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ABSTRACT 
 

 Potassium (K) is an essential plant nutrient commonly applied to increase 

creeping bentgrass tolerance to environmental stresses and maintain overall turfgrass 

stand health.  Limited research defining the K requirement of creeping bentgrass under 

heat and drought stress exists.  Furthermore, research investigating K, calcium (Ca), and 

magnesium (Mg) recovery under abiotic stress has been inconsistent.  To build on 

previous research and investigate the differences between liquid and granular K 

fertilization, experiments were conducted to evaluate the performance of liquid and 

granular K carriers in conjunction with liquid calcium and magnesium on their ability to 

suppress summer bentgrass decline of creeping bentgrass (Agrostis stolonifera L.) grown 

in the transition zone of the United States. 

 A field experiment was conducted from May 2006 to October 2007 to investigate 

liquid and granular K fertilization on turfgrass quality, clipping yield, chlorophyll, root 

weight, volumetric soil water content and leaf and root nutrient concentrations of 

‘Crenshaw’ creeping bentgrass.  Treatments consisted of two annual potassium rates, 0 

and 195 kg K ha-1 yr-1, in liquid and granular forms, with either liquid calcium (49 kg ha-1 

yr-1), liquid magnesium (49 kg ha-1 yr-1), or both.  Liquid K applications significantly 

reduced visual quality of bentgrass during 2006.  Turfgrass quality in 2007 was 

unacceptable (<7) for the months of June, August, and September, while only plots 

receiving Ca without K produced acceptable turf.   Clipping yield was also significantly 

decreased under liquid K in August and November 2006, while calcium produced the 

greatest yield in July and August 2006 and September and October 2007.  ‘Crenshaw’ 
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creeping bentgrass treated with liquid K produced 8 and 16% greater clipping K 

concentration in August and November 2006 and 11 and 21% greater tissue K content by 

June and October 2007 compared to untreated. 

 Another two year field study was conducted from May 2006 to October 2007 to 

determine the performance of two K carriers (liquid and granular) under rates of 0, 98 

and 195 kg ha-1 annually and a wetting agent (WA) at 19.09 L WA ha-1 monthly.  Data 

concerning visual turf quality, clipping yield, root weight, soil moisture, soil 

hydrophobicity, and leaf and root tissue nutrient concentrations were recorded.  Turf 

quality was improved by the high rate of granular K; however, quality significantly 

declined for turf receiving the higher liquid K rate throughout 2006 from phototoxic 

effects of foliar K fertilizers.  Wetting agent decreased turf quality in 2006 partially due 

to excess soil water retention but creeping bentgrass quality was improved under drought 

conditions in 2007 with the addition of WA.  In August and November 2006 and June 

and October 2007, liquid K at 195.29 kg ha-1 produced greater leaf tissue K 

concentrations compared to untreated.  Liquid K at the 195.29 kg ha-1 rate adversely 

affected root weight in August 2006 and October 2007 by 36% and 20%, respectively, 

while yearly declines in root weight of all treatments were noted.  Soil hydrophobicity 

decreased by 19.92 and 7.16 units at 1.5 cm in 2006 and 2007, respectively, and declined 

by 8.86 and 6.64 units at 3.0 cm in 2006 and 2007, respectively, with the addition of the 

WA. 

 A third field study was conducted from November 2006 to February 2008 to 

examine the interactive effects of nitrogen (N) and iron (Fe) fertilization on rough 
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bluegrass (Poa trivialis L.) overseed stands under reduced light environments.  

Treatments included three annual N rates of 49, 98, and 147 kg N ha-1 yr-1 split between 4 

applications during the winter months.  Fe was supplied simultaneously at 10.8 kg a.i.  

ha-1 per season.  Shade treatments included full sunlight and 55% shade and were applied 

daily.  Data collection included turf quality, clipping yield, chlorophyll, and clipping 

nutrient concentrations.  In this experiment, turf quality was improved with increased N 

rate and shade treatments in year 1; however visual quality declined greatly for turf under 

reduced light irradiances and higher N rates by year 2.  Rough bluegrass clipping yield 

and chlorophyll content generally increased linearly with increasing N rates; while shade 

increased clipping yield by 28% in December 2006 and reduced yield by 38 and 33% in 

December and February 2007, respectively.  Leaf tissue N concentrations were greatest 

under the highest N rates until February of year 2 when the 98 kg K ha-1 yr-1 rate 

produced 16% greater tissue N concentration compared to the 147 kg K ha-1 yr-1 rate.  

Rough bluegrass treated with foliar applications of Fe generally exhibited minimal and 

inconsistent effects on leaf N, Fe and chlorophyll content compared to non-Fe treated 

turf. 
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           CHAPTER 1 

INTRODUCTION 

Golf courses play a significant role in the economy of all regions of the United 

States with an economic impact of $60 billion annually from the turfgrass industry 

(Shearman, 2006).  In 2004, South Carolina’s golf course operations and off-course 

expenditures of resident and visiting golfers generated an estimated $2.3 billion a year 

(Flowers, 2006).  In order to sustain this economic impact, golf course superintendents 

must incorporate sound agronomic practices in order to uphold the best playing 

conditions, turfgrass health, low environmental impacts and aesthetics as possible.  

Fertilization has long been a tool used by turfgrass managers to achieve optimal turf 

color, density, playability, and health.  With ever-increasing expectations for golf course 

playing conditions, the need for optimal fertility also rises.  Potassium (K) is an essential 

plant element that constitutes 1.5 to 3% of dry leaf tissue (McCarty, 2005; Carrow et al., 

2001; Marschner, 1995).  It is a nutrient considered to be second only to nitrogen in 

quantity required by turfgrasses.  Potassium is not known to greatly influence turf color 

or growth but has strong influences on abiotic stresses such as drought, heat, cold, 

salinity and wear (Carrow et al., 2001).  Because of potassium’s ability to elevate 

turfgrasses natural ability to withstand environmental stress, it has become a nutrient of 

great concern with turfgrass managers seeking to increase and sustain density and health 

of turf.   

Excessive fertilization with K has shown apparent disadvantages by reducing the 

amount of other soil and plant extractable cations.  Previous studies have shown 
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increasing potassium fertilization resulted in decreases of plant tissue and soil calcium 

(Ca) and magnesium (Mg) concentrations, often leading to nutrient deficiencies (Woods 

et al., 2005; Miller, 1999; Sartain 1993).   

Localized dry spots (LDS) have been documented as an advanced stage of 

summer bentgrass decline (Karnok and Tucker, 2001a). Localized dry spots are 

characterized by irregular patches of turfgrass that show typical signs of severe drought 

stress.  Limited research as to the source of LDS has been performed, but possible causes 

include humic (Roberts and Carbon, 1972) and fulvic acid (Miller and Wilkinson, 1979) 

coatings on soil particles, leading to the development of soil hydrophobicity.  Currently, 

the most effective control method against LDS is through timely applications of wetting 

agents (Karnok and Tucker, 2001a; Karnok and Tucker, 2001b; Leinauer et al., 2001).  

Wetting agents are applied to reduce the surface tension of water on hydrophobic sand 

particles, thus increasing soil water retention.  Maintaining adequate soil moisture, 

especially deep within the soil profile will allow turf to develop relatively deeper root 

systems to explore and exploit additional water resources.  However, the combinative 

effects of K and application of wetting agents during summer months on creeping 

bentgrass have not been investigated. 

It is estimated that some 20 to 25% of maintained turfgrass is grown under some 

degree of shade (Beard, 1973).  Due to the light saturation point of C3 grasses, shade can 

be advantageous to cool-season grasses in some situations.  Extreme levels of reduced 

irradiance however, can lead to pronounced upright growth habits, thinner and longer 

leaves, reduced density, shallow rooting, decreased chlorophyll content, reduced tillering, 
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and heightened disease susceptibility (Dudeck and Peacock, 1992; Beard, 1973).  The 

most common recommendation to sustain acceptable growth under light-stressed 

conditions is reducing fertility inputs, particularly nitrogen (N).  Fertilization of N 

promotes aggressive shoot growth, and under shaded conditions this results in drastic 

reductions in turf density and stored carbohydrates (Baldwin, 2008; Long, 2006; Bunnell, 

2005a; Bunnell et al., 2005b; Trenholm et al., 1998).  Foliar applications of iron (Fe) 

have suggested in order to compensate for lower N fertilization by maintaining desired 

turfgrass color, however the impact of N and Fe on a winter overseeded, cool-season 

turfgrass under shade has not been fully investigated.  

 

The objectives of this thesis research were: 

1. To investigate the ability of liquid and granular potassium fertilization to 

reduce summer decline associated with creeping bentgrass. 

2. To investigate the interaction of potassium, calcium, and magnesium on 

nutrient recovery and allocation in roots and shoots of creeping bentgrass. 

3. To evaluate the ability of a wetting agent to reduce drought stress and soil 

hydrophobicity during the summer months. 

4. To assess the effects of nitrogen and iron fertilization on overseeded 

bermudagrass under a reduced light environment. 

 
 
 
 
 



 
 

CHAPTER 2 

LITERATURE REVIEW 

 

Creeping Bentgrass 

Creeping bentgrass is the most widely used cool-season turfgrass on golf course 

putting greens today (McCarty, 2005; Turgeon, 2005; Beard, 2001).  Creeping bentgrass 

generally occurs at cooler, moist climates throughout the USA, but are commonly planted 

as golf greens in the warm, humid regions of the southeastern USA.  Creeping bentgrass 

is known for its fine texture, year-round green color, and tolerance of low mowing 

heights.  Creeping bentgrass possesses excellent cold tolerance and a stoloniferous 

growth habit, producing very dense turf stand (Fry and Huang, 2004).  Because creeping 

bentgrass produces high amounts of organic matter, an extensive cultivation regime must 

be present. Slow to recuperate from environmental stresses and damage, creeping 

bentgrass exhibits minimal wear tolerance (McCarty, 2005).   

While creeping bentgrass is used extensively on golf courses in the United States 

for its exceptional playability, it is prone to decline of turf quality during the summer 

months, thus must be managed intensely to insure acceptable stand health and playing 

conditions.   

Creeping bentgrass is native to Eurasia, where temperatures ranged from 60 to 

75oF (15 to 24oC) (Ward, 1969).  Optimal temperatures for cool-season grasses range 

from 15 to 24 oC for shoot growth and 10 to 18 oC for root growth (Beard, 1973).  Annual 

temperatures in the summer months of the southeastern US can reach and exceed 30 to 35 
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oC.  Because roots of creeping bentgrass exhibit a lower optimal growth range, they are 

the first and most affected by high temperature stress.  High soil temperatures have been 

shown to be more detrimental than high air temperatures to creeping bentgrass turf 

quality, canopy photosynthetic rate, leaf photochemical efficiency, and root growth (Xu 

and Huang, 2000).  Huang and Liu (2003) found highest rooting depths of creeping 

bentgrass occurred in May, followed by a decline in rooting depth from July to 

September and recovery beginning in October.  Additionally, very few new roots were 

produced during the summer months, and production of those roots was only following 

small decreases in soil temperature.  Root mass and length also differ on the cultivar 

level.  A heat tolerant creeping bentgrass cultivar, ‘L-93’, has shown increased root fresh 

length and weight compared to the more heat sensitive cultivar, ‘Penncross’ (Xu and 

Huang, 2001).  Such a root system will facilitate an increased surface area in contact with 

soil and water, thus, increasing the plant’s ability for transpirational cooling and nutrient 

uptake.   

Additional methods of reducing creeping bentgrass surface temperature in the 

summer months are by syringing and/or use of surface fans.  Syringing, or misting, is a 

common practice on cool-season golf greens where a very fine spray of water is applied 

to the turf surface in order to provide an evaporative cooling effect.  Surface fans are 

large (0.5 to 1.0 m in diameter) units placed on the outer edge of putting greens, creating 

air movement across the green surface.  These machines are especially useful of greens 

where surrounding terrain and vegetation restrict air movement.  Rodriguez et. al. (2005) 

reported that surface fans in association with misting reduced turf canopy, soil surface, 
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and soil temperatures by as much as 9, 7, and 6oC, respectively.  Duff and Beard (1966) 

noted air movement reduced soil temperatures at a 5 cm depth on average 7oC.  A 

separate study in the same experiment showed that the application of 6mm of syringe 

water dropped soil temperature on average 4 oC.    Marginal success was found when 

using syringing or fans alone (Guertal, 2005).  However, when both fan and syringing 

were used, time that soil remained at temperatures at or above injurious levels was 

significantly reduced.  DiPaola (1984) determined that the effects of syringing, no matter 

the timing or water volume, could not be detected 1 hour after syringing and after 0.5 

hours a reduction in soil temperature of 0.7 oC was reported. 

Relative humidity (RH) is defined as the amount of moisture in the air as a 

percentage of the amount of moisture in the air to the amount of moisture that air can 

hold at saturation, given a specific temperature.  In low RH climates, such as deserts, 

daytime temperatures typically peak at over 38oF, with very cool night time temperatures.  

When moisture is present in air, however, a buffer to temperature changes is created. RH 

in the southeastern US is reasonably high.  Higher amounts of RH produce higher 

nighttime temperatures due to heat held in atmospheric moisture.  This becomes 

especially concerning when managers try to survive bentgrass summer stress.  During 

periods of high RH, nighttime soil and canopy temperatures remain high and creeping 

bentgrass does not have the ability to recover from extreme daytime temperatures.   

Adding to the dilemma, high RH also poses problems for transpiration.  Plants 

naturally cool themselves in times of heat stress by evaporative cooling, which will be 

discussed in more detail later.  When atmospheric moisture is high, the gradient of water 
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potential used for evaporate cooling is lost.  Thus, plants retain water, and uptake of 

water by roots stops.  As a secondary affect, discontinuing water uptake also affects 

nutrient uptake which simultaneously enter plants with water.  

 

Potassium 

Potassium (K) is a primary, essential nutrient for the growth and development of 

turfgrass.  K is only second to nitrogen as the most required plant nutrient with an 

average plant tissue concentration of 1.5-3.0% by dry leaf tissue weight (McCarty, 2005; 

Carrow et al., 2001; Marschner, 1995).  Of the total K content of the soil, only 1-10% is 

readily available to plants in nonexchangeable forms (Carrow et al., 2001; Marschner, 

1995).  Additionally, on turfgrass grown soil media consisting of mostly sand-based 

materials with low cation exchange capacities (CEC), leaching potential of K salts 

increases significantly and lowers K availability accordingly (McCarty, 2005; Turgeon, 

2005; Carrow et al., 2001).  Potassium deficiency is not especially prominent, except 

when turfgrass is under additional stresses.  Turfgrass plants most often exhibit weak and 

spindly individual plant growth under heat and drought conditions.  Plants suffering from 

K deficiency often exhibit a loss of turgor, and when under water stress they easily 

become flaccid (Mengel and Kirkby, 2001; Marschner, 1995).  Although deficiencies are 

not often seen in turfgrasses, under severe deficiency, interveinal chlorosis of older leaves 

appears first, leading to total yellowing of the entire leaf then leaf rolling or burning 

occurs.  In crops, K deficient crops are susceptible to lodging.  Due to its mobility, 

potassium can be translocated from the older, mature leaves to the younger, meristematic 
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tissues of the plant (McCarty, 2005; Carrow et al., 2001; Marschner, 1995).  Plant roots 

absorb K as the K+ cation, which is highly mobile and regulated by K-channels 

throughout the plant (Mengel and Kirkby, 2001; Marschner, 1995)   

Potassium, unlike many elements, has no strong influence on shoot color, turf density 

or growth.  However, potassium has been shown to allow plants to be better suited to 

overcome negative effects of high nitrogen fertility by increasing cold hardiness, heat 

tolerance, disease and pest resistance, drought and high traffic.  Turfgrass mangers often 

apply K at equal or half of N fertility levels.  Miller (1999) reported that soil extractible 

levels of K were increased linearly with increasing K fertilization up to 400 kg ha-1 

month-1.  However, maximum tissue K concentration for ‘Tifdwarf’ hybrid bermudagrass 

was reached at a rate of 74 kg K ha-1 month-1.  Commonly, K is applied by turfgrass 

managers at much higher rates than are recommended (Snyder and Cisar, 2000; Miller, 

1999).   

Previous studies indicate the beneficial effects potassium has during extreme heat 

stress. Supplemental applications of K during periods of heat stress have been shown to 

decrease the amount of injury on creeping bentgrass during summer months (Fu and 

Huang, 2003; Turner and Hummel, 1992; Waddington et al., 1978).  In plants, K acts as 

an osmotic solute, actively regulating the opening and closing of stomatal apertures.  

Under sufficient leaf tissue K, plants are able to control the opening and closing of these 

stomata, and thus, regulate the amount of water lost through transpirational cooling.  

Under K deficiencies, however, the stomatal control mechanism becomes less efficient, 

evapotranspiration (ET) is increased, and leaf internal temperatures are amplified.  The 
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role of K in plant water relations will be discussed later.  Fu and Huang (2003) found that 

foliar applications of K slowed leaf senescence and allowed turfgrass to maintain 

photosynthetic abilities under supraoptimal temperatures, thus increasing creeping 

bentgrass heat tolerance.   

Under drought situations, plants containing sufficient K are able to expand cell 

walls, decrease tissue water content and close openings in stomata.  Stomatal closure is 

brought about by an influx of K into the guard cells surrounding the opening, thus 

decreasing the amount of water lost via transpiration (McCarty, 2005; Taiz and Zeiger, 

2005; Marschner, 1995).  

As the concentration of K increases in plants, cell walls expand, tissue water 

decreases, and turfgrass plants are more turgid due to a closer regulation of water loss 

through stomatal openings.  By potassium providing the necessary force to uptake water, 

drought resistance is greatly increased (McCarty, 2005; Taiz and Zeiger, 2005; 

Marschner, 1995).  Much research has been performed showing the beneficial effects of 

K on drought stress and recovery from drought stress.  For example, Schmidt and 

Breuninger (1981) reported increasingly higher K fertilization had a direct, positive 

correlation with drought stress recovery on Kentucky bluegrass. 

Turfgrass injuries from cold temperatures are a result of chilling and/or freezing 

stresses.  The extent to which freezing stress injury occurs is a function of the plant 

species, physiological state of the plant, environmental conditions, and the mechanism of 

injury (Beard, 1973).  Negative correlations have been reported between winter hardiness 

and crown moisture (Tompkins et. al., 2000).  Turf managers apply most nitrogen (N) 
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during the spring and fall of each year for cool season turfgrasses (Beard, 1973).  Late 

fall applications of N have been shown to amplify the extent of winter injury of Kentucky 

bluegrass by increasing the amount of crown hydration (Carroll and Welton, 1939).  

Contrastingly, K has been reported to lower crown hydration, and therefore, winter 

hardiness.  Markland and Roberts (1967) found that tissue moisture levels decreased with 

increasing higher amounts of K, decreasing winter injury.  Webster and Ebdon (2005) 

evaluated perennial ryegrass (Lolium perenne L.) low temperature tolerance in response 

to N and K rates.  Results indicated maximum cold hardiness was achieved when low to 

moderate N (49 to 147 kg ha-1 yr-1) levels were applied with medium to high levels of K 

(245 to 441 kg ha-1 yr-1).  In other words, the ability of K to increase winter cold tolerance 

is highly dependent on fall N application levels.  

A majority of turfgrass research has investigated disease instance and severity in 

association to N fertilization levels and timing.  Recently, K applications and plant K 

concentrations have been looked into for their role in suppression of disease outbreaks.  

Low levels of plant K often result in favorable conditions for disease occurrence, 

particularly Spring dead spot (Ophiosphaerella korrae), Dollar spot (Ruststroemia 

floccosum), Take-all patch (Gaeumannomyces graminis var. avenae), among others 

(Carrow et al., 2001).  Goss and Gould (1967) noticed a five-fold increase in the 

occurrence of the Ophiobolus patch, or Take-all patch, disease in untreated K plots 

compared to treated plots.  Studies have reported reductions in Dollar spot incidence and 

severity under adequate K fertilization (Juska and Murray, 1974; Markland, 1969).  Still, 
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other studies have shown no differences or remarkable increases in disease occurrence 

with late fall applications of K (Tredway, 2001; McCarty et al., 1992).   

Many turfgrass managers apply excessive nitrogen on extensively worn turf as an 

attempt to increase turf density and shoot growth. This causes a thinning of cell walls 

(Beard, 1973) that inversely decreases wear tolerance.  K has been shown to enhance 

wear tolerance by maintaining turgor pressure within cells and reducing tissue succulence 

(Beard, 1973).  Toronto creeping bentgrass had significantly improved wear tolerance 

under 270 and 360 kg K ha-1 (Shearman and Beard, 1975).  This study also reported 

increased tissue K concentration, mat accumulation, load-bearing capacity, and leaf 

tensile strengths under the higher K rates.  Trenholm et al. (2000) demonstrated enhanced 

wear tolerance on seashore paspalum (Paspalum vaginatum Swartz.) and hybrid 

bermudagrasses (Cynodon dactylon L. x C. transvaalensis Burtt-Davy) receiving 41 kg K 

ha-1 annually due to greater shoot density, leaf tissue K concentration, and leaf moisture.  

However, Trenholm et al. (2001) later reported no beneficial response of Seashore 

paspalum wear tolerance under either 92 or 392 kg ha-1 K annually.  Studies on creeping 

bentgrass and Kentucky bluegrass showed no beneficial effects of K application on wear 

tolerance or recovery under rates of 0 to 192 kg K ha-1 annually (Hawes and Decker, 

1977; Carroll and Petrovic, 1991). 

Although many studies conclude that increasing K fertilization shows a positive, 

liner relationship with turfgrass quality and health, research reporting conflicting results 

have also been found.  Previous studies have shown K applications provided no 

beneficial effects on creeping bentgrass.  Possible explanations for differential results 
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between studies could possibly be due to existing soil K concentrations (Fitzpatrick and 

Guillard, 2004; Hawes and Decker, 1977), K requirements between species and cultivars 

(Gray et. al., 1953), measurement procedures (Woods et. al., 2005), application of plant 

stress methodology (Carroll and Petrovic, 1991), etc. 

 

Calcium 

Calcium (Ca) and magnesium (Mg) are needed in larger amounts than most all 

other micronutrients.  Calcium is absorbed by plants as the Ca+2 ion and supplied to 

plants roots by mass flow and root interception.  Ca is highly immobile within the plant 

with little movement through phloem constituting approximately 0.50 to 1.25% by tissue 

dry weight of plants (Carrow et al., 2001).  Ca is extremely immobile within soils and 

plants alike, however deficiencies in turfgrass are rare in field situations due to Ca 

immobility and fibrous monocot rooting characteristics (Carrow et al., 2001).  

Perhaps the most important role of Ca in plants is the stabilization of cell walls, 

preventing breakdown of cell membranes and loss of cellular compounds, particularly 

under elevated temperatures (Marschner, 1995).  Ca+2 applications have been shown to 

decrease the severity of lipid peroxidation of drought stressed tall fescue and Kentucky 

bluegrass plants (Jiang and Huang, 2001).  Fu and Huang (2003) noted that levels of 

malondialdehyde (MDA), a by-product of lipid peroxidation, were lower following foliar 

applications of Ca.  Calcium also takes part in the promotion of cell division, protein 

synthesis, and support of carbohydrate movement within the plant.   
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While beneficial effects of Ca have long been explored, recent research indicates 

that additional Ca fertilization effects may not be necessary.  St. John et. al. (2003) 

concluded additional Ca treatments had no positive effects on clipping yield, turf quality, 

or Ca concentration of leaf tissue in creeping bentgrass.  Furthermore, the study showed 

detrimental effects on other leaf tissue nutrient contents are possible due to competition 

of cation exchange sites. 

 

Magnesium 

Plant uptake of the magnesium (Mg) ion is as the Mg+2 ion and enters plant roots 

via mass flow and diffusion.  Mg is highly mobile within the plant, with the ion readily 

translocated within upward (xylem) and downward (phloem).  Leaf tissue content of Mg 

is usually between 0.15 to 0.50% (dry weight).  Mg deficiencies in turf have been shown 

to reduce leaf length, shoot length, and shoot weight (Kamon, 1974).  Mg is located in the 

center of the chlorophyll molecule and 6 to 25% of a plant’s total Mg content can be used 

for this purpose (Carrow et al., 2001).  A molecule of chlorophyll contains approximately 

7% magnesium (McCarty, 2001).  Magnesium is required activation of two enzymes in 

the synthesis of chlorophyll, as well as being involved as a structural component in 

ribosomes.  

Rehm and Sorensen (1985) reported a linear increase of plant tissue Mg 

concentrations with increasing rates of Mg fertilization on corn grown on sandy soil (Zea 

mays L.).  This finding correlates well with the findings of other studies performed on 

warm-season turfgrass species (Cripps, 1989; Sartain, 1985; Landua, 1973).  Sartian 
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(1993) revealed applications of MgSO4 increased visual quality and clipping yields of 

hybrid bermudagrass and perennial ryegrass.   

Conversely, Mg fertilization has been shown to have very little effect on the Mg 

concentration of tall fescue (West and Reynolds, 1984).  Sartain (1993) reported that 

applications of Mg to plots in which clippings were removed increased the amount of 

thatch.  Other research has shown that soil and tissue Mg concentrations are inversely 

related to K soil and tissue concentrations (Miller, 1999; Belesky and Wilkinson, 1983; 

Landua et. al., 1973).  However, soil exchangeable Mg levels may offer a viable 

explanation for conflicting results. 

 

K/Ca/Mg Interaction 

The soil level and plant uptake interaction between K, Mg, and Ca has been 

studied for many years.  Data suggests that K is needed by plants in greater proportions 

than Ca and Mg.  A recent trend in turfgrass management is the fertilization of N and K 

at a 2:1 to 1:1 ratio (Turgeon, 2005; Carrow et al., 2001; Beard and Rieke, 1966) to 

improve stress tolerance, although Synder and Cisar (2000) reported increasing K rates 

beyond a N-K ratio of 1:0.5 to 1:1 had no effect on bermudagrass appearance, shoot 

growth, or root weight.  Such high levels of K fertilization have been shown to decrease 

amounts of soil available Ca and Mg (Woods et. al., 2005; Miller, 1999; Sartain, 1993; 

Cripps et. al., 1989).  Additionally, applications of Ca and/or Mg will decrease soil levels 

and mobility of K.  Sartain (1993) reported that soil extractible Ca was reduced with 

applications of K and reduced to a greater extent with the application of Mg.  



 
 

15 
 

Applications of K at 200 kg ha-1 increased clipping yield of ‘Tifway’ bermudagrass while 

depleting soil extractable Ca levels.  When Ca, Mg, and K were applied, soil extractible 

K was reduced.  It is possible that the divalent nature of Ca and Mg would explain the 

loss of soil K when all were applied.  Woods et al. (2005) reported decreases in leaf 

tissue and extractible soil Ca and Mg levels in response to increasingly higher K 

applications on ‘L-93’ creeping bentgrass when 1:5 H2O and 0.01 M SrCl2 extraction 

methods were used.   

Miller (1999) showed that by increasing K fertilization, extractable soil Ca and 

Mg in loamy sand and a sand-peat mixture decreased.  Also, with increasing K 

applications, leaf tissue Ca and Mg concentrations were reduced in hybrid bermudagrass.  

Cripps et. al. (1989) also reported similar findings of K fertilization increasing tissue K 

concentrations while lowering plant Ca and Mg concentrations in Coastal bermudagrass 

(Cynodon dactylon (L.) Pers.).  Landua et al. (1973) correlated K and Mg fertilization on 

Coastal bermudagrass.  Increasing applications of K increased K and decreased Mg tissue 

concentrations.  Conversely, applications of Mg increased Mg tissue levels while 

decreasing K tissue concentrations.  West and Reynolds (1984) found that K fertilization 

increased plant K levels while applications of Mg did not.  Soil test (Mehlich I) showed 

very high extractable soil Mg and Ca at the onset of the study.  Research showed no 

effects on Ca tissue concentrations.  In another study, corn was used to determine the 

fertilization effects of 6 rates of K and Mg.  As observed previously discussed studies, 

Rehm and Sorensen (1985) found Ka and Mg tissue concentrations increased with 
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increasing fertilization of each nutrient, respectively.  However, at all Mg fertilization 

levels, Mg tissue concentrations decreased curvilinearly with increasingly higher K rates. 

 

Plant-Water Relations 

The essential components necessary for proper function and survival of plant life 

are food (in the form of carbohydrates), nutrients, sunlight, and water.  Nearly every plant 

process is somehow directly or indirectly affected by that plant’s available water supply. 

Because the water content of actively growing turfgrasses can reach up to 90% of total 

mass, a small decrease in the moisture content of a plant can dramatically affect growth 

and size, even lead to death (Taiz and Zeiger, 2005; Turgeon, 2005).  Water plays 

countless functions within a plant including mineral and solute transport, substrates in 

processes such as photosynthesis, maintaining turgidity of cells, buffering against internal 

temperature changes through transpiration.  Plant seeds require moisture for seed 

germination.  Young, actively growing plants maintain a high rate of respiration, which is 

dependent on their internal water content.  Mature leaves must maintain turgor pressure 

within cells in order to avoid wilting, closing of stomates, reduction of photosynthesis, 

and interference with countless other primary metabolic processes.  

Water is supplied to turfgrass via precipitation and/or irrigation. A majority of 

water enters turfgrass roots through the apical portion of the root and through root hairs.  

Plants are known to possess two water absorbing mechanisms: active absorption which 

occurs in slowly transpiring plants where roots act as osmometers and passive absorption 

which is seen in plants rapidly transpiring where water is pulled in through the roots 
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(Kramer and Boyer, 1995; Kramer, 1932).  Water uptake is driven by the increasingly 

negative water potential gradient from the soil, to the plant, and eventually to the 

atmosphere.  The negative water potential of the atmosphere can be so great under certain 

conditions that water uptake by the plant can not sustain evapotranspirational water loss.  

On hot, sunny days with low humidity, wilting of creeping bentgrass from a loss of cell 

turgor pressure readily occurs.   

Once within the turfgrass plant, water is primarily transported to desired areas by 

way of xylem tracheids and vessel elements.  The importance of water for plant function 

is seen here when it becomes involved in various plant processes. Transport of essential 

plant nutrients is critical for the development of organic structures, activation and 

production of enzymes, and constituents of photosynthetic processes.   

At optimal soil moisture, plants are able to maintain full turgor pressure under 

almost all but the most extreme environmental conditions of evaporative demand. Turgor 

pressure is fundamental for many physiological processes including cell enlargement, gas 

exchange within leaves, phloem transport, and transport of ions and solutes across 

membranes (Taiz and Zeiger, 2005).  With a reduction of soil moisture, however, turgor 

becomes progressively reduced and two things can occur. First, stomatal guard cells close 

as a drought avoidance mechanism.  Secondly, the production of a deeper and more 

extensive root system is initiated, given soil temperatures are not limiting.  This allows 

the plant to exploit stored soil moisture, lessening the potential degree of water stress at 

any stage between irrigation or rainfall events, done as a drought avoidance mechanism 

(Kneebone et al., 1992).   
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Water becomes especially important for creeping bentgrass in the summer months 

when transpiration is at its climax.  Transpiration is a two step process in which the 

evaporation of water from cell surfaces into intercellular spaces occurs, followed by the 

diffusion of water in the gas forms diffuses out of plant tissues through stomata (Kramer 

and Boyer, 1995).  Stomata are openings on leaf surfaces that allow for gas exchange and 

plant mediated transpirational water loss.  Guard cells surround stomatal openings and 

control the opening or closing of the stomate.  K acts as an osmoregulating solute in 

guard cells, altering the turgor pressure of guard cells to control stomatal openings.  

Under low plant K concentrations, turgor pressure of guard cells can not be maintained, 

forcing stomates to remain open and resulting in a significant increase of transpiration. 

 

Soil Hydrophobicity and Wetting Agents 

 The occurrence of localized dry pots (LDS) has been identified as one of major 

concerns of golf putting greens, particularly greens containing greater than 80% sand as 

defined by the USGA (USGA, 1993).  Several possible causes for LDS have been 

examined, such as excessive thatch layer, compacted soil, poor irrigation coverage, soil 

salinity, disease, and hydrophobic soil (Karnok and Tucker, 2000).  At least one causal 

agent of LDS has been reported as basidiomycete fungi, most likely Lycoperdon spp. 

(Miller and Wilkinson, 1977; Savage et al., 1969).  Studies have reported that soil 

hydrophobicity develops due to an organic coating that covers soil particles (Roy and 

McGill, 2001; Tucker et al., 1990).  Humic (Roberts and Carbon, 1972) and fulvic 

(Miller and Wilkinson, 1979) acids have been shown to be responsible for the organic 
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coating on sand particles.  Water-repellent soil typically forms within the top 5 cm of the 

soil profile, since the majority of organic matter, root activity, and microorganism 

populations, all necessary elements for the development of hydrophobic soil (McCarty, 

2005; Karnok and Beall, 1995; Tucker et al., 1990).  Soil particles covered with these 

organic acids greatly increase the surface tension of water, causing water to “bead up” 

and preventing soil to absorb water.  Water is dipolar by nature, containing both positive 

and negative ends due to uneven layout between oxygen and hydrogen atoms in each 

water molecule.  Because of this, water is able to form bonds between it and other polar 

molecules as hydrogen bonds; however, water and other polar molecules are strongly 

repelled by nonpolar molecules.  Organic acids possess nonpolar tails, causing a strong 

repulsion of water in the soil profile, even after heavy irrigation or precipitation (Karnok 

et al, 2004).  Following development of LDS, turfgrass shows symptoms typical to that of 

severe drought stress initially, forming into round to irregularly shaped dry spots, 

hindering aesthetic appearance and preventing rewetting of soil.  Severe cases of LDS 

can be detrimental to turf, leading to death in some cases under severe summer stress.  

 Perhaps the best method of combating LDS is through strategically timed 

applications of wetting agents (WA), or soil surfactants in addition to a sound water 

management program.  Soil surfactants, or wetting agents (WA), can be described as any 

substance that lowers the surface tension of a liquid by modifying its surface 

characteristics (Beard, 2005).  WA molecule is made up of a hydrophilic (polar) water 

attracting group and a long, oil-soluble (nonpolar) hydrocarbon chain (Karnok et al., 

2004).  The nonpolar tail forms a bond with the nonpolar organic substance coating the 
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soil particle.  The polar, hydrophilic group is able to attract water, greatly improving the 

wettability of that soil.  

The use of soil surfactants has shown to be most effective for relieving LDS and 

sustaining adequate soil moisture (Blodgett et al., 1993; Wiecko and Carrow, 1992; 

Wilkinson and Miller, 1978).  Depending on their ionization or charge, WA’s are 

classified into three major groups: anionic, cationic, and nonionic.  Anionic surfactants 

ionize with water, forming a negative charge, while cationic surfactants form positive 

charges when combined with water.  The disadvantage of anionic and cationic surfactants 

is that they react with other ions in solution, forming insoluble salts with calcium, 

magnesium, and ferric ions (Karnok et al., 2004).  Nonionic surfactants are the most 

widely used surfactant on turfgrass (McCarty, 2005).  Nonionic WAs do not form these 

salts, reducing phototoxic effects and foaming when mixing.  

 Wetting agents have been used for some time to increase water-holding capacity 

of turfgrass soil media primarily by reducing the hydrophobicity of the growth medium 

(Karnok and Tucker, 2001a). Wilkinson and Miller (1978) determined the severity of 

LDS caused by hydrophobic soil can be reduced by improving moisture retention and 

infiltration when under WA treatments.  In a study by Blodgett et al. (1993), WA’s were 

shown to promote wettability of a soil medium by lowering the surface tension of water.  

It appears that the layer of hydrophobic soil caused, at least in some part, by acidic 

compounds is confined to the uppermost portions of the soil profile.  Tucker et al. (1990) 

determined the hydrophobic condition seen in their study was limited to the upper 50 mm 

of soil and was correlated with the presence of an organic soil particle coating.  Leinauer 



 
 

21 
 

et al. (2001) reported that Primer WA consistently improved water retention at depths of 

150 and 250 mm when compared to Midorich wetting agent.  Midorich however, was 

shown to retain significantly more soil moisture than Primer at the 50 mm depth.  On 

creeping bentgrass, WA treatment increased root length by 27% and improved turf color 

and quality under a single application (Karnok and Tucker, 2001a).  Additionally, 

molarity of ethanol droplet test (MED) value of the hydrophobic soil was also reduced for 

up to 12 weeks following application.   

WAs have shown promising results of decreasing the time taken for water to 

infiltrate soils. One such study examined the ability of six commercially available wetting 

agents to lower irrigation infiltration times on bermudagrass [Cynodon dactylon (L.) 

Pers.] sod (Miyamoto, 1985). Results of that study showed infiltration times were greatly 

decreased with the addition of all WA, some to a higher degree than others.  Morgan et 

al. (1966), Ruemmele and Amador (1994), and Wiecko and Carrow (1992) all reported 

similar results.  While the positive effects of WA have been well documented, few 

studies have shown negative results following the application of a WA.  Wiecko and 

Carrow (1992) observed turf discoloration and reduction in deep rooting (30-60 cm) and 

of ‘Kentucky 31’ tall fescue (Festuca arundinaecea Schreb.) by as much as 44 to 58%.  

Callahan et al. (1998) correlated increased application of Wet-Ag WA with increased 

thatch buildup of creeping bentgrass.  Engel and Alderfer (1967) offer viable explanation 

for why this occurred, citing WAs reduce surface tension of water, resulting in quicker 

drying of turf and an interruption in the organic matter decay process.  
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Reduced Light Environments 

Maintaining acceptable turfgrass under shaded conditions is a major challenge for 

turfgrass managers worldwide.  It is estimated that 20 to 25% of existing turfs must be 

maintained with some degree of reduced light (Beard, 1973).  When grown under shaded 

conditions, light quality and light intensity reaching turfgrass leaves are reduced, 

resulting in plant morphological and physiological modifications (Baldwin, 2008; 

Bunnell, 2005a; Bunnell, 2005b; Goss et al., 2002; Bell and Danneberger, 1999; Kephart 

et al., 1992; Dudeck and Peacock, 1992; Wilkinson et al., 1975; Wilkinson and Beard, 

1974).  In addition to light quality and intensity factors, several microclimate factors 

affected by shading such as restricted air movement, reduced soil and air temperatures, 

prolonged leaf wetness and higher relative humidity; all conditions favorable for disease 

development (Baldwin, 2008; Koh et al., 2003; Vargas and Beard, 1981; Beard, 1997; 

Beard, 1973). 

Turfgrass plants rely on the light and chemical reactions of photosynthesis sustain 

their energy supply for adequate growth and development.  Photosynthesis is the 

chemical conversion of light energy, carbon dioxide (CO2), and water (H20) into usable 

plant energy (carbohydrates) and the by product oxygen (O2).  Environments of low light 

intensities reduce photosynthetic rates and can be detrimental to the growth and 

development of certain plants.  More detrimental than microclimate factors, shading 

greatly reduces light quality (red:far red ratio, R:FR) and quantity (PPFD) reaching the 

turfgrass surface (Taiz  and Zeiger. 2005).  Light saturation points for optimum 

photosynthesis are less than one-half full sunlight for C3 grasses. Light saturation beyond 
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one-half full sunlight leads to decreases in photosynthesis efficacy due to 

photorespiration in cool-season species (McCarty, 2005; Taiz and Zeiger. 2005; Fry and 

Huang, 2004).  Conversely, C4 turfgrass species exhibit a nonsaturating growth curve for 

light intensities found in nature, requiring full sunlight for optimum photosynthesis 

(McCarty, 2005; Taiz and Zeiger. 2005; Fry and Huang, 2004).  Morphological and 

anatomical differences between C4 and C3 turfgrass species, and cultivars of the same 

species, produce varying plant responses to reduced irradiances. For example, 

zoysiagrass shade tolerance was noted greater than bermudagrass (Bunnell et al., 2005c), 

while seashore paspalum has been shown more shade tolerant than selected bermudagrass 

cultivars (Jiang et al., 2004).   

Among cool-season turfgrass species, Gardner and Taylor (2002) noted higher 

overall quality and turf density on shaded tall fescue, followed by fine fescue, Kentucky 

bluegrass, rough bluegrass, and perennial ryegrass cultivars. On closely mowed creeping 

bentgrass, Bell and Danneberger (1999) reported ‘Penncross’ was able to maintain 

acceptable turf quality while under shade 40% of the day, while Goss et al. (2002) 

documented 60% light reduction had negligible effects on creeping bentgrass mowed at a 

greens height.  Gardner and Wherley (2005) noted unacceptable performance of rough 

bluegrass under shade, and also found high rates of trinexapac-ethyl (TE) resulted in 

greater losses in density.  Rough bluegrass can tolerate shaded conditions, however the 

combination of traffic and low mowing heights, such as in golf tee situations, proves 

detrimental to rough bluegrass performance (Beard, 2002). 
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Physiological and morphological responses of cool season grasses to reduced light 

irradiance include more upright growth habits, thinner and longer leaves, reduced density, 

shallow rooting, and reduced tillering (Dudeck and Peacock, 1992).  Many studies show 

reduced fertilization, particularly nitrogen, as a management practice to sustain turf 

quality in shaded conditions.  Goss et al. (2002) showed foliar N applications of 150-185 

kg ha-1 yr-1 produced greater turf quality than higher N rates.  Additionally, golf course 

superintendents have recently began increasing supplemental iron applications in order to 

maintain desired turfgrass color and reduce N input.  However, effects of foliar N and Fe 

applications, and the potential interaction under reduced light environments, on 

overseeded cool-season putting greens during the winter months are unknown.  

  

Nitrogen 

 Nitrogen is applied in greater amounts to turfgrass than any other nutrient for 

growth and development, and nutritional requirements of turf.  Nitrogen (N) constitutes 2 

to 5% of total dry leaf weight, and is highly mobile within the plant and in soils (Liu et 

al., 2007; Liu and Hull, 2006; Hull and Liu, 2005; McCarty, 2005; Carrow et al., 2001). 

N is generally taken up by plant roots in nitrate (NO3
-) or ammonium (NH4

+) forms, 

while urea is preferentially taken up with foliar absorption (Carrow et al., 2001; 

Marschner, 1995).  Turfgrass fertility programs of are primarily based on N fertilization.  

Nitrogen requirement for overseeded bermudagrass golf greens typically involves 

fertilization with 0.5 lb N/1,000ft2 monthly (24 kg N ha-1 m-1) during the fall and winter 

months (McCarty, 2005; McCarty and Miller, 2002).   
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 Initial N deficiency symptoms are general chlorosis, or leaf yellowing, beginning 

in the older leaves, due to the high mobility of N in plants.  A major role of N is as a 

constituent in the chlorophyll molecule, the light harvesting molecule responsible for 

capturing light energy from the sun through photosynthesis and converting it into usable 

plant energy (Marschner, 1995). As a constituent of the chlorophyll molecule, N 

deficiencies often result in decreases in total chlorophyll content, and thus, loss of leaf 

color.  Under prolonged deficiency, vegetative growth rate is reduced, leaf senescence 

ensues, and a reduction of shoot density is observed in response to loss of leaves and 

decrease in tillering (Goss et al., 2002; Carrow et al., 2001).   

 The most common recommendation to reduce shading injury on turf is through 

reduced levels of N fertility (Stier and Gardner, 2008; Fry and Huang, 2004; Dudeck and 

Peacock, 1992).  Intraspecific competition between turfgrass plants under shaded 

conditions causes turf to grow upright rapidly in an attempt to outcompete neighboring 

plants.  Agronomically, excessive shoot growth of putting greens is a disadvantage, 

especially under excessive N and shading conditions, producing thinning of turf and 

reduced tillering and stolen growth.  Because reduced light and excess N promote shoot 

growth, root systems and underground carbohydrate storage are sacrificed (Baldwin, 

2008; Bunnell et al., 2005a; Goss et al., 2002; Trenholm et al., 1998; Mazur and Hughes, 

1976).   

 

 

 



 
 

26 
 

Iron 

 Of the micronutrients, iron (Fe) is the most likely to show deficiencies in turf 

(Turgeon, 2005) and considered to be the most widely applied (Turner and Hummel, 

1992).  Tissue Fe concentrations vary between species, but typically range from 100 to 

500 ppm (Carrow et al., 2001; Marschner, 1995).  Because of enhanced dark green color 

enhancement following Fe applications, many superintendents apply Fe as a partial 

substitute for annual N fertilization (Munshaw et al., 2006) or to mask phytotoxic effects 

of plant growth regulators and herbicides (Zhang et al., 2001).  Iron is a component of 

heme proteins, which are involved in the detoxification of hydrogen peroxide (H2O2) and 

cell wall lignin formation (Marschner, 1995).  Perhaps Fe’s most important role, however 

is as a constituent for production of chlorophyll.  Thylakoid membranes are the site of the 

light reactions of photosynthesis, and require large amounts of Fe for membrane 

structural and functional integrity (Marschner, 1995).   

 Currently, golf course superintendents apply foliar applications of Fe to promote 

dark green color without affecting shoot growth, regardless tissue or soil Fe 

concentrations (McCarty, 2005; Carrow et al., 2001; Turner and Hummel, 1992; White 

and Schmidt, 1990, Schmidt and Snyder, 1984).  Glinski et al. (1992) studied Fe 

fertilization effects on creeping bentgrass putting greens and found Fe enhanced turfgrass 

color in all seasons and increased shoot growth, depending on the Fe carrier.  On 

centipedegrass (Eremochloa ophiuroides (Munro) Hack.), applications of 2.0 kg Fe ha-1 

applied in combination with 9.8 kg N ha-1 increased visual quality, however elevated air 

temperatures often led to phytotoxicity (Carrow et al., 1988).  On bermudagrass, late-
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season applications of Fe showed no benefit on turfgrass color retention leading into 

dormancy or enhancement of spring greenup (Munshaw, 2006).  

 

Winter Overseeding 

 Each fall, as air temperatures consistently fall below 15.5oC, bermudagrass 

growth ceases and turf browning follows temperature reductions below 10oC (McCarty, 

2005; McCarty and Miller, 2002).  To sustain acceptable playing conditions, golf course 

superintendents in the southeastern U.S. annually overseed bermudagrass putting greens 

with rough bluegrass (Poa trivialis L.) or perennial ryegrass (Lolium perenne L.).  

Advantages of overseeding include winter green color, uniform playing surface, less wear 

injury to dormant turf, and enhanced playing conditions through the winter months. 

However, winter overseeding does have limitations.  The establishment of acceptable 

overseeded stands typically involves intensive cultural practices up to six weeks prior to 

overseeding, increased labor, water and fertility inputs, weed control measures, and 

decline in putting quality during spring transition (Liu et al., 2007; Long; 2006; McCarty, 

2005; Turgeon, 2005;  Beard, 1973).   

 Rough bluegrass, commonly referred to by its scientific name, is a cool-season 

perennial, demonstrating excellent shade and winter tolerance, increasing in popularity as 

a primary overseeding species (Hurley, 2003).  Because of its stoloniferous growth habit, 

it can tolerate much lower mowing heights than Kentucky bluegrass (Christians, 2004) 

and does not require radical increases in mowing heights following establishment needed 

for ryegrass (McCarty, 2005; McCarty and Miller, 2002).  Rough bluegrass establishment 
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is less invasive than perennial ryegrass, and due to its susceptibility to heat and drought 

stress, rough bluegrass spring transition back to bermudagrass is rapid (Hurley, 2003).   

Limited scientific research investigating Poa trivialis overseeding management 

exists in literature.  As ultradwarf bermudagrass cultivars became commercially 

available, establishing a quality overseeding in the fall was a major concern.  

Hollingsworth et al. (2005) reported differences among bermudagrass cultivars on visual 

quality of rough bluegrass overseeding, with ‘Mobile 9’, ‘Champion’, and ‘MS Supreme’ 

bermudagrasses resulting in significantly higher ratings. The study also concluded Poa 

trivialis shoot density was largely unaffected by N source.  Camberato and Martin (2004) 

noted salinity of 5.0 dS m-1 reduced germination of rough bluegrass seed by as much as 

85% compared to 0 dS m-1.  Additionally, Liu et al. (2001) reported differences among 

seed germination at decreasing day/night temperatures, noting significantly less 

germination as temperatures declined from 21/6.1oC to 16/2.7oC.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

CHAPTER 3 

MANAGING SUMMER STRESS ASSOCIATED WITH CREEPING  

BENTGRASS WITH VARIOUS SOURCES OF POTASSIUM,  

CALCIUM, AND MAGNESIUM 

 

Introduction 

 Creeping bentgrass (Agrostis stolonifera L.) is currently the most widely used 

cool-season turfgrass on golf course putting greens in northern states and transition zone 

of the United States (McCarty, 2005; Turgeon, 2005; Beard, 2001).  Traditionally, 

creeping bentgrass has presented golfers the most superior putting conditions with its fine 

leaf texture, year-round green color, and lack of requirement for winter overseeding, 

which is often needed for bermudagrass greens.  However, as a C3 plant, creeping 

bentgrass does have its limitations.  Creeping bentgrass is adapted to cool, moist regions, 

but is commonly used as putting surfaces in the U.S. transition zone, where it declines 

during the hot summer months due to high temperatures and relative humidity.  

Economically, annual maintenance costs of creeping bentgrass greens can easily exceed 

§75,000 compared to bermudagrass greens for an 18-hole golf course due to increased 

labor, increased water usage, fungicides, etc (McCarty, 2005). 

 Potassium (K) is a primary, essential nutrient for the growth and development of 

turfgrass, with an average plant tissue concentration of 1.5-3.0% by dry leaf tissue weight 

(McCarty, 2005; Carrow et al., 2001; Marschner, 1995).  Potassium is the only essential 

plant nutrient that is not a constituent of any plant compound.  However, potassium’s 
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most critical role is functioning as an activator of more than 80 enzymes within plants, 

such as starch synthase, which converts glucose into a starch storable form (Taiz and 

Zeiger, 2005; Marschner, 1995).  Potassium is also actively involved in osmoregulation 

of water in plant cells, with the overall osmotic potential of plant cells ultimately 

dependent on K fluctuations within guard cells (Havlin et al., 2005).  By allowing plants 

to accurately control stomatal opening and closing, K has a major impact on turf water 

usage as it pertains to water uptake, water use efficiency, and evapotranspiration.   

Potassium is often referred to as the “health element” for its strong influence on 

heat, drought, cold, disease, and salinity stresses.  Fu and Huang (2003) reported foliar K 

applications slowed leaf senescence and allowed turfgrass to maintain photosynthetic 

abilities under supraoptimal temperatures, increasing creeping bentgrass heat tolerance.  

Turner and Hummel (1992) found K increased disease resistance, drought, heat, and wear 

tolerance of both warm and cool-season species.  Markland and Roberts (1967) noted that 

with increasingly higher levels of K, tissue moisture levels were decreased, reducing 

winter injury of creeping bentgrass.  While much scientific data support the idea that K 

plays a significant role in plant water relations and environmental stress tolerance, few 

studies have investigated the impact liquid vs. granular K carriers may play on summer 

creeping bentgrass decline associated with other plant nutrients such as calcium (Ca) and 

magnesium (Mg). 

Although researchers have well-documented the beneficial effects of K on 

environmental stresses on turfgrasses (Carrow et al., 2001), the interaction of K with 

other nutrients has been rarely determined.  Many studies have been performed 
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investigating the influence of K on soil and plant extractable Ca and Mg.  Miller et al. 

(1999) reported increasing K fertilization on bermudagrass resulted in reduced soil 

extractable Ca and Mg in native and soil-peat media with corresponding decreases in leaf 

tissue Ca and Mg.  Woods et al. (2005) supported these findings on L-93 creeping 

bentgrass, citing K-imposed decreases in plant and soil Ca and Mg among various 

popular soil nutrient testing methods.  However, the findings of such reports have been 

highly influenced by factors such as K rates, soil type, weather conditions, nitrogen 

inputs, etc. 

Since previous research offers contrasting results about the influence of potassium 

on plant extractable calcium and magnesium, and K carrier research on creeping 

bentgrass is lacking, further research is warranted as it pertains to creeping bentgrass 

summer decline.  The objectives of the study were to test if light, frequent applications of 

liquid K, applied in conjunction with supplemental Ca and Mg, could relieve summer 

stress exhibited by creeping bentgrass by maintaining acceptable turf quality and root 

growth during the summer months and to determine K, Ca, and Mg recovery in clippings 

and roots during the summer and fall months. 

 

Materials and Methods 

A two year field study was conducted at Clemson University in Clemson, SC 

from May 25, 2006 through October 31, 2007 on an established ‘Crenshaw’ creeping 

bentgrass research green built to USGA specifications (Appendix C-1 and C-2).  Plot 
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dimensions measured 2 m x 1.5 m arranged in a complete randomized block design with 

four replications (Appendix B-1). 

Potassium was applied to the treatment plots at 195.29 kg K ha-1 yr-1 in either 

granular or liquid form.  Granular forms of slow-release, polyon-coated potassium sulfate 

(0-0-50), derived from polymer coated potassium sulfate (Harrell’s Fertilizer, Inc., 

Lakeland, FL), were applied at 65.1 kg K ha-1 on dates of core aerifications.  Core 

cultivation of creeping bentgrass plots were performed on May 25, September 12, and 

October 19 of 2006 and March 6, September 18 and October 17 of 2007.  Creeping 

bentgrass was core cultivated with 1.3 cm inside diameter hollow tines with a length of 

10.2 cm at 5.1 cm spacing.  Cores were harvested and removed.  Granular potassium was 

mixed with topdressing sand and applied by hand and swept in using push-type brooms. 

After granular potassium treatments were swept, N and P fertilizations were supplied by 

granular Milorganite (6-2-0) at 32.71 kg N ha-1and a light topdressing to cover the holes 

left by the hollow tine aerification.  Plots were again swept by hand and irrigated for 15 

minutes by automated, overhead irrigation.  Particle size and physical characteristics of 

topdressing sand are shown in Appendix C-1 and C-2. 

Liquid potassium treatments were applied with a CO2 spray tank at 16.27 kg K ha-

1 every 14 days from May 29 to November 10, 2006 and May 30 to October 30, 2007.  

Liquid potassium rate of 16.27 kg K ha-1 was equivalent to 195.29 kg K ha-1 split 

between 12 applications during the course of the year.  The liquid K fertilizer was a 0-0-

30 (N-P2O5-K2O) derived from potassium carbonate (Harrell’s Fertilizer, Inc., Lakeland, 

FL). 
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Calcium treatments were applied every four weeks from June 5 to October 25 in 

2006 and June 6 to October 23 in 2007 at a rate 48.82 kg Ca ha-1 annually in six equal 

applications.  Calcium source used was a liquid 12% Calcium Complex derived from 

Calcium Glucoheptonate produced by Grigg’s Brothers (Albion, ID).  Calcium treatments 

were made using a CO2 backpack sprayer and watered in immediately using overhead 

irrigation. 

 Magnesium treatments were also applied on a monthly basis from June 6 to 

October 25 in 2006 and from June 7 to October 22 in 2007 at a rate of 48.82 kg Mg ha-1 

annually in six equal applications.  Magnesium source was a 5% Magnesium Chelate 

derived from Magnesium Glucoheptonate produced by Grigg’s Brothers.  Treatments 

were made in the late afternoon for each application and watered in after approximately 

three hours following application.   

Mowing was performed six d wk-1 with a walk-behind reel mower at 3.2 mm with 

clippings removed.  Irrigation was applied at the onset of drought stress throughout the 

study period, to provide an average of 5 cm wk-1 in addition to precipitation.  Monthly 

precipitation is shown in Appendix D. 

Nitrogen was supplied to the plots in the form of dissolved urea (46-0-0). 

Nitrogen applications biweekly at 4.88 kg N ha-1 every 14 days using a CO2 spray tank.  

A total of 14 applications were made in 2006 at 68.35 kg N ha-1 from May 29 to 

December 3.  In 2007, a total of 83 kg N ha-1 was applied from March 24 to October 29. 

On nitrogen application dates of April 17 and May 1, 2007, rate was increased to 12.21 

kg N ha-1.  Granular Milorganite (6-2-0) was also applied over all plots at 32.55 kg N ha-1 
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on core aerification dates.  Total N rates for 2006 and 2007 were 166 and 180.65 kg N ha-

1 per year, respectively.  A single application of iron (Sequestrene 330 Fe) at 2.7 kg a.i. 

ha-1 was made on 17 April 2007 to increase turfgrass color.  A preventative fungicide 

program was established to prevent the occurrence of dollar spot (Sclerotinia 

homeocarpa F.T. Bennett), pythium (Pythium spp.), and brown patch (Rhizoctonia spp.).  

To prevent and control insect outbreaks, Spinosad (Conserve SC) and Lambda-

cyhalothrin (Scimitar GC) were applied as needed during the two years of the study at the 

manufacturer’s labeled rates. 

 

Data Collection 

Visual turf quality ratings were recorded biweekly throughout the study period 

each year. Turf quality was rated on a 1 to 9 scale with 9 denoting optimal color, density, 

and health and 1 denoting dead, brown turf.  Visual ratings below 7 were considered 

unacceptable. 

Chlorophyll was measured in June, August, and October each year.  Fresh 

clippings were harvested during mowing and chlorophyll was extracted using dimethyl 

sulfoxide (DMSO) (Hiscox and Israelstram, 1979) (Appendix A).  Total shoot 

chlorophyll concentration (mg g-1) was determined using a spectrophotometer 

(GenesysTM 20, ThermoSpectronic, Rochester, NY) with absorbance values at 645 and 

663 nm used in the equation determined by Arnon (1949). 

Fresh clippings were harvested monthly from June to October using a walk-

behind reel mower with clipping collector.  Fresh samples were placed in an 80oC oven 



 
 

35 
 

and dried for at least 72 hours to determine clipping dry weight.  Dry tissue samples from 

June, August, and October of each year were analyzed for nutrient contents by the 

Clemson University Agriculture Service Laboratory for P, K, Ca, Mg, Zn, Cu, Mn, Fe, S, 

and Na concentrations. Leaf nutrient concentrations were determined using wet ashing 

procedures with a Digestion Block Magnum Series Block Designer (Ivesdale, IL) and an 

ICP model TJA-61E autosampler.  

Root samples were harvested using a cylindrical core harvester with a diameter of 

10.8 cm to a depth of 20 cm.  Root samples were harvested in June, August and October 

each year.  Roots were separated from thatch, washed thoroughly and placed in an 80oC 

oven for at least 72 hours before determining root dry weight.  Dried samples were 

assessed for root dry weight and assessed for nutrient content by the Clemson University 

Agriculture Service Laboratory using the same procedures described for leaves above.   

Volumetric soil moisture content was determined monthly from June to October 

within the top 10 cm of soil using a time-domain reflectometer (TDR) (ML2, Delta-T 

Devices Ltd., Cambridge CB5 OEJ, England) soil moisture sensor.  A total of 3 readings 

were recorded from each individual plot and averaged together, giving a mean recording 

for each plot.  

 

Data Analysis 

All statistical computations were conducted using analysis of variance (ANOVA) 

within the Statistical Analysis System (SAS Institute, 2003).  Means were separated using 
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Fisher’s Protected Least Significant Difference (LSD) test.  An alpha of 0.05 was used 

for all data comparisons. 

 

Results and Discussion 

Significant treatment by year interactions were detected; therefore, results will be 

examined separately for each year.  A three-factor interaction between K, Ca, and Mg 

occurred for turfgrass quality (TQ) and will be examined as treatment combinations for 

each year.  No meaningful interactions between K carriers, Ca rates and Mg rates were 

observed (P > 0.05) for the other parameters measured; therefore, main effects of each 

treatment for 2006 and 2007 were examined separately.   

 

Turf Quality 

 Significant differences in TQ among K treatments occurred within the first month 

of the study in Year 1 (Table 3-1).  Between plots receiving no K, granular (Grn), or 

liquid (Liq) potassium, liquid K carrier significantly reduced visual quality by June 2006 

and consistently produced the lowest turf quality until September 2006 (Table 3-1).  This 

immediate impact of foliar applied K can be explained by foliar burning of turfgrass 

under high rates of liquid potassium due to accumulation of fertilizer salts of leaf blades.  

Similar responses were observed by Johnson et al. (2003) on creeping bentgrass, where 

high rates of liquid K fertilization resulted in lower turf quality due to foliar burning 

caused by high concentrations of fertilizer salts.  Waddington et al. (1972) also noted 
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heightened leaf burn to Penncross creeping bentgrass receiving foliar potassium chloride 

(KCl) under high application frequency. 

 By 2007, acceptable turfgrass quality was only found on plots receiving Ca only 

in July, and both Ca and Mg only in July and October (Table 3-2).  By September and 

October, the highest visual quality ratings, 6.63 and 7.25 respectively, were demonstrated 

on plots receiving Ca and Mg only (Table 3-2).  The addition of Grn K carriers 

apparently had no great impact on visual quality in either year of the study.  Previous 

research confirms a lack of visual response to granular K applications in creeping 

bentgrass (Long, 2006; Woods et al., 2006; Johnson et al., 2003), bermudagrass (Goatley 

et al., 1994; Snyder and Cisar, 1992; Johnson et al., 1987), Kentucky bluegrass 

(Fitzpatrick and Guillard, 2004) and seashore paspalum (Trenholm et al., 2001). 

 As observed in Table 3-1 and 3-2, for one-half of the study duration, plots 

receiving Ca only provided the highest visual quality of all treatments.  Ca treatment 

consistently demonstrated greater turf quality on June, July, and September of 2006 and 

July and August 0f 2007 (Table 3-1 and 3-2).  Jiang and Huang (2001a, 2001b) 

confirmed exogenous Ca applications maintained turf quality under severe drought stress 

by reducing lipid membrane peroxidation and maintaining antioxidant activities.  St. John 

et al. (2003), however, reported no differences among color or quality of Crenshaw 

creeping bentgrass with the addition of 23 g Ca m-1 annually.  Foliar applications of Mg 

did not greatly influence TQ unless used in conjunction with Ca.  
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Table 3-1.  ‘Crenshaw’ creeping bentgrass visual turf quality in response to two K 
carriers, two Ca rates and two Mg rates in 2006. 

 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  0 indicates no calcium 
or magnesium fertilization, Ca = 49 kg calcium ha-1 annually, Mg = 49 kg 
magnesium ha-1 annually.  

 
‡  Values in columns followed by the same letter are not significantly different at  

p = 0.05 using Fisher’s Protected LSD.   
 
§ Turfgrass quality based on a visual scale of 1 to 9 with 1 = poorest, 9 = best. 

Visual rating of >7 indicates acceptable turf quality. 

K carrier † 

 
Ca/Mg 
carrier June‡ July August Sept October 

  --------------------Turfgrass Quality (1-9)§--------------------- 
No K 0 7.5 7.3  7.6  7.0  7.4  

 Ca 7.8 7.8  8.4  7.3  7.5  

 Mg 7.4  7.4  7.6  7.1  6.8  

 Ca + Mg 7.8  7.7  8.5  7.1  6.9  

Granular 0 7.5  7.4  7.0  6.9  7.3  

 Ca 7.6  7.5  8.0  6.9  7.8  

 Mg 7.5  7.5  7.9  7.0  7.0  

 Ca + Mg 7.6  7.4 7.3  6.5  7.3  

Liquid 0 7.4  7.3  6.9  6.8  6.8  

 Ca 7.5  7.4  7.9  7.0  7.3  

 Mg 7.6  7.5 7.0  6.9  6.5  

 Ca + Mg 7.5  7.3  7.9  7.1  6.9  

LSD  0.36 0.38 0.96 0.47 0.47 
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Table 3-2.  ‘Crenshaw’ creeping bentgrass visual turf quality in response to two K 
carriers, two Ca rates and two Mg rates in 2007. 

 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  0 indicates no calcium 
or magnesium fertilization, Ca = 49 kg calcium ha-1 annually, Mg = 49 kg 
magnesium ha-1 annually.  

 
‡  Values in columns followed by the same letter are not significantly different at  

p = 0.05 using Fisher’s Protected LSD.  NS = not significant at the 0.05 level. 
 
§ Turfgrass quality based on a visual scale of 1 to 9 with 1 = poorest, 9 = best. 

Visual rating of >7 indicates acceptable turf quality. 

K carrier † 

 
Ca/Mg 
carrier June‡ July August Sept October 

  ---------------------Turfgrass Quality (1-9)§-------------------- 
No K 0 5.8 6.3 5.6 5.5 6.4 

 Ca 6.6 7.7 6.9 6.3 6.8 

 Mg 5.5 6.0 5.8 5.6 6.6 

 Ca + Mg 6.5 7.5 6.5 6.6 7.3 

Granular 0 6.8 6.9 6.3 6.0 6.9 

 Ca 5.9 6.3 5.5 5.0 5.8 

 Mg 5.8 5.8 5.5 5.1 6.0 

 Ca + Mg 5.4 5.8 5.3 5.1 6.0 

Liquid 0 6.6 6.9 6.0 6.3 6.3 

 Ca 6.0 6.3 5.4 5.0 5.8 

 Mg 6.3 6.4 5.6 5.8 6.8 

 Ca + Mg 6.0 6.4 5.8 6.0 6.6 

LSD  NS 1.38 1.29 1.56 1.16 
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Chlorophyll Concentrations 

Increased K rates, either liquid or granular, had no meaningful effect on 

chlorophyll concentrations (Table 3-3).  Similar results have been observed with foliar 

KH2PO4 applications on ‘Penncross’ creeping bentgrass, where no significant effects on 

leaf chlorophyll content were observed during high heat stress (Fu and Huang, 2003).  

Also, no differences in chlorophyll content were noted for Ca or Mg treatments for any 

date in 2006 or 2007 (Table 3-3).  Jiang and Huang (2001b, 2001a) offered contrasting 

results as foliar Ca treatments mediated chlorophyll loss of tall fescue (Festuca 

arundinacea L.) and Kentucky bluegrass (Poa pratensis L.) when exposed to high heat 

and drought conditions in greenhouse conditions.  It is unclear why monthly Mg 

treatments did not result in elevated chlorophyll content, given the role of Mg as the core 

of the chlorophyll molecule and the dramatic increase in leaf tissue Mg concentrations 

observed in this study.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

41 
 

Table 3-3.  Total shoot chlorophyll concentration of ‘Crenshaw’ creeping bentgrass in 
response to two K carriers, two Ca rates and two Mg rates. 

 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s Protected LSD.  NS = not significant at the 
0.05 level. 

 
§ Total chlorophyll concentration based on mg chlorophyll per fresh g clippings.    
 
   
    
 

 

K carrier † June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 

 ------------------Total Chlorophyll Concentration (mg g-1)§------------------- 

No K 3.05 3.37 2.03 3.41 2.54 2.69 

Granular 3.08 3.32 1.93 3.41 2.44 2.54 

Liquid 3.04 3.23 2.00 3.43 2.56 2.74  

LSD NS NS NS NS NS 0.17 

       

Ca Rate       

No Ca 3.09 3.26 1.91 3.38 2.47 2.61 

Ca 3.02 3.35 2.06 3.46 2.57 2.71 

LSD NS NS NS NS NS NS 

       

Mg Rate       

No Mg 3.08 3.32 1.96 3.44 2.53 2.66 

Mg 3.03 3.29 2.02 3.40 2.50 2.66 

LSD NS NS NS NS NS NS 
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Clipping Yield 

 Differences in shoot growth based on K carrier were only detected in August and 

November of year 1 (Table 3-4).  In August and November 2006, total clipping yield was 

reduced by 20 and 13 %, respectively, by the addition of liquid K compared to untreated 

(Table 3-4).  A viable explanation for why foliar applications of K hindered vegetative 

growth may be due to foliar burning of liquid K treatments.  This lack of growth response 

was unexpected, considering initial soil test indicate very low levels of soil extractable K 

at the onset of the experiment (Appendix C-9).  Nevertheless, numerous studies have 

reported a lack of shoot growth response to K applications on both C3 and C4 turfgrass 

species (Woods et al., 2006; Snyder and Cisar, 2005; Fitzpatrick and Guillard, 2004; 

Waddington et al., 1972).  Alternatively, in a later experiment, Waddington et al. (1972) 

reported under foliar applications of potassium chloride to ‘Penncross’ creeping 

bentgrass, significantly higher clipping yields were observed.   

Clipping yield was 14% and 23% higher by the addition of calcium in July and 

August 2006, respectively (Table 3-4).  In year two, Ca increased total clipping yield by 

26% and 29% by September and October compared to untreated, respectively (Table 3-

5).  This contradicts previous findings by St. John et al. (2003) where no apparent 

increase in clipping mass was detected by the addition of 23 g Ca m-2 yr-1.  No detectable 

differences in clipping yields were found for the addition of Mg. 
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Table 3-4.  Clipping yield of ‘Crenshaw’ creeping bentgrass in response to two K 
carriers, two Ca rates and two Mg in 2006. 

 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s Protected LSD.  NS = not significant at the 
0.05 level. 

 
§ Total clipping yield based on grams of dried tissue per square meter.  Number of 

days between mowings differed for each clipping harvest.  Dependent upon 
growth rate at time of harvest. 

 
   
 
 

K carrier † June‡ July August October  November 

 -------------------Total Clipping Yield (g m-2)§--------------------- 

No K 3.13 3.10 3.64  3.11 4.16  

Granular 2.99 3.21 3.57  3.12 4.16  

Liquid 2.93 2.77 2.91  2.81 3.65  

LSD NS NS 0.64 NS 0.48 

      

Ca Rate      

No Ca 2.93 2.80  2.94  2.96 3.84 

Ca 3.10 3.26  3.80  3.07 4.14 

LSD NS 0.43 0.52 NS NS 

      

Mg Rate      

No Mg 3.00 3.06 3.32 3.04 3.82 

Mg 3.03 3.00 3.42 2.99 4.16 

LSD NS NS NS NS NS 
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Table 3-5.  Clipping yield of ‘Crenshaw’ creeping bentgrass in response to two K 
carriers, two Ca rates and two Mg rates in 2007. 

 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s Protected LSD.  NS = not significant at the 
0.05 level. 

 
§ Total clipping yield based on grams of dried leaf tissue per square meter.  Number 

of days between mowings differed for each clipping harvest.  Dependent upon 
growth rate at time of harvest. 

 
   
 
 
 

K carrier † June‡ July August September  October 

 -------------------Total Clipping Yield (g m-2)§--------------------- 

No K 0.63 1.46 2.13 1.34 0.48 

Granular 0.69 1.36 2.24 1.20 0.49 

Liquid 0.75 1.54 2.16 1.31 0.49 

LSD NS NS NS NS NS 

      

Ca Rate      

No Ca 0.70 1.32 2.04 1.09  0.40  

Ca 0.68 1.58 2.31 1.47  0.57  

LSD NS NS NS 0.25 0.10 

      

Mg Rate      

No Mg 0.65 1.41 2.14 1.29 0.45 

Mg 0.72 1.49 2.21 1.27 0.53 

LSD NS NS NS NS NS 
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Leaf Tissue Nutrient Concentrations 

 Concerning leaf tissue K concentration, K application, either in liquid or granular 

form, increased leaf K concentration on one-half of the sampling dates (Figure 3-1).  In 

August and November 2006, liquid K produced 8 and 16% greater clipping K 

concentration compared to untreated (Figure 3-1).  Liquid K also resulted in an 11 and 

21% increase in leaf tissue K concentration by June and October 2007 (Figure 3-1).  

Findings from numerous studies concur that increasing K applications to turfgrass 

resulted in enhanced tissue K concentrations (Woods et al., 2006; Dest and Guillard, 

2001; Miller, 1999; Miller and Dickens, 1996; Belesky and Wilkinson, 1983; 

Waddington et al., 1972).  Additionally, liquid form of K produced significantly higher 

leaf tissue K concentration than granular from by 5 and 3% in August 2006 and October 

2007, respectively.  Previous research confirms these findings, noting greater response in 

leaf K concentration under foliar KCl applications compared to granular fritted potash 

(Waddington, 1972).  Monthly Ca fertilization was not found to affect tissue K 

concentration, while Mg only reduced tissue K in August 2007 by 5% (data not shown).   

Tissue K concentration on plots receiving no K applications were within the 

sufficiency range (1.5 to 3.0% by dry weight) as identified by McCarty (2005), Carrow et 

al. (2001), and Marschner (1995), and remained within the sufficient range throughout 

the study.  Interestingly, tissue K concentrations were at the lowest in August 2007, with 

drastic increases by October 2007 (Figure 3.1).  Weather conditions in year 2 were much 

drier than that of 2006, and this might have resulted in lower uptake of K in year two 

under these conditions (Appendix D).  The benefits of K to turfgrass under heat and 
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drought stress conditions have been well documented (Carrow et al., 2001).  The sudden 

increase of shoot K concentration, especially by foliar treatments, may indicate a 

bentgrass’s ability to influx and utilize K as a heat and/or drought avoidance mechanism 

under these conditions as suggested by Fu and Huang (2003). 

Application of Ca was found to increase the amount of leaf tissue Ca 

concentrations on one-half of the sampling dates: August 2006, and August and 

November 2007.  The addition of Ca significantly increased tissue Ca concentration on 

those dates by 9%, 11%, and 8%, respectively (Table 3-6).  Reduced leaf Ca 

concentrations were consistently observed when K was applied, especially in liquid form 

(Table 3-6).  Liquid K carrier reduced leaf tissue Ca concentration by 10 to 28% over the 

course of the experiment compared to untreated, while granular forms reduced Ca 

concentrations up to 24% (Table 3-6).  Historically, researchers have observed that 

increasingly higher rates of K inherently reduced the amounts of soil and tissue Ca and 

Mg content.  Miller (1999) noted that that plant extractable Ca and Mg decreased with 

increasing K fertilization of Tifdwarf and Tifway bermudagrass when grown on sand-

peat (9:1 by volume) and loamy sand.  This reduction in plant cation uptake due to 

competition for cation exchange sites caused by fertilization has been well documented 

by other researchers (Woods et al., 2005; St. John et al., 2003; Miller, 1999; Sartain, 

1993; West and Reynolds, 1984; Waddington et al., 1978) 

Interestingly, on the exact dates leaf calcium concentrations were found 

significant, Mg fertilization was also found to decrease tissue Ca.  On August 2006, and 

August and November 2007, Mg applications reduced tissue Ca by as much as 11 to 
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17%, indicating that Mg might have an influence on the plant uptake of Ca on those dates 

(Table 3-6).  Reductions of leaf extractable Ca under Mg fertilization were expected due 

to competition between cations for exchange sites of the growth medium.  

 Tissue concentrations of Mg treated plots were consistently greater than untreated 

at all sampling dates (Table 3-7).  Leaf tissue Mg concentration was 8%, 19%, and 22% 

greater in 2006 at each sampling date for plots receiving Mg, respectively, and 7%, 21%, 

and 19% higher for each date in 2007, respectively (Table 3-7).  Liquid K carrier was 

found to decrease tissue Mg concentration on 4 of 6 sampling dates by as much as 19% in 

November 2006 (Table 3-7).  Additionally, granular forms of K reduced leaf Mg 

concentration on 5 sampling dates by as much as 15% on November 2006 and October 

2007 (Table 3-7).  Woods et al. (2005) demonstrated the ability of foliar applied K to 

decrease leaf Ca and Mg concentrations of L-93 creeping bentgrass grown on a 

calcareous soil.  Ca fertilization significantly decreased tissue Mg concentrations by 7% 

in August of 2006, and June and August 2007, and by 8% in October 2007 (Table 3-7).  

St. John et al. (2003) reported similar results, noting an 11% decrease in leaf Mg 

concentration with the addition of CaSO4 on Crenshaw creeping bentgrass. 
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 Figure 3-1.  Influence of potassium rate and source on leaf tissue potassium of 
‘Crenshaw’ bentgrass concentration from June 2006 to October 2008.  *-indicates 
significant differences at alpha = 0.05.  
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Table 3-6.  ‘Crenshaw’ creeping bentgrass clipping calcium concentration in response to 
two K carriers, two Ca rates and two Mg rates. 

 
 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s Protected LSD.  NS=not significant at the 0.05 
level. 

 
§ Calcium Concentration based on percent calcium found in dried leaf tissue. 
 
   
 
 
 

K carrier † June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 

   ---------------------------Calcium Concentration (%)§--------------------------- 

No K 0.30  0.45  0.46  0.46  0.37  0.41  

Granular 0.27  0.44  0.35  0.35  0.36  0.33  

Liquid 0.27  0.40  0.33  0.33  0.32  0.32  

LSD 0.02 0.03 0.05 0.05 0.03 0.02 

       

Ca Rate       

No Ca 0.28 0.41  0.38 0.38 0.33  0.34  

Ca 0.28 0.45  0.39 0.39 0.37  0.37  

LSD NS 0.02 NS NS 0.02 0.02 

       

Mg Rate       

No Mg 0.29 0.47  0.40 0.40 0.37  0.38  

Mg 0.27 0.39  0.36 0.36 0.33  0.33  

LSD NS 0.02 NS NS 0.02 0.02 
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Table 3-7.  ‘Crenshaw’ creeping bentgrass clipping magnesium concentration in response 
to two K carriers, two Ca rates and two Mg rates. 

 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s Protected LSD.  NS=not significant at the 0.05 
level. 

 
§ Magnesium Concentration based on percent calcium found in dried leaf tissue. 
 
   
 
 

 

 

K carrier † June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 

   -----------------------Magnesium Concentration (%)§------------------------ 

No K 0.24  0.29 0.27  0.29  0.27  0.26  

Granular 0.23  0.29 0.23  0.27  0.26  0.22  

Liquid 0.23  0.29 0.22  0.27  0.25  0.23  

LSD 0.01 NS 0.04 0.02 0.01 0.01 

       

Ca Rate       

No Ca 0.24 0.30  0.25 0.29  0.27  0.25  

Ca 0.23 0.28  0.22 0.27  0.25  0.23  

LSD NS 0.01 NS 0.01 0.01 0.01 

       

Mg Rate       

No Mg 0.23  0.26  0.21  0.27  0.23  0.21  

Mg 0.25  0.32  0.27  0.29  0.29  0.26  

LSD 0.01 0.01 0.03 0.01 0.01 0.01 
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Root Mass 

 Applications of K, as either liquid or granular form, Ca, or Mg showed no 

significant impact on rooting of creeping bentgrass in either year of the study (Appendix 

C-3).  Seasonal declines in overall root weight were observed during both years of the 

study.  However, creeping bentgrass rooting exhibited no beneficial influence from any 

treatment applied (Appendix C-3). 

 

Root Nutrient Concentrations 

Crenshaw creeping bentgrass root tissue K concentration increased with granular 

K fertilization in 2006 by as much as 17 and 41% in June and November, respectively, 

while liquid K applications were 29% higher in August compared to untreated (Table 3-

8).  In 2007, however, liquid K carrier increased root K concentration by 24 and 29% in 

August and October (Table 3-8).  Ca or Mg fertilization had no effect on root tissue K 

concentrations for either year. To the knowledge of the authors, this study is the first to 

investigate K, Ca, and Mg fertilization on root tissue nutrient accumulation of creeping 

bentgrass.   

Interestingly, root tissue Ca concentrations of plots receiving 48.82 kg Ca ha-1 yr-1 

were 12, 9 and 10% greater in August of 2006 and 2007 and October 2007, the same 

dates leaf tissue Ca concentrations were reduced significantly (Table 3-9).  Granular and 

liquid K carrier increased root Ca concentration by 5 and 10%, respectively, in October 

2007 (Table 3-9).  Mg application significantly reduced root Ca in August and October 

2007 by 13 and 10%, respectively (Table 3-9) 
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Exogenous applications of liquid Mg produced 20 and 9% greater root Mg 

concentrations in August and November 2006 and 15% higher concentrations in June and 

August 2007, respectively (Table 3-10).  Applications of K or Ca showed no significant 

impact on root Mg concentrations except in August 2007 where the addition of Ca 

increased root Mg concentration by 9% (Table 3-10).   
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Table 3-8.  ‘Crenshaw’ creeping bentgrass root potassium concentration in response to 
two K carriers, two Ca rates and two Mg rates. 

 
 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s Protected LSD.  NS=not significant at the 0.05 
level. 

 
§ Potassium concentration based on percent potassium found in dried root tissue. 
 
   
 
 
 

K carrier † June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 

   ------------------------Potassium Concentration (%)§-------------------------- 

No K 0.040  0.034  0.053  0.053 0.051  0.054  

Granular 0.048  0.038  0.090  0.057 0.054  0.060  

Liquid 0.046  0.048  0.067  0.057 0.067  0.076  

LSD 0.007 0.012 0.019 NS 0.009 0.012 

       

Ca Rate        

No Ca 0.043 0.038 0.065 0.056 0.059 0.071  

Ca 0.046 0.043 0.075 0.055 0.055 0.055  

LSD NS NS NS NS NS 0.010 

       

Mg Rate        

No Mg 0.044 0.043 0.072 0.058 0.060 0.070 

Mg 0.045 0.037 0.068 0.054 0.055 0.060 

LSD NS NS NS NS NS NS 
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Table 3-9.  ‘Crenshaw’ creeping bentgrass root calcium concentration in response to two 
K carriers, two Ca rates and two Mg rates. 

 
 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s Protected LSD.  NS=not significant at the 0.05 
level. 

 
§ Calcium concentration based on percent calcium found in dried root tissue. 
 
   
 
 

Rates 

(kg K ha-1) † June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 

   ----------------------------Calcium Concentration (%)§------------------------------ 

No K 0.24 0.23 0.19 0.22 0.21 0.18  

Granular 0.25 0.23 0.20 0.24 0.22 0.19   

Liquid 0.25 0.24 0.19 0.25 0.22 0.20  

LSD NS NS NS NS NS 0.01 

         

Ca Rate       

No Ca 0.24 0.22  0.19 0.23 0.21  0.18  

Ca 0.26 0.25  0.19 0.24 0.23  0.20  

LSD NS 0.03 NS NS 0.02 0.01 

       

Mg Rate        

No Mg 0.26 0.24 0.20 0.24 0.23 0.20  

Mg 0.24 0.24 0.19 0.23 0.20 0.18  

LSD NS NS NS NS 0.02 0.01 
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Table 3-10.  ‘Crenshaw’ creeping bentgrass root magnesium concentration in response to 
two K carriers, two Ca rates and two Mg rates. 

 
 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s Protected LSD.  NS=not significant at the 0.05 
level. 

 
§ Magnesium concentration based on percent magnesium found in dried root tissue. 
 
   
 
 
 
 

K Carrier † June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 

   -----------------------Magnesium Concentration (%)§------------------------- 

No K 0.040 0.053 0.042 0.044 0.044 0.041 

Granular 0.042 0.053 0.042 0.044 0.045 0.042 

Liquid 0.039 0.054 0.043 0.046 0.045 0.040 

LSD NS NS NS NS NS NS 

       

Ca Rate        

No Ca 0.040 0.051 0.044 0.045 0.043 0.040 

Ca 0.041 0.055 0.041 0.044 0.047 0.042 

LSD NS NS NS NS 0.004 NS 

       

Mg Rate        

No Mg 0.040 0.047 0.040 0.041 0.041 0.039 

Mg 0.040 0.059 0.044 0.048 0.048 0.043 

LSD NS 0.006 0.003 0.003 0.004 NS 
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Volumetric Soil Water Content (VSWC) 

 Granular or foliar K treatments had no significant impact on the retention of soil 

moisture (Appendix C-4).  To the knowledge of the authors, no study has investigated or 

established the ability of K to sustain soil moisture in field conditions.  However, current 

studies (Chapter 4) suggest rates of 195 kg K ha-1 annually can maintain elevated soil 

moisture under drought conditions.  Exogenous applications of Ca and Mg also showed 

no meaningful differences in volumetric soil moisture (Appendix C-4).  
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Conclusions 

 High temperature and drought stress are major limiting factors of creeping 

bentgrass maintained in the transition zone during the summer months.  Severe summer 

declines in creeping bentgrass growth and visual quality readily occur when air 

temperatures exceed optimal temperatures for C3 plants.  Additionally, high relative 

humidity does not facilitate heat transfer, reducing efficacy of transpirational cooling.  

Proper plant nutrition, mainly that of potassium, has long been perceived as a practical 

method of managing summer creeping bentgrass decline.  However, previous research on 

the matter has been somewhat inconsistent.   

 For creeping bentgrass, greatest turfgrass quality was achieved throughout the 

study on plots receiving no K annually.  The addition of Ca, either alone or in 

conjunction with Mg, was found to enhance visual quality for all K treatments.  Foliar 

applications of K at 195 kg K ha-1 yr-1 produced turfgrass injury from foliar burning due 

to high concentrations of fertilizer salts.   Johnson et al. (2003) and Fu and Huang (2003) 

noted similar foliar burning of creeping bentgrass treated with liquid K under high 

temperature stress, resulting in reduced TQ.  Additionally, foliar applications of K greatly 

reduced clipping yields in August and November 2006, possibly due to the stunting of 

vegetative growth from the high salt index of liquid fertilizer.  Summer applications of 

liquid K fertilizers to creeping bentgrass should be applied in the very early morning or 

late afternoon hours to allow air temperatures to subside in an attempt to reduce the 

amount of phytotoxicity and stunting of shoot growth caused by the high concentrations 

of fertilizer salts.  Interestingly, exogenous applications of Ca greatly increased shoot 
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growth on 40% of the sampling dates.  Total shoot chlorophyll content, root mass, and 

volumetric soil moisture were unaffected by any nutrient treatment. 

 The primary objective of this research was to investigate foliar and root recovery 

of liquid and granular K, Ca, and Mg under heat and drought stress conditions.  Foliar K 

applications to creeping bentgrass greatly increased endogenous levels of K in shoot 

tissue.  Leaf K concentration peaked under foliar K treatments in October 2007, 21% 

higher than untreated.  At the advanced stage of summer decline, August 2007, Crenshaw 

creeping bentgrass exhibited minimal rooting and near-deficient leaf extractible K.  By 

October, leaf K concentration of liquid treated turf increased by 30%, suggesting a plant 

mediated response to low K levels under heat and drought stress.  

While the monthly application of Ca and Mg showed minimal effects on leaf K 

content, K fertilization consistently reduced the amount of Ca and Mg in shoot tissue.  

Such a result was expected as Woods et al. (2005) and Miller (1999) documented reduced 

tissue and soil extractable Ca and Mg in response to increasing K fertilization.  

Additionally, monthly applications of Ca or Mg were shown to increase their respective 

tissue concentrations; however fertilization of either Ca or Mg negatively impacted tissue 

concentrations of the other nutrient.   

 Root nutrient analyses indicated granular forms of K produced the greatest root 

tissue K contents by November 2006.  The following year, as bentgrass summer decline 

advanced, creeping bentgrass rooting had greatly decreased, resulting in severely reduced 

efficacy of root K uptake.  Foliar K forms increased root tissue K content by 24 and 29% 

in August and October 2007, respectively.  This finding may indicate the ability of 
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creeping bentgrass to transfer root nutrient uptake responsibilities to foliar absorption in 

the case of impeded rooting.  These results suggest foliar applications are the most 

efficient method for increasing plant tissue K concentrations before the onset of heat and 

drought stresses.  However, extreme caution should be taken when air and soil 

temperatures exceed turfgrass optimal ranges.   

Based on the two years of data, K summer applications simply cannot remedy 

creeping bentgrass summer decline due to negative phytotoxic impacts caused by 

relatively high K concentrations, particularly in liquid form. However, Ca application 

itself significantly benefited creeping bentgrass during the summer months.  In the future, 

lower K rates should be investigated before the onset of summer decline.  A general 

recommendation based on this research includes pre-stress applications of granular K, in 

addition to supplemental Ca during periods of supraoptimal temperatures and extended 

drought to sustain creeping bentgrass growth and quality during the summer months. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

CHAPTER 4 

MANAGING SUMMER STRESS OF CREEPING BENTGRASS IN THE 

TRANSITION ZONE UNDER VARIOUS LEVELS OF POTASSIUM  

AND WETTING AGENTS 

 

Introduction 

 Creeping bentgrass (Agrostis stolonifera L.) is the most widely used cool-season 

turfgrass for golf greens in the northern states and the transition zone of the United States.  

Genetically improved creeping bentgrass cultivars, for example ‘L-93’, have recently 

become popular putting green surfaces in the transition zone for their improved heat 

tolerance and resistance to disease pressure (Huang et al., 2001; Landry and Schlossberg, 

2001; Settle et al., 2001).  These improved cultivars provide excellent putting conditions 

while tolerating exceptionally low mowing heights and maintaining year-round dark 

green color.  However, at the onset of supraoptimal temperatures and high relative 

humidity, creeping bentgrass begins to decline.  During summer months, golf course 

superintendents struggle to maintain creeping bentgrass rooting and sustain turf quality 

and color through periods of extreme heat. 

 A traditional method of improving creeping bentgrass summer survival by 

lowering plant stress is through applications of supplemental potassium (K) (Carrow et 

al, 2001; Snyder and Cisar, 2000).  Turner and Hummel (1992) demonstrated in studies 

of hybrid bermudagrass [Cynodon dactylon (L.) Pers. X C. transvaalenis Burtt Davy] the 

ability of K to improve disease resistance, drought, heat, and wear tolerance while Beard 
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(1973) noted increased rooting as well as improved cold hardiness following K 

fertilization.  Additional research showed that K applications improved turfgrass 

performance (Christians et al., 1981), wear tolerance (Trenholm, 2000), and drought 

tolerance (Huang, 2001).  Conversely, contrasting research has suggested that increasing 

the amount of K has no positive effect on clipping yields, root weight, or turf quality 

(Fitzpatrick and Guillard, 2004).  Woods et al. (2006) noted no differences in turf quality 

and ball rolls speeds on ‘L-93’ creeping bentgrass from even the highest application rates, 

however, tissue and soil extractable K contents increased under all treatments, suggesting 

nonexchangeable forms of K were sufficient for plant growth. Linear increases in soil 

extractable K have been reported by Miller (1999), however, the same linear trend was 

not seen in tissue K concentration, suggesting a critical plant K fertilization level.  

 With turfgrass water resources becoming increasingly limited, water conservation 

and water use efficiency has become a top priority for turfgrass managers of golf courses, 

sports fields, recreational parks, and home lawns alike.  Additionally, extreme weather 

conditions such as long periods of high temperatures and drought only magnifies the 

problem as availability of quality water for irrigation is rapidly declining.  In order to 

sustain turfgrass growth and development in these water-limited environments, mangers 

must have a strong understanding of the environmental factors which influence turfgrass 

water use to develop sound irrigation management practices.  Research has shown that 

wetting agents, or soil surfactants, are the most effective tool for managing localized dry 

spot caused by hydrophobic soils (Karnok and Tucker, 2001a; Karnok and Tucker, 

2001b; Leinauer et al., 2001; Blodgett et al., 1993; Wilkinson and Miller, 1978).  Karnok 
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and Tucker (2001a) reported increased volumetric water content and decreased soil 

hydrophobicity of a sand-peat growth medium, as well as improved turfgrass quality and 

rooting of ‘Penncross’ creeping bentgrass. Another study by Leinauer et al. (2001) 

investigated the impact of wetting agents on soil hydrophobicity of a USGA sand 

rootzone mix at increasing depths.  Results indicated volumetric soil water content of 

sand treated with Midorich WA was highest at 50 mm, while Primer WA produced the 

greatest water retention at 150 and 250 mm. These findings indicate that because of their 

chemical formulations and mobility, particular wetting agents appear to influence soil 

water retention differently at various depths.  Conversely, similar studies report negative 

impacts from WA applications such as increased thatch (Callahan et al., 1998), turf 

discoloration, and reduced rooting (Wiecko and Carrow, 1992) or negligible WA 

influence on moisture retention or microbial activity of the soil medium (Ruemmele and 

Amador, 1994). 

 Because previous research has been unsuccessful at assessing optimal rates and 

timing of K fertilization, and WA research on creeping bentgrass in combination with K 

fertilization is lacking, additional research is necessary to examine their ability to 

mitigate effects of summer creeping bentgrass decline.  It is hypothesized that liquid 

applications of elemental K, in conjunction with monthly WA applications, will 

significantly reduce summer stress of ‘L-93’ creeping bentgrass by sustaining satisfactory 

turf quality and stand health throughout the summer months.  The objective of this study 

was to investigate the effects of two potassium carriers, liquid and granular, at three 

annual rates with monthly applications of WA on summer turf performance of creeping 
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bentgrass in an effort to sustain acceptable turfgrass quality through the summer months 

while reducing soil hydrophobic conditions.  

 

Materials and Methods 
 

A two-year field study was conducted from 25 May 2006 to 30 October 2007 on 

an established ‘L-93’ creeping bentgrass research green built to USGA specifications at 

Clemson, South Carolina (USGA, 1993). Plot size measured 2.4 x 3.1 m in a randomized 

split plot design with WA treatments representing the split plot factor, with four 

replications.  

 Liquid K solution was applied to the plots biweekly at rates of 8.14 kg K ha-1 (low 

rate) and 16.27 kg K ha-1 (high rate).  The rates of 8.14 kg K ha-1 and 16.27 kg K ha-1 are 

equivalent to 97.65 and 195.29 kg K ha-1 annually split over 12 equal applications, 

respectively.  Liquid K was derived from potassium carbonate (StressMax 0-0-30) 

(Harrell’s Fertilizer, Inc., Lakeland, FL 33802), and applied using a CO2 back-pack type 

sprayer. 

 Granular applications of slow-release, polyon-coated K, derived from polymer 

coated potassium sulfate (Harrell’s Fertilizer, Inc., Lakeland, FL 33802), were applied at 

32.55 and 65.10 kg K ha-1 on dates of core aerification. On May 25, September 25, and 

October 23 of 2006 and March 21, September 19, and October 17 of 2007, a hollow tine 

cultivator removed cores from the turf and granular K was mixed with a sand carrier and 

shaken over the plots, then swept in by hand.  Normal topdressing was applied to fill 
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aerification holes.  Granular K rates of 32.55 kg K ha-1 and 65.10 kg K ha-1 are equivalent 

to 97.66 and 195.29 kg K ha-1 per year, respectively. 

 Wetting agent applications were applied every four weeks from May to October 

each year at a rate of 19.1 L WA ha-1 monthly.  The source of wetting agent was 

Revolution wetting agent produced by the Aquatrols Corporation, Inc.  WA treatments 

were applied using a CO2 powered sprayer and immediately watered in. 

 Plots were mowed seven d wk-1 with a triplex greens mower at 3.2 mm with 

clippings removed.  Turf was irrigated as needed to prevent plant stress in addition to 

annual precipitation.  Monthly precipitation is shown in Appendix D.  Research plots 

were core cultivated with 1.3 cm inside diameter hollow tines at 5.1 cm spacing and 10.2 

cm lengths on 23 March, 25 May, 25 September, and 19 October of 2006 and 21 March, 

24 May, 19 September, and 17 October  of 2007.  Cores were removed and holes filled 

with topdressing sand (Appendix C-1 and C-2).   

In 2006, nitrogen was supplied to the plots at a rate of 4.88 kg N ha-1 every 14 d 

from 29 May to 3 December in the form of Microburst (5-0-0) liquid fertilizer containing 

5% N, 2.8% S, 0.5% Mg, 0.02% B, 0.5% Cu, 4.5% Fe, 0.5% Mn, 0.5% Zn, 0.003% Mo.  

No N was applied on 24 July or 7 August in 2006 to prevent turf burning due to high 

application rate of iron (Fe) contained in Microburst.  In 2007, Microburst was applied at 

4.88 kg N ha-1 on 24 March and 2 April.  For the remainder of 2007, N was supplied as 

Microburst and dissolved urea (46-0-0) at a rate of 4.88 kg N ha-1 every 14 d.  

Applications of N were not applied from 6 August to 3 September 2007.  Granular 

Milorganite (6-2-0) was also supplied to the plots at 32.55 kg N ha-1 on core aerification 
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dates.  Preventative fungicides were applied as needed to suppress development of dollar 

spot (Sclerotinia homeocarpa) and pythium (Pythium spp.). 

 

Data Collection 

 Turf quality was rated biweekly on a 1 to 9 scale with 9 being of healthy, dark 

green turf and 1 being dead, brown turf.  Visual quality ratings below 7 were considered 

unacceptable.  Fresh clippings were harvested monthly after approximately 48 hours of 

uninterrupted growth.  Samples were dried for 72 hours in an 80oC oven and then 

weighed.  Samples collected in June, August, and October of each year were analyzed for 

nutrient contents by the Clemson University Agriculture Service Laboratory.  

Root samples were collected using a standard golf course cup cutter with a 

diameter of 10.8 cm and a depth of 20.3 cm in June, August, and October 2006 and 2007.  

Samples were thoroughly washed free of sand, dried in an 80oC oven for 72 hours and 

weighed.  Root tissue samples were forwarded to the Clemson University Agriculture 

Service Laboratory for nutrient concentration analyses.  Volumetric soil moisture (m3/m3) 

content was measured monthly in the top 10 cm of soil from June to October of each year 

using a time-domain reflectometer (TDR) (ML2, Delta-T Devices Ltd., Cambridge CB5 

OEJ, England) soil moisture sensor.  Three readings were recorded from each plot with 

the average of the three representing each plot.  

Soil hydrophobicity was determined using by a water droplet penetration time 

(WDPT) method (Wilkinson and Miller, 1978).  Two cores were harvested from each 

plot with a 3 cm diameter to a depth of 10 cm.  Cores were allowed to dry at room 
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temperature for four weeks.  A single drop of deionized-distilled water was placed at 1.5 

and 3.0 cm depths on the core and the time of complete penetration (in seconds) was 

recorded.  Total absorbance was determined when the water droplet had completely 

soaked into the medium.  Absorbance times for the two cores from each plot were 

averaged among both depths representing soil hydrophobicity values for each depth, 

respectively.  

 

Data Analysis 

All statistical computations were conducted using general liner model (GLM) 

within the Statistical Analysis System (SAS Institute, 2003).  Means were separated by 

Fisher’s Least Significant Difference (LSD) test.  An alpha of 0.05 was used for all data 

comparisons. 

  

Results and Discussion 

Significant treatment by year interactions were detected; therefore, results will be 

examined separately for each year.  A K and WA interaction occurred for turfgrass 

quality (TQ) and will be examined as treatment combinations for each year.  No 

meaningful interactions between K carriers and WA were observed (P > 0.05) for the 

other parameters measured; therefore, main effects of each treatment for 2006 and 2007 

were examined and presented separately. 
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Turf Quality 

 Significant differences in TQ among K and WA treatments occurred in every 

month in year 1 (Table 4-1).  Granular K fertilization of 195 kg K ha-1 yr-1 resulted in 

greatest visual TQ for the majority of 2006.  As observed in Table 4-1, liquid K 

application of 195 kg K ha-1, with or without WA, negatively affected TQ.  Furthermore, 

liquid K at the 195 kg K ha-1 rate reduced TQ compared to the 98 kg K ha-1 rate by as 

much as 22 and 20% in August and September 2006, respectively.  The sudden negative 

impact of liquid fertilization, especially at 195 kg K ha-1 rate, can be explained by a 

phototoxicity effect due to high application rate of fertilizer salts. Johnson et al. (2003) 

reported high rates of foliar K reduced TQ of creeping bentgrass, due to foliar burn of 

fertilizer salts.  In an attempt to reduce the amount of phototoxic effects from liquid K 

fertilization, liquid K applications were applied at dusk and watered in using overhead, 

automated irrigation after 1 to 2 hours.  Generally, monthly application of WA produced 

decreased TQ ratings in 2006.  In ‘Kentucky 31’ tall fescue, Wiecko and Carrow (1992) 

also found no improvement turfgrass quality and reduced deep rooting by all wetting 

agents examined and minor discoloration by Lesco-Wet following application.   

 In 2007, plots receiving no K or WA consistently exhibited the poorest visual 

quality of all treatments (Table 4-2).  No obvious trends between K treatments existed in 

2007; however, liquid K at 98 kg K ha-1 provided significantly higher TQ in September 

and October compared to untreated.  Fu and Huang (2003) reported foliar applications of 

KH2PO4 (10mM) to Penncross creeping bentgrass while exposed to heat stress helped 

maintain higher turf quality, photochemical efficiency (FV/FM), and shoot growth rate 
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than untreated.  Interestingly, the WA effect observed in year 1 was not exhibited in year 

2, as WA application had a positive impact on TQ regardless of K rate or carrier. Karnok 

and Tucker (2001a) reported similar findings on Penncross creeping bentgrass in summer 

field experiments citing significantly improved TQ under one application of WA 

annually. Except for September, treatments producing the highest visual turf quality were 

treated with WA; however these differences were not found significant.  This result can 

be partially attributed to weather variations observed between the two years of the study.  

Weather data for 25 May 2006 through 30 October 2007 can be found in Appendix D.  

An extreme drought was experienced at the experiment site during the summer of 2007.  

Apparently, excess moisture from precipitation and irrigation held by WA within the soil 

profile did not allow for nighttime cooling of soil in 2006.  During drought favorable 

conditions in 2007, WA was able to retain vital soil moisture and sustain creeping 

bentgrass visual quality.  
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Table 4-1.  Visual turf quality of ‘L-93’ creeping bentgrass in response to two K carriers, 
three K rates and a WA in 2006. 

 
† Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1,  

L = Liquid K carrier at 98 or 195 kg K ha-1 yr-1.  WA = Revolution wetting agent 
at 19.1 L WA ha-1 monthly. 

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD.  NS=not significant at the 0.05 level. 
 
§ Turfgrass quality based on a visual scale of 1 to 9 with 1 = poorest, 9 = best. 

Visual rating of >7 indicates acceptable turf quality. 
 
 
 
 
 
 
 

Rates 

(kg K ha-1)† 

 

June‡ July August Sept October 
  ------------------------Turfgrass Quality (1-9)§------------------------- 

0 0 7.4 6.9 6.4 7.0 6.8 

 WA 7.4  6.4 5.8 7.0 6.8 

98 G 0 7.9 6.8 6.8 7.3 6.4 

 WA 7.5  6.3 6.0 6.8 6.6 

98 L 0 8.1  6.8 6.8 7.4 7.4 

 WA 7.6  6.0 5.6 6.3 6.8 

195 G 0 7.6  7.1 7.0 7.9 7.1 

 WA 7.5  6.3 6.4 7.1 6.6 

195 L 0 7.3  6.6 5.3 5.9 6.3 

 WA 7.9  5.8 5.3 5.6 6.4 

LSD  0.71 0.38 0.72 1.02 0.9 
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Table 4-2.  Visual turf quality of ‘L-93’ creeping bentgrass in response to two K carriers, 
three K rates and a WA in 2007. 

 
† Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1,  

L = Liquid K carrier at 98 or 195 kg K ha-1 yr-1.  WA = Revolution wetting agent 
at 19.1 L WA ha-1 monthly. 

 
‡ Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD.  NS=not significant at the 0.05 level. 
 
§ Turfgrass quality based on a visual scale of 1 to 9 with 1 = poorest, 9 = best. 

Visual rating of >7 indicates acceptable turf quality. 
 
 

 

 

 

Rates 

(kg K ha-1)† 

 

June‡ July August Sept October 
  ------------------------Turfgrass Quality (1-9)§------------------------- 

0 0 4.6 5.3 4.1 4.0 4.3 

 WA 6.5 6.4 4.8 4.8 5.3 

98 G 0 5.3 5.7 4.8 4.8 5.3 

 WA 7.4 6.5 4.8 4.8 5.5 

98 L 0 5.5 5.9  5.5 6.1 6.5 

 WA 6.3 6.4  5.6 5.5 6.5 

195 G 0 6.4 6.6  5.8 5.8 6.1 

 WA 6.9 6.6 5.5 5.5 6.5 

195 L 0 5.9 6.5  5.0 4.6 5.4 

 WA 6.8 7.2  5.6 5.6 6.0 

LSD  1.39 1.06 NS 2.10 2.18 
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Clipping Yield 

 Initial application of granular and liquid K at the 195 kg K ha -1 rate increased 

clipping yield by 17 and 18% in June 2006, respectively, compared to the control (Table 

4-3).  Conversely, one month later, turfgrass growth was reduced by 19 and 22% with the 

addition of granular K forms at the 98 and 195 kg K ha-1 annual rates, respectively (Table 

4-3).  By September 2007, the greatest vegetative growth response was documented on 

plots receiving the low rate of liquid K, provided a 36% increase in shoot growth 

compared to untreated (Table 4-4).  Reasons for inconsistent K effects are unknown.  It is 

feasible that foliar K fertilization programs have a higher efficacy of stomatal uptake and 

utilization to increase turfgrass growth and vigor, especially under stress such as high 

heat and drought.  Previous research has disclosed data revealing foliar K applications 

produced greater increases in clipping yield at 120 kg K ha-1, as opposed to higher rates 

of 240 kg K ha-1 annually (Waddington et al., 1972).  This lack of shoot growth following 

K application was to some extent expected, as many studies have concluded no increase 

in clipping yield when K was applied (Snyder and Cisar, 2005; Fitzpatrick and Guillard, 

2004; Dest and Guillard, 2001; Waddington et al., 1978).  Turf-applied WA only 

increased clippings on a single sampling date, June 2007, by 18% (Appendix C-5). 
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Table 4-3.  Influence of potassium rate and source on clipping yield of ‘L-93’ bentgrass  
      from June 2006 to November 2006. 

 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD. 
 
‡ Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1,  

L = Liquid K carrier at 98 or 195 kg K ha-1 yr-1. 
 
§ Number of days between mowings differed for each clipping harvest.  Dependent  

upon growth rate at time of harvest. 
 
¶ Total dry clipping yield based grams of dried tissue per square meter. 
 

 

 
 
 
 
 
 
 
 
 
 
 

Rates 

(kg K ha-1)† June‡ July§ August October November 
 ------------------------Total Dry Clipping Yield (g m-2) ¶------------------------- 

0 1.61  0.78  1.65 3.79 2.58 
      
97.65 G 1.73  0.63  1.70 3.75 2.55 
      
97.65 L 1.84  0.70  1.85 3.79 2.71 
      
195.29 G  1.94  0.66  1.88 4.30 2.61 
      
195.29 L 1.96  0.71  1.84 3.88 2.91 

LSD  0.29 0.08 NS NS NS 
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Table 4-4.  Influence of potassium rate and source on clipping yield of ‘L-93’ bentgrass  
      from June 2007 to October 2007. 

 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD. 
 
‡ Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1,  

L = Liquid K carrier at 98 or 195 kg K ha-1 yr-1. 
 
§ Number of days between mowings differed for each clipping harvest.  Dependent  

upon growth rate at time of harvest. 
 
¶ Total dry clipping yield based grams of dried tissue per square meter.  

 

 

 

 

 

 

 

Rates 

(kg K ha-1)† June‡ July§ August September October 
    ------------------------Total Dry Clipping Yield (g m-2) ¶------------------------- 

0 3.08 3.23 3.10 1.64  1.50 
      
98 G 3.14 3.15 2.90 1.58  1.64 
      
98 L 3.28 3.75 3.69 2.56  2.04 
      
195 G  3.21 3.80 3.61 2.24  1.83 
      
195 L 3.33 3.69 2.80 1.91  1.69 

LSD  NS NS NS 0.86 NS 
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Percent Total K in Clippings 

 Generally, as K rate increased, K concentration within the leaf tissue increased on 

5 of 6 sampling dates (Table 4-5).  In June 2006, all K treatments produced significant 

increases in leaf K, with granular carriers at the 98 and 195 kg K ha-1 rate both yielding a 

4% increase compared to control (Table 4-5).  Granular and liquid sources of K at 195 kg 

K ha-1 produced 8 and 11% greater leaf K content in August 2006, respectively, and a 

20% greater concentration for both sources by November 2006 compared to untreated 

(Table 4-5).  In June 2007, 195 kg K ha-1 in liquid form resulted in a 10% greater clipping 

K compared to untreated.  All K treatments were significantly higher than control by 

October 2007, with 195.29 kg K ha-1 rates producing 15% greater leaf K concentrations 

(Table 4-5).  Sufficient potassium levels range between 1.5 and 3% total dry weight 

(McCarty, 2005; Carrow et al., 2001).  As shown in Table 4-5, all K treatments resulted 

in sufficient leaf potassium concentrations.   

Miller et al. (1999) performed a plateau analysis to indicate maximum K 

concentrations of ‘Tifdwarf’ and ‘Tifway’ hybrid bermudagrass grown in sand-peat and 

receiving up to 390 kg K ha-1 per month.  Results indicated no active uptake of the two 

bermudagrasses when application rates exceeded 74 and 84 kg ha-1 monthly, respectively.  

Our findings generally showed increases in leaf tissue potassium at rates well below what 

Miller concluded to be the maximum application rate for greatest tissue K concentration.  

This finding may imply application rates of K fertilization above the level used in this 

study may benefit potassium tissue concentrations.  Additionally, data indicated wetting 
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agent treatments had no significant impact on leaf tissue K concentrations for the 

duration of the study period (results not shown).   
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Table 4-5.  Potassium rate and source influence on leaf tissue potassium concentration  
of ‘L-93’ bentgrass from June 2006 to October 2007. 

 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD. 
 
‡ Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1,  

L = Liquid K carrier at 98 or 195 kg K ha-1 yr-1. 
 
§ Potassium Concentration based on percent potassium found in dried leaf tissue. 
 

 

 

 

 

 

 

 

 

Rates 

(kg K ha-1)† June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 
    --------------------------Potassium Concentration (%)§------------------------- 
0 2.81 2.58  1.73  2.16  1.69  2.11 
       
98 G 2.93  2.76  1.94 2.19  1.89  2.41 
       
98 L 2.90  2.76  2.01 2.30 2.01  2.38  
       
195 G  2.92  2.79  2.16 3.32 2.05  2.49 
       
195 L 2.87 2.91  2.16 2.40 1.97  2.48 

LSD  0.09 0.14 0.11 0.08 NS 0.15 
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Root Dry Weight 

 Significant findings were detected among K treatments; however, application of 

WA yielded no significant differences (data not shown).  Root dry weight was 33% 

greater at the highest granular K rate compared to the low rate and control in June 2006, 

respectively (Table 4-6).  By August 2006, high rate of liquid potassium reduced root dry 

weight by 36% compared to control and by 42% compared to granular form of the same 

rate.  Additionally, both carriers at the highest K rate provided 20% reductions by study’s 

end in October 2007 (Table 4-6).  The negative influence of potassium on root growth 

was unexpected, considering much literature reports a positive correlation between K 

applications and root growth (McCarty, 2005; Sartain, 2002; Dest and Guillard, 2001; 

Belesky and Wilkinson, 1983; Beard, 1973; Juska et al., 1965).  It is unclear why 

applications of K, particularly in liquid form, decreased creeping bentgrass root mass, 

however it is possible that a build-up of fertilizer salts and phytotoxic effects from liquid 

K applications severely declined creeping bentgrass rooting.  No beneficial impact on 

root weight was recorded following monthly applications of WA (data not shown). 
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Table 4-6.  Influence of potassium rate and source on root dry weight of ‘L-93’ bentgrass 
from June 2006 to October 2007. 

 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD. 
 
‡ Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1,  

L = Liquid K carrier at 98 or 195 kg K ha-1 yr-1. 
 
§ Total dry root weight based grams of dried tissue per square meter. 
 
 

 

 

 

 

 

 

 

 

Rates 

(kg K ha-1)† June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 
 ------------------------------Root Dry Weight (g m-2)§------------------------------- 
0 149.1  76.9  58.2 65.7 60.1 38.3  
       
98 G 149.2  85.0  61.0 78.0 46.4 36.1  
       
98 L 156.1  76.8  59.3 77.4 48.7 36.5  
       
195 G  220.4  83.8  65.2 74.2 48.5 30.2  
       
195 L 175.6  49.4  48.1 66.1 47.9 30.2  

LSD  69.4 15.2 NS NS NS 7.8 
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Root Nutrient Concentrations 

In contrast to leaf tissue K concentration, increases in K rate did not generally 

result in higher root tissue K content (Table 4-7).  ‘L-93’ creeping bentgrass treated with 

98 kg K ha-1 liquid K demonstrated increased K concentrations by 46% and 34% 

compared to control in November 2006 and August 2007, respectively (Table 4-7).  

Creeping bentgrass receiving 195 kg K ha-1 liquid K exhibited 29% increased root K 

concentrations in August 2007, compared to the 98 kg K ha-1 rate.  Observing 

significantly elevated levels of K in root tissue on plots only receiving foliar K 

fertilization was to a degree, unexpected.  Based on seasonal decline of creeping 

bentgrass roots observed for all treatments, it is possible that the turf was relying on foliar 

absorption of K and translocating it into root tissue.  Additionally, root K concentrations 

of WA treated creeping bentgrass were reduced by 38% by the end of year 1 (Table 4-7).  
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Table 4-7.  Influence of potassium rate and source on root tissue potassium of ‘L-93’  
       creeping bentgrass concentration from June 2006 to October 2007. 

 
 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD. 
 
‡ Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1,  

L = Liquid K carrier at 98 or 195 kg K ha-1 yr-1.  WA = Revolution wetting agent 
at 19.1 L WA ha-1 monthly. 

 
§ Potassium Concentration based on percent potassium found in dried root tissue. 
 
 
 
 
  

 

 

Rates 

(kg K ha-1)† June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 
 -------------------------Potassium Concentration (%)§------------------------- 
0 0.049 0.044 0.043  0.043  0.060  0.053  
       
98 G 0.044 0.066 0.049  0.046  0.071  0.076  
       
98 L 0.045 0.043 0.079  0.051  0.074  0.080  
       
195 G  0.045 0.060 0.058  0.064  0.063  0.069  
       
195 L 0.038 0.046 0.053  0.059  0.085  0.074  

LSD  NS NS 0.031 0.011 0.024 0.018 

       

WA Rate       

Control 0.042 0.049 0.069  0.055 0.076 0.069 
       
WA 0.046 0.055 0.043  0.051 0.065 0.072 

LSD NS NS 0.018 NS NS NS 
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Soil Moisture 

 The monthly application of WA had no effect on volumetric water content in 

either year of the study (Table 4-8).  This finding contradicts reports of prior research 

noting improved soil volumetric water content following WA application (Karnok and 

Tucker, 2001; Leinauer et al., 2001; Ruemmele and Amador, 1998; Blodgett et al., 1993).  

Still, literature documenting negligible effects of WAs on improving moisture retention 

of sand mediums also exists (Ruemmele and Amador, 1994; Wiecko and Carrow, 1992). 

 Interestingly, volumetric soil water content was significantly higher for plots 

receiving the higher rate of potassium compared to the control in year 1 of the study 

(Table 4-8).   In June, plots receiving liquid K at 198 kg K ha-1 annually averaged 22% 

higher volumetric soil moisture than control plots.  In September and November of the 

same year, granular forms of K at the same rate raised soil moisture by 23 and 19%, 

respectively.  A closer investigation of increasing K rates and soil water potential is 

warranted and may reveal insight to increasing volumetric soil water content.



 
 

 
Table 4-8.  Volumetric soil water content of ‘L-93’ creeping bentgrass as influenced by potassium rate and source and monthly 
applications of WA. 
 

K Carrier † June 06‡ July 06 Aug 06 Sept 06 Nov 06 June 07 July 07 Aug 07 Sept 07 Oct 07 

 -------------------------------------------Volumetric Water Content (m3/m3)-------------------------------------------- 

0 0.21 0.24 0.19 0.19  0.28 0.28 0.27 0.18 0.22 0.23 

98 G 0.26  0.25 0.21 0.22  0.31  0.31 0.29 0.19 0.22 0.22 

98 L 0.25  0.26 0.22 0.21  0.32  0.29 0.31 0.24 0.25 0.24 

195 G 0.26 0.26 0.22 0.25  0.35  0.30 0.31 0.23 0.24 0.24 

195 L 0.27  0.25 0.21 0.20  0.30  0.31 0.29 0.22 0.23 0.23 

LSD 0.035 NS NS 0.031 0.078 NS NS NS NS NS 

           
           
WA Rate           
No WA 0.25 0.26 0.23 0.22 0.32 0.30 0.31 0.22 0.23 0.22 
WA 0.25 0.24 0.19 0.21 0.30 0.30 0.28 0.21 0.23 0.25 

LSD NS NS NS NS NS NS NS NS NS NS 

 
† Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1, L = Liquid K carrier at 98 or 195 kg K 

ha-1 yr-1.  WA = Revolution wetting agent at 19.1 L WA ha-1 monthly. 
 
‡ Values followed by the same letter in the same column are not significantly different at p = 0.05 using Fisher’s LSD.  

NS=not significant at the 0.05 level. 
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Soil Hydrophobicity 

 Soil hydrophobicity was affected by WA and K for both years of the study.  

Wetting agent untreated plots, as expected, always provided significantly higher water 

droplet absorbance times compared to WA-treated plots which provided much faster 

times of absorption (Figure 4-1).  WA application produced a 19.9 and 8.9 fold reduction 

of soil hydrophobicity at 1.5 and 3.0 cm depths, respectively in 2006 based on absorption 

times (Figure 4-1). In 2007, similar trends revealed a 7.2 and 6.6 fold reduction of 

hydrophobicity at 1.5 and 3.0 cm, respectively, with the addition of the soil surfactant.  

Previous studies have also reported reductions in soil hydrophobicity following WA 

application. Karnok and Tucker (2001a) reported a decline in hydrophobicity of sand-

peat soil up to 12 weeks following a single WA application.  A study by Wilkinson and 

Miller (1978) showed WAs beneficial in reducing the severity of localized dry spot injury 

on Penncross creeping bentgrass grown on a sand growth medium.  Table 4-9 reveals L-

93 creeping bentgrass receiving liquid K at 97.65 kg K ha-1 yr-1 exhibited the least soil 

hydrophobicity at 3.0 cm in 2006, while untreated plots exhibited fastest absorption times 

in 2007 at the 1.5 cm depth.  Our data supports the findings of previous researchers who 

examined wetting agent’s ability to lower surface tension of water, rendering 

hydrophobic soils rewettable.  
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Figure 4-1.  Wetting agent (WA) effect on soil hydrophobicity at 1.5 and 3.0 cm depths 
of an 85:15 sand-peat growth medium in 2006 and 2007.  Different letters indicate a 
significant difference at p=0.05 according to Fisher’s LSD.  
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Table 4-9.  Soil hydrophobicity as affected by K at 1.5 and 3.0 cm depths for ‘L-93’ 
creeping bentgrass treated with various K rates and carriers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD. 
 
‡ Abbreviations:  G = Granular potassium (K) carrier at 98 or 195 kg K ha-1 yr-1, L 

= Liquid K carrier at 98 or 195 kg K ha-1 yr-1. 
 
§ Soil hydrophobicity based on rate of water droplet absorption time in seconds. 

 
 
 
 
 
 
 
 
 
 
 

 
 

                                    Year 

Rates             2006             2007 

(kg K ha-1) † 1.5‡ 3.0 1.5 3.0 
 ---------------Soil Hydrophobicity (sec)§----------------- 

0 64.36 57.56  53.56  39.55 
     

98 G 49.07 28.62  72.52  40.71 
     
98 L 56.50 18.17  63.96  22.02 
     
195 G  64.78 25.01  73.23  42.23 
     
195 L 68.70 52.12  76.37  47.33 

LSD  NS 36.56 20.17 NS 
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Conclusions 
 
 

 Creeping bentgrass grown in the transitional zone is presented with a gauntlet of 

inhospitable environmental conditions in the summer months that often lead to the 

condition referred to as summer creeping bentgrass decline.  Year 1 of this study revealed 

greatest creeping bentgrass visual TQ occurred with plots receiving 195 kg granular K ha-

1 yr-1, providing the best turfgrass health and playing conditions.  Year 2, however, 

revealed the lower rate of liquid K applied every 14 days increased visual quality above 

other treatments in the latter portion of the summer.  Upon closer examination, it can be 

concluded that higher rates of foliar applied K impeded visual TQ compared to the liquid 

98 kg K ha-1 yr-1 rate.  While Fu and Huang (2003) noted the ability of foliar K 

applications to increase creeping bentgrass heat tolerance, Johnson et al. (2003) noted 

high rates of foliar applied potassium reduced TQ, due to foliar burning.  

Additionally, monthly WA application reduced TQ in 2006 and showed no 

beneficial effects on volumetric soil moisture, inconsistent with findings by a majority of 

previous research.  When grown under extreme heat and drought stress in field conditions 

of 2007, however, monthly applications of WA increased TQ for nearly all treatments.  

This finding indicates supplemental WA applications, while proven to reduce localized 

dry spot by reducing soil hydrophobicity, may not be needed during growing seasons of 

years providing adequate irrigation and precipitation.  Further research is needed 

concerning application of WA timing and rates and weather to confirm this hypothesis.  

Clipping yield is a method for golf course superintendents to monitor turfgrass 

growth and health through the growing season.  Although no notable trends of K rate or 
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carrier were observed for clipping yield, liquid K forms were found to increase yield on 

two sampling dates.  Seasonal declines in dry root weight over both years of the study 

were not mediated by the addition of any of the potassium treatments, and at times, were 

reduced by as much as 36% by higher K rates used in this study.  Wetting agent was 

applied at 19.1 L WA ha-1 monthly and produced a profound reduction in the level of soil 

hydrophobicity exhibited by treated plots each year. 

A primary objective of this study was to investigate K rates and carriers and their 

influence on tissue K concentrations in roots and shoots.  As expected, increasing K rate 

to 195 kg K ha-1 yr-1 resulted in consistently higher leaf tissue K, with the greatest 

concentrations following liquid K fertility. Surprisingly, liquid forms of K improved root 

tissue K concentrations, at either rate, more so than granular forms.  It was observed that 

root mass decreased linearly each year, possibly indicating why root tissue K levels were 

highest for foliar K treatments.  A lack of rooting available for soil K interception and 

absorption would obviously impede root K uptake.  Due to the mobility of K within the 

plant, foliar applications of K would greatly increase leaf and root tissue K 

concentrations, even while rooting is at a minimum.  

 

 



 
 

CHAPTER 5 

EVALUATING POA TRIVIALIS UNDER REDUCED LIGHT ENVIRONMENTS 

WITH VARIOUS RATES OF LIQUID  

NITROGEN AND IRON 

 

Introduction 

Annual winter overseeding of warm-season turfgrass putting greens is a common 

practice on golf courses in the southeastern United States.  Although during winter 

months, shade conditions are improved due to fell leaves of deciduous trees, lower solar 

radiation angles and evergreen trees still pose cause serious shade problems for some 

greens. An estimated 20-25% of the turf grown today is exposed to some degree of low 

light conditions (Dudeck and Peacock, 1992; Beard, 1973).  Unlike warm-season grasses, 

which require full sunlight to reach maximum photosynthetic capacity, cool-season 

grasses reach light saturation at approximately ½ full sunlight (McCarty, 2005; Fry and 

Huang, 2004).  Physiological and morphological responses of cool season grasses to 

reduced light irradiance include increased upright growth habits, increased chlorophyll 

content, depleted carbohydrate reserves, thinner and longer leaves, reduced density, 

shallow rooting, and reduced tillering (Dudeck and Peacock, 1992; Beard, 1973). 

 Reduced N fertilization has long been a recommended practice to suppress 

vertical growth and carbohydrate depletion of shaded turfgrass (Wilson, 1997).  Goss et 

al. (2002) reported higher quality of ‘Penncross’ creeping bentgrass under shade 

receiving 150-185 kg N ha-1 than higher rates of 212-235 kg N ha-1.  However, nitrogen is 
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an essential component of any turfgrass management program, regardless of light level.  

Additionally, leaf chlorophyll content is increased under shade, however under extremely 

low light, chlorophyll is significantly reduced (Beard, 1973).  Foliar applications of Fe 

have been used to darken turfgrass color under shade (Glinski et al., 1992) by enhancing 

granal development in chloroplasts of Kentucky bluegrass (Lee et al., 1996).  The effect 

of increasing N rates and foliar Fe applications on growth and performance of overseeded 

turf under shade is however, unknown. 

Therefore, the objective of this study was to determine the effect of winter 

shading on turf quality, clipping yield, chlorophyll concentration and nutrient recovery of 

an overseeded bermudagrass putting green exposed to increasing levels of N fertilization 

and foliar Fe application.  

 

Materials and Methods 

The study was conducted during the winter months of 2006-07 and 2007-08 at the 

Clemson University Turfgrass Research Center, in Clemson, SC on a Champion 

bermudagrass field research plot overseeded with ‘Sabre’ roughstalk bluegrass (Poa 

trivialis L.).  Experimental plot was established by sprigs in July 2003 with soil profile 

constructed to approximate United States Golf Association (USGA) recommendations 

(USGA, 1993).  Plots measured 2.7 x 1.8 m arranged as a randomized split block design 

with shade treatments representing the split block, with three replications (Appendix B-

3).  
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Treatments consisted of three annual nitrogen rates of 49, 98, and 147 kg N ha-1 

per season split between 4 equal applications.  Nitrogen was supplied as urea (46-0-0) 

using a CO2 powered backpack sprayer.  Iron was supplied monthly as chelated iron 

(Sequestrene 330 Fe) tank mixed with nitrogen at a rate of 10.8 kg a.i. ha-1 per season.  

Foliar applications of N and Fe were applied on 8 November, 28 November, 11 January, 

and 1 February of year 1 and 13 November, 29 November, 10 January, and 2 February of 

year 2.  Shade treatments consisted of control (no shade) and 55% shade using a neutral 

density, polyfiber black shade cloth (Glenn Harp and Sons, Inc., Tucker, GA) supported 

by polyvinyl chloride (PVC) frame 183 cm long and 152 cm wide with 2.54 cm diameter 

PVC pipes.  Shade structures were 15 cm above the rough bluegrass surface to reduce 

sunlight intrusion by the low solar angle of the sun during the winter months, yet allow 

adequate wind movement.  All tents were removed nightly.  Shade treatment duration 

was 16 November to 16 February 2006 and 15 November to 15 February 2007.  

Plots were overseeded on 6 October 2006 and 5 October 2007, 41 days prior to 

the initiation of shade treatments each year.  Prior to overseeding, plots were vertically 

mowed in 2 perpendicular directions with approximately 2 mm wide blade at 2 cm 

spacing to a depth of 2.5 cm using a SISIS vertical mower (Cheshire SK10 2LZ, 

England) with debris removed.  Plots were mowed a second time at 3.2 mm and rough 

bluegrass was seeded at 390 kg ha-1 pure live seed, using a push drop spreader.  Plots 

were seeded in two directions to ensure uniform seed distribution.  Seed were brushed in 

by hand using push-type brooms and lightly topdressed with the same material as the 

original root zone mix (Appendix C-1 and C-2).  Seedbed moisture was maintained by an 
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overhead, automated irrigation system 4 times daily for 10 days following overseeding. 

Mowing was resumed at an initial height of 4.8 mm and gradually reduced to 3.2 mm 

over 21 days.  Chlorothalonil (Daconil) was applied to plots as needed to control 

outbreak of dollar spot on roughstalk bluegrass. 

 

Data collection 

Data collected included visual turf quality (TQ), clipping yield, shoot chlorophyll 

concentration, leaf tissue nutrient concentrations, and microenvironment conditions.  Turf 

quality was rated visually every 14 d based on turf color, density, and overall stand 

health.  Turf quality was rated on a 1 to 9 scale with 1 = dead turf, 9 = dark green, healthy 

turf, and 7 > signifying acceptable turf quality.   

Clippings were harvested in December, January, and February using a walk-

behind greensmower with a clipping collector (Greenmaster® 800, The Toro Company, 

Bloomington, MN).  Fresh clippings were analyzed for leaf chlorophyll content in 

January and February of both years. Chlorophyll was extracted using the dimethyl 

sulfoxide (DMSO) extraction method (Hiscox and Israelstram, 1979) (Appendix A).  

Total chlorophyll content (mg g-1) was determined using a spectrophotometer (GenesysTM 

20, ThermoSpectronic, Rochester, NY) with absorbance values at 645 and 663 nm in the 

following equation determined by Arnon (1949): 

(20.2 * D645 + 8.02 * D663) * 0.1 = mg chlorophyll g-1 tissue 

Clippings harvested in December, January, and February were oven-dried at 80oC 

for 72 hr to determine clipping dry weight.  Dry samples were analyzed for leaf tissue 
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nutrient concentrations in December and February of each season by the Clemson 

University Agricultural Service Laboratory.  Tissue N concentrations were determined 

using a LECO FP528 Nitrogen Combustion analyzer (Warrendale, PA).  Other plant 

nutrients were determined using wet ashing procedures with a Digestion Block Magnum 

Series Block Digester (Ivesdale, IL) and an ICP model TJA-61E autosampler (Madison, 

WI). 

Microenvironment parameters such as surface and soil temperature (Appendix C-

6 and C-7) and light quantity (Appendix C-8) were measured weekly from November 

through February each year.  Surface and soil temperature and light intensity (PPFD) 

(µmol m-2 s-1) were recorded 3 times daily on clear, cloudless days at approximately 

sunrise, solar noon, and one hour before sunset using an indoor/outdoor thermometer 

(model #1455 and model #9840, Taylor, Oakbrook, IL) and quantum radiometer (Model 

LI-250, LiCor, Lincoln, NE), respectively.   

 

Data Analysis 

All statistical computations were conducted using analysis of variance (ANOVA) 

within the Statistical Analysis System (SAS Institute, 2003).  Means were separated by 

Fisher’s Protected Least Significant Difference (LSD) test.  An alpha of 0.05 was used 

for all data comparisons. 
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Results and Discussion 

Treatment interactions occurred N, Fe, and shade for turfgrass quality (TQ) and 

were examined as treatment combinations for each year.  No meaningful interactions 

between N, Fe, and shading effects were observed (P > 0.05) for the parameters 

measured; therefore, main effects of each treatment for 2006 and 2007 were examined 

separately. 

 

Turf Quality 

 Turf quality is the practical means by which to turfgrass managers are able to 

measure turfgrass performance.  Visual turfgrass quality did not reach the minimally 

acceptable threshold in either year of the study.  In year 1, rough bluegrass performed 

exceptionally well under reduced light conditions compared to full sunlight, with the 

highest visual ratings produced on plots under shade receiving 147 kg N ha-1 annually 

from November to January (Table 5-1).  In February of year 1, a rate of 98 kg N ha-1 

annually under shade and Fe applications produced 47% higher TQ compared to control 

(Table 5-1).  Previous literature has documented that high rates of N under shade lead to 

significantly reduced TQ.  This was not the case in year 1, as rough bluegrass performed 

much better under shaded conditions.  It is unclear why rough bluegrass performed better 

under shade in year 1, however a viable explanation may be due to the reduction of soil 

and surface temperatures produced by shading during the mild winter of year 1 

(Appendix C-6 and C-7).  Heat tolerance of rough bluegrass is particularly low (Hurley, 

2003), therefore shade treatments may prove beneficial to reducing high heat exposure of 
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full-sunlight on sunny winter days.  A noteworthy observation from year 1 was that the 

addition of shade increased TQ of all N and Fe treatment combinations for every 

sampling date aside from plots receiving 98 kg N ha-1 and no Fe in January 2007.  Goss 

et al. (2002) noted a 60% shade reduction caused no loss of turfgrass cover or coloration.  

 Time played a significant role in this study as differential responses of shading 

effects were observed in the second year of the study.  In year 2, the highest TQ ratings 

were consistently recorded on plots receiving the highest rate of N and Fe under no light 

restrictions (Table 5-2).  In February, while the 147 kg N ha-1 with Fe rate produced the 

highest visual quality, it was observed that restricting sunlight by 55% resulted in a 50% 

reduction in turf quality (Table 5-2).  Similar research has shown that reduced sunlight 

irradiance reaching turfgrass often results in reduced turfgrass quality and density 

(Bunnell et al., 2005a; Bunnell et al., 2005b; Tegg and Lane, 2004; Steinke and Stier, 

2003; Qian, 1998; Trenholm et al., 1998; Beard, 1973).   

It is unclear why conflicting data was found between years, but may be explained 

by thatch accumulation and thickness of the plots over time, particularly on plots 

receiving the highest N rate and/or shade.  Long (2006) and Baldwin (2008) performed 

two year studies investigating N rates and their effect on thatch accumulation of 

‘Champion’ bermudagrass at this site.  Both researchers reported minimal, however 

significant yearly increases of thatch production with increasing N rates.  Baldwin (2008) 

noted 40% a greater thatch mass on plots under 55% light reductions, as well as increases 

in thatch thickness.  Excessive thatch levels may have negatively influenced overseeding 

establishment each October of this study, particularly for plots receiving higher rates of N 
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and shade treatments.  This effect may have become more prominent over time, possibly 

delaying or prohibiting rough bluegrass germination by year 2.  As observed in the first 

year of the study, minimal differences were detected in TQ following applications of Fe 

in year 2 (Table 5-2).   



 
 

Table 5-1.  Visual turfgrass quality of rough bluegrass in response to three nitrogen rates, supplemental iron, and two light 
environments for year 1.  
 

N 
 

Fe Shade Nov 2006† Dec 2006 Jan 2007 Feb 2007 

kg ha-1 yr -1 kg ha-1 yr -1 % -----------------------------Turfgrass Quality(1-9)‡--------------------------- 

49 0 0 3.5  3.9 3.7 3.4 

 0 55 4.6 4.9 4.8 4.9 

 10.8 0 3.7 3.8 3.8 3.4 

 10.8 55 4.8 5.4 4.9 5.2 

98 0 0 3.9 4.3 6.0 4.2 

 0 55 5.4 5.7 4.8 5.7 

 10.8 0 3.5  4.4 4.8 4.6 

 10.8 55 5.5 6.0 6.1 6.4 

147 0 0 3.6 4.3 4.7 4.0 

 0 55 5.9 6.1 6.1 5.8 

 10.8 0 3.8 4.3 4.8 3.8 

 10.8 55 5.9 6.2 6.3 5.5 

LSD   0.56 0.32 0.61 0.74 

 

† Values followed by the same letter in the same column are not significantly different at p = 0.05 using Fisher’s LSD. 
 
‡ Turfgrass quality based on a visual scale of 1 to 9 with 1 = poorest, 9 = best. Visual rating of >7 indicates acceptable 

turf quality.    96 



 
 

Table 5-2.  Visual turfgrass quality of rough bluegrass in response to three nitrogen rates, supplemental iron, and two light 
environments for year 2. 
 

N 
 

Fe Shade Nov 2007† Dec 2007 Jan 2008 Feb 2008 

kg ha-1 yr -1 kg ha-1 yr -1  -----------------------------Turfgrass Quality(1-9)‡--------------------------- 

49 0 0 4.8 4.5 4.3 4.9 

 0 55 5.0 5.3 4.7 4.3 

 10.8 0 4.8 4.8 4.1 4.7 

 10.8 55 4.9 5.2 4.7 4.0 

98 0 0 5.3 5.2 5.3 5.8 

 0 55 5.3 5.4 4.5 3.6 

 10.8 0 5.4 5.3 5.3 5.7 

 10.8 55 5.3 5.3 4.7 4.5 

147 0 0 5.5  5.3 5.3 5.6 

 0 55 5.6 4.4 3.5 3.1 

 10.8 0 5.7 5.7 6.0 6.0 

 10.8 55 5.6 4.4 3.7 3.0 

LSD   0.47 0.65 0.64 0.74 

 
† Values followed by the same letter in the same column are not significantly different at p = 0.05 using Fisher’s LSD. 
 
‡ Turfgrass quality based on a visual scale of 1 to 9 with 1 = poorest, 9 = best. Visual rating of >7 indicates acceptable 

turf quality.  97 
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Chlorophyll 

Differences in total chlorophyll content were observed among N and shade 

treatments.  In 2006, data indicates an increase in shoot chlorophyll content under 

medium and high N rates in January and February (Table 5-3).  By February 2007, 

however, 98 and 147 kg N ha-1 annual rates significantly increased shoot chlorophyll 

content by 13 and 29%, respectively (Table 5-3).  Previous research confirms the findings 

that C3 turfgrasses increase light-harvesting pigments, especially chlorophyll, under 

increasing N fertility (Steinke and Stier, 2003; Van Huylenbroeck and Van Bockstaele, 

2001).  Bell et al. (2004) concluded that increasing N fertilization of bermudagrass to 293 

kg N ha-1 and of creeping bentgrass up to 67 kg N ha-1 resulted in linear increases of 

chlorophyll content for both species.   

Surprisingly, foliar application of supplemental iron yielded no response in total 

chlorophyll content of either year (Table 5-3).  Such a lack of response has been reported 

on supina bluegrass (Poa supina Schrad.) and Kentucky bluegrass (Poa pratensis L.) 

chlorophyll content under reduced light conditions (Stier and Rogers, 2001).  It is 

possible that foliar applications of Fe were not foliarly absorbed or Fe was taken up and 

removed from plant tissue following subsequent mowing.  

 Shading increased chlorophyll content in February of year 1 from 2.36 to 2.57 mg 

g-1 as shading increased from full sunlight to 55% light reduction (Table 5-3).  

Alternatively, shoot chlorophyll was decreased in December and February of year 2 by 

16 and 14% under reduced light conditions, respectively.  Bunnell et al. (2005a) 

confirmed these findings, noting decreased chlorophyll of TifEagle bermudagrass with 



 
 

99 
 

increasing sunlight restrictions.  A typical physiological response of turfgrass under low-

light conditions is elevated chlorophyll content (Beard, 1973), however a viable 

explanation for the conflicting results between years may have been due to weather 

patterns observed between the summer months of 2006 and 2007 (Appendix D).  During 

the summer of 2007, a severe drought reduced turf density of Champion bermudagrass 

and subsequently resulted in a dense Poa trivialis overseeded stand.  Competition 

between plants may have magnified the shading effects applied in the study, resulting in 

reduced turf density.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

100 
 

Table 5-3.  Total shoot chlorophyll concentration (mg g-1) of rough bluegrass in response 
to three nitrogen rates, supplemental iron, and two light environments. 

 
 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD. 
 
‡ Total chlorophyll concentration based on mg chlorophyll per fresh gram 

clippings.       
 

 

 

 

 

 

Nitrogen  
kg ha-1 yr -1 Jan 2007† Feb 2007 Jan 2008 Feb 2008 

   ------------------Total Chlorophyll Concentration (mg g-1)‡---------------- 

49 2.43  2.31 2.03 1.80  

98 2.80  2.56  2.06 2.05 

147 3.07  2.53  2.06 2.52 

LSD 0.12 0.19 NS 0.17 

     

No Fe 2.78 2.47 2.02 2.07 

Fe 2.74 2.46 2.09 2.18 

LSD NS NS NS NS 

     

Full Sun 2.77 2.36 2.23  2.28  

Shade 2.75 2.57  1.87  1.96  

LSD NS 0.16 0.12 0.14 
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Clipping Yield 

 Shoot growth was affected by N rate at every sampling date.  High rate of N 

produced significantly higher clipping yields than the low rate at every harvest date by as 

much as 57% in January 2007 (Table 5-4).  Clipping harvests in year 2 revealed similar 

results, however the extent to which the high rate of N affected shoot growth was less 

pronounced (Table 5-4).  Bowman et al. (2005) confirmed these findings, noting flushes 

of growth on six warm-season grasses following increased N rates.  Supplemental 

applications of chelated iron produced inconsistent and minimal impact on clipping yield, 

increasing yield on only one occasion.  

 Shading conditions increased clipping yield by 19% in December of year 1 (Table 

5-4).  Similar findings exist in previous literature documenting a positive response of 

clipping yield with increasing shade levels (Baldwin, 2008; Tegg and Lane, 2004; Qian et 

al., 1998; Trenholm, 1998; Beard, 1973).  Conversely, by year 2 clipping harvest was 

decreased by 38 and 33% in December and February, respectively (Table 5-4).  In the 

second year of the study, because of plant competition for sunlight and extenuating 

weather conditions, shoot density of shaded plots was severely reduced, leading to vast 

decreases in clipping yield. 
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Table 5-4.  Clipping yield of rough bluegrass in response to three nitrogen rates, 
supplemental iron, and two light environments. 

 
 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD. 
 
‡ Number of days between mowings differed for each clipping harvest.  Dependent  

upon growth rate at time of harvest. 
 

§ Clipping dry weight based on weight of dry leaf tissue harvested per square meter. 
 
 
 

 

 

Nitrogen  
kg ha-1 yr -1 

 
Dec 2006† Jan 2007‡ Feb 2007 Dec 2007 Jan 2008 Feb 2008 

 ---------------------Clipping Dry Weight (g m-1)§-------------------- 

49 1.50  5.68  5.38  1.66  4.50  3.99  

98 1.90  10.86  8.89  2.12  6.22  4.60  

147 2.13  13.31  9.01  2.07  6.21  5.44  

LSD 0.30 1.42 0.84 0.25 0.72 0.49 

 
 

  
 

  

No Fe 1.82 10.13 7.69 1.95 5.32  4.38  

Fe 1.86 9.77 7.83 1.95 5.97  4.97  

LSD NS NS NS NS 0.59 0.40 

 
 

  
 

  

Full Sun 1.65  9.86 7.68 2.41  5.67 5.60  

Shade 2.04  10.04 7.83 1.49  5.62 3.75  

LSD 0.24 NS NS 0.21 NS 0.4 
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Leaf Nutrient Concentrations 

 Concerning leaf tissue N concentration in year 1, as rate of N increased, leaf 

concentration of N increased as well (Table 5-5).  As observed in Table 5-4, throughout 

the first year of the study, 147 kg N ha-1 annually produced the highest leaf N 

concentrations of all N rates.  By February 2008 however, application of 147 kg N ha-1 

annually produced decreased leaf N concentrations by16% compared to 98 kg N ha-1 

annual rate, most likely due to decreased turfgrass density of plots receiving 147 kg N ha-

1 under shade.  Beard (1973) reported that tissue N concentration increases at low light 

intensities. This explains why shade treatments increased leaf N concentration by 13% in 

February 2007 (Table 5-5).  Exogenous applications of foliar Fe exhibited no impact on 

the recovery of N in leaf tissue (Table 5-5). 

 The addition of Fe showed minimal impacts on leaf tissue Fe concentrations.  

Only once did the application of chelated Fe increase tissue Fe by 7% in January 2007 

(Table 5-6). Nitrogen rates higher than 49 kg N ha-1 resulted in significantly lower tissue 

Fe in year 1, however by year 2, the 147 kg N ha-1 rate provided 13% higher tissue Fe 

concentrations (Table 5-6). As expected, shading treatments increased leaf tissue Fe 

concentration by 20 and 22% by February of each year, respectively, however, no 

obvious trend can be inferred for Fe fertilization effects (Table 5-6).  Adequate iron 

levels within leaf tissue range from 100 to 500 ppm (Carrow et al., 2001).  As observed in 

Table 5-6, all Fe treatments resulted in adequate iron tissue concentrations. 
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Table 5-5.  Leaf tissue nitrogen concentration of rough bluegrass under three nitrogen 
rates, supplemental iron, and two light environments. 

 
 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD.  NS=not significant at the 0.05 level. 
 
‡ Nitrogen concentration based on percent nitrogen found in dried leaf tissue. 

 

 

 

 

 

 

Nitrogen  
kg ha-1 yr -1 Dec 2006† Feb 2007 Dec 2007 Feb 2008 

   --------------------Leaf Nitrogen Concentration (%)‡------------------- 

49 3.51  2.94  3.86  3.88  

98 3.88  3.47  4.50  4.17  

147 4.05  3.71  4.75  3.52  

LSD 0.12 0.13 0.13 0.13 

     

No Fe 3.84 3.39 4.35 3.85 

Fe 3.78 3.36 4.38 3.86 

LSD NS NS NS NS 

     

Full Sun 3.80 3.15  4.39 3.82 

Shade 3.82 3.59  4.35 3.89 

LSD NS 0.10 NS NS 
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Table 5-6.  Leaf tissue iron concentration (ppm) of rough bluegrass under three nitrogen 
rates, supplemental iron, and two light environments. 

 
 
† Values followed by the same letter in the same column are not significantly  

different at p = 0.05 using Fisher’s LSD.  NS=not significant at the 0.05 level. 
 
‡ Iron concentration based on ppm iron found in dried leaf tissue. 
 

 

 

 

 

 

Nitrogen  
kg ha-1 yr -1 Dec 2006† Feb 2007 Dec 2007 Feb 2008 

   -----------------------Leaf Iron Concentration (ppm)‡---------------------- 

49 242.71  202.29  184.54 138.42  

98 215.42  183.71  179.58 144.13  

147 216.92  187.83  180.96 158.38  

LSD 16.06 15.78 NS 19.45 

     

No Fe 216.53  191.78 183.08 139.78 

Fe 233.50  190.78 180.31 154.17 

LSD 13.12 NS NS NS 

     

Full Sun 233.69  170.36  181.64 128.67  

Shade 216.33  212.19  181.75 165.28  

LSD 13.12 12.89 NS 15.88 
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Conclusion 

 The ability of a turfgrass species to perform well under shaded conditions often 

relies on its ability to maintain acceptable turfgrass quality and sustain low shoot growth 

under reduced light conditions.  Rough bluegrass was shown to perform excellently under 

shading conditions in year 1; however as bermudagrass density suffered from 

overseeding practices, and unfavorable weather conditions, the ability of rough bluegrass 

to survive under shade was compromised.  Also, greater thatch mass accumulation over 

time may have negatively affected rough bluegrass establishment by year 2.  As noted by 

previous studies, by the second year of the study excessive nitrogen rates significantly 

reduced turfgrass quality under shade. 

 When comparing suitable annual N rates for overseeded turf, increasing N input 

by 49 kg K ha-1 resulted in linear increases in chlorophyll concentration.  However, data 

from this experiment suggests over-fertilization of nitrogen is extremely detrimental to 

growth and coverage on winter overseeding turfgrasses.  Foliar applications of water-

soluble urea provided the highest quality rating of 6 in February 2008, however a 55% 

reduction of sunlight resulted in a 50% decrease in visual turfgrass quality.  

Results from this study suggest a nitrogen rate of 98 kg N ha-1 annually for 

overseeded bermudagrass putting greens exposed to reduced light environments.  A 

medium rate of annual N will provide adequate chlorophyll and tissue N concentrations, 

while maintaining moderate shoot growth.  The addition of Fe provided minimal impact 

on turfgrass quality, clipping yield, chlorophyll or tissue nutrient concentrations. Finally, 
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further research should investigate various N sources and their impact on vegetative 

growth under shade. 



 
 

CHAPTER 6 
 

CONCLUSIONS 
 
 
 

 High temperature and drought stress are quite possibly the two most growth 

limiting factors to cool-season turfgrass cultured in the transition zone.  Nutritional 

supplements, particularly foliar K, have been suggested to promote optimal plant health 

during periods of biotic and abiotic stresses.  Although the effects of K fertilization on 

turfgrass responses to environmental stresses have been well documented, there have 

been conflicting reports as to the proper K fertilization program.  Furthermore, research 

investigating the interaction of K, Ca, and Mg recovery for creeping bentgrass greens 

under summer stress has been inconsistent. 

 Studies were conducted in 2006 and 2007 to evaluate liquid and granular K 

fertilization, in conjunction with foliar applications of Ca and Mg on turfgrass quality, 

clipping yield, root mass, and leaf and root nutrient concentrations of ‘Crenshaw’ 

creeping bentgrass.  Both K carriers failed to provide acceptable turf quality in year 2 of 

the study.  Furthermore, it was observed that foliar applications of K resulted in 

significant foliar burning from the high concentration of fertilizer salts.  Creeping 

bentgrass visual quality significantly benefited from monthly applications of Ca alone.   

Leaf tissue K concentrations were significantly greater under applications of 

liquid K, especially following advanced stages of bentgrass summer decline where liquid 

K treated turf exhibited 30% higher tissue K compared to untreated.  Conversely, 

granular K provided the greatest root K concentrations in 2006, however as creeping 
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bentgrass rooting subsided by 2007, liquid forms significantly improved root K 

concentrations.  Calcium and magnesium fertilization showed little impact on turf 

endogenous K concentrations, however it was documented that K, in either form, 

consistently reduced both leaf and root tissue Ca and Mg levels.   

 In another two-year field experiment, two K carriers, liquid and granular, at three 

annual rates with monthly applications of WA were applied to ‘L-93’ creeping bentgrass 

to investigate summer performance and sustain acceptable turfgrass quality through the 

summer months while reducing soil hydrophobicity.  As observed in the first study, foliar 

applications of K at 195 kg K ha-1 yr-1 (16.3 kg K ha-1 per application ) resulted in 

significantly reduced visual turf quality due to foliar burning of creeping bentgrass.  A 

notable observation was the contrasting impacts following WA applications of both 

years.  In 2006, under average summer precipitation, WA severely reduced visual quality, 

while in 2007 under extreme drought conditions, WA apparently sustained adequate soil 

moisture compared to untreated, thus increasing bentgrass summer performance.  

Confirming results of the first study, it was noted that biweekly foliar K applications 

produced significantly greater leaf and root tissue K concentrations.  While monthly 

applications of wetting agents showed no significant impact on volumetric soil moisture, 

it was found that WA significantly reduced soil hydrophobicity, possibly preventing the 

formation of Localized dry spots on creeping bentgrass.  

 A winter study was conducted to determine the effect of winter shading on turf 

quality, clipping yield, chlorophyll concentration and nutrient recovery of an overseeded 

bermudagrass putting green exposed to increasing levels of N fertilization and foliar Fe 
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application.  Turf quality never reached the acceptable turf quality rating of 7 on the 1-9 

scale.  In year 1, the greatest turfgrass quality was produced under shade following N 

fertilization at 147 kg N ha-1 annually with supplemental Fe.  By year 2 however, visual 

quality was significantly reduced with the addition of shade treatments.  It is unclear as to 

the reason for these conflicting results, however a possible reasoning includes increasing 

thatch accumulation, poor establishment and/or fluctuating weather conditions between 

years.  Nevertheless, results from this experiment indicate increasingly higher N 

application rates resulted linear increases of both leaf chlorophyll concentrations and 

endogenous N concentrations.  It was further observed that applying N in excess of 98 kg 

N ha-1 under reduced light environments resulted in significantly reduced visual turf 

quality and density over time.  

 Additional research is needed in order to determine optimal timing and 

application rates of K to pre-condition creeping bentgrass to high heat injury and 

maintain adequate summer performance of creeping bentgrass in the transition zone.  

Research is also warranted on optimal timings and rates of WA applications in order 

improve creeping bentgrass growth and performance to mediate the effects of summer 

bentgrass decline.  Lastly, future experiments are needed to determine N source effects 

on overseeded cool-season turfgrass species maintained under reduced light 

environments.  
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Appendix A 

 

Procedures for Chlorophyll Analyses 
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Appendix A 
 

Chlorophyll Extraction with DMSO 
 

1. Weigh 0.1 g fresh tissue into Erlenmyer flasks. 
2. Add 10 mL of Dimethyl Sulfoxide to each flask.  Cover with rubber stopper.  
3. Incubate in 65o C water shake bath for 1.5 hour. 
4. Transfer extract into spectrophotometer using pipette. 
5. Measure and record absorbance values at 645 nm and 663 nm wavelengths. 
6. Chlorophyll content is determined by following formula (Arnon, 1949): 

(20.2 x D645 + 8.02 x D663) x 0.1 = mg chlorophyll g-1 tissue 
D663 and 645 = absorbance values at given light wavelengths. 
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Appendix B 

 

Illustrations 
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B-1.    Randomized complete block experimental design for ‘Crenshaw’ creeping  

           bentgrass field study.  Where 0 K = No K, Gran K = granular K, and Liq  

           K= liquid K indicate potassium carrier receiving potassium fertilization at either 0  

           or 195 kg K ha-1yr-1, No Ca = no calcium, Ca = calcium at 49 kg ha-1 yr-1, No Mg  

           = no magnesium, Mg = magnesium at 49 kg ha-1 yr-1. 
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B-2. Digital photograph illustrating foliar phototoxicity of ‘Crenshaw’ creeping bentgrass    

        receiving 0 (foreground) and 195 (background) kg liquid K ha-1 annually.  
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B-3.  Randomized split block design for ‘L-93’ creeping bentgrass summer stress study  

         where 0, 98, and 195 indicate kg K ha-1 yr-1, No WA = no wetting agent, WA =  

         wetting agent at 19.1 L WA ha-1 monthly. 
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B-4.  Digital photograph illustrating ‘L-93’ creeping bentgrass treated with Revolution  

         wetting agent at 0 (left) and 19.1 right) L WA ha-1 monthly from May to October in  

         2006 and 2007.  
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B-5. Digital photograph illustrating hydrophobic soil characteristic of USGA putting  

        green sand media not treated with Revolution wetting agent in ‘L-93’ creeping    

        bentgrass field study.  
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B-6.  Randomized split block experimental design and treatment assignment for rough  

         bluegrass shade study where 49, 98, and 147 indicate kg N ha-1 per season, Fe =      

         10.8 kg a.i. ha-1 per season.  Blocks were randomly assigned N and Fe treatments,  

         with shade representing the split plot factor (dashed line). 
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B-7.  Poa trivialis field study where nitrogen was applied at 49, 98, and 147 kg ha-1 yr-1,  

with or without liquid iron, and with or without a 55% sunlight reduction  

(Photograph is taken from opposite direction of plot map). 

 

. 
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B-8.  Digital photograph demonstrating effects of full sunlight (left and right) and 55%  

light reduction (center) on Poa trivialis overseed from November to February. 
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Appendix C 

 

Tables and Figures Not Shown in Text 
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C-1.  Particle size analysis of USGA greens mix used in all studies at Clemson  

         University. 

 

 
 
 
 
 
 
C-2. Soil physical properties of USGA greens mix used in all studies at Clemson  

        University. 

 
 
 
 
 
 
 
 
 
 
 
 

Soil Separation 
% 

Sieve Size/Sand Fraction 
Sand Particle Diameter 

% Retained 

Sample Sand Silt Clay 

No. 10 
Gravel 
2mm 

No. 18 
V. 

coarse 
1mm 

No. 35 
Coarse 
0.5mm 

No. 60 
Medium 
0.25mm 

No. 100 
Fine 

0.15mm 

No. 270 
V. fine 
0.05mm 

Clemson 
Mix 

98.0 1.0 1.0 0.1 3.2 27.9 51.7 12.0 3.1 

USGA 
Value >92% <3% <3% 

<3% gravel 
<10% combined 

>60% 20% <5% 

Sample Particle 
Density 
(g cm-3) 

Bulk 
Density 
(g cm-3) 

Infiltration 
Rate 

(cm h-1) 

Total 
Porosity 

% 

Aeration 
Porosity 

% 

Capillary 
Porosity 

% 

Organic 
Matter 

% 
Clemson 

Mix 
2.64 1.41 17 46.8 23.4 23.3 1.4 

USGA 
Value 

 1.3-1.6 15-60 33-58 15-30 15-25 0.7-3.0 



 
 

125 
 

Table C-3.  ‘Crenshaw’ creeping bentgrass root dry weight in response to two K carriers, 
two Ca rates and two Mg rates. 

K 
carrier † June 06‡ Aug 06 Nov 06 June 07 Aug 07 Oct 07 
 --------------------------Root Dry Weight (g m-2)§-------------------------- 

Control 91.67 56.05 29.5 52.56 16.09 17.79 

Granular 98.8 52.21 30.39 60.46 20.06 19.46 

Liquid 81.45 44.71 30.44 48 16.37 19.63 

LSD NS NS NS NS NS NS 

       

Ca Rate       

No Ca 96.22 54.30 31.95 55.57 17.98 20.04 

Ca 85.06 47.67 28.27 51.78 17.03 17.88 

LSD NS NS NS NS NS NS 

       

Mg Rate       

No Mg 93.05 50.90 29.11 55.18 19.67 17.76 

Mg 88.23 51.08 31.12 52.16 15.35 20.16 

LSD NS NS NS NS NS NS 

 
† Abbreviations:  Control = no K fertilization, Granular and Liquid indicate 

granular or liquid K fertilization at 195 kg K ha-1 annually.  No Ca indicates no 
calcium fertilization, Ca = 49 kg calcium ha-1 annually. No Mg indicates no 
magnesium fertilization, Mg = 49 kg magnesium ha-1 annually.     

 
‡ Values followed by the same letter in the same column are not significantly 

different at p = 0.05 using Fisher’s Protected LSD.  NS=not significant at the 0.05 
level. 

 
§ Total dry root weight based grams of dried tissue per square meter. 
 
   
 



 
 

Table C-4.  Volumetric water content of ‘Crenshaw’ creeping bentgrass in response to two K carriers, two Ca rates and two 
Mg rates. 

 
† Values followed by the same letter in the same column are not significantly different at p = 0.05 using Fisher’s 

Protected LSD.  NS=not significant at the 0.05 level. 

K Carrier  June 06† July 06 Aug 06 Sept 06 Nov 06 June 07 July 07 Aug 07 Sept 07 Oct 07 

 --------------------Volumetric Water Content (m3/m3)-------------------- 

Control 0.21 0.19 0.28 0.26 0.32 0.27 0.24 0.18 0.26 0.27 

Gran 0.21 0.19 0.28 0.26 0.33 0.26 0.23 0.16 0.26 0.25 

Liq 0.22 0.20 0.28 0.26 0.33 0.27 0.22 0.17 0.23 0.25 

LSD NS NS NS NS NS NS NS NS NS NS 

           

Ca Rate           

No Ca 0.20 0.19 0.28 0.25 0.32 0.27 0.23 0.16 0.25 0.25 

Ca 0.22 0.19 0.29 0.27  0.33 0.26 0.23 0.18 0.25 0.26 

LSD NS NS NS 0.02 NS NS NS NS NS NS 

           

Mg Rate           

No Mg 0.21 0.19 0.28 0.26 0.33 0.27 0.23 0.17 0.25 0.25 

Mg 0.21 0.19 0.28 0.26 0.33 0.26 0.22 0.17 0.25 0.26 

LSD NS NS NS NS NS NS NS NS NS NS 

126 



 
 

Table C-5.  Influence of Revolution wetting agent on clipping yield of ‘L-93’ creeping bentgrass from June 2006 to October 
2007. 

Treatment June 06† July 06 Aug 06 Sept 06 Nov 06 June 07 July 07 Aug 07 Sept 07 Oct 07 

  ----------------------------------Total Dry Clipping Yield (g m-2) ‡----------------------------------  

No WA 1.75 0.71 2.01 4.00 2.76 2.88  3.68 2.94 2.02 1.71 

WA 1.89 0.68 1.56 3.80 2.59 3.53  3.37 3.50 1.96 1.77 

LSD (0.05) NS NS NS NS NS 0.46 NS NS NS NS 

 
† Values followed by the same letter in the same column are not significantly different at p = 0.05 using Fisher’s LSD.  

NS=not significant at the 0.05 level. 

‡ Total dry clipping yield based grams of dried tissue per square meter.  Number of days between mowings differed for 

each clipping harvest.  Dependent upon growth rate at time of harvest. 
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Table C-6.  Turf canopy temperature recorded weekly on a rough bluegrass overseeded 
putting green exposed to full sunlight and 55% light reduction from November 2006 to 
February 2008. 

 Morning Solar Noon Afternoon 
Date Shade Full Sun Shade Full Sun Shade Full Sun 

 ----------------------------Canopy Temperature (oC)------------------------ 
11/20/2006 13.3 7.8 19.1 20.6 15.6 17.1 
11/28/2006 10.7 9.9 18.7 19.8 20.1 20.0 
12/5/2006 7.8 9.6 17.1 19.2 12.6 13.8 

12/14/2006 2.3 1.9 19.1 22.5 13.0 14.4 
12/23/2006 17.0 20.7 20.9 24.6 17.6 19.7 
12/29/2006 11.1 12.1 18.3 16.8 12.0 13.7 

1/3/2007 9.1 10.0 12.4 16.1 7.6 9.3 
1/9/2007 1.7 6.9 14.0 19.4 6.6 4.8 

1/17/2007 2.2 3.1 10.1 13.2 3.6 3.2 
1/26/2007 2.8 5.5 13.9 21.8 9.3 11.8 
1/31/2007 -1.9 3.2 10.9 16.3 6.2 13.0 
2/7/2007 6.8 10.2 21.5 26.2 15.8 21.3 

2/14/2007 0.6 2.5 13.1 20.4 12.4 16.8 
       

11/19/2007 3.1 3.8 21.1 23.9 16.3 18.9 
11/26/2007 1.3 0.4 21.3 26.0 14.7 18.2 
12/3/2007 9.2 9.4 20.3 27.5 13.0 17.2 

12/11/2007 11.4 12.6 27.4 31.0 18.6 19.2 
12/20/2007 5.1 5.3 11.6 13.4 7.1 7.2 
12/23/2007 3.8 4.4 13.6 14.6 6.6 7.3 

1/1/2008 1.8 4.0 13.3 13.6 7.2 7.9 
1/7/2008 4.0 5.5 22.9 26.8 12.3 13.1 

1/15/2008 -1.8 -2.3 13.4 17.1 6.7 14.4 
1/24/2008 2.4 4.5 14.4 19.2 7.5 12.9 
1/29/2008 2.8 4.3 16.9 24.0 12.7 17.5 
2/7/2008 0.6 -0.2 21.8 26.7 15.8 20.3 

2/14/2008 0.1 -1.4 14.7 21.0 16.0 18.9 
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Table C-7.  Turf soil temperature recorded weekly on a rough bluegrass overseeded 
putting green exposed to full sunlight and 55% light reduction from November 2006 to 
February 2008. 

 Morning Solar Noon Afternoon 
Date Shade Full Sun Shade Full Sun Shade Full Sun 

 ----------------------------Canopy Temperature (oC)------------------------ 
11/20/2006 9.3 10.4 10.9 11.9 12.2 12.9 
11/28/2006 11.5 11.8 14.4 15.1 16.3 16.3 
12/5/2006 5.2 6.5 7.4 9.1 8.3 10.4 

12/14/2006 6.1 7.6 8.8 11.1 10.7 12.8 
12/23/2006 15.1 17.4 17.3 20.7 14.6 17.4 
12/29/2006 6.6 6.7 7.6 9.8 6.7 7.9 

1/3/2007 5.9 6.1 7.3 7.9 7.1 8.3 
1/9/2007 5.4 5.7 6.8 7.4 8.3 9.6 

1/17/2007 7.2 6.7 7.3 8.3 7.9 9.1 
1/26/2007 2.6 3.3 2.9 5.2 7.1 8.6 
1/31/2007 1.5 3.2 1.9 5.4 2.9 6.1 
2/7/2007 2.8 1.4 4.7 6.2 6.7 8.2 

2/14/2007 3.4 3.9 3.9 6.2 6.6 9.1 
       

11/19/2007 6.9 8.2 9.7 10.6 11.1 12.2 
11/26/2007 6.2 7.3 9.0 9.6 11.0 12.6 
12/3/2007 8.9 10.4 10.7 11.7 11.3 12.6 

12/11/2007 10.6 11.2 13.7 14.2 15.3 15.4 
12/20/2007 5.5 6.3 7.6 7.9 7.7 8.1 
12/23/2007 7.6 8.3 9.9 11.3 10.6 12.6 

1/1/2008 5.4 5.7 7.1 7.8 7.6 8.6 
1/7/2008 4.4 5.3 7.1 8.1 9.8 10.9 

1/15/2008 2.9 4.2 3.6 5.0 6.0 7.8 
1/24/2008 3.6 4.4 4.2 5.1 5.1 6.7 
1/29/2008 1.6 2.7 3.1 4.6 7.7 8.9 
2/7/2008 5.3 5.9 7.8 8.8 9.7 11.1 

2/14/2008 3.3 3.9 4.2 5.4 7.9 8.9 
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Table C-8.  Light intensity (PPFD) recorded weekly on a rough bluegrass overseeded 
putting green exposed to full sunlight and 55% light reduction from November 2006 to 
February 2008. 

 Morning Solar Noon Afternoon 
Date 55% 

Shade Full Sun 
55% 

Shade Full Sun 
55% 

Shade Full Sun 
 ----------------------------Light Intensity (µmol m-2 s-1)------------------------ 

11/20/2006 8.7 22.2 235.4 387.5 70.7 115.4 
11/28/2006 69.5 109.8 345.9 748.2 64.4 116.9 
12/5/2006 114.6 41.2 394.1 1009.1 117.3 198.4 

12/14/2006 40.7 119.6 147.8 388.2 106.7 180.3 
12/23/2006 70.5 126.7 154.6 379.2 69.5 112.6 
12/29/2006 108.4 169.5 174.5 440.3 47.4 96.4 

1/3/2007 76.9 104.5 228.7 564.3 37.5 83.3 
1/9/2007 37.7 43.8 298.4 725.1 11.0 31.5 

1/17/2007 57.6 180.2 290.1 708.5 17.5 40.5 
1/26/2007 184.8 340.3 375.5 795.2 61.1 199.5 
1/31/2007 93.9 104.5 310.8 766.7 67.1 144.4 
2/7/2007 37.6 206.2 348.9 930.7 114.8 292.6 

2/14/2007 83.1 321.2 351.7 881.5 172.7 462.6 
       

11/19/2007 46.3 98.5 289.5 791.2 43.8 89.7 
11/26/2007 24.0 149.8 340.8 796.3 86.1 267.0 
12/3/2007 31.9 65.2 302.2 716.3 22.2 175.6 

12/11/2007 43.8 84.0 269.5 767.7 21.9 58.4 
12/20/2007 13.9 42.2 57.9 154.5 1.5 3.7 
12/23/2007 31.3 72.2 339.6 728.8 37.9 148.3 

1/1/2008 10.2 30.9 311.5 731.8 38.7 157.3 
1/7/2008 29.7 58.4 332.5 733.5 `15.06 40.3 

1/15/2008 20.7 50.1 374.1 756.6 65.3 180.7 
1/24/2008 43.4 88.2 313.7 811.3 27.9 230.5 
1/29/2008 91.0 267.3 287.4 782.0 66.9 291.2 
2/7/2008 14.2 31.6 420.1 882.5 101.8 283.6 

2/14/2008 38.2 224.1 322.8 853.9 93.1 273.6 
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Table C-9.  Initial soil nutrient analysis for the ‘Crenshaw’ creeping bentgrass study site 
used in Chapter 3. 
 

Soil pH  5.1 
Cation Exchange Capacity (CEC) 2.6 meq/100g 
  
    Nutrient ppm 
Phosphorus (P) 5.5 
Potassium (K) 12 
Calcium 145 
Magnesium (Mg) 24 
Zinc (Zn) 2.8 

Manganese (Mn) 8.5 

Copper (Cu) 1.1 

Boron (B) 0 

Sodium (Na) 7 

                                      

Base Saturation Ca: 28% Mg: 8% K: 1% Na: 1% Total: 38% 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

132 
 

Appendix D 

 

Clemson, SC Weather Data 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 
                        Date                                              Temp (oC)                                 Rain (cm) 
        Max       Min 

5/1/06 24.4 11.7 0.0 
5/2/06 22.8 6.7 0.0 
5/3/06 25.6 16.7 0.0 
5/4/06 29.4 10.6 0.0 
5/5/06 28.3 16.1 0.0 
5/6/06 27.2 13.9 0.9 
5/7/06 27.8 16.7 0.0 
5/8/06 17.8 11.1 0.5 
5/9/06 18.9 11.7 0.0 

5/10/06 20.0 11.7 0.0 
5/11/06 23.3 15.0 0.0 
5/12/06 23.9 8.9 0.1 
5/13/06 21.1 7.2 0.0 
5/14/06 23.9 13.9 0.0 
5/15/06 24.4 8.9 0.0 
5/16/06 22.2 8.9 0.0 
5/17/06 22.8 8.3 0.0 
5/18/06 24.4 11.7 0.0 
5/19/06 26.1 8.9 0.0 
5/20/06 26.1 13.9 0.2 
5/21/06 27.8 17.2 3.3 
5/22/06 27.2 18.3 0.1 
5/23/06 27.8 14.4 0.0 
5/24/06 28.3 12.2 0.0 
5/25/06 30.0 13.3 0.0 
5/26/06 32.2 15.0 1.3 
5/27/06 30.0 19.4 4.4 
5/28/06 31.7 18.9 0.0 
5/29/06 31.1 17.8 0.0 
5/30/06 32.2 17.8 0.0 
5/31/06 33.3 18.3 0.0 
6/1/06 32.2 18.3 0.0 
6/2/06 31.7 20.0 0.1 
6/3/06 30.6 19.4 4.5 
6/4/06 28.3 13.3 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                             Min           

6/5/06 28.3 12.2 0.6 
6/6/06 26.1 11.1 0.0 
6/7/06 28.9 12.2 0.0 
6/8/06 30.0 16.1 0.0 
6/9/06 31.1 14.4 0.0 

6/10/06 31.7 17.2 0.0 
6/11/06 35.0 20.0 0.0 
6/12/06 34.4 20.0 0.0 
6/13/06 32.8 17.8 1.0 
6/14/06 23.3 17.2 0.6 
6/15/06 31.7 15.6 0.0 
6/16/06 30.6 15.6 0.0 
6/17/06 31.1 15.0 0.0 
6/18/06 31.1 15.6 0.0 
6/19/06 30.6 16.1 0.0 
6/20/06 32.2 18.3 0.0 
6/21/06 35.6 18.3 0.0 
6/22/06 35.6 19.4 0.0 
6/23/06 37.2 20.6 0.0 
6/24/06 35.0 20.0 4.2 
6/25/06 31.7 20.6 0.0 
6/26/06 30.0 20.6 4.8 
6/27/06 25.6 19.4 9.1 
6/28/06 31.7 18.3 0.0 
6/29/06 31.1 17.8 0.0 
6/30/06 32.2 16.7 0.0 
7/1/06 32.2 18.3 0.0 
7/2/06 33.3 18.9 0.4 
7/3/06 34.4 19.4 0.0 
7/4/06 35.0 20.0 0.0 
7/5/06 35.0 21.7 0.5 
7/6/06 29.4 20.6 0.6 
7/7/06 28.9 18.3 0.0 
7/8/06 26.7 16.1 0.0 
7/9/06 28.3 16.1 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                             Min           

7/10/06 30.0 20.0 0.0 
7/11/06 32.8 19.4 0.0 
7/12/06 33.3 20.6 0.0 
7/13/06 34.4 22.2 0.0 
7/14/06 34.4 20.6 0.1 
7/15/06 33.9 22.2 0.0 
7/16/06 35.6 21.7 0.0 
7/17/06 33.9 18.9 0.0 
7/18/06 34.4 19.4 0.0 
7/19/06 35.0 20.0 0.0 
7/20/06 36.7 21.7 0.0 
7/21/06 35.0 21.1 0.0 
7/22/06 35.0 21.1 0.2 
7/23/06 32.8 21.1 0.8 
7/24/06 30.6 20.0 0.0 
7/25/06 30.6 21.1 3.0 
7/26/06 32.2 20.0 0.0 
7/27/06 34.4 21.7 0.0 
7/28/06 35.0 21.1 0.0 
7/29/06 36.1 22.8 0.0 
7/30/06 31.1 20.6 0.1 
7/31/06 33.9 21.1 0.0 
8/1/06 36.1 22.2 0.0 
8/2/06 37.8 23.3 0.0 
8/3/06 37.8 23.9 0.3 
8/4/06 36.1 22.2 0.9 
8/5/06 37.2 22.2 0.0 
8/6/06 32.8 23.3 0.0 
8/7/06 33.3 22.2 0.0 
8/8/06 36.7 22.8 0.0 
8/9/06 36.7 21.1 0.0 

8/10/06 36.1 22.2 0.0 
8/11/06 36.1 21.7 0.0 
8/12/06 31.7 19.4 1.2 
8/13/06 23.9 18.3 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                             Min           

8/14/06 29.4 18.9 0.0 
8/15/06 32.2 20.6 0.0 
8/16/06 33.9 21.1 1.8 
8/17/06 31.7 22.2 0.0 
8/18/06 30.6 18.3 0.0 
8/19/06 31.7 18.3 0.0 
8/20/06 33.3 21.1 0.0 
8/21/06 33.9 20.0 0.0 
8/22/06 33.3 21.1 0.0 
8/23/06 32.8 20.0 2.4 
8/24/06 30.6 21.7 0.0 
8/25/06 31.1 18.9 0.0 
8/26/06 31.7 17.2 0.0 
8/27/06 32.2 17.8 0.0 
8/28/06 32.8 17.8 0.0 
8/29/06 33.9 23.3 0.0 
8/30/06 35.0 22.2 0.0 
8/31/06 35.0 21.7 0.1 
9/1/06 30.0 20.0 0.0 
9/2/06 28.9 19.4 2.8 
9/3/06 28.3 21.1 0.0 
9/4/06 29.4 21.1 0.0 
9/5/06 30.6 21.1 0.0 
9/6/06 27.2 18.3 3.1 
9/7/06 29.4 18.3 0.0 
9/8/06 25.6 17.2 0.0 
9/9/06 28.9 16.7 0.0 

9/10/06 28.3 16.7 0.0 
9/11/06 30.6 17.2 0.0 
9/12/06 27.8 16.7 0.0 
9/13/06 24.4 16.1 1.9 
9/14/06 18.3 15.6 2.4 
9/15/06 26.7 14.4 0.0 
9/16/06 27.2 13.9 0.0 
9/17/06 28.9 15.6 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                             Min           

9/18/06 28.9 15.6 0.0 
9/19/06 29.4 20.0 1.1 
9/20/06 28.3 11.1 0.0 
9/21/06 25.6 9.4 0.0 
9/22/06 22.8 15.0 0.0 
9/23/06 26.1 19.4 0.5 
9/24/06 30.6 18.9 0.8 
9/25/06 27.2 15.6 0.2 
9/26/06 26.1 13.3 0.0 
9/27/06 24.4 13.9 0.0 
9/28/06 26.1 12.2 0.0 
9/29/06 26.7 7.2 0.0 
9/30/06 21.7 7.2 0.0 
10/1/06 23.9 12.2 0.0 
10/2/06 28.9 11.1 0.0 
10/3/06 27.8 12.8 0.0 
10/4/06 29.4 14.4 0.0 
10/5/06 30.0 14.4 0.0 
10/6/06 29.4 17.2 0.0 
10/7/06 28.3 7.2 0.0 
10/8/06 21.1 12.2 0.0 
10/9/06 20.0 12.2 0.0 

10/10/06 26.7 11.1 0.0 
10/11/06 27.8 13.9 0.0 
10/12/06 26.7 14.4 0.0 
10/13/06 22.2 10.0 0.0 
10/14/06 19.4 0.6 0.0 
10/15/06 21.7 0.0 0.0 
10/16/06 21.1 7.2 0.0 
10/17/06 18.3 8.3 2.3 
10/18/06 17.2 12.8 4.0 
10/19/06 26.1 16.7 0.0 
10/20/06 23.3 17.2 0.5 
10/21/06 23.3 5.0 0.0 
10/22/06 19.4 8.3 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                              Min           

10/23/06 20.6 4.4 0.3 
10/24/06 15.0 0.0 0.0 
10/25/06 13.9 -1.7 0.0 
10/26/06 13.3 2.2 0.0 
10/27/06 17.8 8.9 0.0 
10/28/06 15.0 9.4 4.3 
10/29/06 19.4 5.6 0.0 
10/30/06 22.8 5.6 0.0 
10/31/06 24.4 7.2 0.0 
11/1/06 18.3 8.9 0.0 
11/2/06 25.0 12.8 0.0 
11/3/06 21.7 -1.7 0.0 
11/4/06 12.2 -1.1 0.0 
11/5/06 11.7 -1.1 0.0 
11/6/06 13.3 2.2 0.0 
11/7/06 13.9 7.2 0.6 
11/8/06 12.8 11.1 2.1 
11/9/06 20.0 6.1 0.0 

11/10/06 25.0 6.1 0.0 
11/11/06 26.1 8.9 0.0 
11/12/06 21.1 5.0 0.3 
11/13/06 17.8 -0.6 0.0 
11/14/06 21.7 1.7 0.0 
11/15/06 22.2 10.0 0.0 
11/16/06 20.0 10.0 3.8 
11/17/06 12.8 3.9 0.0 
11/18/06 15.0 0.6 0.0 
11/19/06 15.0 -1.1 0.0 
11/20/06 13.9 3.9 0.0 
11/21/06 8.3 -1.1 0.0 
11/22/06 12.8 3.9 0.2 
11/23/06 20.0 4.4 0.0 
11/24/06 20.0 1.7 0.0 
11/25/06 22.2 0.6 0.0 
11/26/06 20.6 -0.6 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                             Min           

11/27/06 21.7 0.0 0.0 
11/28/06 21.1 5.6 0.0 
11/29/06 21.7 11.1 0.0 
11/30/06 21.1 15.6 0.3 
12/1/06 20.6 18.9 0.6 
12/2/06 21.7 -0.6 0.1 
12/3/06 17.2 5.0 0.0 
12/4/06 15.0 3.3 0.0 
12/5/06 12.8 -2.8 0.0 
12/6/06 14.4 -1.7 0.0 
12/7/06 15.0 5.6 0.0 
12/8/06 13.9 -8.3 0.0 
12/9/06 5.6 -8.9 0.0 

12/10/06 10.6 -5.0 0.0 
12/11/06 13.9 -1.1 0.0 
12/12/06 19.4 0.0 0.0 
12/13/06 18.3 9.4 0.0 
12/14/06 20.0 0.6 0.0 
12/15/06 18.9 0.6 0.0 
12/16/06 21.1 2.2 0.0 
12/17/06 22.8 0.6 0.0 
12/18/06 20.6 1.1 0.0 
12/19/06 23.9 3.9 0.0 
12/20/06 23.3 9.4 0.0 
12/21/06 11.1 8.3 0.0 
12/22/06 12.8 8.9 2.7 
12/23/06 17.2 14.4 2.1 
12/24/06 21.1 0.6 0.0 
12/25/06 16.7 6.1 2.4 
12/26/06 9.4 5.0 1.9 
12/27/06 10.0 -1.1 0.0 
12/28/06 11.1 -3.3 0.0 
12/29/06 13.9 0.0 0.0 
12/30/06 16.7 6.1 0.0 
12/31/06 12.2 10.6 1.4 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                             Min           

1/1/07 20.0 10.6 4.7 
1/2/07 16.7 -1.7 0.0 
1/3/07 13.3 -2.2 0.0 
1/4/07 15.0 7.2 0.0 
1/5/07 18.3 8.9 0.9 
1/6/07 18.9 10.6 1.7 
1/7/07 21.1 7.2 0.0 
1/8/07 14.4 8.9 4.0 
1/9/07 13.3 0.6 0.0 

1/10/07 10.0 -1.7 0.0 
1/11/07 10.0 -3.9 0.0 
1/12/07 10.0 -3.3 0.0 
1/13/07 15.6 10.0 0.0 
1/14/07 20.6 11.1 0.0 
1/15/07 21.1 12.8 0.0 
1/16/07 21.7 11.1 0.0 
1/17/07 12.8 -1.7 0.0 
1/18/07 5.0 -1.1 0.0 
1/19/07 6.1 2.8 0.4 
1/20/07 13.3 0.6 0.0 
1/21/07 11.1 3.9 0.0 
1/22/07 6.7 2.2 2.9 
1/23/07 10.0 0.6 0.0 
1/24/07 9.4 -1.7 0.0 
1/25/07 10.0 0.0 0.0 
1/26/07 10.0 -4.4 0.0 
1/27/07 12.2 2.2 0.0 
1/28/07 15.6 5.0 0.0 
1/29/07 10.0 -8.9 0.0 
1/30/07 5.6 0.6 0.0 
1/31/07 12.2 -5.6 0.0 
2/1/07 6.7 -2.8 0.0 
2/2/07 2.2 1.7 2.3 
2/3/07 9.4 -2.8 0.0 
2/4/07 6.1 -3.3 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                              Min           

2/5/07 8.3 -2.2 0.0 
2/6/07 8.3 -6.1 0.0 
2/7/07 10.0 3.3 0.0 
2/8/07 19.4 -1.1 0.0 
2/9/07 16.7 -2.8 0.0 

2/10/07 7.8 -3.9 0.0 
2/11/07 10.0 -5.6 0.0 
2/12/07 12.8 -2.8 0.0 
2/13/07 18.3 5.0 0.0 
2/14/07 15.6 3.9 1.7 
2/15/07 14.4 -5.6 0.0 
2/16/07 7.2 -3.3 0.0 
2/17/07 7.8 -2.8 0.0 
2/18/07 5.6 -1.1 0.0 
2/19/07 9.4 -3.9 0.0 
2/20/07 14.4 4.4 0.0 
2/21/07 13.9 9.4 0.2 
2/22/07 20.0 8.9 2.7 
2/23/07 21.7 1.1 0.0 
2/24/07 16.1 -2.2 0.0 
2/25/07 16.1 7.8 0.9 
2/26/07 11.1 3.9 2.2 
2/27/07 18.3 2.8 0.0 
2/28/07 20.6 0.0 0.0 
3/1/07 20.6 7.2 0.0 
3/2/07 18.3 7.2 8.2 
3/3/07 16.7 5.6 0.0 
3/4/07 16.1 1.1 0.0 
3/5/07 10.6 -4.4 0.0 
3/6/07 18.3 6.7 0.0 
3/7/07 20.0 1.7 0.0 
3/8/07 21.1 2.8 0.0 
3/9/07 21.7 6.1 0.0 

3/10/07 16.1 7.2 0.0 
3/11/07 20.6 7.2 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                              Temp (oC)                                 Rain (cm) 

                                                                Max                             Min           

3/12/07 23.9 10.0 0.0 
3/13/07 21.1 3.3 0.0 
3/14/07 26.7 10.6 0.0 
3/15/07 26.1 10.6 0.0 
3/16/07 23.9 14.4 0.8 
3/17/07 19.4 1.1 0.2 
3/18/07 11.7 -2.2 0.0 
3/19/07 13.9 1.1 0.0 
3/20/07 19.4 10.0 0.0 
3/21/07 26.1 12.8 0.0 
3/22/07 22.2 10.0 0.0 
3/23/07 23.3 8.9 0.0 
3/24/07 26.7 9.4 0.0 
3/25/07 29.4 11.1 0.0 
3/26/07 31.7 14.4 0.0 
3/27/07 25.0 12.8 0.0 
3/28/07 27.8 11.7 0.0 
3/29/07 28.9 16.7 0.0 
3/30/07 18.9 8.9 0.0 
3/31/07 19.4 10.6 0.0 
4/1/07 24.4 16.1 0.0 
4/2/07 20.6 15.0 0.8 
4/3/07 27.8 13.9 0.0 
4/4/07 28.9 13.9 0.7 
4/5/07 25.0 6.1 0.0 
4/6/07 21.7 -0.6 0.0 
4/7/07 15.6 -2.2 0.0 
4/8/07 7.8 -2.8 0.0 
4/9/07 13.9 0.6 0.0 

4/10/07 12.8 -1.7 0.0 
4/11/07 15.6 3.9 0.0 
4/12/07 10.6 8.3 1.1 
4/13/07 22.8 3.9 0.0 
4/14/07 23.3 10.0 0.0 
4/15/07 22.8 15.6 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

4/16/07 17.2 6.1 0.0 
4/17/07 21.1 8.9 0.0 
4/18/07 28.3 8.3 0.0 
4/19/07 24.4 6.7 0.0 
4/20/07 23.9 7.8 0.0 
4/21/07 20.6 6.1 0.0 
4/22/07 24.4 5.6 0.0 
4/23/07 26.7 7.2 0.0 
4/24/07 26.7 12.2 0.0 
4/25/07 27.8 12.8 0.1 
4/26/07 28.3 13.3 0.0 
4/27/07 23.9 14.4 0.2 
4/28/07 25.6 9.4 0.0 
4/29/07 23.9 10.6 0.0 
4/30/07 29.4 8.3 0.0 
5/1/07 30.6 10.6 0.0 
5/2/07 32.2 12.8 0.0 
5/3/07 31.7 15.6 0.0 
5/4/07 30.0 13.9 0.0 
5/5/07 20.0 11.7 2.4 
5/6/07 15.0 12.8 1.3 
5/7/07 22.2 6.1 0.0 
5/8/07 22.8 8.3 0.0 
5/9/07 26.7 17.2 0.0 

5/10/07 27.2 13.9 0.0 
5/11/07 29.4 16.1 0.0 
5/12/07 31.1 17.8 0.0 
5/13/07 28.3 15.6 0.0 
5/14/07 31.1 15.6 0.0 
5/15/07 25.0 9.4 0.0 
5/16/07 28.3 14.4 0.0 
5/17/07 25.6 10.0 0.1 
5/18/07 25.0 8.3 0.0 
5/19/07 22.8 4.4 0.0 
5/20/07 23.9 7.8 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

5/21/07 28.9 8.9 0.0 
5/22/07 31.1 10.0 0.0 
5/23/07 31.1 13.3 0.0 
5/24/07 29.4 16.1 0.0 
5/25/07 28.3 12.2 0.0 
5/26/07 29.4 12.2 0.0 
5/27/07 30.6 13.9 0.0 
5/28/07 31.7 14.4 0.0 
5/29/07 29.4 15.0 0.0 
5/30/07 32.2 12.8 0.0 
5/31/07 31.7 16.1 0.0 
6/1/07 31.7 17.8 0.0 
6/2/07 31.1 18.9 0.0 
6/3/07 26.1 16.7 0.9 
6/4/07 31.1 17.8 0.1 
6/5/07 32.2 17.8 0.0 
6/6/07 29.4 16.1 0.4 
6/7/07 32.8 16.7 0.0 
6/8/07 34.4 21.7 0.0 
6/9/07 33.9 18.9 0.0 

6/10/07 36.7 16.7 0.0 
6/11/07 35.0 21.7 0.0 
6/12/07 28.3 16.7 1.5 
6/13/07 28.3 14.4 1.4 
6/14/07 30.0 15.6 0.0 
6/15/07 28.9 17.2 0.0 
6/16/07 26.1 18.9 0.3 
6/17/07 30.0 18.3 0.0 
6/18/07 33.3 16.7 0.0 
6/19/07 33.9 20.0 0.0 
6/20/07 33.3 20.0 0.5 
6/21/07 32.2 14.4 0.0 
6/22/07 32.8 15.0 0.0 
6/23/07 33.9 17.8 0.0 
6/24/07 33.9 20.6 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

6/25/07 36.1 21.7 0.0 
6/26/07 35.0 18.9 2.5 
6/27/07 32.8 19.4 0.0 
6/28/07 33.9 20.0 0.0 
6/29/07 34.4 20.0 0.0 
6/30/07 33.3 20.6 1.1 
7/1/07 32.8 20.0 1.3 
7/2/07 32.2 18.3 0.9 
7/3/07 21.7 18.3 0.0 
7/4/07 26.7 17.2 0.0 
7/5/07 30.0 16.7 0.0 
7/6/07 31.7 16.7 0.0 
7/7/07 33.3 19.4 0.0 
7/8/07 30.0 19.4 0.0 
7/9/07 31.1 19.4 0.0 

7/10/07 33.3 19.4 0.0 
7/11/07 33.3 21.7 0.5 
7/12/07 30.6 17.2 0.0 
7/13/07 32.2 17.8 0.0 
7/14/07 30.0 17.8 0.0 
7/15/07 28.3 18.9 0.0 
7/16/07 26.7 19.4 1.3 
7/17/07 32.2 20.0 0.0 
7/18/07 32.2 21.1 2.2 
7/19/07 32.2 20.0 0.0 
7/20/07 33.9 21.1 0.0 
7/21/07 35.0 17.8 0.0 
7/22/07 29.4 18.9 0.0 
7/23/07 29.4 16.7 0.0 
7/24/07 28.9 18.3 0.0 
7/25/07 31.1 17.2 0.0 
7/26/07 32.2 18.9 0.0 
7/27/07 32.8 19.4 0.0 
7/28/07 33.3 21.1 0.0 
7/29/07 28.9 21.1 0.5 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

7/30/07 30.0 21.1 0.0 
7/31/07 32.8 19.4 1.1 
8/1/07 32.8 20.0 0.0 
8/2/07 34.4 21.1 0.0 
8/3/07 34.4 20.0 0.0 
8/4/07 34.4 19.4 0.0 
8/5/07 35.6 21.1 0.0 
8/6/07 35.6 21.1 0.3 
8/7/07 36.7 22.8 0.0 
8/8/07 37.2 23.9 0.0 
8/9/07 38.9 23.3 0.0 

8/10/07 39.4 22.2 0.0 
8/11/07 38.9 23.3 0.0 
8/12/07 37.8 23.9 0.0 
8/13/07 33.3 22.2 0.0 
8/14/07 36.7 19.4 0.0 
8/15/07 36.7 19.4 0.0 
8/16/07 38.3 21.7 0.0 
8/17/07 38.9 25.0 0.0 
8/18/07 36.7 21.1 0.0 
8/19/07 37.2 21.7 0.0 
8/20/07 35.6 21.7 0.0 
8/21/07 36.7 22.8 0.0 
8/22/07 38.3 23.9 0.0 
8/23/07 38.9 22.8 0.0 
8/24/07 36.7 21.1 0.9 
8/25/07 36.1 20.6 0.0 
8/26/07 35.0 21.1 0.0 
8/27/07 35.0 20.6 3.0 
8/28/07 32.2 21.7 0.0 
8/29/07 33.9 22.8 0.0 
8/30/07 35.0 23.3 0.0 
8/31/07 32.2 21.7 0.1 
9/1/07 32.8 20.6 0.1 
9/2/07 30.6 19.4 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

9/3/07 30.0 16.7 0.0 
9/4/07 32.8 19.4 0.0 
9/5/07 33.9 16.1 0.0 
9/6/07 33.9 18.3 0.0 
9/7/07 33.3 20.0 0.0 
9/8/07 32.2 17.2 0.0 
9/9/07 33.3 16.7 0.0 

9/10/07 35.0 17.8 0.0 
9/11/07 35.0 20.0 0.0 
9/12/07 35.0 21.1 0.0 
9/13/07 32.2 21.7 0.0 
9/14/07 27.2 21.7 0.1 
9/15/07 26.7 17.8 5.6 
9/16/07 30.0 14.4 0.0 
9/17/07 25.0 14.4 0.0 
9/18/07 26.1 13.9 0.0 
9/19/07 25.6 13.3 0.0 
9/20/07 28.3 16.1 0.0 
9/21/07 26.7 20.0 0.0 
9/22/07 26.7 20.0 0.0 
9/23/07 31.1 18.3 0.0 
9/24/07 32.8 18.3 0.0 
9/25/07 33.3 19.4 0.0 
9/26/07 31.7 15.6 0.0 
9/27/07 32.2 15.6 0.0 
9/28/07 31.1 16.1 0.0 
9/29/07 29.4 11.1 0.0 
9/30/07 26.7 10.6 0.0 
10/1/07 26.7 10.0 0.0 
10/2/07 27.2 12.2 0.0 
10/3/07 28.3 18.9 0.0 
10/4/07 26.7 20.0 0.0 
10/5/07 26.7 20.6 1.5 
10/6/07 27.8 20.0 0.0 
10/7/07 28.3 16.7 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

10/8/07 30.0 16.7 0.0 
10/9/07 31.1 16.7 0.0 

10/10/07 32.2 16.7 0.0 
10/11/07 31.7 11.1 0.0 
10/12/07 30.0 5.6 0.0 
10/13/07 22.2 6.7 0.0 
10/14/07 22.8 7.8 0.0 
10/15/07 26.7 8.3 0.0 
10/16/07 27.2 12.2 0.0 
10/17/07 23.9 15.6 0.0 
10/18/07 27.8 17.2 0.0 
10/19/07 23.9 20.0 0.3 
10/20/07 23.9 10.0 0.1 
10/21/07 24.4 6.1 0.0 
10/22/07 27.2 11.7 0.0 
10/23/07 17.8 17.2 0.5 
10/24/07 28.9 15.0 1.6 
10/25/07 17.8 12.2 0.1 
10/26/07 21.1 12.2 0.0 
10/27/07 22.8 12.2 0.0 
10/28/07 23.3 5.6 0.0 
10/29/07 21.1 6.1 0.0 
10/30/07 18.3 -0.6 0.0 
10/31/07 20.6 1.7 0.0 
11/1/07 23.3 8.3 0.0 
11/2/07 25.6 11.1 0.0 
11/3/07 21.7 2.2 0.0 
11/4/07 25.0 0.6 0.0 
11/5/07 21.1 2.2 0.0 
11/6/07 22.8 8.3 0.0 
11/7/07 16.7 -2.2 0.0 
11/8/07 13.9 -2.8 0.0 
11/9/07 13.9 -0.6 0.0 

11/10/07 19.4 5.6 0.0 
11/11/07 17.2 -1.1 0.0 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

11/12/07 15.6 -0.6 0.0 
11/13/07 20.6 5.6 0.0 
11/14/07 23.9 12.8 0.0 
11/15/07 26.7 11.1 0.6 
11/16/07 12.8 -1.1 0.0 
11/17/07 12.2 -3.3 0.0 
11/18/07 16.7 6.1 0.0 
11/19/07 22.8 7.2 0.0 
11/20/07 24.4 5.0 0.0 
11/21/07 23.9 5.6 0.0 
11/22/07 22.8 15.6 0.7 
11/23/07 21.1 1.7 0.3 
11/24/07 12.8 -2.2 0.0 
11/25/07 9.4 4.4 0.0 
11/26/07 10.0 6.1 0.8 
11/27/07 13.3 7.2 0.8 
11/28/07 18.3 -1.7 0.0 
11/29/07 17.2 0.6 0.0 
11/30/07 19.4 1.1 0.0 
12/1/07 15.6 -0.6 0.0 
12/2/07 18.9 2.8 0.0 
12/3/07 15.6 10.6 0.1 
12/4/07 16.7 0.0 0.0 
12/5/07 14.4 1.7 0.0 
12/6/07 16.7 -1.1 0.0 
12/7/07 7.8 -1.7 0.0 
12/8/07 11.1 5.0 0.0 
12/9/07 22.8 10.0 0.0 

12/10/07 23.9 11.7 0.0 
12/11/07 26.1 10.0 0.0 
12/12/07 25.6 11.7 0.0 
12/13/07 26.1 12.2 0.0 
12/14/07 22.8 5.0 0.1 
12/15/07 20.6 4.4 0.0 
12/16/07 11.7 1.7 2.3 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

12/17/07 1.7 -3.3 0.0 
12/18/07 10.0 -6.1 0.0 
12/19/07 9.4 -1.7 0.0 
12/20/07 11.1 1.7 0.0 
12/21/07 11.1 6.7 2.1 
12/22/07 8.9 7.2 0.0 
12/23/07 11.7 7.8 1.3 
12/24/07 16.1 -3.3 1.0 
12/25/07 15.0 1.1 0.0 
12/26/07 11.7 3.9 1.7 
12/27/07 11.1 7.2 0.0 
12/28/07 13.9 9.4 0.0 
12/29/07 13.3 7.2 2.2 
12/30/07 18.3 6.7 0.9 
12/31/07 8.9 0.0 2.9 

1/1/08 13.9 0.0 0.0 
1/2/08 9.4 -5.0 0.0 
1/3/08 2.2 -10.6 0.0 
1/4/08 3.3 -9.4 0.0 
1/5/08 7.8 -3.3 0.0 
1/6/08 11.7 1.7 0.0 
1/7/08 19.4 2.2 0.0 
1/8/08 21.1 6.7 0.0 
1/9/08 20.0 13.3 0.0 

1/10/08 22.2 8.9 0.4 
1/11/08 14.4 9.4 1.4 
1/12/08 17.2 -0.6 0.0 
1/13/08 13.9 2.8 0.0 
1/14/08 12.8 1.1 0.0 
1/15/08 11.1 -0.6 0.0 
1/16/08 10.6 -5.0 0.0 
1/17/08 0.6 0.0 2.1 
1/18/08 4.4 2.8 0.0 
1/19/08 13.3 3.9 0.1 
1/20/08 4.4 -5.6 0.5 
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Appendix D. Clemson, SC 2006 through 2008 weather data. 

                        Date                                             Temp (oC)                                  Rain (cm) 

                                                                Max                             Min           

1/21/08 2.8 -9.4 0.0 
1/22/08 3.9 0.6 0.0 
1/23/08 3.3 2.8 0.9 
1/24/08 12.8 0.0 0.0 
1/25/08 10.6 -8.9 0.0 
1/26/08 5.0 0.6 0.0 
1/27/08 10.0 -3.3 0.0 
1/28/08 16.1 -4.4 0.0 
1/29/08 13.9 4.4 0.0 
1/30/08 17.8 1.7 0.7 
1/31/08 12.2 -1.7 3.7 
2/1/08 12.2 1.7 0.2 
2/2/08 11.7 -2.8 0.0 
2/3/08 15.0 -1.7 0.3 
2/4/08 18.3 6.7 0.0 
2/5/08 15.0 6.7 0.0 
2/6/08 21.1 12.2 0.5 
2/7/08 18.3 3.3 0.0 
2/8/08 18.3 1.7 0.0 
2/9/08 16.1 0.6 0.0 

2/10/08 18.3 3.9 0.0 
2/11/08 17.2 -1.1 0.0 
2/12/08 17.2 2.2 0.0 
2/13/08 15.6 3.3 0.8 
2/14/08 15.0 -4.4 0.0 
2/15/08 11.7 -0.6 0.0 
2/16/08 16.7 3.9 0.0 
2/17/08 20.6 8.9 0.0 
2/18/08 16.7 11.1 2.6 
2/19/08 13.9 2.8 0.0 
2/20/08 12.2 1.1 0.0 
2/21/08 18.3 2.2 0.0 
2/22/08 7.2 1.7 2.7 
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