
Clemson University
TigerPrints

All Theses Theses

5-2010

Timing Side-Channel Attacks on SSH
Harikrishnan Bhanu
Clemson University, h.bhanu@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Bhanu, Harikrishnan, "Timing Side-Channel Attacks on SSH" (2010). All Theses. 781.
https://tigerprints.clemson.edu/all_theses/781

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/781?utm_source=tigerprints.clemson.edu%2Fall_theses%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

TIMING SIDE-CHANNEL ATTACKS ON SSH

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Harikrishnan Bhanu

May 2010

Accepted by:

Dr. Richard R. Brooks, Committee Chair

Dr. Robert J. Schalkoff

Dr. Harlan B. Russell

 ii

ABSTRACT

In most secure communication standards today, additional latency is kept to a

minimum to preserve the Quality-of-Service. As a result, it is possible to mount side-

channel attacks using timing analysis. In this thesis we discuss the viability of these

attacks, and demonstrate them by inferring Hidden Markov Models of protocols. These

Hidden Markov Models can be used to both detect protocol use and infer information

about protocol state. We create experiments that use Markov models to generate traffic

and show that we can accurately reconstruct models under many circumstances. We

analyze what occurs when timing delays have enough jitter that we can not accurately

assign packets to bins. Finally, we show that we can accurately identify the language

used for cryptographically protected interactive sessions – Italian or English – on-line

with as few as 77 symbols. A maximum-likelihood estimator, the forward-backward

procedure, and confidence interval analysis are compared.

 iii

ACKNOWLEDGMENTS

I want to thank all members of my thesis committee, without the techniques I

learned in your classes none of this research would have been possible. Know that each

of you have allowed me to perceive things in different ways.

Second, I would not have been able to do any of this without the support of my

family, so I want to thank you all for your continued support and motivation throughout

my life.

Third, without the help of the members of the research group, I would not have

many of the ideas that I had and would be hopelessly confused on Shalizi’s algorithm. I

want to thank you all for allowing me to bounce ideas off of you and working with me to

get a better understanding of many concepts which were foreign to me.

This material is based upon work supported by, or in part by, the Air Force Office

of Scientific Research contract/grant number FA9550-09-1-0173. Opinions expressed are

those of the author and not the US Department of Defense.

 iv

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

LIST OF TABLES .. vi

LIST OF FIGURES .. viii

CHAPTER

 I. INTRODUCTION ... 1

 Timing Analysis and Side-Channel Attacks .. 1

 Applications ... 3

 II. BACKGROUND ... 5

 TCP vs. UDP .. 5

 Interactive Secure Shell ... 7

 Hidden Markov Models ... 7

 Causal State Splitting Reconstruction .. 9

 Entropy ... 12

 Viterbi Path .. 13

 Confidence Intervals .. 14

 III. PROOF OF CONCEPT ... 16

 Testing Procedure .. 16

 Model Reconstruction .. 19

 Findings.. 20

 v

Table of Contents (Continued)

Page

 IV. EXPERIMENTAL ... 22

 Patterns in Communications Channels .. 22

 Clock-Skew Analysis ... 29

 Long-Range Analysis... 31

 Identifying Methods of Communication With

 Definite State Structure .. 34

 Language Identification Using Confidence Intervals 39

 V. CONCLUSIONS.. 55

 VI. FUTURE WORK ... 56

APPENDICES ... 58

 A: Ancillary Information .. 59

 B: Code ... 73

REFERENCES .. 122

 vi

LIST OF TABLES

Table Page

 2.1 Entropy Measures .. 13

 3.1 SSH Overhead .. 18

 4.1 Ping Pong Trial Delays .. 24

 4.2 Cron Clock Skew ... 30

 4.3 Long-Range False Positive Analysis ... 34

 4.4 Growing Neural Gas Means ... 45

 4.5 Final Symbolization ... 45

 4.6 Selected Texts – Gutenberg ... 46

 4.7 Identification Results ... 48

 4.8 English ROC – 95% CI – Statistics ... 51

 4.8 Italian ROC – 95% CI – Statistics ... 51

 vii

LIST OF FIGURES

Figure Page

 2.1 HMM.. 9

 2.2 CSSR Flowchart... 11

 2.3 CSSR Algorithm .. 11

 2.4 Relative Entropy .. 14

 2.5 Relative Entropy Rate .. 14

 2.6 Confidence Interval .. 14

 3.1 Two-State FSM .. 17

 3.2 Direct Connection Configuration ... 18

 3.3 Tunneled Configuration ... 18

 3.4 Plain-Text Reconstruction ... 19

 4.1 Ping Pong Procedure .. 23

 4.2 Overlap 1 Delay Histogram ... 25

 4.3 Overlap 2 Delay Histogram ... 25

 4.4 Separated Delay Histogram ... 26

 4.5 Overlap 1 Reconstruction (L = 10) .. 27

 4.6 Overlap 2 Reconstruction (L = 7) .. 27

 4.7 Separated Reconstruction (L = 7) .. 28

 4.8 Long-LAN, 12 ms Separation .. 32

 4.9 Long-LAN, 15 ms Separation .. 32

 4.10 Off Campus, 40 ms Separation .. 33

 viii

List of Figures (Continued)

Figure Page

 4.11 Off Campus, 50 ms Separation .. 33

 4.12 Model 4 - Ping ... 34

 4.13 Model 4 - Pong... 35

 4.14 Model 5 - Ping ... 35

 4.15 Model 5 - Pong... 36

 4.16 Model 4 Histogram .. 37

 4.17 Model 5 Histogram .. 37

 4.18 Model 4 Ping Reconstruction... 38

 4.19 Model 5 Ping Reconstruction... 38

 4.20 Language Data Flow .. 40

 4.21 Italian Interpolation .. 42

 4.22 New Zealand Interpolation .. 42

 4.23 Italian Key-Pair Gaussians ... 43

 4.24 New Zealand Key-Pair Gaussians ... 44

 4.25 Italian Gutenberg Data ... 46

 4.26 New Zealand Gutenberg Data .. 46

 4.27 English ROC – 95% CI .. 50

 4.28 Italian ROC – 95% CI .. 50

 4.29 English ROC -- ML (Forward-Backward) ... 52

 4.30 Italian ROC -- ML (Forward-Backward) ... 53

CHAPTER ONE

INTRODUCTION

As electronic communications become ubiquitous, they carry increasingly

sensitive, private and valuable information. Consequently, the ability to determine the

contents of these channels is valuable to attackers. Electronic communication is used and

misused, for a multitude of things. It can be used to pay your bills or steal your identity

[19], do research on different political parties or control what an entire country has access

to [6] [21], to send vacation pictures to relatives or steal thousands of dollars worth of

music and movies, as documented in RIAA and MPAA statements [12]. As more and

more people use e-commerce to pay their bills, more individuals become interested in

being able to steal identities. Similarly, as more people steal music and movies, internet

service providers become more interested in performing deep-packet inspection and other

analysis to determine if you are abiding by the Terms of Service contract. On a larger

scale, control of electronic communication can allow a government to control what

information the inhabitants of their country has access to, as with the great firewall of

China.

Timing Analysis and Side-Channel Attacks

Side-channel attacks defeat security measures indirectly. Instead of tackling

encryption using mathematical analysis or brute-force attacks, they focus on

implementation artifacts that leak information about the process. In Song’s paper, she

says, “Many users believe that they are secure against eavesdroppers if they use SSH.

 2

Unfortunately, in this paper we show that despite state-of-the-art encryption techniques

and advanced password authentication protocols, SSH connections can still leak

significant information about sensitive data such as users’ passwords. This problem is

particularly serious because it means users may have a false confidence of security when

they use SSH” [20]. Given the nature of encryption standards in place today, it is

computationally unfeasible to discern the underlying message within a reasonable amount

of time using cryptanalysis – mathematical analysis to defeat the encryption – alone.

Timing analysis offers significant advantages. By observing the timing of a system, it is

possible to determine a variety of things. For example, if a specific user’s typing habits

are observed for an extended period of time, it is possible to determine what the user is

typing merely by the delays between his keystrokes, and as an extension if a typist is in

fact that user, or a different entity [5] [7].

When the focus is shifted from the client to the server, a different timing attack is

possible. By monitoring the time taken to process a given cryptographic key, it is possible

to determine the private key used by the client. Though this time is a function of multiple

factors, the key is the largest contributor in the delay [7]. This form of attack has been

made significantly more difficult, though, by blinding and normalization. In blinding,

random factors obscure the relationship between runtime and encryption key.

Normalization forces all delays to a specific value, as a result no additional data can be

acquired. In practice, blinding is not very effective; while normalization is at the cost of

speed.

 3

Applications

In addition to biometric applications of keystroke dynamics, timing analysis can

attack otherwise secure communications channels. Secure Shell (SSH) begins by using

public-key encryption, RSA, to exchange a session key. This session key is used for

symmetric key cryptography such as AES. In an interactive session, keystrokes are

transmitted to the server as the user enters them at the client terminal. Because of this, all

keystroke dynamics of the user are preserved across the communication line. By

exploiting this fact, combined with training data collected from the user, it is possible to

discern the commands that the user is typing [5] [15] [20].

Furthermore, by monitoring the timestamps over time, it is possible to determine a

machine’s geographic location as a function of clock-skew. This is based on the principle

that computers that are physically near one another will be subject to similar

environmental effects, and as a result will maintain synchronized internal clocks longer

than those separated from one another [13]. This technique can also determine if multiple

machines are independent, identical, physically close, and so on.

Another application of timing analysis, in the form of keystroke analysis, is author

identification. Using the methods detailed in Chapter 4, Section 5: Language

Identification Using Confidence Intervals [2], it should be possible to construct Hidden

Markov Models trained on the works of specific authors. These models would summarize

aspects of an author’s style. By applying confidence interval analysis to texts of unknown

authorship it is possible to determine which authors’ characteristics are most prevalent in

the new texts.

 4

The rest of this thesis is laid out as follows: Chapter Two addresses background

material required for understanding the experiments performed and the analysis of the

results, Chapter Three contains a proof-of-concept of the underlying hypothesis that

Hidden Markov Models can be used to perform side-channel attacks, and Chapter Four

details the experiments performed and analysis on the results of these experiments. Last

are Chapters Five and Six which are the conclusion and future extensions of the

experiments performed, respectively. Also included are additional experiments, which

accompanied those done in Chapter Four, in Appendix A followed by the code used

throughout the experiments in Appendix B.

 5

CHAPTER TWO

BACKGROUND

 The following sections make clear the relationship between the various

components of the experiments. The two protocols tested for communication in the proof

of concept were TCP and UDP. However, since Secure Shell wraps all communication in

a TCP packet, they appear as such when observed by Wireshark at an intermediary node.

This third node acts as an observer to the communication taking place between the source

and destination nodes. By monitoring the delays between these packets, and symbolizing

them – grouping nearby delays together and giving them a label – it is possible to build a

Hidden Markov Model representing the communication taking place. This is done

through application of an algorithm known as Causal State Splitting Reconstruction.

Furthermore, this model can be used to detect the presence of that behavior in traffic

through application of confidence interval analysis.

TCP vs. UDP

The two most common protocols in use for network communication are the

Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). The key

differences between TCP and UDP are guaranteed delivery and flow control. For

situations where there is a high assurance of packets reaching their destination, UDP is

preferred as it has a higher throughput. TCP’s combination of assured delivery and flow

control make it the ideal choice for general purpose use, though.

When using TCP, each packet is assigned a sequence number as well as an

acknowledgement number. These packets are then transmitted from the server to the

 6

client in groups, the size of which is determined by the client’s window size. Once the

transmission of all packets within the window is complete, the server waits for

acknowledgement for the last packet received. If the destination does not acknowledge

the arrival of a packet, it is queued for retransmission. Furthermore, no new windows of

data are transmitted. This prevents the server from transmitting data to the client at such

rates which would cause significant data loss.

UDP does not have this flow control measure, nor does it guarantee the successful

delivery of a packet. As a result, space within the packet which would normally be

allocated for the sequence number, acknowledgement number, error correction code, and

other information used by TCP, are not present. This allows a UDP packet to transmit

more data per packet than TCP, making it ideal for situations in which efficiency is the

priority.

Both TCP and UDP present problems for network monitoring using packet

sniffers. Wireshark and its terminal counterpart tshark monitor will record out of order

arrivals. In addition, since UDP lacks the guarantee of successful transmission, a dropped

packet will cause a larger inter-packet delay to be observed. If the presence of the

dropped packets is statistically insignificant for the size of the capture, the algorithm will

ignore it. However, for long-range communications it would be impractical to use UDP

for this purpose, since the packet loss rate increases considerably. With out of order

arrivals, it is possible for inter-packet delays to become negative. The reason for this is

that these delays are computed in order of arrival, not by sequence number.

 7

Consequently, it must be ensured that packet numbers are inspected to ensure that the

observed times are correct.

Interactive Secure Shell

Secure Shell (SSH) allows a user to remotely access and administer machines on

the network securely. When this process is controlled by a script, it is considered non-

interactive SSH. If the user remains at the terminal to type these commands manually, it

is classified as an interactive SSH session.

There are various security options available for implementation within SSH, but

the most common is through a series of key exchanges. Each server maintains a private

and public RSA key. When a client connects, it generates a RSA key for the session and

transmits this to the server after it has been encrypted with the server’s public key. This

session key is then used to encrypt further communication on the channel through

application of symmetric key cryptography, most commonly AES. This prevents direct

channel monitoring through Wireshark to determine what the user is doing, as opposed to

a telnet session.

SSH does not modify the typing patterns of the user, however; keystrokes are

transmitted as they are typed at the terminal. As this preserves the inter-keystroke delays

of the user Wireshark will be able to capture it. If the user were to use a non-interactive

SSH session to complete his tasks, the captured data would instead reflect processing

time, instead of both processing time and user typing dynamics. Because of this, even

when capturing traffic for a non-interactive session, it is possible to infer what is being

done on the server by the script.

 8

Hidden Markov Models

The purpose of a Hidden Markov Model (HMM) is to model a system whose

states are not known directly. The outputs generated by the states or transitions, can be

monitored, however. Providing the underlying process is Markovian, an HMM can be

constructed using these outputs. This model will contain the statistical information of the

observations, and thus offer insight into the underlying state structure [3].

In his paper, Rabiner discusses common uses for HMMs, primarily speech

recognition. In speech recognition, the Viterbi path (the most likely path taken through an

HMM) is used to determine the most likely text representation of a spoken string [14].

Furthermore, there are multiple kinds of HMMs: ergodic, left-right, parallel path left-

right, and so on. In this thesis, only ergodic HMMs are considered. An ergodic HMM is

one such that any state can be reached from any other state in a finite number of

transitions. With a left-right HMM, it is only possible to transition to the next state or stay

in the same state; that is, you cannot transition to the left.

The HMMs discussed in this thesis, Figure 2.1 for example, differ from those in

Rabiner’s paper in that the observations generated are the symbols produced from

transitions between states. Furthermore, the models considered are deterministic in

nature. This means that from any one state, it is not possible for two transitions to create

the same observation.

 9

Figure 2.1: HMM

Causal State Splitting Reconstruction

Causal State Splitting Reconstruction (CSSR) is an algorithm, developed by

Cosma Shalizi, used to construct (hidden) Markov models from a time-series and a mesh

file of the symbolization with no prior knowledge of the model. This mesh file contains

ranges for the symbols in the time-series [17]. The first step in CSSR is to symbolize the

time-series. This is done by a simple search-and-replace in which a time value is selected

from the data and is compared against the various intervals defined for the symbols.

Next, the symbolized data is analyzed in strings of up to a length L (1, 2 … L),

defined by the user, to determine conditional probabilities. For example, with a two

symbol alphabet (A and B) and L = 3, the algorithm would consider the probabilities of

an A or a B following each two-character permutation (AA, AB, BA, BB). Our

implementation of CSSR differs from Shalizi’s in that histories of L and L – 1 are

 10

considered when constructing each state. Furthermore, with each iteration, transient states

are removed, as are any transitions leading to them. Once the removal phase is complete,

steady-state probabilities are computed to reflect the changes to the model. This is not

done in the algorithm as Shalizi described it. Shalizi also makes the assumptions that

there is an infinite amount of data and that L is known. We require no a priori knowledge

to construct our models.

For each iteration of the algorithm (i ≤L), the probability that the transition

described by the next symbol will be taken is found. Next, determine the probability that

the system is in state i, and that the next symbol observed will be the next symbol in the

string. This is the probability that the symbol is a member of this state’s history. A state’s

history is a list of all the strings with sufficiently similar conditional probabilities. These

probabilities are compared using the χ
2

test and a predefined threshold.

If the two probabilities are sufficiently close, a new string is added to state i

containing all previous symbols as well as the current one. This string will be of length i.

If this condition is not satisfied, the two states are regarded as different and a new state

(state i+1) is created with the string placed in it.

If the model remains constant for a given L = n as well as L = n + 1, and there is

sufficient data to show both models are statistically significant, we consider it having

reached this stable point. This is because we define stability as the case when additional

data does not modify the structure of the Markov model [3] [4]. A flowchart of the

process used is shown below in Figure 2.2.

 11

Figure 2.2: CSSR Flowchart

Figure 2.3: CSSR Algorithm

 12

Entropy

In addition to comparing the models produced by consecutive string lengths

through state counting and comparing steady-state probabilities, it is possible to

determine that a model has converged upon the stable model through the use of the

relative entropy and relative entropy rate measures introduced by Shalizi. Relative

entropy, shown in Figure 2.4, is a distance measure between the forward-backward

probability of generating a string by a model and the probability of that string occurring

in a given sample set. Relative entropy rate, shown in Figure 2.5, includes the next

symbol of the string in this calculation.

2 2
(,) Pr(|)log Pr(|) Pr(|)log Pr(|)

s S s S

H P Q s S s G s S s S

 Figure 2.4: Relative Entropy

2

2

,

,

(,) Pr((|) |) log Pr((|) |)

Pr((|) |) log Pr((|) |)

g
a A s S

a A s S

H P Q a s S a s G

a s S a s S

 Figure 2.5: Relative Entropy Rate

In the above equations, Figures 2.4 and 2.5 [16], s is the subsequence of the data set S.

The reconstructed model is G, and the next symbol in the sequence is a. The symbols in S

form the alphabet of the model, A.

Shalizi shows that as the lengths of strings presented to CSSR approach the

necessary length for convergence the relative entropy rate approaches a minimum. We

consider consecutive string lengths (L and L-1) together, resulting in our entropy rates to

increase. This is because when L is 3, all strings of length 2 and 3 are considered. As

 13

there are more possible strings available, the entropy rates are higher. In addition to this,

our implementation removes transient states and any transitions to those states while

Shalizi’s does not. This combination is responsible for our entropy values increasing.

Through testing, it was found that by monitoring the difference between relative entropy

rates of consecutive string lengths convergence could be detected. When a model

converges, this difference reaches zero [3] [17]. This is shown in Table 2.1.

L States

Stat.

Comp.

Δ Stat.

Comp.

Entropy

Rate

Δ Entropy

Rate

Rel.

Entropy

Δ Rel.

Entropy

Rel. Entropy

Rate

Δ Rel. Entropy

Rate

2 5 2.249994 0.000000 0.499988 0.000000 0.143913 0.071968 -0.000077 -0.000039

3 7 2.749981 0.499988 0.249994 -0.249994 0.162954 0.019041 -0.000085 -0.000008

4 7 2.749981 0.000000 0.249994 0.000000 0.114773 -0.048182 -0.000085 0.000000

Table 2.1: Entropy Measures Note the change in relative entropy rate zeroes at model convergence

indicating L = 4 produces the desired model.

Viterbi Path

The Viterbi path of an HMM is defined to be the most likely combination of

states and transitions between them to produce a given string. The likelihood of a

particular path is the product of the probabilities of the transitions associated with the

path and the probability of the selected start state being the actual start state. Therefore, to

consider the total probability, the sum must be taken over all start states. By considering

every start state, all possibilities of generating the given string will be addressed. This

allows us to determine the probability that a given HMM generated that string.

However, as longer strings are presented, there is significant noise introduced in

the multiplication of these probabilities. As a result, floating-point underflow is not

uncommon. Furthermore, it is not uncommon for a high false-negative rate using the

 14

forward-backward procedure, which this is closely related to. To avoid both problems, a

confidence interval approach was adopted instead [4] [14].

Confidence Intervals

For a given Markov model, and the sequence of transitions (the delays), we

follow the transitions through the model to determine the probability that the model

generated that sequence. Every starting state is considered. Since the models generated by

CSSR are deterministic, if a symbol is encountered with no corresponding transition in

the model, the model is rejected as it could not have generated that sequence.

Every time there is a transition into or out of a state, counters for the state and

transition are incremented. By dividing the number of times a particular transition is

taken by the number of times the state is entered, an estimate of that transition probability

can be obtained. This allows us to define the confidence interval of this particular

transition as:

, /2 , , , /2 , ,(1) / , (1) /i j i j i j i i j i j i j ip Z p p c p Z p p c

 Figure 2.6: Confidence Interval

Where pi,j is the transition probability from state i to state j, ci is the entry-counter for

state i, and Z /2 is from the standard Normal distribution. Since we possess these models,

the actual transition probabilities are known to us.

We can accept that our estimate for this transition is correct (sufficiently close to

the known transition probability) if it falls within this interval, with a false positive rate of

α. Note that if the frequency of transitions does not fall within this interval, the sequence

was not generated by this model, and the model is therefore rejected. These events,

 15

detections and rejections, are also counted. If the rejection rate exceeds the threshold

calculated through use of receiver operating characteristic (ROC) curves, the model is

rejected. If the acceptance rate exceeds this threshold, the model is accepted [4].

We use an ROC curve to determine the threshold we use for detecting a behavior.

A ROC curve is the plot of the true positive rate against the false positive rate. An ideal

decision boundary would have an ROC curve which goes from the origin (0,0) to (1,0)

and then (1,1). The threshold chosen is the point on the curve closest to (1,0) [16].

Flipping a coin, in contrast, would have an ROC curve which goes from (0,0) to (1,1).

The closer the curve comes to (1,0), the better the decision boundary is.

In addition, we will compare the results from using the confidence intervals

against the results using a maximum-likelihood approach: the forward phase of the

forward-backward procedure. The forward-backward procedure has two phases. In the

first phase, the probability that a given HMM generated a string is determined by

multiplying the probabilities of all necessary transitions to the probability of starting in

the given state. The sum of these values is the probability that the model generated the

string. The second phase is retuning phase but is not used by us [1] [14]. It is important to

note that confidence interval analysis is a detection method, not a classification method.

That is, it will identify when a particular sequence exhibits the characteristics of a given

model, but it will not identify it as belonging to exclusively one model.

 16

CHAPTER THREE

TEST ENVIRONMENT

Testing Procedure

To confirm the hypothesis that CSSR can be used to reconstruct the underlying

model of communication, which is tunneled through a SSH connection, simplistic client

and server applications were created. The server application requires a finite-state-model

(FSM) file, sequence length, and the port for which it should listen for

acknowledgements on. The client application requires the server IP and port, as well as a

port for it to accept the symbol sequence on. Both applications have an option for UDP,

in this case, the IP address of the other machine must also be specified, as UDP does not

create a channel to communicate over.

A simple two-state FSM, shown in Figure 3.1, was used for this purpose. Each

state has two possible transitions: either to the other state (90%), or to remain in the

current state (10%). Whenever a transition is made, the symbol associated with that

transition is transmitted from the server to the client application. Then the server waits for

a delay associated with the transmitted symbol before making the next transition. The

client is nothing more than a listener, leaving acknowledgements to the underlying

protocol (TCP). The delays used for the proof of concept were 100 ms for A and 900 ms

for B.

The test consists of 1000 symbols being transmitted from the server to the client.

Wireshark is run on the client to capture the network data which is then filtered for

symbol arrival events, and filtered again so only UNIX timestamps remain. A simple Perl

 17

script is then used to compute changes between adjacent times. This file is presented to

CSSR with a mesh file. The mesh file is a comma-separated-file containing the expected

symbols and their ranges. These ranges were defined as 0 to 500 ms and 501 to 10000

ms, for A and B respectively. A ceiling of 10 seconds is used to account for unknown

traffic. The computers were tested in two configurations, as shown in Figure 3.2 and 3.3.

In the first, they are directly connected, with only a switch in between, while in the

second there is an intermediary listener.

Figure 3.1: Two-State FSM

This test was repeated three times for each configuration, and the collected data

was processed by CSSR to create models. In all six cases, the original model was

successfully reconstructed. The reconstructed models are shown in Figure 3.4 and 3.5.

Furthermore, to determine the overhead introduced by the SSH tunnel, a spreadsheet was

used to keep track of the means and variances of unexpected delays for the trials. These

delays are the sum of clock skew, latency and SSH overhead as determined by a Matlab

script which compared the expected value to the observed. These means and variances

 18

were then averaged among connection type, direct (plain-text) and SSH, and the

difference was taken. These results are in Table 3.1.

Figure 3.2: Direct Connection Configuration

 19

Figure 3.3: Tunnel Configuration

Trial
Plain SSH Tunnel

Mean (s) Variance (s2) A B Mean (s) Variance (s2) A B

1 9.05E-04 2.26E-08 0 0 8.88E-04 7.97E-08 0 0

2 9.29E-04 2.69E-07 0 0 9.11E-04 1.44E-06 0 0

3 9.40E-04 8.61E-07 0 0 0.0016 1.55E-04 82 81

 Average for Plaintext Average for SSH Tunnel

 Mean (s) Variance (s2) Mean (s) Variance (s2)

 9.25E-04 3.84E-07 1.13E-03 5.21E-05

 Overhead from SSH

 Mean (s) Variance (s2)

 2.08E-04 5.17E-05
Table 3.1: SSH Overhead

Model Reconstruction

 20

The model below was reconstructed using CSSR with a string-length, L, of 3.

That is, only a history of two symbols are considered when conditional probabilities were

computed. The SSH differs from the expected model in the transition probabilities, but as

L increases it converges to the generating model. This occurs at L = 5.

Figure 3.4: Plain-Text Reconstruction

Figure 3.5: SSH Reconstruction

Findings

Though tunneling the transmission from the server introduces overhead – a

potential problem as it can lead to misclassification – reconstruction is possible with

sufficient data. The boundaries for the symbols can be determined by plotting a histogram

 21

of the collected inter-packet delays. This will allow for clear identification of symbols. If

the range of collected data is too wide, as with the New Zealand keystroke statistics in

Chapter Four, a clustering application such as growing neural gas can be applied to

determine crucial centers of activity. Once these values are found, boundaries between

symbols can be defined as the midpoint between them.

An important factor to be kept in mind for reconstruction is the separation

between symbols as this defines the decision boundaries used. In these trials the

separation was 800 ms. For reconstruction to be successful, there must be enough space

between symbols so that there is as little overlap as possible. The reason for this is that a

maximum-likelihood separation is used to classify symbols when the midpoint between

delays is used as a decision boundary. The midpoint needs to be sufficiently far from the

lower boundary to account for latency, clock-skew, and overhead for the communication

channel. If these are not accounted for, misclassifications will occur, resulting in either

continuous state-space growth, as CSSR attempts to fit the model to the data, or complete

state-space collapse.

Having sufficient data is another concern with model reconstruction. If there is

not enough data, events which are statistically insignificant will become significant. As a

result, CSSR will continue to create states in an attempt to fit the model to the data

available to it.

 22

CHAPTER FOUR

EXPERIMENTAL RESULTS

Patterns in Communications Channels

To determine if CSSR can properly reconstruct models for communication over a

secure channel, a single client-server application was created. The new application

contains two threads which run concurrently: a client thread, which listens for new

symbols, and the server thread which makes transitions and transmits the associated

symbol to the second application. For this configuration to more closely represent active

communication, the master and slave instances make the transition received from their

counterpart before generating their own. The two instances, however, do not need to use

the same FSM, provided the same alphabet is kept between the two machines.

The process, as shown in Figure 4.1, begins with the master application’s server

thread making a transition and sending the generated symbol to the slave application’s

client thread. The slave’s client thread, upon receiving the symbol, wakes its server

thread. This thread then makes the transition which was received followed by its

response, another transition. The server thread on the client then sends this symbol to the

master’s client thread.

While this communication is taking place, tshark is capturing the data that the

master application sends to the slave. However, as it is not capturing the returned data, a

hidden transition is present from its perspective.

 23

Figure 4.1: Ping Pong Procedure

 24

To determine the effect of this transition on the reconstruction process, the master

and slave applications were given the two-state FSM used for the proof of concept. The

delays associated with the symbols were changed for each of the three test cases, while

the transition probabilities were kept constant: the probability to change states was 90%

while the probability to remain was 10%. These delays are shown below in Table 4.1.

Trial Name Master Delay (ms) Slave Delay (ms)

 A B A B

Overlap 1 300 360 10 40

Overlap 2 100 200 100 200

Separated 300 400 10 20
Table 4.1: Ping Pong Trial Delays

Since each FSM consists of two states, there are a total of four possible symbol

combinations which can be encountered: AA, AB, BA, and BB. To account for this, the

symbolization must use the midpoints of all four pairs. The exception for this is the case

“Overlap 2,” as AB and BA cause delays of identical lengths. Histograms were

constructed of the collected data to ensure that the ranges were being correctly assigned.

These histograms are shown in the following figures: Figure 4.2, 4.3 and 4.4.

 25

Figure 4.2: Overlap 1 Delay Histogram

Figure 4.3: Overlap 2 Delay Histogram

 26

Figure 4.4: Separated Delay Histogram

As expected, the midpoints between adjacent symbol-pairs allowed for

reconstruction. For the reconstruction process, 50000 symbols were generated for each

trial case. The delays were captured using a script which invoked tshark with a filter to

ignore any data not from the master to the slave. This was to prevent pollution of the data

from other network sources such as ARP, UPnP, and so on. Once the times were

collected, their deltas were computed and plotted to determine appropriate symbol

ranges. The deltas and symbol ranges were then provided to CSSR for analysis. Analysis

was started with the string length set to 3, and increased incrementally until a stable

machine was generated. That is, until the machine between consecutive iterations

remained the same. The reconstructed FSM are shown below in Figure 4.5, 4.6 and 4.7.

 27

Figure 4.5: Overlap 1 Reconstruction (L = 10)

Figure 4.6: Overlap 2 Reconstruction (L = 7)

 28

Figure 4.7: Separated Reconstruction (L = 7)

Note that the final case, Separated – Figure 4.7, resulted in an identical FSM as

the first trial case, Overlap 1. This was expected as in both cases, there was sufficient

separation between individual symbol combinations to allow for proper distinction by

CSSR. However, the additional space between the masters’ symbols, coupled with the

fact that both symbols can be generated from either state, allows for the original two-state

FSM to be reconstructed as well as the joint machine. This joint machine is shown in

Figure 4.7

Both factors must be considered for this to be possible. If the original FSM does

not allow for transitions made by the client to be accounted for, then additional states will

be added to the state-space as the string length is increased. Furthermore, if the delays are

insufficiently separated, proper distinction between symbols will not be possible.

 29

Clock-Skew Analysis

To test the hypothesis that devices in close physical proximity will maintain clock

synchronicity for longer periods of time between synchronizations than those far apart,

the original pair of applications used for the proof of concept were configured on three

machines. Two of these machines remained in the lab while the third was my desktop.

All three machines were configured to update their time periodically using NTP. The

machines in the lab were synchronized at varying rates while my desktop was kept

consistent at once every 4 hours.

Crontab was used to alter the rate at which the lab computers synchronized their

internal clocks, and after 24 hours of synchronizing at a particular rate, the client and

server applications were executed between the lab computers as well as between a lab

computer and my desktop. In all cases, the same 5000 symbol sequence was used, with a

15 ms difference between the delays associated for the symbols A and B. The reason for

this separation is 15 ms is the closest two symbols can be and still allow for proper

reconstruction when considering communication between my room and the lab.

As the rate at which the lab computers synchronize is reduced, more

misclassifications should take place between my desktop and the lab computers,

specifically for the symbol with the lower delay. Furthermore, the variance for extraneous

delays should increase for both communication channels as the clocks move further out

of synch.

The results of these trials are contained in the table below, Table 4.2. As expected,

the misclassifications increased as the computers were synchronized less frequently. This

 30

trend is more apparent when considering the difference between lab computers over time.

The variance of the sum of latency and clock-skew, the unexpected delays monitored

here, increases consistently for intra-lab communications. Also, there is a significant

increase in this variance when moving from the lab environment to the campus intranet.

This is also expected as the data must pass through multiple copper/fiber relays between

the desktop in my apartment and the lab.

Location Synchronized Every 1 Hour Synchronized Every 2 Hours

 [Latency + Clock Skew] Miss [Latency + Clock Skew] Miss

 Mean (s) Variance (s2) A B Mean (s) Variance (s2) A B

Lab 9.06E-04 5.95E-09 0 0 9.06E-04 5.96E-09 0 0

Apartment 3.31E-04 2.72E-06 0 1 2.52E-04 2.31E-06 2 13

 Synch/1 Hr to Synch/2 Hr

 -4.00E-08 1.64E-11

 -7.97E-05 -4.12E-07

Location Synchronized Every 3 Hours Synchronized Every 4 Hours

 [Latency + Clock Skew] Miss [Latency + Clock Skew] Miss

 Mean (s) Variance (s2) A B Mean (s) Variance (s2) A B

Lab 9.09E-04 1.36E-08 0 0 9.21E-04 2.03E-07 0 1

Apartment 3.00E-04 3.02E-06 5 10 2.65E-04 2.71E-06 2 5

 Synch/2 Hr to Synch/3 Hr Synch/3 Hr to Synch/4 Hr

 3.52E-06 7.62E-09 1.22E-05 1.90E-07

 4.84E-05 7.07E-07 -3.54E-05 -3.05E-07

 Synch/1 Hr to Synch/3 Hr Synch/2 Hr to Synch/4 Hr

 3.48E-06 7.64E-09 1.57E-05 1.97E-07

 -3.13E-05 2.95E-07 1.30E-05 4.02E-07

 Synch/1 Hr to Synch/4 Hr

 1.57E-05 1.97E-07

 -6.67E-05 -1.00E-08
Table 4.2: Cron Clock Skew

 31

Long-Range Analysis

In order to determine the closest separation acceptable for long-range LAN

communication to be symbolized, a computer was configured in my room to transmit a

known 5000 symbol sequence to the client in the lab. Symbols were initially separated at

12 ms. This starting value was chosen as it was marginally above the required separation

for within-lab communications. Upon constructing a histogram of the collected data,

Figure 4.8, the cause of failure with the symbolization was apparent. Attempting with a

15 ms separation, Figure 4.9, allowed for a successful separation between the symbols

and subsequent reconstruction.

Having determined that the closest separation between two symbols for successful

reconstruction within the lab is 10 ms, and that for intra-campus communication is 15 ms,

the next step was to find this value for internet communication. To accomplish this, my

colleague Ryan Craven set up his computer at his apartment to be the server, with the

client remaining within the lab. As with the clock-skew analysis, a known 5000 symbol

sequence defining the transitions taken by the server was used in conjunction with the

client-server applications from the proof of concept trials.

The separation began at 50 ms which was successful. A histogram of the collected

data, Figure 4.10, shows a distinct separation, though there is a noticeable amount of

overlap between the two symbols. Reducing to 40 ms, Figure 4.11, however, caused a

significant amount of overlap between the two symbols. As a result, proper symbolization

 32

was not possible. When attempting with 45 ms, no significant reduction in overlap was

available, and again symbol distinction failed.

Figure 4.8: Long-LAN, 12 ms Separation

Figure 4.9: Long-LAN, 15 ms Separation

 33

Figure 4.10: Off-Campus, 50 ms Separation

Figure 4.11: Off-Campus, 40 ms Separation

Furthermore, false-positive analysis was performed on all three locations. The

results of these tests are in Table 4.3. As expected, there is an increase in

 34

misclassification as the distance between the computers increases. Similarly, there is a

noticeable increase in mean and variance of communication overhead.

 [Latency + Skew] False Positives

 Minimum Separation Mean (s) Variance (s2) A B Total

Short LAN 10 mSec 9.06E-04 5.95E-09 0 0 0

Long LAN 15 mSec 2.78E-04 2.77E-06 1 4 5

Internet 50 mSec 0.0102 1.67E-04 774 831 1605
Table 4.3: Long-Range False Positive Analysis

Identifying Methods of Communication with Definite State Structure

To simulate a more complex communication model, the ping-pong applications

were used with two sets of three-state FSM model pairs. That is, “model 4,” consists of a

three-state FSM running on the master node, ping, and a separate three-state FSM

running on the slave node, pong. Similarly, “model 5” consisted of different three-state

FSM being used for both ping and pong. These FSM are shown below in Figure 4.12

through Figure 4.15.

Figure 4.12: Model 4 – Ping

 35

Figure 4.13: Model 4 – Pong

Figure 4.14: Model 5 – Ping

 36

Figure 4.15: Model 5 - Pong

To ensure proper separation between symbols, the delays associated with pings’

symbols were 300, 360 and 420 ms, respectively for A, B and C. Pong’s symbol delays

were 10, 20 and 30 ms for A, B and C. A sequence of 50000 symbols were generated, to

ensure sufficient data was available for CSSR, and plotted in MatLab to ensure that

sufficient separation was present. The histograms below, Figures 4.16 and 4.17, show

that this constraint was met.

Upon finding that the two-state ping-pong system was able to regenerate the

model used by the master application, a similar test was presented to the data collected

here. By using the regions shown by the histograms to symbolize the data, the ping model

was successfully regenerated for both sets of models. The regenerated models are shown

in Figures 4.18 and 4.19, below.

 37

Figure 4.16: Model 4 Histogram

Figure 4.17: Model 5 Histogram

 38

Figure 4.18: Model 4 Ping Reconstruction

Figure 4.19: Model 5 Ping Reconstruction

 39

Language Identification Using Confidence Intervals

In order to test our hypothesis that if either Italian or English text is transmitted

using interactive SSH, then timing analysis could determine which language is being

used. Text is transmitted through an SSH tunnel with the sequence of inter-key delays

following statistics collected by Daniele Gunetti and Kathryn Hempstalk [8] [9]. We will

then use CSSR to derive Markov models consistent with the language structure [17]. SSH

will be used to mask the actual packet contents, showing that only delays need be

monitored. This should be possible, since the inter-character time delays for the two

languages differ due to a variety of factors including, but not limited to, the following:

 keyboard layout

 character/key-pair frequencies due to language

 respective grammars

The generated FSM will then be used to identify if the behaviors English and/or

Italian, contained within the reconstructed model, is present in text sent through the

encrypted pipe. When the text is transmitted, timing data is monitored. These values

correspond to FSM transitions, which are used to compute steady-state probabilities. This

will allow us to determine how well the text timing statistics fit the two patterns used to

generate our FSM; in this case, Italian/English. The degree of similarity is measured

using confidence intervals [4]. This process is detailed in Figure 4.20 below [2].

 40

Figure 4.20: Language Data-Flow

 41

Using the data provided to us by Daniele Gunetti of Italy and Kathryn Hempstalk

of New Zealand, key-pair statistics were extracted for alphabets, numerals, enter, space,

and backspace, a total of 39 characters as case was ignored [8] [9]. These values were

used to populate a 39-by-39 delay matrix. By examining the keyboard layouts of the

Italian and New Zealand, English-International, keyboards, a39-by-4 matrix was

constructed of neighboring keys for those characters considered.

For any entry for which no value existed, the neighbor list for the destination key

was consulted. If sufficient data was present for similar key-pairs in which the destination

key belongs to the neighbor list, the missing value was updated with the average of the

neighbor key values. If insufficient data is present, however, the destination key is held

constant and the source key’s neighbor list is consulted. This process is repeated until the

matrix remains constant across two passes. These delays were then plotted in 3-D,

Figures 4.21 and 4.22, in an attempt to discern any obvious centers of activity. However,

given the range of delays encountered, this proved to be unhelpful.

 42

Figure 4.21: Italian Interpolation

Figure 4.22: New Zealand Interpolation

 43

Next, Gaussians were plotted of the key-pairs for each language to determine

which of the key-pairs are sufficiently separated for distinction over the lab network. To

avoid plotting outliers, a frequency threshold was used. For the Italian dataset, this

threshold began at 10 samples and went to 2000 samples. The New Zealand dataset’s

threshold began at 25 samples and ended at 200. Below, in Figures 4.23 and 4.24, are the

Gaussians for Italian data with a threshold of 25 samples and New Zealand data with a

threshold of 75 samples. It is apparent from these plots that while the Italian data only has

a few distinguishable symbols, the New Zealand data contains a much larger variety.

Figure 4.23: Italian Key-Pair Gaussians

 44

Figure 4.24: New Zealand Key-Pair Gaussians

This prompted me to process the data through an artificial neural network to

properly identify the means of the symbols. The results produced by growing neural gas,

Table 4.4, support the Gaussians as only two symbols were found within the Italian data.

Furthermore, a large number of means were identified within the New Zealand data

within the 220 ms range. Given the behavior of growing neural gas, creating more means

for areas that need to be better represented, this too follows from the plot of the Gaussian

data for New Zealand. However, given that symbols closer than 10 ms cannot be

successfully distinguished, they were replaced by one symbol whose mean is the average

of theirs, Table 4.5.

 45

Italian New Zealand

Symbol Mean Symbol Mean

A 15.32 A 95.14

B 38.88 B 153.17

C 49.98 C 209.04

D 67.19 D 261.29

 E 311.21

 F 340.10

 G 344.59

 H 344.77

 I 344.77

 J 344.82

 K 344.90

 L 351.55

 M 382.01

 N 445.05

 O 541.29

 P 707.73
Table 4.4: Growing Neural Gas Means

Italian New Zealand

Symbol Mean Symbol Mean

A 15.32 A 95.14

B 38.88 B 153.17

C 49.98 C 209.04

D 67.19 D 261.29

 E 311.21

 F 345.07

 G 382.01

 H 445.05

 I 541.29

 J 707.73
Table 4.5: Final Symbolization

The training data for the FSM were selected from those available at

ProjectGutenberg that were published after 1900, or as close to it as possible, to keep the

language as current as possible. The texts used, and their release dates, are listed below in

 46

Table 4.6. After stripping all non-alpha-numeric and non-whitespace characters from the

text, the values were converted to indices of the 39-by-39 delay matrix. Then, delays

were assigned to each pair of letters by using the previously constructed delay matrix as a

look-up table. Plotting histograms of these aggregates are shown below in Figures 4.24

and 4.25.

English Training Data (2165563 character pairs)

Agatha Christie - The Mysterious Affair at Styles (1916/20)

Sir Arthur Conan Doyle - Hound of the Baskervilles (1901)

Andre Norton - Plague Ship (1956)

Bram Stoker - Dracula (1897)

F. Anstey - The Brass Bottle (1900)

Italian Training Data (2285630 character pairs)

Luigi Barzini - L'Argentina Vista Come E (1902)

Enrico Annibale Butti - L'Immorale (1894)

Gabriele D'Annunzio - L'Innocente (1992)

Frederico De Roberto - Documenti Umani (1888)

Shakespeare/Diego Angeli (trans) - La Tempesta (1912)

Giuseppe Giacosa - Diritti Dell'Anima (1900)

Cletto Arrighi - Nana a Milano (1880)

Anton Guilio Barrili - Tra cielo e terra (2009)
Table 4.6: Selected Texts – Gutenberg

 47

Figure 4.25: Italian Gutenberg Data

Figure 4.26: New Zealand Gutenberg Data

Once each text was converted into sets of key-pairs and symbolized, they were

divided into a testing set and training set. The purpose of this was to ensure that the test

strings presented were from a source with similar patterns. This ensured that no

anomalies were presented in the test strings. The Italian training data consisted of

 48

1,414,289 symbols, and the English training data contained 1,000,479 symbols. The

remaining symbols comprised the respective testing sets. The reconstructed models for

English and Italian are located in Appendix A, Figures A.9 and A.10, respectively.

Two strings of 100 symbols were taken from each testing set. These strings were

then used for a maximum-likelihood analysis using the forward-backward procedure.

Longer strings were not used due to the effect of multiplying large groups of numbers

less than 1. In addition, two strings were found online and presented to the machines. As

with the earlier strings, forward-backward analysis was performed. Confidence interval

analysis was then performed on all strings with respect to both reconstructed models, as

well as the training and testing sets with the same models. These results are shown in

Table 4.7. The strings taken from the testing data are identified as “str 1” and “str 2”

followed by the language whose testing set it belongs.

 English (L = 1) Italian (L = 1) Italian (L = 2) Italian (L = 3)

 Fwd/Bkwd Seqmatch Fwd/Bkwd Seqmatch Fwd/Bkwd Seqmatch Fwd/Bkwd Seqmatch

Str 1(Eng) 3.66E-81 100.00% 0.00E+00 0.00% 0.00E+00 0.00% 0.00E+00 0.00%

Str 2(Eng) 1.63E-86 95.00% 0.00E+00 0.00% 0.00E+00 0.00% 0.00E+00 0.00%

Str 3(Eng) 1.14E-167 94.00% 0.00E+00 0.00% 0.00E+00 0.00% 0.00E+00 0.00%

Str 4(Eng) 3.06E-255 95.00% 0.00E+00 0.00% 0.00E+00 0.00% 0.00E+00 0.00%

Train (Eng) 94.00% 0.00% 0.00% 0.00%

Test (Eng) 50.00% 0.00% 0.00% 0.00%

Str 1(Itl) 3.65E-111 90.00% 1.06E-50 0.00% 3.37E-50 0.00% 8.76E-50 99.21%

Str 2(Itl) 5.31E-125 86.00% 8.51E-51 100.00% 7.70E-51 100.00% 5.90E-51 98.81%

Str 3(Itl) 1.18E-273 83.00% 1.66E-111 100.00% 7.78E-109 98.44% 5.05E-107 99.60%

Str 4(Itl) 9.24E-271 83.00% 7.27E-109 100.00% 7.11E-107 100.00% 5.79E-103 98.81%

Train (Itl) 60.00% 100.00% 100.00% 100.00%

Test (Itl) 60.00% 12.50% 32.81% 50.59%

Table 4.7: Identification Results

 49

In the above table, the columns marked “Seqmatch” correspond to the confidence

interval analysis for the given string-model pair with a 1% false positive rate. That is, the

likelihood that the given model generated the string with 99% confidence. The

“Fwd/Bkwd” columns contain the results of the maximum-likelihood analysis through

application of the forward-backwards procedure. As mentioned earlier, since it’s the

product of large quantities of probabilities, these values are expected to be extremely low.

The training and testing sets were not tested in this fashion for this reason, as there isn’t

enough accuracy available to get meaningful results.

Note that when English strings are presented to any of the Italian models, for

string lengths 1 through 3, it is rejected. But when Italian is presented to the English

model, it has a fairly high probability of being generated, as shown by the confidence

interval results. However, when the forward-backward analysis is examined, it is clear

that it is not a good fit. The difference between these values differ by several orders of

magnitude.

Using window size analysis developed by Jason Schwier [16], it was determined

that 77 symbols were required for maximum-likelihood classification using confidence

intervals. That is, with at least 77 symbols presented to the English and Italian

reconstructions, a majority of the time it would be correct. By dividing the testing set into

samples of 77 strings, a series of detection percentages were calculated through

confidence interval analysis.

Plotting the true positives and false positives together against the acceptance

threshold, while varying the threshold, generated the receiver operating characteristic

 50

curves (ROC curves) shown below. This allows us to determine the ideal acceptance

threshold for separation for presented strings between the two models.

Figure 4.27: English ROC – 95% CI

Figure 4.28: Italian ROC – 95% CI

 51

Thresh. True Pos False Pos True Neg False Neg Distance

0.00 401 401 0 0 1.000

 [Repeated 79 times]

0.80 401 401 0 0 1.000

0.81 401 392 9 0 0.978

0.82 401 371 30 0 0.925

0.83 401 294 107 0 0.733

0.84 401 201 200 0 0.501

0.85 401 103 298 0 0.257

0.86 401 40 361 0 0.100

0.87 401 9 392 0 0.022

0.88 399 3 398 2 0.009

0.89 399 0 401 2 0.005

0.90 397 0 401 4 0.010

0.91 390 0 401 11 0.027

0.92 367 0 401 34 0.085

0.93 367 0 401 34 0.085

0.94 264 0 401 137 0.342

0.95 188 0 401 213 0.531

0.96 113 0 401 288 0.718

0.97 41 0 401 360 0.898

0.98 14 0 401 387 0.965

0.99 1 0 401 400 0.998

1.00 0 0 401 401 1.000

Table 4.8: English ROC – 95% CI – Statistics

Thresh. True Pos False Pos True Neg False Neg Distance

0.00 397 0 401 4 0.009975

 [Repeated 93 times]

0.94 397 0 401 4 0.009975

0.95 381 0 401 20 0.049875

0.96 354 0 401 47 0.117207

0.97 245 0 401 156 0.389027

0.98 117 0 401 284 0.708229

0.99 14 0 401 387 0.965087

1.00 0 0 401 401 1

Table 4.9: Italian ROC – 95% CI – Statistics

 52

 From Figures 4.27 and 4.28, it is apparent that the 95% CI used to determine the

presence of English and/or Italian characteristics in the strings is sufficient. Upon

examination of the statistics used to produce the ROC curves, Table 4.8 and 4.9, it was

discovered that an 89% threshold would be sufficient. That is, with a 95% CI, a decision

boundary at 89% would have the best classification rate for both languages. To compare

the confidence interval analysis to the standard maximum-likelihood classifier, the

forward-backward procedure was used. The ROC curves in Figures 4.29 and 4.30 show

these results. This shows that while there are slightly more false positives when using

confidence intervals, it is more forgiving as the string length increases. Also, there are

fewer false negatives with CI than with a maximum-likelihood classifier.

Figure 4.29: English ROC -- ML (Forward-Backward)

 53

Figure 4.30: Italian ROC -- ML (Forward-Backward)

 54

CHAPTER FIVE

CONCLUSIONS

Through timing analysis and the application of Hidden Markov Models, we have

shown that it is possible to identify the communication behavior in use, even over a

secure communication channel. This behavior may even be the language that the user is

typing in [2]. For proper reconstruction to be possible, two requirements must be met:

there must be sufficient data to model the communication observed, and there must be

sufficient delays between symbols.

When there is insufficient data there are two possible outcomes: the state-space

will grow resulting in a state-explosion, or the proper model will be reconstructed with

incorrect transition probabilities. The reason for the first case is that because there was

not enough data, aberrations were given statistical significance. Since CSSR attempts to

minimize entropy, it continues to add states to better fit the data given it. In the second

case, there is sufficient data for the model to be reconstructed, but not enough to properly

determine the transition probabilities, and consequently the steady state probabilities.

It was also shown that when a hidden transition was present in the communication

channel, as in the case of ping-pong with one observer, it is possible to reconstruct the

joint state model as well as the dominating model. Again, this is only possible when there

is sufficient separation between the symbols. As this separation is decreased, instead of

reconstructing the dominating model, the model used by the observer is reconstructed [3].

 55

CHAPTER SIX

FUTURE WORK

There are many possibilities for the application of Hidden Markov Models.

Presently, they are used largely for speech-to-text conversion and biometric analysis. By

incorporating confidence intervals, however, the speech-to-text conversion should

become more accurate. This is because though there is a higher false positive rate

associated with confidence intervals, there is a larger true positive rate as well.

Furthermore, as strings become longer, maximum likelihood suffers from degradation

due to large sets of numbers between 0 and 1 being multiplied together. This is not a

problem for confidence intervals. It could be argued that the false positive rate, even

though it is marginal, is undesirable for security applications given the risk involved.

Additionally, given the nature of Causal State Splitting Reconstruction, it should

be possible to construct a HMM that is “trained” on the works of a specific author. This

HMM, in conjunction with confidence interval analysis, can then be used to assist in

identification of previously unidentified works. Since each author has a unique style,

CSSR should be able to identify this pattern and the state history present in the HMM

will reflect it. There will need to be a substantial training set, however, as the string

length required to discern these patterns may be well above 10, and a sufficiently large

data set will be required to ensure that events are not improperly given statistical

significance.

With more data available, the interpolation phase performed to fill in gaps present

in the delay matrix would not be required. This would allow for a more accurate

 56

symbolization which in turn leads to better detection. A larger amount of data would also

allow for a better symbolization to be found outright, as there should be a larger spread of

delays. This would, again, lead to a better detection. Ideally the data used to extract the

key-pair statistics would contain special characters, different case, and so on. As ours

lacked these, we had to preprocess the text from ProjectGutenberg to fit the data

available. By having case-sensitivity, special characters, etc, new patterns can be detected

in the training/testing data allowing for a more complete representation in the HMM.

 57

APPENDICES

 58

Appendix A

Ancillary Information

Keyboard Layout Comparison

A major factor contributing to inter-keystroke delay is the layout of the keyboard.

Therefore, the keyboards used by Italians and New Zealanders needed to be compared to

determine if keys possessed different neighbors and positions. The reason for this is two-

fold: to determine if keyboard layout played a part in the delays used in our language

detection experiment, and to determine the neighboring keys to interpolate delays for

missing keystroke pairs.

To compare the Italian and New Zealand keyboard layouts, Wapedia
1
 was

consulted. In comparing the two layouts, it was discovered that for the characters

monitored for this experiment were in identical locations. The left Shift key and Enter

keys were of different sizes and shapes, however, for the Italian keyboard. Both keyboard

layouts are shown below in Figures A.1 and A.2. They are reproduced under the Creative

Commons Attribution/Share-Alike License
2
 and GNU Free Documentation License

3
.

Figure A.1: Italian Keyboard Layout (http://wapedia.mobi/en/File:KB_Italian.svg)

1
http://wapedia.mobi/en/Keyboard_layout

2
 http://creativecommons.org/licenses/by-sa/3.0/

3
 http://wapedia.mobi/en/Wikipedia:Text_of_the_GNU_Free_Documentation_License

 59

Figure 4: New Zealand/US Keyboard Layout (http://wapedia.mobi/en/File:KB_United_States-

NoAltGr.svg)

Delay Matrix Reordering

The 39-by-39 delay matrix used is ordered as follows: A, B… Z, 0, 1 … 9, enter,

backspace, and space. Other orderings were considered based on keyboard cross-sections,

however. Both horizontal and vertical cross-sections were considered to see if one

provided a “smoother” plot than the original. These graphs are shown below.

Figure A.3: Italian - Original Ordering

 60

Figure A.4: Italian - Horizontal Reordering

Figure A.5: Italian - Vertical reordering

 61

Figure A.6: New Zealand - Original Ordering

Figure A.7: New Zealand - Horizontal Reordering

 62

Figure A.8: New Zealand - Vertical Reordering

Comparing Figures A.8 to A.6 and Figures A.5 to A.3, it is apparent that a vertical

reordering offers smoother transitions between keystroke-pairs within the delay matrix.

This is more visible within the New Zealand data. This relationship is not unsurprising as

given home-row typing practices; the same finger is used for keys vertically adjacent to

one another, so more similar delays for those keys is reasonable.

 63

Language Models

The models reconstructed from the texts sampled from ProjectGutenberg are

shown below. For each value of L considered, a statistical test was performed to ensure

that with the given alphabet and model, sufficient samples were available to ensure that

the model remained statistically significant. Only enough data was available for a string

length of 1 for English, and 3 for Italian.

During low-symbol-separation analysis it was found that if insufficient data or

separation was available, there was a threshold that allowed the model to be reconstructed

with incorrect transition probabilities between the states. This was attributed to statistical

significance being given to noise which would be discarded were there more samples.

Furthermore, it was estimated that at least 50 times more data, for each language, would

be required to consider larger string lengths.

To display the models as large as possible, only one is present on each page.

 64

Figure A.9: English HMM, L = 1, 10 states, 100 transitions

 65

Figure A.10: Italian HMM, L = 3, 64 states, 253 transitions

 66

Old English and Latin

In an effort to determine the ability of the reconstructed HMMs for English and

Italian to detect the presence of similar languages being typed, ProjectGutenberg was

once again consulted. The texts selected were “Beowulf” and “Inferno,” for Old English

and Latin, respectively. Both texts were stripped of case and special characters, as with

the earlier texts. They were then symbolized with the delays used by their modern

counterparts: “Beowulf” with the New Zealand key-pair statistics, and “Inferno” with the

Italian. Next, 400 strings of 77 symbols were extracted from various locations from

within the two texts. These strings were presented to both reconstructed models for

confidence interval analysis and maximum-likelihood classification. These results are

presented in the ROC curves below in Figures A.11 through A.14.

Figure A.11: ROC Curve -- "Beowulf," 95% CI

 67

Figure A.12: ROC Curve -- "Beowulf," ML

Figure A.13: ROC Curve -- "Inferno," 95% CI

 68

Figure A.14: ROC Curve -- "Inferno," ML

It is evident from the ROC curves above that there is either sufficient similarity

between either the two pairs of languages or between the resulting symbolization. To

determine which of these was the case, two experiments were performed. In the first

experiment, English text was symbolized using the Italian delay statistics and symbol

alphabet, and Italian was symbolized with the English values. These cross-symbolizations

were then presented to the English and Italian HMMs for detection and classification.

Note that in the following ROC curves, Figures A.15 through A.18, the curves take a

fairly high threshold to allow any true positive classifications. This implies that the

models are recognizing the symbolization over the patterns in the language themselves.

 69

Figure A.15: ROC Curve -- English with Italian Symbolization, 95% CI

Figure A.16: ROC Curve -- English with Italian Symbolization, ML

 70

Figure A.17: ROC Curve -- Italian with English Symbolization, 95% CI

Figure A.18: ROC Curve -- Italian with English Symbolization, ML

The second experiment takes was performed to verify the hypothesis that the

models were, in fact, detecting the symbolization and not the patterns inherent to the

 71

languages. This was accomplished by taking texts in languages with no Sanskrit roots,

but still represented through the use of Latin characters, and symbolizing with both the

English and Italian statistics. The purpose of this was to sufficiently separate the language

from English and Latin so that there would be no doubt in what was being detected.

 72

Appendix B

Code

% proofFalseID.m

%

% Created: 12/06/2009 (c) Harikrishnan Bhanu

% Updated: 12/06/2009

%

% Fourth iteration of false positive classification code. Compares a

% known sequence (stored from 'sequence' into 'symb') to observed %

% times. Then,uses a separating hyperplane at the midpoint between the

% known symbols to classify the times. These classifications are then

% compared to the known symbol values to determine accuracy.

% Furthermore, latency and clock-skew statistics are extracted here.

%

% This code was used specifically for the proof of concept analysis to

% determine overhead introduced by an SSH tunnel.

%

% Note - this only identifies false-positives for 2-symbol machines.

clc

clear adest;

clear bdest;

clear data2;

clear discard;

apos = 1;

bpos = 1;

amiss = 0; % A's false positives

bmiss = 0; % B's false positives

adelay = .100; % Expected delays for A

bdelay = .900; % Expected delays for B

symb = ssh3symb; % Symbol sequence

data = ssh3; % Source

brkpt = (adelay+bdelay)/2; % Use the midpoint between delays

% If the delay is below the lower bound by more than 100ms, disregard

% it (not entirely sure what these packets are, but they are

% sufficiently outside boundaries to be ignored).

j = 1;

q = 1;

for i=1:length(data)

 if(data(i) > adelay-.05)

 data2(j) = data(i);

 j = j+1;

 else

 discard(q,1) = data(i);

 discard(q,2) = i;

 q = q+1;

 end

end

src = data2; % Copy the variable over

 73

for i=1:min(length(symb),length(data2));

 % If it's greater than the threshold, it's a B, else, it's an A

 if(src(i) >= brkpt)

 % Determine the latency

 bdest(bpos) = abs(src(i) - bdelay);

 bpos = bpos + 1;

 % Was it properly classified?

 if(strcmp(symb(i),'B')~=1)

 bmiss = bmiss + 1;

 end

 else

 % Determine the latency

 adest(apos) = abs(src(i) - adelay);

 apos = apos + 1;

 % Was it properly classified?

 if(strcmp(symb(i),'A')~=1)

 amiss = amiss + 1;

 end

 end

end

amiss

amean = mean(adest)

avar = var(adest)

bmiss

bmean = mean(bdest)

bvar = var(bdest)

tmean = mean([adest bdest])

tvar = var([adest bdest])

 74

% histBound.m

%

% Created: 12/02/09 (c) Harikrishnan Bhanu

% Updated: 12/03/09

%

% Plots a histogram over a specified range, with a specified number of

% bins, from a given data-set. The segment of the dataset which is

% plotted is returned to the user.

function [set] = histBound(data, low, high, bins)

 % Begin by sorting the data-set and searching for the lower and

 % upper bounds

 S = sort(data);

 % Ensure that the low and high variables are entered in the proper

 % order

 low1 = min(low,high);

 high1 = max(low,high);

 low = low1;

 high = high1;

 % Force plot to search over the more constrictive restraints: those

 % presented by the user, or the contents of the data-set.

 if(low < S(1))

 low = S(1);

 end

 if(high > S(length(S)))

 high = S(length(S));

 end

 % Ensure the low and high bounds are valid for the given data-set

 if(low > S(length(S)) || high < S(1))

 fprintf('Invalid boundaries for the data-set.\n');

 set = [];

 else

 % Search for the segment to plot

 % Find the lower boundary in the data-set

 for lowPos = 1:length(S)

 if(S(lowPos) <= low && S(lowPos+1) >= low)

 break;

 end

 end

 % Find the higher boundary in the data-set. Don't bother

 % searching below where the lower boundary was found, since the

 % higher boundary can't be there.

 for highPos = lowPos:length(S)

 if(S(highPos) <= high && S(highPos+1) >= high)

 break;

 end

 end

 75

 % Plot the portion of the data-set that we're interested in

 hist(S(lowPos:highPos),bins);

 set = S(lowPos:highPos);

 end

end

 76

% falsePositive3.m
%
% Created: 10/20/2009 (c) Harikrishnan Bhanu
% Updated: 12/03/2009
%
% Third iteration of false positive classification code. Compares a

% known sequence (stored from 'sequence' into 'symb') to observed

% times. Then, uses a separating hyperplane at the midpoint between the

% known symbols to classify the times. These classifications are then

% compared to the known symbol values to determine accuracy.

% Furthermore, latency and clock-skew statistics are extracted here.
%
% Note - this only identifies false-positives for 2-symbol machines.

clc
clear adest;
clear bdest;
clear data2;
clear discard;
apos = 1;
bpos = 1;
amiss = 0; % A's false positives
bmiss = 0; % B's false positives
adelay = .345; % Expected delays for A
bdelay = .360; % Expected delays for B
symb = sequence; % Symbol sequence
data = skew1dorm; % Source
brkpt = (adelay+bdelay)/2; % Use the midpoint between delays to

differentiate

% If the delay is below the lower delay by more than 100ms, disregard

it
% (not entirely sure what these packets are, but they are sufficiently
% outside boundaries to be ignored).
j = 1;
q = 1;
for i=1:length(data)
 if(data(i) > adelay-.1)
 data2(j) = data(i);
 j = j+1;
 else
 discard(q,1) = data(i);
 discard(q,2) = i;
 q = q+1;
 end
end

src = data2; % Copy the variable over

for i=1:min(length(symb),length(data2));
 % If it's greater than the threshold, it's a B, else, it's an A
 if(src(i) >= brkpt)
 % Determine the latency

 77

 bdest(bpos) = abs(src(i) - bdelay);
 bpos = bpos + 1;

 % Was it properly classified?
 if(strcmp(symb(i),'B')~=1)
 bmiss = bmiss + 1;
 end

 else
 % Determine the latency
 adest(apos) = abs(src(i) - adelay);
 apos = apos + 1;

 % Was it properly classified?
 if(strcmp(symb(i),'A')~=1)
 amiss = amiss + 1;
 end
 end
end

amiss
amean = mean(adest)
avar = var(adest)
bmiss
bmean = mean(bdest)
bvar = var(bdest)
tmean = mean([adest bdest])
tvar = var([adest bdest])

 78

% parser2IT.m
%
% Created: 11/19/2009 (c) Harikrishnan Bhanu
% Updated: 12/13/2009
%
% Loads text sample files for parsing and outputs the delays for

% individual keypairs into separate files.File names have the format

% [key1]_[key2].txt and contain nothing but delays.
%
% Files are NOT generated for any symbol which is not alphanumeric,

% enter, space, or backspace. Furthermore, case is ignored: a -> Z will

% be treated as A -> Z.
%
% These files are then opened and statistics are extracted and the

% results are saved in statistics.txt
%
% Statistics.txt's contents follow the format:
% [key1] [key2] [mean] [variance] [count]
% without brackets.

% Flush variables to prevent pollution
clear;clc;

% Get information of all files in the directory
files = dir('./ItalianSrc/*');
q = 1;

% Loop through the files
for i=3:length(files)

 % Make sure there's no cross-session pollution
 clear temp;
 temp = load(sprintf('./ItalianSrc/%s',files(i).name));

 % Extract all the pairs in the data for this sample
 for j=2:(length(temp)-2)
 source(q) = temp(j);
 delay(q) = temp(j+1);
 dest(q) = temp(j+2);
 q = q + 1;
 j = j + 1;
 end
end

% Write these values out to files
for i=1:length(source)
 last = source(i);
 next = dest(i);
 time = delay(i);

 % Ensure only ASCII values are written
 if(last >= 0 && last <= 127 && next >= 0 && next <= 127)

 79

 % Force capitalization, and ensure only desired characters
 % are written
 if(last > 96 || last < 123)
 last = last - 22;
 end

 if(next > 96 || next < 123)
 next = next - 22;
 end

 % Ensure the last keystroke is from a valid key
 if ((last > 47 && last < 58) || (last == 32) || (last == 8) ||

(last == 13 || last == 10) || (last > 64 && last < 90))

 % Repeat the check for the destination key
 if ((next > 47 && next < 58) || (next == 32) || (next == 8)

|| (next == 13 || next == 10) || (next > 64 && next < 90))

 if(floor(last)==last && floor(next)==next)
 destfname = sprintf('%d_%d.txt',last,next);
 fout = fopen(destfname, 'a+');
 fprintf(fout,'%f\n',time);
 fclose(fout);
 end

 end

 end
 end
end

% Flush variables and screen
clear;clc;

% Load the text files that were just generated
clear files;
textfiles = dir('*.txt');
meanVal = zeros(length(textfiles),1);
varVal = zeros(length(textfiles),1);
sampleSize = zeros(length(textfiles),1);
outliers = zeros(length(textfiles),1);

for i=1:length(textfiles)
 temp = load(textfiles(i).name);

 % Remove any negative values (artifacts of capture)
 temp(temp < 0) = [];

 % Determine mean and variance for this keystroke pair
 sampleSize(i) = length(temp);

 80

 meanVal(i) = mean(temp);
 varVal(i) = var(temp);
end

% Write this data to a textfile
outFile = fopen('statisticsIT.txt','w+');
for i=1:length(textfiles)

 % Extract the characters used from the file name

 lastst1 = textfiles(i).name(1:strfind(textfiles(i).name,'_')-1);
 nextst1 =

textfiles(i).name(strfind(textfiles(i).name,'_')+1:strfind(textfiles(i)

.name,'.')-1);

 % Convert from strings to numbers
 last = str2num(lastst1);
 next = str2num(nextst1);

 % Replace the ASCII values with the corresponding indices for the

 % 39x39 matrix
 if (last > 64 && last < 90)
 last = last - 64;
 elseif (last > 47 && last < 58)
 last = last - 47 + 26;
 elseif (last == 8)
 last = 37;
 elseif (last == 32)
 last = 38;
 elseif (last == 13)
 last = 39;
 end

 if (next > 64 && next < 90)
 next = next - 64;
 elseif (next > 47 && next < 58)
 next = next - 47 + 26;
 elseif (next == 8)
 next = 37;
 elseif (next == 32)
 next = 38;
 elseif (next == 13)
 next = 39;
 end

 fprintf(outFile,'%d %d %.3f %.3f

%d\n',last,next,meanVal(i),varVal(i),sampleSize(i));
end

fclose(outFile);

 81

% parser2NZ.m
%
% Created: 11/19/2009 (c) Harikrishnan Bhanu
% Updated: 12/13/2009
%
% Loads text sample files for parsing and outputs the delays for

% individual keypairs into separate files.File names have the format

% [key1]_[key2].txt and contain nothing but delays.
%
% Files are NOT generated for any symbol which is not alphanumeric,

% enter, space, or backspace. Furthermore, case is ignored: a -> Z will

% be treated as A -> Z.
%
% These files are then opened and statistics are extracted and the

% results are saved in statistics.txt
%
% Statistics.txt's contents follow the format:
% [key1] [key2] [mean] [variance] [count]
% without brackets.

% Flush variables to prevent pollution
clear;clc;

% Load sm-150 data
load('./NZSrc/sm-150.mat');

for q1 = 1:10
 for q2 = 1:15

 % Define source vector, clear destination from possible

 % previous runs
 clear dest;
 % Look at each sample independently
 src = evalin('base',char(sprintf('u%ds%d',q1,q2)));
 dpos = 1;
 last = 0;

 % Prase the data from the .mat file
 for i=1:length(src)
 if mod(i,4) == 1
 dest(dpos) = src(i)/2;
 dpos = dpos+1;
 elseif mod(i,4) == 0
 dest(dpos) = src(i);
 dpos = dpos+1;
 end
 end

 % Save the separated values into
 i = 1;
 last = dest(i);
 time = dest(i+1);

 82

 next = dest(i+2);
 while i<(length(dest)-2)
 % Ensure only ASCII values are written
 if(last >= 0 && last <= 127 && next >= 0 && next <= 127)

 % Force capitalization, and ensure only desired

 % characters are written
 if(last > 96 || last < 123)
 last = last - 22;
 end

 if(next > 96 || next < 123)
 next = next - 22;
 end

 % Equate enter and newline
 if(last == 10)
 last = 13;
 end

 if(next == 10)
 next = 13;
 end

 % Ensure the last keystroke is from a valid key
 if ((last > 47 && last < 58) || (last == 32) || (last

== 8) || (last == 13) || (last > 64 && last < 90))

 % Repeat the check for the destination key
 if ((next > 47 && next < 58) || (next == 32) ||

(next == 8) || (next == 13) || (next > 64 && next < 90))

 if(floor(last)==last && floor(next)==next)
 destfname = sprintf('%d_%d.txt',last,next);
 fout = fopen(destfname, 'a+');
 fprintf(fout,'%f\n',time);
 fclose(fout);
 end

 end

 end
 end

 % Move to the next character pair
 i = i + 2;
 last = dest(i);
 time = dest(i+1);
 next = dest(i+2);

 83

 end
 end
end

% Clear variables
clear;clc;

% Load the text files that were just generated
files = dir('*.txt');
meanVal = zeros(length(files),1);
varVal = zeros(length(files),1);
sampleSize = zeros(length(files),1);
outliers = zeros(length(files),1);

for i=1:length(files)
 temp = load(files(i).name);

 % Convert from milliseconds to seconds
 % temp = temp./1000;

 % Remove any negative values (artifacts of capture)
 temp(temp < 0) = [];

 % Determine mean and variance for this keystroke pair
 sampleSize(i) = length(temp);
 meanVal(i) = mean(temp);
 varVal(i) = var(temp);
end

% Write this data to a textfile
outFile = fopen('statisticsNZ.txt','w+');
for i=1:length(files)

 % Extract the characters used from the filename
 lastst1 = files(i).name(1:strfind(files(i).name,'_')-1);
 nextst1 =

files(i).name(strfind(files(i).name,'_')+1:strfind(files(i).name,'.')-

1);

 % Convert from strings to numbers
 last = str2num(lastst1);
 next = str2num(nextst1);

 % Replace the ASCII values with the corresponding indices for the

 % 39x39 matrix
 if (last > 64 && last < 90)
 last = last - 64;
 elseif (last > 47 && last < 58)
 last = last - 47 + 26;
 elseif (last == 8)
 last = 37;
 elseif (last == 32)

 84

 last = 38;
 elseif (last == 13)
 last = 39;
 end

 if (next > 64 && next < 90)
 next = next - 64;
 elseif (next > 47 && next < 58)
 next = next - 47 + 26;
 elseif (next == 8)
 next = 37;
 elseif (next == 32)
 next = 38;
 elseif (next == 13)
 next = 39;
 end

 fprintf(outFile,'%d %d %.3f %.3f

%d\n',last,next,meanVal(i),varVal(i),sampleSize(i));
end

fclose(outFile);

 85

% parser3.m
%
% Created: 11/10/2009 (c) Harikrishnan Bhanu
% Updated: 12/13/2009
%
% Loads text sample files for parsing and outputs the delays for

% individual keypairs into separate files.File names have the format

% [key1]_[key2].txt and contain nothing but delays.
%
% These files are then opened and statistics are extracted and the

% results are saved in statistics.txt

%
% Statistics.txt's contents follow the format:

% {key1} --> {key2} , mean: [mean] , variance: [variance] , samples:

% [count]
% Without brackets, but with braces.

clear;clc;
load('sm-150.mat');

for q1 = 1:10
 for q2 = 1:15

 % Define source vector, clear destination from possible

previous
 % runs
 clear dest;
 % Look at each sample independently
 src = evalin('base',char(sprintf('u%ds%d',q1,q2)));
 dpos = 1;
 last = 0;

 % Prase the data from the .mat file
 for i=1:length(src)
 if mod(i,4) == 1
 dest(dpos) = src(i)/2;
 dpos = dpos+1;
 elseif mod(i,4) == 0
 dest(dpos) = src(i);
 dpos = dpos+1;
 end
 end

 % Save the separated values into
 i = 1;
 last = dest(i);
 time = dest(i+1);
 next = dest(i+2);
 while i<(length(dest)-2)
 % Ensure only ASCII values are written
 if(last >= 0 && last <= 127 && next >= 0 && next <= 127)
 if(floor(last)==last && floor(next)==next)
 destfname = sprintf('%d_%d.txt',last,next);

 86

 fout = fopen(destfname, 'a+');
 fprintf(fout,'%f\n',time);
 fclose(fout);
 end
 end

 % Move to the next character pair
 i = i + 2;
 last = dest(i);
 time = dest(i+1);
 next = dest(i+2);
 end
 end
end

% Clear variables
clear;clc;

% Load the text files that were just generated
files = dir('*.txt');
meanVal = zeros(length(files),1);
varVal = zeros(length(files),1);
sampleSize = zeros(length(files),1);
outliers = zeros(length(files),1);

for i=1:length(files)
 temp = load(files(i).name);

 % Convert from milliseconds to seconds
 temp = temp./1000;

 % Remove any negative values (artifacts of capture)
 temp(temp < 0) = [];

 % Determine mean and variance for this keystroke pair
 sampleSize(i) = length(temp);
 meanVal(i) = mean(temp);
 varVal(i) = var(temp);
end

% Write this data to a textfile
outFile = fopen('statistics.txt','w+');
for i=1:length(files)

 % Extract the characters used from the filename
 lastst1 = files(i).name(1:strfind(files(i).name,'_')-1);
 nextst1 =

files(i).name(strfind(files(i).name,'_')+1:strfind(files(i).name,'.')-

1);

 % Convert from strings to numbers
 last = str2num(lastst1);

 87

 next = str2num(nextst1);

 % If the values are between 34 and 126, convert it to the displayed

 % char. Otherwise, replace it with something easy to determine. If

 % the value is greater than 127, it's not an ASCII value, so

 % disregard it.
 if (last < 33)
 switch last
 case 0
 laststr = '{null}';
 case 1
 case 2
 case 3
 case 4
 case 5
 case 6
 case 7
 laststr = '{bell}';
 case 8
 laststr = '{backspace}';
 case 9
 laststr = '{tab}';
 case 10
 laststr = '{new line}';
 case 11
 laststr = '{vtab}';
 case 12
 laststr = '{new page}';
 case 13
 laststr = '{enter}';
 case 14
 laststr = '{shiftout}';
 case 15
 laststr = '{shiftin}';
 case 27
 laststr = '{esc}';
 case 32
 laststr = '{space}';
 otherwise
 laststr = ['{' num2str(last) '}'];
 end
 else
 if(last < 127)
 laststr = char(last);
 elseif(last==127)
 laststr = '{del}';
 else
 laststr = sprintf('%d',last);
 end
 end

 if (next < 33)
 switch next

 88

 case 0
 nextstr = '{null}';
 case 1
 case 2
 case 3
 case 4
 case 5
 case 6
 case 7
 nextstr = '{bell}';
 case 8
 nextstr = '{backspace}';
 case 9
 nextstr = '{tab}';
 case 10
 nextstr = '{new line}';
 case 11
 nextstr = '{vtab}';
 case 12
 nextstr = '{new page}';
 case 13
 nextstr = '{enter}';
 case 14
 nextstr = '{shiftout}';
 case 15
 nextstr = '{shiftin}';
 case 27
 nextstr = '{esc}';
 case 32
 nextstr = '{space}';
 otherwise
 nextstr = ['{' num2str(next) '}'];
 end
 else
 if(next < 127)
 nextstr = char(next);
 elseif(last==127)
 nextstr = '{del}';
 else
 nextstr = sprintf('%d',next);
 end
 end

 % Only save information when at least 5 samples were collected
 if(sampleSize(i) > 5)
 fprintf(outFile,'%s --> %s mean: %.3f , variance: %.3f ,

samples: %d\n',laststr,nextstr,meanVal(i),varVal(i),sampleSize(i));
 end

end

fclose(outFile);

 89

% italian.m
%
% Created: 11/15/2009 (c) Harikrishnan Bhanu
% Updated: 12/13/2009
%
% Loads text sample files for parsing and outputs the delays for

% individual keypairs into separate files.File names have the format

% [key1]_[key2].txt and contain nothing but delays.
%
% These files are then opened and statistics are extracted and the

% results are saved in statistics.txt
%
% Statistics.txt's contents follow the format:
% {key1} --> {key2} , mean: [mean] , variance: [variance] , samples:

% [count]
% Without brackets, but with the braces.

% Get information of all files in the directory
files = dir('./UserSrc/*');
q = 1;

% Loop through the files
for i=3:length(files)

 % Make sure there's no cross-session pollution
 clear temp;
 temp = load(sprintf('./UserSrc/%s',files(i).name));

 % Extract all the pairs in the data for this sample
 for j=2:(length(temp)-2)
 source(q) = temp(j);
 delay(q) = temp(j+1);
 dest(q) = temp(j+2);
 q = q + 1;
 j = j + 1;
 end
end

% Write these values out to files
for i=1:length(source)
 last = source(i);
 next = dest(i);
 time = delay(i);

 % Ensure only ASCII values are written
 if(last >= 0 && last <= 127 && next >= 0 && next <= 127)
 if(floor(last)==last && floor(next)==next)
 destfname = sprintf('%d_%d.txt',last,next);
 fout = fopen(destfname, 'a+');
 fprintf(fout,'%f\n',time);
 fclose(fout);
 end

 90

 end
end

% Flush variables and screen
clear;clc;

% Load the text files that were just generated
clear files;
textfiles = dir('*.txt');
meanVal = zeros(length(textfiles),1);
varVal = zeros(length(textfiles),1);
sampleSize = zeros(length(textfiles),1);
outliers = zeros(length(textfiles),1);

for i=1:length(textfiles)
 temp = load(textfiles(i).name);

 % Convert from milliseconds to seconds
 temp = temp./1000;

 % Remove any negative values (artifacts of capture)
 temp(temp < 0) = [];

 % Determine mean and variance for this keystroke pair
 sampleSize(i) = length(temp);
 meanVal(i) = mean(temp);
 varVal(i) = var(temp);
end

% Write this data to a textfile
outFile = fopen('statistics.txt','w+');
for i=1:length(textfiles)

 % Extract the characters used from the filename
 lastst1 = textfiles(i).name(1:strfind(textfiles(i).name,'_')-1);
 nextst1 =

textfiles(i).name(strfind(textfiles(i).name,'_')+1:strfind(textfiles(i)

.name,'.')-1);

 % Convert from strings to numbers
 last = str2num(lastst1);
 next = str2num(nextst1);

 % If the values are between 34 and 126, convert it to the displayed

 % char. Otherwise, replace it with something easy to determine. If

 % the value is greater than 127, it's not an ASCII value, so

 % disregard it.
 if (last < 33)
 switch last
 case 0
 laststr = '{null}';
 case 1

 91

 case 2
 case 3
 case 4
 case 5
 case 6
 case 7
 laststr = '{bell}';
 case 8
 laststr = '{backspace}';
 case 9
 laststr = '{tab}';
 case 10
 laststr = '{new line}';
 case 11
 laststr = '{vtab}';
 case 12
 laststr = '{new page}';
 case 13
 laststr = '{enter}';
 case 14
 laststr = '{shiftout}';
 case 15
 laststr = '{shiftin}';
 case 27
 laststr = '{esc}';
 case 32
 laststr = '{space}';
 otherwise
 laststr = ['{' num2str(last) '}'];
 end
 else
 if(last < 127)
 laststr = char(last);
 elseif(last==127)
 laststr = '{del}';
 else
 laststr = sprintf('%d',last);
 end
 end

 if (next < 33)
 switch next
 case 0
 nextstr = '{null}';
 case 1
 case 2
 case 3
 case 4
 case 5
 case 6
 case 7
 nextstr = '{bell}';
 case 8

 92

 nextstr = '{backspace}';
 case 9
 nextstr = '{tab}';
 case 10
 nextstr = '{new line}';
 case 11
 nextstr = '{vtab}';
 case 12
 nextstr = '{new page}';
 case 13
 nextstr = '{enter}';
 case 14
 nextstr = '{shiftout}';
 case 15
 nextstr = '{shiftin}';
 case 27
 nextstr = '{esc}';
 case 32
 nextstr = '{space}';
 otherwise
 nextstr = ['{' num2str(next) '}'];
 end
 else
 if(next < 127)
 nextstr = char(next);
 elseif(last==127)
 nextstr = '{del}';
 else
 nextstr = sprintf('%d',next);
 end
 end

 % Only save information when at least 5 samples were collected
 if(sampleSize(i) > 5)
 fprintf(outFile,'%s --> %s mean: %.3f , variance: %.3f ,

samples: %d\n',laststr,nextstr,meanVal(i),varVal(i),sampleSize(i));
 end

end

fclose(outFile);

 93

% extract.m
%
% Created: 11/15/2009 (c) Harikrishnan Bhanu
% Updated: 12/13/2009
%
% Loads text sample files (after parsing), and extracts statistical
% information from keystroke data. File names have the format
% [key1]_[key2].txt and contain nothing but delays.
%
% Reults are saved in statistics.txt with no information as to the

% keypairs which generated them. This .m file was used to generate a

% list of means to determine what symbols were distinguishable.

% Flush variables and screen
clear;clc;

% Load the text files that were just generated
textfiles = dir('./parseroutput/*.txt');
meanVal = zeros(length(textfiles),1);
varVal = zeros(length(textfiles),1);
sampleSize = zeros(length(textfiles),1);
outliers = zeros(length(textfiles),1);

for i=1:length(textfiles)
 temp = load(sprintf('./parseroutput/%s',textfiles(i).name));

 % Convert from milliseconds to seconds
 temp = temp./1000;

 % Remove any negative values (artifacts of capture)
 temp(temp < 0) = [];

 % Determine mean and variance for this keystroke pair
 sampleSize(i) = length(temp);
 meanVal(i) = mean(temp);
 varVal(i) = var(temp);
end

% Write this data to a textfile
outFile = fopen('statistics.txt','w+');
for i=1:length(textfiles)

 % Extract the characters used from the filename

 lastst1 = textfiles(i).name(1:strfind(textfiles(i).name,'_')-1);
 nextst1 =

textfiles(i).name(strfind(textfiles(i).name,'_')+1:strfind(textfiles(i)

.name,'.')-1);

 % Convert from strings to numbers
 last = str2num(lastst1);
 next = str2num(nextst1);

 94

 % If the values are between 34 and 126, convert it to the displayed

 % char. Otherwise, replace it with something easy to determine. If

 % the value is greater than 127, it's not an ASCII value, so

 % disregard it.
 if (last < 33)
 switch last
 case 0
 laststr = '{null}';
 case 1
 case 2
 case 3
 case 4
 case 5
 case 6
 case 7
 laststr = '{bell}';
 case 8
 laststr = '{backspace}';
 case 9
 laststr = '{tab}';
 case 10
 laststr = '{new line}';
 case 11
 laststr = '{vtab}';
 case 12
 laststr = '{new page}';
 case 13
 laststr = '{enter}';
 case 14
 laststr = '{shiftout}';
 case 15
 laststr = '{shiftin}';
 case 27
 laststr = '{esc}';
 case 32
 laststr = '{space}';
 otherwise
 laststr = ['{' num2str(last) '}'];
 end
 else
 if(last < 127)
 laststr = char(last);
 elseif(last==127)
 laststr = '{del}';
 else
 laststr = sprintf('{%d}',last);
 end
 end

 if (next < 33)
 switch next
 case 0

 95

 nextstr = '{null}';
 case 1
 case 2
 case 3
 case 4
 case 5
 case 6
 case 7
 nextstr = '{bell}';
 case 8
 nextstr = '{backspace}';
 case 9
 nextstr = '{tab}';
 case 10
 nextstr = '{new line}';
 case 11
 nextstr = '{vtab}';
 case 12
 nextstr = '{new page}';
 case 13
 nextstr = '{enter}';
 case 14
 nextstr = '{shiftout}';
 case 15
 nextstr = '{shiftin}';
 case 27
 nextstr = '{esc}';
 case 32
 nextstr = '{space}';
 otherwise
 nextstr = ['{' num2str(next) '}'];
 end
 else
 if(next < 127)
 nextstr = char(next);
 elseif(last==127)
 nextstr = '{del}';
 else
 nextstr = sprintf('{%d}',next);
 end
 end

 % Only save information when at least 5 samples were collected
 if(sampleSize(i) > 5)
 fprintf(outFile,'%.3f\n',meanVal(i));
 end

end

fclose(outFile);

 96

% reorder.m
%
% Created: 12/01/09 (c) Harikrishnan Bhanu
% Changed: 12/13/09
%
% Reorders the time delay matrix from A-Z,1-0,etc to either a

% horizontal or vertical crossection of the keyboard.

% Clear variables to prevent pollution
clear;clc;

% Load horizontal and vertical key orders
horiz = load('hOrder.txt');
vert = load('vOrder.txt');

% Load the delay matrices
load('proximity.mat');

% We only want the first column, since the second column is merely the
% first, offset by one value
horiz = horiz(:,1);
vert = vert(:,1);

% Are we focusing on the Italian or New Zealand data?
flagIT = 0;

if(flagIT == 1)
 delays = delaysIT;
else
 delays = delaysNZ;
end

% Are we focusing on horizontal or vertical crossections?
hFlag = 1;

if(hFlag == 1)
 positions = [horiz(1:10) ; 37 ; horiz(11:29) ; 39 ; horiz(30:36) ;

38];
else
 positions = [vert(1:36) ; 37 ; 39 ; 38];
end

% Create the reordered delay matrix
delayTrans = zeros(39,39);
for i = 1:39

 % Determine the mapping to the x-position
 delayXPos = positions(i);

 for j = 1:39

 97

 % And then the mapping to the y-position
 delayYPos = positions(j);

 % Copy the associated delay to the new matrix
 delayTrans(i,j) = delays(delayXPos,delayYPos);

 end
end

 98

% delayFill.m
%
% Created: 11/19/2009 (c) Harikrishnan Bhanu
% Updated: 12/03/2009
%
% Constructs two matrices (neighbors - 39x4 , delays - 39x39) and

% populates them according to the statistics extracted from the

% language.
%
% Statistics are read from a text file (statistics.txt) in the format:
% [key1] [key2] [mean]
% without brackets. This textfile is generated from parser2NZ.m and
% parser2IT.m

% Is this generating tables for Italian or New Zealand?
flagIT = 1;

% Pass control variables
passContinue = 1;
passCounter = 0;

% Initialize arrays to -1 initially so that empty cells can be easily
% identified
neighbors = -1 .* ones(39,4);
delays = -1 .* ones(39,39);
lastIter = zeros(39,39);

% The rows of this matrix correspond to the characters in question

% while the columns are the neighbors of that key on the corresponding

% keyboard layout. (IT & EN)
%
% rows 01 - 26: A - Z
% 27 - 36: 0 - 9
% 37: backspace
% 38: space
% 39: enter
neighbors = [19 17 26 -1; % A: S Q Z
 7 22 14 -1; % B: G V N
 4 24 22 -1; % C: D X V
 19 6 5 3; % D: S F E C
 30 4 23 18; % E: 3 D W R
 4 7 18 22; % F: D G R V
 6 8 20 2; % G: F H T B
 7 10 25 14; % H: G J Y N
 35 21 15 11; % I: 8 U O K
 8 21 11 13; % J: H U K M
 10 9 13 12; % K: J I M L
 15 9 11 -1; % L: O I K
 10 11 14 -1; % M: J K N
 8 2 13 -1; % N: H B M
 36 9 16 12; % O: 9 I P L
 27 15 12 -1; % P: 0 O L
 28 23 1 -1; % Q: 1 W A

 99

 31 5 20 6; % R: 4 E T F
 23 1 4 24; % S: W A D X
 32 18 7 25; % T: 5 R G Y
 34 25 9 10; % U: 7 Y I J
 6 3 2 -1; % V: F C B
 29 17 19 5; % W: 2 Q S E
 19 26 3 -1; % X: S Z C
 33 20 21 8; % Y: 6 T U H
 1 19 24 -1; % Z: A S X
 36 15 16 37; % 0: 9 O P BKSP
 29 17 23 -1; % 1: 2 Q W
 28 30 23 -1; % 2: 1 3 W
 29 31 5 -1; % 3: 2 4 E
 30 32 18 -1; % 4: 3 5 R
 31 33 20 -1; % 5: 4 6 T
 32 34 25 -1; % 6: 5 7 Y
 33 35 21 -1; % 7: 6 8 U
 34 36 9 -1; % 8: 7 9 I
 35 27 15 -1; % 9: 8 0 O
 27 16 39 -1; % BKSP: 0 P ENT
 -1 -1 -1 -1; % SP:
 27 16 37 -1]; % ENT: 0 P BKSP

% Load the statistics extracted from the respective data sets
if(flagIT == 1)
 source = load('./docs/statisticsIT.txt');
 source(:,3) = source(:,3)./1000;
else
 source = load('./docs/statisticsNZ.txt');
end

% -- Testing

% Remove delays of > 1 second to prevent averaging issues
for i = 1:length(source)

 if(source(i,3) <= 1000)
 dest(i,:) = source(i,:);
 end

end

clear source;
source = dest;

% -- End Testing

% Populate the delay matrix with the statistics, empty cells have a

% value of -1
for i = 1:length(source)
 last = source(i,1);
 next = source(i,2);

 100

 time = source(i,3);

 if(time > 0)
 delays(last,next) = time;
 end
end

% Back up the original delay matrix for comparison
delayOrig = delays;

% Perform multiple passes to fill in as many gaps as possible
while (passContinue == 1)

 % Keep track of how many passes were made
 passCounter = passCounter + 1;

 % Iterate through the delay matrix to fill gaps
 for i = 1:39
 for j = 1:39

 % If there's a gap:
 if delays(i,j)==-1

 % First, attempt interpolating from destination key

 % neighbors

 % Hold j (destination key) constant, extract the

 % neighbor list
 nList = neighbors(j,:);
 nPos = 1;
 count = 0;
 delayTemp = 0;

 % Iterate over known neighbors
 while (nPos < 5 && nList(nPos) > 0)
 if(delays(i,nList(nPos)) > 0)
 delayTemp = delayTemp + delays(i,nList(nPos));
 count = count + 1;
 end
 nPos = nPos + 1;
 end

 % Average the delay, if values were available
 if(count > 0)
 delays(i,j) = delayTemp ./ count;
 end

 % If the value is still negative (a gap), attempt

 %interpolation from source key neighbors
 if delays(i,j)==-1

 101

 % Hold i (source key) constant, extract neighbor

 % list
 nList = neighbors(i,:);
 nPos = 1;
 count = 0;
 delayTemp = 0;

 % Iterate over known neighbors
 while (nPos < 5 && nList(nPos) > 0)
 if(delays(nList(nPos),j) > 0)
 delayTemp = delayTemp +

delays(nList(nPos),j);
 count = count + 1;
 end
 nPos = nPos + 1;
 end

 % Average delays, if values are available
 if(count > 0)
 delays(i,j) = delayTemp ./ count;
 end
 end

 end

 end
 end

 % See if them matrix has changed, if it has, make another pass, as

 % more gaps might be filled. If not, stop.
 passContinue = 1 - isequal(lastIter,delays);

 % Update the last iteration of the delay matrix for comparison
 lastIter = delays;
end

% Move the delays into a new matrix to reflect the contents, clear the
% remainder of the variables
if(flagIT ==1)
 delaysIT = delays;
else
 delaysNZ = delays;
end

clearvars -except delaysIT delaysNZ

 102

% digraphTimes.m
%
% Created: 11/30/2009 (c) Harikrishnan Bhanu
% Updated: 12/13/2009
%
% Loads the Matlab Data file 'digraphtimes.mat', containing the data
% extracted from 'digraphtimes.csv'. It then translates the keypair

% data into the format used in our delay matrix.

% Load the data ('data' and 'textdata')
load('digraphtimes.mat');

delaySum = zeros(39,39);
freqCount = zeros(39,39);

% Break apart the source and destionation keys
%
% '110 82' -> 65,41 (as integers, then divided by 2 to convert to

% ASCII)
for i=1:length(textdata)

 % Search the first column of the csv (stored as textdata) for the

 % space separating the source and destination keys
 spPos = cell2mat(strfind(textdata(i),' '));
 str = cell2mat(textdata(i));
 lastStr = str(1:spPos(1)-1);
 nextStr = str(spPos(1)+1:length(str));

 % Convert from strings to integers, then divide by 2 to convert to
 % ASCII value
 last = str2num(lastStr)/2;
 next = str2num(nextStr)/2;

 % Replace the ASCII values with the corresponding indices for the

 % 39x39 matrix (and ensure only appropriate characters are

 % considered)
 if (last > 64 && last < 90)
 last = last - 64;
 elseif (last > 47 && last < 58)
 last = last - 47 + 26;
 elseif (last == 8)
 last = 37;
 elseif (last == 32)
 last = 38;
 elseif (last == 13)
 last = 39;
 else
 last = -1;
 end

 if (next > 64 && next < 90)
 next = next - 64;

 103

 elseif (next > 47 && next < 58)
 next = next - 47 + 26;
 elseif (next == 8)
 next = 37;
 elseif (next == 32)
 next = 38;
 elseif (next == 13)
 next = 39;
 else
 next = -1;
 end

 % Add the observed delay to the running total for that pair, and
 % increment the frequency counter
 if(last ~= -1 && next ~= -1)
 delaySum(last,next) = delaySum(last,next) + data(i,1);
 freqCount(last,next) = freqCount(last,next) + 1;
 end
end

% Write out the means
outFile = fopen('statisticsNZ2.txt','w+');
for i = 1:39
 for j = 1:39
 if(delaySum(i,j)~=0)
 % Comptue the means for all delays for which there was

 % data, then write them out.
 fprintf(outFile,'%d %d

%.3f\n',last,next,delaySum(i,j)/freqCount(i,j));
 end
 end
end
fclose(outFile);

 104

% proximity.m
%
% Created: 11/24/2009 (c) Harikrishnan Bhanu
% Updated: 12/03/2009
%
% Determines the locations of keypairs where the delays are too close

% for distinction, between the New Zealand and Italian data.

% Determine the degree of separation between the matricies
diff = abs(delaysNZ - delaysIT);

% Create a proximity matrix
% distance(i,j) = 1 if diff(i,j) < 15, else distance(i,j) = 0
%
% This is basically a boolean matrix determining if the difference
% between the Italian and New Zealand data is less than 15ms
distance = zeros(39,39);

% Coompare elements and identify those whose delays are too close
for i = 1:39
 for j = 1:39

 if(diff(i,j) < 15)

 distance(i,j) = 1;

 end

 end
end

% Plot the sparsity
spy(distance)

 105

/*

 GutenbergParser.c

 Created: 11/24/09 (c) Harikrishnan Bhanu

 Updated: 12/03/09

 This program will parse N plaintext documents and store the combined

 data as keypairs (disregarding case and special characters), in the

 specified output file. If no output file is specified, it stores it in

 the default file 'output.txt'.

 */

#include <stdio.h>

#include <string.h>

#include "GutenbergParser.h"

int main (int argc, const char * argv[]) {

 int fileLoop, success = 0;

 // If no arguments are provided, then display the proper

 // execution format for the user.

 if (argc < 2) {

 functionality(argv);

 return 1;

 }

 // Determine if an output file is specified, if it is, then be

 //sure to use it, if not, set the output file as 'output.txt'

 if (strcmp(argv[argc-2],"-o")==0) {

 // Iterate over all input files, storing the keypairs in

 // the designated output file

 for (fileLoop = 1; fileLoop < argc-2 ; fileLoop++) {

 success = parseTextFile(argv[fileLoop],argv[argc-1]);

 // If the process fails at any point, stop!

 if (success == -1) {

 return -1;

 }

 }

 } else {

 // Iterate over all input files, storing the keypairs in

 // the default output file

 for (fileLoop = 1; fileLoop < argc ; fileLoop++) {

 success = parseTextFile(argv[fileLoop],"output.txt");

 // If the process fails at any point, stop!

 if (success == -1) {

 return -1;

 }

 106

 }

 }

 return 0;

}

 107

/*

 GutenbergParser.h

 Created: 11/24/09 (c) Harikrishnan Bhanu

 Updated: 12/03/09

 Header for GutenbergParser.c containing functions.

*/

/*

 Function: functionality

 Inputs: const char* argv[]

 Outputs: none

 Displays the proper syntax to run the parser application.

 */

void functionality(const char* argv[]) {

 printf("%s input1 [input2] [input3] ... [inputN] [-o

output]\n",argv[0]);

 printf(" input* - plaintext file containing text to be

parsed\n");

 printf(" at least one is required\n");

 printf(" [output] - default output, output.txt, is used

unless\n");

 printf(" other filename is specified using the -o

flag\n");

}

/*

 Function: parseTextFile

 Inputs: const char* inFile - string containing source file name

 const char* outFile - string containing destination file

 name

 Outputs: integer representation of success, a -1 is failure while 0

 is success

 Parses text from the file pointed to by inFile, removes case (by

forcing all text into upper-case) and all special characters. Then,

puts the contents into the file pointed to by outFile in pairs (comma

separated), each on its own line.

 Ex:

 "And" --> "1,14" \n "14,4" \n

 */

int parseTextFile(const char* inFile, const char* outFile) {

 // Display informational text

 printf("Attempting parse from [%s].\n",inFile);

 108

 printf("Destination file [%s].\n",outFile);

 // Current character from source file stream, as well as the pair

 // (last,next) to be written to the destination file stream.

 char current, last, next, temp;

 // Open the source and destination files. Source is kept read-

 // only while the destination file is opened in appending mode.

 FILE* source = fopen(inFile, "r");

 FILE* dest = fopen(outFile, "a");

 // If the source file is unable to be opened, fail gracefully and

 // inform the user of the situation.

 if (source == NULL) {

 printf("Error: Unable to open source file %s.\n",inFile);

 printf(" Please ensure the file is in the same

directory as this application.\n");

 return -1;

 }

 // Behave similarly if the destination file is unable to be

 // opened.

 if (dest == NULL) {

 printf("Error: Unable to open destination file

%s.\n",outFile);

 printf(" Please ensure the file is in the same

directory as this application,\n");

 printf(" and the current user has write-permissions

to it.");

 return -1;

 }

 // Initialize the last and next characters as '-'

 current = '-';

 last = '-';

 next = '-';

 // Read a character (priming)

 fscanf(source,"%c",¤t);

 // Loop while data remains

 while (current != '^') {

 // Remove case by forcing all lower-case into upper

 if (current >= 'a' && current <= 'z') {

 temp = current - 32;

 } else {

 temp = current;

 }

 // Ensure only appropriate characters are written out

 109

 if ((temp >= '0' && temp <= '9') || (temp >= 'A' && temp

<= 'Z') || temp == 10 || temp == 13 || temp == 32) {

 // If this is the first character read, then we

 // simply store it as 'last' otherwise, we write the

 // pair out

 if (last=='-') {

 last = temp;

 }

 else {

 // If this isn't the first character read, then

 // there is a 'last' entry, so this is the

 // 'next' entry

 next = temp;

 int char1,char2;

 // Convert to the interger indicies of the

 // delay matrix

 if(last >= 'A' && last <='Z') {

 char1 = last - 64;

 } else if (last >= '0' && last <= '9') {

 char1 = last - 47 + 26;

 } else if (last == 13 || last == 10) {

 char1 = 39;

 } else {

 char1 = 38;

 }

 if(next >= 'A' && next <='Z') {

 char2 = next - 64;

 } else if (next >= '0' && next <= '9') {

 char2 = next - 47 + 26;

 } else if (next == 13 || next == 13) {

 char2 = 39;

 } else {

 char2 = 38;

 }

 fprintf(dest, "%d,%d\n",char1,char2);

 // Update 'last' and reset 'next'

 last = next;

 next = '-';

 }

 }

 // Read the next character

 fscanf(source,"%c",¤t);

 }

 // Close the file pointers and return to the main program body

 printf("Closing [%s] and [%s].\n",inFile,outFile);

 110

 fclose(source);

 fclose(dest);

 return 0;

}

 111

% GutenbergDelay.m
%
% Created: 11/28/2009 (c) Harikrishnan Bhanu
% Updated: 12/03/2009
%
% Loads the text file 'composite.txt', containing the parsed training

% data stored as keypairs. Then, performs a lookup, using the delays

% matrix generated by delayFill.m, of the interkeystroke delays and

% stores these values in tVal.

% Flag to determine if Italian or English is being considered
flagIT = 0;

% Load delay matrices
load('proximity.mat');

% Load the keypairs pulled from the text by the parser, load the bounds

% for the symbolization, and then open the file for writing
if (flagIT == 1)
 pairs = load('./Italian/composite.txt');
 bounds = load('it.tsl');
 outFile = fopen('ITSym.csv','w+');
 delays = delaysIT;
else
 pairs = load('./English/composite.txt');
 bounds = load('nz.tsl');
 outFile = fopen('NZSym.csv','w+');
 delays = delaysNZ;
end
tVal = zeros(length(pairs),1);

% Scale from seconds to milliseconds
bounds = bounds .* 1000;

% Conver to delays
for i = 1:length(pairs)
 tVal(i) = delays(pairs(i,1),pairs(i,2));
end

% Symbolize the time values and write them to a CSV
for i=1:length(tVal)

 % Where does this delay fall?
 match = 0;
 q = 1;
 while(match ~= 1)
 if (ceil(tVal(i)) >= bounds(q,1) && ceil(tVal(i)) <=

bounds(q,2))
 match = 1;
 else
 q = q + 1;
 end

 112

 end

 % Define the symbol associated with that position
 symbol = char(65+q);

 % Then write the symbol to the file
 if i<length(tVal)
 %fprintf(outFile,'%c,',symbol);
 fprintf(outFile,'%.3f\n',tVal(i));
 else
 %fprintf(outFile,'%c',symbol);
 fprintf(outFile,'%.3f\n',tVal(i));
 end

end

% Close the file
fclose(outFile);

 113

% gNG.m
%
% Created: 11/04/2008 (c) Harikrishnan Bhanu
% Updated: 12/03/2009
%
% Growing neural gas code originally written for ECE872, modified to

% locate clusters within interkeystroke delay sets. Source data is

% stored in H, resulting cluster values are stored in A.

N = 2; % Initialize size of A
H = NZ1D'; % Specify data source to search for

 % clusters
[Hsize , dimensions] = size(H); % Number of training vectors and their

 % dimensions

% Initialize the set of vectors as d x N, where d is the dimension of

% the vectors and N is the number of initial units, 2

% A Gaussian distribution is used here with a mean of 0 and standard
% deviation of 10
A = sqrt(10)*randn(N,dimensions);

% Initialize connection ages as -1, for not formed and change diagonal
% entries to -2, denoting it is the same unit to itself, 0 denotes a

% new connection, and an age greater than zero is how many iterations

% that conneciton has gone without change
C = -1 * ones(N,N);
for i=1:N
 C(i,i) = -2;
end

% Error matrix -- how well current units represent the data set,
% initialized to zeros
E = zeros(N,1);

% Max number of presentations that an edge is allowed
a_max = 10;

% Max number of presentations allowed
p_max = 1000000;

% Error decay rate for unit creation
alpha = 0.5;

% Error decay for all units, per presentation
d = 0.9995;

% Presentation limit before new unit can be added
lambda = 1000;

% Presentation number, initialized to 0
k = 0;

 114

% Correction values
e_b = 0.05;
e_n = e_b/100;

% Only continue while the number of presented vectors is less than the

% max allowable value
while (k < p_max)
 % Update size
 [N N] = size(C);

 % Present a vector from the training set: (k mod Hsize)+1
 v_k = H(mod(k,Hsize)+1,:);

 % Compute distances from presented vector (v_k) to all vectors

within
 % units
 dist_iter = zeros(N,1);
 for i=1:N
 dist_iter(i) = sqrt(sum((v_k - A(i,:)).^2));
 end

 % Find the minimum, then copy the vector into a temporary vector,
 % make the minimum a maximum, and find the new minimum ('runner

 % up'), note that the same index offset is maintained as the order

 % isn't changed
 [d_min1, u_s1] = min(dist_iter);
 dist_temp = dist_iter;
 dist_temp(u_s1) = max(dist_iter) + 1;
 [d_min2, u_s2] = min(dist_temp);

 % Update the error value accordingly
 E(u_s1) = E(u_s1) + sum((v_k - A(u_s1,:)).^2);

 % Update weights
 % Winning weight:
 A(u_s1,:) = A(u_s1,:) + e_b*(v_k - A(u_s1,:));
 % Units directly connected to the winner:
 for i=1:N
 % Ensure a connection exists
 if (C(u_s1,i) > -1)
 A(i,:) = A(i,:) + e_n*(v_k - A(i,:));
 end

 % Increase the age of all topological neighbors to the winner
 if (C(u_s1,i) > -1)
 C(u_s1,i) = C(u_s1,i) + 1;
 end
 if (C(i,u_s1) > -1)
 C(i,u_s1) = C(i,u_s1) + 1;
 end
 end

 115

 % Does a connection exist between the winner and runner up? If not,
 % make one.
 C(u_s1,u_s2) = 0;
 C(u_s2,u_s1) = 0;

 % Pass through connection matrix and trim any vectors which haven't
 % been updated within a_max presentations
 for i=1:N
 for j=1:N
 if(C(i,j) > a_max)
 C(i,j) = -1;
 end
 end
 end

 % Remove any units which have no connections
 [N N] = size(C);
 prune = ones(N,1);
 for i=1:N
 for j=1:N
 if(C(i,j) > -1)
 prune(j) = 0;
 end
 end
 end
 for i=N:-1:1
 % Only prune if no connections
 if(prune(i)==1)
 C(i,:) = []; % Row -- overwrite to the top
 C(:,i) = []; % Column -- overwrite to the left
 A(i,:) = []; % Remove the unit itself
 E(i,:) = []; % Remove the error associated with the unit
 end
 end

 [N N] = size(C);

 % Add a new unit
 % Is k an integer multiple of lambda?
 if (mod(k,lambda)==0)
 % Find the one unit who has the most 'errors'
 [q_val, u_q] = max(E);

 % Find the unit which is connected to u_q directly, with the

most
 % 'errors'
 E_temp = -1*ones(N,1);
 for i=1:N
 if(C(u_q,i) > -1)
 E_temp(i) = E(i);
 end

 116

 end
 [f_val, u_f] = max(E_temp);

 % New weight is between u_q and u_f
 w_r = .5.*(A(u_q,:) + A(u_f,:));
 % Remove edge between u_q & u_f
 C(u_q,u_f) = -1;
 C(u_f,u_q) = -1;
 % Insert u_r between u_q and u_f
 % Shift over existing units
 u_r = min(u_q,u_f)+ceil(abs((u_q - u_f))/2);
 C_temp = -1*ones(N+1,N+1);
 for i=1:N
 % 'Left' Half
 if(i < u_r)
 for j=1:N
 % 'Left Top' -- direct copy
 if(j < u_r)
 C_temp(i,j) = C(i,j);
 end
 % 'Left Bottom' -- shifted 1 down
 if(j >= u_r)
 C_temp(i,j+1) = C(i,j);
 end
 end
 A(i,:) = A(i,:);
 E(i) = E(i);
 end

 % 'Right' Half
 if(i >= u_r)
 for j=1:N
 % 'Right Top' -- shifted 1 right
 if(j < u_r)
 C_temp(i+1,j) = C(i,j);
 end
 % 'Right Bottom' -- shifted 1 right, 1 down
 if(j >= u_r)
 C_temp(i+1,j+1) = C(i,j);
 end
 end
 A(i+1,:) = A(i,:);
 E(i+1) = E(i);
 end
 end
 clear C;
 C = C_temp;
 [N N] = size(C);

 for i=1:N
 C(u_r,i) = -1;
 C(i,u_r) = -1;
 end

 117

 % Insert the vector
 A(u_r,:) = w_r;
 if(u_f >= u_r)
 C(u_r,u_q) = 0; % r -> q
 C(u_r,u_f+1) = 0; % r -> f
 C(u_q,u_r) = 0; % q -> r
 C(u_f+1,u_r) = 0; % f -> r
 else
 C(u_r,u_q+1) = 0; % r -> q
 C(u_r,u_f) = 0; % r -> f
 C(u_q+1,u_r) = 0; % q -> r
 C(u_f,u_r) = 0; % f -> r
 end

 % Update error for u_r, u_f & u_q
 E(u_f) = E(u_f) + alpha * E(u_f);
 E(u_q) = E(u_q) + alpha * E(u_q);
 E(u_r) = E(u_q);
 end

 % Update error, presentation value, and ensure that -2 line the
 % diagonal
 E = (1-d).*E;
 k = k+1;
 [N N] = size(C);
 for i=1:N
 C(i,i) = -2;
 end
end

 118

% keyGaussPlot.m
%
% Created: 12/07/09
% Updated: 12/08/09
%
% Opens a specified document containing keypair statistics for a given
% language (Italian or English, in this case). It then plots Gaussian
% distributions for all keypairs that appear with more frequency than

% the specified threshold.

% Specify language
flagIT = 1;

% Specify frequency threshold
threshold = 200;

% Initialize counter to 0
pairs = 0;

% Open the corresponding language statistics file
% Note: Interpolated data is NOT considered, only original data
% Note: The filename is 'fullStatistics*', as opposed to 'statistics*'

% to differentiate between the two.
if(flagIT == 1)
 % Open IT statistics document
 data = load('./docs/fullStatisticsIT.txt');
else
 % Open NZ statistics document
 data = load('./docs/fullStatisticsNZ.txt');
end

% Set the time scale -- 10 ms increments from 0 to 1000 ms
t = 0:1:100;

% Scale from microseconds to milliseconds for the Italian data
if(flagIT == 1)
 data(:,3) = data(:,3) / 1000;
end

% Go through the data to determine what should be plotted, and plot

% them
for i = 1:length(data)

 % Ensure that the threshold is met and outlier data isn't processed
 % (> 800 ms delays)
 if(data(i,5) >= threshold && data(i,3) < 800)
 % Increment counter
 pairs = pairs + 1;

 % Extract the mean and variance, then take the square root of

 % the variance to get the standard deviation
 mVal = data(i,3);

 119

 vVal = data(i,4);
 sVal = sqrt(vVal);
 plot(0:1:100,gaussmf(t,[sVal mVal]));
 hold on;
 end

end

% Add labels to the graph
if(flagIT == 1)
 str = sprintf('Interkeystroke Gaussians (Italian, greater than %d

samples)\n%d Pairs',threshold,pairs);
else
 str = sprintf('Interkeystroke Gaussians (New Zealand, greater than

%d samples)\n%d Pairs',threshold,pairs);
end
xlabel('Delays (seconds)');
title(str);

 120

% roc.m
%
% Created: 2/26/10 (c) Harikrishnan Bhanu
% Changed: 2/26/10
%
% Plots RoC curves for the confidence interval (CI) and forward-

backward
% (FB) data files for English and Italian.

clear;clc;

% Load all four files
load('roc.mat');

% Flags to indicate which data file to use
italian = 0;
confidence = 1;

% Move the selected file
if(italian==0)
 if(confidence==0)
 % Consider forward-backwards with texts being presented to the
 % English model
 truedata = englishFB(1:401);
 falsedata = italianFB(1:401);
 else
 % Consider confidence intervals with texts being presented to

the
 % English model
 truedata = englishCI(1:401);
 falsedata = italianCI(1:401);
 end
else
 if(confidence==0)
 % Consider forward-backwards with texts being presented to the
 % Italian model
 truedata = italianFB(402:802);
 falsedata = englishFB(402:802);
 else
 % Consider confidence intervals with texts being presented to

the
 % Italian model
 truedata = italianCI(402:802);
 falsedata = englishCI(402:802);
 end
end

% Threshold ranges from 0 to 1 in increments of 0.01
x = [0 : 0.01 : 1];
stats = zeros(4,length(x));
y = zeros(length(x),2);

 121

for threshold = 1:length(x)

 % Clear true and false classification counters
 truePos = 0;
 trueNeg = 0;
 falsePos = 0;
 falseNeg = 0;

 % Count the true and false positives and negatives
 for j = 1:401
 % Scale against the max available
 if truedata(j) > (x(threshold)*max(truedata))
 truePos = truePos + 1;
 else
 falseNeg = falseNeg + 1;
 end

 if falsedata(j) > (x(threshold)*max(truedata))
 falsePos = falsePos + 1;
 else
 trueNeg = trueNeg + 1;
 end
 end

 % Store statistics for this threshold
 stats(:,threshold) = [truePos ; falsePos ; trueNeg ; falseNeg];
 y(threshold,:) = [truePos/(truePos+falseNeg)

trueNeg/(trueNeg+falsePos)];
end

% Get coordinates to plot
xroc=[1; 1-y(:,2); 0];
yroc=[1; y(:,1); 0];

% Plot it
plot(xroc,yroc,'r.-')

 122

REFERENCES

 123

[1] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, "A Mazimization Technique

Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains,"

The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164-171, Feb. 1970,

http://www.jstor.org/stable/2239727.

[2] H. Bhanu, et al., "Language Detection over Tunneled Sessions," IEEE Transactions

on SMC, Under Review.

[3] H. Bhanu, J. M. Schwier, C. Griffin, and R. R. Brooks, "Zero-Knowledge Hidden

Markov Model Learning of Tunneled Protocols," IEEE Transactions on SMC, Under

Review.

[4] R. R. Brooks, J. M. Schwier, and C. Griffin, "Behavior Detection using Confidence

Intervals of Hidden Markov Models," IEEE Transactions on SMC Part B, pp. 1484-

92, Dec. 2009.

[5] S. A. Crosby, D. S. Wallach, and R. H. Reidi, "Opportunities and Limits of Remote

Timing Attacks," ACM Transactions on Information and System Security, vol. 12,

no. 3, pp. 1-29, Jan. 2009.

[6] B. Elign and B. Einhorn. (2006, Jan.) The Great Firewall of China. [Online].

http://www.businessweek.com/technology/content/jan2006/tc20060112_434051.htm

[7] E. English and S. Hamilton, "Network Security Under Siege: The Timing Attack,"

IEEE Computer, vol. 29, no. 3, pp. 95-97, Mar. 1996.

[8] D. Gunetti and C. Picardi, "Keystroke Analysis of free Text," ACM Transactions on

Information and System Security, vol. 8, no. 3, pp. 312-347, 2005.

[9] K. Hempstalk, "Continious Typist Verification using Machine Learning," Ph.D.

Dissertation, Department of Computer Science, University of Waikato, Hamilton,

New Zealand, 2009.

[10] J. Ilonen, "Keystroke Dynamics," Advanced Topics in Information Processing -

Lecture., 2003, http://www.it.lut.fi/kurssit/03-04/010970000/seminars/Ilonen.pdf.

[11] T. Kohno, A. Broido, and K. C. Claffy, "Remote Physical Device Fingerprinting,"

IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 2, pp. 211-225,

Apr. 2005.

[12] D. Kravets. (2007, Oct.) RIAA Jury Finds Minnesota Woman Liable for Piracy,

Awards $222,000. [Online]. http://www.wired.com/threatlevel/2007/10/riaa-jury-

finds/

 124

[13] F. Monrose and A. D. Rubin, "Keystroke Dynamics as a Biometric for

Authentication," Future Generation Computer Systems, vol. 16, pp. 351-359, 2000.

[14] L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition," Proceedings of the IEEE, pp. 257-286, Feb. 1989.

[15] J. A. Robinson, V. M. Liang, J. A. M. Chambers, and C. L. MacKenzie, "Computer

User Verification Using Login String Keystroke Dynamics," IEEE Transactions on

SMC - Part A, vol. 28, no. 2, pp. 236-241, Mar. 1998.

[16] J. Schwier, "Pattern Recognition in Command and Control Data Systems," Ph.D.

Dissertation, Holcombe Department of Electrical and Computer Engineering,

Clemson University, Clemson, SC, 2009.

[17] C. R. Shalizi, K. L. Shalizi, and J. P. Crutchfield, "An Algorithm for Pattern

Discovery in Time Series," The Computing Research Repository, Oct. 2002,

cs.LG/021005: http://arxiv.org/abs/cs.LG/021005.

[18] C. R. Shalizi and K. L. Klinkner, Uncertainty in Artificial Intelligence: Proceedings

of the Twentieth Conference (UAI 2004), M. C. a. J. Y. Halpern, Ed. Arlington,

Virginia, USA: AUAI Press, 2004.

[19] R. Sicilano. (2010, Mar.) Biggest Botnet Goes Bust. [Online].

http://www.bloggernews.net/124012

[20] D. X. Song, D. Wagner, and X. Tian, "Timing Analysis of Keystrokes and Timing

Attacks on SSH," SSYM'01: Proceedings of the 10th conference on USENIX Security

Symposium, p. 25, 2001.

[21] R. Taylor. (2006, Jan.) The great firewall of China. [Online].

http://news.bbc.co.uk/2/hi/programmes/click_online/4587622.stm

	Clemson University
	TigerPrints
	5-2010

	Timing Side-Channel Attacks on SSH
	Harikrishnan Bhanu
	Recommended Citation

	INSERT YOUR TITLE IN ALL CAPS HERE

