows for learning and augments the traditional view of memory. In this context, learning

encompasses figuring out the best course of action when the agent must decide which of two or more

seemingly reasonable operators to execute.

In general, the Soar architecture solves problems by sequentially applying an operator to

the current state in order to reach a successive state. Operators are essentially the actions that

cause a state to transform into another state, and requires an understanding of the current state,
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the productions that can be fired to propose an operator, and if many operators are proposed, the

best choice. To this end, Soar has a number of memories to encompass these essential features, but

also several forms of non-traditional memory including semantic memory, which attempts to make

sense of structures and episodic memory, which allows the agent to remember situations that it has

encountered in the past. Representation of information in memory, the method of rule application,

learning, and practical implementation issues with Soar will be introduced in the following sections.

More information can be found in [8].

2.2.1 Memory and Information Representation

There are three main types of memory in Soar: long-term memory (LTM), working memory

(WM), and preference memory (PM). LTM is organized as productions, which are a set of rules based

on logical implication that dictate what steps to take in light of the conditions of the current situation.

From the perspective of traditional programming languages, productions can be considered as if-then

statements. In Soar, there are four different purposes of productions: to fire operator proposals, to

compare operators, to apply operators, or to provide elaborative information about the state. At

least two productions are necessary to implement an operator: 1) to propose the operator, and 2)

to apply the operator. Thus, in the case of block rotation for example, two productions could be

formulated: “IF there is an available block X, then propose operator rotate-block(X),” and “IF

rotate-block(X) operator is proposed, THEN execute block rotation action on the environment.”

The second type of memory is working memory, which contains information about the

current situation or current problem that needs to be solved, and is organized into sets of work-

ing memory elements (WMEs), or augmentations of the state. WMEs are identifier-attibute-value

triples, where an identifier is Soar’s internal representation of the object being described, attributes

are qualities or descriptors of the object, and values are the values of the descriptor. All WMEs are

required to be connected to the state to be a part of Soar’s internal representation of the problem

state. An example of Soar’s representation of the state is shown in Figure 2.2. As illustrated here,

all the WMEs are connected to the state directly or indirectly. As shown, the input-link and

output-link elaborations are connected to the state through the iol identifier, which functions as

both an identifier for these two WMEs and as a value of the input/output attribute of the state.

An example of information present on the input-link for this problem is also shown; the goal map,

state map, and the blocks are all attributes of the input-link.
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Figure 2.2: Soar’s State Representation by Linked Working Memory Elements

The last type of memory is preference memory, which provides the framework by which

operators are selected. PM contains the numerical utility of certain operators, or information about

how well one operator compares to another. The impact of PM on reinforcement learning is described

further in Section 2.2.3.2. Also, as stated above, semantic and episodic memories exist, which allow

for the idea of structure and recalling events of the past. These most resemble WM, in that they are

composed of WMEs which describe situations encountered in the past or how objects are structured.

Together, these types of memory encode the knowledge necessary to make a choice about the best

action to take based on the current situation.

2.2.2 Soar Decision Cycle

The Soar Decision Cycle is shown in Figure 2.3, and utilizes WM, LTM, PM, and the other

types of learning in order to make an informed decision about which operators to select in certain

states. The cycle has 5 steps - input, proposal, decision, application, and output - and is repeated

until the current goal is reached. In finality, the mechanism by which Soar determines an operator to

apply is this: the input stage accesses the input-link to obtain the state of the environment, which
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is then placed in WM. Based on this current state, productions which are applicable based on their

preconditions are proposed in the proposal stage. If one or more productions are applicable, they

are fired. Productions are fired and retracted to interpret new data (state elaboration) or compare

operators (operator comparison) as mentioned above. This occurs until quiescence, when there are

no more complete matches or retractions of productions.

Input

Proposal

DecisionApplication

Output

Input-Link

Output-Link

Figure 2.3: Stages of the Soar’s Decision Cycle

The decision stage allows for an operator to be selected from those proposed. If a decision

cannot be reached because no operator is proposed, there are several operators proposed, or other

situations that impede decision making for the system, an impasse is generated. Otherwise, the

system proceeds to the application phase, where productions fire to apply the operator (operator

application) to change the state.

The final stage is the output stage, in which the products of the cycle can be output to the

environment using the output-link. These five stages are applied repeatedly to successive states

to achieve the goal-directed behavior of Soar.
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2.2.3 Learning with Soar

Soar has several different mechanisms and approaches to learning. As stated above, under

conditions in which a decision cannot be made or enough information does not exist, Soar reaches

an impasse, which is considered by Soar to be an opportunity for learning. There are several types

of impasses:

Tie impasse Impasse that occurs when two or more operators have the same preference

Conflict impasse Impasse that arises when two operators are mutually better or worse than each

other (ex. O1 is better than O2; O2 is better than O1)

Constraint-failure impasse Impasse resulting from two or more operators with preferences in-

dicating that they both must be chosen in the current cycle; can also be generated when an

operator has preferences that state that it must both be chosen and not be chosen if the goal

is to be achieved

No-change impasse Impasse generated when either a new operator cannot be chosen for a par-

ticular state (state no-change impasse) or an operator is selected, but no productions describe

its application (operator no-change)

When an impasse is reached, a substate, a new state which contains the entire representation of the

current state, is created within the state that generated the impasse. In this new state, the agent

is able to perform a task called subgoaling by testing operators to determine which one should be

selected. Impasses can be encountered in this substate, and therefore nested, as the same impasse

resolution strategies will be employed in order to resolve these lower impasses. The result of these

impasse resolution efforts is the creation of new WMEs that must be linked the state in which the

impasse was generated.

2.2.3.1 Chunking

Although subgoaling resolves the impasse for the current state, what happens when the

same state is encountered again in the future? The ideal situation is for the agent to repeat its past

actions without again subgoaling to determine them. This can occur in Soar if learning is enabled,

and the mechanism to do so is referred to as chunking. Chunks are new productions that are added

to LTM, and are generated by the agent. After impasse resolution, the agent considers the actions
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that led to the impasse, and sets them as the conditions of the production. It then sets the steps

that resolved the impasse as the consequent of the production. Thus, the agent has learned how to

solve the problem based on its experience from the past.

2.2.3.2 Reinforcement Learning in Soar

Other types of learning have also been incorporated into the Soar architecture, including

reinforcement learning, episodic learning, and semantic learning. Although the latter two will not be

addressed, the reinforcement learning mechanism allows for the incorporation of Q-function based

RL methods into Soar (Soar-RL). In the Soar architecture, this directly impacts PM, as RL will

change the preference values for the operators. This makes sense; the purpose of the Q-function in

reinforcement learning is to learn the utility of performing certain actions in certain states in order to

find the best actions to execute given the state. The reward is processed through the reward-link

attribute of the state.

To create operators with Q-values as preferences, one additional production is necessary.

This production dictates the portion of the state to be recalled for s in Q(s, o) values. Then, PM

contains the Q(s, o) values for each state-operator pair.

Soar implements a a similiar approach for mapping state and actions to Q values, as seen

by the notation above, and instead defines the utility of operators applied in certain states (Q(s, o)).

Q(s, o) calculations and updates are performed in the following manner: first, since the same operator

can be proposed in different situations, Soar calculates the utility of executing a certain operator

as a linear combination of all the proposed operator preferences for that specific operator. Second,

when the Q(s, o) values are updated after a reward is received, this update is divided among all of

the operators of the type that was applied. More information concerning this implementation can

be found in [11] and [8].

The system allows for designer control over parameters of the algorithms that can be cho-

sen. Soar-RL allows users to choose between Q(λ) (λ = 0 for Watkins Q-learning) and State-

Action-Reward-State-Action (SARSA) RL algorithms; from Boltzmann, ε-greedy, softmax, and de-

terministic action selections as well as the temperature T or ε parameters of these action selection

mechanisms; and the value of the discount factor, learning rate, and other parameters. It also

provides functionality for assessing the progress of the RL Q-values.
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2.2.4 Communicating with the Soar Kernel

As briefly mentioned in Section 2.2.2, Soar can be used as the decision-making agent within

an external environment by the input-link and output-link attributes of the state. In this

instance, the Soar decision-making engine is referred to as the Soar kernel, and can be used to

interact with simulated environments, robots, and any inputs from the external world. Both the

input-link and the output-link have and accept the same WME structure as working memory.

Communication between the kernel and an environment is most effectively mediated through the

Soar Markup Language (SML), an interface implemented in C++.

2.3 Artificial Neural Networks

2.3.1 Architecture

Artificial neural networks (ANNs) are computative networks that are based on the structure

of biological neurons, and are used to approximate functions. The most basic structure of an ANN

is a perceptron which performs the mapping

o = f(wTx + b),

where w is the vector of weights, x is the input vector, b is a scalar bias, and o is the output of the

perceptron. This computation is performed by two processes shown in Figure 2.4 as the calculation

of a net activation by a weighted combination of the inputs, and the computation of the output by

use of a mapping function on the net activation. The mapping function between the net activation

and output can be implemented by a number of functions, including sigmoid and logistic functions,

hard delimiters, and linear functions.

The multilayer feedforward ANN (MLFF-ANN) is designed by assembling perceptrons into

a network, which is shown in Figure 2.5. Each of the units represents one of the perceptrons in

Figure 2.4. Each directed arrow in the figure represents a weight between the output of that unit

and the input of the recipient unit. The MLFF-ANN architecture is characterized by each output oi

from a unit is connected as input to each of the units in the following layer. Additionally, there are no

self-connections (the output of a unit connected as its own input) or look-ahead connections (output

of one unit connected to the input of a non-adjacent layer). The layers of MLFF-ANNs include
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Figure 2.4: A Single Unit of an Artificial Neural Network

the input layer, which recieves an input vector xi of features from the training set X; one or more

hidden layers, and an output layer. These latter two layers perform the activity of the perceptron

on the vector of information output from the previous layer. The MLFF-ANN architecture shown

above is a 3x4x1 neural network, and the number of units in each layer, as well as how many hidden

layers should be used varies according to the purpose of the network.

Multilayer feedforward networks are able to implement the following mapping:

F (x) =

N∑
i=1

αiφ(wTi x+ bi),

where φ(·) represents the activation function. According to Cybenko’s theorem, the universal ap-

proximation theorem, a standard MLFF-ANN with a single hidden layer and a finite number of

hidden neurons and arbitrary activation function is a universal approximator, and therefore can

be used to approximate continuous functions of n real variables with support in the unit hyper-

cube, although convergence is conditional based on the number of units in the hidden layer and the
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Figure 2.5: Structure of a Multilayer Feedforward Artificial Neural Network

properties of the function being approximated[2].

2.3.2 Network Training and the Generalized Delta Rule (GDR)

The network is trained by a method similar to the Widrow-Hoff learning rule[25] which

involves repeatedly presenting the network with an example xi from representative set of examples

X from the problem space, and tuning its outputs to match the correct or expected response as

dictated by the training set. Training the network is achieved by backpropagation of error by

adjusting the weights of the neural network towards towards the desired output. After initializing

the weights in the network, the following steps are taken for each xi until an acceptable level of error

has been reached:

1. Forward propagate xi through the network to determine network output o

2. Calcalate error E as a difference between output o and target ti on norm N such that E =

||ti − o||N
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3. Backpropagate error using gradient descent to change network weights to minimize allowable

error

The first two steps in this process are straightforward; the third step requires more consid-

eration. This minimization is achieved by first using gradient descent to determine the direction

of descent that corresponds to minimizing the function error. Since a function is encoded by the

weights of the neural network, these weights must be changed to reflect this change, which is achieved

by the Generalized Delta Rule (GDR)[14]. GDR calculates the weight adjustment (∆wji) based on

the error with respect to a specific weight (−∂E/∂wji), and is

∂E

∂wji
=
∂E

∂oi
· ∂oi
∂neti

· ∂neti
∂wji

.

Since this differs for different units based on their layer location, the parameter δ is calculated as:

δj = (tj − oj)f
′

j(netj) for output units, and

δj = f
′

j(netj)
∑
n

δnwnj for internal units.

Then, the weight correction for each weight in the network is:

∆wij = εδj õi,

where õi is oi if this ith input to the unit is the output of another neuron (in the case of output layers,

for example), or ii if the input to the unit is from the input layer. In addition, δnwnj represents

the δn from the next layer (Ln+1), wji represents the weight of the connection from unit i to unit

j, and a single subscript (as in wn) refers to a specific unit[17]. As the network learns, the error

decreases between the network output and the function to be approximated. The ideal error function

as the network trains is shown in Figure 2.6, and reflects the agent initially knowing nothing, and

eventually settling on a policy as training proceeds.

It is also important to note that this formulation assumes training by pattern, which means

that the network weights will be updated after every forward propagation of the inputs. Training

by epoch can also be achieved by accumulating all the error over one pass of the entire training set,

and then correcting the weights afterwards. This helps to eliminite oscillation to speed convergence.
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Figure 2.6: Ideal Training Error As Training Proceeds for Learning Agent

Other methods to improve the performance of the network include weight decay[7] and second-order

techniques such as momentum. Lastly, minimizing the network error to zero can lead to“over-

training” or “overfitting,” in which the network essentially memorizes the noise present in the training

set which can lead to poor generalization[17].

2.3.3 Q-learning Neural Networks

As stated in 2.3.1, MLFF-ANNs with at least one hidden layer are universal function approx-

imators, and are therefore able to represent functions with complex mappings based on a training

set composed of examples of the function the network is expected to learn, including Q∗, the optimal

Q-function approximated by the Q-values. Q-learning neural networks have a slightly different train-

ing prescription from standard MLFF-ANNs in terms of network topology, training set generation,

and feedback.

First, Q-learning neural networks have three different possible forms: single-NNs, which

20



have one network that maps input states to the Q-value for |A| actions as in Figure 2.7; multi-NNs,

which are composed of |A| networks that map the input state to a single Q-value representing a

particular action as in Figure 2.8; or one neural network that maps the state and action as a pair

to |A| Q-value outputs. Only the first two architectures are explored in this paper.

state
(s)

Q-value
action a1

Q-value
action an

Figure 2.7: Single-NN Q-learning Architecture

Secondly, since the state changes as a response to the action taken, training can proceed

along a specific trajectory, and although this is not necessarily required for convergence[23], this

greatly simplifies training. Thus, the training set can be composed of a number of starting positions,

and the rest of the training set is generated dynamically as the agent takes actions which result in

arriving in the next state. This illustrates the importance of the Markov independence property;

without this property, it is impossible to make an informed decision about the next action to take

if the entire sequence history is not present.

Finally, although the weights of the network can be changed with the same use of gradient

descent and GDR, there are no ”correct” answers given as part of the training set; only immediate

rewards and/or terminal rewards are applied as feedback to the system. These rewards are used to
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update the Q-value approximation for state-action pairs. The full algorithm for neural Q-learning

is given in Section 4.2.
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Figure 2.8: Multi-NN Q-learning Architecture

One well-known problem with implementing Q-learning with linear function approximators

is their failure to converge to an optimal policy with probability 1 for all conditions, whereas storing

Q-values with the tabular method, on the other hand, is guaranteed to always converge with proba-

bility 1[22]. This is because the error backpropagation produces non-local changes in the estimation

of Q∗ so that changing certain weights of the network can affect the Q-values of other state-action

pairs. Since the convergence of Q-learning is based on performing local changes to decrease the
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error, these non-local changes can cause divergence, and is referred to as interference[24].

Furthermore, off-policy bookstrapping methods including Q-learning are known to diverge

because of the conflict between distributions used to update the Q-values and those encountered by

the state trajectory[18]. [10] defines conditions for both the problem and the algorithm such that

Q-learning implemented by linear function approximators is guaranteed to converge with probability

1. A recommendation in [18] is to use selection methods such as ε-greedy to satisfy at least one

of these constraints, which aids in convergence. Nonetheless, Q-learning neural networks are not

guaranteed to converge for all topologies, learning rates, and input representations of the neural

network, and Q-learning with non-linear function approximators currently has no convergence proof

or guarantee[21], [9], [15].

2.4 The Fourth Edition of the Wechsler’s Intelligence Scale

for Children (WISC-IV)

The WISC-IV is a test used to assess the intelligence quotient (IQ) for children between

the ages of 6 and 16. The WISC-IV has fifteen subtests in order to provide a full assessment of a

child’s cognitive ability. These tests provide an overall assessment of the child’s intelligence, as well

as individual scores reflecting the child’s propensity for verbal comprehension, perceptual reasoning,

processing speed, and working memory[3].

The intelligence component explored in this thesis is perceptual reasoning which is partially

tested by the Block Design (BD) subtest. The BD subtest is also a test of general intelligence. In this

test, children are presented a pattern of red and white blocks, and asked to reconstruct this model

image with a set of blocks. The students are assessed according to the speed in which they complete

the puzzle as well as the difficulty of the puzzle completed[3]. The BD subtest was also chosen as

the basis for the problem because it measures synthesizing ability, tests non-verbal organizational

ability, and corresponds to problem-solving ability[4]. A related task is the Block Design Multiple

Choice (BDMC) subtest, in which children do not physically move the blocks given to reconstruct

the puzzle image; rather, they choose the correct constructed design from four alternatives[12].

WISC-IV is a well-known test used to assess and provide intervention for children with

attention-deficit/hyperactivity disorder, gifted children, mentally challenged or intellectually dis-

abled children, children with autism spectrum disorders, and emotionally disturbed children [12].
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Chapter 3

The Problem

3.1 Considerations of the Block Design (BD) and Block De-

sign Multiple Choice (BDMC) Subtests

Section 2.4 describes the WISC-IV BD and BDMC tests and their interpretation as an

intelligence assessment. However, neither one of these subtests completely allows for testing the

intelligence of an automated agent. The BD subtest measures non-verbal reasoning and problem

solving through requiring the agent to construct the goal map from given blocks. However, the

WISC-IV implementation of BD also requires that the agent physically move the blocks to recreate

the goal map, and therefore visual-motor integration, motor planning and control, and visual-spatial

processing is also a component of performance. None of these factors are of importance in this thesis.

On the other hand, the BDMC subtest does not require any physical embodiment, and thus

allows the agent to match the correct design based on multiple already constructed alternatives.

Although this eliminates the necessity for motor movement or visual processing, the reasoning and

problem solving required for BD is lost.

3.2 Block Design - Disembodied Formulation

In order to preserve the benefits of the BD and BDMC subtests while removing the un-

desirable qualities, the amended Block Design - Disembodied (BD-DE) test was formulated. The
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BD-DE test used in this thesis requires the agent to successfully construct the target goal map using

the blocks available in the WISC-IV BD subtest, but without the physical requirement of visual or

motor coordination.

Figure 3.1: Desired Functionality of Automated Agent on BD-DE Subtest

Figure 3.1 shows an example of the desired functionality of the agent. The agent populates

an empty state map of size n by selecting from b blocks, each of which has 6 possible types. This

example depicts the 6 block types that the agent will select from to populate the working map such

that it matches the goal map. The neural Q-learning agent will solve this problem, whereas Soar will

be explicitly provided the 9 blocks needed to solve the puzzle. To achieve the goal state, the agent’s

actions must converge to an optimal policy π∗, described further in Chapter 2, that allows the agent

to arrive in the corrrect terminal state s∗T from initial state s0 in the minimum number of steps at

100% accuracy. The constraints and assumptions on the problem for each of the architectures is

described below.
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3.3 Assumptions and Constraints

Both Q-learning implementations require a number of assumptions and constraints to effec-

tively solve the problem. The common assumption is that the agent is aware of the constraints in

solving the puzzle. These two constraints are:

1. Blocks may not be added to locations on the map that are currently occupied, and

2. Blocks may not be removed from locations on the map that are not currently occupied.

The effect of this is that the agent does not have to learn the physical rules surrounding the game,

but only needs to learn the best practices of the game itself.

3.3.1 Additional Soar Constraints

In addition to the assumptions and constraints above, Soar also employs another constraint:

only blocks that are not currently positioned on the map may be rotated.

3.3.2 Additional NN Constraints

The neural network additionally assumes that the agent must select from six blocks for each

of the squares on the map, and does not represent each block individually. In fact, blocks are not

explicitly modelled in the neural network, they are simply assumed to be present.

26



Chapter 4

Methodology

4.1 Soar

This thesis employs Soar 9.3.0 to solve the BD-DE problem described in Chapter 3. To this

end, the Soar kernel is placed in a simulated BD-DE game environment to learn how to correctly

solve the proposed puzzle based on rewards it gathers during the duration of play.

The game environment is programmed in C++, and interacts with Soar through the Soar

Markup Language (SML) interface. The basic training of the agent is as follows: first, an arbitrary

goal map and empty working state map is presented to Soar. Using the productions, operator

preferences, and rewards it gathers, it adds, removes, and rotates blocks until it enters a terminal

state sT such that n blocks have been placed on the map. A reward from the environment is applied

to the system based on the correctness of the puzzle, and the agent is then trained on a number of

different puzzles and block sets. During this time, it employs Soar’s reinforcement learning module

to implement Q-learning with the intent that its sequence of actions will converge to the optimal

policy.

After the agent completes the training set a predefined number of times, the agent’s knowl-

edge is then tested by disabling learning, setting all exploration probabilities to zero, and proposing

puzzles that the agent has not yet seen. This defines the agent’s performance. This functionality

required interfacing with the Soar kernel through the input-link and output-link, identifying

a WME structure representing the game state, encoding long-term knowledge through the use of

productions, and identifying a useful reward system. These considerations will be described in the
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following sections.

4.1.1 Interfacing with the Soar Kernel

The game environment provides the framework in which Soar operates; it is responsible for

initializing and configuring Soar, creating and maintaining of the problem state, and instructing

Soar about when to make its decisions. Figure 4.1 illustrates this relationship and the flow of the

program. As shown in the figure, the environment first creates and initializes the kernel, loads all the

productions encoded into long term memory, and registers with Soar to be informed of the addition

of any information onto the output-link. One of the productions also contains configuration

instructions, which enables reinforcement learning, sets the learning policy to Q-learning, and sets

the action selection method to ε-greedy.

Game Environment

Internal 

Representation of 

Problem State

Initialization and 

Configuration

Commands

Soar Kernel

Decision 

Cycle

Input-link

Output-link

State,

Rewards

Operator 

Selected

Figure 4.1: Game Environment Relationship with Soar Kernel and Program Execution

Then, training begins. The game environment is preprogrammed with a 11 training sets,

the first of which is loaded onto the input-link. The game environment then instructs Soar to run

until 9 blocks have been placed on the map, which is signalled by a production in Soar which fires

an interrupt to halt kernel execution and return control to the game environment. Each operator
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that Soar chooses as it solves the puzzle is placed on the output-link, which notifies the game

environment to update the state of the puzzle based on Soar’s decision. After this state update, the

environment returns the reward on the input-link. One of the productions in long-term memory

allows this reward on the input-link to be transferred to the reinforcement learning elaboration of

the state WME. Soar then processes this reward by updating the preference of the selected operator

based on this reward. This cycle proceeds until Soar is able to solve all the training sets in less than

1.5×the minimimum number of steps. When this condition is met, the action selection method is

then changed to greedy (ε set to zero). This cycle proceeds for all the training sets until Soar is

able to solve all the training sets in approximately the minimum number of steps. Then, the agent

is tested on 5 test sets to assess its generalization capabilities.

This programming decision to force the game environment to change and update the state

instead of the action side of the operators in the productions is due to the implementation of

WME ownership for Soar and the game environment. Both the game environment and Soar load

information into working memory with the same structure, and so a distinction is made between

what entity placed the WME into Soar’s working memory - Soar, or the game environment. Because

the only entity able to change or delete the WME is the entity that placed it in WM, the update

strategy shown in Figure 4.1 was adopted.

4.1.2 State Representation and Working Memory

The state of the system is fully known if the configurations of the goal and working state

puzzles are known, and the orientation and usage of each of the blocks present is known. This

information is initially constructed in the game environment, and is placed on the input-link of

Soar’s state representation. The objects represented and attributes used to describe them are shown

in Table 4.1. The reward and goal attributes of the state do not have additional elaborations, but

are simply attributes of the input-link to describe these additional features of the state.

4.1.3 Production Memory

There are 15 productions that implemented the 5 main operators for addition, removal and

rotation of blocks to solve the puzzle. Each operator requires a propose, apply, and RL feature

assocation production corresponding to the proposal, decision, and application phases of the Soar
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Object Attributes Values

Goal Map Square Soar Identifier ID

Square
(of Goal Map)

Block Type
Split type
Solid color
UR color
UL color
LR color
LL color

{solid, mixed}
{UR-LL, UL-LR, na}
{red, white, na}
{red, white, na}
{red,white, na}
{red, white, na}
{red, white, na}

State Map Square Soar Identifier ID

Square
(of State Map)

Name
State
Block

{Square-{1,2,. . . , n}}
{open, closed}
{Block-{0,1,. . . ,b}}

Block

Name
Type Name
Type
Split type
Solid color
UR color
UL color
LR color
LL color
Used

{Block-{0,1,. . . , b}}
{Block-{0,1,2,3,4,5,6}}
{solid, mixed}
{UR-LL, UL-LR, na}
{red, white, na}
{red, white, na}
{red,white, na}
{red, white, na}
{red, white, na}
{true, false}

Reward * R
Goal * {true, false}

Table 4.1: Soar’s Representation of the Problem State

Decision Cycle. These operators and their descriptions are outlined below:

• add-block-to-map-matching and add-block-to-map-not-matching

Propose To propose this operator, the current state map must have an open square, there

must exist a block that has not yet been used, and the block characteristics must match

(or not match for add-block-to-map-not-matching) the goal square characteristics.

Apply The application of this operator results in a command being placed on the output-link

stating the name of the operator, and which block should be moved to what location on

the current map. The game environment performs this update to the state.

RL The preference of this operator is set based on the rewards returned from the game

environment. The RL rule corresponding to this operator recalls the attributes of block

and the attributes of the goal-map location corresponding to the location at which the

block was placed on the working state map. Thus, the agent learns the utility of adding
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a block with certain attributes in a position corresponding to locations on the goal map

that have (or do not have) the same attributes.

• remove-block-from-map-matching and remove-block-from-map-not-matching

Propose This operator is proposed if there is a location on the current map that has been filled

by a block and the block characteristics match (or do not match for remove-block-from-

map-not-matching) those of the goal map characteristics.

Apply The application of this operator requires a command to be placed on the output-link

with the block to be removed from the map and the square from which it is to be removed.

The game environment then performs this update to the state.

RL The preference of this operator is set based on rewards garnered from the game environ-

ment. The RL rule corresponding to this operator recalls the attribute of the block and

the attributes of the goal map location corresponding to the location at which the block

was removed from the current map. Thus, the agent learns the utility of removing a block

with certain attributes from a position corresponding to locations on the goal map that

have (or do not have) the same attributes.

• rotate-block-90-cw-urll, rotate-block-90-cw-ullr, and rotate-block-90-cw-solid

Propose These operators can be proposed for any of the blocks that have not been used to

solve the current puzzle, and if the working map has an open square. Each operator is

proposed based on the characteristics of the block types shown in Figure 3.1.

Apply The application of these operators results in commands placed on output-link de-

scribing which block should be rotated.

RL The preference of this operator is set based on rewards given by the game environment.

The RL rule corresponding to this operator recalls the attributes of the block that was

rotated, and the attribute of the goal square corresponding to the open square. The

goal is for the agent to learn the utility of rotating blocks of a certain type based on the

characteristics of the goal map corresponding to an open square on the working map.

• end-task

Propose This operator is proposed when the goal attribute of the input-link has been updated

to true. This means that n blocks have been placed on the puzzle.
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Apply The application of this operator results in an interrupt being generated by Soar, re-

turning control to the game environment.

RL There is no RL rule required for this operator; it is implemented only so that the preference

of the operator applied in the previous state can be updated. The preference for this rule

supercedes the preferences for the other operators so that the game is guaranteed to end

after a terminal state is reached.

In addition, impasse resolution productions were written because of the rotate-block-

90-cw-solid operator. Whenever a solid block is rotated, this leads to no measurable change of

the state, and therefore, according to Soar, nothing has changed. This leads to a state no-change

impasse. Impasse resolution was achieved by lowering the preference of that operator in that step

such that other operators could be chosen such that they would not be chosen if other options

existed.

4.1.4 Rewards, Parameters, and Test Sets

The experiment of this section consists of determining the efficacy this architecture by

testing its ability to model individual blocks. Thus, the performance of Soar’s add- and remove-

block functionality is tested, and then augmented by the rotate operators to determine if additional

functionality over the neural network can be implemented by Soar.

The parameters used to train and test the agent were the default settings - the learning rate

was set to 0.3, and ε to 0.1. The reward function used was

r(s) =



−0.2 if block added to square matched

−0.45 if a block was rotated

−0.65 if a non-matching block was removed

−0.75 if a matching block was removed or a non-matching block was added

+2 if the puzzle was completed correctly

−2 if the puzzle was completed incorrectly

Each network was tested on 5 test sets. The test sets for the non-rotation implementation were 2

a standard 3x3 puzzles with 9 blocks, one 3x3 puzzle with 4 times as many blocks as squares, a

4x4 puzzle, and a 4x4 puzzle with 2 times as many blocks as squares. For the rotation task, this
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was slightly amended, where the second and third test sets required rotation if the task was to be

completed.

4.2 Neural Network

A number of different network topologies and architectures were investigated as solutions to

the BD-DE subproblem because of the known convergence issues of Q-learning neural networks. The

networks differed in overall architecture (single-NN versus multi-NN), input representation, portion

of the map represented, activation function, and in error measurement. The algorithm below was

used to train each of the investigated neural network topologies, listed in Table 4.2.

Algorithm 1 Training prescription for Q-learning neural networks

Initialize weights to random numbers ε [-0.5,0.5]
repeat

Obtain new training example and initialize current puzzle state to empty (clear board)
while s 6= s∗T (n squares correctly matched) do

Forward propagate current state to network to get output Q-values
Select and execute a based on ε-greedy to reach s′

Receive r
if s′ = s∗T then

Generate Qtargetas Qtarget = r(s′)
else if s′ = sT then

Generate Qtargetas Qtarget = r(s′)
s′ = s0

else
Generate Qtargetas Qtarget = r(s′) + γmaxa′∈AQ(s′, a′)

end if
Backpropagate ∂E/∂wji = ‖Qtarget −Q(s,a)‖N
s← s′

end while
until network can solve each puzzle in n steps

4.2.1 State Representation

Chapter 3 described the assumptions and constraints placed on the neural network, including

the disuse of explicit block representation in the neural network state. Thus, the input to the neural

network is the target configuration of the goal map and the current configuration of the working

map. This information is encoded by a 2-, 12-, or 108-input representation of the state. Figure 4.2

provides the interpretation of each signal to the network based on the number of inputs to the state.

33



The 12-input is not pictured here, as it mirrors that of the 108-input, except it represents 1 square

of the 9-square map represented by the 108-input representation. Note that since these are binary

inputs, each 1 represents that particular input as true, while a 0 reflects that an input is false.

Inputs Input Interpretation
Multi-NN
or Single-
NN

Map Partition
Activation
Function

2
•Block Type Same or Match?
•Square Occupied?

Multi-NN;
7 Actions

Single Square
Linear
Logistic

12
•(6) Goal State Block Type
•(6) Working Map Block Type

Multi-NN;
7 Actions

Single Square
Linear
Logistic

12
•(6) Goal State Block Type
•(6) Working Map Block Type

Single-NN Single Square
Linear
Logistic

108
•(54) Goal State Block Type for
9 Map Squares
•(54) Working Map Block Type

Multi-NN;
63 Actions

9-Square Full Map Linear

108
•(54) Goal State Block Type for
9 Map Squares
•(54) Working Map Block Type

Single-NN 9-Square Full Map Linear

Table 4.2: Neural Network Topologies Investigated

4.2.2 Experiments

Several experiments were performed as a comparison between the performance of the neural

network topologies shown in Table 4.2 to determine their capacity to converge to an optimal solution,

and the limitations or necessity for network structure and parameters in solving this problem. In

addition, the number of patterns in the randomly generated training set was varied, and indicates

the portion of the state space that must be seen for convergence. The error measure applied during

backpropagation was varied in the networks to determine if a supremum rather than a Euclidean

error measure results in better performance. This is because the supremum error measure performs

local changes in the network, and should therefore lead to a higher likelihood of convergence. Lastly,

a linear and logistic activation function were investigated, as the ability to converge is known to be

dependent on this component of the neural network.

After training the networks by the algorithm described at the beginning of this chapter, the

networks were assessed based on the time required for convergence to a policy, and the optimality of

this policy. Policy optimality was assesed by testing network performance on 10 test sets. Parameters

used for the learning rate, epsilon, and the decay rate were varied in order to allow convergence,
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(b) 108-input interpretation

Figure 4.2: Interpretation of Inputs to the Neural Networks

and were determined experimentally for each network. The reward function for the single-square

representation is equivalent to that of the Soar implementation without rotation and is as follows:

r(s) =



−0.2 if block added to square matched

−0.65 if a non-matching block was removed

−0.75 if a matching block was removed or a non-matching block was added

+2 if the puzzle was completed correctly

−2 if the puzzle was completed incorrectly

For the full-map representations, the reward function is as follows:

r(s) =


0.5 if the correct block is added

−0.2 for removing an incorrect block

−0.45 for adding an incorrect block or removing a correct block

No explicit terminal rewards are given for the full-map implementations; instead, the reward garnered

for an action in the final step is equivalent to the reward administered for the action at any other

time step.

Many of the network parameters were determined empirically based on the values allowing
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network convergence. The training set was kept constant among the single-square implementations,

and a separate training set was used and kept constant among the full-map representations. The

determined learning rate, discount factor, and ε for random operator selection for the single-square

implementations were 0.2, 0.9, and 0.25, respectively, and ε and the discount factor for the full-map

representations were 0.05 × 0.9975trial, and 0.83, respectively. The decaying exploration rate and

decreased discount factor were employed in order to reach convergence. The learning rate for the

108x1x1 multi-NN was 0.05, but the learning rate for the 108x63x63 single-NN varied based on the

number of patterns in the training set and required a decay rate. This will be discussed further in

Chapter 5.
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Chapter 5

Results and Discussion

5.1 Soar

5.1.1 Add- and Remove-Block Standard Functionality

Figure 5.1 shows the number of steps taken in each trial as Soar trains using its four

add- and remove-block operators. The agent initially takes almost 300 steps to solve 11 10-step

puzzles. Although the total number of steps decreases towards the minimum number of steps as the

agent continues training, it still oscillates as training progresses, reflecting significant learning and

unlearning of Q(s, o) values. This oscillation becomes more pronounced rather than more constant

as training continues, unlike the ideal training graph shown in Figure 2.6. However, the agent is

able to complete the training set in approximately the minimum number of steps.

Table 5.1a describes the average value of the preferences for certain operator types after

training, and Table 5.1b shows Soar’s performance on the 5 test sets. The add-block-to-map-matching

operator has the highest average value, whereas the other operator preferences lag by a factor of

∼6. Thus, Soar prefers to add a block to the map that matches the goal state more than any other

operator. Furthermore, in each test case, Soar is able to solve the puzzle in the minimum number

of actions in at least one of the test runs. An average was taken over several test runs as Soar will

always execute a non-optimal operator with some small probability, regardless of whether learning is

turned off or the parameters controlling exploration are set to zero. This is reflected in the variance

of the average steps required to reach a terminal state sT and the accuracy of the puzzle having
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Figure 5.1: Soar Agent Training with Standard Functionality

reached that state, despite the preference values clearly favoring add-block-to-map-matching. Ta-

ble 5.1b also indicates that the information learned from training on 3x3 puzzles with 9 or more

blocks can be extended to 4x4 puzzles and 4x4 puzzles with an excess number of blocks.

Operator
Type

Average
Preference

add-block-to-
map-matching

-0.25

add-block-
to-map-not-
matching

-1.47

remove-block-
from-map-
matching

-1.48

remove-block-
from-map-not-
matching

-1.42

(a) Numeric Preferences

Test
Set

Minimum
Steps

Minimum
Steps
Achieved?

Average
Steps

Average
Accu-
racy

1 10
√

16 100%
2 10

√
11.2 95.4%

3 10
√

10 88.4%
4 17

√
18.2 97.5%

5 17
√

17.4 91.25%

(b) Test Performance

Table 5.1: Numeric Preferences and Testing of Soar with Standard Functionality
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5.1.2 Standard Functionality Augmented by Rotate Block Operators

The rotate-block operators augment Soar’s capabilities for solving puzzles so that puzzle

situations that require a block to be rotated in order to reach a goal state can be achieved since the

exact type of the block is not present. This of course excludes the solid blocks; the total number of

solid blocks required to solve the puzzle must be provided. Soar’s learning process for this task is

illustrated in Figure 5.2. This figure also demonstrates some amount of learning because the agent

reduces the total number of steps from ∼700 to an average value of ∼140. Again, Soar continues

to oscillate in the number of steps to solve the puzzle until it achieves approximately the minimum

number of steps over the entire training set.
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Figure 5.2: Soar Training with Augmented Functionality

The average operator preferences in Table 5.2a and the top five preferred operators, shown

in Table 5.2b explain the agent’s poor performance, shown in Table 5.2c. According to Table 5.2a,

the agent should prefer to add a matching block to the map all the time. In the test sets that require

rotation to solve, the agent will eventually reach a state in which the add-block-to-map-matching

operator can no longer be applied, which ideally signals that a block must be rotated. This should

theoretically correspond to the secondmost preferred operator, a block rotation, being selected.

However, in reality, the preferences for adding a non-matching block and rotating one of the split-

type blocks are very close and have overlapping ranges. Thus, the action chosen depends on the
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actual values of each of the operators that can be applied, which could lead to the addition of

incorrect blocks. This is confirmed by Table 5.2b. As shown here, after adding all of the possible

matching blocks, the agent’s next preferred operator is to add an unmatching block to the map. Its

third choice for an operator is correct; rotating this block type transforms it into another block type

that can be then used for completing the map. The last two operators are both poor choices.

This poor policy is seen by the agent’s performance on the test sets. The agent performs the

first test, the standard block matching test for a 3x3 puzzle solvable by the original configurations of

9 blocks at 100% accuracy. However, as the agent enters to the next two tests, a 3x3 with 9 blocks

and a 3x3 with 36 blocks, both of which require sequential block rotation and addition, the agent

falters. The performance is the worst for the third test set that requires 9 rotations to achieve the

correct goal configuration, and additionally has an excess number of blocks. In this test, the agent

finishes in on average 11 steps, which means that it consistently adds incorrect blocks rather than

rotating them to reach the correct orientation before adding them. However, the agent is able to

solve the standard 4x4 in the minimum number of steps at 100%, although when given an excess

number of blocks, it can no longer solve them with 100% accuracy in the minimum number of steps.

As shown here, the agent generally finishes the puzzle in near the optimal number of steps

it should take; however, the accuracy of the puzzle submitted is extremely poor, especially in the

case of the third training set. It is possible that the agent has not yet converged to an optimal

policy, although the agent is able to complete the training set within ±4 steps of the minimum

number of steps. However, since 100% accuracy is not required to move to the next pattern in

training (such an implementation did not converge in a reasonable amount of time), this could

explain the undertraining. In addition, undertraining is suggested because the preferred operator is

the add-block-to-map-matching operator and a correct rotate-block operator is nearly the second

choice. A longer training time may have allowed the agent to find the correct relative preference for

this second operator.

5.1.3 An Assessment of Soar

The previous two sections have demonstrated that Soar is able to determine an optimal

policy π∗ that enables it to execute an optimal action in every state and reach the final, correct

goal state in the minimum number of steps at 100% accuracy. However, due to the execution of

non-optimal actions even during greedy action selection while training, it is difficult to assess when
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Operator
Average
Preference

add-block-to-
map-matching

-1.953±0.26

add-block-
to-map-not-
matching

-2.701±0.08

remove-block-
from-map-
matching

-2.843±0.03

remove-block-
from-map-not-
matching

-2.849±0.04

rotate-block-90-
cw-urll

-2.708±0.056

rotate-block-90-
cw-ullr

-2.738±0.061

rotate-block-90-
cw-solid

-3.147±0.126

(a) Numeric Preferences

Operator Preference

add-block-to-map-matching -1.953±0.26

add-block-to-map-not-
matching
•Goal: solid white block
•Block: urll white/red

-2.29

rotate-block-90-cw-urll
•Goal: ullr white\red
•Block: urll red/white

-2.45

rotate-block-90-cw-ullr
•Goal: solid white
•Block: ullr red\white

-2.46

add-block-to-map-not-
matching
•Goal: urll red/white
•Block: ullr red\white

-2.5

(b) Top Five Operators

Test
Set

Minimum
Steps

Minimum
Steps
Achieved?

Average
Steps

Average
Accu-
racy

1 10
√

11.2 100%
2 19 × 54.4 63.8%
3 24 × 11.4 28.6%
4 17

√
18.8 86.25%

5 17 × 18.8 78.75%

(c) Test Performance

Table 5.2: Numeric Preferences and Testing of Soar with Augmented Functionality

the agent has to converged to the optimal value to stop training. On the other hand, though

the number of steps oscillates and the magnitude of these oscillations rise as training proceeds,

convergence to an optimal policy can be assessed through testing, and has been shown to converge

in the no-rotation case. This is not true for the agent with the rotate operators, and this added

functionality corresponds to a loss in learning and generalization capabilities.

Lastly, it is interesting to note that Soar’s implementation of Q(s, o) values is midway

between a lookup table and a function approximator. In general, without having executed a certain

operator during training, the preference for that operator is zero during testing. Thus, Soar is

susceptible to poor performance when the training set is not representative of problem space or
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it is not trained long enough, although this is true for many learning agents. However, if that

operator has been executed in any situation, although it may not have ever been executed in a

particular situation, the preference for the operator can still be calculated due to Soar’s Q(s, o)

linear combination update strategy.

5.2 Neural Networks

5.2.1 2x5x1 Multi-NN

Figure 5.3 shows the correspondence between the evolution of the steps required to complete

the training set and the error in function approximation for the network. As shown, the two graphs

are similar in shape, although their magnitudes differ. This indicates that the number of steps

required for correctly solving the puzzle decreases as the error decreases and vice versa. In addition,

this allows for regarding one quantity as indicative of the other. Thus, the number of steps required

for training set completion is presented in the following results as these numbers are more intuitive

for understanding.
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Figure 5.3: Comparison of Puzzle Solution Steps and Function Approximation Error

Figure 5.4 compares the training and performance of a 2x5x1 multi-NN with different error
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measures and activation functions. As shown, regardless of the size of the training set, all imple-

mentations were able to converge, although the 50-pattern set converged fastest based on the total

number of training examples seen. The main difference between training set sizes is their impact

on the smoothness of the error function E. The 50-pattern training set in Figure 5.4a has the most

oscillative error function which is most pronounced in the logistic Euclidean and logistic supremum

graphs. On the other hand, Figures 5.4b and 5.4c of the 100- and 500-training pattern sets have

increasingly smoother graphs of E. Nonetheless, the oscillation or smoothness of the decreasing E

does not impact the convergence of the algorithm for this network.
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(b) 100 training patterns
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(c) 500 training patterns

Figure 5.4: 2x5x1 Multi-NN Training

As shown by these figures, this network trains best with linear activation functions and
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Euclidean error measures. Employing the logistic activation function results in the worst convergence

time for most training set sizes and error measures with no increase in generalization. The 500-

pattern training set differs slightly in that the logistic/Euclidean architecture performs better than

the linear/Euclidean architecture. Since the number of trials required for convergence for each type

are so similar, it is possible that the difference could be due to the random action selections from

ε-greedy formulation. Lastly, because of the composition of the training sets, if the algorithm is able

to converge, this means that the exact mapping for each state-action pair is known, and no explicit

test for network generalization is necessary. The same is true for all single-square implementations.

5.2.2 12x13x1 Multi-NN

Figure 5.5 illustrates the training process for the 12x13x1 multi-NN. The effect of the dif-

ference in training patterns on E is shown, and again, the 500-pattern training set does the least

learning and unlearning. It also requires the fewest training epochs to converge, although the 50-

pattern training set requires the fewest total trials for convergence. In addition, the linear activation

functions perform better than that of the logistic activation function, and for the linear activation

function, the Euclidean error measure converges at a rate equal or faster than the supremum.

However, this multi-NN then differs from the 2x5x1 multi-NN in the previous section in

the logistic activation function. Here, the supremum outperforms the Euclidean error measure.

Since the training set and parameters are the same as the previous implementation, the architecture

accounts for this difference in convergence times for architectures trained with the same number of

patterns in the training set. It is again possible that the random actions selected during training

may have had an impact on these convergence times, although the disparity in the number of trials

for convergence and the consistency of ε throughout the test sets makes this unlikely. Lastly, because

this network and 2x5x1 multi-NN were tested on the same training patterns, it can be concluded that

the 2x5x1 multi-NN outperforms the 12x13x1 multi-NN for the logistic activation functions; however

the performance of the 2x5x1 is relatively equivalent or slightly better for the linear implementations.

5.2.3 12x13x7 Single-NN

The 12x13x7 single-NN represents the first architecture presented that is not able to converge

for some combinations of error measure and activation function. This is shown in Figure 5.6, which
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(a) 50 training patterns
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(b) 100 training patterns
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(c) 500 training patterns

Figure 5.5: 12x13x1 Multi-NN Training

separates the implementations by activation function. Figure 5.6a shows the error during training

for an architecture with units having logistic activation functions. It is readily noticed that the

error does not have an overall downward trend for any of these training sets. Instead, the error

merely oscillates around a central value, which suggests that the network is not learning and is not

approaching convergence. For all of these non-converging tests, it can be noticed that the supremum

error measure consistently performs slightly better than its Euclidean counterpart for each number

of training patterns, as it requires slightly fewer iterations to converge for each puzzle.

However, this inability to converge for the MLFF-ANN architecture with non-linearities is

somewhat unexpected; since neural networks with sigmoidal activation functions are universal ap-
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proximators, it is counterintuitive that the network would be unable to learn the Q∗(s, a) represented

by the network. It is especially counterintuitive because Backgammon[19], Othello[21], and mobile

robot navigation[5], [6] all use logistic, sigmoidal, or hyperbolic tangent functions in MLFF-ANNs

to approximate the value function for the reinforcement learning algorithms. However, no conver-

gence proof exists for using non-linear function approximators with Q-learning, and therefore it not

guaranteed to converge.
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(a) Logistic activation function
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(b) Linear activation function

Figure 5.6: 12x13x7 Single-NN Training

On the contrary, Figure 5.6b demonstrates that both error measures for the linear activation

functions were able to converge in 4 or less iterations. However, there is no conclusion that can

be made about the supremum versus the Euclidean error measure from these results; both the

Euclidean and supremum error measures for the 500 pattern training set led to the same number of

trials for convergence, whereas the 50- and 100- pattern training sets had better performance with

the supremum and Euclidean error measures, respectively. The reason for this discrepancy is most

likely due to the exploratory choices from the ε-greedy action selection method.

This is shown in Figure 5.7, where the solid line represents the supremum and the dashed

line represents the Euclidean error measure. This figure shows several trials for the 100 pattern

training set with constant starting weights and training sets. Despite these consistencies, neither

the supremum nor the Euclidean error measures consistently outperformed the other in terms of

iterations required for convergence. However, the Euclidean error measure generally took a few less

steps in some puzzles in the training set, and based on these trials, took on average fewer trials to

converge. Then, this difference in performance may be due to the probabalistic choice of operators
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due to ε-greedy combined with the small number of cycles required for convergence. Practically, the

difference between the trials required for convergence with these two error measures is trivial.
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Figure 5.7: Assessment of Error Measure Consistency for 12x13x7 Single-NN

5.2.4 108x1x1 Multi-NN

Like the 12x13x7 single-NN in the previous section, the 108x1x1 multi-NN was also unable

to converge for some combinations of error functions and activation functions. The algorithm could

not converge in less than 5,000 iterations for any logistic activation function. Furthermore, the

supremum error measure for the 500-pattern dataset was unable to converge in less than 5,000

trials. The results for the linear activation function are shown in Figure 5.8. Here, the 500-pattern

training set does not reflect the smoothest E; in fact, it increases for 5 iterations before approaching

convergence. The 50- and 100- pattern training sets are much smoother and show the expected

learning curve. In addition, the supremum error measures for the 50- and 100-pattern data sets take

much longer for convergence than that of the Euclidean; for the 50-pattern training set, supremum

convergence requires twice as many trials for convergence, and the 100-pattern training set requires

almost 200 times more trials than its Euclidean counterpart.
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Figure 5.8: 108x1x1 Multi-NN Training

These longer convergence times do not, however, correspond to better generalization by the

network. As shown in Table 5.3, the architecture with the best performance is the 500-pattern linear

multi-NN as it solves all puzzles in the test set with 100% accuracy. Then, this architecture is able

to closely approximate Q∗ and has converged to π∗. Although the supremum error measure could

not be performed for the 500-pattern data set, the 50- and 100- pattern datasets demonstrate that

the supremum error measure consistently performs at a lower accuracy on test sets that it has not

seen. This suggests that a supremum error measure would not have increased the performance of the

500-pattern dataset. Lastly, this experiment suggests that for a multi-NN architecture for problems

of this type, more training data increases the performance of the agent and increases the likelihood

of the agent to converge to an optimal policy rather than an incorrect policy. In the cases with the

smaller training sets, the neural networks were able to find the optimal Q-functions for the function

represented by the patterns in the dataset. However, this did not represent the global Q∗ to be

approximated over the entire problem space.

An interesting question to address for this architecture is if starting each of the networks

with the same weights would be effective in decreasing the training time and increasing the perfor-

48



Table 5.3: 108x1x1 Multi-NN Test Performance

Architecture Training Epochs Average Correct Squares Average Accuracy

50 Euclidean 12 6.7 74.4%
50 Supremum 22 6.6 73.3%
100 Euclidean 7 8.8 97.8%
100 Supremum 999 7.5 83.3%
500 Euclidean 10 9 100.0%

mance of the supremum error measure. Conceptually, this implementation suggests that the winning

network’s weights are adjusted slightly above or slightly below the outputs of another network based

on the error feedback. This experiment was conducted on the 100-pattern architecture to maximize

performance but also preserve the ability of the supremum error measure to converge. Figure 5.9

and Table 5.4 discredit this approach, as the supremum error measure still takes 10 times longer to

converge to a policy. Furthermore, the Euclidean network still outperforms the supremum network.

However, no conclusions can be made with respect to the previous experiment because the difference

in network weights could have caused this shorter convergence time.
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Figure 5.9: 108x1x1 Multi-NN with Identical Initial Weights Training

The experiments in this section therefore suggest that the networks that lead to the best

generalization are those that can be trained using larger training sets and implement linear activation

functions with Euclidean error measures. Lastly, no significant advantage is gained by initializing
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Table 5.4: 108x1x1 Multi-NN with Identical Initial Weights Test Performance

Architecture Training Epochs Average Correct Squares Average Accuracy

Supremum 99 7.3 81.1%
Euclidean 8 8.6 95.6%

the weights of all the networks to the same values.

5.2.5 108x63x63 Single-NN

This neural network representing Q(s, a) in one network requires an additional learning

rate decay parameter to converge. These decay rates were based on the learning rates used for the

108x1x1 multi-NN, though the actual decay parameter was determined experimentally. The decay

formula was of the form ηn = η0λ
n. η0, the initial learning rate was experimentally determined

and set to 0.05. The decay parameter λ was also experimentally determined to be 0.9975 for the

50- and 100-pattern training sets, and 0.99985 for the 500-pattern training set. For the 100- and

500-pattern training sets, deviating very far from these values resulted the training error increasing

steeply after several training epochs. As in the above section, the network was unable to converge

for logistic activation functions, and additionally, none of the training sets were able to converge for

the supremum error measure.

The results of training and testing of the 108x63x63 neural network is shown in Figure 5.10

and Table 5.5. As shown, there is not a significant difference in the training times of the 50-, 100-,

and 500-pattern training sets, although the 500-pattern training set does converge one epoch before

the other two. However, although the agent is able to converge in a similar number of epochs,

the generalization capabilities vary greatly from the 50- to the 500- pattern training set. Again,

the 500-pattern training set is the best performer with 100% accuracy on each of the tests. This

demonstrates that this network is able to closely approximate Q∗(s, a), and has determined the

optimal policy π∗ for reaching the goal state starting from an initially empty map.

Table 5.5: 108x63x63 Single-NN Test Performance

Patterns In Training Set Training Epochs Average Correct Squares Average Accuracy

50 9 6.2 68.9%
100 9 8.3 92.2%
500 8 9 100.0%
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Figure 5.10: 108x63x63 Single-NN Training

This experiment demonstrates that with the addition of a learning decay parameter, the

network is indeed able to converge to an optimal policy. Again, the training set should be large so

the agent has a good representation of the problem space to accurately estimate Q∗(s, a).

5.2.6 Comparing Network Architecture Components

5.2.6.1 Comparison of Training Set Sizes

The number of patterns in each training set affected both the training and performance of

the networks. The single-square representations all experienced smoother E functions in the 500-

pattern training set, reflecting that the agent learns without unlearning from epoch to epoch. The

impact of the training set size on generalization capabilities of the network was explicitly seen in the

full-map representations; more patterns in the training set correspond to better generalization. This

is intuitive; in training, the agent is able to see more of the problem space and experience rewards

from the environment on this augmented space. Thus, the agent has a training set that is most

likely more representative of the problem space. Then, the solution to this problem suggests that a

larger training set corresponds to a better policy for generalization.
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5.2.6.2 Comparison of Input Representations

As postulated, the input representation affects the convergence of the network. This is most

clearly seen in the 2x5x1 and 12x13x1 multi-NNs, which have the same Q-learning NN structure,

training set, and algorithm parameters. However, for the logistic activation function, the Euclidean

error measure resulted in shorter convergence times on the 2x5x1, whereas the 12x13x1 had better

convergence with the supremum error measure, except in the 500-pattern training set case. The

sole difference (neglecting the ε-greedy selection mechanism as described previously) is the input

representation since both have 2n+ 1 hidden layer units for n units in the input layer. The 108x1x1

multi-NN cannot be compared because it could not converge with a logistic activation function.

All input representations are able to converge with the linear activation function, and the

Euclidean error measure overall results in faster convergence times. However, this is not true for the

2x5x1, which in the 500-pattern training set case sees faster convergence times for the supremum

error measure. Since the 12x13x1 multi-NN differs only in input representation, again, this must be

the source of the difference. Since the relationship between input representation and convergence is

still unclear, no general conclusions can be drawn from these results.

5.2.6.3 Comparison of Error Measures

The supremum and Euclidean error measures also significantly affected the convergence of

the networks. Although the single-square representations were able to converge with a supremum

error measure, the full-map representations either took comparatively more trials to converge, or

was unable to converge at all. In general, the Euclidean error measure was the most reliable, as it

was always able to converge if the activation function was able to converge, and resulted in fewer

iterations required for convergence in all except the 2x5x1 case.

5.2.6.4 Comparison of Activation Functions

The logistic and linear activation functions also had an impact on convergence for all the

networks. Except for the 500-training pattern case of the 2x5x1 multi-NN, the linear activation

function resulted in much shorter convergence times and was always able to converge. The same

cannot be said for the logistic activation function, which could not converge for 3 out of the 5 networks

tested here. In order to set parameters allowing convergence for the full-map implementation,
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the learning rates were decreased, and decaying exploration rates and learning rates were tested,

although convergence was never reached. Since there is no convergence proof or constraints outlined

for Q-learning with non-linear function approximators, additional solutions could not be employed.

Nonetheless, this problem suggests that the best or most reliable mapping function for solving this

problem is a linear activation function.

5.2.7 Qualitative Comparison of Network Architectures

Table 5.6 provides a summary of the results of implementing the BD-DE intelligence prob-

lem with different neural network architectures. Each architecture has a number of qualitative

considerations that must be weighed before assessing the best architecture for solving the problem.

The single-square implementations have comparatively fewer weights than the full-map rep-

resentations, and are not restricted by the size of the map. These implementations assume indepen-

dence of squares on the map, and therefore can correctly solve any arbitrary BD-DE puzzle of size

n that begins with an empty map as an initial state. In addition, as long as the network converges,

100% accuracy on test sets are ensured. This is because the agent has seen every possible situation

that it will encounter in testing through the training set.

Thus, these architectures are exceptional if a problem can be decomposed into a set of

subproblems that can be solved as the continual reapplication of one function. The implementation

of this BD-DE intelligence test with intermdiate rewards is an example of such a situation, and thus,

these architectures successfully solve the problem.

Full-map representations have the advantage in that if there is some dependence or extra

information provided by knowledge of the surrounding positions on the map, these representations

can use this information to their advantage. This can be seen in the NNs designed for playing

Othello[21] and Backgammon[19], since knowledge of the state of only one of the positions on

the board is nearly useless. However, these implementations suffer from architectural constraints

because they are not as free to employ any error measure, learning rate, decay rate, activation

function, or error backpropagation measure if they are expected to converge in a reasonable amount

of time. However, having found appropriate parameter values and functions, with the appropriate-

sized training set, these architectures were able to learn the optimal policy for solving the BD-

DE problem-solving task for a goal map with 9 positions and displayed exceptional generalization

capabilities. Lastly, unlike the square map representations, there is not a straightforward way that
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Table 5.6: Qualitative Comparison of Neural Network Architectures

Architecture Type
State Rep-
resented

Advantages Disadvantages

2x5x1
Multi-
NN

Single
Square

•Few network weights
•Optimal policy
inherent
•Any map size
solvable

•No relationship
among squares on the
map
•No generalization

12x13x1
Multi-
NN

Single
Square

•Direct
representation of one
square
•Few network weights
•Fast training
•Optimal policy
inherent
•Any map size
solvable

•No relationship with
other squares on map
•No generalization
•More weights than
Single-NN
counterpart

12x13x7
Single-
NN

Single
Square

•Direct
representation of one
square
•Fewer network
weights than
Multi-NN
•Fast training
•Optimal policy
inherent
•Any map size
solvable

•No relationship with
other squares on map
•No generalization
•More limited
architecture

108x1x1
Multi-
NN

Full Map
•Representation of
entire state

•Solves limited
puzzle sizes
•Many weights
•More limited
architecture
•Slower training than
Single-Square

108x63x63
Single-
NN

Full Map

•Representation of
entire state
•Fewer weights than
Multi-NN counterpart

•Solves limited
puzzle sizes
•More limited
architecture
•Additional
constraints
•Slower training than
Single-Square
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these architectures can be used to solve puzzles of an arbitrary size.

With these considerations, for sequential problems that have sparse rewards and cannot

be decomposed into one reapplicable function, the single-NN full-map representation is the most

useful. It is able to model the entire state, take into account the entire map and tailor its behavior

accordingly, and has the same performance as the multi-NN but has fewer weights. If the problem

can be decomposed, the single-NN single-square representations are best, as the networks are smaller,

converge faster, and have a smaller set of architectural constraints.

5.3 Quantitative Comparison of Soar and Neural Networks

The above results have shown that all the architectures tested - Soar and the 5 neural

network topologies are able to converge to an optimal policy for the BD-DE puzzle. Which one

is the best for solving the problem in terms of performance? Table 5.7 shows the performance of

Soar and the neural networks. As shown, each of the architectures is able to achieve 100% accuracy

on the test set, and therefore the evaluative criteria is the total training iterations required for

the agents to converge to the optimal policy. As shown, the multi-NNs in general require more

iterations to converge than their single-NN counterparts, although the 12x13x1 multi-NN and the

12x13x7 single-NN are both able to converge in 150 trials. In addition, these tables again show that

the single-square representations converge much faster than the full-map representations.

The best neural networks, however, are able to converge in fewer iterations than Soar.

However, Soar converges faster than either of the full-map representations of the neural networks.

Thus, in the case that a problem can be subdivided into reapplicable functions, these results suggest

that a neural network approximating that function should be chosen over a full-state representation

or a production system. However, in the case that this is impossible, Soar should instead be used

rather than a full-map neural network as long as the solution space is sufficiently small. Otherwise,

a full-state neural network should be used.
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Multi-
NN

Map Rep-
resentation

Performance
Training
Patterns

Trials Re-
quired

Total
Training
Time

2x5x1
Single
Square

100% 50 4 200

12x13x1
Single
Square

100% 50 3 150

108x1x1 Full Map 100% 500 10 5000

(a) Multi-NN Performance

Single-
NN

Map Rep-
resented

Performance
Training
Patterns

Trials Re-
quired

Total
Training
Time

12x13x7
Single
Square

100% 50 3 150

108x63x63 Full Map 100% 500 9 4500

(b) Single-NN Performance

Soar
Map Rep-
resented

Performance
Training
Patterns

Trials Re-
quired

Total
Training

Standard Full Map 100% 11 110 1210

Rotation Full Map 100% 11 152 1672

(c) Soar Performance

Table 5.7: Quantitative Comparison of Neural Network and Soar Performance

5.4 Qualitative Comparison of Soar and Neural Networks

In addition to the performance of the architectures, the implementation and usage of both

architectures must be assessed to determine the best solution for the problem at hand. As a pro-

duction system, Soar caters to the logical thought processes of human beings; the productions are

straightforward to formulate, and the results in terms of numeric preferences are intuitive to inter-

pret. Better yet, if Soar is able to converge to the optimal policy, Soar is able to solve a puzzle of any

arbitrary size n, because the preference values for the operators are not dependent on the size of the

network. However, as previously mentioned, Soar implements lookup table-like functionality for its

operators; thus, if an operator is not used during training, the preference for that operator becomes

zero during testing, which may not correspond to an optimal policy. Even further, these lookup

tables can become large depending on the actions available, and can begin to defeat the purpose of

why this architecture was initially employed in terms of function representation and speed.
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Table 5.8: Comparison of Soar and Neural Network Design

Advantages Disadvantages

Soar

•Logical implementation
•Easier interpretation of
preferences
•Solves puzzle of arbitrary
sizes
•Similar to lookup table

•Unable to control explo-
ration in testing
•Error graphs not helpful
•C++ Interface
•Software manual

Neural
Network

•Easily interpretable error
graphs
•Converges to optimal
policy quickly
•Best performance

•No useful guidance on
parameter or architecture
determination
•Not guaranteed to con-
verge for all architectures
•Training not easily inter-
pretable
•Difficult in implementa-
tion without a toolbox

Soar also exhibits unusual and altogether unwanted behavior in terms of explorative poli-

cies. As shown by the results in the preceeding sections, there are unsolvable issues with Soar in

that even during testing when learning has been disabled and the probability for executing ran-

dom actions has been set to zero, Soar still executes suboptimal operators. This activity is highly

undesirable, especially in the case of high-risk technology whose faulty operation could end up in

user fatalities. In addition, the error graphs are somewhat unreliable in determining when the al-

gorithm has converged; therefore, it is difficult to identify when to end training. Interfacing with

Soar also requires proficiency in C++, which can be challenging based on the experience of the pro-

grammer. Lastly, from a practical standpoint, Soar is an open-source, constantly evolving software,

and therefore, helpful and informative software documentation can significantly lag begind product

development; this can present a struggle in the attempt to implement problem solving with certain

learning capabilities in Soar.

On the other hand, the activity of neural networks is difficult to interpret due to their

numerical nature, and without the use of a toolbox, implementation can be challenging depending

on the level of expertise of the programmer. In addition, the full-map representations cannot solve a

puzzle of arbitrary size, although the single-square representations can perform this function. It has

also been shown that the network performance is based on the number of patterns in the training set;

without enough patterns, the network is unable to converge to the optimal policy. Furthermore, as
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demonstrated by the latter implementations of the neural network, they frequently must be finessed

into convergence with the careful choice of learning and weight decay rates, and architecture in terms

of input representation, error measure, and activation functions.

Even further, they produce unexpected and sometimes conflicting results; the research con-

ducted by Eck [21] finds that a single-NN architecture performs the best, [9] suggests that the multi-

NN has the best performance because it is not hindered by conflicting weight updates, whereas this

research would conclude both architectures perform with no appreciable difference. Furthermore,

the mobile robot obstacle avoidance research in [5] and [6] utilize intermediate and final rewards,

whereas none of the full-map architectures in this thesis are able to converge with both types of re-

wards. For the 108x1x1 multi-NN and the 108x63x63 single-NN, the final reward must be equivalent

the reward for the last action taken.

Despite these drawbacks, the neural networks display intuitive error curves that allow the

user to easily determine if the agent is learning, which Soar fails to produce. In addition, as shown

by this thesis, the full-map representation converges very quickly in 9 iterations, which takes less

physical time than that required by Soar, although Soar implements full-map functionality and is

able to converge in fewer trials. Thus, both qualitative and quantitative considerations must be

weighed in order to reach a final decision about which architecture to employ to solve a Q-learning

reinforcement learning problem.
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Chapter 6

Conclusions

This thesis proves that an an automated agent endowed with the ability to learn can find

an optimal policy for solving a portion of an intelligence test that measures problem solving and

synthesis abilities. In doing this, the agent has demonstrated greater learning ability than some

children.

This thesis investigated two architectures for solving this problem - Soar, a production

system equipped with a reinforcement learning module, and a multilayer feedforward neural network

to solve the Block Design - Disembodied problem, a test derived from the Block Design and Block

Design Multiple Choice subtests on the Fourth Edition of the Wechsler Intelligence Scale for Children.

This is a non-trivial problem; the expectation of the agent matching a block of a certain type to the

goal state square of the same type is not inherent in the agent’s programming or design. Thus, the

agent must learn through trial-and-error interaction with the environment that this is the correct

functionality. Both architectures employed Q-learning, a reinforcement learning algorithm that

enables an automated agent to determine the best actions to take in a particular situation based on

the way the environment responds to its actions.

Soar was able to converge to the optimal policy for the BD-DE problem, although it could

not converge to an optimal policy for the additional desired functionality of block rotation to solve a

larger set of problems. Many topologies of the neural network were attempted and varied based on

the size of the training set, the input representation, the error measure employed, and the activation

function used. This research suggests that larger training sets, a linear activation function, and

Euclidean error measure aid in affecting convergence to an optimal policy in the fewest training trials.
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Applicability of these results to problems with different characteristics still remains to be determined,

and future research should identify qualities of this problem and instances where these results will

be applicable. Nonetheless, each of the neural networks was able to converge in a reasonable amount

of time with the correctly selected components, although the network performance was dependent

on the number of patterns in the training set.

The Soar implementation suffered from undesired execution of suboptimal operators un-

der greedy action selection, and the implementation of the operator preferences can result in an a

suboptimal policy if an operator is not applied during training. The neural network required empir-

ical search for parameters and functions that allowed convergence, but when this information was

identified, some networks were able to converge in fewer trials than that required by Soar.

In finality, the deciding factor is this: is the application able to sustain suboptimal actions

taken during testing or usage? According to this research, if the application cannot take actions

that result in suboptimal actions, out of these two architectures, a neural network should be used.

However, if the application is able to allow suboptimal actions to be taken, then, the ability to

decompose the problem into one reapplicable function should be assessed. If this is possible, a

neural network should be employed, as this leads to shorter convergence times and more reliable

performance.

However, if the full state is necessary and a training set representative of the problem space

is available, Soar should be used, as it converges to an optimal solution faster than full-state neural

networks. On the other hand, if the number of actions or problem space is very large, Soar will

experience the slow down and limitations of a lookup table, and a neural network may provide a

faster implementation in physical time. In the case that the qualitative aspects of Soar do not

outweigh the qualitative and quantitative aspects of the neural network, a full-state neural network

implementation can therefore also be employed, although it may take longer to converge, and there

are no definitive guidelines for the selection of algorithm or architecture parameters.
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