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ABSTRACT

This thesis presents a case study on the implementation of a rule based design (RBD) process for

an engineer-to-order (ETO) company. The time taken for programming and challenges associated with this

process are documented in order to understand the benefits and limitations of RBD. These times are

obtained while developing RBD programs for grid assemblies of bottle packaging machines that are

designed and manufactured by Hartness International (HI). In this project, commercially available

computer-aided design (CAD) and RBD software are integrated to capture the design and manufacturing

knowledge used to automate the grid design process of HI. The stages involved in RBD automation are

identified as CAD modeling, knowledge acquisition, capturing parameters, RBD programming, debugging,

and testing, and production deployment. The stages and associated times in RBD program development

process are recorded for eighteen different grid products. Empirical models are developed to predict

development times of RBD program, specifically enabling HI to estimate their return on investment. The

models are demonstrated for an additional grid product where the predicted time is compared to actual

RBD program time, falling within 20% of each other. This builds confidence in the accuracy of the

models. Modeling guidelines for preparing CAD models are also presented to help in RBD program

development. An important observation from this case study is that a majority of the time is spent

capturing information about product during the knowledge acquisition stage, where the programmer’s

development of a RBD program is dependent upon the designer’s product knowledge. Finally, refining

these models to include other factors such as time for building CAD models, programmers experience with

the RBD software (learning curve), and finally extending these models to other product domains are

identified possible areas of future work.
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CHAPTER 1

MOTIVATION AND BACKGROUND

Introduction

In today’s competitive global market, the main goal of the manufacturer is to satisfy the needs of

the customer. The individual customer needs and desires result in custom designs which the manufacturer

provides, ideally, in short time by producing quality products at economic prices. The flexibility to adapt

for custom changes necessitates in integrating the customer during the design process, which results in

frequent changes in the product [42]. The method of producing custom products, known as mass

customization, in exemplified in environments such as engineer to order (ETO) manufacturing

organizations. Fast moving job markets have become difficult for the ETO industries to produce quality

products especially given the current emphasis on shorter cycle times. One specific challenge to this

approach is that ETO rely heavily on the internal corporate expertise of the product, typically found only

within a few persons in the company. This suggests that the company can lose competitive advantage

should the individuals with this knowledge leave the company for some reason. Rule based design (RBD)

is one possible solution that helps in automating the design process as well as preserving the company’s

intellectual capital. The RBD process helps in reducing product development time by automating the low-

value design activities like editing models, producing drawings, preparing bill of materials, and preparing

quotations. Further, as the corporate knowledge is encoded in rules, the company is not as dependent on

the expertise of the individual.

This research is focused on studying the RBD process, the stages, and level of effort that is

involved for developing RBD programs in typical ETO companies. A case study is conducted to explore

and understand these stages for identifying the parameters that are involved during the development of an

RBD program. Case study research helps in exploring the “how” and “why” aspects of RBD program

development [48]. It also helps in studying the previously identified low-value activities related to design.
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The “how” and “why” aspects may include how the design information should be exchanged and why it

needs to be exchanged or how the design information should be stored and why should it be stored. For

addressing these areas, an ETO company is identified that deals with the design related activities and a case

study is conducted to study the parameters that affect them.

Hartness International1 (HI), headquartered at Greenville, South Carolina, is a family owned

small-to-medium ETO enterprise that designs bottle case packaging solutions. Started in 1940, the

company now employs about 450 employees, with manufacturing facilities in North America, Europe, and

China and with regional offices around the world. They manufacture a wide variety of products including

case packers, bottle packers, high efficiency conveyor systems, bottle filling and labeling systems, and

shrink wrapping systems.

The HI “Investigation into Rule Based Design (IRBD)-2006” project is selected as the subject of

case study, which is referred as “HI IRBD project” in the remainder of this thesis. This project is selected

as the case study as many activities of design can be studied in various scenarios or products. The project

is scoped to automate the design process of 32 different grid changeover parts, shown in Figure 1.1., using

DriveWorks2 (DW) RBD automation tool for the solid modeling package SolidWorks3 (SW). The phrase

“grid changeover parts” is interchangeably referred as “grid product” or “grid assembly” in the remainder

of this thesis. Specifically, this project deals with the grid assembly, which interacts with bottles and cases

in the HI product line of case packing. For every new design of a bottle and/or case, the grid assembly is

replaced by a new one in order to run the new line of products through the existing machine.

1 www. hartness. com

2 www. driveworks. co. uk

3 www. solidworks. com
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Grid
Assembly

Case

Bottles
to pack

Basket sub
assembly

Figure 1.1: CAD model of grid assembly

A typical case packer machine with this grid assembly is shown in Figure 1.2. The packer consists

of two conveyors running along the length of the machine where the top conveyor runs bottles to be packed

and the bottom conveyor runs the cases that receive the bottles. This transfer of bottles from the top

conveyor to the cases on the bottom conveyor is done by grid assembly as shown in Figure 1.3.

Grid
Assembly

Top Conveyor
(Bottles)

Bottom
Conveyor

Chain (Cases)

Grid
Assembly
Grid
Assembly

Top Conveyor
(Bottles)

Bottom
Conveyor

Chain (Cases)

Figure 1.2: Typical HI case packing machine

Case

Grid
Assembly

Figure 1.3: Grid assembly on the machine
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The grid assembly needs to be designed for every new design of bottle or case. The HI grid

designers must either develop custom solutions or modify the existing solutions to accommodate these new

bottles or cases to run on the case packing machines. To reduce the effort and time required for designing

new grids, HI uses standard design templates that can be modified without having to build new system. The

HI grid changeover group is responsible for eighty eight products, of which thirty-two products are chosen

for DW RBD automation. Either the remaining products were not chosen because they have homegrown

programs for RBD automation (using SW application program interfaces and Visual Basic) or RBD

automation is not required as their custom use is minimal at less than one redesign per year. Eighteen out

of thirty-two products are selected for this case study and are shown in Table 1.1. 

As the grid assembly plays a major role in the case packer machine, it must be changed for every

new design of a bottle or case. Given that the changes in the bottles and/or cases are frequent, the aspects

that the HI uses to accelerate the grid design process are commonality, modularity, and customization.

Commonality is the aspect of designing products with common functional and geometrical

similarities. Designing common features aids in producing uniform designs that ultimately result in

framing guidelines with consistent design rules. This can be seen in the design of components of basket

sub assembly with the grid product as shown in Figure 1.4.

Modularity is the flexible arrangement of components that allow ease of assembly and

disassembly. It also helps in reusing the existing designs for designing new products. Incorporation of

modularity into designs assists in producing standard products in a short time. This aspect can be seen in

HI designs as shown in Figure 1.4. The basket assembly is made up of modular components such as back

part, front part, lane divider, and transversals.

Customization is the process of tailoring products to meet an individual’s specific needs.

Customized products can be developed by using the above-mentioned aspects of commonality and

modularity in design. HI grid assemblies are designed for custom size pockets (L x B) that depends upon

bottle dimensions as shown in Figure 1.4.
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Table 1.1:Products that are of interest in this IRBD project

Sl. No Product Name Referred as

1 2800 Hybrid RH Metric 2800HRHM

2 2800 Hybrid LH Metric 2800HLHM

3 2800 Hybrid RH Inch 2800HRHI

4 2800 Hybrid LH Inch 2800HLHI

5 2800 Hybrid RH Metric Old 2800HRHMO

6 2800 Hybrid LH Metric Old 2800HLHMO

7 2800 Hybrid RH Inch Old 2800HRHIO

8 2800 Hybrid LH Inch Old 2800HLHIO

9 2800 PFinger Elevator Metric 2800PFEM

10 2800 PFinger Elevator Inch 2800PFEI

11 2800 PFinger Elevator Metric NB 2800PFEMNB

12 2800 PFinger Elevator Inch NB 2800 PFEINB

13 825 Platform Lower RH 825PLRH

14 825 Platform Lower LH 825PLLH

15 825 Laser Platform Lower RH 825LPLRH

16 825 Laser Platform Lower LH 825LPLLH

17 825 Platform Elevator RH 825PERH

18 825 Platform Elevator LH 825PELH

19 2800 Platform Lowering Inch 2800PLI

20 2800 Platform Lowering Metric 2800PLM

21 825 Laser Platform Elevator RH 825LPERH

22 825 Laser Platform Elevator LH 825LPELH

23 2800 WS Upper MFinger Elevator LH Metric 2800WSUMFELHM

24 2800 WS Upper MFinger Elevator RH Metric 2800WSUMFERHM

25 2800 WS Upper PFinger Elevator LH Metric 2800WSUPFELHM

26 2800 WS Upper PFinger Elevator RH Metric 2800WSUPFERHM

27 2800 MFinger Elevator Metric 2800MFEM

28 2800 MFinger Elevator Inch 2800MFEI

29 825 Hybrid Elevator RH 825HERH

30 825 Hybrid Elevator LH 825HELH

31 825 Hybrid Elevator RH Old 825HERHO

32 825 Hybrid Elevator LH Old 825HELHO

RH : Right Hand LH : Left Hand NB : No Basket

PFinger : Plastic Finger MFinger : Metal Finger WS : Wear Strip
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Common design

Modular principle
Two transversals

Front part

Back part

Transversal

Custom Size
Pocket (L x B)

L

B

Figure 1.4: Custom modular basket that is commonly used in HI grids

These three aspects help HI to design grids that follow standard guidelines and principles which,

in turn can be represented in the form of design rules. All of these rules taken together becomes a design

knowledge repository from which RBD design systems can be developed. Therefore, a goal of this

research is to convert the design process of various HI grid products that are shown in Table 1.1 into RBD

automated programs. The above-mentioned aspects of the HI grid products result in many challenges that

are similar to ETO companies. Before going into details of the challenges faced by HI, it is essential to

establish a clear understanding of the term ETO as it is speculated that the HI design of grid products is

similar to the design methods adopted by other ETO companies. An ETO is often referred as a build-to,

configure-to, or made-to style of manufacturing. According to APICS dictionary [40], the ETO products

are: “products whose customer specifications require unique engineering design or significant

customization. Each customer’s order results in a unique set of part numbers, bill of materials and

routings.”
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Challenges of ETO companies

The challenges of ETO companies are to support high levels of customization. The challenges

include high customization, producing successful products in one go, winning profitable work orders,

producing consistent and reliable products, and preserving intellectual capital.

High Customization: Current markets tend to vary often and are striving to survive competition

by providing greater quality, more customization, more innovative designs at affordable prices [43].

Flexibility is a key element to their success as ETO products are complex products tailored to meet

individual’s specific needs. ETO companies configure new products for different job order and the design

may include changing well-known parameters like significant dimensions or influential features. Some

other products may require greater product engineering with major alterations or redesign, which ultimately

results in longer product developments, high production lead times, and high costs. These demands change

from customer to customer and result in great uncertainties in design because of size limitations,

governmental regulation, marketing strategies, environmental conditions, or operating loads [7]. In

satisfying these demands, the ETO companies should utilize and store their product knowledge and

experience for every variant product they design.

Producing successful products in one go: ETO companies differ from batch or mass production

companies in building products. No prototype is made for every designs; therefore, product design and

development must be carried out concurrently throughout the whole product life cycle. A guess is still

never as good as knowing the answer which necessitates in building products in one attempt according to

the customers’ specification [7]. Thus building products in one go is a concern for ETO companies [47].

Winning profitable work orders: Often ETO companies need to submit full proposals which may

include complete information regarding the proposed design [22]. These may include 3D CAD models,

engineering drawings, detailed bill of materials, and other relevant engineering information. If they are

conservative and overbid, they will not win much business. On the other hand, if they are liberal and

underbid they end up in making products at the expense of profits that can hurt business over the long run.
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Added to this short proposal time, which ranges from less than a day to couple of weeks, exerts extra

pressures on ETO companies.

Producing consistent and reliable products: Customers judge products on every project and the

manufacturers must ensure that their products adhere to consistent quality and reliability. ETO companies

do not have the freedom of having product recalls or methods of using retro fittings to address quality

issues in later developmental stages. To have the benefit of continuous business from long-term customers,

ETO companies need to implement and enforce the best practices that they have learned in the

development of products. Similarly, quality and manufacturing efficiency should be designed into a

product. Manufacturing constraints need to be considered during the design stage itself, which avoids

expensive surprises that occur later in the manufacturing.

Preserving intellectual capital: Dedicated employees and application of adequate knowledge

becomes the most important success factors for any company [44]. Many ETO companies heavily rely on

people dependant processes for producing custom products. Knowledge of an experienced human expert is

an asset to an organization and incurs a substantial loss in intellectual capital when it looses this human

expert. Retention of human expertise and knowledge is a major problem that enterprises are facing

intoday’s fast-moving job market. It is essential for the companies to capture their product knowledge and

designers’ experience. They should secure them in the company’s databases to avoid loss of valuable

product knowledge [7].

The above presented challenges are addressed in many different ways by researchers and are

presented as literature survey in the succeeding sections.

Previous work in addressing ETO challenges

The following literature survey presents the outcome of the previous work done by other

researchers in addressing the challenges of an ETO enterprises. The achievements of their research are [47]



9

design for modularity, parametric design, variant design, design for manufacturing, concurrent integrated

product development, and rule based knowledge-base systems.

Design for modularity: Gu and Sosale [17] suggested integrated modular design methodology in

which they describe life cycle engineering (LCE) objectives and identified customization is one of them.

They suggested that modular design helps in accomplishing these objectives by providing customers with

predefined choices and rearranging few optional modules. Huang and Kusiak [20] proposed that modules

should be formed in the conceptual design stage for reaping the benefits of agile manufacturing. Functional

interactions and physical interactions [17] should be considered in dividing into modules and based on

these modules customized products can be developed. As suggested by Huang and Kusiak [20] variant

products can be developed by: a) component swapping, b) component sharing and c) Bus modularity.

They used a decomposition approach to detect modularity in a product set with the help of interaction and

suitability matrices. Modularity concept will not fully help in customizing products but helps in designing

standard components that goes into the products [47]. This all depends upon how unique a product is.

Whitney [45] identified the physical limits to modularity in automating the design process. The term “ideal

modularity” was introduced, wherein ideal conditions are described for using a design automation tool.

Whitney identified that the multi-function nature of mechanical components is the primary reason that

hinders in designing custom products. Therefore, if the multi - function nature is not present in mechanical

components systems can be built that can automate the design process. Thus, modularity in design can help

in producing some aspects of customized products and helps in building consistent and reliable products.

Parametric Design: Parametric design is often synonymously used with relational modeling or

constraint based design [33]. Many people have done wider research in this field to automate the design

process [28, 33, 49]. A CAD designing system should be able to capture the designer’s intent and a system

with such capability is observed as intelligent designer’s assistant [41]. Such a system would automatically

perform well-defined tasks, which are boring and time consuming such as creating drawings, preparing

and quotations. Zalik [49] proposed acyclic constraint description graph (ACDG) for representing
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geometric objects and solving constraints in parametric design problems for producing new geometric

models. Zalik uses a ‘black box’ approach for initially defining the seed models with sketch carrying

topological information and uses predicates for describing geometric objects. Later on, Lee and Kim [27]

proposed knowledge based parametric design using graph representation for expediting the inference

process i. e. constraint solving process. They used rules to represent constraints in a graph form.

Parametric design is not applicable in situations where the designer is still conceptualizing the idea in

which he refrains from assigning fixed values or constraints for concept models. In Monedero’s [33]

opinion it’s a mistake researching advance integrated design methods for applying them in modeling

without adequate 3D generating or modifying tools. Parametric design helps in building stable design

rules, which helps in efficiently producing the new products. These rules can be used in generating precise

quotations, which helps in gaining profitable work orders.

Variant design: Variant design is the process of adapting existing designs for developing new

products [47]. It helps in relieving pressure from the designers from performing repetitive design tasks and

reduces design cycle times. It also helps in developing customized products based on existing mature

design [1, 2]. Study conducted by Wang [1, 2] reveals that there exists literature on component design and

processing stages whereas there does not exist significant efforts in developing design methodologies for

complex assembly variants. Systematic assembly variant design methodology was developed that helps

ETO companies to develop new and individual design based on mature components’ design [2]. Extensive

database and sound reasoning methods are essential for variant design process. Group Technology (GT) is

one way of creating databases that record product families and possible variations. The two important

reasoning methods suggested by Fowler [13] include: a) Analogical reasoning applied to design and b)

case-based reasoning applied to design. Variant design methods cannot be fully used for designing

completely new products for the following reasons [13]: a) the fact that designers need to redesign the

existing design depending upon the requirements and this knowledge cannot be captured beforehand. The

database or knowledge-base needs to be updated every time to reflect the change and cannot update
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automatically [13]. Assembly variant design methodology [1] developed by Wang et. al, addresses the

area of complicated product data and they use assembly models, the assembly variants model, and

assembly mating graphs in dealing with large assemblies in ETO industries [1, 2].

Design for X: Design for ‘X’ can be divided into three major headings [21]: a) Design for

manufacturing and assembly, b) Design for life cycle, and c) Design for competitiveness. Design for

manufacturing is addressed by Gupta et. al [18] and pointed out that the various DFM methods [4, 11] were

cross functional teams of feature-based evaluation and empirical parametric evaluations [47]. Automatic

feature recognition and feature-based methods are emerging technologies that are widely studied in DFM

approaches. The research conducted by Lin [31] in studying computer-aided process planning for

manufacturing automation resulted in integrating the above technologies in developing automatic extraction

of manufacturing features from a design-oriented model. Later on, Lee and Kim [28] suggested a

methodology for generating alternative ways for manufacturing a machined part. They used

transformations and criteria techniques for generating alternative models by minimizing the number of

tool/work piece accessibility directions by using reorientation, reduction, and/or splitting operations. Other

advantages of using DFM as documented by [4, 35] indicates the possibility of : i) 61 % reduction in

product assembly time, ii) 53 % reduction in the number of assembly operations, iii) 68 % reduction in the

number of assembly defects, and iv)50 % reduction in time to market.

Design for life cycle includes design for dimensional control, design for inspectability, design for

effective material storage and distribution, design for reliability, design for serviceability, design for ease of

disassembly, and design for recycling. Design for competitiveness includes design for quality, design for

modularity, design for optimal environment impact, and design for uncertainty. Quality and reliable

products can be produced by integrating all the above aspects into the product during the preliminary stages

of design [4, 11, 18].

Concurrent integrated product development: In this process, a simultaneous engineering (SE)

approach is used which combines all evolutionary methodologies in iterative product development [9].
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Evolutionary design methods as suggested by Bullinger [9] implies that “previously unrecognized product

requirements or technological progress must be considered and incorporated” in later stages of design.

During the conceptual design phase, it is difficult to understand how a design parameter or set of

parameters affect other components of the system. The factors contributing [16] for this are: a) insufficient

communication between customer and designer, b) evolving or changing customer requirements, c)

difficulties in data and information exchange and d) inconsistencies in modeling approaches between

various departments. In addressing these issues, SE and rapid product development (RPD) was

concurrently used for developing framework. Complete product development is done by planning on the

whole process in SE. Similarly, the RPD method violates the traditional approaches of systematic design

[36] and is based on the approach of evolutionary design cycle [26]. In a RPD environment physical

prototypes are replaced by digital prototypes which can be produced faster by integrating CAD

technologies such as rapid prototyping, virtual realty, and reverse engineering [9]. Recent advances in the

internet have accelerated the advancement in concurrent product development that bridges the gap between

customer and the manufacturer.

Rule based knowledge systems: Knowledge-base systems play an indispensable role in concurrent

product development [9, 16, 22, 27, 34, 39]. Some examples of knowledge bases include tool database,

design database and manufacturing database. These knowledge bases also help in areas of order

acquisition and order fulfillment by automatic activities like preparing quotations, BOMS, drawings and

routings [22]. All of these innovative technologies use predefined rules for making design related decision

that exists in specific knowledge bases. The systems that use rules for generating CAD models are known

as rule based knowledge systems[37]. In order to develop these systems, the company has to identify the

product related design information and practices for embedding them into rule-based shells that are

supplied by CAD vendors [23]. This is done by defining and summarizing company related design tasks

and practices in the form of design rules for developing such automated design systems.

Interdependencies, applicability, and rationale behind the product design are important for building a rule
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based knowledge system. The research conducted by Institute of Defense Analyses (IDA) [23] identified

that commercial rule based systems are essential for reducing design cycle times and for storing company

specific design information to improve product performance and quality. The other advantages of using

such systems is that, they are capable of integrating the previously discussed areas of design for modularity,

parametric design, variant design, design for manufacturing and concurrent integrated product. This is

because; the principles used in those areas can be represented as design rules from which rule based design

systems can be developed. Some examples that use rule base systems include email filtering clients like

Microsoft Outlook and Eudora, electronic hardware configurators such as XCON systems [3],and

enterprise level application servers such BEA’s WebLogic and ILOG for their use in logistics and supply

chain [14].

Research Opportunities

From the above literature review, it can be seen that rule based knowledge systems are essential in

developing automation systems for producing customized products. These rule based knowledge systems

are referred as rule base design (RBD) systems in the remainder of this thesis. RBD is the process of

designing artifacts by using rules for taking design related decisions. Literature exists in efficiently

processing the data within the knowledge base, but researchers have done less work in explaining the

intermittent stages that are involved in building knowledge-base systems. Knowing the intermittent stage

helps ETO companies in estimating the time required for RBD program development, which helps them in

automating the design process.

The research questions are presented in the next sections and are framed for specifically

addressing the challenges of ETO industries. The proposed research question work will address these

challenges by using RBD methods in commercial automation software (DW). A major section is presented

on representing knowledge in the form of rules. This research also presents best practices in CAD

modeling for RBD method, which is a result of this case study. Further, estimated time calculations can be

used in calculating the return on investment (ROI), which is left for future work.
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Research Questions

With respect to the previous discussion on research opportunities and motivations, three research

questions are proposed. Addressing these research questions will help ETO companies to overcome the

challenges that they face. The scope in which this research is conducted is RBD method of designing

variant artifacts. How designers make decisions related to design are explored and these design decisions

are represented as rules in this research. The HI case study is explicitly used to explain the elicitation and

implementation of rules in designing grid assemblies. Different grid products are studied and analyzed to

identify various stages and their times in developing a RBD program using DW. 

The first research question is formulated for explaining the stages that are involved RBD program

development process. The remainder of the thesis discusses these stages and the activities that are involved

in them. The factors that affect these individual stages are also explored for developing time estimations.

The resulting time calculations help ETO companies in ROI estimations on allocating resources for

converting frequently changing design of a variant product into RBD automation systems.

RQ 1: What are the stages that are involved in the DW RBD program development process?

The second research question is framed to identify the parameters that affect the RBD program

development process. There is an opportunity to study different HI grid assemblies, which has a potential

for many parameters that need to be controlled and rules can be written for them. The parameters that are

of interest for developing RBD programs are dimensions, and features. Different parameters affect

different stages of the RBD program development process in terms of time and discussion on these

parameters is presented in the remainder of this thesis.

RQ 2: What are the programming parameters that affect the stages in the RBD program

development?

The third research question is formulated to develop the empirical models that predict time

estimations. Time is dependent upon parameters that are involved in various stages of the RBD program
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development process. Since multiple HI grid assemblies are present, precise relations can be chalked out

between the interested parameters and equations related to time calculations. In this research, numerous

RBD programs are developed for various HI grid products and times are recorded for activities that involve

parameters of interest.

RQ 3: How time estimations for RBD program development process depend on CAD parameters?

Thesis road map

The remainder of this thesis is organized as follows: Chapter 2 deals with the need of knowledge

base system and it elaborately discusses on rules and presents the stages that are involved in the RBD

program development process. Chapter 3 discusses the second stage of RBD program development

because the first stage of CAD modeling is not part of HI IRBD project. This chapter discusses about

interviews as the method of knowledge acquisition process. It also describes the method adopted in the HI

IRBD project and ends with the estimated time calculation models for capturing design information.

Chapter 4 discusses the preprocessing stage of DW programming, where it presents the best practices in

CAD modeling for capturing parameters. This chapter also explains the individual activities that are

involved in the third stage of RBD program development process where it presents the time calculations.

Chapter 5 describes the corresponding individual activities of fourth stage of DW program development. It

presents the important aspects of creating a graphical user interface, the corresponding data, and the rules

that are essential for creating the DW program. This chapter ends with presenting time calculation models

of the DW RBD programming process. Chapter 6 deals with the debugging and testing process of RBD

programs, which need to be verified before releasing the programs. Chapter 7 deals with a demonstration

study where it conglomerates all equations presented in earlier chapters for calculating the time estimates

for various stages. The obtained estimated time is validated against the observed time by actually

programming a new grid product. Chapter 8 concludes the thesis by presenting the conclusions and future

work that is required for refining these time models.
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CHAPTER 2

RBD PPROGRAM DEVELOPMENT

Need for knowledge base tools

Knowledge about the desired domain is an essential element in designing a RBD system. Vajna

[44] describes the knowledge as the sixth and most important production factor besides people, machines,

material, money, and information. The understanding of design information helps in making decisions, and

the designers attain this knowledge through experience. Knowledge of an experienced designer is an asset

to an organization which forms the intellectual capital [10]. The organization incurs a substantial loss when

it loses this expertise. Building CAD modeling systems that can capture, represent, store, and reuse

corporate design knowledge would solve the problem of losing this intellectual capital. One of the foci of

this research is on capturing and representing design information. The storage and reuse aspects of

knowledge are shown by developing RBD systems for automating the design process of HI grid assemblies

by using DW and SW.

Traditional CAD models represent geometric information about the products and it changes for

every new design specification. The result is to do repetitive design tasks for generating production related

information such as geometric models, CAD drawings, BOM and process sheets. Repetitive work can be

automated by building system that use stored knowledge for making decisions related to design. For

building these systems, there is a need for representing machine recognizable information that is

interoperable with industry’s existing software. DW is one such system that uses simple rules for

generating CAD related information in SW. These simple rules can be used for driving the design

parameters such as dimensions or features.
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Knowledge Representation: Rules

RuleStream4 defines a rule as any thought that can be quantified [5]. A rule is obtained when one

can express his thoughts so that another human or machine can obtain the same results [5, 6]. Rules can be

represented by using simple equations and can be classified as: functional and physical properties rules,

parametric rules, feature rules, part selection rules, manufacturing rules, safety rules, check rules, price-

determining rules, regulation rules, and so forth. Parametric rules constitute about 20 - 25% of all the rules

[6] while rest of them deal with other concerns related to design and manufacturing.

In the HI IRBD project, knowledge is represented in two ways. The first, are the algebraic

equation rules in which mathematical relations are used to obtain value of CAD parameter (parametric

rules). Assignment operator, the “equal to (=)”, and the algebraic operators: the plus (+), minus (-),

multiplication (*), and division (/), are used for writing the parametric rules. The second are traditional IF-

THEN conditional rules. The antecedent (the “IF” part) and consequent, (the “THEN” part) are required

for building a conditional rule. The syntax for a simple conditional rule is:

< _1

< _ 2

IF antecedent

THEN consequent

ELSE consequent

< >
>
>

Equation 2.1 

An antecedent is an algebraic equation, which drives the consequent. The resultant consequent is

applied to design parameters (dimension or feature) in the form of value. Here value refers to the

numerical number or state of the feature such as suppression state or unsuppression state. Operators are

used in writing algebraic equations. Conditional operators such as not equal to (!=), greater than (>) or less

than (<) are used to compare the value against a reference, while assignment operator is used to assign a

value to a design variable. Multiple antecedents are joined by logical operators such as AND

(conjunction), OR (disjunction) or combination of both. Equation 2.2 and Equation 2.3  shows the

4 http://rulestream. com/
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algebraic equation rule and conditional rule for controlling the transversals in basket sub assembly which is

shown in Figure 2.1. 

 _ _ _ 1Transversal Number Bottle per Lane= − Equation 2.2 

 
_ 1

"Suppress Transversal"

"Unsuppress Transversal"

IF Transversal Number

THEN

ELSE

<

Equation 2.3 

 

Transversals (2)

Bottles
(3)

End Plate

Figure 2.1: Basket sub assembly within a grid product

Sometimes transversals need to be suppressed even though the number of transversals is not less

than one as in the design where transversal are not required for a particular basket sub assembly. In this

case, logical operators are used with more than one consequent as shown in Equation 2.3. 

 

_ 1

_ _ _

"Suppress Transversal"

"Unsuppress Transversal"

Transversal Number

IF OR

Transversal are not required

THEN

ELSE

< 
 
 
 
  Equation 2.4 

Apart from design decisions, design constraints can also be encoded in RBD systems by writing

verification rules. Typically, problems that are constrained with in boundaries need these rules. Primary

set of rules are first used to produce the design, which is then checked against the constraints encoded in
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the verification rules. For example, the end plate of the basket assembly that is shown in Figure 2.2 

requires these verification rules.

Overall Basket Width

Bottle Width # of Bottle Lanes = 2

Figure 2.2: End plate of basket assembly

The overall basket width is computed by using the bottle width, clearances between bottles and,

number of bottle lanes as shown in Equation 2.5. 

 

_

_ _ ( ) _ _

_ _ _

Bottle Width

Overall Basket Width OBW Bottle Lane Clearance

Number of Bottle Lanes

 
 + 
 =
 

+ 
 
 

Equation 2.5 

The resultant value should be less than the overall width of the grid (15 inches in this case) for

holding the basket assembly as shown in Figure 1.1. The rule for this verification is given by Equation 2.6 

as shown below:

( 15)

" _ "

" _ _ "

IF OBW

THEN Design Possible

ELSE Design Not Possible

<

Equation 2.6 

In a RBD program, knowledge is encoded by a collection of rules for making design decisions.

RBD programs are developed using system shells [25] which provide a skeletal structure for writing rules

in common programming syntax. These shells are platforms on which a RBD system can be built without



20

any knowledge in them [23]. When rules are explicitly embedded into shells, they are ready to take up the

task for the desired application of generating CAD related information. DW is one such software where

SW seed CAD models are driven to produce the variant CAD models and are called “clones” in DW

terminology.

Limitation of RBD programming

In software engineering perspective, RBD programming has some limitations because systems

developed in it are difficult to maintain, test, and are unreliable [30]. The roadblocks to RBD programming

are:

Knowledge sharing: Knowledge acquisition is essential for developing RBD systems. The

programmer gains this knowledge from the expert designer who has experience about that product. It is

difficult to capture 100% of the designer’s experience in one attempt and the designer sometimes cannot

express some types of thoughts in words. Some other designers may not disclose full information about the

product because they are afraid that the new systems would make lose their jobs.

Maintainability: Maintenance of the software product consumes up to 60% of the total product

cost in its entire life-cycle [30]. In Li’s view, maintaining a RBD system is almost impossible. Jacob and

Froscher [24] have mentioned that, in order to upgrade the knowledge base of a RBD system, a knowledge

engineer with extensive understanding of the system design and structure is required, which implies the

person originally developed the system. This is a major drawback of RBD systems because more than one

person involved in developing them. Highly declarative applications are well suited for RBD programming

architecture that primarily consists of a rule base, a database, and an inference engine (DW). Most of the

real world problems, which fall into evolutionary applications, do not deal with RBD paradigm. Adequate

control of non-trivial applications is a major problem in RBD paradigm.

Testability: A conventional program written in C or C++ is easier to grasp the flow of control and

data, because of well-structured and nice looking statements [30]. Single entries and single-exits are the
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characteristics of well-structured program while proper indentation and segmentation are the characteristics

of nice looking program. Many real world applications cannot be coded in RBD paradigm by these well-

established requirements of high quality software’s. The main problem identified by Li [30] in terms of its

untestability and unmaintainability is loss of modularity (or encapsulation) and abstraction (hierarchical

representation ) which are the essential requirements for quality software.

Reliability: RBD programming is unacceptable since it is non-deterministic in nature. For

applications that evolve continuously, the testing mechanism to prove the absence of errors is low [30].

The reliability of the expected situations should be consistent before dealing with the unexpected situations.

Lee [30] pointed that, “such systems must overcome their inherent control uncertainties before they can

deal with the uncertainty of an application”. RBD systems are good for giving expert advices that do not

require any common sense as in diagnosis and scheduling systems.

Unless reliability and maintainability issues are addressed, the maintenance of RBD systems

becomes difficult. Pure declarative statements are the bottlenecks in RBD programming in terms of

representing how well a human thinks and how smart in problem solving.

Commercial RBD Approach

The above limitations can be mitigated by using commercial RBD systems. They offer a

structured way of programming RBD applications. DW is one such RBD automation system used for

generating CAD related data in SW. In HI IRBD project, DW was used for driving SW CAD models. The

rules are encoded in DW with the help of customer specifications that are obtained from the user interface

(UI) forms. These design specifications in conjunction with other product related information such as data,

constants, and variables are used in writing rules to drive CAD models. For every run of design

specifications, the DW will generate . mdb (Microsoft access) and . xml (MS excel) files as outputs. These

files are used by DW model generator to produce the variant CAD models which are a result of driving

CAD seed models. The entire process of producing clones is shown in Figure 2.3. 
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Figure 2.3: The Commercial RBD Approach

As seen in previous sections rules play an important role in building RBD systems. This approach

of using rules has the following advantages:

1. Rules can be captured in a dedicated RBD software tool making declaration, access, and

retrieval of rules easy.

2. Rules can be declared and can be edited using the DW graphical interface. This greatly

enhances rules’ readability and interpretation while eliminating the designers’ dependency on

programmers.

3. The declaration syntax is simple, typically stated in the form of equation or IF-THEN format,

with only one variable being controlled in each statement. This makes the rules structure

modular for having easy control of them.

4. The seed models in SW can be built in sync with the DW output format. This needs special

attention toward modeling, which is covered in Chapter 4 under the heading best practices in

CAD modeling.

5. The rules can be stored and managed in an environment outside the CAD system, which

enforces design standards and reduces the risk of errors by inexperienced designers. At the
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same time the rules can be simply declared, which allows an experienced designer, often the

administrator, to edit these rules.

RBD programming and its stages

From the HI IRBD project, it can be seen that DW RBD program development typically consists

of six stages. They include: 1) SW CAD modeling, 2) Knowledge Acquisition, 3) Extracting CAD

parameters that need control, 4) DW Programming, 5) Debugging and Testing, and 6) Production

Deployment. Figure 2.4 shows the process of DW RBD program development process. Stages I and II are

interchangeable and the sequence depends upon the type of product involved. For example, if a company

starts to build a new product and if it wants to automate the design process for related future variants,

knowledge acquisition becomes the first stage and CAD modeling becomes the second stage. In a case,

where CAD models are already present and later decided for automating the design process, such as in the

case of HI IRBD project, Stage II follows Stage I. The next stage in this process is to gather the product

design knowledge, which is called knowledge acquisition stage. In this stage, the programmer collects the

design information and identifies the dimension and features that vary with order specifications.

Knowledge acquisition is done by conducting interviews with people who have thorough knowledge about

the product. After fully understanding the product, the programmer extracts the CAD parameters that need

to be controlled. Extracting parameters is done with the help of DW Model wizard, which can be found in

DW tool bar with in SW. The next stage in this process is to elicit rules for extracted parameters. This is

done in the DW Administrator, where there is a provision to create user interface forms. The forms are

modeled to capture all design specifications (customer inputs). By using these specifications and assembly

related constants, rules are built for frequently used variables and for extracted parameters. Rule

development is an intellectual task, and the time required for developing rules varies greatly from person to

person. Programmer’s mathematical concepts and experience play a vital role during this process. Once
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the program is developed, it is thoroughly debugged and tested for eliminating bugs. After testing, the

program is ready to release for applying it in production.

RBD
Program

development
processStage I

SW CAD
modeling

Stage II
Knowledge
acquisition

Stage III
Extracting
parameters

Stage IV
DW

programming

Stage VI
Production
deployment

Stage V
Debugging
and testing

Figure 2.4: Stages in RBD program development

Chapter Summary

This chapter discusses the need for knowledge-base systems in current ETO markets and presents

the RBD method. It describes about the types of rules and shows their use with an example for controlling

the transversals within a basket sub assembly of a grid product. It describes the advantages and limitation

of RBD systems. Later it introduces the commercial RBD system (DW) that can be used for writing rules

and the various stages that are involved in program development process.
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CHAPTER 3

KNOLWDGE ACQUISITION

The previous chapter dealt with the RBD programming process in which there was a major

discussion on rules. A rule is built by using information related to design and becomes the knowledge

about the product. Knowledge is an essential element in building a RBD program and the process of

collecting product related design information is known as Knowledge Acquisition [23] and is the Stage II of

RBD program development process as shown in Figure 3.1. 
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Figure 3.1: Knowledge acquisition stage in RBD development process

Knowledge Acquisition

Knowledge acquisition deals with the subset of the world’s collected knowledge in which

knowledge engineers play a dominant role. A knowledge engineers profession is to collect design

information for building knowledge-base systems and they collect design related information from the

designers who have thorough knowledge about the product. In general, the knowledge engineer is
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interested in collecting, the following categories of information [15]:

Requirements: Requirements are the objectives that need to be met for a design problem. It is

typically a design brief, which specifies the statement of intents. The requirements are guided by set of

constraints or specifications. In the HI IRBD project, the requirements are to automate the design process

of grid change over parts with the help of DW.

Principles: Principles are the organized design guidelines of specific domain. These principles

may be a set of equations for designing a particular product and are obtained with experience. The

principles may include the design clearances or standard dimensions that are specific to a given company or

product.

Resources: In order to obtain the principles defined earlier, it is essential to identify the resources.

The resources include company personnel, design documents, past design, vendors, and internet search

engines.

Limitations: Limitations are the constraints of a particular design. The knowledge engineers

should have a strong understanding of these limitations in order to implement strategies to avoid them.

These limitations may be due to the available resources, manufacturing limitations, and machine limitations

on which grids are assembled.

The above categories of information can be collected by conducting interviews. In HI IRBD

project, interviews are used to collect the information about the grid products. In addition to these

interviews, telephonic conversations and email exchanges are also used for gathering the missing product

information. Later, all of the captured information is preserved in the form of a design document to show

design information about the product. Desk research becomes the part of the documentation process, which

includes gathering the missing information that is not captured during the interviews. Detailed discussion

about the documentation and desk research is presented later in this chapter.
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Interviews

Initiating a new knowledge acquisition process is a difficult task and the knowledge engineer has

to obtain product related design information from various sources. Interviews are helpful in obtaining the

first hand information about the product and are particularly helpful in gathering knowledge from an

experienced designer. The interviewing options that are available for knowledge engineers’ include [32]:

1. Informal, conversational interview approach,

2. General interview guide approach,

3. Standardized, open-ended interview approach, and

4. Closed, fixed-response interview approach.

In an informal conversational approach, no predetermined questions are asked and the answers

lead to new questions. An interview takes place with the conversation of flow In the general interview

guide approach, predetermined questions are asked to the respondents, which are more focused about the

domain than the former approach. This type of interview approach is the best method for collecting

domain dependent knowledge. In the standardized open-ended interview approach, the same open-ended

questions are asked to each respondent. The open-ended questions are the ones which do not restrict to

‘yes’ or ‘no’ answers. Finally, in the closed fixed response approach, standard questions are asked to

various respondents and they are given a choice to pick from set of alternatives. This is used in surveys for

getting feedback about the product. In any interviewing approach, for reaping the maximum benefits, it is

important to have a good relation with the interviewee. The following are the strategies for building a good

rapport with the people [15]:

Technical Jargon: The knowledge engineer should become familiar with technical jargon of the

product domain and should avoid using programming terms like loops, classes and objects. Instead, the
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knowledge engineer should use terms such as patterns, features, and entities that are familiar to technical

people since they use them frequently in their day-to-day activities.

Treat equally: It is important to show respect to the technical people. Without them, the

knowledge engineer cannot gather any information related to the product. Interviewees’ time is more

important than the knowledge engineers’ time, since they are doing a favor by letting out the useful

information about the product.

Involvement: The knowledge engineer should always make an eye contact with the interviewee

and should ask follow up questions if the answers are not clear. Writing quick notes is a good idea and

helps to avoid asking again the same question. The knowledge engineer should make a friendly interview

environment so that both are comfortable in asking and answering the questions. The knowledge engineer

should ask questions related to domain so that they stay involved and focused.

Be reassuring: The knowledge engineer often needs to collect information from the current

employee. The employee might be afraid of losing his or her job because of new technologies while the

knowledge engineer should assure that the new systems are used for doing repetitive tasks. Knowledge

engineers should make it clear that the employee would have more time to concentrate on how to improve

the existing and new designs.

In the HI IRBD project, the Clemson students used the interviewing methods of general guide

approach and closed fixed response approach for gathering the design information related to the grid

product. The following sections explain in detail the interviewing method adopted in the HI IRBD project.

Method adopted in interview process

Two Clemson students are involved in HI IRBD project. One of them had trained to work on HI

grid assemblies and DW for about three and half months with in the company. This student had an

opportunity to understand design and manufacturing process of grid assemblies. With the gained
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experience, this student helped the other student to learn about grid design. Later both of them visited HI

on Fridays and gathered information about the remaining grid products for about 3 hours. The focus was to

gather rules for a particular grid product that was on a priority list for RBD programming. The students

requested the grid designer to keep the sample models in company’s’ their ftp site so that Clemson students

can have an idea about the product before the actual interview process. Similarly, the grid designer kept all

of the rules ready for the products and explained the rules with the help of CAD models and drawings. The

interview process used to typically last for 2-3 hours and helped to gather the required information about

one grid product. In addition, students used to get any missing information about the previously collected

grid products. After the interview process, grid designer handed over the CAD drawings, which depicts the

parameters that need to be controlled and their corresponding rules.

To gather the information about the similar product, it took less time since the students are

conversant with the product. During these situations, the students collected design information for more

than one grid product. This helped in reaching a conclusion that the time required for gathering

information about new products is greater than the time required for gathering information about similar

products.

Before starting the programming process, Clemson students are supposed to prepare and submit a

design document to HI for approval. This submitted design document depicts all the assemblies and

components that change with specifications. The document acts as a design journal, which explains all the

rules about the assemblies and components. HI grid designer are supposed to verify these design

documents for accuracy before approving them. The next task after getting approval for submitted

documents is to start the RBD programming process in DW. For getting any missing information, the

Clemson students had to contact the grid designer through emails and by WebEx meetings. Meanwhile

within Clemson, the students did desk research for finding out the missing information. The term desk

research is loosely used in referring to the collection of the secondary data that helps to find the missing
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information from the primary collected data during the interviews. Desk research is augmented with legacy

research or background research.

In HI IRBD project legacy research and background research was done by going through the

existing AutoCAD drawings and SW CAD models. This was mainly done for figuring out the missing

information of the grid components without contacting the grid designer. HI Company’s website also

helped in understanding the various products that they manufacture and the working of their machines.

They have video files on their website that helped in better understanding the working principle of the case

packing machines. The succeeding sections deal with the parameters that affect the knowledge acquisition

process by using grid products as examples.

Three products are selected from Table 1.1, in showing that the time taken for capturing design

information about similar product to that of already captured product will take less time than for capturing

unique product. The three products chosen are shown in Figure 3.2, Figure 3.3 and Figure 3.4 respectively,

and are:

1. 2800 Hybrid RH Metric (2800HRHM)

2. 2800 PFinger Elevator Metric (2800PFEM), and

3. 2800 PFinger Elevator Metric No Basket (2800PFEMNB)

The 2800 Hybrid RH Metric (2800 HRHM) is a large assembly when compared with the other

two assemblies. It has three major sub assemblies that include the upper basket assembly, the shift frame

assembly, and the lower basket assembly. Figure 3.2 shows the 2800 HRHM grid product with its sub

assemblies. Figure 3.3 shows the 2800 PFinger Elevator Metric (2800 PFEM) grid product. It has two

major sub assemblies, which include the upper basket assembly and the lower basket assembly. Finally,

the 2800 PFinger Elevator Metric No Basket (2800 PFEMNB) is shown in Figure 3.4. The only difference

between the second and the third products is the upper basket.
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Figure 3.2: 2800 Hybrid RH Metric

Figure 3.3: 2800 PFinger Elevator Metric
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Figure 3.4: 2800 PFinger Elevator Metric No Basket

Table 3.1: Various parameters for three grid products

Product Name

Sl. No
Parameters 2800

HRHM
2800
PFEM

2800
PFEMNB

1 Total number of Assemblies 32 10 5

2 Total number of Parts 95 20 14

DW Programming statistics

3 # of assemblies that need control (A) 14 7 5

4 # of components that need control (P) 25 10 6

5 Gathered dimensions rules (d) 155 41 20

6 Gathered feature rules (f) 89 12 6

7 Time in min for capturing MSA 360 120 15

8 Time in ‘min’ for capturing one rule 2 3 1

9 Time in ‘hours’ for preparing design document 30 12 4

The metrics from the Table 3.1 suggest that the time required for knowledge acquisition depends

upon the number of dimension (d) and number of features (f). The recorded observations depict that, for

capturing design knowledge of a sub assembly will take on average about one hour for grid products. This

includes opening models in SW, reviewing the components’ construction history, selecting the features,

explaining the dimensions that need control and making printouts of CAD drawings. If one considers
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information at the lower level, it will take on average about 2-3 minutes to collect information about a

particular dimension or feature. On the other hand, for capturing information about similar products, it will

take on average about half an hour for the grid products. This time includes opening the drawings and

explaining the missing information from the previously collected information or suggesting the changes

between the existing and new designs. The other observation is that, for capturing the information at

parameter level, it will take on average about one minute to explain that the components are similar or

dissimilar. These observations are only valid if the knowledge engineer has some prior knowledge about

grid products. In addition, these are valid only for capturing information about grid products and may not

be suitable for capturing any other products.

From the Table 3.1, it can be seen that the time taken for collecting the information is dependent

upon low-level parameters such as dimensions and features. The other observation is that it takes roughly

about 1-3 minutes for capturing the information about a particular parameter. Therefore, for time

calculations one can takes 3 minutes for capturing a particular dimension (d) or feature (f) of a grid product

and depends upon the number of parameters altogether. The activities that are involved in this process

include opening of the CAD model, browsing through the feature construction history, opening the sketch,

selecting the dimension, and explaining about that dimension. Therefore, the total time for capturing the

design knowledge (TI) for the grid products by using interviews can be given as:

IT = 3 * (d+f) Equation 3.1 

 

I

Where,

T = Time required for capturing design information

using interviews

d = # of dimensions that needs control

f = # of features that needs control
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Documentation of captured information

After interviewing the designers, the knowledge engineers should prepare a design document that

depict all of the collected information. Preparing a design document is a tedious task since the knowledge

engineer has to explain all the assemblies, parts, dimensions, and features that vary with design

specifications. This process includes preparing CAD drawings and annotating parameters such as

dimensions and features in detail. In addition to these parameters to control, it should show the

corresponding information required for programming. The corresponding information will include what

constants need to be used, what variables need to be used and other information related to data and tables.

Finally, this design document should include the rules for the parameters to show how the specifications

affect the related components’ construction information (dimensions and features). In brief, this design

document becomes the design bible for rest of the DW rule based program development process.

Preparing a design document can be avoided in the DW RBD programming stage, when a

designer produces this document for every new design that is produced in SW. Therefore, if the design

document is present beforehand, the knowledge engineer can capture most of the design knowledge from

them reducing the dependence upon the designer. This results in a significant amount of time saving

during knowledge acquisition.

The knowledge engineer may prepare a rules document rather than a design document. The

former document can be considered as the condensed version of the latter which emphasizes on rules for

driving parameters. Preparing a rules document is an intellectual task because of coming up with the

constants and variables that are used in writing rules for the extracted parameters. The time for preparing

the rules document can be minimized by using the standard template documents. The figures from the

design document can also be directly copied into rules document, eliminating the creation of CAD

drawings from scratch that results in saving a considerable amount of time.
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Based on the experience from the HI IRBD project the time required for preparing the grid design

document can be approximated as shown in Equation 3.2. 

 

DD

DD

T = 10 hrs for assemblies that have components < 20

= 20 hrs for assemblies that have components in range of 20-40

= 30 hrs for assemblies that have components >40

This T is called gr 1id design documentation constant C in the

remainder of the thesis

Equation 3.2 

Therefore, the time taken for knowledge acquisition can be given by Equation 3.3, which is the

sum of time taken for capturing the design information using interviews (Equation 3.1), and the time taken

for preparing a design document (Equation 3.2) as given below:

KA I DD

KA 1

T = T + T

T =3 * (d+f) + C⇒ Equation 3.3

KA

I

DD 1

1

Where,

T = Time for knowledge acquisition

T = Time for conducting interviews

T = Time for preparing the design document (C )

C = Grid design documentation constant

The values of C1 are applicable only for HI grid products since the total number of components

does not exceed seventy.

Chapter Summary

This chapter discusses one of the important stages of the DW RBD programming process i. e.

knowledge acquisition. It presents the method of capturing design information and suggests that interviews

can be used for capturing the design information. This chapter also discusses the post processing stage of

the interviews, which include preparation of design documents as part of desk research. It also presents the

estimated time calculations for conducting an interview and for preparing the design document based on the

parameters that need control.



36

CHAPTER 4

EXTRACTING PARAMETERS TO CONTROL

In order to start the RBD programming in DW, the dimensions and features that are identified in

the knowledge acquisition need to be extracted from SW models. This task of extracting parameters is

done after getting the approval for design documents that are prepared during Stage II of RBD program

development. The Stage III of parameters extraction is shown in Figure 4.1. Extraction of the SW

parameters is done by the DW model wizard, which can be found in the DW tool bar within SW. It is easy

to extract parameters from the SW CAD models that have additional design details of the product rather

than having simple sketches or features. These details should be added by the designer and are advised to

follow these guidelines while building CAD models for RBD programming. These guidelines are presented

as best practices in CAD modeling in the succeeding section.

RBD
Program

development
processStage I

SW CAD
modeling

Stage II
Knowledge
acquisition

Stage III
Extracting
parameters

Stage IV
DW

programming

Stage VI
Production
deployment

Stage V
Debugging
and testing

Figure 4.1: Stage of extracting parameters in RBD program development process
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Best practices for CAD modeling

In order to make models compatible with RBD for being able to be driven by DW, designers

should follow certain guidelines during CAD modeling. These guidelines help in future stages of RBD

programming for easy capture of parameters and for debugging these programs.

Relative referencing: During the creation of sketches, the designer should avoid dimensioning the

detail entities from absolute reference frames. This helps to maintain the parametric relation in terms of

dimensions. The incorrect and recommended ways of creating sketches for building a feature is shown in

Figure 4.2. In Figure 4. 2a, four rules are needed for driving the feature and in Figure 4. 2b, only one rule

is required for driving the feature in terms of dimensions and position. In the latter method when DW

imposes a change in driving parameter, the driven dimensions are properly updated with respect to each

other, ensuring successful model regeneration.

Rule 1

Rule 2

Rule3

Rule 4

Figure a: Incorrect Figure b: Recommended

Rule 1

Figure 4.2: Relative referencing

Use of pattern option: For multiple occurrences of the same features (e. g. an array of holes), the

designer should use the pattern tool. This allows DW to control the pitch and number of occurrences in the
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patterns by using less number of rules. In the example shown in Figure 4.3, if the features are modeled

individually, see Figure 4.3a, eight rules are required for controlling four holes in terms of their position

and state (suppression or unsuppression). On the hand, if one uses the pattern tool the control of these four

holes can be achieved by only five rules as seen in Figure 4.3b. Moreover, if the features are modeled

individually, the number of rules required for controlling them is directly proportional to the number of

features instances. In Figure 4.3a, the number of rules required will be two times the number of features

instances. However, if the pattern tool is used, only five rules are needed for controlling any number of

feature instances, which saves a lot of time in capturing and writing rules.

Pattern state : Suppress/Unsuppress

Total # of
rules : 8

Total # of rules : 5

Figure a: Incorrect Figure b: Recommended

Figure 4.3: Use of pattern tool

Creating independent features :SW allows combining the profiles of multiple features in a single

sketch. The designer should avoid combining them in single sketch, unless they do not need any control by

DW. This incorrect way of modeling is shown in Figure 4.4a. On the other hand, the features that need

control should be decoupled and created as independent entities, which helps DW to drive them

individually. The correct way of modeling is shown in Figure 4.4b. 
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One
feature

Three
features

Figure a: Incorrect

Individual control of holes is not possible

Figure b: Recommended

Individual control of holes is possible

Figure 4.4: Creating features independently

Naming the dimensions: The dimensions that need to be controlled by DW should be labeled by

meaningful names so that capturing them would be easy in Stage III. This way one can avoid capturing the

wrong dimension in a larger sketch that has many dimensions. It also helps in Stage V for debugging the

program. Figure 4.5 illustrates the incorrect and recommended way of modeling.

Figure a: Incorrect Figure b: Recommended

Figure 4.5: Naming dimensions in sketches

Naming the features: Naming the features with meaningful names helps in locating the feature in

the construction history within larger components. This also helps in capturing the right feature during the
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capturing (Stage III) and in fixing the bugs within program during debugging (Stage V). Figure 4.6 shows

the incorrect and recommended ways of modeling.

Difficult to
interpret

Figure a: Incorrect

No naming convention for features

Easy to
interpret

Figure b: Recommended

Naming convention for features

Figure 4.6: Assigning meaningful names to features

Use of dummy references: Dummy reference lines help in referencing entities that are not present

in the models. This helps in simulating other component’s reference features in the current model as shown

in Figure 4.7. It also helps in building uniform rules among different components by avoiding unnecessary

constants and variables in DW, while holding them back in SW sketches. This way the parameters that do

not change remain untouched in SW CAD models. Dummy references help programmers to use similar

rules for different components while preserving the design intent. The advantages of creating dummy

references are explained below.

Basket Length

Basket sub- assembly

Door Rod Length

Bottles

Door rod

Dummy reference

Figure 4.7: Using dummy references for preserving design intent
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If the dummy references are not used, the length of the door rod is given by the Equation 4.1 and a

rule should be written in DW by using a constant. On the other hand, if dummy references are used while

creating the door rod in SW sketch, the “basket length” dimension can be created to mimic the basket sub-

assembly, which in turn drives the “door rod length” as seen in Figure 4.7. The same rule that drives the

basket sub assembly for calculating the “basket length” can be applied to calculate the length of the door

rod, which results in less number of rules to be written in DW.

Combining non variant features: Entities such as chamfers, rounds, and tool clearances that do not

change with specifications should be modeled within the sketch itself. This guidelineis applicable for laser

and conventional machining types of manufacturing processes. This is not applicable for components that

are produced on a CNC machine in which the corresponding code is generated automatically using CAM

software such as MasterCam or Pro CNC. This method of creating CAD models is shown in Figure 4.8. 

Features
created as
separate
entities

Features
created within
sketch itself

Figure a: Incorrect Figure b: Recommended

Figure 4.8: Combining non varying parameters into sketch

Process for extracting parameters using DW

The DW RBD programming process starts with the creation of a new group in the DW

Administrator. The design of the assemblies, which have to be automated are added to this group as

projects. In DW terminology a project is defined as a collection of items that include CAD models, user

.Door Rod Length Basket Length const on either side= + Equation 4.1 



42

forms, documents, data and rules [12]. . The DW model list only recognizes the assemblies that are added

to the projects. The DW model list can be found in the DW toolbar within the SW menu and is used for

extracting SW parameters.

The process of extracting parameters consists of six steps as shown in Figure 4.9. The process

begins with selecting the assemblies and components that need to be controlled. To do this, the

programmer should know the file names of the CAD models that need to be controlled. This information

can be obtained from the design document. The time required for selecting the components (TEP1) in the

DW model wizard is negligible when compared with the other steps in this stage, and therefore not

explicitly considered in the time calculations.

Specifying
CAD Models

Dimension and
Features

Custom
Properties

Specifying
Drawings

Specifying
Instances

Miscellaneous
tasks

Step I

Step II

Step III Step IV

Step V

Step VI

Figure 4.9: Steps in extracting parameters for DW programming

The next step in this process is extracting the actual parameters that vary with design

specifications. A parameter is defined as entity that needs control, and it includes dimensions, features, and

custom properties. Extracting the parameters is an important step, since most of the rules are written for

them in the DW Administrator. The previously presented modeling guidelines help in quickly identifying

the features and dimensions that need to be controlled. Extraction process is done by selecting the

parameters (dimensions and features) in SW CAD models and by assigning recognizable names to them.

For example, in Figure 4.10 “D1@LaneDividerPattern@8-600-478.Part” is named as

“LaneDividerPatternNum”.
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Figure 4.10: SW screen shot in the process of extracting parameters

In the HI IRBD project, the times for extracting various parameters (dimension ‘d’ and features

‘f’) are recorded and are shown in Table 4.1. Regression analysis is done on these recorded times, using

MS Office Excel.
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Table 4.1: Recorded times for extracting dimensions and features

Observation
Dimensions

(d)
Features

(f)
Total parameters

(d+f)
Time

(minutes)

1 3 3 6 9
2 3 3 6 4
3 4 1 5 4
4 4 1 5 2
5 2 3 5 4
6 1 1 2 2
7 2 1 3 2
8 3 1 4 1

9 4 0 4 4
10 1 0 1 1
11 15 15 30 12
12 15 15 30 16

13 15 15 30 15

14 10 4 14 6
15 10 4 14 4
16 0 4 4 1

17 3 0 3 3
18 3 0 3 1

It is observed that the time required for extracting parameters (TEP2), is directly proportional to the

number of dimensions and features that require control and can be seen from Figure 4.11.
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p: number of parameters, (d + f)

Outliers

Figure 4.11: Linear plot between parameters and time
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From the Figure 4.11, it can be seen that not many outliers are present except for the observation 1

(parameters =6, time =9) and observation 15 (parameters = 14, time =4). The presence of these outliers

depicts that other activities like fixing the CAD models are involved during the process of extracting

dimensions or features. These outliers can be eliminated if the CAD modelers use the best practices that

are presented before while creating the CAD models. Further, the relation between parameters ‘p’ (which

include dimensions ‘d’, and features ‘f’) and, time ‘t’ in minutes is given by the Equation 4.2. 

 EP2T = 0.5 * p + 1.0 0.5 (d+f)+1.0⇒ Equation 4.2 

 

EP2

Where,

T = time for extracting parameters (mins),

p = number of parameters = (d+f)

d = number of dimensions

f = number of features

Close observation of Equation 4.2 reveals that it takes half of a minute to extract one dimension

or feature into DW. Another observation is that the y-intercept is 1. 0 (non-zero value) suggesting that it at

least takes 1 minute to go from step I (selecting models) to step III (selecting drawings to the models).

The next step in this stage is to specify the custom properties for the components and assemblies.

For the grid products, an average of four custom properties are used for components and three custom

properties are used for assemblies. Custom properties include a) Work Order, b) Drawn by, c) Date, d)

Num1, and e) Num2. In the HI IRBD project, the relation for finding the time required for specifying the

custom properties can be obtained from performing the linear regression analysis on the recorded times that

are shown in Table 4.2. 
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Table 4.2: Recorded times while specifying custom properties

Observation Custom properties Time (minutes*)
1 3 1

2 5 1

3 3 1
4 5 1
5 3 1
6 5 1
7 5 1
8 27 5

*Rounded off nearest 1 minutes

The linear plot is between the number of custom properties and the time in minutes is shown in

Figure 4.12.

n: number of custom properties
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Figure 4.12: Linear plot between custom properties and time

The time required for specifying the custom properties (TEP3) is given as:

EP3T = 0.2 * n + 0.3 0.2 (4P+3A) +0.3⇒ Equation 4.3 

From Equation 4.3, it can be seen that it takes on average about 0. 2 minutes (12 seconds) to

specify one custom property. The y-intercept suggests that, it takes on average about 0. 3 minutes (18

seconds) to move from Step II (extracting dimensions) to Step IV (specifying drawings) without specifying

any custom properties.

The next step in this stage is specifying drawings for driven parts and assemblies. In general,

drawings need to be created for every model or assembly that is driven by DW. The total number of
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drawings ‘D’ is equal to the sum of assemblies ‘A’ and parts ‘P’ that need to be controlled. The time taken

for specifying drawings is obtained by doing regression analysis on the recorded observations, which are

shown in Table 4.3. 

Table 4.3: Recorded times while specifying drawings

Observation
No of Drawings

(D=A+P)
Time

(minutes*)

1 2 1
2 5 2
3 8 3
4 1 1
5 2 1
6 2 1

7 2 1
8 2 1

9 4 2

*Rounded off to next minute

The linear plot between number of drawings ‘D’ and the time for specifying drawings (TEP4) is

shown in Figure 4.13.
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Figure 4.13: Linear plot between drawings and time

The time for specifying the drawings in DW model wizard is given by Equation 4.4 and is valid

only for adding drawings that do not require any editing.

EP4

D = A + P

T = 0.35 * (A + P) + 0.45 Equation 4.4 
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EP4

Where,

T = Time for specifying drawings (mins)

D = number of drawings = (A + P)

A = number of assemblies

P = number of parts

From Equation 4.4, it can be seen that it takes 0. 35 minutes (21 seconds) to specify a drawing for

the model. The activities involved during the process are selecting the model for which drawing need to be

added and browsing through folder to select this particular drawing. The y –intercept value suggests that it

will take at least 0.45 minute (27 sec) to move from step III (specifying custom properties) to step V

(specifying instances ) without adding drawings.

The next step in this stage is to control the instances of the sub assemblies and parts. An instance

in CAD modeling is defined as the occurrence of any entity (feature, part, or assembly) that refers to the

base entity. Multiple instances of an entity means that the entity has been loaded into memory more than

once. Usually nuts, bolts, and general hardware that are used more than once in an assembly are shown as

instances. Figure 4.14 shows the instances of a bolt that is frequently used in 2800 PFinger Elevator Metric

type of grid product. The time required to capture the instances would be negligible when compared with

capturing dimensions or features in step II.

Instances of the
same component

Figure 4.14 Model Tree showing instances of a component

There are some other additional tasks such as specifying alternative file and specifying output

documents. These tasks are not generally required for grid products and depend upon the situations like

using one component in place of other. Based on the experience from HI IRBD project, one can say that
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the programmers will take approximately 15 – 45 minute for selecting components and assemblies (Step I),

specifying instances (Step V), and specifying alternative files (Step VI). The time for these additional tasks

can be considered as constant C2 and depends upon the number of parts a grid assembly has. The below

values are only valid for HI grid products and may not be suitable for other products.

2C = 15 mins for assemblies that have components < 20

= 30 mins for assemblies that have components in range of 20-50

= 45 mins for assemblies that have components > 50
Equation 4.5 

In every DW RBD program, the Step 1 of selecting assemblies and components will be present

regardless the activities of specifying the instances or alternative files.

Total time calculations for extracting parameters

The total time for extracting parameters is obtained by adding the time taken for individual steps.

The summation of Equation 4.2, Equation 4.3, Equation 4.4, and Equation 4.5 gives the estimated time for

Stage III of RBD programming process.

EP EP1 EP2 EP3 EP4 2

EP 2

EP1

T = T +T +T +T C

T = 0.5 *(d+f)+1.0 + 0.2 (4P+3A)+0.3 +0.35 (A+P)+0.45+C

( T 0, negligible when compared with other phases)

+

=Q

The result of summation is called time for extracting parameters TEP, and can be obtained as

shown in Equation 4.6 and holds good for HI grid products.

EP 2T =0.95A+1.15P+0.5(d+f)+1.75+C Equation 4.6 

 

EP

2

Where

T = time for extracting the parameters (mins),

A = number of assemblies,

P = number of parts,

d = number of dimension,

f = number of features, and

C = extracting time constant

Table 4.4, shows the time calculations for extracting parameters (Stage III) of the RBD

programming process for the products that were selected in the previous chapter.
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Table 4.4: Total time calculations for extracting parameters

Product A P D F C1 TEP (mins)

2800 HRHM 14 40 155 89 30 211. 4

2800 PFEM 5 26 41 12 30 91. 25 

2800 PFEMNB 4 15 20 6 30 64. 15 

Chapter Summary

This chapter concentrates on extracting the model parameters that require DW control. It presents

a major section on best practices in CAD modeling that helps in extracting parameters. In depth discussion

on activities related to Stage III of RBD programming is presented in this chapter. It also presents

equations for predicting time estimations for extracting parameters such as assemblies, parts, dimensions,

features, and custom properties. The equations are the results of performing linear regression on previously

recorded times in extracting parameters for grid products as part of the HI IRBD project.
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CHAPTER 5

DRIVEWORKS PROGRAMMING

The previous chapters (Chapter 3 and Chapter 4) discussed gathering the design knowledge and

extracting the parameters that need control. This chapter discusses the Stage IV of programming process in

the DW Administrator as shown in Figure 5.1. 

RBD
Program

development
processStage I

SW CAD
modeling

Stage II
Knowledge
acquisition

Stage III
Extracting
parameters

Stage IV
DW

programming

Stage VI
Production
deployment

Stage V
Debugging
and testing

Figure 5.1: DW programming stage in RBD program development process

The DW programming process starts with the creation of a new group in the DW Administrator.

The assemblies that are to be controlled are added to these groups as projects and an interface is created

between DW and SW. Projects consist of CAD models, user forms, data, rules, and documents. CAD

models include assemblies, components, and drawings that change with a given design specification. User

forms are the user interfaces by which a user interacts with a particular DW program. Data is the

background design information that used for building rules. Rules are the equations that control the model

parameters such as dimension or features. Documents may include spreadsheets or word documents that

need to be prepared for every new design. They may be quotations, bill of materials, or user manuals.
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DW Programming process

The DW programming process consists of three major steps as shown in Figure 5.2. They include

creation of a user interface, specifying data and tables that are required for programming, and finally

building model rules for the previously extracted parameters. The more detailed discussion and time

calculation for these steps are presented in the following sections.

User
Interface

Form Navigation

Form Design

Form Errors

Data and
Tables

Constants

Variables

Tables

Files names

Relative path

Dimensions

Features

Custom properties

Drawings

Rules

Step I Step II Step III
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Data and
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Dimensions
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Drawings

Rules

Step I Step II Step III

Figure 5.2: Phases in programming in DW Administrator

User Interface

The first step in DW programming is to create a user interface. A user interface acts as a link

between the DW program and the user. The steps in building a user interface are given below:

Identify the people who are going to use this RBD system: The most important aspect in building

a user interface is identifying the user who is going to use this system. Marketing personnel may use

values (in ‘mm’) that are different from the values used by the design engineer (in ‘inches’), even though

both of them are referring the same thing. Therefore, it is important to know and use the same technical

jargon (terminology, units, and references) on the user interface. If it is required, provide some examples

or brief definitions of the terms, which help the users to understand the terms used on interface. For

complex information, it is a good idea to explain by showing a picture. Figure 5.3 shows an example of

explaining the term “basket holding holes”. It also provides the maximum and minimum values that are

permitted so that the user can input the value in that range. It also shows a particular note that all

dimensions are in inches. This way it instructs the users (designer or marketing personnel) to input the

correct values.
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Basket Holding Holes 14.0

Bottle Width 2.5

Bottle Length 3.25

Bottle Height 6.0

Range~12.0 – 18.0

2800 Hybrid RH Metric
Note: All dimensions are in inches

Basket Holding Holes 14.0

Bottle Width 2.5

Bottle Length 3.25

Bottle Height 6.0

Range~12.0 – 18.0

2800 Hybrid RH Metric
Note: All dimensions are in inches

Figure 5.3: Use of pictures for explaining the terms

Make use of existing interfaces: As far as possible, try to replicate the new interface with the

existing interface. This method is effective for lower level details of a user-interface such as button

controls or menu names [29]. An existing layout will be easier and quicker to implement than building a

new interface because many design decisions have already been made for the existing interface. In

addition, the use of an existing interface makes it easy and comfortable for users to learn and use since the

users are somewhat familiar with the design. Whether to use an existing interface or building a new

interface depends upon how often the users will be using the new interfaces when compared to how often

they will be using the existing interfaces. Users want to have similar interfaces that they know. If the

situation demands a new interface, suitable training should be provided to the users for making them

comfortable with new interfaces.

Prepare a prototype: The prototype of intended fields and layout of the user interface should be

made on paper. Unnecessary fields which are not used anywhere in the design process should be avoided.

A rough description of the user interface should be shown to the concerned person for the getting the

format approval. This way the programmer can get a green signal going ahead and building a concrete
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system or can get some suggestions for making improvements to the existing layout. At this stage, the user

interface may not reflect the entire design but should reflect exactly what fields should be present and their

location.

Actual building and testing the user interface: After building the user interface based on the

approved format, it should be thoroughly tested for hidden errors. The purpose of testing is not to prove the

interface but to improve the interface [29]. Improvement should be made by using additional controls such

as pull down menus or option groups instead of using text boxes. Text boxes give the freedom of inputting

any values, which are hard to control and should be avoided. Necessary error messages should be

incorporated into the user interfaces to avoid taking wrong values such as taking alphabets in place of

numerical or taking out of range values.

The programmer should consider the above factors in designing a user interface. In addition, user

interface should be pleasing to look at. The succeeding section deals the principles to make professional

user interfaces. 

Graphic design principles

The programmer has to make lot of decisions to prepare a user interface such as the layout of the

screen, where to put things on the screen, the size and font to be used, and what colors to be used. The

following are the few graphic design principles, which not only help the programmer in building an

attractive user interface but also make the user more comfortable in using the interface [29].

Clustering principle: Group similar fields under one heading and split the screen in separate

blocks. Try to group similar fields under one heading, which makes the user interface more consistent. If

necessary, differentiate fields by using colors or a bounding box. Another way of differentiating fields is

by using font modifications such as bold or italics formatting and by using Times New Roman or Arial

font. The application of the clustering principle is shown in Figure 5.4. 
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Visibility principle: Frequently used fields should be obvious and distinct. On the other hand, hide

or grey out the controls that give suggestions. In Figure 5.4, the visibility principle is applied to suggest the

dimensions of case information such as width, length, and height. This principle is again applied for “Flap

Height” and “Partition Height”. When the “Does Case Have Flaps? If Yes, Check box” field is ticked, the

“Flap Height” field is shown; otherwise it is hidden. Similarly the visibility control of “Partition Height”

depends upon the “Does Case have Partitions? If Yes, Check box” field.

Alignment Principle: All the fields should be aligned to one reference. This makes the user

interface more pleasing to look at. This alignment principle is applied to many fields in the Figure 5.4. For

example, the “Packer Information” block and the “Case Information” are aligned together.

Color as supplement principle: Assign separate colors for fields that need emphasis or that need

the user’s attention. For warning messages or informational messages, assign different colors for making

them different from the normal fields. A simple rule is to use black and white colors for the form fields.

Using minimal colors is a best principle for producing attractive interfaces. Figure 5.4 shows an

informational message in red color that attracts the user’s attention.

Reduced clutter principle: Do not fill the entire screen with too many fields. If necessary, create a

new form and link the two forms together. Same font and styles should be used consistently through out

the form. Do not use new styles and fonts for new blocks or many font sizes within/across the blocks. The

reduced clutter principle was used in designing the form that is shown in Figure 5.4. 
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Figure 5.4: Graphic design principles

Time calculations for building a user interface

Building a user interface in DW Administrator consists of: i) Form navigation, ii) Form Design,

and iii) Form Errors. Form navigation comes into picture if you have more than one form. It also plays a

vital role in deciding which form to use next. Typical form navigation is shown in Figure 5.5. In this, three

main forms are used (Packer Input, 825 Form, and 2800 Form) and, based on decisions after the Packer

Input, 825 Form or 2800 Form will appear next to the user. The time taken for form creation and form

navigation would be less than the other activities like form design or form errors and thus can be neglected.
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Figure 5.5: Form navigation

The next step after specifying the forms is to design the forms. All the information that is

necessary for designing a product should be present on the forms. This information may include design

specifications, design suggestions, error or warning messages, and pictures. Many controls are available

such as radio buttons, list groups, drop down menus, options button, spin buttons, and text boxes, which

help in stopping the user from entering wrong values. Additionally, program specific error messages or

warning messages can be added to the form fields. A typical form is shown in Figure 5.4. The time taken

for building the forms depends upon the number of fields on the form. The recorded times for building the

forms in HI IRBD project are presented in Table 5. 1. 

Table 5.1: Time taken for building forms

Sl. no Name of the form NFields Time(min)
1 825 Platform Low RH Form 1 24 55
2 825 Platform Low RH Form 2 29 60
3 2800 Hybrid RH Metric Form 1 13 25
4 2800 Hybrid RH Metric Form 2 45 75
5 2800 Hybrid RH Metric Form 3 7 10
6 2800 Pfinger Elev Metric Form 1 22 30
7 2800 Pfinger Elev Metric Form 2 25 40

Average number of fields for grid forms 24 43

The regression plot between the time taken for building the forms (TForms) and the number of fields

(NFields) is shown in Figure 5. 1.
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Figure 5.6: Linear plot between number of fields and time taken

The relation between the time (TForms in minutes) taken and the number of fields (NFields) is given

by Equation 5. 1and is obtained from regression analysis.

Form FieldsT = 1.75 * N + 1.0 Equation 5.1 

This equation reveals that it takes on average 1.75 minutes to create a new field. Another

observation is that it takes about one minute to specify the forms as the part of form navigation without

creating any fields on it.

The next step in the process of building a user interface is to build the mechanisms that will alert

the user should they enter wrong values. DW allows adding error messages tied to the form fields. This

way DW stops the user from specifying wrong specifications. There is a provision to add error messages

for the fields in the form of rules. Typically, this process is done by setting the maximum and minimum

values for the fields. The error rule is invoked when the entered value lies outside the maximum and

minimum value. The following example shows the application of error rule.

IF (OR(Bottle_Width_Return<2 ,Bottle_Width_Return>6)

THEN "Entered value is out of range, please enter value in between 2 and 6"

ELSE "Do nothing"
Equation 5.2

Therefore, if the Bottle_Width_Return is in between 2 and 6 inclusive, the program will work fine

by releasing specifications. Otherwise it pops up the error message that the value is out of range and
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suggests that the new value should be entered between 2 and 6. The time taken for building the error rule

depends upon the number of order specifications. The number of order specifications will be

approximately equal to form fields. It can be seen from the HI case study that, it approximately takes 1

minute for defining the error rule and another 1 minute for specifying the error rule in DW. Therefore, it

approximately takes 2 minutes for specifying the error rule for one field.

Error FieldsT 2* N= Equation 5.3 

The summation of Equation 5. 2 and Equation 5.3 gives the time required for creating a user

interface as shown in Equation 5.4 and the time required for creating a user interface (TUserInterface) depends

upon the number of fields on the form (NFields). The number of NFields can be taken as the number of

design variables (DV), since they change with every new specification of product.

UserInterface Forms ErrorsT = T T+

UserInterface Fields

Fields

UserInterface

T = 3.75 * N + 1.0

Replacing N with design variables (DV);

T = 3.75 * DV + 1.0

UserInterfaceT = 3.75 * DV + 1.0 Equation 5.4 

The average number of form fields used in HI grid project forms from Table 5. 1 is 24 fields for

one form. Since on average two forms were used for the RBD programs, the total number of forms fields

can be taken as 24 x 2 = 48. Therefore substituting the value of 48 for design variables ‘DV’ in Equation

5.4, the time taken on average for creating a user interface can be obtained as 181 minutes for HI grid

products.
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Data and Tables

Data and tables play an important role in building rules. This information is obtained from the

company’s legacy documents and from previous designs. The three different types of information that fall

into the category of data and tables are constants, variables, and look-up tables.

Constants are the fixed values that are used in writing rules. Frequently used numbers, clearances,

and machine dependent values can be declared as constants in DW. Constants help a programmer in better

understanding a rule that is already written by another programmer during the process of debugging or

upgrading the program. If the same value is used in many rules and needs to be modified later, the

programmer has to manually change all the rules with this value. It is time consuming and error prone to

change all the rules. On the other hand, the value can be declared as a constant and all the rules can be

written by using this constant. Changing the constant with a new value will automatically reflect the

change in all the rules. In general, the constants are declared while writing the rules for the variables.

Therefore, the time calculations for declaring constants are addressed in the time calculations of variables.

Variables are the sub rules that are frequently used in writing rules for parameter that are extracted

in stage III of RBD program development. Constants and the form fields (design variable) are used in

creating variables. If the same rule is to be used in different components, the rule should be assigned to a

variable and the variable should be used instead of the rule. This way, changing the rule for the variable

changes the rule for all components. This method is shown as an example in the following sections.

The following figures show three different components: 28-600-48S (Figure 5.7), 28-600-474

(Figure 5.8), and 8-600-478 (Figure 5.9). In each of the components, the distance between adjacent slots

need to be controlled and the distance between the slots remain the same for all the three components. The

distance in HI grid terminology is called the “Lane Center.” Instead of writing individual rules for ‘Lane

Center’ in each component, a variable by name Lane_Center can be declared and can be used in all the

three components. This way the program remains consistent, and changing the rule for the variable

changes the “Lane Center” rule for all the components. The rule for the Lane_Center variable is given in
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Equation 5 5 and changing the rule for this variable changes all the rules in Equation 5.6, Equation 5.7, and

Equation 5.8. 

 Lane_Center = Bottle_Width + Bottle_Lane_Clearance

+ Lane_Divider_Thickness
Equation 5 5

(28-600-48S)Lane Center = Lane_Center Equation 5.6 

 

(28-600-474)Lane Center = Lane_Center Equation 5.7 

 

(8-600-478)Lane Center = Lane_Center Equation 5.8 

Lane
Center

28-600-48S

Figure 5.7: Dimension to be controlled in 28-600-48S

Lane Center

28-600-474

Figure 5.8: Dimension to be controlled in 28-600-474

Lane Center

8-600-478

Figure 5.9: Dimension to be controlled in 8-600-478
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Look-up tables contain the standard information that cannot be represented by rules. The

information like bolt sizes, number of bolts, finger widths, and other company related databases can be

represented in the form of look-up tables to write rules in DW Administrator. The example for look-up

table used in HI grids is shown in Table 5.2. Look up tables are the easy way of presenting random

information that is difficult to represent in the form of rules.

Table 5.2: Look up table for Finger_Width in HI Grids

Sl. No Bottle_Width Finger_Width

1 1 0. 97
2 2 0. 97
3 2. 5 1. 47
4 3 1. 97
5 3. 5 2. 47
6 4 2. 97
7 5 3. 97
8 6 4. 97
9 7 6

In calculating the time required for creating data and tables, declaring variables plays a major role.

During declaring variables, constants and look-up tables are also created. Therefore, the time calculation of

variables takes care of constants and look-up tables. In general, it is difficult to say how many constants,

variables, or look-up tables a program will contain without having the design document. The average

number of variables can be obtained as “17” from the Table 5.3, which shows the number of constants,

variables, and data tables used in various RBD programs of HI grid products.

Table 5.3: Metrics used in HI IRBD project

Sl. No Name of the product Constants Variables Tables
1 825 Platform Low RH 18 21 4
2 2800 Hybrid LH Inch 4 21 1
3 2800 PFinger Elevator AT 5 15 1
4 825 Laser Platform Low RH 8 22 1
5 825 Platform Elevator LH 11 6 0

Average numbers used in IRBD 10 17 2
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The recorded times for declaring the variables is presented in Table 5.4 and based on this

information a regression plot between the number of variables (PV) and the time for declaring them (TPV)

can be obtained as shown in Figure 5.10.

Table 5.4: Variables used in HI IRBD project

Sl. No Name of the product Variables Time in ‘min’

1 825 Platform Low RH 21 48
2 2800 Hybrid LH Inch 21 55
3 2800 PFinger Elevator AT 15 42
4 825 Laser Platform Low RH 22 52
5 825 Platform Elevator LH 6 14

Avg for grid products 17

PV: Programming variables

T
PV

:T
im

e
(m

in
ut

es
)

Figure 5.10: Linear plot between programming variables and time

The relation between the variables (PV), programming variables since they are used in program,

and the time for creating them (TPV) can be related by using a relation as shown in Equation 5.9 Here TPV is

equal to TData&Tables, because in the HI IRBD project, the constants and tables are created during the process

of creating the programming variables.

Data&TablesT 2.5*PV + 2.0= Equation 5.9 

The above equation reveals that it takes on average two and a half minutes to declare variables and

miscellaneous activities like browsing through the data and tables section, which consumes on average
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about 2 minutes. The exact number of programming variables should be known for using Equation 5.9 to

calculate the estimated time, which is not know until the preparation of design document. Since estimation

of time for RBD program is done before preparing the design document, the average number of variables

used in previous RBD programs can be considered for time calculation of HI grid product.

From the Table 5.4, on average 17 variables are used in HI RBD programs. Therefore, plugging

the value of 17 into Equation 5.9, the estimated time for writing rules for variables in DW can be obtained

as 45 minutes and is applicable only for HI grid products:

Data&TablesT 2.5*PV + 2.0

2.5*17 + 2.0 = 44.5 45 mins

=
⇒ �

Equation 5.10

Model Rules

Writing rules is an intellectual task and depends upon the problem solving skills of the designer

and it differs from programmer to programmer. One programmer may use an equation for building the

rules and the other may use look-up tables. It all depends upon the experience and problem solving skills

of the programmer. The following sections describe this nature with an example.

In the component that is shown in Figure 5.11, the first finger hole needs to be placed at the center

when one bottle is present, a half bottle width away from the center when two bottles are present, and one

bottle width away when three bottles are present and so on. Let us call this distance as the first finger offset

distance (FFOD). The FFOD can be obtained by using an algebraic equation or by using a look-up table.

Equation 5.11, shows the use of an algebraic expression for obtaining for obtaining the FFOD. This

equation consists of two parts where, “Part I” is the controlling factor and “Part II” is simply a constant

distance. This controlling factor can be obtained by using a look-up as shown in Table 5.5. 

 FFOD = (NOB-1)/2 * (BW + C) Equation 5.11

Part I Part II
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where,

FFOD = First Finger Offset Distance

NOB = Number of bottles

BW = Bottle Width (from user forms)

C = Clearance

Look in Table 5.5 for NOB

FFOD = for the corresponding value * (BW + C)

from last column

 
 
 
 
   

Equation 5.12

Table 5.5 Look up table for finding the first part of equation

Sl No NOB Part I

1 1 0
2 2 0. 5
3 3 1
4 4 1. 5
5 5 2

Part I Part II
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Figure 5.11: Comparison between use of look-up tables and algebraic expression

The time taken for writing these rules in the DW Administrator will depend upon the above

factors and from person to person. Writing rules is a two-step process. First, the programmer has to open

the locations where constants, variables, and forms are stored. The second step is to locate the required

value from the group of values for writing equations or IF-THEN rules. These two steps consume time for

writing rules. The time for writing the rules in the DW Administrator are recorded in the HI IRBD project

and are shown in Table 5.6. 
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Table 5.6: Recorded times while writing rules in DW Administrator

Observations
Dimension and
Features (d+f)

Time
(minutes)

1 15 210
2 103 210
3 1 90
4 3 4
5 14 42
6 5 14
7 30 28
8 8 14
9 24 32

10 48 90
11 4 2
12 6 8
13 15 6
14 15 12
15 28 14
16 3 1
17 6 6
18 11 5
19 15 26
20 8 7
21 2 3
22 14 16
23 1 20
24 1 2
25 2 3
26 6 6
27 4 19
28 4 8

The linear relation between the number of rules to be written and the corresponding time taken is

shown in Figure 5.12.
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Figure 5.12: Plot between extracted parameters and time for writing rules

Close observation of Figure 5.12 reveals that there are outliers present while recording times for

writing rules. These outliers resulted because design document was not present for 2800 Hybrid RH Metric

grid product. The other reason is that the program was started by HI grid designer and later one of the

Clemson student fixed that program which took lot of time for understanding the already written program.

The plot shown in Figure 5.12 can be represented in the form of a relation as given in Equation

5.13. Some rules may take more time for programming and some may not. When regression analysis was

done on recorded times, the value of R2 was obtained as 0. 45. This low value of R2 reveals that many

factors influence in writing rules. This low value of R2 can be avoided if the design document is present

while writing rules.

Rules

Rules

T 2.0*Parameters + 6.5

T 2.0*(d+f ) + 6.5

=

⇒ =
Equation 5.13

Based on the above equation, one can say that it takes on average about two minutes for writing a

rule for an extracted parameter of grid products in DW. The y-intercept value reveals that it will take at

least of 6.5 minutes to start writing rules in DW. This may include launching the DW software, opening the

required group, opening the required project within a group, and locating the parameter for which a rule

needs to be written.
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Rules for file names, relative paths, drawing names, and custom properties will fall into the

category of similar rules. Programming similar rules will take less time than writing rules or extracted

parameters. The recorded times for writing rules for similar parameters is shown in Table 5.7. 

Table 5.7: Recorded times for writing rules for similar parameters

Observation # of similar rules Time (minutes)
1 15 6
2 15 4
3 15 12
4 15 5
5 30 8
6 28 14
7 3 1
8 3 1
9 11 4

10 47 3
11 45 4
12 6 1

Figure 5.13 shows the plot between the number of similar rules and the time required for writing

rules for the similar parameters.
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Figure 5.13: Relation between number of similar parameters and times

There are some outliers present in the plot, which tells that, not only files names, relative paths,

custom properties, fall into the category of similar parameters but also rules may be similar across the

components as shown in Figure 5.7, Figure 5.8 and Figure 5.9.
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The relation between the number of similar parameters and the time taken for writing rules for

these parameters can be given as:

Similar_RulesT 0.1*similar_parameters + 3.8= Equation 5.14

Similar_Rules

Where,

T time for writing similar rules

similar_parameters = total number of similar parameter

within an assembly

=

Close observation of Equation 5.14 reveals that it takes on average about 0. 1 minutes (6 seconds)

to write rules for the similar parameters. On the other hand, the y-intercept value suggests that it takes on

average about 3. 4 minutes to group the similar parameters together for writing rules.

DW Administrator has an option of seeing similar parameters together, which makes it easy for

writing similar rules. The same rule can be copied and pasted for other similar parameters without actually

writing the rules. In general, the HI grid products has 7P+6A similar rules, where P represents the number

of parts that need to controlled and A represents the number of assemblies that need control.

The derivation for 7P + 6A is as follows:

# of file names = P + A Equation 5.15

# of relative paths = P + A Equation 5.16

# of drawings names ~ P + A Equation 5.17

# of custom properties = 4P +3A Equation 5.18

Adding Equation 5.15, Equation 5.16, Equation 5.17, and Equation 5.18, we get the total number

of similar rules for one RBD program as shown in Equation 5.19.
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similar_parameters = 7P+6A Equation 5.19

Similar_Rules

Similar_Rules

T 0.1*similar_parameters + 3.8

T 0.1*(7P + 6A)+ 3.8

=

⇒ =
Equation 5.20

Similar_RulesT 0.7P + 0.6A + 3.8= Equation 5.21

Similar_Rules

Where,

T Time for writing similar rules

A = Number of assemblies

P = Number of parts

=

Therefore, the summation of Equation 5.13 and Equation 5.21 gives the estimated time required

for writing model rules as shown below:

WritingRules Rules Similar_Rules

WritingRules

WritingRules

T T T

T = 2.0*(d+f ) + 6.5 + 0.7P + 0.6A + 3.8

T = 0.6A + 0.7P + 2d + 2f + 10.3

= +

⇒

⇒
Equation 5.22

WritingRules

Where,

T Time taken for writing model rules

A = number of assemblies

P = number of parts

d = number of extracted dimensi

=

ons

f = number of extracted features

Time calculations for programming in DW Administrator

The total time for completing DW programming stage is given by the sum of the times taken for

creating the user interface TUserInterface, for declaring the data and tables TData&Tables , and the time taken for

writing rules TWritingRules. The total time for completing programming TP , can be obtained by adding

Equation 5.4, Equation 5.10, and Equation 5.22 as shown below:

P UserInterface Data&Tables WritingRulesT T T T= + +
 

Equation 5.23
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P UserInterface Data&TablesT T T 0.6A + 0.7P + 2 (d+f) + 10.3= + +
 

Equation 5.24

For HI grid products the time for creating the user interface can be approximated as 180 minutes.

Similarly, the time for specifying the data and tables for HI grid products can be approximated as 45

minutes. However, if one is interested in exactly estimating the time for creating a user interface, the value

of design variables (DV) needs to be substituted in Equation 5.4. Similarly, for estimating the time for

specifying the data and tables can obtained by substituting the number of programming variables (PV) in

Equation 5.9. Table 5.8 shows the time calculations for the three products that were selected in Chapter 3.

Table 5.8: Time Calculations for programming

Sl. No Product A P D f
TUserInterface

(min)
TData&Tables

(min)
TWritiingRules

(min)
TP

(mins)

1 2800 HRHM 14 40 155 89 180 45 524 749

2 2800 PFEM 5 26 41 12 180 45 127 352

3 2800 PFEMNB 4 15 20 6 180 45 65 290

Chapter Summary

This chapter deals with writing rules for the extracted parameters. It presents the important steps

in DW RBD programming process, which includes user interface creation, specifying the related

information in the form of data and tables, and finally writing rules for the extracted parameters. In

addition, this chapter discusses graphic design principles that should be followed during user interface

creation. Finally, this chapter ends with presenting the estimated time for the programming process. The

next chapter deals with the debugging and testing process that was employed in the HI case study.
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CHAPTER 6

DEBUGGING AND TESTING

The next stage that follows the DW programming is the debugging and testing. The program

should be thoroughly checked for errors that might crept in during the programming process. Debugging,

verification and testing is done for identifying and removing these errors, which are called bugs in software

terminology. The most difficult task in the process of debugging is to locate and fix the part of the code

that is responsible for violating the known specifications [19]. The Figure 6.1 shows the phases of

programming where debugging and testing activities are involved for eliminating bugs in DW rule based

programming.

RBD
Program

development
processStage I

SW CAD
modeling

Stage II
Knowledge
acquisition

Stage III
Extracting
parameters

Stage IV
DW

programming

Stage VI
Production
deployment

Stage V
Debugging
and testing

Stages that involve
debugging and

testing

Figure 6.1: Activities that involve testing in rule based program development [19]

Bugs may be present in the program because [46], the user may execute the untested code, the

order in execution of statements may be different during the testing and in actual case, the user applied may

apply wrong values or untested input values, and the users operating environment may be different from the

testing environment.
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Method adopted in HI IRBD project

In HI IRBD project, testing process is classified under two major headings. They are “α-testing”

and “β-testing.” The Clemson University is responsible for the former and the Hartness International is

responsible for the latter. Parts, assemblies, and drawings become the part of DW generated components.

The primary focus of α-testing is to check the structural and functional completeness of the program [46].

In DW terminology, a program is said to be structurally complete when all the extracted parameters are

driven by one or the other rule. Similarly, a program is said to be functionally complete when all these

rules produce physically correct clones, which do not have any rebuild errors that arise from

inconsistencies in sketches, features, and mating conditions. It is a good idea to separate programming

from testing and is advisable to have different persons for programming and testing. This way, the tester

will not be biased during the testing process and there is a larger scope of covering many test cases for

unearthing hidden bugs. However, in HI IRBD project, the tester was same as the programmer due

constraint on time and resources. As part of �-testing process; unit testing, integration testing, boundary

value partitioning technique (BVPT), cross product boundary value partitioning technique (CPBVPT), and

typical use scenario testing was done. The Hartness International is responsible for �-testing because it is

the production deployment stage and is not covered in this study. All these testing process are classified as

shown in Figure 6.2. 
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Testing Methods

α –Testing (Clemson) β – Testing (Hartness)

Boundary value
partitioning
technique (BVPT)

Cross product boundary
value partitioning
technique (BVPT)

Typical use scenarios
(TUS)

Unit Testing

Integration Testing

Production
deployment

Figure 6.2: Testing methods used in HI IRBD project

Unit testing process starts with testing the user interface forms. As mentioned in the previous

chapter, some form fields are created using rules and two different fields are linked together with the help

of these rules. For example, in designing grid user forms, the number of transversals (NoT) depends upon

the number of bottles per lane (NBPL). The Table 6.1 shows the relations between NBPL and NoT. ‘T’

indicates True, the possible combination of design for NBPL and NoT. ‘F’ indicates False, the infeasible

combination of NBPL and NoT. The two form fields, NBPL and NoT are linked together to accept only

feasible values as shown in shown in Equation 6.1. 

 

IF NBPL = 2,THEN NoT = '0|1',

ELSE IF NBPL = 3, THEN NoT = '0|2',

ELSE IF NBPL = 4, THEN NoT = '0|1|3',

ELSE IF NBPL = 5, THEN NoT = '0|4',

ELSE IF NBPL = 6, THEN NoT = '0|1|2|5',

ELSE IF NBPL = 7, THEN NoT = '0|6',

ELSE IF NBPL = 8, THEN NoT = '0|1|3|7',

ELSE '0'

Equation 6.1 

Note: ‘0 | 1’ represents ‘0’ OR ‘1’.
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Testing of user interface was done by inputting all the values for NBPL field to check whether or

not, the NoT field is reflecting the corresponding value. Other methods used in testing the user interface

for HI IRBD project were boundary value partitioning technique (BVPT) for single fields and cross product

boundary value partitioning technique for multiple fields (CPBVPT) [46].

Table 6.1: Truth table for Transversals

Number of Transversals NoT

0 1 2 3 4 5 6 7 8
1 T F F F F F F F F
2 T T F F F F F F F
3 T F T F F F F F F
4 T T F T F F F F F
5 T F F F T F F F F
6 T T F T F T F F F
7 T F F F F F T F F

N
um

be
r

of
bo

ttl
es

pe
r

la
ne

N
B

PL

8 T T F T F F F T F

In BVPT, the maximum and the minimum values for the fields on the forms are tested. While

designing HI grid forms, the error messages are embedded for the form fields as given in Equation 5.2. 

Testing was done by inputting the maximum and the minimum values in addition to the out of range values

to see whether the form error rules are working or not. The out of range values lie outside the maximum

and minimum boundaries. The values between these boundaries are treated as similar numbers while

testing the forms. For example, in Equation 5.2, the maximum and minimum values are 6 and 2

respectively. Therefore, in BVPT for checking a single field, it does not matter whether the tester uses in

between values such as 2.5, 4 or 5.75 that does not make any difference to the program under test.

In CPBVPT, the maximum and minimum values are compared with the resultant value of two or

more fields in the form. The resultant value refers to the outcome of the mathematical operations between

two fields. The mathematical operations for building rules may include addition, subtraction, division, or

multiplication. For example, CPBVPT technique was applied in HI IRBD project for constraining the

maximum and minimum values for the size of the basket as shown in Figure 6.3. 
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Figure 6.3: Cross Product boundary value partitioning technique

In the above figure, the basket length is obtained by multiplying the bottle length with the number

of bottles per lane and then adding transversal thickness with the corresponding bottle clearance. The

corresponding rule is given by Equation 6.2.

BasketLength= (NBPL*BL)+NoT*(TT+TBC)+EBC 2× Equation 6.2 

 
Where,

NBPL = # of bottles per lane

BL = Bottle Length

NoT = # of Transversals

TT = Transversal Thickness

TBC = Transversal Bottle Clearance (0.625 Constant)

EBC = End Bottle Clearance (0.25 Constant)

Basket length is calculated every for new inputs of bottle length, transversal thickness, and

number of transversals; and the CPBVPT testing method is applied to compare this calculated basket length

to see whether it lies in between the maximum and minimum values. The Table 6.2, shows the type of

testing method applied for checking the form fields.
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Table 6.2: Testing Techniques used in HI IRBD

Sl. No Variable Name
Maximum

Value
Maximum

Value
Testing

Technique
1 Bottle Length 4. 5 8. 0 BVPT
2 Bottle Width 2. 25 8. 0 BVPT
3 Transversal Thickness 0. 02 0. 75 BVPT
4 Basket Width 8. 5 14. 5 CPBVPT
5 Basket Length 5. 5 21 CPBVPT

The user interface was tested to see whether it identifies the out of range values for the

corresponding fields after mathematical operations between the form fields. The sample UI test log is

presented Table 6.3. The last column of this table leaves a note of why the testing condition was passed or

failed.

Table 6.3: UI Test log for 825 Platform Lowering LH

BL NBPL NOT TT BasLen Test Method
Sl. No Test

I II III IV R P/F Failed
Remarks

1 1T721 7 2 1 0. 746 12. 0 P Nill -
2 2T612 6 1 2 0. 394 7. 6 F CPBVPT III!<II
3 3T324 3 2 4 0. 127 5. 5 F Both I, R, & III!<II
4 4T532 5 3 2 0. 245 16. 1 P Nill -
5 5T531 5 3 1 0. 202 16. 2 F CPBVPT III !~II
6 6T332 3 3 2 0. 857 12. 2 F BVPT IV
7 7T531 5 3 1 0. 643 16. 1 P Nill -
8 8T732 7 3 2 0. 223 22. 6 F CPBVPT R
9 9T822 8 2 2 0. 501 16. 2 F BVPT III!~II

10 10T871 8 7 1 0. 622 54. 8 F CPBVPT R & III!~II
11 11T513 5 1 3 0. 090 7. 0 P Nill -
12 12T251 2 5 1 0. 312 11. 0 F BVPT I
13 13T731 7 3 1 0. 286 22. 8 F CPBVPT III!~II
14 14T842 8 4 2 0. 483 29. 1 F BVPT II & III!~II
15 15T621 6 2 1 0. 357 10. 2 P Nill -

!< : NOT GREATER THAN; !~ :NOT COMPATIBLE; P : Pass; F : Fail; R: Result

The interpretation of rows in Table 6.3 is as follows: For example, consider the test case 3T324,

by the name itself one can depict that it is the third test that is conducted, and the variables used were

BL=3, NBPL=2 and NoT =4. The outcome of this testing resulted an error value for the basket length,
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which violates the maximum and minimum criterion as shown in Table 6.2. The remarks column shows

why the testing was failed. ‘I’ in the last column represents that the bottle length was out of range while

‘R’ represents that the resultant basket length is out of range. In addition, ‘IV’ represents that the

transversal thickness is out of range and ‘III! < II’ represents that the number of transversals should be

always be less than the number of bottles per lane. Finally, III! ~II represents that even though the number

of transversal is less than the number of bottles per lane, they are not compatible with each other. For

example, one transversal cannot be placed evenly between three bottles. Suitable number of transversals

for this case would be either zero or two and can be derived from Equation 6.1. 

In HI IRBD project, testing was integrated with programming and was done in phases. After

creating the user interface and the required data (constants, variables, and look-ups), main components in

the assemblies are selected and rules were written for the parameters that are extracted in stage III of RBD

programming. After writing rules for extracted parameters, the components were tested to see whether the

written rules are working in building the variant SW Models. There is a provision in DW Administrator

called test specifications from which, the programmer can test only a part of the program. This type of

testing a particular portion of the program is also referred to as “unit testing” in the literature [46]. The

programmer can specify the test cases to see how the rules are effecting a particular SW CAD models in

producing the clones. The process of producing clones is shown in Figure 6.4. For every run of test

specifications, DW Administrator produces model generation information, which is utilized by DW model

generator for generating variant SW CAD models, i. e. clones. DW model generator found in DW tool bar

within SW, produces model generation reports for every test specification. These model generation reports

give an overall outline of what DW could or could not do in producing the clone models. This generation

report helps the programmer in debugging the implementation and analyzing the causes of failure in clone

models.
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Figure 6.4: Process of producing clones

The process of fixing errors is an iterative process and is completed when the program produce

geometrically correct models as shown in Figure 6.5. Once the errors are fixed for a particular component,

the program is extended for writing rules for the other components. After writing the rules for all the

components, the program is ready for “integration testing”. The focus in integration testing lies on

checking the interactions between components when tested as a whole. Unit testing of all the components

needs to be done before starting the integration testing. . In HI IRBD project, this method of testing was

done in releasing the test specifications for producing clones models in SW. CBPBVPT testing also

becomes the part of integration testing.

Figure 6.5: Debugging process in DW programming

The other method of testing the RBD program is checking the typical use scenarios [46]. Typical

use scenarios are the specifications for which the RBD program is generally used when deployed in

production. This way common errors can be detected and removed for obtaining a more consistent
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program. The process of testing one test case i. e. releasing one set of specifications is termed as test cycle

and it includes implementing the specifications, releasing the specifications, generating the specifications,

and checking the generated models. If errors are present in the generated models the program needs to be

fixed before starting the new test cycle. If errors are not present, then certain number of test cases need to

be specified in which case, step 4 (checking the models) is followed by step 1 (specifying the test case),

1 2

3

Releasing
the test case

Specifying
the test case

Fixing the
rules

Checking
the models

Generating the
test case

Releasing
the test case

Specifying
the test case

Fixing the
rules

Checking
the models

Generating the
test case

Specification
test cycle

Deployment for
production

No
errors

Errors /
No Errors

4

5

6

Figure 6.6: Phases in specification test cycle

If the program produces correct models for every run specified test cases, step 6 (deployment for

production) follows step 4 (checking the models) as shown in Figure 6.6. The number of specified test

cases depends upon the trade off factors like budget, time, and quality.

Time for testing RBD program

Time for testing can be approximated to 35-40%5 of total product development time [8]. This

percentage of time was verified by interviewing an Oracle software tester who is in the field of testing

software products for more than four years. This is a rough approximation for time calculations and can be

5 http://www. ibm. com/developerworks/rational/library/2114. html#author
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used for estimating the time required for RBD programming. When an experienced programmer develops

a RBD program, the time taken for testing may take less time than this specified percentage. In this case,

only specified number of test cases needs to be tested without the requirement of fixing the bugs. There are

some automated testing procedures, where specific code can be written in Java platform. Automated

testing was not used in HI IRBD project since the Clemson students were not familiar with writing Java

Code. The succeeding sections shows the time calculations for testing based on this assumption.

Let us say, the time taken for program development is TPD. This includes the time taken extracting

the parameters, and time taken for writing the rules with in the DW environment. Then the time taken for

testing would be as follows:

PD

T

PD T

Time taken for program development = T

Time taken for testing = T

Total Time for programming is T= T +T Equation 6.3 
 

T

T

Assumption T =40% of T

T = 0. 4 T
Equation 6.4 

 

PD

PD

Time for T 60% of T

T 0.6T

=

= Equation 6.5 

From Equation 6.4 and Equation 6.5, the time for testing (TT) can be obtained as,

T PD
2

T T
3

= Equation 6.6 
 

If testing the program is taking more time than this specified percentage, it means that the program

is ill written and was not properly debugged and tested in the unit-testing stages. The other reason for this

kind of scenario would be errors in the platform itself. The Table 6.4 show the calculations for the testing

times in minutes (TT) for the grid products that are given in Chapter 3.
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Table 6.4: Time taken for program development

Product
TEP

(mins)
TP

(mins)
TPD=TEP+TP

(mins)
TT

(mins)

2800 HRHM 211 749. 4 961 640

2800 PFEM 91 352. 2 443 296

2800 PFEMNB 64 289. 9 354 236

Chapter Summary

In this chapter, the most important stage of RBD program development, software testing, is

discussed. This chapter starts with identifying the stages in program development where testing is required.

It discusses in detail about user interface testing because most of the errors are the result of inputting wrong

rules. It describes the boundary value partitioning technique and the cross product boundary value

partitioning technique that are used in HI IRBD project. In addition, it describes the “typical use scenarios”

that are used in HI IRBD project as part of the α- testing process. The chapter discusses in brief about the

DW software test cycle and the phases that are involved in this process. Finally, this chapter ends with

presenting the time calculations for testing the RBD program, on the assumption that it takes 30 – 40 % of

the time for testing any software program as seen in literature.
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CHAPTER 7

DEMONSTRATION STUDY: 2800 PLATFORM LOWERING INCH

In this chapter, the use of all the equations for calculating the estimated time for RBD program

development within DW is shown with the help of an example. This is done by choosing grid product from

Table 1.1 to show the affect of specification variables on the parameters. The stages that are considered for

showing the time calculation are knowledge acquisition (stage II), extracting parameters (Stage III), DW

programming (Stage IV), and debugging & testing stage (Stage V) as shown in Figure 7.1. The first stage

of the programming process, SW CAD modeling, is not considered in these time calculations since CAD

models are already present in HI design database. Similarly, the last stage, production deployment, is also

not considered because this will be the application stage and will last until there are any major changes in

grid design resulting new programs.

RBD
Program

development
processStage I

SW CAD
modeling

Stage II
Knowledge
acquisition

Stage III
Extracting
parameters

Stage IV
DW

programming

Stage VI
Production
deployment

Stage V
Debugging
and testing

Demonstration
study scope

Figure 7.1: Rule based program development process with in DriveWorks

2800 Platform Lowering Inch is selected for estimated calculations from Table 1.1 for the

following reasons:
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1. This product is similar to the other grid products that were used for deriving the equations for

time estimations and helps in removing uncertainties that arise from product knowledge that

is required. The time models are developed based on the assumption that, the programmer

should be familiar with the products before capturing the design information.

2. The major assemblies like basket assembly and the platform doors assemblies are present,

which involves many parameters that need to be controlled.

3. A completely new product that was never programmed before in HI IRBD project.

4. This product is a medium sized assembly compared to other grids that are shown in Table 1.1 

and gives an opportunity to study many parts and sub assemblies in terms of parameters to

extract and control by writing rules.

5. There is an opportunity to study the affect unique and similar rules in various parts of this

assembly.

6. The programming factors such as constants, variables, and user interface can be created and

their affect can be studied.

2800 Platform Lowering Inch (2800 PLI) is generally used to handle a wide range of round and

non round container shapes with varying sizes that range from 2 ounces to 2 ½ gallons. It is one of the HI’s

flexible medium speed vertical case packing machine that has integrated high-speed laner option with air

transfer mechanism for the packing of a variety of difficult shaped containers such as flasks, chimed cans,

and trigger bottles as shown in Figure 7.2.
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Figure 7.2: Different shaped and sized bottles

Typical CAD assembly model of 2800 PLI is shown in Figure 7.3. Air bags are used to transfer

bottles from upper conveyor on to the grid, where the platform doors hold the bottles in place inside the

basket assembly. The entire grid assembly moves down, above the case while the platform doors are

opened by operating the cylinders by servo-mechanism. Platform doors and fingers guide the bottles to fall

into the corresponding case partitions and thus the cases packed with bottles are delivered from the bottom

conveyor. The same grid cannot be used for running different types of bottles or cases and the grid

assembly should be redesigned for every new bottle/case specifications. The parameters that affect the grid

assembly design are dependent upon four categories of information that include bottle information, grid

information, case information, and miscellaneous information.

Bottle information includes the design variables such as bottle width, bottle length, bottle height,

and contained shape. Grid information includes the design variables such as number of lanes, number of

bottles per lane, grid identifier, bottle lane clearance, transversal adder, and information related to basket

fingers. Case information includes the case width, case height, case length, case flap height, and case

partitions information. Additional information include, the grid work order, designer, and design date that

are useful for preparing drawings.
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Figure 7.3: CAD assembly model of 2800 Platform Lowering Inch

Redesigning some of the grid components is required because of the change in any of the above

design variables and are shown in the Figure 7.4.

Figure 7.4: CAD assembly model showing various components that needs to be controlled

Method used for verifying and validating the estimated time calculations

Initially, the driving parameters for the above-mentioned assembly are identified. Then the

estimated time for RBD program development is obtained by using these parameters in conjunction with
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the equations that are presented in earlier chapters. The obtained estimated time is verified by comparing

the time that is actually taken for writing the rules for the same assembly in DW Administrator (2800 PLI

in this case). The driving parameters and their count are given in Table 7.1. The estimated time

calculations would be precise, if the low level information is known which includes number of assemblies,

number of parts, number of dimensions, and number of features that needs control rather than having a

rough estimation for each of them.

Table 7.1: Design Variables for 2800 Platform Lowering Inch

Sl. No Parameters Count

1 Total of Assemblies 24

2 Total number of Parts 258

3 # assemblies that needs control (A) 13

4 # parts that needs control (P) 27

5 # of dimensions (d) 59

6 # of features (f) 22

Time calculation for development of RBD program

Mentioned before, this research is concentrated only on four stages (excluding the first and the last

stage) of DW rule based programming process, which are knowledge acquisition, parameters capture, RBD

programming, and debugging and testing. The succeeding sections deal with the time calculation

estimations for completing these individual stages that are shown in Figure 7.5. 
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Figure 7.5: RBD program development process

Stage II: Knowledge acquisition stage

The second stage will be the knowledge acquisition stage in which the knowledge engineers

capture the information related to the design of the product. This is dependent upon the number of

dimensions and features that change with the design specifications for a particular product. Here design

specifications are the new bottle/case specifications for which the grid components need to be designed.

The time for capturing the information of grid products is dependant upon features and dimensions within

these components and can be estimated by using Equation 3.1 as follows:

IT = 3 * (d+f) Equation 3.1 

‘d’ is the number of dimensions to control in the 2800 PLI, which is equal to ‘59’ from Table 7.1.

Similarly, from the same table ‘f’ the number of features to control can be obtained as ‘22’. Plugging these

two values in the Equation 3.1, one can obtain the estimated time required for capturing the knowledge

about the 2800 PLI as 4 hours as shown below.

I

I

T = 3 * (59+22)= 222

T = 222 /60 = 3.7 4 hours�
Equation 3.1 
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After capturing the design knowledge, a design document needs to be prepared which shows all

the information pertaining to the product that is of interest. From Table 7.1, the number of components in

2800 PLFI can be obtained as ‘27’. Referring to Equation 3.2, the corresponding value for time to prepare

the design document for this number of parts can be taken as 20 hours.

DDC1 (T ) = 20 hrs for assembly with 27 components Equation 3.2 

The time taken for knowledge acquisition stage will the summation of time taken for conducting

the interviews, the time taken for capturing the design information, plus the time taken for preparing the

design document. Adding the above two values, one can get the time taken for knowledge acquisition for

2800 PLI as “24 hours” as shown below:

KA I DD

KA

T = T + T

T 3.7 + 20 =23.7 24 hours⇒ = �
Equation 3.3 

 
Therefore, the time required for knowledge acquisition of 2800

PLI can be estimated as 24 hours.
Equation 7.1 

After creating the design document, it is submitted to the HI for getting the approval for design

document and the rules. The HI grid designer will go through this design document thoroughly to check

whether this design document reflects back the design intent of the product and approves the document by

suggesting any changes. The next stage after getting the document approval is starting the extraction of

interested parameters from SW CAD models. This stage of DW RBD programming include, creation of

DW group, specifying the assemblies to control in the form of projects and finally extracting all the

parameters, dimensions and features, that change with design specifications.

Stage III: Extracting parameters to control

This stage primarily consists of creating an interface with DW and SW software’s in terms of

parameters. The time taken for extracting the parameters depend upon the number of assemblies (A), parts

(P), dimensions (d), features (f), and corresponding value for miscellaneous tasks (C2). From the Table

7.1, substituting the values of ‘A’ (= 13), ‘P’ (= 27), ‘d’ (= 59), and ‘f’ (= 22), and the value for ‘C2’ (= 30
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minutes) (from the Equation 4.5, the corresponding time for number of components (=27)), in the Equation

4.6, the time taken for capturing the parameters can be obtained as “2 hours” as shown below.

EP 2

EP

EP

T =0.95A+1.15P+0.5(d+f)+1.75+C

T =0.95 * (13) + 1.15 (27) + 0.5(59 + 22) + 1.75 + 30 =115.65

T 2hrs�

Equation 4.6 

 
Therefore, the time required for extracting the parameters of 2800

PLI is estimated as 2 hours
Equation 7.2 

Stage IV: DW programming

As discussed in Chapter 5, the DW programming consists of preparing the user interface,

specifying the data and tables, and finally writing rules for the extracted parameters. The time taken for

completing these activities can be estimate by using the Equation 5.24.

P UserInterface Data&TablesT T T 0.6A + 0.7P + 2 (d+f) + 10.3= + +
 

Equation 5.24

For grid products, the values for TUserInterface and TData&tables can be taken as 180 minutes and 45

minutes respectively. . Therefore by substituting the remaining values of ‘A’ (=13), ‘P’ (=27), ‘d’ (=59),

and ‘f’ (=22) in the Equation 5.24, the estimated time for DW programming for 2800 PLI can be obtained

as “7 hours” as shown below:

P

P

T 180 45 0.6(13) + 0.7(27) + 2 (59+22) + 10.3 = 424 mins

T 424/60 = 7.0667 7 hrs

= + +
⇒ = �

Therefore, the time required for DW programming of 2800 PLI can be
estimated as 7 hours

Equation 7.3

Stage V: Debugging and Testing

The time required for testing (TT) the DW RBD program can be obtained by using Equation 6.6,

which is given below:

T PD
2

T T
3

= Equation 6.6 
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Where, the time required for RBD program development (TPD) can be obtained from Equation 6.3 

as shown below:

PD EP PT T T= + Equation 6.3 

 PD

EP

P

Where,

T Time for program development,

T = Time for extracting parameters, and

T = Time for DW programming

=

The values for TEP (= 2 hours) and TP (= 7 hours) for 2800 PFI can be taken from Equation 7.2 and

Equation 7.3 respectively, and estimated time calculations for 2800 PFI RBD program development (TPD)

can be obtained as ‘9 hours’ as follows:

PDT 2 7 = 9 hours= +
 

Equation 7.4 

Therefore, substituting the value of TPD (=9 hours) in Equation 6.6, the time that can be allocated

for testing (TT) the 2800 PLI grid DW RBD program can be approximated as “6 hours”, which is obtained

as shown below:

T
2

T 9 6 hours
3

= × =
 

Therefore, the time required for testing the DW RBD program of
2800 PLI can be approximated as 6 hours

Equation 7.5 

Total time estimations DW RBD programming process

Therefore, finally the total time (TEstimate) required for developing a RBD program is given by the

sum of the times of four stages, which include knowledge engineering (Stage II), extracting parameters

(Stage III), DW programming (Stage IV), and testing (Stage V) as given below:

Estimate KA EP P TT T + T + T + T= Equation 7.6 
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The total time (T) required for 2800 PFI can be estimated as ‘39 hours’ by substituting the values

of ‘TKA’ (= 24 hours from Equation 7.1), ‘TEP’ (= 2 hours from Equation 7.2), ‘TP’ (= 7 hours from

Equation 7.3), and ‘TT’ (= 6 hours from Equation 7.5) in the Equation 7.6 as shown below:

EstimateT 24 + 2 + 7 + 6 = 39 hours=

Therefore, the time required for testing the DW RBD program of
2800 PLI can be approximated as 6 hours

Equation 7.7 

Verification of estimated time calculations

This estimated time (TEstimate) is verified by actually programming 2800 PLI grid product in DW

Administrator. This program was written by a Clemson student with eight months of DW experience. The

programmer took approximate four days to write the DW RBD program for this product and detailed

breakdown of time for each stage of DW RBD programming is given in Table 7.2. 

Table 7.2: Comparison between estimate and actual times

RBD programming Stage Activity
Estimated
Time (Hrs)

Observed
Time (Hrs)

Interviews 4 6
Stage II Knowledge Capture

Design Document 20 12

Stage III Extracting Parameters 2 3. 2

User Interface 3 3. 18

Data & tables 0. 75 0. 75Stage IV DW Programming

Model Rules 3. 3 2. 7

Stage V Debugging & Testing 6 4. 5

Total Time in Hours 39 33

Actual time for DW programming (TActual) is obtained as 33 hours without considering any

allowances. The estimated time (TEstimate) obtained from Equation 7.7 is 39 hours.

The percentage error between estimated time and actual time can be calculated as:

Estimate Actual

Actual

|T -T |
% Error = 100

T
×
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|39 - 33|
% Error = 100 18.2%

33
× =

 

% = 18.2%Error∴ Equation 7.8 

From the above, the percentage error can be seen as 18. 2 %. Therefore, with 80% confidence

interval, the estimated time calculations fall with in the bounds allowing 20% for variations, proving the

accuracy of the model. Thus, the models for time estimate calculations of RBD programming in DW

Administrator for HI grid products is validated and can be used for estimating the time for other products of

HI grid department.

Chapter Summary

This chapter presents a demonstration study in showing the use of time calculation models for

estimation in RBD program development process. A suitable grid product is selected to show the use of

these models for time estimation. This is compared with the time that is taken for actually writing RBD

program in DW Administrator for the selected grid product. For validating the time models, the percentage

error is calculated between the estimated time and actual time by choosing 80% confidence limits. The

percentage error was obtained as 18.2% that falls within 20% of each other, which builds confidence in the

correctness of the models for grid products.
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CHAPTER 8

CONCLUSION AND CLOSURE

This chapter presents the summary of the case study research that was done as part of automating

the grid design process of HI. It provides a brief discussion on the significance of developing models that

estimate the time required to complete the DW RBD program development process. The limitations of

these time estimation models together with the discussion on directions for the immediate future work for

refining them is also presented.

Addressing the Research Questions

The research questions that are proposed in Chapter 1 are presented once again to remind the

reader about them. They are addressed by conducting a case study research on automating the design

process of HI grid products. The first research question is:

RQ 1: What are the stages that are involved in the DW RBD program development process?

This research question is addressed in the Chapter 2, which is the result of experience from the HI

IRBD project. The stages that are involved in RBD program development process and they include: CAD

modeling (Stage I), knowledge acquisition (Stage II), extracting parameters (Stage III), DW programming

(Stage IV), debugging and testing (Stage V), and finally production deployment (Stage VI). Stage I of

CAD modeling is not addressed in this research because SW CAD models are already present in HI for

RBD programming. The assumption is that, each CAD model is built in a way that it can be driven by DW

software using the guidelines that are presented in the Chapter 4. The Stage II of knowledge acquisition is

addressed in Chapter 3, where it presents interviewing as the preferred method of capturing the design

information about the product. The categories of information needed for this process are also presented. It

also presents the requirements for preparing a design document, emphasizing its importance in RBD

program development process. The Stage III of extracting parameters is presented in Chapter 4. The

modeling guidelines for preparing CAD models are presented in this chapter as one of the primary
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outcomes of this research. This chapter discusses the various phases that are involved during this stage for

extracting the parameters from SW CAD models that need to be controlled. The Stage IV of DW

programming is presented in Chapter 5, where it discusses the three major phases of programming that

include : creating a user interface, specifying the product related data, and writing rules for the parameters

extracted in the Stage III. The Stage V of testing and debugging is presented in Chapter 5, which discusses

the testing methods adopted in HI IRBD project. This chapter explains about the boundary value

partitioning technique and the cross product boundary value partitioning technique as part of the �-testing

process that needs to be done by the program development team. The other method of typical use scenario

testing is also discussed in this chapter. The results of testing are not addressed in this research since there

was not an opportunity to study its effect on the programming process. The Stage VI of production

deployment is also not addressed in this research since it is the actual use of RBD programs for building

CAD models. There was no opportunity in the HI IRBD project to study the results of the effect of these

RBD programs when applied in production. This is reserved for future work.

In brief, the thesis elaborates on the activities that are involved in each stage of the RBD program

development process and presents the method adopted in the HI IRBD project as part of the case study.

These individual stages of the RBD programming process help in identifying the resources for completing

each of them, thus providing upper management with a means to allocate various resources to the different

projects. By knowing these stages, multiple projects can be scheduled with a minimum of conflicts in the

resources.

The second research question is:

RQ 2: What are the programming parameters that affect the stages in the RBD program

development?

The second research question was addressed in identifying the parameters that affect the RBD

program development process. The parameters are identified as number of assemblies (A), parts (P),
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dimensions (d), and features (f). They change for every new design specification and rules should be

written for controlling these parameters while building variant CAD models. Therefore, the effect of these

parameters and their count, on the time required to complete various stages of RBD program development

process are presented in Chapter 3, Chapter 4, Chapter 5, and Chapter 6 in the form of equations.

The third research question is:

RQ 3: How do time estimates for the RBD program development process depend on CAD parameters?

The time estimates for the RBD program development process depend on the number of

parameters that need to be controlled for a given product. These parameters are obtained as the result of

addressing the second research question (RQ 2). The time required for completing the individual stages of

the DW RBD program development increases with the increase in number of parameters that need control.

The models for time estimates are the major results of this research. To obtain these models, times taken

for completing the activities involved in Stage II thru Stage IV were recorded while automating the grid

design process in HI IRBD project. Linear regression analysis was done on these recorded observations to

show the affect of the parameters on time estimations. The results of this process are the estimation models

that predict times for finishing the individual stages of the DW RBD program development and depend

upon the parameters that need to be controlled.

Chapter 3 deals with the estimated time calculations for capturing the knowledge about the

product, i. e. knowledge acquisition (Stage II). The time is dependent upon the parameters that change

with design specifications. The parameters may include the assemblies, parts, dimensions, and features that

change in a given grid product. It also discusses the time that is required for preparing a design document

and roughly estimates this in terms of parts that need to be controlled. This approximation will work only

for grid products of HI and may not be applicable for other products. From the case study, it can be seen

that on average ten parameters, dimensions or features, are to be controlled for grid products. This case

might not be true for other products in which more dimensions or features need to be controlled. Building

a design document is a tedious task and depends upon the number of dimensions or features that change for
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a given design specification rather than the number of parts that need control. Chapter 4 deals with the

time required for extracting the parameters that need to be controlled, which is Stage III of the DW RBD

program development process. Time estimation models are presented for individual phases that are

involved in the Stage III. An equation to estimate time for completing this stage is presented in this

chapter, which is dependent upon the number of assemblies, parts, dimensions, features, and custom

properties that are to be controlled. Chapter 5 deals with the Stage IV of DW programming of the RBD

program development process. It presents the time estimation models for completing individual phases of:

creating the user interface, specifying the product related data, and writing rules for the parameters that are

extracted in Stage III. This chapter ends by presenting an equation that can predict the time for completing

Stage IV of DW RBD program development process and is dependant upon the number of extracted

parameters that need DW control. Chapter 6 deals with time estimations for debugging and testing stages

(Stage V) of the DW RBD program development process. In estimating the times for this stage, a major

assumption from the literature is considered that 35-40% of software development time is spent in testing

the program. This assumption can be applied here because the same testing methods of the software

programs can be used for the DW RBD programs. In DW RBD terms, the development time is the

summation of time taken for extracting parameters (Stage III) and DW programming (Stage IV).

Finally, the estimated total time for DW RBD program development process can be obtained as

the summation of time estimations models for completing Stage II thru Stage V. These times are

dependent upon the parameters that need to be controlled in a particular grid product and should be an

accurate estimate for those parameters. These models for time estimations are demonstrated by actually

developing a DW RBD program using other grid product, and are used for validating the accuracy of the

models.

Validation

In Chapter 7, a grid product is selected from Table 1.1 in demonstrating the time estimation

calculations for developing a DW RBD program. This product was chosen because it is one of the major
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grid assemblies, which provides an opportunity to study the effect of many parameters in terms of different

assemblies, components, dimensions, features, and custom properties. The other reason for selecting this

product is that the time estimation models in this research are obtained with the help of the other grid

assemblies in Table 1.1. The selected product is also taken from the same table and was never programmed

for DW RBD. Thus, this product is a potential candidate that can be used in validating the time estimation

models.

With this product as the subject of demonstration, the time for the DW RBD program

development process, Stages II-Stage V, was estimated as 39 hours. This estimated time was compared

against actually programming the grid product in DW. The actual time for DW programming was obtained

as 36 hours. The percentage error was calculated between the actual and estimated time for building the

DW RBD program and was obtained as 18. 2 %. Therefore, with 80 % confidence limits, one can say that

the actual programming time falls with in 20% of the estimated programming time and hence proves the

accuracy of the proposed time estimation models for the DW RBD program development process of HI

grid assemblies.

Observations

Close observations of the individual stages in the DW RBD program development process reveal

that the second stage of knowledge acquisition is more time consuming and involves more uncertainties

than the remaining stages. One reason for this type of behavior is that the knowledge engineer’s work is

dependant upon designers’ experience for capturing the product information. This knowledge engineering

stage can be eliminated by training the designer to use the DW RBD system instead of a programmer or a

knowledge engineer. The other reason for taking more time for Stage II, is preparation of the design

document. The preparation of the design document is a tedious task since the knowledge engineer has to

explain all the assemblies, parts, dimensions, and features that change with design specifications. This

process includes preparing CAD drawings and annotating parameters such as dimensions and features in

detail. Preparing a design document can be avoided in the DW RBD programming stage, when a designer
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produces this document for every new design that is produced in SW. Therefore, if the design documents

are present beforehand, the knowledge engineer can capture most of the design knowledge from them

without depending upon the designer. This results in a significant amount of time saving in knowledge

acquisition.

The knowledge engineer may prepare a rules document rather than a design document. The

former document can be considered as the condensed and of the latter, which emphasizes the rules for

driving parameters. Preparing a rules document can be considered as an intellectual task in coming up with

the constants and variables or sub-rules that might be used in actual programming in DW. The time for

preparing the rules document can be minimized by using the template documents. The figures from the

design document can also be directly copied into rules document without creating them from scratch, which

saves a considerable amount of time.

Getting an approval for the design document is also dependant upon other people, which raises

uncertainties and, once again is time consuming. Once the design document is approved, writing rules in

DW for controlling the product parameters takes less time than capturing the design information about the

product.

Contributions

The significant contributions in conducting this research are presented as follows:

• As part of this study, the SW design processes of 18 out of 32 grids products shown in Table 1.1 were

automated by writing DW RBD programs. This helps HI to quickly generate new variant CAD models for

these grid orders in the future, which ultimately results in significant savings with respect to time. Since

time is money, savings in time results in savings in money [38].

• This study developed a DW RBD method for automating the grid design process of HI. This helps

ETO companies to follow the proposed method for automating the design process for their variant

products. This research also helped the other student who was part of this project in better understanding
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about the RBD programming process. It helped in understanding the importance of each stages in DW

RBD programming and the parameters that affect these individual stages.

• Valuable product knowledge of grid assemblies was captured and design documents were prepared as

part of HI IRBD project. The design document serves as a reference source for grid products and secures

the product knowledge in HI design databases. This design document can be used as a standard template

for DW RBD programming for other products of HI.

• This research helps any other programmer who is not familiar with DW RBD programming to follow

these steps for automating the design process. This research also helps people to appreciate the importance

of parameters that affect the DW RBD program development process, and can be used to follow the

method while creating the programs. Simultaneously, they can be asked to record the times for significant

activities.

• Best practices for SW CAD models were presented in this thesis, which are the one of the outcomes of

this research. These best practices help HI to build SW models to build DW RBD programs for products of

other departments.

Limitations of the proposed time models

In this research, proposed time models were developed with several assumptions and are valid for

HI grid products. More work is required for refining these models to include uncertainties and allowances

in extending these models for other product domains. These models did not take into consideration the

effect of the learning curve of the programmer. In the HI IRBD project, the student who was trained for

about 4 months on DW had very little chance to record the activities related to DW RBD programming.

This is because a lot of time was spent in building the SW CAD models rather than DW programming and

ultimately resulted in coming up with best practices in CAD modeling for DW program development. The

other reason for not studying the effect of the learning curve is the DW software platform. Since DW is

continuously upgrading the software, the effect of the learning curve was not accurately studied in HI the

IRBD project.
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While developing the time models, the effect of computer hardware configurations such as

processing speed or memory was not considered. This results in uncertainties in the time estimation

calculations when programmers use different systems for developing RBD programs.

The other limitation is that the models are developed by taking the recorded times of one

programmer who developed the programs for the HI IRBD project. It did not take into consideration the

recorded times of other programmers. More work needs to be done for generalizing these time estimation

models.

The major limitation of these models is that they are dependent upon the low-level parameters for

estimating the times for the RBD program development process. In general, the company personnel will

not have an accurate estimate of the low-level parameters before preparing a design document. In other

words, they know the high-level information about the assemblies and their corresponding components that

require RBD programming and are ignorant of the low-level details such as number of dimensions or

features. This is a major drawback of these time models. Therefore, more research is required for

developing a method for estimating the total parameters, and percentage of parameters that change for a

given product in a given type of manufacturing environment. Addressing this issue is left for future

research.

Future Work

Refining these models for addressing the above limitations is identified as immediate future work.

The specific limitations are as follows:

The time models are based on several assumptions and are applicable for HI grid products. The

demonstration study proved that these models could be used for estimating the time for the RBD program

development process. In general, by programming one product it is difficult to reach to a conclusion that

these time models are accurate. Therefore, it is suggested that more products need to be programmed by

the proposed approach and the times should be recorded for the corresponding activities. These recorded
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observations can be used in refining the equations by adding this new data to the data that was used

previously. This helps in refining and validating the proposed model equations.

This research was done on HI grid products as part of the case study. Therefore, the models may

or may not be applicable for other product domains. In answering this hypothesis, a product from another

domain needs to be selected and time estimations should be done by using time models presented in this

research. Later, it should be programmed for DW RBD automation. The estimated time should be

compared with the actual time. More work is needed to see the effect of this comparison to deal with other

products that are different from grid products, and the questions that should be asked during this process

are:

1. Do the proposed time estimate models work for other types of product?

2. What is difference between the estimated time and actual time and what things need to be

addressed in reducing this difference.

3. How can these time models be extended to other product domains? For example,

multiplying with a scale factor, or any complex calculations?

The effect of the learning curve on time estimation models should be considered in training a

designer to use the RBD systems. From the previous observations, it is identified that the knowledge

engineer needs to be eliminated to reduce the time for developing a RBD program. The top-level

management personnel cannot use these equations in present form, since it does not take into the effect of

learning curve of the designer as part of eliminating the knowledge engineer or programmer.

What are the allowances and uncertainties that need to be addressed in these time estimation

models? Major work is needed in addressing the allowances and uncertainties that arise when dealing with

different hard ware configuration systems when used by multiple programmers. The same product should

be programmed by different programmers and the time obtained can be used for getting the average value.
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Different products should be programmed by different programmers and all of the recorded times for their

activities should be considered for generalizing the proposed models.

The extension of these models will be identifying the percentage of low-level parameters that

change in a particular product together with the total number of parameters for a given product. As

mentioned before, there is no idea of these low-level parameters before preparing a design document.

Therefore, more research needs to be conducted in identifying the percentage of parameters that change in a

given type of product. This idea is presented for the sample ETO products as shown in Table 8.1: 

Table 8.1: Percentage of low level of parameters

Sl.
No

Type of product
Total

parameters
(Avg number )

% of
parameters

Parameters
that are of

interest
1 HI Grid products 25 32% 8
2 HI Conveyor Products 175 46% 80
3 Typical book shelves 30 84% 25
4 Office partitions 10 40% 4

So on for all ETO products.

Closing thoughts

Intoday’s fast moving job markets, with the difficultly of producing quality products RBD comes

into the rescue for ETO industries. The RBD process helps in reducing product development time by

automating the low-value mundane design activities like editing models, producing drawings, preparing bill

of materials, and preparing quotations. It also helps to reduce the dependency of an expert, for designing

regular variant products relieving this designer from doing low value design activities. This way the

designer will have more time to think in coming up with innovative ideas for designing better products. The

major of advantage of RBD systems is that, it helps in preserving the corporate design knowledge, which as

the sixth and most important production factor besides people, machines, material, money, and information.

Therefore, this thesis suggests that RBD systems should be used for designing variant products.
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