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ABSTRACT 

The Gastrodia antifungal protein (GAFP)-1 is a mannose-binding lectin originating 

from the Asiatic orchid Gastrodia elata. It has potential for conferring resistance to 

fungal and non-fungal pathogens in other plants which is currently being investigated. 

The goals of this research project were to determine (i) the potential movement of GAFP-

1 protein from transgenic rootstocks into the non-transgenic scion of chimeric-grafted 

trees (ii) the levels of GAFP-1 protein in lines of the cultivar ‗Bluebyrd‘ expressing the 

gene gafp-1 under the control of the polyubiquitin promoter bul409, and (iii) the 

susceptibility of selected lines to the root pathogens Phytophthora cinnamomi Rands and 

Meloidogyne incognita Kofoid & White in greenhouse experiments.  

Wild-type (WT) plum (Prunus domestica cultivar ‗Stanley‘) tissue was budded onto 

transgenic plum lines ‗Stanley‘ 4J and 4I to create chimeric-grafted trees. Tissues from 

chimeric-grafted trees were analyzed for protein (leaf, soft shoot (non-woody shoot), and 

root) by immunodetection. The GAFP-1 lectin was identified within the roots, but not in 

the soft shoot or leaf tissues of the grafted, WT scions. These results suggest that GAFP 

protein is not moving into the WT scion tissues of chimeric-grafted plum trees, a feature 

that would likely appeal to consumers who are concerned about GMO in their food.  

Only 9 out of 17 ‗Bluebyrd‘ plum lines containing the gafp-1 gene produced GAFP-

1 protein and only 1 of these 9 lines exhibited increased tolerance to Phytophthora root 

rot (PRR) caused by P. cinnamomi. This same line (BB-1) was also significantly more 

tolerant to infection by the root-knot nematode (RKN) Meloidogyne incognita. BB-1 was 

superior in resistance to PRR and equal in resistance to RKN compared to the previously 
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characterized ‗Stanley‘ 4J line, which expresses the gafp-1gene under the control of the 

CaMV35S promoter. The levels of GAFP-1 synthesized in BB-1 were not elevated at 30 

days after inoculation by M. incognita and at 5 days after inoculation by P. cinnamomi, 

suggesting that bul409 is not an inducible promoter. This study confirms the potential 

usefulness of incorporating the gafp-1 gene in creating disease resistant rootstocks for 

stone fruit cultivars and suggests that the gafp-1 gene provides comparable resistance to 

PRR and RKN  irrespective of the promoter (bul409 or CaMV35S) being utilized for 

controlling gene expression. 
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CHAPTER ONE 

 

INTRODUCTION 

Peaches, plums, apricots, nectarines, almonds, and cherries are ―stone fruit‖ species 

bearing a hard pit, or ―stone,‖ as seed. Today peaches are being produced commercially 

in 29 states of the United States with a value of $461 million in 2004 (Borris and Brunke, 

2006). Peach production in the USA is 8.7% of the world‘s total production and was 

approximately 1.1 million tons in August 2008 (Brunke and Chang, 2010; United States 

Department of Agriculture National Agricultural Statistics Service, 2009). South Carolina 

and Georgia are well known for the production of high quality fresh fruit and rank 2
nd

 and 

3
rd

, respectively, behind California in total production. In South Carolina approximately 

18,000 acres are currently associated with peach production (South Carolina Department 

of Agriculture, 2010).  

In the warm, humid climate of the southeastern United States pests and diseases tend 

to thrive. A number of pathogens attack the fruit, branches, trunk, and roots of peach 

trees. Among the most important root diseases are Armillaria root rot (ARR), 

Phytophthora root rot (PRR), and root-knot nematode (RKN). All can either weaken or 

even kill the root system.  

ARR is also known as shoestring root rot, oak root rot, honey fungus, or Hallimasch 

(Fox, 2000a). The disease is caused by various Armillaria species, including A. gallica, 

A. ostoyae, A. mellea, and A. tabescens (Fox, 2000a). There is little host specificity 

among Armillaria species and approximately 700 plant species have been identified as 
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hosts; most of which are woody plants. The pathogen moves relatively slowly from host 

to host through rhizomorphs or root-to-root contact. In the Southeastern US, A. tabescens 

is the most prevalent species causing severe damage to peach trees (Adaskaveg et al., 

2008). It was estimated that ARR caused $3.86 million in damage for South Carolina 

between 1987 and 1992 (Miller, 1994). In many cases, the pathogen successfully invades 

healthy tissue after it establishes itself saprophytically. Symptoms and signs of ARR 

include: the appearance of honey colored mushroom at the base of the tree (Fig 1.1A), 

poor terminal growth and curled, undersized leaves on all scaffold limbs (Fig.1.1B). 

White mycelial fans grow under the bark of the tree and their presence can be used to 

easily identify the disease (Fig.1.1C). Although older trees are more commonly affected, 

trees as young as 3 years are killed on replant sites (Adaskaveg et al., 2008). Management 

of this disease is difficult. Chemical control is largely ineffective. Fumigants such as 

carbon disulphide have good soil penetration but do not kill the fungus directly (West, 

2000). Some fumigants, such as methyl bromide, have been banned due to the adverse 

effect on the environment and particularly on the ozone layer. ―Armillatox‖ (active 

ingredient polyalkyl phenolics) was marketed for the control of ARR and it did show 

some effect on rhizomorphs but little effect on eradication of mycelium within wood 

pieces (West, 2000). The primary impediment to biological and chemical control of ARR 

is the inability of materials to reach the fungus inside roots (Fox, 2000b). Cultural control 

of ARR such as complete removal of wood debris is not economically feasible (Fox, 

2000c). Biological control with wood-inhabiting organisms can prevent or inhibit growth 

of the pathogen mycelium by substrate competition (Hagle and Shaw, 1991), but direct 
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inoculation of the roots is difficult (Raziq, 2000). Additionally, there are no peach 

rootstocks resistant to this disease. 

PRR is a soil-borne disease causing destructive damage to stone fruit orchards. This 

disease is caused by Phytophthora species, occurs at any age of a tree, and results in tree 

death. Phytophthora species are fungal-like organisms classified into the kingdom 

Stramenopila (Adaskaveg et al., 2008). The cell wall of Phytophthora species is 

composed of cellulose and β-glucans not chitin, which is the cell wall material in true 

fungi (Adaskaveg et al., 2008). Phytophthora species have coenocytic mycelium with 

few or no septa. In the presence of water the mycelium produces zoospores, which are 

biflagellate and can move in free water and infect healthy trees (Erwin and Ribeiro, 

1996). P. cinnamomi causes PRR in southeastern peach orchards and can cause disease in 

over 3000 other plant species including crop plants such as avocado, pineapple, chestnut, 

and macadamia (Hardham, 2005). Excessive irrigation and rainfall contribute to disease 

development, but the most important factor is duration of free water in soil. Free water 

enables the rapid formation of sporangia (Fig.1.2A) and zoospores (Erwin and Ribeiro, 

1996), which can move to new hosts. P. cinnamomi can survive in moist soil for as long 

as 6 years (Hardham, 2005). Estimated loss due to P. cinnamomi is $30 million annually 

in avocado in California and $5 million annually in pine plantations in forests from 

Virginia to Mississippi (Hardham, 2005). Losses of a comparable magnitude due to 

infection by P. cinnamomi are speculated to occur in other crop species. Disease 

symptoms include poor terminal growth with small and chlorotic leaves on the entire 

canopy of the tree (Fig. 1.2B). The tree may exhibit dieback and will decline either 
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progressively or suddenly depending on disease severity (Fig. 1.2C). Phytophthora 

species survive as chlamydospores, oospores, or hyphae in the root debris. Zoospores are 

considered the primary spore associated with infection. Management by chemical control 

using fungicides can be useful but modern fungicides are mostly fungistatic. 

Phenylamides (e.g. metalaxyl) are the most effective for the control of P. cinnamomi but 

their effectiveness varies with different P. cinnamomi isolates (Hardy et al., 2001) and 

environmental conditions, such as the phosphorus levels in soil (Guest and Grant, 1991). 

Beside fumigants, phosphites (e.g. fosetyl-Al) are used for PRR control. They are xylem–

mobile systemic fungicides shown to reduce the production of zoospores in infected plant 

material (Hardham, 2005). Recent research, however, suggests that phosphites may cause 

phytotoxicity producing effects such as foliar damage, reduction of pollen viability, 

pollen tube growth, and decrease in root growth (Hardham, 2005). Host resistance may 

be the best management strategy especially for the management of soil-borne diseases 

like PRR. Currently there are no Prunus rootstocks that are resistant to PRR. 

Nematodes are true roundworms, non-segmented microscopic animals. They have 

bilateral symmetry and look like threads under low power magnification. The size of 

plant parasitic nematodes ranges from 0.4 mm to 5 mm in length. Nematodes are often 

ignored and underestimated due to their localization in soil and the non-specific 

symptoms that they cause in plants above ground but, they are economically important. If 

nematodes are not properly managed they can reduce yield and plant vigor and even 

cause tree death (Nyczepir and Esmenjaud, 2008). Two nematodes cause major problems 

on peach trees, Meloidogyne species (root knot nematodes) and Mesocriconema xenoplax 
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(Raski) Loof & de Grisse (ring nematodes). Meloidogyne species cause root knots on 

plant roots (Fig. 1.3A) and are commonly referred to as root knot nematodes (RKN). 

RKN are some of the most economically important plant parasitic nematodes because of 

their wide host range and widespread distribution (Nyczepir and Esmenjaud, 2008). 

Above-ground symptoms are generally seen as stunting of growth, yellowing of leaves, 

while below-ground symptoms include root galls. The nematodes feed on the roots by 

puncturing and sucking cell contents (The California Tree Fruit Agreement and The 

California Minor Crops Council, 2006) and the second stage juvenile is the infective 

stage (Fig. 1.3B). M. incognita, M. javanica and M. arenaria are considered to be the 

most damaging species in peach trees. These nematodes species are common on peach in 

the USA, especially when plants are cultivated in sandy soils (Stirling, 1975). Ring 

nematodes are migratory ectoparasites. They are short, and easily distinguished by a long 

stylet and distinctive coarse annulations around the body (Nyczepir and Esmenjaud, 

2008). They complete their life cycle in 25 to 35 days. Ring nematodes are associated 

with Peach Tree Short Life (PTSL) in peach. Currently, Guardian rootstocks are 

commonly used due to their tolerance to ring nematodes and their ability to reduce the 

incidence of PTSL in sandy sites. Nematode damage also interferes with nutrient and 

water uptake and nematodes themselves transmit viral diseases such as Prunus stem 

pitting disease caused by Tomato ringspot virus (TmRSV; Hoy, 1983). They may also 

predispose roots of plum and peach to infection by Agrobacterium tumefaciens which 

causes crown gall disease (Rubio Cabetas et al., 2001; Dhanvantari et al., 1975). Crop 

rotation, the use of resistance rootstocks, and chemical control are major methods for 
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nematodes management. Crop rotation is difficult, because of the wide host range of 

Meloidogyne species and the longevity of the peach tree, which is not replanted every 

year but remains in the ground for up to 20 years. Some effective nematicides such as 

organophosphates and carbamates are non-specific neurotoxins with poor environmental 

profiles and high toxicity to mammals (Haydock et al., 2006; Risher et al., 1987). 

Resistant rootstocks may be the most economic and environmentally safe method for 

management of Meloidogyne species in Prunus species. In the southeastern US, as started 

earlier ‗Guardian‘ is the most commonly used rootstock due to its resistance to peach tree 

short life (PTSL) which is associated with the presence of the ring nematode M. 

xenoplax. However, the rootstock is not immune/resistant to Meloidogyne species 

(Nyczepir and Esmenjaud, 2008, Nyczepir et al., 2009) ‗Lovell‘ and ‗Nemaguard‘ are 

also important and commonly used peach rootstocks in the USA. ‗Lovell‘ usually 

outlives ‗Nemaguard‘ on sites in the Southeast where M. xenoplax is most prevalent 

(Nyczepir and Esmenjaud, 2008). In a recent study, ‗Halford‘ rootstock, which is 

frequently used in the Northern US was found to be highly susceptible to Meloidogyne 

species (Nyczepir et al., 2008). Although, an advanced line of ―Guardian
TM 

, SC 3-17-7, 

showed reduced numbers of root galls, and reduced numbers of eggs per gram of dry 

weight root due to infestation with Meloidogyne species as compared to ―Lovell‖ and 

SL2891 (another advanced line of ―Guardian‖) (Nyczepir et al., 2006). There is no peach 

rootstock available that is completely resistance to RKN. 

ARR, PRR, and RKN share the commonality of being difficult-to-control, soilborne 

diseases. The lack of effective chemical, biological, or cultural management strategies 
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necessitates investigation of alternative methods. Recently a protein was identified in the 

orchid Gastrodia elata which may possibility be used a biological control mechanism. G. 

elata is an achlorophyllous orchid dependent on A. mellea for the completion of its life 

cycle. The plant allows the fungus to invade its primary corm before arresting and 

digesting the fungal hyphae in the cortical layer of the tuber for its nutritive values. It is 

speculated that after digestion nutrients are transported from the tuber to the terminal 

corm for further development of the plant such as the formation of flowers. The terminal 

corm of this plant, which is completely resistant to fungal infection (Yang and Hu, 1990), 

releases large amounts of Gastrodia anti-fungal protein (GAFP) upon infection by A. 

mellea. The protein was purified from the terminal corm of G. elata, and was shown to 

inhibit the growth of multiple phytopathogenic fungi in vitro, including Valsa ambiens, 

Gibberella zeae, Botrytis cinerea, Armillaria mellea, Rhizoctonia solani, and Ganoderma 

lucidum (Hu et al. 1988; Xu et al. 1998). Because of the broad spectrum anti-fungal 

activity of the protein the gene for this protein merits investigation for the possibility of 

being transferred to susceptible plants which may then provide an effective management 

of various fungal diseases, especially Armillaria. 

The first transgenic crop plants expressing GAFP protein utilized the gene under 

control of the CaMV35S promoter. The Cauliflower mosaic virus (CaMV) is a double-

stranded DNA virus that infects a wide range of plants such as cabbage, cauliflowers, and 

mustard. This virus has two promoters 35S and 19S in front of its genes. The 35S 

promoter is a strong, constitutive, and widely used promoter in biotechnology (Cummins, 

1994). This promoter (CaMV35S) was first isolated by Chau and collaborators at 
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Rockefeller University (Cummins, 1994) and is patented by Monsanto. Transgenic plants 

containing the gafp-1 gene under the control of CaMV35S were generated about a decade 

after GAFP was discovered in 1988 (Hu et al., 1988). Transgenic cotton, containing the 

GAFP has displayed resistance against Verticillium wilt disease caused by Verticillium 

dahliae (Wang et al., 2004). In transgenic tobacco, GAFP, isoform VNF (GAFP-1) 

(Wang et al., 2001) has shown resistance against M. incognita, and the basidiomycete 

fungus Rhizoctonia solani (Cox et al., 2006). In 2008, Nagel et al. (2008) showed that 

GAFP-1 is effective against PRR and RKN in transgenic plum plants when associated 

with CaMV35S promoter. The best performing transgenic tobacco and plum lines 

however were not completely resistant to infection and subsequent decline (Cox et al., 

2006 and Nagel et al., 2008), leaving room for research focusing on performance 

improvement. Armillaria has been identified as a major problem of peach in the 

Southeast (Miller, 1994).  No studies have investigated the effectiveness of GAFP 

incorporation with relation to the management of Armillaria due to the absence of a good 

disease testing assay. 

The generation of disease-resistant plants through traditional breeding and the 

production of bioengineered plants is a key component to meet the demands of food for 

the increasing world population. It is estimated that the food supply should increase by 

60% to meet the world food demand by the year 2020 (Skinner et al., 2004). Since crop 

land cannot increase endlessly, the yield per acre must be improved, possibly through 

more effective management of pests and diseases. In this respect, the production of 

genetically engineered (GE) crops with pest management traits such as herbicides 
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resistance, fungal resistance or nematode resistance has risen dramatically since the mid-

1990s. When adopting bioengineered crops, farm impact, consumer acceptance, and 

environmental safety are concerns. The primary motivations, however, are profitability 

and reduction of pesticide use (Fernandez-Cornejo and McBride, 2002). The increasing 

applications of pesticides in agricultural land has created a number of problems such as 

insecticide and fungicide resistance, adverse effects on humans and environment, and  

pest outbreaks due to large amount of pesticides used (Kos et al., 2009). The most 

commonly available insect-resistant, transgenic plants carry the gene for Bacillus 

thuringiensis (Bt) δ-endotoxins (called crystal proteins or Cry proteins) (Kos et al., 2009). 

As of June 30, 2005, the U.S. Department of Agriculture and the National Agriculture 

Statistics Service (USDA/NASS) reported that three transgenic varieties of soybean, 

corn, and cotton comprised 87, 52, and 79 percent of the acreage planted in the US 

(Schahczenski and Adam, 2006). As of January 6, 2006, papaya (two varieties), potato, 

squash, sugar beet, sweet corn, and tomato have been granted deregulated status by the 

USDA Animal and Plant Health Inspection Service (APHIS) (Schahczenski and Adam, 

2006).  

There are two major approaches widely used to transform transgenic crop plants, one 

is biolistic bombardment and another is Agrobacterium-mediated transformation. In the 

latter, more popular approach, the gene of interest is placed under the control of a 

promoter sequence and markers are inserted in the vector between the left and right 

border of the Agrobacterium plasmid. The commonly used promoter for plant 

http://en.wikipedia.org/wiki/Endotoxin
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transformation has been the CaMV35S. The promoter is recognized by RNA polymerase 

to initiate and regulate transcription in the plant genome.  

As mentioned above, transgenic tobacco and transgenic plum showed disease 

resistance however, there was room for improvement. One way to increase transgenic 

plant performance (in regard to resistance) is to increase expression of the transgene, and 

in the case of gafp-1, by using a different promoter. A promoter derived from 

polyubiquitin gene has been widely used to drive various transgenes and it has been 

shown to increase the level of expression in different transgenic plants (Lu et al., 2008). 

Ubiquitin is a small protein that contains 76 amino acids and is highly conserved in all 

eukaryotes. This gene contains two different types of structures, polyubiquitin and the 

ubiquine gene. The promoter element derived from the polyubiquitin gene has been 

widely characterized in many transgenic plants such as maize (Christensen and Quail, 

1996), potato (Garbarino et al., 1995), tobacco (Plesse et al., 2001), rice (Wang et al., 

2000), gladiolus (Joung and Kamo, 2006), and sunflower (Binet et al., 1991). The 

polyubiquitin bul409 promoter derived from the polyubiquitin gene encodes a hexameric 

polyprotein. It was first isolated from a Solanum bulbocastanum BAC library (Rockhold 

et al., 2008). bul409 has shown enhanced expression of the reporter gene (GUS) in 

transgenic potato lines (Rockhold et al., 2008). Expression was 30-fold higher in 

transgenic potato lines compared to lines generated using the CaMV35S promoter 

(Rockhold et al., 2008). In transgenic rice the rubi3 polyubiquitin promoter gene showed 

higher expression of two different reporter genes GUS (β-glucuronidase) and GFP (green 

fluorescent protein) (Lu et al., 2008). However, the polyubiquitin promoter has not been 
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studied in transgenic plum plants. Transgenic ‗Stanley‘ plum lines 4I and 4J were 

generated using the CaMV35S promoter and these showed increased tolerance to RKN 

and reduced disease symptoms of PRR (Nagel et al., 2008). These lines were generated at 

the USDA Fruit Research Station in Kearneysville, WV by Dr. Ralph Scorza laboratory.  

  Whether or not a transgenic rootstock will be successfully implemented for food 

production hinges on consumer acceptance. One concern needing investigation is 

potential of gafp-1 transcripts and GAFP protein to migrate from the rootstock to a non-

transgenic scion. Scions with favorable fruit quality traits are routinely grafted onto 

rootstocks which in turn provide the scion with desirable rootstock characteristics such as 

tolerance of winter cold, disease resistance, seasonal flooding and summer droughts, or 

reducing tree size (Merwin, 1999). Grafting techniques have been used in agriculture for 

centuries for woody species, such as apples, peaches and grapes, and for annual plants as 

well. In early 1900s, grafting was used for the first time to control Fusarium wilt on 

watermelons and afterwards grafting was often used to reduce Ralstonia solanacearum 

(bacterium wilt) in tomato (Rivard and Louws, 2006) and has more recently been applied 

to manage root-knot nematodes (RKN) in tomato crops worldwide (Cortada et al., 2008; 

Rivard et al., 2010). Using transgenic rootstocks for non-transgenic scions will be more 

acceptable for consumers if the transgene products do not move upward into scion tissue.  

A long term goal is to investigate the potential of gafp-1 as genetic determinant for 

ARR control, which currently causes most of the peach tree decline in the Southeast. 

Those tests are outside the scope of this study and will be performed in the field due to 

the lack of a suitable ARR pathogenicity test under controlled conditions. Pathogenicity 
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tests for PRR and RKN diseases are established, however, and were used in this study to 

screen gafp-1 expressing transformants. Until a suitable genetic transformation system 

for peach is developed, plums are being used as a model system to investigate gafp-1 

expressing rootstocks for disease resistance. Many plum varieties, including the two used 

in this study (Schnabel, unpublished data) can be used as a rootstocks for peach (Layne, 

1987). The objectives of this study were (i) to determine the potential movement of 

GAFP-1 protein across the grafted scion of chimeric-grafted plum, (ii) to characterize 

gafp-1-expressing transgenic ‗Bluebyrd‘ (BB) lines in regard to GAFP-1 protein 

expression, and (iii) to evaluate the resistance to PRR and RKN susceptibility of 

‗Bluebyrd‘ lines that express high levels of GAFP-1 protein.  
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Fig. 1.1. Armillaria tabescens basidiocarps produced at infected peach roots (A). Above-

ground symptoms of an infected peach tree displaying wilted foliage and dead scaffold 

limbs (B). White mycelial sheets of Armillaria inside the bark of an infected tree (C) 

Pictures provided by Dr. Schnabel. 
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Fig. 1.2. Reproductive structures (sporangia) of Phytophthora species (A; Wilcox and 

Biggs, 2005). Young tree killed by Phytophthora species on poor draining site (B). Peach 

roots and lower trunk infected with Phytophthora cinnamomi (C) Pictures provided by 

Dr. Schnabel. 
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Fig. 1.3. Root-knot nematode infected root system of corn and non-infected root system 

(A). Root with second stage juveniles of Meloidogyne species (B) Tiwari et al., 2009. 
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CHAPTER TWO 

  

THE GASTRODIA ANTIFUNGAL PROTEIN (GAFP-1) AND ITS TRANSCRIPT ARE 

ABSENT FROM SCIONS OF CHIMERIC-GRAFTED PLUM 

[Alexis K. Nagel, Hetal Kalariya, and Guido Schnabel. HortScience 45:188-192, 2010. 

Tree grafting and detection of gafp-1 gene transcripts were performed by Alexis Nagel; 

detection of GAFP-1 protein in grafted and non-grafted tissue was performed by Hetal 

Kalariya] 

 

INTRODUCTION 

Development of genetically modified (GM) agricultural crops has given producers 

new options to combat pests and diseases. These transgenic options can be limited, 

however, depending on the type of crop and the nature of the affliction. For instance, 

despite the important economic impacts that root diseases can have on fruit production, 

only a few GM fruit tree species have been engineered for resistance to root-associated 

pathogens (Petri and Burgos, 2005). Transgenic plum (Prunus domestica cultivar. 

‗Stanley‘) lines (designated 4J and 4I) expressing an isoform of the Gastrodia anti-fungal 

protein, GAFP-1-VNF (hereafter referred to as GAFP-1), are one example of such an 

engineered fruit tree system. These lines displayed significantly reduced symptom 

severity when challenged with the stramenopile pathogen Phytophthora cinnamomi and 

both lines trended towards increased tolerance to the root-knot nematode Meloidogyne 

incognita (Nagel et al., 2008).  
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 The presence of foreign gene products in consumables is a controversial issue. 

Perceptions about the safety of GM food are a factor in the consumer‘s willingness to 

purchase such items (Boccaletti and Moro, 2000; Bukenya and Wright, 2007; Burton et 

al., 2001). Grafting cultivar scions to rootstocks with desirable attributes is already 

common practice in fruit tree propagation, therefore a potentially more consumer-friendly 

way to utilize GM technology would be to combine a transgenic, disease-resistant 

rootstock with a non-transgenic scion. Ideally, foreign gene products expressed in the 

root tissues would remain in the rootstock and not enter the fruit produced on a grafted 

scion. Whether the GAFP-1 lectin or its transcripts can move across a graft union into 

non-transformed scion tissues is not known. 

 The goal of this study was to determine if gafp-1-vnf (hereafter referred to as gafp-1) 

transcripts and protein were moving into grafted, WT scion tissues. Chimeric-grafted 

plum trees were created, consisting of wild-type (WT) scion tissue budded onto gafp-1 

expressing rootstocks. Root and scion tissues were analyzed for gafp-1 mRNA and 

protein.  

MATERIALS AND METHODS 

Generation of chimeric-grafted and auto-grafted tree (Performed by A. Nagel). 

Transgenic plum (Prunus domestica cultivar ‗Stanley‘) lines 4J and 4I (Nagel et al., 

2008) and non-transformed WT plum lines were used in this study. Both transgenic 4J 

and 4I lines express the gafp-1 gene under the control of the CaMV-35S promoter 

sequence (Plant Genetic Systems N. V., Gent, Belgium). Trees from 4J and 4I lines were 

clonally propagated from their respective mother (T0) lines. WT trees, however, 
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originated from different ‗Stanley‘ seeds, and thus represented some, albeit limited, 

inherent genetic variation within the WT population.  

 WT scion tissue was chip-budded (hereafter referred to as ‗budded‘) onto three 

transgenic 4J and 4I trees and three non-transformed WT trees (Fig. 2.1). Briefly, 

dormant bud tissue was excised from the scions of donor (WT) and recipient (4J, 4I, or 

WT) rootstocks. The donor bud was then placed onto the chipped area of the recipient 

rootstock stem. Buds from 1-year-old WT scions were budded onto the stems of 1-year-

old 4J and 4I lines to create chimeric-grafted (CG) trees. Buds from 1-year-old WT plum 

were budded onto stems of 1-year-old WT plum (originating from different seeds) to 

create auto-grafted (AG) trees. AG trees served as negative controls for the detection of 

gafp-1 mRNA and protein. Three tree-replicates received 2 buds each for a total of 6 

budding attempts per line. Buds were wrapped in Parafilm® for 2 weeks. After this time 

the Parafilm® was removed. Four weeks after the budding event the WT scion was 

truncated just above the uppermost bud graft. If two buds flushed on the same tree, they 

were both allowed to develop on the stem. Non-grafted (NG) trees were kept as 

additional controls for the detection of gafp-1 molecular products in tissues. Trees were 

maintained in a biosafety level 2 greenhouse under constant temperature (27 + 5°C) and 

light conditions (16/8 h day/night). 

Tissue sampling. Leaf, shoot and root tissues were sampled from CG, AG and NG 

trees for molecular analysis. Sampling of both grafted and non-grafted tissues continued 

over a 24 month period. During this time, trees were pruned every six months. The 

grafted scions were truncated about 3-5 inches above the graft union.  
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Newly-emerged leaves were sampled from just below the apical meristem beginning 

2 weeks after maintenance pruning, and partially lignified root tissue was sampled from 

the tips of the plum tree roots. Non- lignified, soft shoots were sampled from trees 

between 2 and 6 weeks after maintenance pruning. Two weeks was the minimum amount 

of time it took for axillary buds to flush new, expanded leaves exhibiting non-curled 

edges. For each line, leaf tissues were taken from a total of three grafted scions on at least 

two different CG and AG trees. Root tissues were sampled from corresponding trees. 

When possible, leaf tissue was sampled from grafted scions on separate trees. Leaf and 

root tissues were also sampled from three NG 4J, three NG 4I, and three NG WT trees. 

Soft shoots were sampled from two grafted scions on separate CG, AG, and NG trees 

from each line.  

Detection of gafp-1 transcripts (Performed by A. Nagel). The reverse transcriptase 

polymerase chain reaction (RT-PCR) was used to determine if gafp-1 transcripts were 

present in leaf and root tissues of CG, AG, and NG trees. Plant tissue (100 mg) was 

ground in liquid nitrogen and total RNA was extracted using the RNeasy® Plant Mini Kit 

(Qiagen, Valencia, CA) according to the manufacturer‘s instructions. Total RNA (1 μg) 

was reverse-transcribed to cDNA using the SuperScript
TM

 First-Strand Synthesis System 

(Invitrogen Corporation, Carlsbad, CA) according to the manufacturer‘s instructions. 

Control reactions were performed for all samples in which dIH20 (de-ionized water) was 

substituted for the RT enzyme. These were included to verify that genomic DNA 

contamination was not present. Otherwise parameters for cDNA synthesis remained the 

same. RNA concentration was determined using a GeneQuant pro spectrophotometer at 
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260 nm. The RT procedure is documented to produce cDNA from as little as 1 ng of total 

RNA (Invitrogen). 

 Root and leaf tissue-derived cDNAs were selectively amplified using gene specific 

primers (Table 1). Tissues were analyzed for gafp-1 transcripts by amplifying cDNA (5 

µl first-strand synthesis) with primers 1 and 2, which are specific to the gafp-1 transcript 

sequence (NCBI accession number AJ277786). As gafp-1 transcripts were expected to be 

absent in WT tissues, additional reactions had to be conducted to verify proper cDNA 

amplification. Leaf tissue cDNA synthesis was confirmed by PCR amplification with 

primers 3 and 4, which are specific to the catalase 2 (cat2) transcript sequences from 

peach (Prunus persica L. Batsch) (Accession number AJ496419). Root tissue cDNA was 

PCR amplified with primers 5 and 6, specific to the α-tubulin (α-tub) transcript sequence 

from almond (Prunus dulcis (Mill.) D. A. Webb) (NCBI accession number X67162). 

PCR amplification of all samples was performed with a Bio-Rad iCycler Version 4.006 

(Bio-Rad Laboratories, Hercules, CA, USA). Cycling parameters were as follows: initial 

denaturation at 95ºC for 2 min, 35 cycles of 94ºC for 30 s, 65ºC for 30 s, and 72ºC for 40 

s; final elongation was at 72ºC for 10 min. The entire procedure (mRNA isolation and 

RT-PCR analysis) was repeated for all tissues.  

 Detection of GAFP-1. Immunoblot analysis was used to determine if the GAFP-1 

lectin (expected size 12 kDa) was present in leaf and root tissues of CG, AG, and NG 

trees. Total protein was extracted from leaf, shoot, and root tissues. Plant tissues (300 

mg) were homogenized in liquid nitrogen and total cellular protein was extracted with 

TRIzol Reagent© (Invitrogen) according to standard methods (Chomczynski, 1993). 



27 
 

Soluble protein was dissolved in 1% sodium dodecyl sulfate (SDS). The total protein 

concentration for each sample was determined with the DC (Detergent Compatible) 

Protein Assay (Bio-Rad) according to manufacturer‘s instructions. Bovine serum albumin 

was used as a standard. Sample absorbance was quantified at 650 nm using an Emax® 

precision microplate reader.  

 Total protein (20 μg) was loaded onto a 15% Tris-HCl gel and separated by SDS-

PAGE. Protein molecular weight markers were included in all analyses (Precision Plus 

Protein
TM

 duel color standard, Bio-Rad). Proteins were tank-transferred to a PVDF 

membrane (Bio-Rad laboratories, Hercules, CA) for 18 h at 30 V. Membranes were 

blocked with 5% dry non-fat milk in TBST [(20 mM Tris-HCl, 140 mM NaCl, pH 7.5) + 

0.1% Tween 20], rinsed twice, and then incubated with rabbit anti-GAFP-1 polyclonal 

antisera (1:1000 dilution; Zymed® Laboratories (Invitrogen, Carlsbad, CA) in 1% dry 

non-fat milk + TBST. Membranes were rinsed three times and then incubated with goat, 

anti-rabbit alkaline-phosphatase (AP) -conjugated secondary antibodies (1:2500 dilution) 

(Promega Corp., Madison, WI) in 1% dry non-fat milk + TBST. Membranes were 

developed with BCIP/NBT solution (Sigmafast
TM

, Sigma Aldrich, St. Louis, MO, USA). 

The entire procedure (protein isolation and immunoblot analysis) was repeated for all 

tissues. The AP-conjugated secondary antibody is documented to detect as little as 10 pg 

of protein (Bio-Rad). 

RESULTS 

With one exception at least one out of the two budding attempts became successfully 

established on each replicate tree. One individual from line 4J failed to yield any 
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successful bud-grafts. Successfully grafted buds began to flush about 3 to 4 weeks after 

budding.  

The expected 367-bp gafp-1 and 498-bp α-tub fragments were successfully amplified 

from root tissue cDNAs of CG 4J and CG 4I trees (Fig. 2.2A). However, even after 35 

cycles of amplification we were not able to detect gafp-1 transcripts by RT-PCR in leaf 

tissues taken from WT scions of CG 4J or CG 4I trees (Fig. 2B). Successful amplification 

of the expected 572-bp cat2 fragment confirmed the quality of the mRNA extracted from 

these leaf tissues (Fig. 2.2 B). Transcripts of gafp-1 were not detected in the leaf or root 

tissues of NG WT or AG trees, but gafp-1 fragments were consistently amplified from 

leaf and root tissue cDNAs of transgenic NG 4J and NG 4I trees (Table 2.2). Cat2 and α-

tub transcripts were detected in leaf and root tissues, respectively, from all CG, AG, and 

NG trees. Duplicates of every sample were created at the RNA extraction stage and 

subjected to the entire procedure without the inclusion of the RT enzyme. This confirmed 

that cDNA-derived amplicons were not a result of genomic DNA contamination (Figs. 

2.2A and B).  

GAFP-1 (expected size 12 kDa) was detected in roots of CG 4J and CG 4I trees but 

not in the leaf or soft shoot tissues of grafted WT scions (Figs. 3A and B). In contrast, the 

lectin was detected consistently in the leaf and root tissues of NG 4J and NG 4I trees 

(Fig. 3C). A GAFP-1 signal was not detected in leaf, soft shoot, or root tissues from NG 

WT or AG trees (Table 2.2, Figs. 2.3A-C). Lignified tissue from grafted, WT scions of 

CG trees was not analyzed for gafp-1 products in this study. 
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GAFP-1 antibodies showed cross-reactivity with other proteins on the immunoblots, 

however cross-reaction was not observed at the 12 kDa position. Antibody cross-reaction 

occurred with an unknown 14 kDa protein in protein extracts taken from leaf, shoot and 

root tissue, and with a 15 kDa protein in protein extracts from shoot and root tissues. 

While the binding specificity of the GAFP-1 polyclonal antibody may have been 

optimized by loading a smaller amount of protein on the gels, we chose to load higher 

amounts of total protein (20 μg) in an effort to resolve small amounts of GAFP-1 that 

may have been moving from the rootstock into the leaf tissues of the grafted, WT scion. 

On the immunoblots the intensity of GAFP-1 bands varied among protein samples taken 

from different tissues. This occurred despite the fact that the amount of total protein 

loaded on the gel remained constant. This variation in band density was likely due to 

some inconsistencies in the homogenization of the fibrous plant tissues.  

 

DISCUSSION 

Many phloem-mobile macromolecules have been shown to traverse a graft union 

formed between compatible plant tissues. In situ RT-PCR studies demonstrated that 

pumpkin-derived CmNACP mRNA was present within the functional sieve elements (SE) 

of grafted cucumber scions (Ruiz-Medrano et al., 1999). Gomez et al. (2005) showed that 

an RNA-binding phloem lectin from melon, CmmLec17, could be detected within the 

phloem-exudate of heterografted pumpkin tissues. Grafting experiments between 

transgenic and WT tissues have demonstrated that transcripts may move through graft 

junctions and elicit responses in plant cells that do not contain the causal gene. 
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Transcripts of the tomato PFP-LeT6 gene, a sequence fusion found exclusively in the 

dominant mutant Mouse ears, were able to move across a graft union and induce changes 

in leaf pinnation in WT tissues (Kim et al., 2001). St BEL5 transcripts were translocated 

across grafts made between potato over-expression lines and WT rootstocks, and 

localization of St BEL5 in stolon tips resulted in a two-fold increase in tuber yields 

(Banerjee et al., 2006). Macromolecules have even been observed to move across graft 

unions established in host-parasite relationships. After colonization of transgenic tobacco 

by the adventitious plant species Cuscuta reflexa, green-fluorescent protein expressed 

within tobacco companion cells was detectable within the SE‘s of the associated parasite 

(Haupt et al., 2001).  

Conversely, this study provides evidence that gafp-1 transcripts and protein may not 

be moving into the grafted, WT scions of a CG tree species. These results contradict 

previous research that supports the phloem mobility of GAFP-1 within its host, the 

achlorophyllic orchid Gastrodia elata. Immunofluorescence studies provided evidence 

that GAFP is present within the vascular bundle, and it was proposed that the lectin is 

transported from the primary to the secondary corm of the orchid, as well as into the 

developing flower stem, via the SE‘s (Hu and Huang, 1994). There is no data, however, 

indicating that gafp-1 transcripts are phloem-mobile in G. elata.  

As emerging leaves develop on the scion they make the transition from ‗sink‘ to 

‗source,‘ and at this point they begin to contribute phloem-assimilates to the scion 

translocation stream (Haywood et al., 2005). By routinely pruning the trees we strived to 

keep the grafted scions in a ‗sink‘ state. There was not a single instance in which our 
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detection procedures gave any indication of gafp-1 mRNA or protein in the grafted, WT 

leaf tissues of CG trees, even when tissues were sampled shortly (2 weeks) after 

maintenance pruning. Similarly, soft shoots, which were sampled from scions of CG 

grafted trees between 2 and 6 weeks post-pruning, never showed a protein signal at the 12 

kDa position. Immunoblots performed on protein extracts from WT leaves of CG 4J and 

CG 4I trees eight weeks after budding (four weeks post-bud flush) did not show GAFP-1 

protein signals (data not shown). 

We began to sample leaves and soft shoots for the detection of gafp-1 mRNA and 

protein 2 weeks following maintenance pruning. This should have been an adequate 

amount of time for the hypothetically phloem-mobile gafp-1 molecular products to move 

into tissues. Several studies have demonstrated that macromolecules utilizing phloem 

channels will spread relatively quickly within the plant. It has been reported that phloem-

mobile gene silencing signals are distributed systemically within a few days in tomato 

(Voinnet et al., 1998), and in herbaceous heterografts three weeks has been sufficient for 

the detection of various imported phloem-mobile transcripts and proteins (Haywood et 

al., 2005; Gomez et al., 2005; Ruiz-Medrano et al., 1999). Certain phloem-mobile plant 

viruses, which are thought to travel through the translocation stream as ribonucleoprotein 

complexes (Santa Cruz, 1999), are capable of spreading systemically in a matter of hours 

(Ismail et al., 1987; Gal-On, 1994) or days (Bennett, 1940; Capoor, 1949; Helms and 

Wardlaw, 1976; Más and Pállas, 1996). If assessing virus movement in a woody system 

by symptom emergence, fruit tree seedling double-budding experiments have shown that 

virus particles can move from infected to non-infected tissues in 4 weeks (Fridlund, 
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1980). Most grafting studies conducted with woody plant material do not determine on a 

molecular level the amount of time it takes for phloem-mobile virus particles to move 

into budded tissues (S. Scott, personal communication), however it has been shown in 

herbaceous systems that manifestation of disease symptoms in grafted tissues is preceded 

by the delivery of virus RNA (Más and Pállas, 1996).  

It is possible that the GAFP-1 lectin may not be compatible with the phloem 

transportation machinery of P. domestica. Being in a different genetic background, the 

GAFP-1 lectin may move into the translocation stream only to be quickly degraded, or 

the protein may not be entering the translocation stream at all. In higher plants, the non-

cell autonomous activity of signaling proteins and transcripts has a significant impact on 

the coordination of complex developmental and physiological events (Nakajima et al., 

2001; Palauqui et al., 1997; Ruiz-Medrano et al., 1999; Yoo et al., 2004; Xoconostle-

Cázares et al., 1999), and is likely subject to a certain degree of regulation. Indeed, 

targeted transport of macromolecules as well as non-specific diffusion has been observed 

within symplasmically-connected cells and SE‘s (Crawford et al., 2000; Itaya et al., 2002; 

Lucas et al., 1995; Stadler et al., 2005). The concept of a surveillance system controlling 

the movement of transcripts into specific tissues has been supported by studies on the 

selective entry of virus-derived post-transcriptional gene silencing signals into the plant 

shoot apex (Foster et al., 2002). Haywood et al. (2005) showed that expressed cucurbit 

Cmgaip transcripts were able to move into the WT leaf and flower tissues of CG tomato, 

but not into the fruits produced on the WT scions. Analogous mechanisms likely exist for 

regulating the delivery of phloem-associated proteins to plant tissues. This statement is 
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congruent with the observation that phloem proteins from Cucurbita maxima have the 

ability to interact with and increase the size exclusion limit of the plasmodesmata in 

cotyledon mesophyll cells (Balachandran et al., 1997). Likewise, the melon RNA-binding 

phloem protein CmmPP2 was not detected in scion phloem exudates of intergeneric 

grafted tissues of pumpkin, despite the successful translocation of other phloem-mobile 

melon proteins such as CmmLec17 (Gomez et al., 2005). 

Our results suggest that gafp-1 transcripts and protein are not phloem-mobile in CG 

plum. It remains to be determined whether gafp-1 products expressed in transgenic 

rootstocks can accumulate in non-transgenic branches and leaves after several years of 

establishment in the field, or in flowers or fruits following significant physiological 

changes such as the onset/breaking of dormancy and fruiting. Most fruit tree crops are 

propagated by grafting cultivar tissue onto rootstocks with desirable attributes, such as 

enhanced tolerance to root diseases. Thus, a CG strategy such as we have described could 

have broader applications for a range of plant systems engineered for root-associated 

disease resistance. The ability of different engineered rootstocks to retain foreign gene 

products would depend highly on the nature of the expressed protein or transcript and its 

compatibility with the translocation machinery of the host plant species to which 

transgenic resistance was being applied.  
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Table 2.1. Primers used for amplification of cDNAs from leaf and root tissues 

Primer Target gene Size Orientation Sequence 

1 gafp-1 367-bp forward 5‘–CCTGTTCTTTCGCGTGACAACAGT–3‘ 

2 gafp-1   reverse 5‘–GTGTGGGTTGCCCAAATCGCATT–3‘ 

3 catalase 2 572-bp forward 5‘–AGGCACATGGAAGGCTCTAGTGTT–3‘ 

4 catalase 2  reverse 5‘–ACCTCCTCATCCCTGTGCATGAAA–3‘ 

5 α-tubulin 498-bp forward 5‘–TTGACATTGAGCGACCCACCTACA–3‘ 

6 α-tubulin  reverse 5‘–TGGTCGAGTTGGAGATCATGCACA–3‘ 
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Table 2.2. Detection of gafp-1 mRNA and protein in tissues of auto-grafted (AG), non-

grafted (NG), and chimeric-grafted (CG) trees 

 Plant Tissuez 

Tree   Leaf Root  Shoot 

Rootstock 

Graft 

type 

 Observationsy mRNA Protein mRNA Protein 

 

Observationsx Protein 

WT NG  n = 3 - - - - n = 2 - 

WT AG  n = 2 - - - - n = 2 - 

          

4J NG  n = 3  + + + + n = 2 + 

4J CG  n = 2 - - + + n = 2 - 

          

4I NG  n = 3 + + + + n = 2 + 

4I CG  n = 3 - - + + n = 2 - 

z
Leaf, shoot, and root tissues were analyzed twice for the presence (+) or absence (-) of 

gafp-1 transcripts or protein.  
y
Number of trees from which leaf and root tissues were sampled.  

x
Number of trees from which soft shoots were sampled. 
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Fig. 2.1. A schematic diagram of the trees used in grafting experiments. (A) Wild-type 

(WT) plum tissue was budded onto WT rootstocks to create auto-grafted (AG) trees. AG 

trees served as negative controls. (B) WT plum tissue was budded onto rootstocks from 

transgenic plum lines 4J and 4I to create chimeric-grafted (CG) trees. WT rootstock and 

scion tissues are indicated in grey, transgenic tissues are indicated in white. Two buds 

were budded per rootstock. Black arrows indicate the graft junction occurring on the 

rootstock stem.  
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Fig. 2.2. RT-PCR analysis of (A) root and (B) leaf tissues from rootstocks and grafted, 

wild-type scions of chimeric-grafted trees, respectively. Gafp-1 (expected size 367-bp) 

and α-tubulin (α-tub; expected size 498-bp) or catalase (cat2; expected size 572-bp) 

transcripts were reverse-transcribed and PCR-amplified with sequence-specific primers. 

A plus (+) or minus (-) sign indicates the inclusion or exclusion, respectively, of the 

reverse transcriptase enzyme during cDNA synthesis. Chloramphenicol acetyltransferase 

(P; expected size approximately 500-bp) RNA was reverse-transcribed and amplified 

with gene-specific primers (provided by SuperScript
TM

 First-Strand Synthesis System, 

Invitrogen) as a positive control for cDNA synthesis and amplification. The numbers to 

the left of the figures indicate the size of the DNA markers (M) in base pairs 

(exACTGene® Low Range DNA Ladder, Fisher Scientific, Pittsburgh, PA, USA). 
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Fig. 2.3. Immunoblot analysis of protein extracts from chimeric-grafted (CG), auto-

grafted (AG), and non-grafted (NG) trees. (A) Leaves and roots from CG and AG 

trees, (B) soft shoots from CG, NG, and AG trees, and (C) leaves and roots from NG 

trees were analyzed for the presence of the GAFP-1 lectin. Recombinant GAFP-1-

VNF (GAFP-1; expected size 12 kDa) cleaved from a maltose-binding protein fusion 

was included as a standard (140 ng total protein). Protein extracts from leaf and root 

tissues of AG and NG wild-type (WT) trees served as negative controls. The 

numbers to the left of the figures indicate the size of the protein bands in kilodaltons. 

 

 



43 
 

CHAPTER THREE 

 

CHARACTERIZATION OF TRANSGENIC PLUM LINES EXPRESSING GAFP-1 

WITH THE BUL409 PROMOTER  

  

INTRODUCTION 

In the Southern United States, peach production is an important segment of the 

economy. South Carolina and Georgia are major peach producing states in the Southern 

United States. Several soil-born organisms cause significant problems on peach in the 

South Carolina including Phytophthora root rot, Root knot nematode. Phytophthora root 

rot (PRR) is a disease with economic impact on peach (P. persica) production worldwide 

mainly due to tree mortality (Kephart and Dunegan, 1948; Kouyeas, 1971; Stylianides et 

al., 1985; Haygood et al., 1986). In the southeastern United States, where a significant 

portion of US peaches are produced, the disease is primarily caused by P. cinnamomi 

(Erwin and Ribeiro, 1996). Excessive soil moisture, moderate temperature, and rootstock 

susceptibility contribute to disease development (Browne and Mircetich 1996). The soil 

borne pathogen is hard to control even with fungicide treatments. Current chemical 

control options include the application of fosetyl-aluminum and mefenoxam. Fumigants 

1,3-dichloropropen and chloropicrin are recommended for management of soil borne 

pathogens (Methyl Bromide Technical Options Committee, 1994). The efficiency of 

fumigants is dependent on some environmental factors and soil types such as soil 

moisture, soil temperature are also important considerations (Horton, 2010). Methyl 
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isothiocyanate requires a long waiting period prior to planting and has been limited in use 

and distribution because of its stability in the environment and production of corrosive 

fumes when mixed with water (Methyl Bromide Technical Options Committee, 1994).  

Nematodes also impact crop productivity. Crop damage due to plant parasitic 

nematodes is estimated at about $157 billion worldwide annually (Abad et al., 2008). 

Among the most devastating nematodes are Meloidogyne species. Members of this genus 

cause root knot disease and have a wide host range of more than 2000 plant species 

(Sasser, 1977; Lamberti, 1979). M. incognita, M. javanica and M. arenaria are the most 

damaging species in tropical regions (Triantaphyllou, 1985). In the United States, M. 

incognita is a widespread pathogen of tomatoes, cotton, and soybeans (Ortiz et al., 2010; 

Castagnone-Sereno, 2006) and one of the most common species reducing fruit production 

in peach and other stone fruit orchards (Nyczepir et al., 1997). Pre-plant fumigation with 

1,3-dichloropropene and metam sodium are still used for RKN control in southeastern 

peach orchards (Horton et al., 2010), but plants can be killed by 1,3-dichloropropene if 

planted too soon after fumigation. Control of nematodes is extremely difficult once an 

orchard is established because an orchard may be in existence for 15 to 25 years. As a 

result of problems in the management of nematodes, utilizing rootstocks with resistance 

and/or tolerance to nematodes is the best management option. 

Creating rootstocks for fruit trees with resistance to fungal root pathogens and 

nematodes is a desirable component of IPM management practices. Classical breeding 

has in the past been the only method available to develop disease-resistant rootstocks. 

Progress has been made in the example of the peach rootstocks KID I, PR204, GF305 
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and GF677 which showed some resistance against Phytophthora cactorum and P. 

megasperma (Thomidis et al., 2001). Nevertheless, progress has been slow and the 

number of resistance genes available for conventional breeding is limited. Genetic 

engineering offers a complementary method of developing resistance that can greatly 

expand the pool of resistance genes and offers a way to test these genes in a shorter time 

frame. The first genetically engineered plant was produced in 1983 (Schahczenski and 

Adam, 2006). Since 1983 a large number of transgenic crops have been introduced for 

various purposes including disease resistance, high pH tolerance, and several nutritional, 

taste, texture, and shelf-life characteristics (Skinner et al., 2004). In 2001, the estimated 

global area occupied by transgenic crops such as soybean, corn and cotton was 52.6 

million hectares. Most, currently available, genetically engineered (GE) crops were 

designed to control insects and weeds (Schahczenski and Adam, 2006). Roundup Ready 

soybeans and Bacillus thuringiensis (Bt) gene-containing corn and cotton are some 

prominent examples. In May 2010, EPA registered C5 HoneySweet Plum, the first 

transgenic stone fruit variety with resistance to plum pox virus (Environmental Protection 

Agency, 2010).  

The genes that express mannose binding lectins in monocotyledonous species have 

been used to generate transgenic plants resistant to a wide range of pathogenic and pest 

organisms (Peumans et al., 1995). The Gastrodia anti fungal protein (GAFP) is a 

mannose binding lectin with anti-fungal activity in vitro to Valsa ambiens (Wang et al., 

2001) and other fungal pathogens including Armillaria mellea, Rhizoctonia solani, 

Gibberella zeae, Ganoderma lucidum, and Botrytis cinerea (Hu and Huang, 1994; Xu et 
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al., 1998). GAFP increased resistance to Verticillium wilt in transgenic cotton (Wang et 

al., 2004) and, in contrast to other lectins, GAFP showed efficacy against RKN and PRR 

in transgenic tobacco and plum (Cox et al., 2006, Nagel et al., 2008). Furthermore, 

transgenic ‗Stanley‘ plum line 5D, expressing the gafp-1 gene, resulted in the 

development of fewer eggs and juveniles of ring nematode, M. xenoplax (Nyczepir et al., 

2009). Even though GAFP-1 protein expression in tobacco and plum showed increased 

resistance to fungal and non-fungal pathogens (Cox et al., 2006; Nagel et al., 2008), the 

resistance needs to be improved.One way to increase resistance in the transgenic plant is 

to increase the expression of the resistance gene by utilizing a more powerful promoter. 

The polyubiquitin promoter rubi3 promoter with the 5‘-UTR intron was examined and 

supported enhanced level of constitutive expression of reporter genes GUS and GFP than 

the maize Ubi-1 promoter in transgenic rice (Lu et al., 2008). Similarly, promoter bul409 

was shown to be more active in transgenic potato compared to the CaMV35S promoter 

lines and expression level of GUS in transgenic potato plants with the polyubiquitin 

promoter bul409 was found 30-fold higher when compared to lines with the CaMV35S 

promoter (Rockhold et al., 2008). Whether the expression of gafp-1 and more importantly 

the synthesis of GAFP-1 can be increased in transgenic woody plants using a 

polyubiquitin promoter is not known.  

The objectives of this study were to identify ‗Bluebyrd‘ plum lines expressing high 

levels of GAFP-1 protein, compare plum lines with bul409 promoter with lines with the 

CaMV35S promoter to determine their susceptibility to P. cinnamomi and M. incognita 

causing PRR and RKN disease, and to determine the inducibility of the bul409 promoter. 
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MATERIALS AND METHODS 

Generation of transgenic plum lines expressing gafp-1 under the control of the 

bul409 promoter (performed by Dr. Ralph Scorza laboratory, USDA, Kearneysville, 

WV). The pBINPLUS/ARS vector (Belknap et al., 2008), a modified pBINPLUS vector, 

was used for the transformation of ‗Bluebyrd‘ plum seeds. The gafp-1 gene was inserted 

at the multiple cloning sites between HindIII and SacI sites. The bul409 promoter was 

downstream of the insert and  the Ubi3terminator was upstream of the insert (Rockhold et 

al., 2008). Agrobacterium tumefaciens strain EHA 105 (Hood et al., 1993) was 

transformed with the pBINPLUS/ARS vector (Fig.3.1) and prepared for gene transfer as 

described previously (Gonzalez- Padilla et al., 2003). Transformation of ‗Bluebyrd‘ plum 

seeds were carried out using a method described by Cesar et al. (2008). Mature seed 

hypocotyl slices were selected as a primary source of explants, endocarp of the seed was 

removed and seeds were soaked in a 1% sodium hypochlorite solution for 30 min 

followed by rinsing with distilled water. Epicotyle and radicle were removed and the 

hypocotyl was sliced into three cross sections for transformation. Media for 

transformation and shoot regeneration was used as described by Gonzalez-Padilla et al. 

(2003). Explants were grown with A. tumefaciens in shoot regeneration medium without 

antibiotics but supplemented with 2,4-D. When shoots started to grow, they were 

transferred to shoot growing medium containing kanamycin and timentin. When shoots 

became long enough they were separated from clusters and placed in rooting medium 

containing antibiotics. Plants were transferred from artificial medium to pots in the 

greenhouse as described in Cesar et al. (2008). The presence of gafp-1 in root and leaf 
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tissues was confirmed by gene-specific PCR as described previously (Cox et al., 2006). 

Because all transgenic lines derived from seeds, they are technically not ‗Bluebyrd‗ plum 

any longer. However for simplicity reasons they are referred to as ‗Bluebyrd‘ lines in this 

study. A total of 18 ‗Bluebyrd‘ transgenic lines, 2 empty vector control lines, and 5 wild 

type control lines were supplied by Dr. Scorza, USDA, Kearneysville, WV. For 

comparison, the previously characterized 4J ‗Stanley‘ plum line was included in this 

study (Nagel et al., 2008). In this line the gafp-1 gene is driven by the CaMV35S 

promoter instead of the bul409 promoter.  

Determination of gafp-1 gene copy numbers in transgenic plum lines (conducted 

by Dr. Ralph Scorza laboratory, USDA, Kearneysville, WV). DNA was isolated from 

young and fully expanded leaves of transformed and non-transformed ‗Bluebyrd‘ lines as 

described previously (Kobayashi et al., 1998). Briefly, 10-15 µg DNA was digested with 

BamHI (New England Biolabs, Ipswich, MA), separated on a 1% (w/v) agarose gel and 

blotted to a positively charged nylon membrane (Roche Diagnostics Corporation, 

Indianapolis). The membrane was hybridized with a Digoxigenin-11-dUTP alkali-labile 

(Roche Diagnostics Corporation, Indianapolis) labeled probe coding for gafp-1 cDNA. 

The probe was generated by PCR using gafp-1-specific primers (Wang et al., 2001). 

Detection of GAFP-1 protein in transgenic plum lines. Gastrodia anti-fungal 

protein (GAFP-1; anticipated size 12 kDa) was detected using immunoblot analysis from 

root tissue of transformed, and non-transformed plum lines from 9-month-old trees as 

described previously (Nagel et al., 2010). ‗Stanley‘ line 4J and a ‗Stanley‘ control line 

were included as reference lines (Nagel et al., 2008). Briefly, total protein was extracted 
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from root tissue of transformed and non-transformed plum plant using TRI reagent
® 

(Sigma-Aldrich, St. Louis, USA). Total protein (20 µg) was used to perform SDS-PAGE 

using 15% Tris-HCl ready Gels (Bio-rad Laboratories, Hercules, CA). Protein was 

transferred to an immunoblot PVDF membrane (Bio-Rad laboratories, Hercules, CA), 

and immunoblotting was performed using rabbit anti-GAFP-1 polyclonal antisera 

developed by Zymed
® 

Laboratories and goat antirabbit alkaline phosphatase conjugated 

antibodies (Promega Corp., Madison, WI). Bands detection was accomplished using 

solution of BCIP/NBT tablet. This experiment was performed twice for each transgenic, 

empty vector and wild type control lines. Results were reproducible so, and they were 

combined. Expression of GAFP-1 was measured and scored relative to the expression of 

GAFP-1 in the ‗Stanley‘ 4J line. Equal to (+++), up to 50% less (++), and less than 50% 

(+). 

Selection and propagation of transgenic plum lines.  Transgenic lines revealing a 

strong, consistent GAFP-1 protein signal on immunoblots were utilized for further 

experiments. The performance of ‗Bluebyrd‘ lines was compared with previously 

characterized ‗Stanley‘ line 4J expressing GAFP under the CaMV35S promoter (Nagel et 

al., 2008). ‗Bluebyrd‘ and ‗Stanley‘ control lines and empty vector control lines were 

included as negative controls. Vegetative propagation of the plant material was carried 

out in a biosafety level 2 greenhouse under constant temperature (27 + 5°C) and light 

conditions (16/8 h day/night). Original transformed lines (T0 lines) were pruned every 

four weeks to stimulate shoot growth. Shoots (15-20 cm) were pruned off the T0 lines, 

gently scraped at the cut end and dipped into ―ROOTECH‖ Original Cloning Gel 
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(Technaflora plant product LTD., Port Coquitlam, B.C., Canada). Shoots were placed 3 

to 4 cm deep in sterile vermiculite in 36 well plastic trays (25 x 50 cm) and covered with 

a lid to prevent dehydration. Plants were misted and watered daily and fertilized once per 

week. Fungicide applications (Pristine 0.019 % active ingredient; BASF, Research 

Triangle Park, Raleigh, NC) were applied with a mister as needed to control fungal 

colonization of emerging leaves due to humid condition during propagation.  

Disease susceptibility screening. Bluebyrd lines BB-1, BB-3, BB-17, BB-18, BB-

21, BB-8, non-transformed lines BB-OP, BB-OP 30, BB-OP 31, ‗Stanley‘ line 4J, and 

‗Stanley‘ control were investigated for their the susceptibility to PRR following a 

protocol as described previously (Nagel et al., 2008). P. cinnamomi isolate 05-1127 was 

obtained from naturally infected peach and had been used for similar studies (Nagel et al., 

2008). Disease symptoms were evaluated every other day. Shoot symptoms were rated 

as: 0 = healthy plant, 1 = less than 25% of the plant showing chlorosis and necrosis, 2 = 

25% to 50% of the plant showing chlorosis and necrosis, 3 = 50% to 75% of the plant 

showing chlorosis and necrosis, and 4 = greater than 75% of the plant exhibiting 

chlorosis and necrosis (Fig. 3.2). The experiment was concluded after 30 days, when the 

majority of inoculated control plants had severe wilting.  Random root pieces were 

sampled from inoculated seedlings, surface sterilized, and plated on PARPH [PARP + 50 

mg 5-methylisoxazol- 3-ol (hymexazol)] selective medium (Jeffers, 2006) to confirm the 

presence of P. cinnamomi. The disease severity score was calculated as described 

previously (Nagel et al., 2008). The entire experiment was performed twice with three 

replicates per experiment. 
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Three month-old plants of ‗Bluebyrd‘ line BB -1, ‗Stanley‘ 4J, ‗Stanley‘ control, and 

BB-OP (Bluebryd control) were used to assess susceptibility to M. incognita as described 

previously (Nagel et al., 2008), except that a different method was used to stain the root 

system. BB-1 was selected for the RKN assay out of five BB lines used for the PRR 

assay based on reduced number of disease severity score in PRR assay compared to other 

transgenic lines. After weighing the roots, they were stained using 20% (v/v) solution of 

McCormick Schilling red food color (Thies et al., 2002) for 25 minutes, after which the 

roots were rinsed with tap water and blotted dry. Egg masses were observed under ×20 

magnification. The number of galls and egg masses were determined per plant and 

normalized using gram fresh root weight to calculate the numbers per gram fresh root 

weight. M. incognita populations were originally isolated from infected peach in Georgia. 

The experiment was performed twice with five replicates.  

GAFP-1 synthesis in roots of transgenic lines before and after inoculation. To 

determine whether the bul409 promoter is pathogen-stress inducible, total protein was 

extracted as described above from roots of BB-1 1 day before and 5 days after 

inoculation with P. cinnamomi and 30 days after inoculation with M. incognita. 

Immunoblot analysis was conducted as described previously.  

Statistical analysis. Bartlett‘s test for homogeneity of variances was performed for 

repeated experiments. Data sets with homogeneous variances were combined and 

analyzed for significant difference between each line. For error control, all treatments 

were in a randomized complete block design. Values were analyzed using general linear 
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model (GLM) or analysis of variance and least significant difference (LSD) mean 

separation procedures of SAS (version 9.2; SAS Institute, Cary, NC).  

 

RESULTS 

A total of 18 plum lines were obtained from individual ‗Bluebyrd‘ (BB) seeds 

(referred to as ‗Bluebyrd‘ plum lines in this study) and 17 tested positive for the presence 

of gafp-1 DNA (with the exception of the empty vector lines; data not shown). In 

addition, 5 non-transformed ‗Bluebyrd‘ plants from seeds (BB-OP, BB-OP 30, BB-OP 

31, BB-OP 32, and BB-OP 33) and two empty vector control lines (BB-7 and BB-8) were 

included in this study (Table 3.1). ‗Bluebyrd‘ lines were not phenotypically different 

from each other or from the non-transformed or empty vector control lines (data not 

shown).  

Southern hybridization was used to determine the copy number of the gafp-1 gene in 

‗Bluebyrd‘ lines. Out of 20 transformed lines, 3 yielded no signal for gafp-1 (2 of them 

were the empty vector control lines), 2 contained 1 copy, 9 contained 2 copies, 1 

contained 3 copies, 3 contained 4 copies, and 2 contained 5 copies (Table 3.1). None of 

the non-transformed lines yielded a gafp-1 signal (Table 3.1).  

GAFP-1 synthesis was determined by immunoblot analysis. Only nine of the 20 

‗Bluebyrd‘ lines revealed a GAFP-1 signal. The consistently strongest signals (data from 

at least 2 independent experiments) were found for lines BB-1, -3, -17, -18, and -21 

(Table 3.1; Fig. 3.3A and 3.3B). No GAFP-1 signal was detected in either the empty 

vector controls or the non-transformed control lines. Based on more than 4 different 
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immunoblot assays, the GAFP-1 signal strength of BB-3, which exhibited consistently 

one of the highest GAFP-1 signals, was comparable in intensity to ‗Stanley‘ line 4J. 

The 5 lines with the highest GAFP-1 signals (BB-1, -3, -17, -18, and -21) were 

selected for PRR disease tests. Included were also one empty vector line (BB-8) and a 

mixture of untransformed control lines BB-OP, BB-OP-30, and BB-OP-31 (designated 

BB-control)  to account for potential natural genetic variation in disease susceptibility. 

The results of two independent experiments were not significantly different (P= 0.3044, 

α=0.05) and the datasets were combined. BB-1 was significantly more resistant to PRR 

disease compared to other ‗Bluebyrd‘ lines and compared to the control lines (Fig. 3.4). 

Interestingly, none of the other ‗Bluebyrd‘ lines were statistically different from the BB-

control lines. In addition, disease severity of ‗Stanley‘ line 4J was numerically but not 

significantly different from the ‗Stanley‘ control line. (P= 0.3088, at α=0.05; Fig. 3.4).  

Based on the PRR test results, the best performing ‗Bluebyrd‘ line (BB-1) was 

subjected to RKN disease tests and compared with ‗Bluebyrd‘ control line BB-OP, 

‗Stanley‘ control and ‗Stanley‘ line 4J. BB-OP was chosen as the sole control line 

because it represented an average level of susceptibility to PRR among ‗Bluebyrd‘ 

control lines. Between the independent experiments, no statistical differences were found 

(P = 0.6687 for eggs/g of root; P = 0.5145 for egg mass/g of root; and P = 0.6154 at α 

=0.05) for galls/g of root, thus the combined dataset is shown. For all parameters tested 

(eggs/g of root, egg mass/g of root, and galls/g of root) ‗Bluebyrd‘ line BB-1 as well as 

‗Stanley‘ 4J performed significantly better than the corresponding controls (Fig. 3.5). No 

statistical differences were found between the two transgenic lines ‗Stanley‘ 4J and BB-1 
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plum lines (P=0.2782 for eggs/g of root; P=0.8221 for egg mass/g of root; P=0.3377 at α 

=0.05 for galls/g of root; Fig. 3.5).  

The signals for GAFP-1 in immunoblot analyses were not noticeably higher in root 

tissue of line BB-1 five days after inoculation with P. cinnamomi (Fig. 3.6A) or 30 days 

after inoculation with M. incognita (Fig. 3.6B) compared to the non-infected control root 

tissue. 

 

DISCUSSION 

Among 17 ‗Bluebyrd‘ lines that tested positive for the presence of gafp-1 DNA, only 

9 were found to express the GAFP-1 protein in immunoblot studies. The failure of some 

transgenic plant lines to produce heterologous protein despite successful insertion of the 

target gene has been described before in other systems including transgenic potato using 

the potato leafroll virus replicase transgene (Ehrenfeld et al., 2004) and transgenic walnut 

using the crylA(c) gene (Dandekar et al., 1998). In addition, variation in the level of 

transgene expression is common among transformed plants. It is not completely 

understood why inserted transgenes do not function in some transgenic plants, but it is 

possible that the insertion of the transgene into the plant genome occurs at locations 

which do not support gene expression. Kumar and Fladung (2001) showed that AT-rich 

regions in the genome of transgenic aspen (Populus) may be involved in the defense 

against foreign gene insertions. In studies of transgenic tobacco and tomato  ATTTA 

sequences and A+T-rich regions affected the protein expression level in plants (Perlak et 
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al., 1991). Another possible explanation is that mutations in the promoter or the gafp-1 

gene occurred during transformation.  

Bluebyrd line BB-1 showed significantly less severe disease symptoms in PRR and 

RKN tests, even though it did not exhibit the highest GAFP-1 synthesis level among 

transgenic lines. While BB-3 had a greater number of copies of the gafp-1 gene compared 

than BB-1 and expressed higher levels of GAFP,  it was more susceptible than BB-1 to 

P.cinnamomi. Similarly, transgenic Arabidopsis thaliana lines with high levels of disease 

resistance did not correspond to the ones with the highest expression of the insecticidal 

lectin GNA (Galanthus nivalis agglutinin) in roots (Ripoll et al., 2003) Expression of 

GAFP-1 in transgenic plum line ‗Stanley‘ 5D was higher than that of ‗Stanley‘ lines 4J 

and 4I, but 5D was more susceptible in PRR and RKN disease tests (Nagel et al., 2008). 

It is possible that the multiple insertions of gafp-1 copies in many of the ‗Bluebyrd‘ lines 

had a negative effect on the physiology of the plant. Some insertions may have impaired 

inherent disease resistance, erasing the beneficial effect of the transgene. Also, multiple 

copies of a transgene may increase the chances of pre- and post-transcriptional gene 

silencing (Stam et al., 1997), a measure the plant uses to protect itself from gene 

invasion. The increased copy number of the transgene may increase the chances of 

inactivation. 

In immunoblot analyses, proteins with higher molecular weight compared to GAFP-

1 (12 kDa) reacted with our GAFP-1 probe. The additional bands were observed in both 

transgenic and control plants and likely signaled nonspecific binding of the polyclonal 

antibody. Similar nonspecific binding has been observed in previous studies on tobacco 
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(Cox et al. 2006) and plum (Nagel et al., 2008). Nonspecific binding of a polyclonal 

antibody is not uncommon, as shown for apple shoot-extracted Vfa1 and Vfa2 proteins 

(Malnoy et al., 2008).  

BB-1 displayed resistance against RKN, but its performance in contrast to the PRR 

experiment was not superior to the ‗Stanley‘-derived 4J line. Both lines had reduced 

numbers of galls, egg masses, and eggs compared to inoculated control lines. Effects that 

had previously been noted for the ‗Stanley‘ 4J line (Nagel et al., 2008). The gafp-1-

expressing lines under the control of bul409 did not result in more effective disease 

management when compared to the lines ones using the CaMV35S promoter. 

Polyubiquitin promoters such as the bul409 have shown enhanced expression of the 

reporter gene (GUS) in various transgenic plants such as transgenic potato (Rockhold et 

al., 2008) and rice (Lu et al., 2008). The performance of the bul409 promoter may be 

dependent on the host plant. For example, the polyubiquitin promoter GUBQ1 did not 

elevate the expression of the GUS reporter gene compared to the CaMV35S promoter in 

gladiolus, tobacco, rose, rice, and the floral monocot freesia (Joung and Kamo, 2006). In 

transgenic wheat, the expression of the insecticidal lectin GNA under control of an 

ubiquitin promoter was significantly lower compared to its expression in transgenic rice 

(Stoeger et al., 1999). 

The bul409 promoter had been shown to be wound inducible in transgenic potato 

lines (Rockhold et al., 2008), but inducibility was not demonstrated in this study. 

Expression of bul409 promoter-driven GUS mRNA levels was higher in wounded tubers 

and leaves (Rockhold et al., 2008). Neither inoculation with P. cinnamomi nor 
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inoculation with M. incognita increased GAFP-1 synthesis, in this study suggesting that 

there was no inducibility in gafp-1 gene expression. The two studies however cannot be 

directly compared since the mRNA level, but not protein expression, was measured in 

potato tubers and leaves while only the protein production was measured in this study. It 

is possible that no increase of GUS protein levels occurred in potatoes despite the 

increase of mRNA levels. It is unlikely that the inducibility of bul409 may occur in 

wounded but not in pathogen- induced tissue since wounding and pathogen responses 

share a number of components in their signaling pathways (Maleck and Dietrich, 1999).  

This study established that the gafp-1 gene is stable in transgenic plum lines. Line 

‗Stanley‘ 4J was developed from ‗Stanley‘ seed for an earlier study in 2006 (Nagel et al., 

2008) and has since been grown in the greenhouse under conditions allowing continuous, 

vegetative growth. After 4 years, GAFP-1 synthesis and pathogen resistance was 

consistent with that previously described (Nagel et al., 2008) with the exception that 

resistance to PRR was only increased numerically but was not statistically significant. In 

the present study fewer replicates were used compared to the earlier study. Stability of 

GAFP-1 synthesis was also confirmed in transgenic tobacco lines, which were generated 

in 2004 (Cox et al., 2006) and had been used for GAFP-1 isolation continuously until 

2010 (Nagel et al., 2010).In conclusion, this study confirms the potential for gafp-1 as a 

disease resistance gene in woody plants. Disease resistance has now been demonstrated 

in two different cultivars of plum and the long-term stability of GAFP-1 synthesis in 

transgenic lines was confirmed. The suitability of ubiquitin promoter bul409 for gafp-1 

expression plum was established and in one transgenic plant a significant increase of 
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PRR resistance was observed compared to the best performing ‗Stanley‘ plum line 

containing gafp-1 under the control of the CaMV35S promoter.  
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Table 3.1. Number of gafp-1 copies and GAFP-1 protein expression in roots of plum lines 

used in this study 

Plum line Transformation statusa gafp-1 gene copy no.a 
Relative GAFP protein 

expression in rootsb 

BB-1 Transformed 2 ++ 

BB-2 Transformed 2 + 

BB-3 Transformed 4 +++ 

BB-4 Transformed 0 — 

BB-5 Transformed 5 — 

BB-6 Transformed 1 — 

BB-7 EV Empty vector 0 — 

BB-8 EV Empty vector 0 — 

BB-10 Transformed 5 + 

BB-13 Transformed 2 + 

BB-14 Transformed 1 — 

BB-15 Transformed 3 — 

BB-17 Transformed 4 ++ 

BB-18 Transformed 2 ++ 

BB-19 Transformed 2 + 

BB-21 Transformed 4 ++ 

BB-23 Transformed 2 — 

BB-27 Transformed 2 — 

BB-28 Transformed 2 — 

BB-29 Transformed 2 — 

BB OP-30 Untransformed 0 — 

BB OP-31 Untransformed 0 — 

BB OP-32 Untransformed 0 — 

BB OP-33 Untransformed 0 — 

BB OP Untransformed 0 — 

Stanley control Untransformed 0 — 

Stanley 4J Transformed 2 +++ 
a
 Research conducted by Dr. Ralph Scorza‘s laboratory, USDA, Kearneysville, WV. 

b 
Expression of GAFP-1 was measured and scored being equal (+++), up to 50% less 

(++), and less than 50% (+) relative to the expression in the ‗Stanley‘ 4J line.  
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Fig. 3.1. Schematic diagram of pBINPLUS/ARS vector with insertion of the gafp-1 gene 

placed under bul409 promoter and Ubi3-T (terminator). 
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Fig. 3.2. Disease symptoms of ‗Bluebyrd‘ plum lines 30-days after Phytophthora 

cinnamomi inoculation. Score 0 = asymptomatic plant (not inoculated); score 1 = less 

than 25% wilted; score 2 = 25% to 50% wilted; score 3 = more than 50% to 75% wilted; 

score 4 = more than 75% wilted. 
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Fig. 3.3. Immunoblot analysis of total protein extracts (20 µg) from root tissue; (A) Lane 

1: purified GAFP-1 (~12 kDa); Lanes 2 and 4: nontransformed ‗Stanley‘ control and 

‗Bluebyrd‘-OP respectively; Lanes 3 and 5: transgenic 4J (Stanley plum) and BB-3 

(Bluebyrd plum) lines respectively. (B) Lane 1: GAFP-1 (~12 kDa); Lane 2: 4J and 

Lanes 3-8: transgenic ‗Bluebyrd‘ plum lines BB-1, BB-2, BB-3, BB-17, BB-18, and BB-

21, respectively.  
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Fig. 3.4. Disease severity of 3-month-old plum lines BB-1, BB-3, BB-17, BB-18, BB-21, 

BB-8, ‗Bluebyrd‘ control (mixture of lines BB OP, BB OP-30, and BB-OP 31), 4J, and 

‗Stanley‘ control 30 days after inoculation with Phytophthora cinnamomi. Bars represent 

the average of two experiments with 3 replicates each. Bars with the same letter are not 

significantly different (α=0.05)  
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Fig. 3.5. Reproduction of Meloidogyne incognita on roots of ‗Stanley‘ control line, 

‗Bluebyrd‘ control line (BB- OP), transgenic lines 4J, and BB-1. (A) Number of eggs per 

gram of root; (B) Egg mass (egg mass per gram of fresh root), and; (C) Gall formation 

(galls per gram of root). Shown is the combined dataset of two independent experiments.  

Bars represent the average of two experiments with 5 replicates each.  Bars with the same 

letter are not significantly different (α = 0.05). 
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Fig. 3.6. Immunoblot analysis showing GAFP-1 in 20 µg of total protein from root tissue 

of transgenic line BB-1 (A) before (lane 2) and 5 days after (lane 3) inoculation with 

Phytophthora cinnamomi and (B) before (lane 2) and 30 days after (lane 3) inoculation 

with Meloidogyne incognita.  
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CHAPTER FOUR 

 

CONCLUSIONS 

In this study, GAFP-1 protein was absent in non transgenic leaf and shoot tissue 

grafted on gafp-1 expressing ‗Stanley‘ 4J and 4I line roots indicating that GAFP-1 is not 

moving across the graft union into the scion. Thus, fruit from chimeric-grafted trees with 

transgenic rootstocks and non-transgenic scions should be free of GAFP molecules. 

Further research is needed to confirm this hypothesis in field-grown trees with special 

emphasis on the fruit. Even if there were traces of GAFP-1 protein in fruit, the risk of 

harming consumers may still be minimal. That is because the corm of the orchid 

Gastrodia elata, which produces large amounts of GAFP-1 protein (up to 50% of the 

total protein) upon infection by Armillaria mellea, has been consumed by Chinese for 

centuries for medicinal purposes. In fact, corm extracts containing GAFP are being sold 

over the internet with health benefit claims (http://www.shop-

china.co.uk/en/cp/Gastrodia). It remains to be determined if a chimeric-grafted tree 

producing fruit with no or minor traces of the foreign gene would be acceptable to GMO-

opposed consumers.  

 ‗Bluebyrd‘ plum line BB-1 was largely comparable to the previously characterized 

‗Stanley‘ 4J line in regard to the level of GAFP-1 protein expression and disease 

resistance. These results are promising for the following reasons. The bul409 promoter is 

a plant-derived promoter, which may be an advantage over the virus-derived CaMV35S 

promoter when discussions arise about whether to register gafp-1 for crop plants. The 

http://www.shop-china.co.uk/en/cp/Gastrodia
http://www.shop-china.co.uk/en/cp/Gastrodia
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bul409 promoter was developed by USDA scientists and thus is not protected by a patent 

owned by the private industry unlike the CaMV35S whose rights are held by Monsanto. 

A pathogen-induced increase in GAFP-1 protein expression in bul409 plants was not 

observed.  

Future studies should be designed to verify that the results reported in this study 

hold up under  field conditions. Thus future research should investigate whether BB-1 

and ‗Stanley‘ 4J provide field resistance to ARR, PRR, and RKN. Considering the 

ultimate goal to make a transgenic rootstock suitable for peach and resistant to ARR, 

future research should investigate the potential use of transgenic ‗Bluebyrd‘ and ‗Stanley‘ 

plum lines as rootstocks for commercial peach production. Although preliminary results 

suggest that both plum varieties are compatible with peach (Schnabel, unpublished data), 

a more detailed investigation needs to be implemented to verify long term compatibility, 

rootstock suitability for southeastern conditions (e.g. drought resistance, nematode 

resistance, soil type preference), and rootstock impact on fruit quality (e.g. size, shape, 

and susceptibility to split pit).  It would be extremely helpful to develop an assay that 

could be used for the assessment of resistance to Armillaria in greenhouse/laboratory 

tests.  This would speed up the development of rootstocks used with peaches which were 

resistant to Armillaria. 
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