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ABSTRACT 

 

 

In most secure communication standards today, additional latency is kept to a 

minimum to preserve the Quality-of-Service. As a result, it is possible to mount side-

channel attacks using timing analysis. In this thesis we discuss the viability of these 

attacks, and demonstrate them by inferring Hidden Markov Models of protocols. These 

Hidden Markov Models can be used to both detect protocol use and infer information 

about protocol state. We create experiments that use Markov models to generate traffic 

and show that we can accurately reconstruct models under many circumstances. We 

analyze what occurs when timing delays have enough jitter that we can not accurately 

assign packets to bins.  Finally, we show that we can accurately identify the language 

used for cryptographically protected interactive sessions – Italian or English – on-line 

with as few as 77 symbols. A maximum-likelihood estimator, the forward-backward 

procedure, and confidence interval analysis are compared. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

As electronic communications become ubiquitous, they carry increasingly 

sensitive, private and valuable information. Consequently, the ability to determine the 

contents of these channels is valuable to attackers. Electronic communication is used and 

misused, for a multitude of things. It can be used to pay your bills or steal your identity 

[19], do research on different political parties or control what an entire country has access 

to [6] [21], to send vacation pictures to relatives or steal thousands of dollars worth of 

music and movies, as documented in RIAA and MPAA statements [12]. As more and 

more people use e-commerce to pay their bills, more individuals become interested in 

being able to steal identities. Similarly, as more people steal music and movies, internet 

service providers become more interested in performing deep-packet inspection and other 

analysis to determine if you are abiding by the Terms of Service contract. On a larger 

scale, control of electronic communication can allow a government to control what 

information the inhabitants of their country has access to, as with the great firewall of 

China. 

Timing Analysis and Side-Channel Attacks 

Side-channel attacks defeat security measures indirectly. Instead of tackling 

encryption using mathematical analysis or brute-force attacks, they focus on 

implementation artifacts that leak information about the process. In Song’s paper, she 

says, “Many users believe that they are secure against eavesdroppers if they use SSH. 
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Unfortunately, in this paper we show that despite state-of-the-art encryption techniques 

and advanced password authentication protocols, SSH connections can still leak 

significant information about sensitive data such as users’ passwords. This problem is 

particularly serious because it means users may have a false confidence of security when 

they use SSH” [20]. Given the nature of encryption standards in place today, it is 

computationally unfeasible to discern the underlying message within a reasonable amount 

of time using cryptanalysis – mathematical analysis to defeat the encryption – alone. 

Timing analysis offers significant advantages. By observing the timing of a system, it is 

possible to determine a variety of things. For example, if a specific user’s typing habits 

are observed for an extended period of time, it is possible to determine what the user is 

typing merely by the delays between his keystrokes, and as an extension if a typist is in 

fact that user, or a different entity [5] [7]. 

When the focus is shifted from the client to the server, a different timing attack is 

possible. By monitoring the time taken to process a given cryptographic key, it is possible 

to determine the private key used by the client. Though this time is a function of multiple 

factors, the key is the largest contributor in the delay [7]. This form of attack has been 

made significantly more difficult, though, by blinding and normalization. In blinding, 

random factors obscure the relationship between runtime and encryption key. 

Normalization forces all delays to a specific value, as a result no additional data can be 

acquired. In practice, blinding is not very effective; while normalization is at the cost of 

speed. 
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Applications 

In addition to biometric applications of keystroke dynamics, timing analysis can 

attack otherwise secure communications channels. Secure Shell (SSH) begins by using 

public-key encryption, RSA, to exchange a session key. This session key is used for 

symmetric key cryptography such as AES. In an interactive session, keystrokes are 

transmitted to the server as the user enters them at the client terminal. Because of this, all 

keystroke dynamics of the user are preserved across the communication line. By 

exploiting this fact, combined with training data collected from the user, it is possible to 

discern the commands that the user is typing [5] [15] [20]. 

Furthermore, by monitoring the timestamps over time, it is possible to determine a 

machine’s geographic location as a function of clock-skew. This is based on the principle 

that computers that are physically near one another will be subject to similar 

environmental effects, and as a result will maintain synchronized internal clocks longer 

than those separated from one another [13]. This technique can also determine if multiple 

machines are independent, identical, physically close, and so on. 

Another application of timing analysis, in the form of keystroke analysis, is author 

identification. Using the methods detailed in Chapter 4, Section 5: Language 

Identification Using Confidence Intervals [2], it should be possible to construct Hidden 

Markov Models trained on the works of specific authors. These models would summarize 

aspects of an author’s style. By applying confidence interval analysis to texts of unknown 

authorship it is possible to determine which authors’ characteristics are most prevalent in 

the new texts. 
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The rest of this thesis is laid out as follows: Chapter Two addresses background 

material required for understanding the experiments performed and the analysis of the 

results, Chapter Three contains a proof-of-concept of the underlying hypothesis that 

Hidden Markov Models can be used to perform side-channel attacks, and Chapter Four 

details the experiments performed and analysis on the results of these experiments. Last 

are Chapters Five and Six which are the conclusion and future extensions of the 

experiments performed, respectively. Also included are additional experiments, which 

accompanied those done in Chapter Four, in Appendix A followed by the code used 

throughout the experiments in Appendix B. 
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CHAPTER TWO 

 

BACKGROUND 

 

 

 The following sections make clear the relationship between the various 

components of the experiments. The two protocols tested for communication in the proof 

of concept were TCP and UDP. However, since Secure Shell wraps all communication in 

a TCP packet, they appear as such when observed by Wireshark at an intermediary node. 

This third node acts as an observer to the communication taking place between the source 

and destination nodes. By monitoring the delays between these packets, and symbolizing 

them – grouping nearby delays together and giving them a label – it is possible to build a 

Hidden Markov Model representing the communication taking place. This is done 

through application of an algorithm known as Causal State Splitting Reconstruction. 

Furthermore, this model can be used to detect the presence of that behavior in traffic 

through application of confidence interval analysis. 

TCP vs. UDP 

The two most common protocols in use for network communication are the 

Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). The key 

differences between TCP and UDP are guaranteed delivery and flow control. For 

situations where there is a high assurance of packets reaching their destination, UDP is 

preferred as it has a higher throughput. TCP’s combination of assured delivery and flow 

control make it the ideal choice for general purpose use, though. 

When using TCP, each packet is assigned a sequence number as well as an 

acknowledgement number. These packets are then transmitted from the server to the 
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client in groups, the size of which is determined by the client’s window size. Once the 

transmission of all packets within the window is complete, the server waits for 

acknowledgement for the last packet received. If the destination does not acknowledge 

the arrival of a packet, it is queued for retransmission. Furthermore, no new windows of 

data are transmitted. This prevents the server from transmitting data to the client at such 

rates which would cause significant data loss. 

UDP does not have this flow control measure, nor does it guarantee the successful 

delivery of a packet. As a result, space within the packet which would normally be 

allocated for the sequence number, acknowledgement number, error correction code, and 

other information used by TCP, are not present. This allows a UDP packet to transmit 

more data per packet than TCP, making it ideal for situations in which efficiency is the 

priority. 

Both TCP and UDP present problems for network monitoring using packet 

sniffers. Wireshark and its terminal counterpart tshark monitor will record out of order 

arrivals. In addition, since UDP lacks the guarantee of successful transmission, a dropped 

packet will cause a larger inter-packet delay to be observed. If the presence of the 

dropped packets is statistically insignificant for the size of the capture, the algorithm will 

ignore it. However, for long-range communications it would be impractical to use UDP 

for this purpose, since the packet loss rate increases considerably. With out of order 

arrivals, it is possible for inter-packet delays to become negative. The reason for this is 

that these delays are computed in order of arrival, not by sequence number. 
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Consequently, it must be ensured that packet numbers are inspected to ensure that the 

observed times are correct. 

Interactive Secure Shell 

Secure Shell (SSH) allows a user to remotely access and administer machines on 

the network securely. When this process is controlled by a script, it is considered non-

interactive SSH. If the user remains at the terminal to type these commands manually, it 

is classified as an interactive SSH session. 

There are various security options available for implementation within SSH, but 

the most common is through a series of key exchanges. Each server maintains a private 

and public RSA key. When a client connects, it generates a RSA key for the session and 

transmits this to the server after it has been encrypted with the server’s public key. This 

session key is then used to encrypt further communication on the channel through 

application of symmetric key cryptography, most commonly AES. This prevents direct 

channel monitoring through Wireshark to determine what the user is doing, as opposed to 

a telnet session. 

SSH does not modify the typing patterns of the user, however; keystrokes are 

transmitted as they are typed at the terminal. As this preserves the inter-keystroke delays 

of the user Wireshark will be able to capture it. If the user were to use a non-interactive 

SSH session to complete his tasks, the captured data would instead reflect processing 

time, instead of both processing time and user typing dynamics. Because of this, even 

when capturing traffic for a non-interactive session, it is possible to infer what is being 

done on the server by the script. 
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Hidden Markov Models 

The purpose of a Hidden Markov Model (HMM) is to model a system whose 

states are not known directly. The outputs generated by the states or transitions, can be 

monitored, however. Providing the underlying process is Markovian, an HMM can be 

constructed using these outputs. This model will contain the statistical information of the 

observations, and thus offer insight into the underlying state structure [3]. 

In his paper, Rabiner discusses common uses for HMMs, primarily speech 

recognition. In speech recognition, the Viterbi path (the most likely path taken through an 

HMM) is used to determine the most likely text representation of a spoken string [14]. 

Furthermore, there are multiple kinds of HMMs: ergodic, left-right, parallel path left-

right, and so on. In this thesis, only ergodic HMMs are considered. An ergodic HMM is 

one such that any state can be reached from any other state in a finite number of 

transitions. With a left-right HMM, it is only possible to transition to the next state or stay 

in the same state; that is, you cannot transition to the left. 

The HMMs discussed in this thesis, Figure 2.1 for example, differ from those in 

Rabiner’s paper in that the observations generated are the symbols produced from 

transitions between states. Furthermore, the models considered are deterministic in 

nature. This means that from any one state, it is not possible for two transitions to create 

the same observation. 
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Figure 2.1: HMM 

Causal State Splitting Reconstruction 

Causal State Splitting Reconstruction (CSSR) is an algorithm, developed by 

Cosma Shalizi, used to construct (hidden) Markov models from a time-series and a mesh 

file of the symbolization with no prior knowledge of the model. This mesh file contains 

ranges for the symbols in the time-series [17]. The first step in CSSR is to symbolize the 

time-series. This is done by a simple search-and-replace in which a time value is selected 

from the data and is compared against the various intervals defined for the symbols. 

Next, the symbolized data is analyzed in strings of up to a length L (1, 2 … L), 

defined by the user, to determine conditional probabilities. For example, with a two 

symbol alphabet (A and B) and L = 3, the algorithm would consider the probabilities of 

an A or a B following each two-character permutation (AA, AB, BA, BB). Our 

implementation of CSSR differs from Shalizi’s in that histories of L and L – 1 are 
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considered when constructing each state. Furthermore, with each iteration, transient states 

are removed, as are any transitions leading to them. Once the removal phase is complete, 

steady-state probabilities are computed to reflect the changes to the model. This is not 

done in the algorithm as Shalizi described it. Shalizi also makes the assumptions that 

there is an infinite amount of data and that L is known. We require no a priori knowledge 

to construct our models. 

For each iteration of the algorithm (i ≤L), the probability that the transition 

described by the next symbol will be taken is found. Next, determine the probability that 

the system is in state i, and that the next symbol observed will be the next symbol in the 

string. This is the probability that the symbol is a member of this state’s history. A state’s 

history is a list of all the strings with sufficiently similar conditional probabilities. These 

probabilities are compared using the χ
2 

test and a predefined threshold. 

If the two probabilities are sufficiently close, a new string is added to state i 

containing all previous symbols as well as the current one. This string will be of length i. 

If this condition is not satisfied, the two states are regarded as different and a new state 

(state i+1) is created with the string placed in it. 

If the model remains constant for a given L = n as well as L = n + 1, and there is 

sufficient data to show both models are statistically significant, we consider it having 

reached this stable point. This is because we define stability as the case when additional 

data does not modify the structure of the Markov model [3] [4]. A flowchart of the 

process used is shown below in Figure 2.2.  
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Figure 2.2: CSSR Flowchart 

 

 
Figure 2.3: CSSR Algorithm 
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Entropy 

In addition to comparing the models produced by consecutive string lengths 

through state counting and comparing steady-state probabilities, it is possible to 

determine that a model has converged upon the stable model through the use of the 

relative entropy and relative entropy rate measures introduced by Shalizi. Relative 

entropy, shown in Figure 2.4, is a distance measure between the forward-backward 

probability of generating a string by a model and the probability of that string occurring 

in a given sample set. Relative entropy rate, shown in Figure 2.5, includes the next 

symbol of the string in this calculation. 

2 2
( , ) Pr( | )log Pr( | ) Pr( | )log Pr( | )

s S s S

H P Q s S s G s S s S
 

     

  Figure 2.4: Relative Entropy 
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  Figure 2.5: Relative Entropy Rate 

  

In the above equations, Figures 2.4 and 2.5 [16], s is the subsequence of the data set S. 

The reconstructed model is G, and the next symbol in the sequence is a. The symbols in S 

form the alphabet of the model, A. 

Shalizi shows that as the lengths of strings presented to CSSR approach the 

necessary length for convergence the relative entropy rate approaches a minimum. We 

consider consecutive string lengths (L and L-1) together, resulting in our entropy rates to 

increase. This is because when L is 3, all strings of length 2 and 3 are considered. As 
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there are more possible strings available, the entropy rates are higher. In addition to this, 

our implementation removes transient states and any transitions to those states while 

Shalizi’s does not. This combination is responsible for our entropy values increasing. 

Through testing, it was found that by monitoring the difference between relative entropy 

rates of consecutive string lengths convergence could be detected. When a model 

converges, this difference reaches zero [3] [17]. This is shown in Table 2.1. 

L States 

Stat. 

Comp. 

Δ Stat. 

Comp. 

Entropy 

Rate 

Δ Entropy 

Rate 

Rel. 

Entropy 

Δ Rel. 

Entropy 

Rel. Entropy 

Rate 

Δ Rel. Entropy 

Rate 

2 5 2.249994 0.000000 0.499988 0.000000 0.143913 0.071968 -0.000077 -0.000039 

3 7 2.749981 0.499988 0.249994 -0.249994 0.162954 0.019041 -0.000085 -0.000008 

4 7 2.749981 0.000000 0.249994 0.000000 0.114773 -0.048182 -0.000085 0.000000 

Table 2.1: Entropy Measures Note the change in relative entropy rate zeroes at model convergence 

indicating L = 4 produces the desired model. 

Viterbi Path 

The Viterbi path of an HMM is defined to be the most likely combination of 

states and transitions between them to produce a given string. The likelihood of a 

particular path is the product of the probabilities of the transitions associated with the 

path and the probability of the selected start state being the actual start state. Therefore, to 

consider the total probability, the sum must be taken over all start states. By considering 

every start state, all possibilities of generating the given string will be addressed. This 

allows  us to determine the probability that a given HMM generated that string. 

However, as longer strings are presented, there is significant noise introduced in 

the multiplication of these probabilities. As a result, floating-point underflow is not 

uncommon. Furthermore, it is not uncommon for a high false-negative rate using the 
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forward-backward procedure, which this is closely related to. To avoid both problems, a 

confidence interval approach was adopted instead [4] [14]. 

Confidence Intervals 

For a given Markov model, and the sequence of transitions (the delays), we 

follow the transitions through the model to determine the probability that the model 

generated that sequence. Every starting state is considered. Since the models generated by 

CSSR are deterministic, if a symbol is encountered with no corresponding transition in 

the model, the model is rejected as it could not have generated that sequence. 

Every time there is a transition into or out of a state, counters for the state and 

transition are incremented. By dividing the number of times a particular transition is 

taken by the number of times the state is entered, an estimate of that transition probability 

can be obtained. This allows us to define the confidence interval of this particular 

transition as: 

, /2 , , , /2 , ,(1 ) / , (1 ) /i j i j i j i i j i j i j ip Z p p c p Z p p c 
    
 

 

  Figure 2.6: Confidence Interval 

  

Where pi,j is the transition probability from state i to state j, ci is the entry-counter for 

state i, and Z /2 is from the standard Normal distribution. Since we possess these models, 

the actual transition probabilities are known to us. 

We can accept that our estimate for this transition is correct (sufficiently close to 

the known transition probability) if it falls within this interval, with a false positive rate of 

α. Note that if the frequency of transitions does not fall within this interval, the sequence 

was not generated by this model, and the model is therefore rejected. These events, 
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detections and rejections, are also counted. If the rejection rate exceeds the threshold 

calculated through use of receiver operating characteristic (ROC) curves, the model is 

rejected. If the acceptance rate exceeds this threshold, the model is accepted [4]. 

We use an ROC curve to determine the threshold we use for detecting a behavior. 

A ROC curve is the plot of the true positive rate against the false positive rate. An ideal 

decision boundary would have an ROC curve which goes from the origin (0,0) to (1,0) 

and then (1,1). The threshold chosen is the point on the curve closest to (1,0) [16]. 

Flipping a coin, in contrast, would have an ROC curve which goes from (0,0) to (1,1). 

The closer the curve comes to (1,0), the better the decision boundary is. 

In addition, we will compare the results from using the confidence intervals 

against the results using a maximum-likelihood approach: the forward phase of the 

forward-backward procedure. The forward-backward procedure has two phases. In the 

first phase, the probability that a given HMM generated a string is determined by 

multiplying the probabilities of all necessary transitions to the probability of starting in 

the given state. The sum of these values is the probability that the model generated the 

string. The second phase is retuning phase but is not used by us [1] [14]. It is important to 

note that confidence interval analysis is a detection method, not a classification method. 

That is, it will identify when a particular sequence exhibits the characteristics of a given 

model, but it will not identify it as belonging to exclusively one model. 
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CHAPTER THREE 

 

TEST ENVIRONMENT 

 

 

Testing Procedure 

To confirm the hypothesis that CSSR can be used to reconstruct the underlying 

model of communication, which is tunneled through a SSH connection, simplistic client 

and server applications were created. The server application requires a finite-state-model 

(FSM) file, sequence length, and the port for which it should listen for 

acknowledgements on. The client application requires the server IP and port, as well as a 

port for it to accept the symbol sequence on. Both applications have an option for UDP, 

in this case, the IP address of the other machine must also be specified, as UDP does not 

create a channel to communicate over. 

A simple two-state FSM, shown in Figure 3.1, was used for this purpose. Each 

state has two possible transitions: either to the other state (90%), or to remain in the 

current state (10%). Whenever a transition is made, the symbol associated with that 

transition is transmitted from the server to the client application. Then the server waits for 

a delay associated with the transmitted symbol before making the next transition. The 

client is nothing more than a listener, leaving acknowledgements to the underlying 

protocol (TCP). The delays used for the proof of concept were 100 ms for A and 900 ms 

for B. 

The test consists of 1000 symbols being transmitted from the server to the client. 

Wireshark is run on the client to capture the network data which is then filtered for 

symbol arrival events, and filtered again so only UNIX timestamps remain. A simple Perl 
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script is then used to compute changes between adjacent times. This file is presented to 

CSSR with a mesh file. The mesh file is a comma-separated-file containing the expected 

symbols and their ranges. These ranges were defined as 0 to 500 ms and 501 to 10000 

ms, for A and B respectively. A ceiling of 10 seconds is used to account for unknown 

traffic. The computers were tested in two configurations, as shown in Figure 3.2 and 3.3. 

In the first, they are directly connected, with only a switch in between, while in the 

second there is an intermediary listener. 

 

Figure 3.1: Two-State FSM 

 

This test was repeated three times for each configuration, and the collected data 

was processed by CSSR to create models. In all six cases, the original model was 

successfully reconstructed. The reconstructed models are shown in Figure 3.4 and 3.5. 

Furthermore, to determine the overhead introduced by the SSH tunnel, a spreadsheet was 

used to keep track of the means and variances of unexpected delays for the trials. These 

delays are the sum of clock skew, latency and SSH overhead as determined by a Matlab 

script which compared the expected value to the observed. These means and variances 
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were then averaged among connection type, direct (plain-text) and SSH, and the 

difference was taken. These results are in Table 3.1. 

 
Figure 3.2: Direct Connection Configuration 
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Figure 3.3: Tunnel Configuration 

 

Trial 
Plain SSH Tunnel 

Mean (s) Variance (s2) A B Mean (s) Variance (s2) A B 

1 9.05E-04 2.26E-08 0 0 8.88E-04 7.97E-08 0 0 

2 9.29E-04 2.69E-07 0 0 9.11E-04 1.44E-06 0 0 

3 9.40E-04 8.61E-07 0 0 0.0016 1.55E-04 82 81 

         

 Average for Plaintext   Average for SSH Tunnel   

 Mean (s) Variance (s2)   Mean (s) Variance (s2)   

 9.25E-04 3.84E-07   1.13E-03 5.21E-05   

         

     Overhead from SSH   

     Mean (s) Variance (s2)   

     2.08E-04 5.17E-05   
Table 3.1: SSH Overhead 

 

Model Reconstruction 
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The model below was reconstructed using CSSR with a string-length, L, of 3. 

That is, only a history of two symbols are considered when conditional probabilities were 

computed. The SSH differs from the expected model in the transition probabilities, but as 

L increases it converges to the generating model. This occurs at L = 5. 

 

Figure 3.4: Plain-Text Reconstruction 

 

 

Figure 3.5: SSH Reconstruction 

 

Findings 

Though tunneling the transmission from the server introduces overhead – a 

potential problem as it can lead to misclassification – reconstruction is possible with 

sufficient data. The boundaries for the symbols can be determined by plotting a histogram 
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of the collected inter-packet delays. This will allow for clear identification of symbols. If 

the range of collected data is too wide, as with the New Zealand keystroke statistics in 

Chapter Four, a clustering application such as growing neural gas can be applied to 

determine crucial centers of activity. Once these values are found, boundaries between 

symbols can be defined as the midpoint between them. 

An important factor to be kept in mind for reconstruction is the separation 

between symbols as this defines the decision boundaries used. In these trials the 

separation was 800 ms. For reconstruction to be successful, there must be enough space 

between symbols so that there is as little overlap as possible. The reason for this is that a 

maximum-likelihood separation is used to classify symbols when the midpoint between 

delays is used as a decision boundary. The midpoint needs to be sufficiently far from the 

lower boundary to account for latency, clock-skew, and overhead for the communication 

channel. If these are not accounted for, misclassifications will occur, resulting in either 

continuous state-space growth, as CSSR attempts to fit the model to the data, or complete 

state-space collapse. 

Having sufficient data is another concern with model reconstruction. If there is 

not enough data, events which are statistically insignificant will become significant. As a 

result, CSSR will continue to create states in an attempt to fit the model to the data 

available to it. 
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CHAPTER FOUR 

 

EXPERIMENTAL RESULTS 

 

 

Patterns in Communications Channels 

To determine if CSSR can properly reconstruct models for communication over a 

secure channel, a single client-server application was created. The new application 

contains two threads which run concurrently: a client thread, which listens for new 

symbols, and the server thread which makes transitions and transmits the associated 

symbol to the second application. For this configuration to more closely represent active 

communication, the master and slave instances make the transition received from their 

counterpart before generating their own. The two instances, however, do not need to use 

the same FSM, provided the same alphabet is kept between the two machines. 

The process, as shown in Figure 4.1, begins with the master application’s server 

thread making a transition and sending the generated symbol to the slave application’s 

client thread. The slave’s client thread, upon receiving the symbol, wakes its server 

thread. This thread then makes the transition which was received followed by its 

response, another transition. The server thread on the client then sends this symbol to the 

master’s client thread. 

While this communication is taking place, tshark is capturing the data that the 

master application sends to the slave. However, as it is not capturing the returned data, a 

hidden transition is present from its perspective.  
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Figure 4.1: Ping Pong Procedure 
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To determine the effect of this transition on the reconstruction process, the master 

and slave applications were given the two-state FSM used for the proof of concept. The 

delays associated with the symbols were changed for each of the three test cases, while 

the transition probabilities were kept constant: the probability to change states was 90% 

while the probability to remain was 10%. These delays are shown below in Table 4.1. 

Trial Name Master Delay (ms) Slave Delay (ms) 

 A B A B 

Overlap 1 300 360 10 40 

Overlap 2 100 200 100 200 

Separated 300 400 10 20 
Table 4.1: Ping Pong Trial Delays 

 

Since each FSM consists of two states, there are a total of four possible symbol 

combinations which can be encountered: AA, AB, BA, and BB. To account for this, the 

symbolization must use the midpoints of all four pairs. The exception for this is the case 

“Overlap 2,” as AB and BA cause delays of identical lengths. Histograms were 

constructed of the collected data to ensure that the ranges were being correctly assigned. 

These histograms are shown in the following figures: Figure 4.2, 4.3 and 4.4.  
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Figure 4.2: Overlap 1 Delay Histogram 

 

 
Figure 4.3: Overlap 2 Delay Histogram 
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Figure 4.4: Separated Delay Histogram 

 

As expected, the midpoints between adjacent symbol-pairs allowed for 

reconstruction. For the reconstruction process, 50000 symbols were generated for each 

trial case. The delays were captured using a script which invoked tshark with a filter to 

ignore any data not from the master to the slave. This was to prevent pollution of the data 

from other network sources such as ARP, UPnP, and so on. Once the times were 

collected, their deltas were computed and plotted to determine appropriate symbol 

ranges. The deltas and symbol ranges were then provided to CSSR for analysis. Analysis 

was started with the string length set to 3, and increased incrementally until a stable 

machine was generated. That is, until the machine between consecutive iterations 

remained the same. The reconstructed FSM are shown below in Figure 4.5, 4.6 and 4.7. 
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Figure 4.5: Overlap 1 Reconstruction (L = 10) 

 

 
Figure 4.6: Overlap 2 Reconstruction (L = 7) 
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Figure 4.7: Separated Reconstruction (L = 7) 

 

Note that the final case, Separated – Figure 4.7, resulted in an identical FSM as 

the first trial case, Overlap 1. This was expected as in both cases, there was sufficient 

separation between individual symbol combinations to allow for proper distinction by 

CSSR. However, the additional space between the masters’ symbols, coupled with the 

fact that both symbols can be generated from either state, allows for the original two-state 

FSM to be reconstructed as well as the joint machine. This joint machine is shown in 

Figure 4.7 

Both factors must be considered for this to be possible. If the original FSM does 

not allow for transitions made by the client to be accounted for, then additional states will 

be added to the state-space as the string length is increased. Furthermore, if the delays are 

insufficiently separated, proper distinction between symbols will not be possible.  
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Clock-Skew Analysis 

To test the hypothesis that devices in close physical proximity will maintain clock 

synchronicity for longer periods of time between synchronizations than those far apart, 

the original pair of applications used for the proof of concept were configured on three 

machines. Two of these machines remained in the lab while the third was my desktop. 

All three machines were configured to update their time periodically using NTP. The 

machines in the lab were synchronized at varying rates while my desktop was kept 

consistent at once every 4 hours. 

Crontab was used to alter the rate at which the lab computers synchronized their 

internal clocks, and after 24 hours of synchronizing at a particular rate, the client and 

server applications were executed between the lab computers as well as between a lab 

computer and my desktop. In all cases, the same 5000 symbol sequence was used, with a 

15 ms difference between the delays associated for the symbols A and B. The reason for 

this separation is 15 ms is the closest two symbols can be and still allow for proper 

reconstruction when considering communication between my room and the lab. 

As the rate at which the lab computers synchronize is reduced, more 

misclassifications should take place between my desktop and the lab computers, 

specifically for the symbol with the lower delay. Furthermore, the variance for extraneous 

delays should increase for both communication channels as the clocks move further out 

of synch.  

The results of these trials are contained in the table below, Table 4.2. As expected, 

the misclassifications increased as the computers were synchronized less frequently. This 
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trend is more apparent when considering the difference between lab computers over time. 

The variance of the sum of latency and clock-skew, the unexpected delays monitored 

here, increases consistently for intra-lab communications. Also, there is a significant 

increase in this variance when moving from the lab environment to the campus intranet. 

This is also expected as the data must pass through multiple copper/fiber relays between 

the desktop in my apartment and the lab. 

Location Synchronized Every 1 Hour Synchronized Every 2 Hours 

 [Latency + Clock Skew] Miss [Latency + Clock Skew] Miss 

 Mean (s) Variance (s2) A B Mean (s) Variance (s2) A B 

Lab 9.06E-04 5.95E-09 0 0 9.06E-04 5.96E-09 0 0 

Apartment 3.31E-04 2.72E-06 0 1 2.52E-04 2.31E-06 2 13 

         

     Synch/1 Hr to Synch/2 Hr 

     -4.00E-08 1.64E-11   

     -7.97E-05 -4.12E-07   

         

Location Synchronized Every 3 Hours Synchronized Every 4 Hours 

 [Latency + Clock Skew] Miss [Latency + Clock Skew] Miss 

 Mean (s) Variance (s2) A B Mean (s) Variance (s2) A B 

Lab 9.09E-04 1.36E-08 0 0 9.21E-04 2.03E-07 0 1 

Apartment 3.00E-04 3.02E-06 5 10 2.65E-04 2.71E-06 2 5 

         

 Synch/2 Hr to Synch/3 Hr Synch/3 Hr to Synch/4 Hr 

 3.52E-06 7.62E-09   1.22E-05 1.90E-07   

 4.84E-05 7.07E-07   -3.54E-05 -3.05E-07   

         

  Synch/1 Hr to Synch/3 Hr Synch/2 Hr to Synch/4 Hr 

 3.48E-06 7.64E-09   1.57E-05 1.97E-07   

 -3.13E-05 2.95E-07   1.30E-05 4.02E-07   

         

     Synch/1 Hr to Synch/4 Hr 

     1.57E-05 1.97E-07   

     -6.67E-05 -1.00E-08   
Table 4.2: Cron Clock Skew 
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Long-Range Analysis 

In order to determine the closest separation acceptable for long-range LAN 

communication to be symbolized, a computer was configured in my room to transmit a 

known 5000 symbol sequence to the client in the lab. Symbols were initially separated at 

12 ms. This starting value was chosen as it was marginally above the required separation 

for within-lab communications. Upon constructing a histogram of the collected data, 

Figure 4.8, the cause of failure with the symbolization was apparent. Attempting with a 

15 ms separation, Figure 4.9, allowed for a successful separation between the symbols 

and subsequent reconstruction. 

Having determined that the closest separation between two symbols for successful 

reconstruction within the lab is 10 ms, and that for intra-campus communication is 15 ms, 

the next step was to find this value for internet communication. To accomplish this, my 

colleague Ryan Craven set up his computer at his apartment to be the server, with the 

client remaining within the lab. As with the clock-skew analysis, a known 5000 symbol 

sequence defining the transitions taken by the server was used in conjunction with the 

client-server applications from the proof of concept trials. 

The separation began at 50 ms which was successful. A histogram of the collected 

data, Figure 4.10, shows a distinct separation, though there is a noticeable amount of 

overlap between the two symbols. Reducing to 40 ms, Figure 4.11, however, caused a 

significant amount of overlap between the two symbols. As a result, proper symbolization 
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was not possible. When attempting with 45 ms, no significant reduction in overlap was 

available, and again symbol distinction failed. 

 

Figure 4.8: Long-LAN, 12 ms Separation 

 

Figure 4.9: Long-LAN, 15 ms Separation 
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Figure 4.10: Off-Campus, 50 ms Separation 

Figure 4.11: Off-Campus, 40 ms Separation 

 

Furthermore, false-positive analysis was performed on all three locations. The 

results of these tests are in Table 4.3. As expected, there is an increase in 
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misclassification as the distance between the computers increases. Similarly, there is a 

noticeable increase in mean and variance of communication overhead. 

  [Latency + Skew] False Positives 

 Minimum Separation Mean (s) Variance (s2) A B Total 

Short LAN 10 mSec 9.06E-04 5.95E-09 0 0 0 

Long LAN 15 mSec 2.78E-04 2.77E-06 1 4 5 

Internet 50 mSec 0.0102 1.67E-04 774 831 1605 
Table 4.3: Long-Range False Positive Analysis 

 

Identifying Methods of Communication with Definite State Structure 

To simulate a more complex communication model, the ping-pong applications 

were used with two sets of three-state FSM model pairs. That is, “model 4,” consists of a 

three-state FSM running on the master node, ping, and a separate three-state FSM 

running on the slave node, pong. Similarly, “model 5” consisted of different three-state 

FSM being used for both ping and pong. These FSM are shown below in Figure 4.12 

through Figure 4.15. 

 

Figure 4.12: Model 4 – Ping 
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Figure 4.13: Model 4 – Pong 

 

 
Figure 4.14: Model 5 – Ping 
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Figure 4.15: Model 5 - Pong 

 

To ensure proper separation between symbols, the delays associated with pings’ 

symbols were 300, 360 and 420 ms, respectively for A, B and C. Pong’s symbol delays 

were 10, 20 and 30 ms for A, B and C. A sequence of 50000 symbols were generated, to 

ensure sufficient data was available for CSSR, and plotted in MatLab to ensure that 

sufficient separation was present. The histograms below, Figures 4.16 and 4.17, show 

that this constraint was met. 

Upon finding that the two-state ping-pong system was able to regenerate the 

model used by the master application, a similar test was presented to the data collected 

here. By using the regions shown by the histograms to symbolize the data, the ping model 

was successfully regenerated for both sets of models. The regenerated models are shown 

in Figures 4.18 and 4.19, below. 
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Figure 4.16: Model 4 Histogram 

 

 

Figure 4.17: Model 5 Histogram 
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Figure 4.18: Model 4 Ping Reconstruction 

 

 

Figure 4.19: Model 5 Ping Reconstruction 
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Language Identification Using Confidence Intervals 

In order to test our hypothesis that if either Italian or English text is transmitted 

using interactive SSH, then timing analysis could determine which language is being 

used. Text is transmitted through an SSH tunnel with the sequence of inter-key delays 

following statistics collected by Daniele Gunetti and Kathryn Hempstalk [8] [9]. We will 

then use CSSR to derive Markov models consistent with the language structure [17]. SSH 

will be used to mask the actual packet contents, showing that only delays need be 

monitored. This should be possible, since the inter-character time delays for the two 

languages differ due to a variety of factors including, but not limited to, the following: 

 keyboard layout 

 character/key-pair frequencies due to language 

 respective grammars 

The generated FSM will then be used to identify if the behaviors English and/or 

Italian, contained within the reconstructed model, is present in text sent through the 

encrypted pipe. When the text is transmitted, timing data is monitored. These values 

correspond to FSM transitions, which are used to compute steady-state probabilities. This 

will allow us to determine how well the text timing statistics fit the two patterns used to 

generate our FSM; in this case, Italian/English. The degree of similarity is measured 

using confidence intervals [4]. This process is detailed in Figure 4.20 below [2]. 
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Figure 4.20: Language Data-Flow 
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Using the data provided to us by Daniele Gunetti of Italy and Kathryn Hempstalk 

of New Zealand, key-pair statistics were extracted for alphabets, numerals, enter, space, 

and backspace, a total of 39 characters as case was ignored [8] [9]. These values were 

used to populate a 39-by-39 delay matrix. By examining the keyboard layouts of the 

Italian and New Zealand, English-International, keyboards, a39-by-4 matrix was 

constructed of neighboring keys for those characters considered. 

For any entry for which no value existed, the neighbor list for the destination key 

was consulted. If sufficient data was present for similar key-pairs in which the destination 

key belongs to the neighbor list, the missing value was updated with the average of the 

neighbor key values. If insufficient data is present, however, the destination key is held 

constant and the source key’s neighbor list is consulted. This process is repeated until the 

matrix remains constant across two passes. These delays were then plotted in 3-D, 

Figures 4.21 and 4.22, in an attempt to discern any obvious centers of activity. However, 

given the range of delays encountered, this proved to be unhelpful. 
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Figure 4.21: Italian Interpolation 

 

 

Figure 4.22: New Zealand Interpolation 
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Next, Gaussians were plotted of the key-pairs for each language to determine 

which of the key-pairs are sufficiently separated for distinction over the lab network. To 

avoid plotting outliers, a frequency threshold was used. For the Italian dataset, this 

threshold began at 10 samples and went to 2000 samples. The New Zealand dataset’s 

threshold began at 25 samples and ended at 200. Below, in Figures 4.23 and 4.24, are the 

Gaussians for Italian data with a threshold of 25 samples and New Zealand data with a 

threshold of 75 samples. It is apparent from these plots that while the Italian data only has 

a few distinguishable symbols, the New Zealand data contains a much larger variety. 

 

Figure 4.23: Italian Key-Pair Gaussians 
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Figure 4.24: New Zealand Key-Pair Gaussians 

  

This prompted me to process the data through an artificial neural network to 

properly identify the means of the symbols. The results produced by growing neural gas, 

Table 4.4, support the Gaussians as only two symbols were found within the Italian data. 

Furthermore, a large number of means were identified within the New Zealand data 

within the 220 ms range. Given the behavior of growing neural gas, creating more means 

for areas that need to be better represented, this too follows from the plot of the Gaussian 

data for New Zealand. However, given that symbols closer than 10 ms cannot be 

successfully distinguished, they were replaced by one symbol whose mean is the average 

of theirs, Table 4.5. 
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Italian New Zealand 

Symbol Mean Symbol Mean 

A 15.32 A 95.14 

B 38.88 B 153.17 

C 49.98 C 209.04 

D 67.19 D 261.29 

  E 311.21 

  F 340.10 

  G 344.59 

  H 344.77 

  I 344.77 

  J 344.82 

  K 344.90 

  L 351.55 

  M 382.01 

  N 445.05 

  O 541.29 

  P 707.73 
Table 4.4: Growing Neural Gas Means 

 
Italian New Zealand 

Symbol Mean Symbol Mean 

A 15.32 A 95.14 

B 38.88 B 153.17 

C 49.98 C 209.04 

D 67.19 D 261.29 

  E 311.21 

  F 345.07 

  G 382.01 

  H 445.05 

  I 541.29 

  J 707.73 
Table 4.5: Final Symbolization 

 

The training data for the FSM were selected from those available at 

ProjectGutenberg that were published after 1900, or as close to it as possible, to keep the 

language as current as possible. The texts used, and their release dates, are listed below in 
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Table 4.6. After stripping all non-alpha-numeric and non-whitespace characters from the 

text, the values were converted to indices of the 39-by-39 delay matrix. Then, delays 

were assigned to each pair of letters by using the previously constructed delay matrix as a 

look-up table. Plotting histograms of these aggregates are shown below in Figures 4.24 

and 4.25. 

English Training Data (2165563 character pairs) 

Agatha Christie - The Mysterious Affair at Styles (1916/20) 

Sir Arthur Conan Doyle - Hound of the Baskervilles (1901) 

Andre Norton - Plague Ship (1956) 

Bram Stoker - Dracula (1897) 

F. Anstey - The Brass Bottle (1900) 

Italian Training Data (2285630 character pairs) 

Luigi Barzini - L'Argentina Vista Come E (1902) 

Enrico Annibale Butti - L'Immorale (1894) 

Gabriele D'Annunzio - L'Innocente (1992) 

Frederico De Roberto - Documenti Umani (1888) 

Shakespeare/Diego Angeli (trans) - La Tempesta (1912) 

Giuseppe Giacosa - Diritti Dell'Anima (1900) 

Cletto Arrighi - Nana a Milano (1880) 

Anton Guilio Barrili - Tra cielo e terra (2009) 
Table 4.6: Selected Texts – Gutenberg 
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Figure 4.25: Italian Gutenberg Data 

 

Figure 4.26: New Zealand Gutenberg Data 

 

Once each text was converted into sets of key-pairs and symbolized, they were 

divided into a testing set and training set. The purpose of this was to ensure that the test 

strings presented were from a source with similar patterns. This ensured that no 

anomalies were presented in the test strings. The Italian training data consisted of 
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1,414,289 symbols, and the English training data contained 1,000,479 symbols. The 

remaining symbols comprised the respective testing sets. The reconstructed models for 

English and Italian are located in Appendix A, Figures A.9 and A.10, respectively. 

Two strings of 100 symbols were taken from each testing set. These strings were 

then used for a maximum-likelihood analysis using the forward-backward procedure. 

Longer strings were not used due to the effect of multiplying large groups of numbers 

less than 1. In addition, two strings were found online and presented to the machines. As 

with the earlier strings, forward-backward analysis was performed. Confidence interval 

analysis was then performed on all strings with respect to both reconstructed models, as 

well as the training and testing sets with the same models. These results are shown in 

Table 4.7. The strings taken from the testing data are identified as “str 1” and “str 2” 

followed by the language whose testing set it belongs. 

 English (L = 1) Italian (L = 1) Italian (L = 2) Italian (L = 3) 

 Fwd/Bkwd Seqmatch Fwd/Bkwd Seqmatch Fwd/Bkwd Seqmatch Fwd/Bkwd Seqmatch 

Str 1(Eng) 3.66E-81 100.00% 0.00E+00 0.00% 0.00E+00 0.00% 0.00E+00 0.00% 

Str 2(Eng) 1.63E-86 95.00% 0.00E+00 0.00% 0.00E+00 0.00% 0.00E+00 0.00% 

Str 3(Eng) 1.14E-167 94.00% 0.00E+00 0.00% 0.00E+00 0.00% 0.00E+00 0.00% 

Str 4(Eng) 3.06E-255 95.00% 0.00E+00 0.00% 0.00E+00 0.00% 0.00E+00 0.00% 

Train (Eng)  94.00%  0.00%  0.00%  0.00% 

Test (Eng)  50.00%  0.00%  0.00%  0.00% 

Str 1(Itl) 3.65E-111 90.00% 1.06E-50 0.00% 3.37E-50 0.00% 8.76E-50 99.21% 

Str 2(Itl) 5.31E-125 86.00% 8.51E-51 100.00% 7.70E-51 100.00% 5.90E-51 98.81% 

Str 3(Itl) 1.18E-273 83.00% 1.66E-111 100.00% 7.78E-109 98.44% 5.05E-107 99.60% 

Str 4(Itl) 9.24E-271 83.00% 7.27E-109 100.00% 7.11E-107 100.00% 5.79E-103 98.81% 

Train (Itl)  60.00%  100.00%  100.00%  100.00% 

Test (Itl)  60.00%  12.50%  32.81%  50.59% 

Table 4.7: Identification Results 
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In the above table, the columns marked “Seqmatch” correspond to the confidence 

interval analysis for the given string-model pair with a 1% false positive rate. That is, the 

likelihood that the given model generated the string with 99% confidence. The 

“Fwd/Bkwd” columns contain the results of the maximum-likelihood analysis through 

application of the forward-backwards procedure. As mentioned earlier, since it’s the 

product of large quantities of probabilities, these values are expected to be extremely low. 

The training and testing sets were not tested in this fashion for this reason, as there isn’t 

enough accuracy available to get meaningful results. 

Note that when English strings are presented to any of the Italian models, for 

string lengths 1 through 3, it is rejected. But when Italian is presented to the English 

model, it has a fairly high probability of being generated, as shown by the confidence 

interval results. However, when the forward-backward analysis is examined, it is clear 

that it is not a good fit. The difference between these values differ by several orders of 

magnitude. 

Using window size analysis developed by Jason Schwier [16], it was determined 

that 77 symbols were required for maximum-likelihood classification using confidence 

intervals. That is, with at least 77 symbols presented to the English and Italian 

reconstructions, a majority of the time it would be correct. By dividing the testing set into 

samples of 77 strings, a series of detection percentages were calculated through 

confidence interval analysis. 

Plotting the true positives and false positives together against the acceptance 

threshold, while varying the threshold, generated the receiver operating characteristic 
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curves (ROC curves) shown below. This allows us to determine the ideal acceptance 

threshold for separation for presented strings between the two models. 

 

 

Figure 4.27: English ROC – 95% CI 

 

 

Figure 4.28: Italian ROC – 95% CI 
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Thresh. True Pos False Pos True Neg False Neg Distance 

0.00 401 401 0 0 1.000 

 [Repeated 79 times]  

0.80 401 401 0 0 1.000 

0.81 401 392 9 0 0.978 

0.82 401 371 30 0 0.925 

0.83 401 294 107 0 0.733 

0.84 401 201 200 0 0.501 

0.85 401 103 298 0 0.257 

0.86 401 40 361 0 0.100 

0.87 401 9 392 0 0.022 

0.88 399 3 398 2 0.009 

0.89 399 0 401 2 0.005 

0.90 397 0 401 4 0.010 

0.91 390 0 401 11 0.027 

0.92 367 0 401 34 0.085 

0.93 367 0 401 34 0.085 

0.94 264 0 401 137 0.342 

0.95 188 0 401 213 0.531 

0.96 113 0 401 288 0.718 

0.97 41 0 401 360 0.898 

0.98 14 0 401 387 0.965 

0.99 1 0 401 400 0.998 

1.00 0 0 401 401 1.000 

Table 4.8: English ROC – 95% CI – Statistics 

 

Thresh. True Pos False Pos True Neg False Neg Distance 

0.00 397 0 401 4 0.009975 

 [Repeated 93 times]  

0.94 397 0 401 4 0.009975 

0.95 381 0 401 20 0.049875 

0.96 354 0 401 47 0.117207 

0.97 245 0 401 156 0.389027 

0.98 117 0 401 284 0.708229 

0.99 14 0 401 387 0.965087 

1.00 0 0 401 401 1 

Table 4.9: Italian ROC – 95% CI – Statistics 
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 From Figures 4.27 and 4.28, it is apparent that the 95% CI used to determine the 

presence of English and/or Italian characteristics in the strings is sufficient. Upon 

examination of the statistics used to produce the ROC curves, Table 4.8 and 4.9, it was 

discovered that an 89% threshold would be sufficient. That is, with a 95% CI, a decision 

boundary at 89% would have the best classification rate for both languages. To compare 

the confidence interval analysis to the standard maximum-likelihood classifier, the 

forward-backward procedure was used. The ROC curves in Figures 4.29 and 4.30 show 

these results. This shows that while there are slightly more false positives when using 

confidence intervals, it is more forgiving as the string length increases. Also, there are 

fewer false negatives with CI than with a maximum-likelihood classifier. 

 

Figure 4.29: English ROC -- ML (Forward-Backward) 
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Figure 4.30: Italian ROC -- ML (Forward-Backward) 
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CHAPTER FIVE 

 

CONCLUSIONS 

 

 

Through timing analysis and the application of Hidden Markov Models, we have 

shown that it is possible to identify the communication behavior in use, even over a 

secure communication channel. This behavior may even be the language that the user is 

typing in [2]. For proper reconstruction to be possible, two requirements must be met: 

there must be sufficient data to model the communication observed, and there must be 

sufficient delays between symbols. 

When there is insufficient data there are two possible outcomes: the state-space 

will grow resulting in a state-explosion, or the proper model will be reconstructed with 

incorrect transition probabilities. The reason for the first case is that because there was 

not enough data, aberrations were given statistical significance. Since CSSR attempts to 

minimize entropy, it continues to add states to better fit the data given it. In the second 

case, there is sufficient data for the model to be reconstructed, but not enough to properly 

determine the transition probabilities, and consequently the steady state probabilities. 

It was also shown that when a hidden transition was present in the communication 

channel, as in the case of ping-pong with one observer, it is possible to reconstruct the 

joint state model as well as the dominating model. Again, this is only possible when there 

is sufficient separation between the symbols. As this separation is decreased, instead of 

reconstructing the dominating model, the model used by the observer is reconstructed [3]. 
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CHAPTER SIX 

 

FUTURE WORK 

 

 

There are many possibilities for the application of Hidden Markov Models. 

Presently, they are used largely for speech-to-text conversion and biometric analysis. By 

incorporating confidence intervals, however, the speech-to-text conversion should 

become more accurate. This is because though there is a higher false positive rate 

associated with confidence intervals, there is a larger true positive rate as well. 

Furthermore, as strings become longer, maximum likelihood suffers from degradation 

due to large sets of numbers between 0 and 1 being multiplied together. This is not a 

problem for confidence intervals. It could be argued that the false positive rate, even 

though it is marginal, is undesirable for security applications given the risk involved. 

Additionally, given the nature of Causal State Splitting Reconstruction, it should 

be possible to construct a HMM that is “trained” on the works of a specific author. This 

HMM, in conjunction with confidence interval analysis, can then be used to assist in 

identification of previously unidentified works. Since each author has a unique style, 

CSSR should be able to identify this pattern and the state history present in the HMM 

will reflect it. There will need to be a substantial training set, however, as the string 

length required to discern these patterns may be well above 10, and a sufficiently large 

data set will be required to ensure that events are not improperly given statistical 

significance. 

With more data available, the interpolation phase performed to fill in gaps present 

in the delay matrix would not be required. This would allow for a more accurate 
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symbolization which in turn leads to better detection. A larger amount of data would also 

allow for a better symbolization to be found outright, as there should be a larger spread of 

delays. This would, again, lead to a better detection. Ideally the data used to extract the 

key-pair statistics would contain special characters, different case, and so on. As ours 

lacked these, we had to preprocess the text from ProjectGutenberg to fit the data 

available. By having case-sensitivity, special characters, etc, new patterns can be detected 

in the training/testing data allowing for a more complete representation in the HMM. 
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Appendix A 

Ancillary Information 

 

 

Keyboard Layout Comparison 

A major factor contributing to inter-keystroke delay is the layout of the keyboard. 

Therefore, the keyboards used by Italians and New Zealanders needed to be compared to 

determine if keys possessed different neighbors and positions. The reason for this is two-

fold: to determine if keyboard layout played a part in the delays used in our language 

detection experiment, and to determine the neighboring keys to interpolate delays for 

missing keystroke pairs. 

To compare the Italian and New Zealand keyboard layouts, Wapedia
1
 was 

consulted. In comparing the two layouts, it was discovered that for the characters 

monitored for this experiment were in identical locations. The left Shift key and Enter 

keys were of different sizes and shapes, however, for the Italian keyboard. Both keyboard 

layouts are shown below in Figures A.1 and A.2. They are reproduced under the Creative 

Commons Attribution/Share-Alike License
2
 and GNU Free Documentation License

3
. 

 

Figure A.1: Italian Keyboard Layout (http://wapedia.mobi/en/File:KB_Italian.svg) 

1 
http://wapedia.mobi/en/Keyboard_layout 

2
 http://creativecommons.org/licenses/by-sa/3.0/ 

3
 http://wapedia.mobi/en/Wikipedia:Text_of_the_GNU_Free_Documentation_License 
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Figure 4: New Zealand/US Keyboard Layout (http://wapedia.mobi/en/File:KB_United_States-

NoAltGr.svg) 

 

 

Delay Matrix Reordering 

The 39-by-39 delay matrix used is ordered as follows: A, B… Z, 0, 1 … 9, enter, 

backspace, and space. Other orderings were considered based on keyboard cross-sections, 

however. Both horizontal and vertical cross-sections were considered to see if one 

provided a “smoother” plot than the original. These graphs are shown below. 

 

Figure A.3: Italian - Original Ordering 
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Figure A.4: Italian - Horizontal Reordering 

 

Figure A.5: Italian - Vertical reordering 
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Figure A.6: New Zealand - Original Ordering 

 

Figure A.7: New Zealand - Horizontal Reordering 



 62 

 

Figure A.8: New Zealand - Vertical Reordering 

 

Comparing Figures A.8 to A.6 and Figures A.5 to A.3, it is apparent that a vertical 

reordering offers smoother transitions between keystroke-pairs within the delay matrix. 

This is more visible within the New Zealand data. This relationship is not unsurprising as 

given home-row typing practices; the same finger is used for keys vertically adjacent to 

one another, so more similar delays for those keys is reasonable. 
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Language Models 

The models reconstructed from the texts sampled from ProjectGutenberg are 

shown below. For each value of L considered, a statistical test was performed to ensure 

that with the given alphabet and model, sufficient samples were available to ensure that 

the model remained statistically significant. Only enough data was available for a string 

length of 1 for English, and 3 for Italian. 

During low-symbol-separation analysis it was found that if insufficient data or 

separation was available, there was a threshold that allowed the model to be reconstructed 

with incorrect transition probabilities between the states. This was attributed to statistical 

significance being given to noise which would be discarded were there more samples. 

Furthermore, it was estimated that at least 50 times more data, for each language, would 

be required to consider larger string lengths. 

To display the models as large as possible, only one is present on each page. 
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Figure A.9: English HMM, L = 1, 10 states, 100 transitions 
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Figure A.10: Italian HMM, L = 3, 64 states, 253 transitions 
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Old English and Latin 

In an effort to determine the ability of the reconstructed HMMs for English and 

Italian to detect the presence of similar languages being typed, ProjectGutenberg was 

once again consulted. The texts selected were “Beowulf” and “Inferno,” for Old English 

and Latin, respectively. Both texts were stripped of case and special characters, as with 

the earlier texts. They were then symbolized with the delays used by their modern 

counterparts: “Beowulf” with the New Zealand key-pair statistics, and “Inferno” with the 

Italian. Next, 400 strings of 77 symbols were extracted from various locations from 

within the two texts. These strings were presented to both reconstructed models for 

confidence interval analysis and maximum-likelihood classification. These results are 

presented in the ROC curves below in Figures A.11 through A.14. 

 

Figure A.11: ROC Curve -- "Beowulf," 95% CI 
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Figure A.12: ROC Curve -- "Beowulf," ML 

 

 
Figure A.13: ROC Curve -- "Inferno," 95% CI 
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Figure A.14: ROC Curve -- "Inferno," ML 

 

It is evident from the ROC curves above that there is either sufficient similarity 

between either the two pairs of languages or between the resulting symbolization. To 

determine which of these was the case, two experiments were performed. In the first 

experiment, English text was symbolized using the Italian delay statistics and symbol 

alphabet, and Italian was symbolized with the English values. These cross-symbolizations 

were then presented to the English and Italian HMMs for detection and classification. 

Note that in the following ROC curves, Figures A.15 through A.18, the curves take a 

fairly high threshold to allow any true positive classifications. This implies that the 

models are recognizing the symbolization over the patterns in the language themselves. 
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Figure A.15: ROC Curve -- English with Italian Symbolization, 95% CI 

 

 
Figure A.16: ROC Curve -- English with Italian Symbolization, ML 
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Figure A.17: ROC Curve -- Italian with English Symbolization, 95% CI 

 

 
Figure A.18: ROC Curve -- Italian with English Symbolization, ML 

 

The second experiment takes was performed to verify the hypothesis that the 

models were, in fact, detecting the symbolization and not the patterns inherent to the 
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languages. This was accomplished by taking texts in languages with no Sanskrit roots, 

but still represented through the use of Latin characters, and symbolizing with both the 

English and Italian statistics. The purpose of this was to sufficiently separate the language 

from English and Latin so that there would be no doubt in what was being detected. 
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Appendix B 

Code 

% proofFalseID.m 

% 

% Created: 12/06/2009 (c) Harikrishnan Bhanu 

% Updated: 12/06/2009 

% 

% Fourth iteration of false positive classification code. Compares a 

% known sequence (stored from 'sequence' into 'symb') to observed % 

% times. Then,uses a separating hyperplane at the midpoint between the  

% known symbols to classify the times. These classifications are then  

% compared to the known symbol values to determine accuracy. 

% Furthermore, latency and clock-skew statistics are extracted here. 

% 

% This code was used specifically for the proof of concept analysis to 

% determine overhead introduced by an SSH tunnel. 

% 

% Note - this only identifies false-positives for 2-symbol machines. 

  

clc 

clear adest; 

clear bdest; 

clear data2; 

clear discard; 

apos = 1; 

bpos = 1; 

amiss = 0;                   % A's false positives 

bmiss = 0;                   % B's false positives 

adelay = .100;               % Expected delays for A 

bdelay = .900;               % Expected delays for B 

symb = ssh3symb;             % Symbol sequence 

data = ssh3;                 % Source 

brkpt = (adelay+bdelay)/2;   % Use the midpoint between delays 

  

% If the delay is below the lower bound by more than 100ms, disregard  

% it (not entirely sure what these packets are, but they are  

% sufficiently outside boundaries to be ignored). 

j = 1; 

q = 1; 

for i=1:length(data) 

    if(data(i) > adelay-.05) 

        data2(j) = data(i); 

        j = j+1; 

    else 

        discard(q,1) = data(i); 

        discard(q,2) = i; 

        q = q+1; 

    end 

end 

  

src = data2;                 % Copy the variable over 
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for i=1:min(length(symb),length(data2)); 

    % If it's greater than the threshold, it's a B, else, it's an A 

    if(src(i) >= brkpt) 

        % Determine the latency 

        bdest(bpos) = abs(src(i) - bdelay); 

        bpos = bpos + 1; 

  

        % Was it properly classified? 

        if(strcmp(symb(i),'B')~=1) 

            bmiss = bmiss + 1; 

        end 

  

    else 

        % Determine the latency 

        adest(apos) = abs(src(i) - adelay); 

        apos = apos + 1; 

  

        % Was it properly classified? 

        if(strcmp(symb(i),'A')~=1) 

            amiss = amiss + 1; 

        end 

    end 

end 

  

amiss 

amean = mean(adest) 

avar = var(adest) 

bmiss 

bmean = mean(bdest) 

bvar = var(bdest) 

tmean = mean([adest bdest]) 

tvar = var([adest bdest]) 
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% histBound.m 

% 

% Created: 12/02/09 (c) Harikrishnan Bhanu 

% Updated: 12/03/09 

% 

% Plots a histogram over a specified range, with a specified number of 

% bins, from a given data-set. The segment of the dataset which is  

% plotted is returned to the user. 

  

function [ set ] = histBound( data, low, high, bins ) 

  

    % Begin by sorting the data-set and searching for the lower and  

    % upper bounds 

    S = sort(data); 

  

    % Ensure that the low and high variables are entered in the proper 

    % order 

    low1 = min(low,high); 

    high1 = max(low,high); 

    low = low1; 

    high = high1; 

     

    % Force plot to search over the more constrictive restraints: those 

    % presented by the user, or the contents of the data-set. 

    if(low < S(1)) 

        low = S(1); 

    end 

    if(high > S(length(S))) 

        high = S(length(S)); 

    end 

  

    % Ensure the low and high bounds are valid for the given data-set 

    if(low > S(length(S)) || high < S(1)) 

        fprintf('Invalid boundaries for the data-set.\n'); 

        set = []; 

    else 

        % Search for the segment to plot 

         

        % Find the lower boundary in the data-set 

        for lowPos = 1:length(S) 

            if( S(lowPos) <= low && S(lowPos+1) >= low) 

                break; 

            end 

        end 

         

        % Find the higher boundary in the data-set. Don't bother  

        % searching below where the lower boundary was found, since the  

        % higher boundary can't be there. 

        for highPos = lowPos:length(S) 

            if( S(highPos) <= high && S(highPos+1) >= high) 

                break; 

            end 

        end 
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        % Plot the portion of the data-set that we're interested in 

        hist(S(lowPos:highPos),bins); 

        set = S(lowPos:highPos); 

    end 

end 
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% falsePositive3.m 
% 
% Created: 10/20/2009 (c) Harikrishnan Bhanu 
% Updated: 12/03/2009 
% 
% Third iteration of false positive classification code. Compares a  

% known sequence (stored from 'sequence' into 'symb') to observed  

% times. Then, uses a separating hyperplane at the midpoint between the 

% known symbols to classify the times. These classifications are then  

% compared to the known symbol values to determine accuracy.  

% Furthermore, latency and clock-skew statistics are extracted here. 
% 
% Note - this only identifies false-positives for 2-symbol machines. 

  
clc 
clear adest; 
clear bdest; 
clear data2; 
clear discard; 
apos = 1; 
bpos = 1; 
amiss = 0;                   % A's false positives 
bmiss = 0;                   % B's false positives 
adelay = .345;               % Expected delays for A 
bdelay = .360;               % Expected delays for B 
symb = sequence;             % Symbol sequence 
data = skew1dorm;            % Source 
brkpt = (adelay+bdelay)/2;   % Use the midpoint between delays to 

differentiate 

  
% If the delay is below the lower delay by more than 100ms, disregard 

it 
% (not entirely sure what these packets are, but they are sufficiently 
% outside boundaries to be ignored). 
j = 1; 
q = 1; 
for i=1:length(data) 
    if(data(i) > adelay-.1) 
        data2(j) = data(i); 
        j = j+1; 
    else 
        discard(q,1) = data(i); 
        discard(q,2) = i; 
        q = q+1; 
    end 
end 

  
src = data2;                 % Copy the variable over 

  
for i=1:min(length(symb),length(data2)); 
    % If it's greater than the threshold, it's a B, else, it's an A 
    if(src(i) >= brkpt) 
        % Determine the latency 
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        bdest(bpos) = abs(src(i) - bdelay); 
        bpos = bpos + 1; 

  
        % Was it properly classified? 
        if(strcmp(symb(i),'B')~=1) 
            bmiss = bmiss + 1; 
        end 

  
    else 
        % Determine the latency 
        adest(apos) = abs(src(i) - adelay); 
        apos = apos + 1; 

  
        % Was it properly classified? 
        if(strcmp(symb(i),'A')~=1) 
            amiss = amiss + 1; 
        end 
    end 
end 

  
amiss 
amean = mean(adest) 
avar = var(adest) 
bmiss 
bmean = mean(bdest) 
bvar = var(bdest) 
tmean = mean([adest bdest]) 
tvar = var([adest bdest]) 
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% parser2IT.m 
% 
% Created: 11/19/2009 (c) Harikrishnan Bhanu 
% Updated: 12/13/2009 
% 
% Loads text sample files for parsing and outputs the delays for  

% individual keypairs into separate files.File names have the format  

% [key1]_[key2].txt and contain nothing but delays. 
% 
% Files are NOT generated for any symbol which is not alphanumeric,  

% enter, space, or backspace. Furthermore, case is ignored: a -> Z will  

% be treated as A -> Z. 
% 
% These files are then opened and statistics are extracted and the 

% results are saved in statistics.txt 
% 
% Statistics.txt's contents follow the format: 
% [key1] [key2] [mean] [variance] [count] 
% without brackets. 

  
% Flush variables to prevent pollution 
clear;clc; 

  
% Get information of all files in the directory 
files = dir('./ItalianSrc/*'); 
q = 1; 

  
% Loop through the files 
for i=3:length(files) 

     
    % Make sure there's no cross-session pollution 
    clear temp; 
    temp = load(sprintf('./ItalianSrc/%s',files(i).name)); 

     
    % Extract all the pairs in the data for this sample 
    for j=2:(length(temp)-2) 
        source(q) = temp(j); 
        delay(q) = temp(j+1); 
        dest(q) = temp(j+2); 
        q = q + 1; 
        j = j + 1; 
    end 
end 

  
% Write these values out to files 
for i=1:length(source) 
    last = source(i); 
    next = dest(i); 
    time = delay(i); 

     
    % Ensure only ASCII values are written 
    if(last >= 0 && last <= 127 && next >= 0 && next <= 127) 
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        % Force capitalization, and ensure only desired characters 
        % are written 
        if(last > 96 || last < 123) 
            last = last - 22; 
        end 

  
        if(next > 96 || next < 123) 
            next = next - 22; 
        end 

  
        % Ensure the last keystroke is from a valid key 
        if ((last > 47 && last < 58) || (last == 32) || (last == 8) || 

(last == 13 || last == 10) || (last > 64 && last < 90)) 

  
            % Repeat the check for the destination key 
            if ((next > 47 && next < 58) || (next == 32) || (next == 8) 

|| (next == 13 || next == 10) || (next > 64 && next < 90)) 

  
                if(floor(last)==last && floor(next)==next) 
                    destfname = sprintf('%d_%d.txt',last,next); 
                    fout = fopen(destfname, 'a+'); 
                    fprintf(fout,'%f\n',time); 
                    fclose(fout); 
                end 

  
            end 

  
        end 
    end 
end 

  
% Flush variables and screen 
clear;clc; 

  
% Load the text files that were just generated 
clear files; 
textfiles = dir('*.txt'); 
meanVal = zeros(length(textfiles),1); 
varVal = zeros(length(textfiles),1); 
sampleSize = zeros(length(textfiles),1); 
outliers = zeros(length(textfiles),1); 

  
for i=1:length(textfiles) 
    temp = load(textfiles(i).name); 

     
    % Remove any negative values (artifacts of capture) 
    temp(temp < 0) = []; 

  
    % Determine mean and variance for this keystroke pair 
    sampleSize(i) = length(temp); 
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    meanVal(i) = mean(temp); 
    varVal(i) = var(temp); 
end 

  
% Write this data to a textfile 
outFile = fopen('statisticsIT.txt','w+'); 
for i=1:length(textfiles) 

  
    % Extract the characters used from the file name 

    lastst1 = textfiles(i).name(1:strfind(textfiles(i).name,'_')-1); 
    nextst1 = 

textfiles(i).name(strfind(textfiles(i).name,'_')+1:strfind(textfiles(i)

.name,'.')-1); 

     
    % Convert from strings to numbers 
    last = str2num(lastst1); 
    next = str2num(nextst1); 

     
    % Replace the ASCII values with the corresponding indices for the  

    % 39x39 matrix  
    if (last > 64 && last < 90) 
        last = last - 64; 
    elseif (last > 47 && last < 58) 
        last = last - 47 + 26; 
    elseif (last == 8) 
        last = 37; 
    elseif (last == 32) 
        last = 38; 
    elseif (last == 13) 
        last = 39; 
    end 

     
    if (next > 64 && next < 90) 
        next = next - 64; 
    elseif (next > 47 && next < 58) 
        next = next - 47 + 26; 
    elseif (next == 8) 
        next = 37; 
    elseif (next == 32) 
        next = 38; 
    elseif (next == 13) 
        next = 39; 
    end 

     
    fprintf(outFile,'%d %d %.3f %.3f 

%d\n',last,next,meanVal(i),varVal(i),sampleSize(i)); 
end 

  
fclose(outFile); 
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% parser2NZ.m 
% 
% Created: 11/19/2009 (c) Harikrishnan Bhanu 
% Updated: 12/13/2009 
% 
% Loads text sample files for parsing and outputs the delays for  

% individual keypairs into separate files.File names have the format  

% [key1]_[key2].txt and contain nothing but delays. 
% 
% Files are NOT generated for any symbol which is not alphanumeric,  

% enter, space, or backspace. Furthermore, case is ignored: a -> Z will  

% be treated as A -> Z. 
% 
% These files are then opened and statistics are extracted and the  

% results are saved in statistics.txt 
% 
% Statistics.txt's contents follow the format: 
% [key1] [key2] [mean] [variance] [count] 
% without brackets. 

  
% Flush variables to prevent pollution 
clear;clc; 

  
% Load sm-150 data 
load('./NZSrc/sm-150.mat'); 

  
for q1 = 1:10 
    for q2 = 1:15 

  
        % Define source vector, clear destination from possible  

        % previous runs 
        clear dest; 
        % Look at each sample independently 
        src = evalin('base',char(sprintf('u%ds%d',q1,q2))); 
        dpos = 1; 
        last = 0; 

  
        % Prase the data from the .mat file 
        for i=1:length(src) 
            if mod(i,4) == 1 
                 dest(dpos) = src(i)/2; 
                 dpos = dpos+1; 
            elseif mod(i,4) == 0 
                 dest(dpos) = src(i); 
                 dpos = dpos+1; 
            end 
        end 

  
        % Save the separated values into  
        i = 1; 
        last = dest(i); 
        time = dest(i+1); 
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        next = dest(i+2); 
        while i<(length(dest)-2) 
            % Ensure only ASCII values are written 
            if(last >= 0 && last <= 127 && next >= 0 && next <= 127) 

                 
                % Force capitalization, and ensure only desired 

                % characters are written 
                if(last > 96 || last < 123) 
                    last = last - 22; 
                end 

                 
                if(next > 96 || next < 123) 
                    next = next - 22; 
                end 

                 
                % Equate enter and newline 
                if(last == 10) 
                    last = 13; 
                end 

                 
                if(next == 10) 
                    next = 13; 
                end 

                 
                % Ensure the last keystroke is from a valid key 
                if ((last > 47 && last < 58) || (last == 32) || (last 

== 8) || (last == 13) || (last > 64 && last < 90)) 

                     
                    % Repeat the check for the destination key 
                    if ((next > 47 && next < 58) || (next == 32) || 

(next == 8) || (next == 13) || (next > 64 && next < 90)) 

                 

  

                         
                        if(floor(last)==last && floor(next)==next) 
                            destfname = sprintf('%d_%d.txt',last,next); 
                            fout = fopen(destfname, 'a+'); 
                            fprintf(fout,'%f\n',time); 
                            fclose(fout); 
                        end 

                     
                    end 

                     
                end 
            end 

  
            % Move to the next character pair 
            i = i + 2; 
            last = dest(i); 
            time = dest(i+1); 
            next = dest(i+2); 
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        end 
    end 
end 

  
% Clear variables 
clear;clc; 

  
% Load the text files that were just generated 
files = dir('*.txt'); 
meanVal = zeros(length(files),1); 
varVal = zeros(length(files),1); 
sampleSize = zeros(length(files),1); 
outliers = zeros(length(files),1); 

  
for i=1:length(files) 
    temp = load(files(i).name); 

  
    % Convert from milliseconds to seconds 
    % temp = temp./1000; 

     
    % Remove any negative values (artifacts of capture) 
    temp(temp < 0) = []; 

  
    % Determine mean and variance for this keystroke pair 
    sampleSize(i) = length(temp); 
    meanVal(i) = mean(temp); 
    varVal(i) = var(temp); 
end 

  
% Write this data to a textfile 
outFile = fopen('statisticsNZ.txt','w+'); 
for i=1:length(files) 

  
    % Extract the characters used from the filename 
    lastst1 = files(i).name(1:strfind(files(i).name,'_')-1); 
    nextst1 = 

files(i).name(strfind(files(i).name,'_')+1:strfind(files(i).name,'.')-

1); 

     
    % Convert from strings to numbers 
    last = str2num(lastst1); 
    next = str2num(nextst1); 

     
    % Replace the ASCII values with the corresponding indices for the  

    % 39x39 matrix  
    if (last > 64 && last < 90) 
        last = last - 64; 
    elseif (last > 47 && last < 58) 
        last = last - 47 + 26; 
    elseif (last == 8) 
        last = 37; 
    elseif (last == 32) 
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        last = 38; 
    elseif (last == 13) 
        last = 39; 
    end 

     
    if (next > 64 && next < 90) 
        next = next - 64; 
    elseif (next > 47 && next < 58) 
        next = next - 47 + 26; 
    elseif (next == 8) 
        next = 37; 
    elseif (next == 32) 
        next = 38; 
    elseif (next == 13) 
        next = 39; 
    end 

     
    fprintf(outFile,'%d %d %.3f %.3f 

%d\n',last,next,meanVal(i),varVal(i),sampleSize(i)); 
end 

  
fclose(outFile); 
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% parser3.m 
% 
% Created: 11/10/2009 (c) Harikrishnan Bhanu 
% Updated: 12/13/2009 
% 
% Loads text sample files for parsing and outputs the delays for  

% individual keypairs into separate files.File names have the format  

% [key1]_[key2].txt and contain nothing but delays. 
% 
% These files are then opened and statistics are extracted and the  

% results are saved in statistics.txt 

% 
% Statistics.txt's contents follow the format: 

% {key1} --> {key2} , mean: [mean] , variance: [variance] , samples:  

% [count] 
% Without brackets, but with braces. 

  
clear;clc; 
load('sm-150.mat'); 

  
for q1 = 1:10 
    for q2 = 1:15 

  
        % Define source vector, clear destination from possible 

previous 
        % runs 
        clear dest; 
        % Look at each sample independently 
        src = evalin('base',char(sprintf('u%ds%d',q1,q2))); 
        dpos = 1; 
        last = 0; 

  
        % Prase the data from the .mat file 
        for i=1:length(src) 
            if mod(i,4) == 1 
                 dest(dpos) = src(i)/2; 
                 dpos = dpos+1; 
            elseif mod(i,4) == 0 
                 dest(dpos) = src(i); 
                 dpos = dpos+1; 
            end 
        end 

  
        % Save the separated values into  
        i = 1; 
        last = dest(i); 
        time = dest(i+1); 
        next = dest(i+2); 
        while i<(length(dest)-2) 
            % Ensure only ASCII values are written 
            if(last >= 0 && last <= 127 && next >= 0 && next <= 127) 
                if(floor(last)==last && floor(next)==next) 
                    destfname = sprintf('%d_%d.txt',last,next); 
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                    fout = fopen(destfname, 'a+'); 
                    fprintf(fout,'%f\n',time); 
                    fclose(fout); 
                end 
            end 

  
            % Move to the next character pair 
            i = i + 2; 
            last = dest(i); 
            time = dest(i+1); 
            next = dest(i+2); 
        end 
    end 
end 

  
% Clear variables 
clear;clc; 

  
% Load the text files that were just generated 
files = dir('*.txt'); 
meanVal = zeros(length(files),1); 
varVal = zeros(length(files),1); 
sampleSize = zeros(length(files),1); 
outliers = zeros(length(files),1); 

  
for i=1:length(files) 
    temp = load(files(i).name); 

  
    % Convert from milliseconds to seconds 
    temp = temp./1000; 

     
    % Remove any negative values (artifacts of capture) 
    temp(temp < 0) = []; 

  
    % Determine mean and variance for this keystroke pair 
    sampleSize(i) = length(temp); 
    meanVal(i) = mean(temp); 
    varVal(i) = var(temp); 
end 

  
% Write this data to a textfile 
outFile = fopen('statistics.txt','w+'); 
for i=1:length(files) 

  
    % Extract the characters used from the filename 
    lastst1 = files(i).name(1:strfind(files(i).name,'_')-1); 
    nextst1 = 

files(i).name(strfind(files(i).name,'_')+1:strfind(files(i).name,'.')-

1); 

     
    % Convert from strings to numbers 
    last = str2num(lastst1); 
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    next = str2num(nextst1); 

     
    % If the values are between 34 and 126, convert it to the displayed  

    % char. Otherwise, replace it with something easy to determine. If  

    % the value is greater than 127, it's not an ASCII value, so  

    % disregard it. 
    if (last < 33) 
        switch last 
            case 0 
                laststr = '{null}'; 
            case 1 
            case 2 
            case 3 
            case 4 
            case 5 
            case 6 
            case 7 
                laststr = '{bell}'; 
            case 8 
                laststr = '{backspace}'; 
            case 9 
                laststr = '{tab}'; 
            case 10 
                laststr = '{new line}'; 
            case 11 
                laststr = '{vtab}'; 
            case 12 
                laststr = '{new page}'; 
            case 13 
                laststr = '{enter}'; 
            case 14 
                laststr = '{shiftout}'; 
            case 15 
                laststr = '{shiftin}'; 
            case 27 
                laststr = '{esc}'; 
            case 32 
                laststr = '{space}'; 
            otherwise 
                laststr = ['{' num2str(last) '}']; 
        end 
    else 
        if(last < 127) 
            laststr = char(last); 
        elseif(last==127) 
            laststr = '{del}'; 
        else 
            laststr = sprintf('%d',last); 
        end 
    end 

  
    if (next < 33) 
        switch next 
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            case 0 
                nextstr = '{null}'; 
            case 1 
            case 2 
            case 3 
            case 4 
            case 5 
            case 6 
            case 7 
                nextstr = '{bell}'; 
            case 8 
                nextstr = '{backspace}'; 
            case 9 
                nextstr = '{tab}'; 
            case 10 
                nextstr = '{new line}'; 
            case 11 
                nextstr = '{vtab}'; 
            case 12 
                nextstr = '{new page}'; 
            case 13 
                nextstr = '{enter}'; 
            case 14 
                nextstr = '{shiftout}'; 
            case 15 
                nextstr = '{shiftin}'; 
            case 27 
                nextstr = '{esc}'; 
            case 32 
                nextstr = '{space}'; 
            otherwise 
                nextstr = ['{' num2str(next) '}']; 
        end 
    else 
        if(next < 127) 
            nextstr = char(next); 
        elseif(last==127) 
            nextstr = '{del}'; 
        else 
            nextstr = sprintf('%d',next); 
        end 
    end 

     
    % Only save information when at least 5 samples were collected 
    if(sampleSize(i) > 5) 
        fprintf(outFile,'%s --> %s mean: %.3f , variance: %.3f , 

samples: %d\n',laststr,nextstr,meanVal(i),varVal(i),sampleSize(i)); 
    end 

     
end 

  
fclose(outFile); 
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% italian.m 
% 
% Created: 11/15/2009 (c) Harikrishnan Bhanu 
% Updated: 12/13/2009 
% 
% Loads text sample files for parsing and outputs the delays for  

% individual keypairs into separate files.File names have the format  

% [key1]_[key2].txt and contain nothing but delays. 
% 
% These files are then opened and statistics are extracted and the  

% results are saved in statistics.txt 
% 
% Statistics.txt's contents follow the format: 
% {key1} --> {key2} , mean: [mean] , variance: [variance] , samples:  

% [count] 
% Without brackets, but with the braces. 

  
% Get information of all files in the directory 
files = dir('./UserSrc/*'); 
q = 1; 

  
% Loop through the files 
for i=3:length(files) 

     
    % Make sure there's no cross-session pollution 
    clear temp; 
    temp = load(sprintf('./UserSrc/%s',files(i).name)); 

     
    % Extract all the pairs in the data for this sample 
    for j=2:(length(temp)-2) 
        source(q) = temp(j); 
        delay(q) = temp(j+1); 
        dest(q) = temp(j+2); 
        q = q + 1; 
        j = j + 1; 
    end 
end 

  
% Write these values out to files 
for i=1:length(source) 
    last = source(i); 
    next = dest(i); 
    time = delay(i); 

     
    % Ensure only ASCII values are written 
    if(last >= 0 && last <= 127 && next >= 0 && next <= 127) 
        if(floor(last)==last && floor(next)==next) 
            destfname = sprintf('%d_%d.txt',last,next); 
            fout = fopen(destfname, 'a+'); 
            fprintf(fout,'%f\n',time); 
            fclose(fout); 
        end 
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    end 
end 

  
% Flush variables and screen 
clear;clc; 

  
% Load the text files that were just generated 
clear files; 
textfiles = dir('*.txt'); 
meanVal = zeros(length(textfiles),1); 
varVal = zeros(length(textfiles),1); 
sampleSize = zeros(length(textfiles),1); 
outliers = zeros(length(textfiles),1); 

  
for i=1:length(textfiles) 
    temp = load(textfiles(i).name); 

  
    % Convert from milliseconds to seconds 
    temp = temp./1000; 

     
    % Remove any negative values (artifacts of capture) 
    temp(temp < 0) = []; 

  
    % Determine mean and variance for this keystroke pair 
    sampleSize(i) = length(temp); 
    meanVal(i) = mean(temp); 
    varVal(i) = var(temp); 
end 

  
% Write this data to a textfile 
outFile = fopen('statistics.txt','w+'); 
for i=1:length(textfiles) 

  
    % Extract the characters used from the filename 
    lastst1 = textfiles(i).name(1:strfind(textfiles(i).name,'_')-1); 
    nextst1 = 

textfiles(i).name(strfind(textfiles(i).name,'_')+1:strfind(textfiles(i)

.name,'.')-1); 

     
    % Convert from strings to numbers 
    last = str2num(lastst1); 
    next = str2num(nextst1); 

     
    % If the values are between 34 and 126, convert it to the displayed  

    % char. Otherwise, replace it with something easy to determine. If  

    % the value is greater than 127, it's not an ASCII value, so  

    % disregard it. 
    if (last < 33) 
        switch last 
            case 0 
                laststr = '{null}'; 
            case 1 
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            case 2 
            case 3 
            case 4 
            case 5 
            case 6 
            case 7 
                laststr = '{bell}'; 
            case 8 
                laststr = '{backspace}'; 
            case 9 
                laststr = '{tab}'; 
            case 10 
                laststr = '{new line}'; 
            case 11 
                laststr = '{vtab}'; 
            case 12 
                laststr = '{new page}'; 
            case 13 
                laststr = '{enter}'; 
            case 14 
                laststr = '{shiftout}'; 
            case 15 
                laststr = '{shiftin}'; 
            case 27 
                laststr = '{esc}'; 
            case 32 
                laststr = '{space}'; 
            otherwise 
                laststr = ['{' num2str(last) '}']; 
        end 
    else 
        if(last < 127) 
            laststr = char(last); 
        elseif(last==127) 
            laststr = '{del}'; 
        else 
            laststr = sprintf('%d',last); 
        end 
    end 

  
    if (next < 33) 
        switch next 
            case 0 
                nextstr = '{null}'; 
            case 1 
            case 2 
            case 3 
            case 4 
            case 5 
            case 6 
            case 7 
                nextstr = '{bell}'; 
            case 8 



 92 

                nextstr = '{backspace}'; 
            case 9 
                nextstr = '{tab}'; 
            case 10 
                nextstr = '{new line}'; 
            case 11 
                nextstr = '{vtab}'; 
            case 12 
                nextstr = '{new page}'; 
            case 13 
                nextstr = '{enter}'; 
            case 14 
                nextstr = '{shiftout}'; 
            case 15 
                nextstr = '{shiftin}'; 
            case 27 
                nextstr = '{esc}'; 
            case 32 
                nextstr = '{space}'; 
            otherwise 
                nextstr = ['{' num2str(next) '}']; 
        end 
    else 
        if(next < 127) 
            nextstr = char(next); 
        elseif(last==127) 
            nextstr = '{del}'; 
        else 
            nextstr = sprintf('%d',next); 
        end 
    end 

     
    % Only save information when at least 5 samples were collected 
    if(sampleSize(i) > 5) 
        fprintf(outFile,'%s --> %s mean: %.3f , variance: %.3f , 

samples: %d\n',laststr,nextstr,meanVal(i),varVal(i),sampleSize(i)); 
    end 

     
end 

  
fclose(outFile); 
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% extract.m 
% 
% Created: 11/15/2009 (c) Harikrishnan Bhanu 
% Updated: 12/13/2009 
% 
% Loads text sample files (after parsing), and extracts statistical 
% information from keystroke data. File names have the format 
% [key1]_[key2].txt and contain nothing but delays. 
% 
% Reults are saved in statistics.txt with no information as to the  

% keypairs which generated them. This .m file was used to generate a  

% list of means to determine what symbols were distinguishable. 

  

  
% Flush variables and screen 
clear;clc; 

  
% Load the text files that were just generated 
textfiles = dir('./parseroutput/*.txt'); 
meanVal = zeros(length(textfiles),1); 
varVal = zeros(length(textfiles),1); 
sampleSize = zeros(length(textfiles),1); 
outliers = zeros(length(textfiles),1); 

  
for i=1:length(textfiles) 
    temp = load(sprintf('./parseroutput/%s',textfiles(i).name)); 

  
    % Convert from milliseconds to seconds 
    temp = temp./1000; 

     
    % Remove any negative values (artifacts of capture) 
    temp(temp < 0) = []; 

  
    % Determine mean and variance for this keystroke pair 
    sampleSize(i) = length(temp); 
    meanVal(i) = mean(temp); 
    varVal(i) = var(temp); 
end 

  
% Write this data to a textfile 
outFile = fopen('statistics.txt','w+'); 
for i=1:length(textfiles) 

  
    % Extract the characters used from the filename 

    lastst1 = textfiles(i).name(1:strfind(textfiles(i).name,'_')-1); 
    nextst1 = 

textfiles(i).name(strfind(textfiles(i).name,'_')+1:strfind(textfiles(i)

.name,'.')-1); 

     
    % Convert from strings to numbers 
    last = str2num(lastst1); 
    next = str2num(nextst1); 
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    % If the values are between 34 and 126, convert it to the displayed  

    % char. Otherwise, replace it with something easy to determine. If  

    % the value is greater than 127, it's not an ASCII value, so  

    % disregard it. 
    if (last < 33) 
        switch last 
            case 0 
                laststr = '{null}'; 
            case 1 
            case 2 
            case 3 
            case 4 
            case 5 
            case 6 
            case 7 
                laststr = '{bell}'; 
            case 8 
                laststr = '{backspace}'; 
            case 9 
                laststr = '{tab}'; 
            case 10 
                laststr = '{new line}'; 
            case 11 
                laststr = '{vtab}'; 
            case 12 
                laststr = '{new page}'; 
            case 13 
                laststr = '{enter}'; 
            case 14 
                laststr = '{shiftout}'; 
            case 15 
                laststr = '{shiftin}'; 
            case 27 
                laststr = '{esc}'; 
            case 32 
                laststr = '{space}'; 
            otherwise 
                laststr = ['{' num2str(last) '}']; 
        end 
    else 
        if(last < 127) 
            laststr = char(last); 
        elseif(last==127) 
            laststr = '{del}'; 
        else 
            laststr = sprintf('{%d}',last); 
        end 
    end 

  
    if (next < 33) 
        switch next 
            case 0 
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                nextstr = '{null}'; 
            case 1 
            case 2 
            case 3 
            case 4 
            case 5 
            case 6 
            case 7 
                nextstr = '{bell}'; 
            case 8 
                nextstr = '{backspace}'; 
            case 9 
                nextstr = '{tab}'; 
            case 10 
                nextstr = '{new line}'; 
            case 11 
                nextstr = '{vtab}'; 
            case 12 
                nextstr = '{new page}'; 
            case 13 
                nextstr = '{enter}'; 
            case 14 
                nextstr = '{shiftout}'; 
            case 15 
                nextstr = '{shiftin}'; 
            case 27 
                nextstr = '{esc}'; 
            case 32 
                nextstr = '{space}'; 
            otherwise 
                nextstr = ['{' num2str(next) '}']; 
        end 
    else 
        if(next < 127) 
            nextstr = char(next); 
        elseif(last==127) 
            nextstr = '{del}'; 
        else 
            nextstr = sprintf('{%d}',next); 
        end 
    end 

     
    % Only save information when at least 5 samples were collected 
    if(sampleSize(i) > 5) 
            fprintf(outFile,'%.3f\n',meanVal(i)); 
    end 

     
end 

  
fclose(outFile); 
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% reorder.m 
% 
% Created: 12/01/09 (c) Harikrishnan Bhanu 
% Changed: 12/13/09 
% 
% Reorders the time delay matrix from A-Z,1-0,etc to either a  

% horizontal or  vertical crossection of the keyboard. 

  
% Clear variables to prevent pollution 
clear;clc; 

  
% Load horizontal and vertical key orders 
horiz = load('hOrder.txt'); 
vert = load('vOrder.txt'); 

  
% Load the delay matrices 
load('proximity.mat'); 

  
% We only want the first column, since the second column is merely the 
% first, offset by one value 
horiz = horiz(:,1); 
vert = vert(:,1); 

  
% Are we focusing on the Italian or New Zealand data? 
flagIT = 0; 

  
if(flagIT == 1) 
    delays = delaysIT; 
else 
    delays = delaysNZ; 
end 

  
% Are we focusing on horizontal or vertical crossections? 
hFlag = 1; 

  
if(hFlag == 1) 
    positions = [ horiz(1:10) ; 37 ; horiz(11:29) ; 39 ; horiz(30:36) ; 

38 ]; 
else 
    positions = [ vert(1:36) ; 37 ; 39 ; 38 ]; 
end 

  

  
% Create the reordered delay matrix 
delayTrans = zeros(39,39); 
for i = 1:39 

     
    % Determine the mapping to the x-position 
    delayXPos = positions(i); 

  
    for j = 1:39 
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        % And then the mapping to the y-position 
        delayYPos = positions(j); 

         
        % Copy the associated delay to the new matrix 
        delayTrans(i,j) = delays(delayXPos,delayYPos); 

         
    end 
end 



 98 

% delayFill.m 
% 
% Created: 11/19/2009 (c) Harikrishnan Bhanu 
% Updated: 12/03/2009 
% 
% Constructs two matrices (neighbors - 39x4 , delays - 39x39) and  

% populates them according to the statistics extracted from the  

% language. 
% 
% Statistics are read from a text file (statistics.txt) in the format: 
% [key1] [key2] [mean] 
% without brackets. This textfile is generated from parser2NZ.m and 
% parser2IT.m 

  
% Is this generating tables for Italian or New Zealand? 
flagIT = 1; 

  
% Pass control variables 
passContinue = 1; 
passCounter = 0; 

  
% Initialize arrays to -1 initially so that empty cells can be easily 
% identified 
neighbors = -1 .* ones(39,4); 
delays = -1 .* ones(39,39); 
lastIter = zeros(39,39); 

  
% The rows of this matrix correspond to the characters in question 

% while the columns are the neighbors of that key on the corresponding  

% keyboard layout. (IT & EN) 
% 
% rows 01 - 26: A - Z 
%      27 - 36: 0 - 9 
%           37: backspace 
%           38: space 
%           39: enter 
neighbors = [19 17 26 -1;   % A: S Q Z 
             7 22 14 -1;    % B: G V N 
             4 24 22 -1;    % C: D X V 
             19 6 5 3;      % D: S F E C 
             30 4 23 18;    % E: 3 D W R 
             4 7 18 22;     % F: D G R V 
             6 8 20 2;      % G: F H T B 
             7 10 25 14;    % H: G J Y N 
             35 21 15 11;   % I: 8 U O K 
             8 21 11 13;    % J: H U K M 
             10 9 13 12;    % K: J I M L 
             15 9 11 -1;    % L: O I K 
             10 11 14 -1;   % M: J K N 
             8 2 13 -1;     % N: H B M 
             36 9 16 12;    % O: 9 I P L 
             27 15 12 -1;   % P: 0 O L 
             28 23 1 -1;    % Q: 1 W A 
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             31 5 20 6;     % R: 4 E T F 
             23 1 4 24;     % S: W A D X 
             32 18 7 25;    % T: 5 R G Y 
             34 25 9 10;    % U: 7 Y I J 
             6 3 2 -1;      % V: F C B 
             29 17 19 5;    % W: 2 Q S E 
             19 26 3 -1;    % X: S Z C 
             33 20 21 8;    % Y: 6 T U H 
             1 19 24 -1;    % Z: A S X 
             36 15 16 37;   % 0: 9 O P BKSP 
             29 17 23 -1;   % 1: 2 Q W 
             28 30 23 -1;   % 2: 1 3 W 
             29 31 5 -1;    % 3: 2 4 E 
             30 32 18 -1;   % 4: 3 5 R 
             31 33 20 -1;   % 5: 4 6 T 
             32 34 25 -1;   % 6: 5 7 Y 
             33 35 21 -1;   % 7: 6 8 U 
             34 36 9 -1;    % 8: 7 9 I 
             35 27 15 -1;   % 9: 8 0 O 
             27 16 39 -1;   % BKSP: 0 P ENT 
             -1 -1 -1 -1;   % SP:  
             27 16 37 -1];  % ENT: 0 P BKSP 

          
% Load the statistics extracted from the respective data sets 
if(flagIT == 1) 
    source = load('./docs/statisticsIT.txt'); 
    source(:,3) = source(:,3)./1000; 
else 
    source = load('./docs/statisticsNZ.txt'); 
end 

  
% -- Testing 

  
% Remove delays of > 1 second to prevent averaging issues 
for i = 1:length(source) 

     
    if(source(i,3) <= 1000) 
        dest(i,:) = source(i,:); 
    end 

     
end 

  
clear source; 
source = dest; 

  
% -- End Testing 

  
% Populate the delay matrix with the statistics, empty cells have a  

% value of -1 
for i = 1:length(source) 
    last = source(i,1); 
    next = source(i,2); 
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    time = source(i,3); 

     
    if(time > 0) 
        delays(last,next) = time; 
    end 
end 

  
% Back up the original delay matrix for comparison 
delayOrig = delays; 

  
% Perform multiple passes to fill in as many gaps as possible 
while (passContinue == 1) 

     
    % Keep track of how many passes were made 
    passCounter = passCounter + 1; 

     
    % Iterate through the delay matrix to fill gaps 
    for i = 1:39 
        for j = 1:39 

  
            % If there's a gap: 
            if delays(i,j)==-1 

  
                % First, attempt interpolating from destination key  

                % neighbors 

  
                % Hold j (destination key) constant, extract the  

                % neighbor list 
                nList = neighbors(j,:); 
                nPos = 1; 
                count = 0; 
                delayTemp = 0; 

  
                % Iterate over known neighbors 
                while (nPos < 5 && nList(nPos) > 0) 
                    if(delays(i,nList(nPos)) > 0) 
                        delayTemp = delayTemp + delays(i,nList(nPos)); 
                        count = count + 1; 
                    end 
                    nPos = nPos + 1; 
                end 

  
                % Average the delay, if values were available 
                if(count > 0) 
                    delays(i,j) = delayTemp ./ count; 
                end 

  
                % If the value is still negative (a gap), attempt  

                %interpolation from source key neighbors 
                if delays(i,j)==-1 
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                    % Hold i (source key) constant, extract neighbor  

                    % list 
                    nList = neighbors(i,:); 
                    nPos = 1; 
                    count = 0; 
                    delayTemp = 0; 

  
                    % Iterate over known neighbors 
                    while (nPos < 5 && nList(nPos) > 0) 
                        if(delays(nList(nPos),j) > 0) 
                            delayTemp = delayTemp + 

delays(nList(nPos),j); 
                            count = count + 1; 
                        end 
                        nPos = nPos + 1; 
                    end 

  
                    % Average delays, if values are available 
                    if(count > 0) 
                        delays(i,j) = delayTemp ./ count; 
                    end 
                end 

  
            end 

  
        end 
    end 

     
    % See if them matrix has changed, if it has, make another pass, as  

    % more gaps might be filled. If not, stop. 
    passContinue = 1 - isequal(lastIter,delays); 

     
    % Update the last iteration of the delay matrix for comparison 
    lastIter = delays; 
end 

  
% Move the delays into a new matrix to reflect the contents, clear the 
% remainder of the variables 
if(flagIT ==1 ) 
    delaysIT = delays; 
else 
    delaysNZ = delays; 
end 

  
clearvars -except delaysIT delaysNZ 
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% digraphTimes.m 
% 
% Created: 11/30/2009 (c) Harikrishnan Bhanu 
% Updated: 12/13/2009 
% 
% Loads the Matlab Data file 'digraphtimes.mat', containing the data 
% extracted from 'digraphtimes.csv'. It then translates the keypair  

% data into the format used in our delay matrix. 

  
% Load the data ('data' and 'textdata') 
load('digraphtimes.mat'); 

  
delaySum = zeros(39,39); 
freqCount = zeros(39,39); 

  
% Break apart the source and destionation keys 
% 
% '110 82' -> 65,41 (as integers, then divided by 2 to convert to  

% ASCII) 
for i=1:length(textdata) 

  
    % Search the first column of the csv (stored as textdata) for the  

    % space separating the source and destination keys 
    spPos = cell2mat(strfind(textdata(i),' ')); 
    str = cell2mat(textdata(i)); 
    lastStr = str(1:spPos(1)-1); 
    nextStr = str(spPos(1)+1:length(str)); 

     
    % Convert from strings to integers, then divide by 2 to convert to 
    % ASCII value 
    last = str2num(lastStr)/2; 
    next = str2num(nextStr)/2; 

  
    % Replace the ASCII values with the corresponding indices for the  

    % 39x39 matrix (and ensure only appropriate characters are  

    % considered) 
    if (last > 64 && last < 90) 
        last = last - 64; 
    elseif (last > 47 && last < 58) 
        last = last - 47 + 26; 
    elseif (last == 8) 
        last = 37; 
    elseif (last == 32) 
        last = 38; 
    elseif (last == 13) 
        last = 39; 
    else 
        last = -1; 
    end 

     
    if (next > 64 && next < 90) 
        next = next - 64; 
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    elseif (next > 47 && next < 58) 
        next = next - 47 + 26; 
    elseif (next == 8) 
        next = 37; 
    elseif (next == 32) 
        next = 38; 
    elseif (next == 13) 
        next = 39; 
    else 
        next = -1; 
    end 

     
    % Add the observed delay to the running total for that pair, and 
    % increment the frequency counter 
    if(last ~= -1 && next ~= -1) 
        delaySum(last,next) = delaySum(last,next) + data(i,1); 
        freqCount(last,next) = freqCount(last,next) + 1; 
    end 
end 

  
% Write out the means 
outFile = fopen('statisticsNZ2.txt','w+'); 
for i = 1:39 
    for j = 1:39 
        if(delaySum(i,j)~=0) 
            % Comptue the means for all delays for which there was  

            % data, then write them out. 
            fprintf(outFile,'%d %d 

%.3f\n',last,next,delaySum(i,j)/freqCount(i,j)); 
        end 
    end 
end 
fclose(outFile); 
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% proximity.m 
% 
% Created: 11/24/2009 (c) Harikrishnan Bhanu 
% Updated: 12/03/2009 
% 
% Determines the locations of keypairs where the delays are too close  

% for distinction, between the New Zealand and Italian data. 

  
% Determine the degree of separation between the matricies 
diff = abs(delaysNZ - delaysIT); 

  
% Create a proximity matrix 
%    distance(i,j) = 1 if diff(i,j) < 15, else distance(i,j) = 0 
% 
%    This is basically a boolean matrix determining if the difference 
%    between the Italian and New Zealand data is less than 15ms 
distance = zeros(39,39); 

  
% Coompare elements and identify those whose delays are too close 
for i = 1:39 
    for j = 1:39 

         
        if( diff(i,j) < 15 ) 

             
            distance(i,j) = 1; 

             
        end 

         
    end 
end 

  
% Plot the sparsity 
spy(distance) 
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/* 

  

 GutenbergParser.c 

 

 Created: 11/24/09 (c) Harikrishnan Bhanu 

 Updated: 12/03/09 

  

 This program will parse N plaintext documents and store the combined  

 data as keypairs (disregarding case and special characters), in the  

 specified output file. If no output file is specified, it stores it in  

 the default file 'output.txt'. 

  

 */ 

 

#include <stdio.h> 

#include <string.h> 

#include "GutenbergParser.h" 

 

int main (int argc, const char * argv[]) { 

 int fileLoop, success = 0; 

  

 // If no arguments are provided, then display the proper  

 // execution format for the user. 

 if (argc < 2) { 

  functionality(argv); 

  return 1; 

 } 

  

 // Determine if an output file is specified, if it is, then be  

 //sure to use it, if not, set the output file as 'output.txt' 

 if (strcmp(argv[argc-2],"-o")==0) { 

  

  // Iterate over all input files, storing the keypairs in  

  // the designated output file 

  for (fileLoop = 1; fileLoop < argc-2 ; fileLoop++ ) { 

   success = parseTextFile(argv[fileLoop],argv[argc-1]); 

 

   // If the process fails at any point, stop! 

   if (success == -1) { 

    return -1; 

   } 

  } 

   

 } else { 

   

  // Iterate over all input files, storing the keypairs in   

  // the default output file 

  for (fileLoop = 1; fileLoop < argc ; fileLoop++ ) { 

   success = parseTextFile(argv[fileLoop],"output.txt"); 

    

   // If the process fails at any point, stop! 

   if (success == -1) { 

    return -1; 

   } 
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  } 

   

 } 

  

    return 0; 

} 
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/* 

 

 GutenbergParser.h 

 

 Created: 11/24/09 (c) Harikrishnan Bhanu 

 Updated: 12/03/09 

  

 Header for GutenbergParser.c containing functions. 

 

*/ 

 

 

/* 

 Function: functionality 

 Inputs:   const char* argv[] 

 Outputs:  none 

  

 Displays the proper syntax to run the parser application. 

 */ 

void functionality(const char* argv[]) { 

  

 printf("%s input1 [input2] [input3] ... [inputN] [-o 

output]\n",argv[0]); 

 printf("   input* - plaintext file containing text to be 

parsed\n"); 

 printf("            at least one is required\n"); 

 printf("   [output] - default output, output.txt, is used 

unless\n"); 

 printf("            other filename is specified using the -o 

flag\n"); 

  

  

} 

 

/* 

 Function: parseTextFile 

 Inputs:   const char* inFile - string containing source file name 

           const char* outFile - string containing destination file  

                 name 

 Outputs:  integer representation of success, a -1 is failure while 0  

           is success 

  

 Parses text from the file pointed to by inFile, removes case (by 

forcing all text into upper-case) and all special characters. Then, 

puts the contents  into the file pointed to by outFile in pairs (comma 

separated), each on its own line. 

  

 Ex: 

 "And" --> "1,14" \n "14,4" \n 

 */ 

int parseTextFile(const char* inFile, const char* outFile) { 

  

 // Display informational text 

 printf("Attempting parse from [ %s ].\n",inFile); 



 108 

 printf("Destination file [ %s ].\n",outFile); 

  

 // Current character from source file stream, as well as the pair 

 // (last,next) to be written to the destination file stream. 

 char current, last, next, temp; 

  

 // Open the source and destination files. Source is kept read- 

 // only while the destination file is opened in appending mode. 

 FILE* source = fopen(inFile, "r"); 

 FILE* dest = fopen(outFile, "a"); 

  

  

 // If the source file is unable to be opened, fail gracefully and 

 // inform the user of the situation. 

 if (source == NULL) { 

  printf("Error: Unable to open source file %s.\n",inFile); 

  printf("       Please ensure the file is in the same 

directory as this application.\n"); 

   

  return -1; 

 } 

  

 // Behave similarly if the destination file is unable to be  

 // opened. 

 if (dest == NULL) { 

  printf("Error: Unable to open destination file 

%s.\n",outFile); 

  printf("       Please ensure the file is in the same 

directory as this application,\n"); 

  printf("       and the current user has write-permissions 

to it."); 

   

  return -1; 

 } 

  

 // Initialize the last and next characters as '-' 

 current = '-'; 

 last = '-'; 

 next = '-'; 

  

 // Read a character (priming) 

 fscanf(source,"%c",&current); 

  

 // Loop while data remains 

 while (current != '^') { 

 

  // Remove case by forcing all lower-case into upper 

  if (current >= 'a' && current <= 'z') { 

   temp = current - 32; 

  } else { 

   temp = current; 

  } 

   

  // Ensure only appropriate characters are written out 
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  if ( (temp >= '0' && temp <= '9') || (temp >= 'A' && temp 

<= 'Z') || temp == 10 || temp == 13 || temp == 32) { 

    

   // If this is the first character read, then we  

   // simply store it as 'last' otherwise, we write the  

   // pair out 

   if (last=='-') { 

    last = temp; 

   } 

   else { 

    // If this isn't the first character read, then  

    // there is a 'last' entry, so this is the  

    // 'next' entry 

    next = temp; 

    int char1,char2; 

     

    // Convert to the interger indicies of the  

    // delay matrix 

    if(last >= 'A' && last <='Z') { 

     char1 = last - 64; 

    } else if (last >= '0' && last <= '9') { 

     char1 = last - 47 + 26; 

    } else if (last == 13 || last == 10) { 

     char1 = 39; 

    } else { 

     char1 = 38; 

    } 

 

    if(next >= 'A' && next <='Z') { 

     char2 = next - 64; 

    } else if (next >= '0' && next <= '9') { 

     char2 = next - 47 + 26; 

    } else if (next == 13 || next == 13) { 

     char2 = 39; 

    } else { 

     char2 = 38; 

    } 

 

     

    fprintf(dest, "%d,%d\n",char1,char2); 

     

    // Update 'last' and reset 'next' 

    last = next; 

    next = '-'; 

   } 

    

  } 

   

  // Read the next character 

  fscanf(source,"%c",&current); 

 } 

  

 // Close the file pointers and return to the main program body 

 printf("Closing [ %s ] and [ %s ].\n",inFile,outFile); 
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 fclose(source); 

 fclose(dest); 

  

 return 0; 

} 
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% GutenbergDelay.m 
% 
% Created: 11/28/2009 (c) Harikrishnan Bhanu 
% Updated: 12/03/2009 
% 
% Loads the text file 'composite.txt', containing the parsed training  

% data stored as keypairs. Then, performs a lookup, using the delays  

% matrix generated by delayFill.m, of the interkeystroke delays and  

% stores these values in tVal. 

  
% Flag to determine if Italian or English is being considered 
flagIT = 0; 

  
% Load delay matrices 
load('proximity.mat'); 

  
% Load the keypairs pulled from the text by the parser, load the bounds  

% for the symbolization, and then open the file for writing 
if (flagIT == 1) 
    pairs = load('./Italian/composite.txt'); 
    bounds = load('it.tsl'); 
    outFile = fopen('ITSym.csv','w+'); 
    delays = delaysIT; 
else 
    pairs = load('./English/composite.txt'); 
    bounds = load('nz.tsl'); 
    outFile = fopen('NZSym.csv','w+'); 
    delays = delaysNZ; 
end 
tVal = zeros(length(pairs),1); 

  
% Scale from seconds to milliseconds 
bounds = bounds .* 1000; 

  
% Conver to delays 
for i = 1:length(pairs) 
    tVal(i) = delays(pairs(i,1),pairs(i,2)); 
end 

  
% Symbolize the time values and write them to a CSV 
for i=1:length(tVal) 

     
    % Where does this delay fall? 
    match = 0; 
    q = 1; 
    while(match ~= 1) 
        if (ceil(tVal(i)) >= bounds(q,1) && ceil(tVal(i)) <= 

bounds(q,2)) 
            match = 1; 
        else 
            q = q + 1; 
        end 
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    end 

     
    % Define the symbol associated with that position 
    symbol = char(65+q); 

     
    % Then write the symbol to the file 
    if i<length(tVal) 
        %fprintf(outFile,'%c,',symbol); 
        fprintf(outFile,'%.3f\n',tVal(i)); 
    else 
        %fprintf(outFile,'%c',symbol); 
        fprintf(outFile,'%.3f\n',tVal(i)); 
    end 

     
end 

  
% Close the file 
fclose(outFile); 
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% gNG.m 
% 
% Created: 11/04/2008 (c) Harikrishnan Bhanu 
% Updated: 12/03/2009 
% 
% Growing neural gas code originally written for ECE872, modified to  

% locate clusters within interkeystroke delay sets. Source data is  

% stored in H, resulting cluster values are stored in A. 

  
N = 2;                          % Initialize size of A 
H = NZ1D';                      % Specify data source to search for  

                                % clusters 
[Hsize , dimensions] = size(H); % Number of training vectors and their 

                                % dimensions 

  
% Initialize the set of vectors as d x N, where d is the dimension of  

% the vectors and N is the number of initial units, 2 

 

% A Gaussian distribution is used here with a mean of 0 and standard 
% deviation of 10 
A = sqrt(10)*randn(N,dimensions); 

  
% Initialize connection ages as -1, for not formed and change diagonal 
% entries to -2, denoting it is the same unit to itself, 0 denotes a  

% new connection, and an age greater than zero is how many iterations  

% that conneciton has gone without change 
C = -1 * ones(N,N); 
for i=1:N 
    C(i,i) = -2; 
end 

  
% Error matrix -- how well current units represent the data set, 
% initialized to zeros 
E = zeros(N,1); 

  
% Max number of presentations that an edge is allowed 
a_max = 10; 

  
% Max number of presentations allowed 
p_max = 1000000; 

  
% Error decay rate for unit creation 
alpha = 0.5; 

  
% Error decay for all units, per presentation 
d = 0.9995; 

  
% Presentation limit before new unit can be added 
lambda = 1000; 

  
% Presentation number, initialized to 0 
k = 0; 
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% Correction values 
e_b = 0.05; 
e_n = e_b/100; 

  
% Only continue while the number of presented vectors is less than the  

% max allowable value 
while (k < p_max) 
    % Update size 
    [N N] = size(C); 

     
    % Present a vector from the training set: (k mod Hsize)+1 
    v_k = H(mod(k,Hsize)+1,:); 

     
    % Compute distances from presented vector (v_k) to all vectors 

within 
    % units 
    dist_iter = zeros(N,1); 
    for i=1:N 
        dist_iter(i) = sqrt( sum((v_k - A(i,:)).^2) ); 
    end 

     
    % Find the minimum, then copy the vector into a temporary vector, 
    % make the minimum a maximum, and find the new minimum ('runner  

    % up'), note that the same index offset is maintained as the order  

    % isn't changed 
    [d_min1, u_s1] = min(dist_iter); 
    dist_temp = dist_iter; 
    dist_temp(u_s1) = max(dist_iter) + 1; 
    [d_min2, u_s2] = min(dist_temp); 

     
    % Update the error value accordingly 
    E(u_s1) = E(u_s1) + sum((v_k - A(u_s1,:)).^2); 

     
    % Update weights 
    % Winning weight: 
    A(u_s1,:) = A(u_s1,:) + e_b*(v_k - A(u_s1,:)); 
    % Units directly connected to the winner: 
    for i=1:N 
        % Ensure a connection exists 
        if (C(u_s1,i) > -1) 
            A(i,:) = A(i,:) + e_n*(v_k - A(i,:)); 
        end 

         
        % Increase the age of all topological neighbors to the winner 
        if (C(u_s1,i) > -1) 
            C(u_s1,i) = C(u_s1,i) + 1; 
        end 
        if (C(i,u_s1) > -1) 
            C(i,u_s1) = C(i,u_s1) + 1; 
        end 
    end 
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    % Does a connection exist between the winner and runner up? If not, 
    % make one. 
    C(u_s1,u_s2) = 0; 
    C(u_s2,u_s1) = 0; 

     
    % Pass through connection matrix and trim any vectors which haven't 
    % been updated within a_max presentations 
    for i=1:N 
        for j=1:N 
            if(C(i,j) > a_max) 
                C(i,j) = -1; 
            end 
        end 
    end 

     
    % Remove any units which have no connections 
    [N N] = size(C); 
    prune = ones(N,1); 
    for i=1:N 
            for j=1:N 
                if(C(i,j) > -1) 
                    prune(j) = 0; 
                end 
            end 
    end 
    for i=N:-1:1 
        % Only prune if no connections 
        if(prune(i)==1) 
            C(i,:) = []; % Row -- overwrite to the top 
            C(:,i) = []; % Column -- overwrite to the left 
            A(i,:) = []; % Remove the unit itself 
            E(i,:) = []; % Remove the error associated with the unit 
        end 
    end 

     
    [N N] = size(C); 

     
    % Add a new unit 
    % Is k an integer multiple of lambda? 
    if (mod(k,lambda)==0) 
        % Find the one unit who has the most 'errors' 
        [q_val, u_q] = max(E); 

         
        % Find the unit which is connected to u_q directly, with the 

most 
        % 'errors' 
        E_temp = -1*ones(N,1); 
        for i=1:N 
            if(C(u_q,i) > -1) 
                E_temp(i) = E(i); 
            end 
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        end 
        [f_val, u_f] = max(E_temp); 

         
        % New weight is between u_q and u_f 
        w_r = .5.*(A(u_q,:) + A(u_f,:)); 
        % Remove edge between u_q & u_f 
        C(u_q,u_f) = -1; 
        C(u_f,u_q) = -1; 
        % Insert u_r between u_q and u_f 
        % Shift over existing units 
        u_r = min(u_q,u_f)+ceil(abs((u_q - u_f))/2); 
        C_temp = -1*ones(N+1,N+1); 
        for i=1:N 
            % 'Left' Half 
            if(i < u_r) 
                for j=1:N 
                    % 'Left Top' -- direct copy 
                    if(j < u_r) 
                        C_temp(i,j) = C(i,j); 
                    end 
                    % 'Left Bottom' -- shifted 1 down 
                    if(j >= u_r) 
                        C_temp(i,j+1) = C(i,j); 
                    end 
                end 
                A(i,:) = A(i,:); 
                E(i) = E(i); 
            end 

             
            % 'Right' Half 
            if(i >= u_r) 
                for j=1:N 
                    % 'Right Top' -- shifted 1 right 
                    if(j < u_r) 
                        C_temp(i+1,j) = C(i,j); 
                    end 
                    % 'Right Bottom' -- shifted 1 right, 1 down 
                    if(j >= u_r) 
                        C_temp(i+1,j+1) = C(i,j); 
                    end 
                end 
                A(i+1,:) = A(i,:); 
                E(i+1) = E(i); 
            end 
        end 
        clear C; 
        C = C_temp; 
        [N N] = size(C); 

         
        for i=1:N 
            C(u_r,i) = -1; 
            C(i,u_r) = -1; 
        end 
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        % Insert the vector 
        A(u_r,:) = w_r; 
        if(u_f >= u_r) 
            C(u_r,u_q) = 0;   % r -> q 
            C(u_r,u_f+1) = 0; % r -> f 
            C(u_q,u_r) = 0;   % q -> r 
            C(u_f+1,u_r) = 0; % f -> r 
        else 
            C(u_r,u_q+1) = 0; % r -> q 
            C(u_r,u_f) = 0;   % r -> f 
            C(u_q+1,u_r) = 0; % q -> r 
            C(u_f,u_r) = 0;   % f -> r 
        end 

                 
        % Update error for u_r, u_f & u_q 
        E(u_f) = E(u_f) + alpha * E(u_f); 
        E(u_q) = E(u_q) + alpha * E(u_q); 
        E(u_r) = E(u_q); 
    end 

  
    % Update error, presentation value, and ensure that -2 line the 
    % diagonal 
    E = (1-d).*E; 
    k = k+1; 
    [N N] = size(C); 
    for i=1:N 
        C(i,i) = -2; 
    end 
end 
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% keyGaussPlot.m 
% 
% Created: 12/07/09 
% Updated: 12/08/09 
% 
% Opens a specified document containing keypair statistics for a given 
% language (Italian or English, in this case). It then plots Gaussian 
% distributions for all keypairs that appear with more frequency than  

% the specified threshold. 

  
% Specify language 
flagIT = 1; 

  
% Specify frequency threshold 
threshold = 200; 

  
% Initialize counter to 0 
pairs = 0; 

  
% Open the corresponding language statistics file 
% Note: Interpolated data is NOT considered, only original data 
% Note: The filename is 'fullStatistics*', as opposed to 'statistics*'  

% to differentiate between the two. 
if(flagIT == 1) 
    % Open IT statistics document 
    data = load('./docs/fullStatisticsIT.txt'); 
else 
    % Open NZ statistics document 
    data = load('./docs/fullStatisticsNZ.txt'); 
end 

  
% Set the time scale -- 10 ms increments from 0 to 1000 ms 
t = 0:1:100; 

  
% Scale from microseconds to milliseconds for the Italian data 
if(flagIT == 1) 
    data(:,3) = data(:,3) / 1000; 
end 

  
% Go through the data to determine what should be plotted, and plot  

% them 
for i = 1:length(data) 

     
    % Ensure that the threshold is met and outlier data isn't processed 
    % ( > 800 ms delays) 
    if(data(i,5) >= threshold && data(i,3) < 800) 
        % Increment counter 
        pairs = pairs + 1; 

         
        % Extract the mean and variance, then take the square root of  

        % the variance to get the standard deviation 
        mVal = data(i,3); 
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        vVal = data(i,4); 
        sVal = sqrt(vVal); 
        plot(0:1:100,gaussmf(t,[sVal mVal])); 
        hold on; 
    end 

     
end 

  
% Add labels to the graph 
if(flagIT == 1) 
    str = sprintf('Interkeystroke Gaussians (Italian, greater than %d 

samples)\n%d Pairs',threshold,pairs); 
else 
    str = sprintf('Interkeystroke Gaussians (New Zealand, greater than 

%d samples)\n%d Pairs',threshold,pairs); 
end 
xlabel('Delays (seconds)'); 
title(str); 
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% roc.m 
% 
% Created: 2/26/10 (c) Harikrishnan Bhanu 
% Changed: 2/26/10 
% 
% Plots RoC curves for the confidence interval (CI) and forward-

backward 
% (FB) data files for English and Italian. 

  
clear;clc; 

  
% Load all four files 
load('roc.mat'); 

  
% Flags to indicate which data file to use 
italian = 0; 
confidence = 1; 

  
% Move the selected file 
if(italian==0) 
    if(confidence==0) 
        % Consider forward-backwards with texts being presented to the 
        % English model 
        truedata = englishFB(1:401); 
        falsedata = italianFB(1:401); 
    else 
        % Consider confidence intervals with texts being presented to 

the 
        % English model 
        truedata = englishCI(1:401); 
        falsedata = italianCI(1:401); 
    end 
else 
    if(confidence==0) 
        % Consider forward-backwards with texts being presented to the 
        % Italian model 
        truedata = italianFB(402:802); 
        falsedata = englishFB(402:802); 
    else 
        % Consider confidence intervals with texts being presented to 

the 
        % Italian model 
        truedata = italianCI(402:802); 
        falsedata = englishCI(402:802); 
    end 
end 

  
% Threshold ranges from 0 to 1 in increments of 0.01 
x = [0 : 0.01 : 1]; 
stats = zeros(4,length(x)); 
y = zeros(length(x),2); 
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for threshold = 1:length(x) 

     
    % Clear true and false classification counters 
    truePos = 0; 
    trueNeg = 0; 
    falsePos = 0; 
    falseNeg = 0; 

  
    % Count the true and false positives and negatives 
    for j = 1:401 
        % Scale against the max available 
        if truedata(j) > (x(threshold)*max(truedata)) 
            truePos = truePos + 1; 
        else 
            falseNeg = falseNeg + 1; 
        end 

         
        if falsedata(j) > (x(threshold)*max(truedata)) 
            falsePos = falsePos + 1; 
        else 
            trueNeg = trueNeg + 1; 
        end 
    end 

     
    % Store statistics for this threshold 
    stats(:,threshold) = [ truePos ; falsePos ; trueNeg ; falseNeg ]; 
    y(threshold,:) = [truePos/(truePos+falseNeg) 

trueNeg/(trueNeg+falsePos)]; 
end 

  
% Get coordinates to plot 
xroc=[1; 1-y(:,2); 0]; 
yroc=[1; y(:,1); 0]; 

  
% Plot it 
plot(xroc,yroc,'r.-') 
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