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ABSTRACT 

In any molecular simulation of protein-surface interaction, the selection of the 

initial orientation with which the protein would interact with the surface must be first 

made and is found to be critical in the determination of the bioactive state of the adsorbed 

protein. While various molecular simulation methods have been developed to identify the 

preferred orientation, these methods are generally computationally expensive and time 

consuming, especially for large molecules thereby motivating the current study. 

The computational implementation for identifying a preferred orientation was 

done in MATLAB® and directly addresses the current research problem by assuming the 

protein to be rigid and mapping the number of solvent accessible residues that would 

interact with the surface as a function of orientation, thereby yielding a topography map 

that would reveal the potential minimum energy orientations for a given protein-interface 

interaction system. The protein orientation prediction has been performed for a wide 

range of proteins (11kDa - 300kDa) and surfaces (hydrophobic, hydrophilic, charged, 

biological-membranes) with the total runtime involved usually averaging in minutes. 

These results were also found to be in good agreement with the experimental and 

simulation results reported in the literature for biological and man-made materials. 

Besides the intended application for the support to molecular simulations, this program 

also has the general application of surface design to control the bioactive state of 

adsorbed proteins and to selectively target and immobilize protein in a controlled 

orientation. 
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CHAPTER 1 

INTRODUCTION 

Material implants that are designed to augment the function of damaged tissue or 

function as scaffold for the regeneration of tissue are generally termed as biomaterials.1 

The success of a biomaterial depends on the ability to integrate into the implant 

environment which in turn would depend on the proteins adsorbed on the 

interface/surface of the implant, as cellular responses within the host tissues are elicited 

due the bioactive state of the adsorbed protein.2-4 The adsorption and bioactivity of 

proteins on solid interfaces is also of great importance and is an active field of research in 

other fields such as biotechnology5, 6, biosensors7, 8, chromatography9, drug delivery10, 

microarrays11 and nanotechnology12. 

Current material design strategies for controlling the non-specific adsorption and 

bioactivity for protein-interfaces are limited to educated trial and error methods13 but, 

considering the system-specific nature of the interacting protein and the interface, and the 

variability involved in designing an interface, the probability of finding an optimal design 

by such an approach is very low. Given this scenario, a detailed level of understanding in 

the molecular mechanisms involved in protein adsorption to interface is essential. 

Experimental techniques involving protein adsorption usually attempt to 

determine the amount, the conformation and the final orientation of the protein adsorbed 

on the surface6, 14-17 but, these techniques do not give significant details on the molecular 

mechanisms mediating the adsorption process and, in particularly, the orientation of the 
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tertiary structure of adsorbed proteins. Currently the most direct way for theoretical 

understanding adsorption processes is by molecular simulation, 4, 18-20 the applications of 

which fall into one or more of the following categories (1) protein orientation, (2) protein 

conformation and (3) bioactivity.13, 21, 22 

It is generally recognized that the conformation and orientation in which the 

protein adsorb onto a surface is the key factor that determines the bioactivity of adsorbed 

protein layer.4 However, evidence suggests that the surface-induced conformational shifts 

in the protein occur much slower than the initial changes in the orientation that occur on 

the surface.23 Thus an efficient control on the bioactivity of the protein and prediction of 

the conformational shifts that might occur in a protein on any given interface are largely 

dependent on the orientation in which the protein interacts most favorably with the 

surface (i.e. at a minimum free energy of interaction). 

Molecular simulations approaches to understand the conformation and bioactivity 

of proteins on an interface, however, have been limited as these approaches require the 

selection of an initial orientation of the protein, which may be randomly selected or, more 

appropriately, be based on interaction energy minima between protein and surface.21 

While random selection of the initial orientation of the protein is easily applied, 

molecular simulation methods for selecting the initial orientations based on interaction 

energy minimums of protein and surfaces represents a much more challenging problem, 

which can be very computationally expensive.21, 23 Thus the selection of the most 

favorable orientation by a computationally inexpensive and rapid method is needed. 
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The current computational study to determine the preferred orientation of a 

protein for a given surface aims to circumvent the limitations of energy minimum 

interaction methods, by mapping out the compositional distribution and characteristics of 

amino acids on the surface of a given protein that are close enough to interact with the 

interface which could be considered to be a function of the adsorption free energy. In 

order to achieve the current goal, a structural bioinformatics based approach has been 

investigated and applied. 

This thesis is structured to first provide the reader with the background knowledge 

in the mechanisms involved in the protein adsorption to surfaces. The objectives of this 

study are then outlined in the chapter following the background. The third chapter deals 

with the methods used to achieve the specific research aim, which is followed by a 

chapter on the results and discussion of the current study with different proteins on 

various substrates/interfaces. An appendix section is provided after the results and 

discussion, which details the implemented algorithms and the results that were not 

included in the main manuscript. References cited in this thesis are then included in the 

last section following the appendix.   
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CHAPTER TWO 

BACKGROUND 

2.1 Adsorption of Proteins to Interfaces 

A model system for protein adsorption comprises of three components namely the 

adsorbent surface, protein, and solvent 4. Each of these components affects the adsorption 

process differently and to varying extent. Given below are some of the factors which are 

known to affect the adsorption system.  

Table 2.1: Summary of the factors influencing protein adsorption 

System components Factors 

Adsorbent surface4, 6, 9, 24, 25 Area, composition, electrochemical properties, 
structure and surface free energy 

Protein4, 6, 9, 26 Concentration, molecular weight, molecular size , 
polarity and type 

Solvent 9,25 Buffer type, pH, temperature and ionic strength 

The way a protein interacts with the adsorbent surface and the solvent 

environment depends on the folding pattern of the protein. The protein folding in turn 

would give these protein molecules the characteristic molecular surface, active site, and 

shape. However, irrespective of the composition of the system, the transport of a protein 

from a solvent environment to the interface is mediated by diffusion through a stagnant 

layer immediately above the surface27. Since the diffusivity of low molecular-weight 
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molecules is much faster than the high molecular-weight molecules, smaller proteins 

approach the interface at a much faster rate than larger ones. 

As the concentration of the protein in the stagnant layer depletes as a protein 

adsorbs to a surface, the resulting concentration gradient drives the further diffusion of 

protein into the stagnant layer from the surrounding bulk solution in order to further 

saturate the interface with adsorbed proteins.  The rate of this diffusion process in turn 

affects the amount of time that an adsorbed protein has, before neighboring proteins 

adsorb next to it, which influences an adsorbed protein’s ability to undergo 

conformational changes and re-orientation after it adsorbs.26 Furthermore, the longer the 

residence time of an adsorbed protein is on a surface, the greater the number of van der 

Waals bonds that it makes with the surface, thus leading to increased probability that the 

protein will adsorb in an irreversible manner.4 

 Given the complexity and variability involved in the adsorption system, one of the 

first steps in understanding protein adsorptive behavior is to first understand the 

thermodynamic parameters involved in protein folding in aqueous solution.  

2.2 Thermodynamic Perspective on Protein Folding 

Most proteins are composed of the set of the 20 naturally occurring L-amino acids 

that are coded for by DNA. The specific sequence of amino acids along a polypeptide 

chain is designated as the primary structure, with this chain then being folded into higher 

order structural elements, which are referred to as secondary structure, tertiary structure 

and quaternary structure. The folded structure of a polypeptide chain depends on the 
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primary sequence of the chain, the solvent environment (usually aqueous environment) 

and intra- and inter-polypeptide chain residue-residue interactions 4, 29. The contribution 

to the stability of a protein structure in an aqueous environment could be broadly 

classified into: 

a) Enthalpic4 (e.g. van der Waals, hydrophobic or electrostatic interaction) 

and 

b) Entropic4 (e.g. Secondary structure packing, cavity area, degree of 

solvation) 

 The primary driving forces in protein folding processes is attributed to the 

hydrophobic effect and the formation of intramolecular hydrogen bonds28, 29. 

Intramolecular hydrogen bonds refer to the interactions between hydrogen-bondable 

groups of the polar amino acids constituting the protein. Water being the natural solvent 

and a major contributory factor to the structure and stability of the protein; it is also 

important to consider the interactions of water with proteins as the water molecule is a 

highly hydrogen bondable structure. 

In an aqueous phase it has been proposed that for a protein with a molecular 

weight of 15 kDa, a monolayer of water usually requires 600-1000 molecules, thereby 

bringing the ratio of protein: hydration mass to approximately 1:1.30 When a monolayer 

of water surrounds the protein molecules, the estimated van der Waal radius of water 

around polar molecules is 1.4 Å and 1.6 Å with non-polar molecules.30 Interactions of the 

polar molecules with the solvent to form hydrogen bonds decreases the enthalpy, while 
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the interaction of the non-polar molecules with the solvent, results in an ordered packing 

of the water molecules thereby increasing the entropic contribution of free energy (i.e., 

−T∆G) involved with the system.4 This in turn affects the folding behavior of the protein 

molecule in an aqueous environment thereby attaining a compact and densely packed 

conformation.28 While these interactions result in the general structure of a folded protein, 

they do not necessarily result in all non-polar amino acids occupying the interior of the 

protein and all polar amino acids being on the protein surface. 4, 28, 29 On the contrary, 

proteins fold such that amino acids of each type are contained at both the surface and 

buried within the protein’s tertiary structure.  It’s generally attributed that of the total 

surface buried during the protein structural make up, over three-fifth of the buried surface 

area occur within the secondary structures while the rest occur between them.30 The 

buried surface area in a protein is directly related to the hydrophobic energy that would 

help to compensate for the loss in conformational entropy occurring during the formation 

of organized structures.30 Reduction of solvent accessible surface area is applicable to 

both the polar and non-polar molecules, but this effect is more pronounced as the size of 

the protein increases. Thus it has been recognized that the protein folded state in an 

aqueous environment is at a global energy minimum state, but the introduction of an 

adsorbent surface shifts the free energy minima of the entire system, resulting in the 

adsorption of the protein and likely shifts in a protein’s folded structure.28, 29 

2.3 Adsorption Thermodynamics 

On a general basis, the interface between a solid and an aqueous phase is usually 

characterized by a high ΔG (more positive) and hence the system tries to reduce the ΔG 
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(more negative) by adsorbing molecules onto the interface. Adsorption of proteins from 

aqueous phase to a solid interface is thus an intrinsic attempt by the system to reduce the 

overall ΔG. If the net change in the ΔG of the system is lower (more negative) upon 

adsorption, the adsorption process is considered favorable and should spontaneously 

occur.4  

2.4 Molecular Modeling 

Molecular simulations approaches are currently the best way to theoretically 

determine the enthalpy, entropy and ΔG of the interface-protein-solvent system as the 

experimental determination of these individual components is currently difficult.31 All-

atom empirical force field and united atom methods are the commonly applied simulation 

methods to model protein adsorption behavior. Proper force parameterization or the 

equation describing the force acting on each atom as a function of their relative position 

is important for the accurate description of the events involved in protein adsorptive 

processes.13 

Since the solvent molecules are an active component of the system comprising of 

protein-interface-solvent, simulations of protein adsorption should account for the 

interaction of the solvent with the protein either explicitly or implicitly. Explicit solvent 

models provide a more realistic picture of how a protein would interact in a 3D 

environment compared to implicit representations of the solvent. In addition, accurate 

parameterization of individual atom-atom pair-wise interactions between protein-solvent, 

protein-surface, and solvent-surface are also necessary, which is accomplished by 
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adjusting parameters in the Coulomb's law and Lennard-Jones terms in the potential 

energy equation. However the computational overhead of an explicitly modeled system is 

very high when compared to an implicitly modeled system; because of which the latter is 

preferred for systems involving proteins with high molecular weight.13 

Implicit modeling of solvent molecules is applicable to proteins in an aqueous 

solution by approximating the behavior of solvent around the solvent excluded volume of 

the protein, which in turn would describe the solvation free energy of the solute due to 

the solvent. Currently there are primarily two types of implicit modeled systems: (a) 

Solvent accessible surface area (SASA) and (b) continuum electrostatics model. 13 

The continuum electrostatics model involving the Poisson-Boltzmann equation 

accounts for the enthalpic contribution in the protein-solvent interaction and usually best 

describes protein adsorption behavior in dilute ion concentrations.32 However, these 

models do not account for the geometric and non-polar contribution of protein’s 

interaction with the solvent. SASA on the other hand is a linear function of the solvation 

energy and accounts for the geometric, hydrophobic and in some part even to the 

dispersive components involved in protein-solvent interaction but the ionization effects 

are poorly described.32-34 

Through modeling studies performed by Agashe et al, it has been observed that as 

the protein approaches an interface, it undergoes many rotational and translational 

motions before adsorbing onto the interface with a favorable orientation.23 Once the 

protein adsorbs on the interface in the favorable orientation, the protein may or may not 
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undergo conformational shifts depending upon how conformational changes will 

influence the overall ΔG of the system.22 Selection of the initial orientation is also 

important for molecular simulations involving protein conformational shifts and 

bioactivity.13, 22 

Many modeling approaches have predicted initial orientation through a 3D 

configurational search usually requiring a computational time ranging from 24-260 hours 

per surface, which requires models of both the protein and the specific surface of interest 

that it is to be adsorbed.21, 35-38 Hence a more rapid method for determining the preferred 

orientation (i.e., one that takes minutes versus hours to complete) would be much more 

desirable. Another shortcoming in most of these systems is the lack of a standardized 

coordinate system that is used to define the orientation of a given protein on a surface that 

is easily interpreted so that results from different studies can be readily compared that is 

readily applicable to all protein.21, 37-39 

Peptide based adsorption studies on different functionalized surfaces have 

characterized the adsorption free energy of different types of amino acids (e.g., polar, 

non-polar, or charged amino acids) to different types of surface chemistries.31 Assuming 

that the contributions of individual amino acid-surface interactions with surface 

functional groups to be additive, these individual interactions could be used to predict the 

preferred initial orientation of a protein on a given surface based on the knowledge of the 

distribution of amino acid types on the surface of the protein. In other words, by mapping 

out the characteristics and compositional distribution of amino acids on the surface of a 
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protein, adsorption free energy values could be estimated for every face of the protein 

from which preferred initial orientations could be predicted for which the protein 

structural data is required which could aid in modeling the protein structure. Protein 

structural data are atomic positions in the form of Cartesian coordinates that could be 

retrieved from available databases, such as the Protein Data Bank.40 

2.5 Protein Data Bank (PDB) File Format 

 RCSB PDB Data Bank is an online protein structural coordinate database, which 

hosts several tens of thousands of protein structures.41, 42 According to the file format of 

the latest release of PDB42, each protein structure is stored in a separate file represented 

by a four character identifier of the form [0-9][a-z,0-9][a-z,0-9][a-z,0-9]. Every line in the 

file contains 80 characters and is called as a record. Each of these records is further sub-

divided into a list of fields. Records could be broadly classified into: 

a. Title: This section contains the record used to describe the experiment and the 

biological macromolecules present in the entry. Sub-records include HEADER, 

TITLE, COMPND, SOURCE, AUTHOR, JRNL, REMARK etc. 

b. Primary structure: Describes the amino acids sequence in each chain of the 

macromolecule model. 

c. Heterogen: The complete description of non-standard residues in the entry. 

d. Secondary structure: This section describes the helices, sheets, and turns found in 

the entry. 
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e. Connectivity annotation: Describes the existence and location of disulfide bonds 

and other linkages. 

f. Miscellaneous features: Describes the properties in the molecule such as 

environments surrounding a non-standard residue or the assembly of an active 

site. 

g. Crystallographic and coordinate transformation: This section describes the 

geometry of the crystallographic experiment and the coordinate system 

transformations.  

h. Coordinate: Collection of atomic coordinates in X Y Z format 

i. Connectivity: This section contains information on atomic connectivity. 

As on March 2010, there are 59,323 PDB deposits in this database which are 

exclusively protein molecules, of which over 85% are X-ray resolved structures and 

around 12% of which are NMR structures. Of the X-ray resolved structures, over 79% of 

the structures are resolved at 1 Å - 2.5 Å, with a majority falling between 1.5 Å – 2.5 Å. 

Resolution, in the context of model quality, is an average value for the uncertainty of 

atomic positions in a crystallographic model. On a general scale, the uncertainty of the 

position of an atom is roughly one fifth to one tenth of the resolution. Hence the quality 

of the model becomes extremely important during the residue mapping especially if a 

rigid model of the protein is being used. However this limitation is overcome if only the 

backbone of the model is considered as in almost all structures, with the backbone of a 

given structure generally being clear even at a resolution of 5 Å. An increasing number of 
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similar protein models are being resolved by one or more techniques and are being 

deposited in the databases. For example, models of hen-egg white lysozyme are available 

in NMR and X-Ray crystallographic data. However many of these models could be 

similar in sequence yet different in structure, while some are similar in both sequence and 

structure. Hence a screening criterion is required to separate very dissimilar structures 

and to group similar structures. This type of approach would be extremely helpful if a 

comparison is to be performed on the influence of environmental condition or single 

point mutation on the topology of a protein. 

2.6 Structural Bioinformatics 

Traditionally structural bioinformatics is used to analyze and predict the 3D 

structure of a protein.43 These predictions and analyses could be based on sequence data44 

or structural data.40 Strategies such as homology modeling and threading typically require 

a structural template onto which a user-defined sequence could be modeled, for which the 

quality of the model is of prime importance. Quality of a model could be affected by 

various factors involved in the processing of the structural coordinate files45. Some of the 

online servers dedicated for the quality control purposes are: WHAT 

IF46/WHATCHECK45, PROCHECK47, Verify3D 48.  

Another application of the structural bioinformatics is in the structural alignment 

of protein structures, which would measure the divergence of the input structure with a 

target structure in units of Å. When the divergence of the target and input structure is less 

than 1 Å, the structures are considered to be similar. Examples of some online servers 
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are: DALI49, GANGSTA+50, MAMMOTH51.Secondary structure prediction of helices, 

beta-sheets and turns has also been an active field of research. Compared to the initial 

strategies using a knowledge-based approach (e.g.; CHOU-FAS52, DSSP53 and GOR54), 

modern approaches include machine learning (ALB55, GORIII56) and evolutionary 

information (PSIPRED57 and PHD58). Other properties that are predicted based on 

sequence information with reasonable accuracy include absorbance, diffusivity, 

flexibility, fractal index, pI, solubility, and many others.44 Each of these method are being 

continually revised and being predicted with better accuracy. Modeling the solvent 

environment to predict the solvent accessibility of a residue59-62 and pKa63 of an 

individual residue from structural coordinate file are also fields of active interest. 

2.7 Limitations of Current Software Packages 

Existing modeling packages such as SPDBV64, AMBER65, CHARMM66, 

XPLOR67, and Materials Studio®, though useful for dynamics simulation and energy 

minimization, are difficult to be used or do not support data visualization, graphing, 

rotational, translational or distance-based structure modeling. Besides many of these 

types of packages, such as Materials Studio®, are proprietary and source codes are not 

modifiable to user-requirements. On the other hand, software packages such as 

MATHEMATICA and MATLAB® do not directly support the computation required for 

protein modeling but are amenable to be tailored to user-requirements.  
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CHAPTER THREE 

RESEARCH OBJECTIVES 

The objective of this research work was to develop a rapid method based on 

structural bioinformatics to predict the initial/preferred orientation in which a protein 

would interact with a given surface. It is hypothesized that by mapping out and 

quantifying the residues on the protein surface that could interact with an surface, 

minimum energy patches within the protein structure could be identified, which 

correspond to residue distributions that are most complementary to a given surface. As a 

direct application, this could help in the rational selection of the preferred initial adsorbed 

orientations of a protein on a given surface thereby decreasing the run time involved in 

the configurational space search prior to conducting a molecular simulation. The map of 

potential residue interaction on surface will be referred to as the ‘topography map’ of 

protein to generate which the following research objectives were identified: 

a) Develop an initial positioning system which could be applied to all proteins. 

b) Implement solvent parameterization in order to exclude buried residues from being 

quantified. 

c) Perform a configurational space search to quantify the types of residues that should 

be interactive with a surface in each individual orientation. 

d) Visualize the topographical map as a function of individual orientations 

e) Validate the results by comparison with existing simulation and experimental 

results.  
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CHAPTER FOUR 

METHODS 

This chapter details and verifies the algorithms implemented for achieving 

research objectives (a)-(d). The algorithm on ‘Standardizing the Initial Positioning of the 

Protein’ establishes a local coordinate system that is clearly defined based on the 

structure of a protein. This algorithm forms the basis for the following algorithm on 

‘Configuration Space Search’ to define all the possible orientations of a protein on a solid 

interface. Implicit solvation of residues were modeled and verified using the algorithms 

described in the ‘Modeling the Solvent Accessibility for Amino Acids’ based on which the 

topography map was generated using the algorithm described in the ‘Quantification of the 

Residues Interacting with the Interface.’  

The implementation of these algorithms were done in MATLAB® (R2009a) 

language because of the relative ease with which MATLAB® handles matrix and vector 

formulations. 

 

4.1 Standardizing the Initial Positioning of the Protein 

A given structural coordinate file can be visualized either based on a global 

coordinate system or by a local coordinate system. When the atomic coordinates are used 

as provided in the structural files, this positioning is called the global coordinate system. 

However, if the positioning of the atomic coordinates is relative, or in other words 
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‘translated’ to a defined coordinate based on the protein itself, such a positioning is 

called a local coordinate system.  

Irrespective of the coordinate system followed, visualization tools plot the 

corresponding coordinates in a 3D spatial unit cell called the bounding box and 

automatically adjust the view by selecting its center, even though the origin may be off-

screen. The XYZ coordinates available in a structural coordinate file in itself is the result 

of a series of refinement processes involved to fit a protein model to the 3D electron 

density map obtained by X-ray or NMR studies, which may not just involve one protein 

molecule but many and could naturally vary from one refinement procedure to another.68 

Hence it is evident that a standardized positioning scheme does not exist among 

the visualization tools currently in use, nor within the structural coordinate files 

themselves so as to generate a well-defined, uniform starting position for a given protein 

model. This creates visualizing-tool and model-dependant variability in the initial 

positioning of the protein model, which can make it difficult to interpret and directly 

compare analyses performed by different investigators who use different types of 

visualization tools and models.  

These shortcomings were overcome by first implementing a local coordinate 

system by translating the origin (0, 0, 0) of the given global coordinate system of a PDB 

file to the centre of mass of the protein (COM). COM was calculated for the PDB file by 

considering only the heavy atoms of the protein and excluding all heteroatoms. A 

Cartesian coordinate system was then defined at this COM by the following steps.  
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Step 1. Since all structural coordinate files of a protein have the first amino acid 

residue of the polypeptide chain designated as the N-terminus (Nter) and last 

amino acid designated as the C-terminus (Cter), a direction vector is generated 

from NterCter, with a vector parallel to this direction and passing through 

the COM defined as the local coordinate system X-axis.  The coordinates of 

the Nter and Cter were defined as the alpha carbon (Cα) coordinates 

constituting the first and last amino acid positions of the protein, respectively. 

Step 2. A unit vector normal to the plane containing the direction vectors NterCter 

and NterCOM is determined.  

Step 3. The Z-axis of the local coordinate system is defined to be parallel to the normal 

vector defined in Step 2 and is in the direction of the vector passing through the 

COM and the unit normal defined in Step 2. 

Step 4. Finally, the Y-axis is defined as the vector cross-product of the +Z-axis vector 

and the X-axis vector. 

Step 5. A bounding box is now defined based on the local coordinate system with the 

initial image displayed such that the X-axis is oriented in horizontal position 

relative to the graphics window with the +X-axis pointing to the right, the Y-

axis is vertical with the +Y-axis pointing upward, with the +Z-axis then 

pointing out of the front of the screen. 
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The above described positioning method has been verified with over 100 PDB 

models. For illustrative purposes, PDB models of lysozyme with different global 

coordinate systems but with identical primary amino acid sequences and comparable 

root-mean-square deviations (RMSD) to one another were used. RMSD is the measure of 

the average distance between the atoms of superimposed proteins, thus serving as a 

sensitive indicator of similarity between structures. The higher the RMSD value is, the 

greater the deviation of the queried structure is from the subject structure. RMSD 

comparisons in the current study have been performed using the online web server of 

DALI49. DALI allows for pairwise database searching of homologous 3D structures. 

Table 4.1: Summary of the pairwise alignment of PDB models 1GXV and 2EPE 

Model 1 
(Query) 

Model 2 
(Subject) 

Z-score RMSD (Å) Sequence identity (%) 

1GXV 2EPE 22.1 1.3 100 

 

 
 

Figure 4.1: Superimposed PDB structures of lysozyme model (a) 1GXV (Red) and (b) 

2EPE (Blue). The deviations in the structures are distinctly identified as regions where 

the protein structures do not exactly superimpose.  As shown, the two lysozyme models 

represent very similar structures. 



 20 
 

(A)  (B)  

Figure 4.2: PDB structures of lysozyme (a) 1GXV (b) 2EPE in the global coordinate 

system. ‘N’ represents the N-terminus and the ‘C’ represents the C-terminus. ‘COM’ 

represents the centre of mass. XYZ axes represented in red, green & blue respectively 

corresponds to the bounding box with the global coordinate system centered on the COM. 

(A)  (B)  

Figure 4.3: PDB structures of lysozyme (A) 1GXV (B) 2EPE in the local coordinate 

system based on the method described above. NterCter is oriented with the direction 

vector parallel to the X-axis, while the normal of the plane containing the NterCter and 

NterCOM is oriented parallel to the Z-axis of the bounding box. By orienting these two 

models using the local coordinate system, their similarity is clearly evident. 
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4.2 Configurational Space Search 

Different orientations of the protein in a 3D space can be described by different 

combinations of rotation around the X-, Y-, and Z-axes. Depiction of the two Euler 

angles (Φ, θ) can be used to track the orientation of the protein, as shown in Fig 4.4. θ 

represents a clockwise rotation about the Y-axis, which rotates the X-axis to define the 

x’-axis, while Φ represents the rotation about the x’-axis. 

 

Figure 4.4: Depiction of the two Euler angles (Φ, θ) used to track the orientation of the 

protein relative to a local coordinate system. (A) Rotation of the protein about the Y-axis 

(Φ). (B) Rotation of the protein about the x’-axis (θ) following the Y-axis rotation. 

 

Implementation of the above-described rotation scheme was incorporated in the 

custom programmed MATLAB® scripts through the direction cosine matrix (DCM) 

technique. Individual rotation about the Y-axis is represented by the following matrix: 
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         (4.1) 

Individual rotation about the x’-axis is represented by the following matrix: 

         (4.2) 

For a combined rotation, the transformation matrix is given by the dot product of 

the rotation about Y- and X-axes. 

          (4.3) 

In the current sampling method, the value of θ was varied from 0° to 360°, while 

Φ was varied from 0° to 180°. Φ is incremented by a user-defined angle ‘Δ Φ’, while θ 

was incremented by ‘Δ θ’, so as to maintain a constant area of analysis, which is given by 

the following expression:  

Δ θ = Δ Φ /sin (Φ)        (4.4) 

4.5 Modeling the Solvent Accessibility for Amino Acids 

When a protein comes in contact with a nonpolar materials surface, dehydration 

of the interacting nonpolar groups of both the protein and materials surface is expected to 

occur.4 This dehydration is due to fact that water molecules adjacent to the nonpolar 
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functional groups of both the protein and the materials surface tend to be in a higher free 

energy state compared to bulk water. Hence the dehydration associated with protein 

adsorption to a nonpolar surface result in a decrease in the free energy of the system. The 

more negative the ΔG value, the more strongly the protein should adsorb to the surface.4 

A linear relationship has been demonstrated between the dehydration and the 

molecular weight of the protein (M) while adsorbing down to an air-water interface.69 

This relationship was shown to be equivalent to M2/3 and the adsorption tendency was 

found to decrease by the same magnitude with increase in molecular weight of the protein 

for an air-water interface based adsorption system69. Molecular weight in turn, is directly 

proportional to the radii of the protein molecule. 

The solvent accessible surface area (ASA) of a protein is the surface area of the 

molecule that is available for the solvent molecules to interact (Figure 4.5). The surface 

area of a protein is a linear function of its overall radius and has been empirically related 

to the molecular weight of the protein by the following expression28, 30:  

ASA = 11.1* M2/3        (4.5) 

If the reduction in ASA of a protein is associated with a decrease in ΔG, a larger 

drop in the ASA of a protein would imply a stronger tendency for the protein to be 

adsorbed. This would also indicate that the patches within the protein structure that 

experience more drop in the ASA on adsorption to a surface are more likely to be 

adsorbed strongly than the other patches with lower drop in ASA, thereby further 
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implying that the probability of a protein orienting in a given way when it contacts a 

surface is proportional to the drop in ASA for that particular orientation. 

(A)   (B)  

Figure 4.5: (A) ASA of the atoms (1, 2, and 3) formed by rolling the solvent probe ‘w’ 

with no penetration. (B) Surface area of ‘1’ which is not accessible to probe ‘w’ due to 

‘2’ is represented by hatched region. ‘r1’ is the radius of atom ‘1’ and ‘r2’ is radius of 

atom ‘2’. Adapted from ref 59 

 

ASA of the protein is usually modeled by rolling a solvent probe around the 

atoms constituting the protein’s outer surface (Figure 4.5).30 Since the initial algorithm 

for the calculation of ASA proposed by Richard and Lee60 was very computationally 

intensive, various alternative approaches have been devised to calculate the ASA of 

individual amino acids forming the surface of a protein through analytical59, 

geometrical62 and statistical63 techniques, with significant improvements in computation 

time and accuracy.  
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ASA calculation in the current implementation of the program is based on the 

analytical expression developed by Wodak and Janin.59 The solvent accessibility is 

considered to be a function of only the inter-atomic distances between the COMs of the 

amino acids constituting the surface of the protein. Besides the improvement in the 

computation speed, other advantages in this model are: 

a) The model is based on a pairwise-distance function of the COMs of the amino 

acid and is relatively independent of a lot of other variables involved in 

processing the structural file required to generate the XYZ coordinates of the 

atoms. 

b) The model is reasonably accurate. 

c) The model is adaptable to include minimization functions, as a result of which the 

decrease in the solvent accessibility per amino acids at the interfacial contact 

between protein-protein and protein-surface can be calculated with relative ease. 

In the original algorithm proposed by Wodack and Janin, the van der Waal radii 

of amino acids were taken as inputs, which I have modified for my current 

implementation to accept van der Waal radii of atoms such as carbon, nitrogen, oxygen 

and sulfur (CNOS) as inputs. Such an alteration was done in order to predict the solvent 

accessibility of the protein and its amino acid residues that are exposed to different 

solvent environments, as the van der Waal radii of CNOS in different solvent 

environments are more readily available than the amino acids themselves. Table 4.3 

through Table 4.5 validate the ASA values calculated by the current implementation for 
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the whole proteins using the inputs from Table 4.2 with probe radii = 1.4 Å and 

penetration depth (s) = 2.5 Å. The validity of this approach is indicated by comparing the 

ASA results obtained using my modified method to the results obtained by previously 

developed methods.  

Table 4.2: User-defined van-der Waal radii 

Carbon Nitrogen Oxygen Sulfur 
1.7 Å 1.52 Å 1.55 Å 1.80 Å 

 

Table 4.3: Comparison of the standard and the calculated volumes of amino acids for the 

user-defined inputs given in Table 4.2. BL- stands for residue volumes of amino acids 

which are buried, not in contact with ligands and are not in contact with water.  

Residue 

Volume (Å3) 

Standard Computed 

Richards30 Harpaz70 Pontius70 BL-70 Present 
study 

Gly 66.4 ± 4.7 63.8 67.5 64.9 67.2 

Ala 91.5 ± 6.7 90.1 91.5 90 85.8 

Val 141.7 ± 8.4 139.1 138.4 139 122.7 

Leu 167.9 ± 10.2 164.6 163.4 164 143.3 

Ile 168.8 ± 9.8 164.9 162.6 163.9 143.3 

Met 170.8 ± 8.9 167.7 165.9 167 146.9 

Pro 129.3 ± 7.3 123.1 123.4 122.9 124.1 

His 167.3 ± 7.4 159.3 162.3 160 174.3 

Phe 203.4 ± 10.3 193.5 198.8 191.9 196.7 
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Tyr 203.6 ± 9.6 197.1 209.8 197 211.4 

Trp 237.6 ± 13.6 231.7 237.2 228.2 249.3 

Cys 105.6 ± 6.0 103.5 102.4 103.3 107.7 

Ser 99.1 ± 7.4 94.2 102 95.4 100.2 

Thr 122.1 ± 6.7 120 126 121.5 118.9 

Asn 135.2 ± 10.1 127.5 138.3 124.7 134.5 

Gln 161.1 ± 13.0 149.4 156.4 149.4 153 

Asp 124.5 ± 7.7 117.1 135.2 117.3 133.6 

Glu 155.1± 11.4 140.8 154.6 142.2 152.1 

Lys 171.3 ± 6.8 170 162.5 167.3 173.1 

Arg - 192.8 196.1 194 187.9 
 

Table 4.4: Comparison of the standard and calculated van der Waal radii of amino acids 

computed from table 4.3 using the following equation�0.75 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑3 . 

Residue 

Radius (Å) 

Standard Computed 

Richards30 Harpaz71 Pontius71 BL-71 Present 
study 

Gly 2.51 ± 0.06 2.48 2.52 2.49 2.52 

Ala 2.80 ± 0.07 2.78 2.80 2.78 2.74 

Val 3.23 ± 0.07 3.21 3.21 3.21 3.08 

Leu 3.42 ± 0.07 3.40 3.39 3.40 3.25 

Ile 3.43 ± 0.07 3.4 3.39 3.40 3.25 

Met 3.44 ± 0.06 3.42 3.41 3.42 3.27 

Pro 3.14 ± 0.05 3.09 3.09 3.08 3.09 
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His 3.42± 0.05 3.36 3.38 3.37 3.47 

Phe 3.65 ± 0.05 3.59 3.62 3.58 3.61 

Tyr 3.65 ± 0.06 3.61 3.69 3.61 3.70 

Trp 3.84 ± 0.07 3.81 3.84 3.79 3.90 

Cys 2.93 ± 0.05 2.91 2.91 2.91 2.95 

Ser 2.87 ± 0.06 2.82 2.90 2.84 2.88 

Thr 3.08 ± 0.06 3.06 3.11 3.07 3.05 

Asn 3.18 ± 0.08 3.12 3.21 3.10 3.18 

Gln 3.37 ± 0.06 3.29 3.34 3.29 3.32 

Asp 3.10 ± 0.07 3.04 3.18 3.04 3.17 

Glu 3.33 ± 0.08 3.23 3.33 3.24 3.31 

Lys 3.45 ± 0.10 3.44 3.39 3.42 3.35 

Arg - 3.58 3.60 3.59 3.55 
 

Table 4.5: Comparison of the ASA calculated by the current method and other methods 

as described in the literature, for the user-defined inputs given in Table 4.2, Solvent radii 

= 1.4Å and penetration depth (s) = 2.5Å. 

PDB Model Fragment 

Accessible surface area (Å2 ) Ratio 

Lee and 
Richards59 

(a) 

Wodack 
and Janin 

(b)59 

Present 
study 

(c) 
(c)/(a) (c)/(b) 

Phage T4 lysozyme 
(2LZM) 

All 8962 8767 8633 0.96 0.98 

Human 
deoxyhemoglobin 

(2W6V) 

Α 7829 7833 6972 0.89 0.89 

Β 8226 8257 7657 0.93 0.93 
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αβ Dimer 14425 14660 14162 0.98 0.97 

Trypsin-BPTI 
complex 
(3BTK) 

Trypsin 8902 9530 9558 1.07 1.00 

BPTI 3556 3635 3168 0.89 0.88 

Complex 11075 11930 12026 1.09 1.00 

Lobster GPDH 
(4GPD) 

Monomer 15470 16120 16118 1.04 1.00 

Red/Blue 
Dimer 

28020 29290 29788 1.06 0.98 

Red/Green 
Dimer 

28814 30100 30027 1.04 1.00 

Tetramer 50310 53880 59883 1.19 1.11 

Dogfish apo-LDH 
(3LDH) 

All 17120 17867 18267 1.07 1.02 

Concanavalin A 
(2YZ4) 

All 10600 11350 11592 1.09 1.02 

 

As shown by the comparisons presented in Tables 4.3 to 4.5, the current 

implementation provides values that are in very reasonable agreement with previously 

published methods. 

Another goal of modeling the ASA is to determine the change in solvent 

accessible surface area of the individual amino acid residues constituting the protein 

when the protein unfolds. ASA of residues could be related to the transfer energy 

function (ΔG) from the protein interior to the interface and is given by the following 

equation: 
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ΔG = Solvation parameter (σ)*ASA       (4.6) 

The current implementation however, does not compute the energy function 

associated with the residues using the above equation, but rather distinguishes the 

residues interacting with the solvent (surface forming) from the ones that would not 

interact with the solvent (buried) through the computed ASA of the individual amino 

acids, thereby not accounting for interactions of buried residues but only accounting for 

surface-forming residues. The rationale behind such an approximation is because the 

following: 

a) The kinetics of adsorbent-surface induced conformational shifts that occur when a 

protein adsorbs to a surface have been shown to be slower than the kinetics of 

protein orientation23, and  

b) The shielding effect provided by the residues immediately surrounding the buried 

residue prevents the interactions of buried residues with the solvent. 

Combining these two concepts, it can be assumed that the contribution to 

adsorption energy from buried residues is negligible compared to the solvent-accessible 

residues on the surface of the protein.  

Currently, there are no formal definitions to determine if a particular residue 

would be buried or not based on the computed ASA. However for our objective, residues 

having relative ASA values less than 10% are considered to be buried, but the custom 

designed script is flexible to accept other user-defined cutoffs. 



 31 
 

Comparison of the relative accessibility of the individual residues constituting the 

1AKI structure of lysozyme has been made to compare the ASA method that have been 

implemented in the current program with other commonly used tools such as the SurfV 

tool of STING Millenium suite63, ASAView61 and GETAREA62 (see Fig 4.6). ASA of 

the whole protein complex for the model 1AKI is 6523 Å2, which is in good agreement 

with 6571 ± 81 Å2 as reported in the literature72. While the ASA calculation in 

ASAView61 is based on electrostatic interaction function, GETAREA62 utilizes a 

modified lattice algorithm. SurfV63, on the other hand, utilizes a rolling sphere model to 

determine the accessibility of the individual amino acids. The root-mean-square errors 

(RMSE) between the different tools are compared in Table 4.6. ASA was found to be 

independent of RMSD (Fig 4.7) and PDB-reported structural resolution (Fig 4.8)  

 

Figure 4.6: Comparison of the relative accessibility prediction by ASA of individual 

amino acids calculated for lysozyme model (1AKI) by the current method and other 
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commonly used tools. Solvent radii = 1.4Å, penetration depth (s) = 2.5Å and user-defined 

inputs as given in table 4.2.  

Table 4.6: RMSE between the different tools used to predict ASA 

Method Current 
implementation STING63 GETAREA62 ASAView61 

Current 
implementation NA 0.11 0.22 0.20 

STING 0.11 NA 0.23 0.22 

GETAREA 0.22 0.23 NA 0.08 

ASAView 0.20 0.22 0.08 NA 

 

 

Figure 4.7: Dependence of ASA on RMSD in different lysozyme models, but which are 

identical in sequence. Reference structure: 1AKI, Solvent radii = 1.4Å, penetration depth 

(s) = 2.5Å and user-defined inputs as given in Table 4.2. Correlation (R2) = 0.146. 
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Figure 4.8: Dependence of ASA on resolution in different lysozyme models, but which 

are identical in sequence. Reference structure: 1AKI, Solvent radii = 1.4Å, penetration 

depth (s) = 2.5Å and user-defined inputs as given in Table 2. Correlation (R2) = 0.114.  

Note that a higher resolution values represents greater uncertainty in the atomic structure. 

 

4.6 Quantification of the Residues Interacting with the Surface 

In order to characterize which amino acids of a protein are interacting with an 

adsorbent surface when the protein approaches an adsorbent surface, it is required to 

rotate the protein along the three principal axes of the local coordinate system of the 

protein. By assuming the surface to be of homogenous chemical composition, 
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microscopically flat and devoid of any defects, translation along the axes normal to the 

surface would be sufficient to map out the residues interacting with the interface. 

In the current implementation, the interface between the protein and a material 

surface is considered to be parallel to the xy plane with the outer normal of the surface 

being along the +Z-axis as depicted in the Fig 4.9. In this orientation, and assuming that 

the protein is resting on the surface, the solvent accessible amino acid residues that are 

considered to be close enough to the surface are expected to energetically contribute to 

the adsorption of the protein in a non-negligible manner and are characterized by 

identifying the residues that are positioned within a user-defined height ‘D’ from the 

interface. In the current study, the chemical characteristics of each type of amino acid 

residue are classified according to the Table 4.7.  

 

Figure 4.9: The protein is modeled as resting on the surface (outlined by blue lines) with 

the coordinates of the bounding box being represented by XYZ. The plane (Red) at 
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height ‘D’ from the surface is used as the cut-off for identifying the amino acids expected 

to be close enough to the surface to interact with the surface. 

Table 4.7: Classification of amino acids 

Classification Amino acids 

Main group 

Amphiphillic neutral Glycine 

Hydrophobic neutral 
Alanine, Isoleucine, Leucine, Methionine, Phenylalanine, 

Proline, Tryptophan, Valine 

Hydrophilic neutral 
Asparagine, Cysteine, Glutamine, Serine, Threonine, 

Tyrosine 

Hydrogen bondable 

Asparagine, Cysteine, Glutamine, Serine, Threonine, 

Tyrosine, Arginine , Aspartic acid, Glutamic acid, Lysine, 

Histidine  

Charged Arginine , Aspartic acid, Glutamic acid , Lysine 

Positively charged Arginine , Lysine 

Negatively charged Aspartic acid, Glutamic acid 

Neutral/positive charged Histidine 

More positively charged (Arginine + Lysine) – (Aspartic acid, Glutamic acid) 

More negatively charged (Aspartic acid, Glutamic acid) - (Arginine + Lysine) 
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4.7 Modeling the Adsorbent Material Surface 

The adsorbent material surface is modeled as a structureless, homogenous, flat 

plane without any charge or force parameters attributed that could contribute to the 

adsorption of the protein. In the current implementation for predicting the orientation of 

the protein on a material surface, the surface is thus modeled only as a visualizing aid to 

enable the user to view the orientation in which the protein would be adsorbed.  

4.8 Visualization of Residue Distribution 

The distributions of the residues for a given protein model are visualized using the 

contour plot function available within MATLAB®. Once a configurational space search 

was completed, residue distribution of any given orientation is obtained by the linear 

interpolation of the residue distribution corresponding to the nearest available data point 

A topography map is generated for different proteins ranging from small 

molecular weight proteins (i.e., greater than 10 residues) to multi-chain and moderately 

high molecular weight proteins (i.e., less than 3000 residues), with computation time 

usually averaging in minutes per protein model. Parameters such as the (a) angle of 

rotation, (b) effect of local positioning and (c) exclusion of buried residues were found to 

affect the topography map significantly. 

4.9 Application to a Protein Adsorption System 

As a demonstration of the developed capabilities, a topography map was 

generated for a selected protein and used to predict the preferred initial orientations of the 
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protein on different types of surfaces. The orientation angle (θ, Φ) and the number of 

residues within the defined interaction distance (i.e., D; see Fig. 4.9) corresponding to 

each of these angles were used to identify the preferred orientation of a given protein 

model on surface models with different surface characteristics, which were characterized 

as hydrophobic, hydrophilic, positively charged, or negatively charged. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

Different parameters such as the interaction height (D), residue exclusion, and 

angle of rotation were observed to affect the predicted orientation of the protein as these 

factors influence the topography map. Effects of each of these parameters are indicated in 

the attached appendices. Based on these results, the following parameters were set for 

predicting the orientation of protein on interface. 

Table 5.1: Settings for predicting the orientation of protein 

Parameter Setting 

Angle of rotation (α) 5º 

Interaction height (D) 10 Å 

Residue exclusion 
• Buried 

 
Relative accessibility < 10% 

Solvent environment 

• Solvent probe radii (rw) 
• Penetration depth (s) 

 
1.4 Å 
2.5 Å 

 

Analyses have been performed for both large (> 100 kDa) and small (< 20 kDa) 

proteins with the total runtime (i.e., iterations required for rotating the protein and 

analyzing the amino acid composition over the surface) typically taking only a few 

minutes per protein. The results from the current approach have been tested with different 
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protein-surface systems on a variety of surfaces including those which are both biological 

and synthetic in origin.  

 

5.1 Prediction of Orientation on Homogenous Surface 

5.1.1 Prediction of orientation of proteins on uncharged homogenous surfaces 

The adsorption process of proteins to hydrophilic or hydrophobic surfaces is 

considered to involve the displacement of the tightly or loosely bound layer of water 

interacting with the surface and the displacement of this water has been observed to be 

more on a hydrophobic surface than on a hydrophilic surface due to (a) lower number of 

hydrogen bonds between a hydrophobic surface and water and (b) resulting increase in 

free energy that occurs when water over a hydrophobic surface is displaced to bulk 

solution.4 These effects are most prominent in polymers, and in particular uncharged 

polymers with nonpolar functional groups.74  

CH3-SAMs and OH-SAMs are considered as ideal model surfaces for mimicking 

the behavior of hydrophobic and hydrophilic surfaces, respectively. Simulation results 

have provided estimates of the potential mean force (PMF) between a peptide and these 

types of surface and have shown that these interactions primarily only acts over a range 

of about 10 Å of surface separation distance (SSD) for these types of surfaces under 

physiological solution conditions.74 A cut-off value for ‘D’ of 10 Å is therefore used to 

approximate the interaction distance over which the amino acids on the solvent accessible 
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surface of a protein are close enough to be influenced by the functional groups of a 

material surface. A summation of the PMF contributions for the interactions between 

these amino acids and the surface for a given orientation of the protein provides a means 

to estimate the overall change in free energy for adsorption and to predict the preferred 

orientations of a protein on hydrophilic and hydrophobic SAMs. 

5.1.1.1 Prediction of orientation on a hydrophilic surface 

An adsorption process involving an OH-SAM and a protein is considered to be 

mediated through hydrogen bonds involving the hydrogen bondable groups between the 

SAM surface and the protein surface. Hence the prediction of protein orientation on this 

type of hydrophilic surface was based on the total set of hydrogen bondable residues as 

per the classification given in table 4.7. 

5.1.1.1.1 Human serum albumin (HSA, PDB Model: 1E78) 

HSA is the most abundant protein in the human blood plasma and has been 

recently been observed to mediate platelet attachment beyond a critical degree of 

adsorption-induced unfolding.74 Hence the orientation in which these protein adsorb is of 

particular interest in view of biomaterial design. For the current PDB model, the ‘A’ 

chain of HSA has been chosen for analysis. 

The topographical map of hydrophilic neutral residues in HSA suggests a unique 

site (Φ = 95º, θ = 231º) within the HSA where the maximum number of residues is seen 

to interact with the surface (Fig. 5.1) while the site (Φ = 30º,  θ = 330º)  corresponds to 
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maximum number of hydrogen bondable residues are positioned in the protein (Fig.5.2) 

with the orientation being that of ‘back-on’ and ‘Side AB-on’ respectively(Fig. 5.3), 

which was found to be in agreement to the predicted orientations of this adsorbed protein 

as reported in literature.37 The residue distribution for the aforementioned orientations on 

contacting the hydrophilic surface have been depicted in Fig 5.4. 

 

 

Figure 5.1: Distribution of hydrophilic neutral residues in HSA (1E78). The dark red 

colored region corresponds to maximum residue concentration for which the orientation 

angles are Φ = 95º, θ = 231º.  
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Figure 5.2: Distribution of hydrogen bondable residues in HSA (1E78). The dark red 

region corresponds to maximum residue concentration for which the orientation angles 

are Φ = 30º, θ = 330º. 

(a)  (b)  

Figure 5.3: Preferred orientation of HSA (1E78) on hydrophilic surface for the 

orientation angle where the maximum concentration of (a) Hydrophilic neutral residues 

(Φ = 95º, θ = 231º) and (b) hydrogen bondable residues (Φ = 30º, θ = 330º) are observed. 

Dark blue indicates the adsorption surface plane. Residues are colored according to 
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secondary structure. Red- helices; white-loops; Olive green-beta sheets. Numbers 

correspond to the primary amino acid sequence. 

 

Figure 5.4: Residue height from the surface plane for HSA (1E78) corresponding to 

orientation angles (Φ, θ) of (95º, 231º) and (30º, 330º). 
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5.1.1.1.2 Hen egg white lysozyme (HEWL, PDB Model: 7LYZ) 

HEWL is an enzyme that catalyzes the hydrolysis of the glycosidic bond between 

N-acetylglucosamine and N-acetylmuramic acid in bacterial cell wall through the 

catalytic sites Glu35 and Asp 52.  

The topographical map of hydrophilic neutral residues suggests multiple θ, Φ sites 

of (120º, 162º), (120º, 167º) and (120º, 173º) within the HEWL where the maximum 

number of residues is seen to interact with the interface (Fig. 5.5). In the (120º, 162º) 

orientation, the protein is found to be adsorbed with its long axis being parallel to the 

surface and with its catalytic site face being oriented upwards towards the solution (Fig. 

5.6 and 5.7).  

Alternatively, the maximum number of hydrogen bondable residues is highest at 

orientation angle corresponding to Φ, θ site (110º, 229º) (Fig.5.8), at which the 

orientation is predicted to be that of side-on with the active site being partially stearically 

hindered by the surface plane (Fig 5.9 and Fig. 5.10). 

The adsorptions of lysozyme on different substrates has been studied by 

simulation21, 72 and experimental techniques14, 75, and have indicated the preferred 

orientation of lysozyme on hydrophilic surfaces to be side-on, especially at low bulk 

concentrations, thereby suggesting the preferred orientation could correspond to the 

maximum concentration of hydrogen bondable residues and not the hydrophilic neutral 

residues. 
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Figure 5.5: Distribution of hydrophilic neutral residues in HEWL (7LYZ). The dark red 

circled region corresponds to maximum residue concentration for which the orientation 

angle are Φ = 120º, θ = 161º.7´. 

(a) (b)  

Figure 5.6: Preferred orientation of HEWL (7LYZ) on hydrophilic surface for the 

orientation angle where the maximum concentrations of hydrophilic neutral residues are 

observed. (a) Side and (b) Top view corresponding to Φ = 120º, θ = 162º. Dark blue 

indicated the adsorption surface plane. Residues are colored according to secondary 

structure. Red- helices; White-loops; Olive green-beta sheets. 
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Figure 5.7: Residue height from the interface for HEWL (7LYZ) corresponding to 

corresponding to Φ = 120º, θ  = 161º.7´. The residue contacting the surface is R68. The 

bioactive site is made up of residues E35 and D52. 

 

Figure 5.8: Distribution of hydrogen bondable residues in HEWL (7LYZ). The dark red 

circled region corresponds to maximum residue concentration of 38 for which the 

orientation angle is Φ = 110º, θ = 228º.8´.  
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 (a)  (b)  

Figure 5.9: Preferred orientation of HEWL (7LYZ) on hydrophilic surface for the 

orientation angle where the maximum concentrations of hydrogen bondable residues are 

observed. (a) Side and (b) Top view corresponding to Φ = 110º, θ = 228º.8´. Dark blue 

indicated the adsorption surface plane. Residues are colored according to secondary 

structure. Red- helices; White-loops; Olive green-beta sheets 

 

Figure 5.10: Residue height from the interface for HEWL (7LYZ) corresponding to 

corresponding to Φ = 110º, θ = 228º.8´. The residue contacting the surface is F37 and the 

bioactive site is made up of residues E35 and D52.   
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5.1.1.2 Prediction of protein orientation on a hydrophobic surface 

5.1.1.2.1 Hen egg white lysozyme (HEWL, PDB Model: 7LYZ) 

The topographical map of hydrophobic neutral residues suggest a unique site at θ, 

Φ (110º, 254º) within the HEWL where the maximum number of residues is seen to 

interact with the interface (Fig. 5.11), with the protein oriented in a sideways orientation 

(Fig 5.12, Fig 5.13). The preferential adsorption of lysozyme in a side-way orientation 

has been reported by experimental and simulation techniques.73, 77, 78 The N-C termini 

along with several of the key residues such as Lys1, Arg5, Lys13, Lys33, Arg14 and 

Arg128, are involved in the HEWL adsorption to the surface at this orientation (Fig 

5.13), which corresponds to the reported sites of close contact with the hydrophobic 

surface.73 

 
Figure 5.11: Distribution of hydrophobic neutral residues in HEWL (7LYZ). The dark 

red circled region corresponds to maximum residue concentration for which the 

orientation angle are Φ = 110º, θ = 254º.  
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(a)  (b)  

Figure 5.12: Preferred orientation of HEWL (7LYZ) on hydrophobic surface for the 

orientation angles (Φ, θ) where the maximum number of hydrophobic residues (23) was 

observed: (a) (110º, 254º), (b) (105º, 233º). Dark blue indicates surface plane. Residues 

are colored according to secondary structure. Red- helices; White-loops; Olive green-beta 

sheets. 

 

Figure 5.13: Residue height from the interface for HEWL (7LYZ) corresponding to Φ, θ 

(110º, 255º). The residue contacting the surface is F37 in most of the orientations except 

(105º, 233º) in which the residue contacting the surface is R45. The bioactive site is made 

up of residues E35 and D52. 
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5.1.1.2.2 Mitochondrial cytochrome c (CYTC, PDB Model: 1HRC) 

CYTC is a peripheral membrane protein with a covalently attached heme as a 

redox-active cofactor and finds many applications in the field of protein chromatography, 

drug delivery on solid substrates, biosensors, biofuel cells and bioelectronic devices. The 

primary application of these proteins however has been limited by the orientation in 

which these proteins adsorb on interface, which in turn affect the electron transport 

process and the performance of the intended application.38 

The topographical map of hydrophobic neutral residues in CYTC suggests four 

major sites where the numbers of interacting residues are high. These sites correspond to 

Φ, θ sites of (80º, 127º), (100º, 315º), (100º, 320º) and (130º, 235º) as depicted in Fig 

5.14. 

 

Figure 5.14: Distribution of hydrophobic neutral residues in mitochondrial cytochrome C 

(1HRC). The red region corresponds to maximum hydrophobic residue concentration of 
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16 for which the orientation angles (Φ, θ) are (80º, 127º), (100º, 315º), (100º, 320º) and 

(130º, 235º). 

 

The residue height corresponding to these orientations is depicted in Fig 5.15.  

 

Figure 5.15: Residue height from the interface for mitochondrial cytochrome C (1HRC) 

for preferred orientations on a hydrophobic surface. The residues interacting with the 

interface to each of the orientation angle are labeled in the above. Acyl region of the 

cardiolipin is hypothesized to dock with the membrane through the hydrophobic channel 

comprising of residues 67-71 and 82-85.89  

 

Based on computational and simulation studies reported in the literature, the 

orientation corresponding to Φ, θ (80º, 127º) is the favored orientation with which the 
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CYTC is considered to interact with CH3-SAM (Fig 5.16) with Ile81 being the amino 

acid closest to the surface.79 The predicted orientation also corresponds to the orientation 

predicted in a cell membrane by the OPM database.80, 81 The other two orientations (Fig 

5.17) with Gly37 and Glu66 as the interacting amino acid have not been reported in 

previous studies in the literature. 

(a)  

 (b)  

Figure 5.16: Preferred orientation of CYTC (1HRC) on a hydrophobic surface for the 

orientation angle Φ, θ (80º, 127º). (a) Orientation prediction by current tool. Blue plane 
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indicates adsorbent surface. (b) Orientation prediction by the OPM database80. Red 

horizontal line indicates adsorbent surface. Residues are colored according to secondary 

structure. Red- helices; White-loops; Olive green-beta sheets 

(a)   

(b)  

Figure 5.17: Orientation of CYTC (1HRC) on hydrophobic surface for the Φ, θ 

orientation angle set (a) (100º, 315º), (100º, 320º) (b) (130º, 235º). Blue plane indicates 

adsorbent surface.  Residues are colored according to secondary structure. Red- helices; 

White-loops; Olive green-beta sheets  
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5.1.2 Prediction of orientation of proteins on charged homogenous surfaces 

The adsorption processes of proteins to negatively or positively charged surfaces 

are primarily mediated by electrostatic interactions. These types of interactions are most 

prominent on metallic and ceramic surfaces.39, 72 Electrostatic interactions mediating the 

adsorption of protein to interfaces are complex and are seen to be strongly influenced by 

the concentration of ionic species in solution.35, 39, 72 Electrostatic interactions of charged 

residues with oppositely charged surface groups tend to be shielded by the ions at ionic 

concentrations above 0.5M. NH2-SAMs and COOH-SAMs are considered as ideal model 

surfaces for replicating the behavior of positively and negatively charged surfaces, 

respectively. Simulation results have indicated that the potential mean force (PMF) of 

interactions between charged amino acid residues and surface groups generally also occur 

within a surface separation distance (SSD) of approximately 10 Å in a physiological 

saline environment on these model surfaces.73 Hence the ‘D’ cut-off at 10 Å can be 

considered to provide an appropriate cutoff distance to be used to approximate the 

orientation of the proteins on negatively and positively charged SAMs.  

5.1.2.1 Prediction of orientation on a negatively charged surface 

The orientation of protein on a negatively charged surface can be predicted by the 

topographic mapping of the positively charged residues on the protein surface. For the 

determination of the most probable site of adsorption, a topographic map of the ‘More 

positive regions’ were performed to also take into account the counteracting repulsive 

effect caused by the negatively charged residues with the negatively charged interface. 
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5.1.2.1.1 Hen egg white lysozyme (HEWL, PDB Model: 7LYZ) 

The topographical map of positive residues in HEWL (Fig 5.18) indicates side-on 

orientation to be preferred (Fig 5.19) with the orientation angle corresponding to Φ, θ  

(110º, 255º) and the residue distribution at the interface being similar to that observed for 

the hydrophobic interface (Fig 5.20).  The predicted orientation is also in line with the 

reported experimental and simulation result on SAMs and ceramic surfaces such as silica 

and mica.14, 21, 73, 82 

(a)  

(b)  

Figure 5.18: Distribution of positively charged residues in HEWL (7LYZ). (a) The dark 

orange region corresponds to the positive residue concentration of 10 for which the 
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orientation angle Φ, θ is (110º, 255º). (b) The dark red region corresponds to the ‘More 

positive regions’ of residue concentration equivalent to 7 for which the orientation angle 

Φ, θ is (10º, 288º). Combining the analysis from graphs (a) and (b), topography site 

(110º, 255º).is the most ideal for HEWL adsorption to negatively charged surfaces 

(a)  

(b)  

Figure 5.19: Orientation of HEWL (7LYZ) on negatively charged surface for the 

orientation angle Φ, θ (110º, 255º) (a) Side view (b) Top view. Residues are colored 
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according to secondary structure. Dark blue indicates adsorbent surface plane. Red- 

helices; White-loops; Olive-green-beta sheets. 

 

Figure 5.20: Residue height from the interface for HEWL (7LYZ) for preferred 

orientations on a negative surface. The bioactive site is made up of residues E35 and 

D52. 

 

5.1.2.1.2 Mitochondrial cytochrome c (CYTC, PDB Model: 1HRC) 

The orientation of CYTC could be best described based on the orientation of the 

heme-cofactor (Fig 5.21). For the best performance of adsorption systems utilizing 

CYTC, it is desired that fast transport of electron transport be achieved by orienting the 

heme-cofactor near and perpendicular (vertical) to the contacting interface (Fig 5.21b). 
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Based on the understanding gained through several published studies, negative substrates 

are widely considered to be the ideal surfaces for immobilizing CYTC. Hence it would be 

interesting to use the developed program to identify the predicted preferred orientation of 

CYTC on a negative substrate for comparison with these published results. 

 

(a)  (b)   (c)  

Figure 5.21: Orientations of the heme group for CYTC adsorbed on a surface. (a) 

Horizontal (b) Vertical and (c) Inclined. 3D model generated in RCSB-SimpleViewer. 

 

The topographical map of positive residues in CYTC suggests multiple sites with 

high concentration of positively charged residues (Fig. 5.22) for which the orientation 

angles are tabulated in Table 5.1. Combing the analysis from Table 5.1 and Figure 5.22 

vertical orientations38, 78 were preferred more than the horizontal ones35. Most 

importantly, the orientations of the heme group were were mostly near the interface in 

vertical orientations while the majority of the horizontal orientations were further away 

from the interface, thus supporting that the vertical orientations would provide the best 

conditions for electron transfer between the protein and the surface.  
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(a)  

(b)  

Figure 5.22: Distribution of positive residues in CYTC (1HRC). (a) The dark orange 

regions correspond to the positive residue concentration of 12 for which the orientation 

angle pairs (Φ, θ) are listed in Table 5.1. (b) The dark red region corresponds to the 

maximum residue concentration of 11 for ‘More positive region’ of orientation angles 

with the cofactor orientation corresponding to vertical as listed in Table 5.1. 
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Table 5.2: Orientation angles corresponding to maximum positively charged residue 

concentrations on a negative interface. The residues with the strongest adsorption is 

highlighted in yellow 

Phi(degrees) Theta(degrees) Interacting residue Cofactor orientation 

90 125 Ile 81 Vertical 

95 

115 Gln 12 

Vertical 120 Gln 12, Ala 83 

125 Ala 83 

110 

112 Gln 12 Vertical 

117 Gln 12 Vertical 

122 Ala 83 Vertical 

128 Ala 83 Vertical 

133 Lys 73 Horizontal 

229 Lys 73 Horizontal 

120 

260 Glu 62 

Inclined 

266 Glu 62 
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130 

281 Glu 62 

Inclined 

287 Glu 62 

140 

257 Glu 62, Glu 88 Inclined 

265 Glu 62 Inclined 

272 Glu 62 Horizontal 

280 Glu 62 Horizontal 

288 Glu 62 Horizontal 

 

The orientation and the residue distribution at the interface for CYTC on a COOH 

–SAM (Fig 5.23) corresponding to the orientation angle of Φ, θ (95º, 125º) is well 

corroborated with that reported in literature.38, 78 

(a)  (b)  
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(c)  

Figure 5.23: Orientation of CYTC (1HRC) on negatively charged SAM for the 

orientation angle Φ, θ (95º, 125º) (a) Prediction by the current study. Dark blue indicates 

adsorbent surface plane. Residues are colored according to secondary structure. Red- 

helices; White-loops; Olive-green-beta sheets. (b) Prediction by molecular dynamic 

simulation.  (c) Residue height from the interface for CYTC (1HRC) for orientation angle 

(95 º, 125 º) on a negative surface. The residues Cys14, Ala15, and His18 are covalently 

linked to the heme group and in the current orientation are adsorbed down. 

 

5.1.2.1.3 Immunoglobulin G (IgG) antibody 

IgG is the most abundant type of immunoglobulin found in humans, which are 

synthesized and secreted by the plasma B cells. These large protein molecules exist as 
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dimers composed of a large heavy and a small light chain with each monomer having an 

antigen binding site. On the basis of the distribution of IgG in serum, IgG molecules are 

further classified into four other subclasses such as IgG1, IgG2, IgG3 and IgG4, with 

IgG1 being the most prevalent and IgG4 being the least abundant type of IgG antibody in 

serum.82 

Since these proteins have broad range specificity against various pathogens and 

toxins, these molecules are used in many rapid assays and detection kits. However, the 

substrates on which these protein molecules are immobilized affect the orientation and 

the final bioactivity of the antibody83. The orientation of IgG1 and IgG2 on charged 

surfaces have been reported and have shown a preferred orientation at low ionic solution 

concentration and surface charge density84, 85. In order to verify the existence of sites 

corresponding to maximum positive residue concentrations, topography maps for 

positively charged residues in IgG1 (PDB Model: 1IGY) and IgG2 (PDB Model: 1IGT) 

were generated 

 

5.1.2.1.3.1 IgG1 (PDB Model: 1IGY) 

This PDB model is constituted of four chains namely the A chain, B chain, C 

chain and D chain. The A and C chains are each 213 residues long and form the light-

chain fragments of the antibody, while the B and D chains are each 434 residues long and 

constitute the heavy-chain segments of the antibody. Within these chains the residue 
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positions 1-107 (A and C) and 1-113 (B and D) form the antigen binding site, which 

contribute to the bioactivity of the antibody. 

As can be observed from the topographical map of positive residues for 1IGY 

(Fig 5.24a), there exists a unique site corresponding to an orientation angle of Φ, θ, (80º, 

137º) where the antigen binding site is oriented towards the interface with the Fab 

fragment oriented above as depicted in Fig 5.25a, b, c. However, the topography map of 

the ‘more positive residues’ in 1IGY (Fig 5.24b),  predicts the adsorption in this 

orientation to be unfavorable due to the domination of the number of negative residues 

(repulsive interaction) when compared to the positive residues (attractive interaction) at 

the site corresponding to (80º, 137º). The orientation corresponding to the maximum 

‘more positive’ interaction indicates the orientation in Fig 5.25d 

 

(a)  
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(b)   

Figure 5.24: Distribution of positive residues in IgG1 (1IGY). (a) The dark red region 

corresponds to the maximum positive residue concentration of 14 for which the 

orientation angle (Φ, θ) is (80º, 137º). (b) The ‘more positive’ topography map of 1IGY 

corresponding to orientation angle (Φ, θ) is (80º, 137º) however, indicates that the 

adsorption to be unfavorable as the number of repulsive amino acids dominates (-3). 

(a)  (b)  
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(c)  

(d)  

Figure 5.25: Orientation of IgG1 (1IGY) on negatively charged SAM for the orientation 

angle (80º, 137º) (a) Prediction by the current study. Dark blue indicates adsorbent 

surface plane. Residues are colored according to RASMOL90 color scheme. (b) 

Prediction by united atom coarse-grained model85. Large red circles indicate bioactive 

site regions (c) Residue height from the interface for IgG1 (1IGY) for Φ, θ orientation 

angle set (80 º, 137º) on a negatively charged surface. The antigen binding site of IgG1 

lies within the first 100 residues of each chain. (d) Orientation corresponding to 

maximum residue concentration of 6 based on the ‘more positive’ topography map of 

IgG1   
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5.1.2.1.3.2 IgG2 (PDB Model: 1IGT) 

The PDB model IGT is composed of four chains, namely the A chain, B chain, C 

chain, and D chain. The A and C chains are each 214 residues long and form the light-

chain fragments of the antibody, while B and D chains are each 444 residues long and 

constitute the heavy-chain segments of the antibody. Within these chains the residue 

positions 1-108 (A and C) and 1-115 (B and D) form the antigen binding site, which 

contribute to the bioactivity of the antibody. 

The topographical map of positive residues in 1IGT suggests multiple sites where 

the maximum number of positively charge residues is predicted to be located such to 

interact with a negatively charged surface (Fig 5.26).  

(a)  
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(b)  

Figure 5.26: (a) Distribution of positive residues in IgG2a (1IGT) in the topography map 

of positively charged residues. The dark red regions corresponds to the positive residue 

concentration of 12 for which the orientation angles (Φ, θ) are (70º, 330º), (150º, 0º), 

(150º, 310º), (150º, 322º), (150º, 350º), and (150º, 360º). (b) The distribution of ‘more 

positive’ residues in the ‘more positive’ topography map of IgG2a. The maximum 

residue concentration of 4 is indicated by the red regions. 

 

The orientation angles corresponding to maximum residue concentration sites 

shows at least one antigen binding site being adsorbed down on the interface, which is 

consistent with that observed on a negatively charged interface (Fig 5.27). 
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(a)  
 

(b) (c) (d)  

Figure 5.27: (a) Residue height from the interface for IgG2 (1IGT) on a negatively 

charged surface. The bioactive site of each chain lies within its first about 100 residues. 

Orientation of IgG2 (1IGT) on a negatively charged surface for Φ, θ orientation angles: 

(b) (70º, 330º), (c) (150º, 310º), and (d) (150º, 322º). Based on the combined analysis of 

Fig 5.26(a) and Fig 5.26(b), orientation angles (Φ, θ) around (150º, 310º) and (150º, 322º) 

are considered to be more preferred. 
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5.1.2.2 Prediction of orientation on a positively charged surface 

The orientation of protein on a positively charged surface could be predicted by 

the topographic mapping of the negative residues on the protein surface. For the 

determination of the most probable site of adsorption a topographic map of the ‘More 

negative regions’ were performed to account for the presence of the counteracting 

repulsive effect of the positively charged residues with the positively charged surface. 

5.1.2.2.1 Immunoglobulin G (IgG) antibody 

Similar to the orientation of IgG on negatively charged surfaces; positively 

charged surfaces have also shown a preferential adsorption of IgG by a united-atom 

coarse-grained model85, thereby suggesting a similar value in generating a topology map 

of these molecules for negatively charged residues. 

5.1.2.2.1.1 IgG1 (PDB Model: 1IGY) 

(a)  
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(b)  

Figure 5.28: Distribution of negative residues in IgG1 (1IGY). (a) The dark red region 

corresponds to the negative residue concentration of 16 for which the orientation angle 

(Φ, θ) is (80º, 56º). (b) The red region corresponds to the ‘more negative residue’ 

concentration of 6 for which the orientation angle (Φ, θ) is (65º, 90º) 

The topographical map of negative residues in IgG1 (Fig 5.28) suggests a unique 

site (80º, 56º) wherein the antibodies are oriented with the antigen binding site oriented 

away from the interface. (Fig 5.29)  

 (a)  (b)  
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(c)   

(d)  

Figure 5.29: Orientation of IgG1 (1IGY) on positively charged surface (a) Prediction by 

the current study for the Φ, θ orientation angle set (80º, 56º). Dark blue indicates 

adsorbent surface plane. Residues are colored according to RASMOL90 color. (b) 

Prediction by united-atom coarse-grained model85. Blue horizontal line at the bottom of 

the figure indicates the adsorbent surface plane. (c) Residue height from the interface for 

IgG1 (1IGY) for Φ, θ orientation angle set (80 º, 56º) on a positively charged surface.  

The bioactive site of each chain lies within its first about 100 residues. (d) Prediction by 

the current study for the Φ, θ orientation angle set (65º, 90º). 
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5.1.2.2.1.1 IgG2 (PDB Model: 1IGT) 

The topographical map of negative residues in IgG2 (Fig 5.30) suggests multiple 

sites wherein the antibody is oriented with at least one antigen binding site being oriented 

away from the surface (Fig 5.30).  

 (a)   

(b)  

(c)  (d)   
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(e)  

Figure 5.30: (a) Distribution of negative residues in IgG2 (1IGT). The dark red regions 

correspond to the residue concentration of 13 for which the preferred orientation angles 

(Φ, θ) are (80º, 41º) and (80º, 46º). (b) The maximum residue concentration in ‘more 

negative’ residue topography map indicates the residue concentration of 5 for the 

orientation angles (Φ, θ) are (80º, 315º). (c) Orientation of IgG2 (1IGY) on positively 

charged surface for the orientation angle (80º, 41º) corresponding to the maximum 

residue concentration in Fig. 5.30(a). (d) Orientation of IgG2 (1IGY) on positively 

charged surface for the orientation angle (80º, 315º) corresponding to the maximum 

residue concentration in Fig. 5.30(b). (e) Orientation of IgG2 (1IGY) on positively 

charged surface for the orientation angle (60º, 240º) corresponding to the maximum 

concentration of residue by the combined analysis of Fig 5.30(a) and (b). Dark blue 

indicates adsorbent surface plane. Residues are colored according to RASMOL90 color. 

Lower horizontal line indicates adsorbent surface plane. 
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5.1.2.2.2 Bovine β-Lactoglobulin (BLG PDB Model: 3BLG) 

BLG is one of the whey proteins in cow’s milk that has been known to adsorb 

rapidly onto metallic surfaces such as stainless steel, gold, and chromium. In dairy 

industries the operational costs incurred due to the adsorption of these proteins is 

substantial, hence the adsorption behavior of these proteins on metallic surfaces at acidic 

pH have gained considerable interest as metallic surfaces are considered to be positively 

charged at these pH.39 

Since the primary driving force of the interaction between metallic surfaces and 

protein is believe to be due to electrostatic interactions, the orientation of these proteins 

on metallic surfaces at acidic pH could be predicted by the topographic mapping of the 

negatively charged residues constituting BLG. The topography map of the negative 

residues in the BLG indicates multiple sites of preferred orientation (Fig 5.31), which are 

listed in Table 5.2. 

(a)  
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(b)  

Figure 5.31: Distribution of negative residues in BLG (3BLG). (a) Topography map of 

negatively charged residues. The dark red regions correspond to the negative residue 

concentration of 14 for which the preferred Φ, θ orientation angles are listed in Table 5.2. 

(b) Topography map of the ‘more negatively’ charged residues for which the maximum 

residue concentration corresponds to (Φ, θ) orientation angle (100 º, 331º) 

Table 5.2: Orientation angles corresponding to maximum residue concentration on a 

positively charged interface 

Theta (degrees) Phi(degrees) Residue closest to interface 

10 
317 

17 
345 

15 348 157 

20 
29 157 

44 17 

110 90 63 

120 329 34 
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Experimental and simulation studies have been conducted to understand the 

molecular mechanism mediating the adhesion of BLG to metallic surfaces, such as gold 

and stainless steel, and the orientations in which these protein adhere to these surfaces 

were found to be different. 39 These dissimilarities are expected especially since the 

surface charge density and packing of metallic atoms in each of these interfaces are 

different. In addition, it should be recognized that the force field parameters utilized for 

the simulation studies may also be a substantial contributory factor influencing these 

results.39 However, using the current developed technique, the θ, Φ orientation angle set 

(10º, 317º) was found to be similar to the orientation prediction on a gold surface and the 

orientation angle set (100º, 331º) and (120 º, 329º) was found to be similar to the 

adsorbed orientation on stainless steel. The residue distributions on the interface are 

depicted in the Figure 5.33 and were found to be in excellent agreement with the 

predicted results.39 

 (a)  (b)  

Figure 5.32: Preferred orientation for BLG on positively charged surface at Φ, θ 

orientation angles (a) (15º, 347º), (b) (120 º, 329º). Blue plane indicates adsorbent surface 

plane. 
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Figure 5.33: Residue height from the surface for BLG (3BLG) on a positively charged 

surface. The blue line corresponds to the distribution at (Φ = 10º, θ = 317º), magenta 

corresponds to (Φ = 20º, θ = 29º), red corresponds to (Φ = 110º, θ = 90º), and green 

corresponds to (Φ = 120º, θ = 329º). 

 

5.2 Prediction of Orientation on Mixed Surface Chemistries 

Most of the natural and synthetic materials are not uniformly charged or 

uncharged, but present surface chemistries that are a mixture involving many different 

types of functional groups. The accurate prediction of protein orientation in such 

topologies could be useful in controlling the orientation of the protein, which in turn 

could lead to design surface for controlling the bioactivity of proteins on any given 

surface chemistry on interface.  
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5.2.1 Prediction of protein orientation in a biological membrane 

Biological membranes are natural examples of interfaces which present a mixed 

surface chemistry for interacting with protein through electrostatic and hydrophobic 

interactions.35 Studies involving the prediction of the orientation of membrane proteins 

have determined the hydrophobic thickness or the depth of interaction corresponding to 

the protein orientation on the membrane surface to be about 10 Å.80, 81 Hence using the 

default settings, the above method could also aid in predicting the orientation of proteins 

on biological interfaces. Prediction of protein orientation on biological membranes was 

limited to membrane bound proteins. 

 

5.2.1.1 Sarcomeric mitochondrial creatine kinase (MtCk PDB Model: 2GL6) 

MtCK is a membrane-bound protein that transports high energy phosphate from 

mitochondria to the cytosol creatine. MtCk occurs in two different oligomeric forms: 

dimeric and octameric. The orientation of this protein in the membrane through 

cardiolipin is important for the channeling function of the metabolite thereby regulating 

the mitochondrial respiration.87 

The PDB model 2GL6 is an octameric structure but each of these chains contains 

many missing residues especially at the N-terminus, and hence may not accurately 

predict the orientation of the protein in cell membrane. However residues Lys369, 

Lys379, and Lys380 flanking the C-terminus are considered to make up the site of 

attachment for association of MtCk with the phospholipid membrane, the missing 
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residues are not considered to affect the predicted orientation.35 The topographical map 

for positive and hydrophobic residues in 2GL6 suggests two Φ, θ, sites, (110º, 53º) and 

(150º, 80º), where the maximum number of residues is seen to interact with the surface 

(Fig.5.34). The orientation and residue distribution for (110º, 53º) is depicted in Fig 5.35. 

 (a)   

(b)  

Figure 5.34: Topography map of MtCk for (a) Positively charged residues, and (b) 

hydrophobic residues. 
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(a)  (b)  

 

(c)  

Figure 5.35: Predicted orientation of E and F chain of MtCk in a biological membrane 

for Φ, θ orientation angles (a) (110º, 53º) and (b) (150º, 80º).  Dark 

blue indicate adsorbent surface plane.  (c) Residue distribution on the biological 

membrane for MtCk (2GL6) on a biological membrane at (Φ = 110º, θ = 53º). 
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5.2.1.2 Type 1 human hexokinase (HXK PDB Model:  1HKC) 

HXK is a key enzyme in the glycolysis process and is found to be associated with 

the outer mitochondrial membrane. Attachment of the protein to the membrane is 

postulated to be through the N-terminus. The PDB model 1HKC contains a single chain 

of 917 residues for which the topographical map of positive (Fig 5.36a) and hydrophobic 

(Fig 5.36b) residues suggests Φ, θ orientation (110º, 74º) to be the orientation in which 

the HXK is oriented in a biological membrane (Fig 5.37a). The residue heights 

corresponding to this orientation indicates the N-terminus to be oriented towards the 

membrane surface (Fig 5.37b). The predicted orientations are consistent with those 

predicted for HXK on a model biological membrane.35 

 

(a)  
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(b)  

Figure 5.36: Topography map of HXK (1HKC) for (a) Positively charged, and (b) 

hydrophobic residues 

 

(a)  
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(b)  

Figure 5.37: (a) Predicted orientation (dark blue indicates membrane surface), and (b) 

residue distribution of the type 1 hexokinase on the model biological membrane surface 

for HKK (1HKC) at (Φ, θ) orientation angle set (110º, 74º). 

 

 

5.2.1.3 Mitochondrial cytochrome c (CYTC, PDB Model: 1HRC) 

Prediction of CYTC orientation on a biological membrane corresponds to Φ, θ 

orientation angle set (90º, 125º) based on the topographic map of CYTC for hydrophobic 

(Fig 5.38a) and positively charged residues (Fig 5.38b). These figures also correspond to 

Fig 5.16, which is in accord with the prediction by some research groups80 but is in 

discord with others.35 
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(a)  

(b)  

Figure 5.38: Topography map of CYTC (1HRC) for (a) positively charged, and (b) 

hydrophobic residues. 

 

5.2.2 Prediction of orientation on non-biological interface 

 The orientation predicted for adsorbed proteins using biological membranes and 

CH3-, OH-, COOH-, and NH2-SAMs are model surfaces for a variety of polymers and 

metallic surface but do not necessarily relate to all type of polymers such as polystyrene 
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or nylon. Surface functionalities influence the interaction distance (D) and hence could 

affect the initial orientation in which the protein adsorbs onto the surface, thereby 

affecting the predicted adsorbed protein orientation. In order to validate this assumption, 

the orientation of bovine α-lactalbumin (BLA) adsorbed on polystyrene was predicted by 

varying the parameter ‘D’. 

 

5.2.2.1 Bovine α-lactalbumin (BLA PDB Model: 1F6S) 

Using the default setting of ‘D’ as 10 Å, the topographic map of hydrophobic residues in 

(Fig 5.39a) predicts a preferential adsorption site with Φ ranging between 120º-130º and 

θ ranging from 260º-280º, for which the predicted orientation is similar to Fig 5.39b. 

(a)  (b)  

Figure 5.39: (a) Topography map of hydrophobic residues in BLA. (b) Orientation of 

BLA on hydrophobic surface corresponding to θ, Φ orientation angles (130º, 268º). 

 

However, simulation results of peptide interactions on an aromatic ring 

functionalized substrate have revealed the minimum energy interaction to be lesser than 
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10 Å .73. An interaction distance cut-off (D) of 7.5 Å could thus best describe the most 

favorable interaction of hydrophobic residues on interfaces with phenyl functional groups 

such as polystyrene.73 Thus the ‘D’ was set as 7.5 Å for current new set of  predictions. 

The topography map of hydrophobic residues in BLA under such conditions (Fig 5.40a) 

reveals two potential sites for favorable interaction. The site with Φ ranging between 

120º-130º and θ ranging from 260º-280º is similar to Fig 5.40. The other potential site of 

protein adsorption corresponds to the Φ, θ orientation angle set of (60 º, 75º) for which 

the orientation is as depicted in Fig 5.40b. 

 

Figure 5.40: Topography map of hydrophobic residues in BLA. 

 

The residue height from the interface corresponding to this orientation is shown in Fig 

5.41, which corresponds to the experimentally determined protein orientation on 

polystyrene nanospheres (60nm) .88 Although on a macroscopic scale the surface 
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topography of the nanospheres may not be flat, relative to the much smaller size of the 

protein, the surface can be considered to closely approximate a flat surface. 

(a)  

 

(b)  

Figure 5.41: (a) Orientation and (b) Residue distribution for BLA (1F6S) on the 

polystyrene surface for Φ, θ orientation angles (60º, 75º). 
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5.2.2.1 Hen egg white lysozyme (HEWL PDB Model: 7LYZ) 

The importance of ‘D’ for a given adsorption-system is further evident on 

interfaces which are mixed SAM surfaces with varying densities of charge, polar and 

non-polar functional groups. For example, using the default settings for generating the 

topography map for HEWL, prediction of orientation of HEWL on mixed surface 

chemistries yields orientations on different surface chemistries as given in Table 5.3. 

Table 5.3: Predicted orientation of HEWL on mixed surface chemistries. 

Surface chemistry 

(1:1 mixture ratio) 

Orientation 
angle 

(degrees) 

Number of 

residues 
Orientation Figure 

Hydrophobic/Hydrophilic (110, 229) 46 
Side on 

 active site down 

Fig 5.42 

(a), (b) 

Positive/Negative 

(110, 85) 

14 

Side on 

active site up 

Fig 5.42 

(c), (d) 

(110, 229) Side-on 

active site down 

Fig 5.42 

(a), (b) 

(110, 239) Side on 

active site down 
- 

Hydrophobic/Positive (110, 229) 28 
Side on 

 active site down 

Fig 5.42 

(a), (b) 

Hydrophobic/Negative (110, 255) 32 
Side on 

 active site down 

Fig 5.42 

(e), (f) 
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Hydrophilic/Positive (110, 229) 32 
Side on 

 active site down 

Fig 5.42 

(a), (b) 

Hydrophilic/Negative (110, 229) 30 
Side on 

 active site down 

Fig 5.42 

(a), (b) 

Hydrophobic/Hydrophilic

/Positive 
(110, 229) 52 

Side on 

 active site down 

Fig 5.42 

(a), (b) 

Hydrophobic/Hydrophilic

/Negative 
(110, 229) 54 

Side on 

 active site down 

Fig 5.42 

(a), (b) 

Hydrophobic/Positive 

/Negative 

(110, 229) 

36 

Side on 

 active site down 

Fig 5.42 

(a), (b) 

(110, 255) 
Side on 

 active site down 

Fig 5.42 

(e), (f) 

Hydrophilic/Positive 

/Negative 
(110, 229) 38 

Side on 

 active site down 

Fig 5.42 

(a), (b) 

Hydrophobic/Hydrophilic

/Negative/Positive 
(110, 229) 60 

Side on 

 active site down 

Fig 5.42 

(a), (b) 

 

(a)  (b)  
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(c)  (d)  

(e)  (f)  

Figure 5.42: Predicted orientations on mixed surfaces. Dark blue indicates adsorbent 

surface plane. (a) Side view of the (Φ, θ) orientation angles (110º, 229º). (b) Top view of 

the (Φ, θ) orientation angles (110º, 229º). (c) Side view of the (Φ, θ) orientation angles 

(110º, 85º) (d) Top view of the (Φ, θ) orientation angles (110º, 85º). (e) Side view of the 

(Φ, θ) orientation angles (110º, 255º). (f) Top view of the (Φ, θ) orientation angles (110º, 

255º). 

  

The orientation angle predicted for mixed surfaces represents the minimum energy 

positions. Though previous studies on the orientation of HEWL on mixed surfaces 

predict side-on orientations, these studies have also predicted end-on orientations 

especially for hydrophilic/positive and hydrophilic/negative surfaces. The end-on 
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orientation, however, is not predicted in any of the maximum residue concentration sites, 

thereby indicating that the interaction distance cut-off of 10Å could be an over-estimation 

of the distance which the surface-induced force is considered to be acting on the protein. 

 Similar erroneous prediction could affect the predicted protein orientation when 

the charge density of a charged surface is increased. NH2-SAM and COOH-SAM have 

been measured to have charge densities of 11% and 50% respectively at bulk pH of 7.491, 

and the default setting of ‘D’ is based on this approximation. When these charge densities 

are decreased or increased a corresponding decrease or increase in the ‘D’ setting may be 

expected.  Changes in the ionic concentration of the protein solution can be expected to 

have an even greater effect on the appropriate ‘D’ parameters because the ion 

concentration in solution will greatly influence the electrostatic shielding of the charged 

groups of both the material surface and the protein. These effects could potentially 

explain the under-estimation of the orientations predicted for IgG1 and IgG2 on charged 

surfaces especially at high charge densities. 

 A further variability in the number of the potential orientations is due to the 

method used to predict the potential interaction. The current method is based on the site 

which corresponds to the maximum number of residues and not on affinity of the residue 

to the surface. The affinity of the residue to the surface is influenced by (a) the packing of 

functional groups presented by the interface and (b) the attractive/opposing force due to 

the neighboring residues. These two factors are not completely accounted for in the 

current form of this program and could influence the predicted orientations with which 
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the protein would interact most favorably with the interface, thereby necessitating a 

ranking/parameterization based approach. This is very specifically illustrated by the 

orientation prediction on charged interfaces. By accounting for the opposing residue 

interaction with the surface, the predicted orientations are different from those predicted 

by the maximum number of residues alone. In fact by combining the analysis of the 

topography map predicted by the maximum residue concentration and opposing residue 

concentration, the predicted orientations are in excellent coherence with those observed 

in literature, further underlining the importance of a ranking/parameterization based 

approach. 

 Despite these shortcomings in the current program design, the accuracy and the 

computation speed with which the minimum energy orientations are predicted makes the 

current approach a valuable technique in the selection of the protein orientation for 

simulation studies involving quantification of the thermodynamic parameters, 

conformational shifts, and bioactivity prediction. 
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CHAPTER 6 

CONCLUSION 

Molecular modeling is currently the best approach to theoretically understand the 

molecular mechanisms mediating protein adsorption to material surfaces. A critical 

component in most molecular simulations to investigate protein adsorption behavior is to 

select the initial orientation(s) with which to begin the simulation. The typical time that it 

takes for predicting protein orientation on a selected material surface with molecular 

weight 14-67 kDa is 6-200 hours. This current study was therefore aimed at providing a 

rapid approach in predicting a preferred orientation on a wide range of surface types by 

approximating the free energy of adsorption as a function of the number and type of 

residues that would interact with the surface. These residues were identified based on the 

criterion that they lie within a defined interaction distance cut-off (D) of the surface when 

the protein approached the surface within a defined orientation. A topography map was 

thus generated over all possible rotations of a protein to identify the preferred low-energy 

orientations of the protein on a given type of surface. 

When applied to characterize the applicability of the current approach to a wide 

range of proteins (11 kDa-150 kDa in size) on a wide range of surface types, the 

predicted orientations on homogenous interfaces were in excellent agreement with both 

experimental and molecular simulation data for these proteins with average computation 

time being in minutes as opposed to hours or even days.  

Although the current approach for predicting protein adsorbed orientation on an 

surface predicts the potential minimum energy orientation, this may not necessarily 
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correspond to the global minima because of the method being based on rigid protein 

models and may have to be further verified for a given simulation environment based on 

the particular force field parameters that are used in the simulation. However the current 

approach will aid in the rational selection of the initial orientations to be considered as 

starting points for further studies to investigate the conformation and bioactivity of 

adsorbed proteins.  

The applicability of topography maps could be further expanded to predict the 

free energy of adsorption by parameterization of the affinity of each type of amino acid 

residue to specific types of surface functional groups. Other potential applications include 

rational material selection and design which could help in controlling the inherent 

bioactivity of adsorbed protein that could be further harnessed for a wide range of 

applications. 
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Appendix A: Expanded methods 

As described in chapter 4, the solvent accessibility was modeled according to 

Wodak and Janin’s analytical approximation59. The parameters are as described below: 

Modeling the solvent accessibility  

A.1 Calculation of the radii, surface area and the volume of amino acids 

r = Radius of the amino acid computed from van der Waal radii of C,N,O,S atoms. 

  = (Sum of the van der Waal radii of the CNOS constituting the amino acid)/1.2325 

rw = Radius of the solvent 

S = Total surface area of the solvated amino acid. = 4𝜋(𝑟 + 𝑟𝑤)2 

 

Figure A-1: Flow chart for determining the radii, surface area and volume of the amino 

acid 
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A.2 Calculation of the solvent accessibility of individual amino acid and the protein 

molecule 

s = intermolecular penetration depth 

d = distance between two amino acid. 222 )21()21()21( zzyyxx −+−+−=  

bi = maximum buried surface area by molecule 1 on molecule 2 

    = )1)(2)(( 12
211∏ −

+−+++
d

rrdrrrrr ww  

bi’ = minimum buried surface area by molecule 1 on molecule 2. 

      = )1)(2)(( 12
211∏ −−

+−−+++
d

rsrdsrrrrr ww  

B’ = buried surface area of the molecule 1 =  ∑ 𝑏𝑖𝑛
𝑖=1  

Ai = accessible surface area of the molecule 1 due to B’ 

     = ∏
=

−
−

n

i

i

S
bbS i

2

)'1(  

Ac = Effective accessible surface area of the molecule = ∑ 𝐴𝑖𝑛
𝑖=1  
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Figure A-2: Flow chart for determining the individual solvent accessible surface area of 

the amino acid and protein 
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Table A.1: ASA of the HEWL molecule determined by the algorithm described in Fig.  

A-1. Reference structure is 1AKI based on which the RMSD of the models 

have been determined. Resolution and pH are specific to the PDB model. 

PDB ID RMSD Resolution (Å) pH ASA 
(Å) (Å2) 

1AKI 0 1.50 4.48 6523 

1VDQ 0.1 1.50 - 6518 

1GXV 1.3 - 2.00 6092 

1HEL 0.3 1.70 - 6662 

2EPE 0.4 2.50 4.70 6370 

7LYZ 0.4 2.50 - 6623 

1VDS 0.4 1.60 - 6571 

1BVX 0.4 1.80 4.50 6513 

1BWH 0.4 1.80 4.70 6641 

1YKZ 0.4 1.80 4.60 6591 

1JIS 0.4 1.90 4.60 6646 

193L 0.4 1.33 4.30 6337 

2LYM 0.4 2.00 - 6804 

1HEM 0.4 1.80 - 6576 

1LSM 0.4 1.70 - 6482 

1RCM A 0.7 1.90 - 6710 

1RCM B 0.5 1.90 - 6805 

1YL0 0.4 1.90 4.60 6867 

1FLU 0.3 1.78 4.70 6563 

6LYT 0.4 1.90 - 6602 

194L 0.4 1.40 4.30 6363 

3A93 0.4 1.55 4.50 6395 
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XYZ coordinates represented in the structural file merely represent the maximal 

probability a given atom could be found at the given coordinate rather than the actual 

position of the atom. An estimate of the uncertainty in the atomic position is provided by 

the B-factor or the ‘atomic thermal factor’. The B-factor from a refinement process is the 

combined result of the disorder and thermal motions occurring in the protein molecule. 

While the disorder pertains to atom occupying different position in the crystal, thermal 

motion refers to vibration of an atom about its equilibrium position. In either case, the 

higher the B-factor of a residue, the lesser is the probability of finding the residue at the 

specified XYZ coordinate. Hence residues with unusually high thermal factors should not 

be included in the analysis. The standard method of removing such discrepancies 

involves removing segments with a Z score greater than three from the normalized B-

factor.  

Excluding residues with unusually high variation in atomic positioning 

The B-factor of the alpha carbon of an amino acid within a protein was extracted 

from the PDB coordinates and was computed according to the following formula: 

Bzi = (Bi – μ)/σ, where,  

Bzi = Z score of B factor of the alpha carbon at position i. 

Bi = B-factor of the alpha carbon at position i 

μ = mean of the B-factor of alpha carbon atoms in the chain. 

σ = Standard deviation of the B-factor of alpha carbon atoms in the protein chain. 
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Figure A-3: Normalized temperature factor for HSA. None of the residues in this model 

have highly uncertain XYZ locations as indicted by the fact that the thermal 

factor distribution for all atoms is within a Z-score cut-offs at ±3, which are 

marked in red. 

 

(a)  
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(b)  

Figure A-4: Normalized temperature factor for (a) HEWL and (b) Fibronectin. In HEWL, 

two residues (71 and 129), while in the fibronectin model four residues have 

highly uncertain XYZ locations as indicted by the fact that the thermal 

factor distribution is higher than the Z-score cut-off at 3, which is marked in 

red. 

 

Although such a screening approach is important to the predicted orientation of 

protein and is enabled in the current feature of MATLAB® script, flexibility analysis has 

not been applied to any of the results described in the present manuscript due to the lack 

of a comparable data.  
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Appendix B: Expanded results 

Comparison of Topographical Maps for Similar Protein Structures 

This section is incorporated in order to demonstrate the application of local 

positioning and the ability of the topography maps in identifying even the slightest 

change in the protein structure. HEWL was chosen as the protein of interest as it is one 

the most highly solved protein structures for which the structural coordinate files are 

available. 

Table B.1: The root mean square deviation (RMSD) of similar HEWL models resolved at 

varying environmental conditions. Reference structure is 1BVX. 

PDB ID pH Temperature 
(K) 

Resolution 
(Å) 

RMSD 
(Å) 

1bvx 4.5 - 1.8 0.0 
1bwh 4.7 - 1.8 0.1 
1ykz 4.6 298 1.8 0.1 
1bwj 4.7 293 1.8 0.1 

1jis 4.6 293 1.9 0.1 

1vds - - 1.6 0.1 
1z55 4.6 298 1.9 0.1 
1lza - - 1.6 0.1 
1jit 4.6 293 1.9 0.1 
1yl0 5.5 298 1.9 0.1 
1ykx 4.6 298 1.9 0.1 
1yky 4.6 298 1.9 0.1 
1jj0 4.6 293 1.9 0.2 
1yl1 4.6 298 1.9 0.2 
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Figure B-1: Superimposed structure of HEWL models described in Table B-1. Image 

generated in DALI. 

 

Table B.2: Topography map of hydrophobic residues in HEWL models generated at 

angle of rotation (α) = 10º described in Table B.1 

 

 
1BVX 

 

 
1BWH 

 

1YKZ 

 

 
1BWJ 



 106 
 

 

 
1JIS 

 

 
1VDS 

 

 
1Z55 

 

 
1LZA 

 

 
1JIT 

 

 
1YL0 

 

 
1YKX 

 

 
1YKY 

 

 
1JJ0 

 

 
1YL1 

  



 107 
 

Comparison of Topographical Maps for Dissimilar Protein Models 

Table B.3: The root mean square deviation (RMSD) of dissimilar HEWL models 

resolved at varying environmental conditions. Reference structure is 1BVX. 

PDB ID RMSD 
(Å) pH Temperature 

(K) 
Resolution 

(Å) 

1bvx 0.0 4.5 - 1.8 

1rcm (A) 0.4 - - 1.9 

1rcm (B) 0.6 - - 1.9 

1sq2 (L) 0.9 7 295 1.45 

1v7t (B) 0.8 4.5 263 1.13 

 

Figure B-2: Superimposed structure of HEWL models described in Table B-2. Image 

generated in DALI49. 
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Table B.4: Topography map of hydrophobic residues in HEWL models described in 

Table B.3 

 
1RCM (A) 

 
1RCM (B) 

 

 
1SQ2 (L) 

 

 
1V7T (B) 
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Effect of Angle of Rotation (α) on Topography Map and Predicted Orientation 

The angle of rotation (α) determines the grid points within the topography maps 

that correspond to the distribution of residues interacting with the surface. The closer that 

the grid points are, the better and more accurate is the interpolation for generating the 

topographical map. Hence smaller ‘α’ is expected to affect the quality of the topography 

map generated for the current study, but extremely small ‘α’ is prohibitory as the run time 

involved in the configurational space search would be very large. The typical value of α 

is 10º with values such as 15º being used for extremely small proteins such as CYTC. 

In order to demonstrate the effect of α on protein, a comparison was done on (a) 

cytochrome c (1HRC), (b) hen egg white lysozyme (1BVX), (c) human serum albumin 

(1E78), and (d) Aspergillus niger glucose oxidase (1CF3) for α values of 5º, 10º, 15º 

(Table B-5). Based on these results it could be noticed that the residue distributions are 

significantly different at higher and lower angles of rotation. Since the current method 

employs a rigid model with no other mode of interactions involved, the topography maps 

at lower ‘α’ are very important for the accurate prediction of the preferred orientation, 

resulting in the selection of α = 5º for the subsequent studies. 

Table B.5: The effect of ‘α’ on different proteins with different molecular sizes. 

Protein type PDB 
model Resolution Molecular 

weight (kDa) 
Approx. 

radii (nm) Figure 

CYTC 1HRC 1.90 11.8 1.67 B-3 
HEWL 1BVX 1.80 14.3 1.78 B-4 
HSA 1E78 2.60 66.5 2.97 B-5 
GOx 1CF3 1.90 63.3 2.93 B-6 
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Cytochrome C (1HRC) 

(a)   

(b)  

(c)  

Figure B-3: Distribution of hydrophilic residues in CYTC at different angles of rotation: 

(a) 5º, (b) 10º, and (c) 15º at ‘D’ of 10 Å and residue exclusion of relative ASA less than 

10%. 
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Hen egg white lysozyme (HEWL) 

(a)   

(b)  

(c)  

Figure B-4: Distribution of hydrophilic residues in HEWL at different angle of rotations: 

(a) 5º, (b) 10º, and (c) 15º at ‘D’ of 10 Å and residue exclusion of relative ASA less than 

10%. 
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Aspergillus niger glucose oxidase (GOx) 

(a)   

(b)   

(c)  

Figure B-5: Distribution of hydrophilic residues in GOx at different angle of rotations: (a) 

5º, (b) 10º, and (c) 15º at ‘D’ of 10 Å and residue exclusion of relative ASA less than 

10%. 
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Human serum albumin (HSA) 

(a)   

(b)  

(c)  

Figure B-6: Distribution of hydrophilic residues in HSA at different angle of rotations: 

(a) 5º, (b) 10º, and (c) 15º at ‘D’ of 10 Å and residue exclusion of relative ASA less than 

10%.  
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Effect of Residue Exclusion on Topography Map and Predicted Orientation 

As discussed in chapter 4 of the main manuscript, solvent accessibility of the 

amino acid is a critical parameter in mediating the interactions of an amino acid with the 

surface. Exclusion of buried residues from being quantified is thus important for the 

accurate prediction of the amino acid and would thus affect the topography map 

generated for a given protein generated for a given interaction distance cut-off. The 

default setting for defining a particular residue as buried is the relative accessibility of 

less than 10%, but the program is flexible to accept any user-defined input, as there is a 

no-defined criterion for the selection of such cut-off (Fig B-7). However, the best result 

was obtained with a relative accessibility cut-off of 10% and this value was used for all 

subsequent studies. 

(a)  

 (b)  
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(c)  

 (d)  

(e)   

(f)  

Figure B-7: Distribution of hydrophobic residues at different relative ASA in HEWL (a) 

no exclusion, (b) 10%, (c) 15%, (d) 20%, (e) 25%, and (f) 35% at ‘D’ of 10 Å and angle 

of rotation = 5º.  
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Effect of Interaction Distance Cut-Off (D) on Topography Map and Predicted Orientation 

The interaction distance cut-off is an approximation of the potential of mean force 

profile acting on the amino acid constituting the protein where the interaction with the 

surface is considered to reach a minimum of energy. The quantification of the residues at 

a user-defined ‘D’ followed by the selection of the face of the protein corresponding to 

the maximum residue concentration could thus indicate the most favorable orientation 

with which the protein would adsorb to the surface.  

‘D’ is found to vary with the functional groups presented by the surface to the 

peptide such as SAMs with CH3, C6H5OH, and NHCOCH3 functional groups as indicated 

by Vellore et al.73 Hence, for the accurate prediction of the preferred orientation, a proper 

approximation of ‘D’ would thus be required. Theoretically it is expected that the 

residues closer to the interface would interact more favorably than the residues which are 

positioned far from the protein surface, hence in the event of multiple sites presenting 

residues with maximum concentration, sites corresponding to residues closest to the 

surface which have maximum relative solvent accessibility are ideal for the identification 

of preferred orientations than those far from the surface. 

(a)   
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(b)  

(c)  

Figure B-8: Distribution of hydrophilic residues at different relative ‘D’ in CYTC: (a) 

5Å,  (b) 10 Å, and (c) 15 Å at an angle of rotation of 5º and relative accessibility cut-off 

of 10%. 

 

In ideal surfaces mimicking CH3, OH, NH2, and COOH SAMs, the minimum 

energy of interaction was found at an average ‘D’ of 10 Å and this value of D was thus 

chosen as the default setting. However, the value of D can be varied according to user-

input. 
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