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ABSTRACT 

 

Wireless sensor networks have been deployed along highways for traffic 

monitoring. The thesis studies a set of transmission scheduling methods for optimizing 

network throughput, message transfer delay, and energy efficiency. Today’s traffic 

monitoring systems are centrally managed.  Several studies have envisioned the 

advantages of distributed traffic management techniques.  The thesis is based on 

previously proposed hierarchical sensor network architecture, for which the routing and 

transmission scheduling methods are derived.  

Wireless sensor networks have a lifetime limited by battery energy of the sensors. 

The thesis proposes to assign schedules for nodes to transmit and receive packets and 

turning off their radios during other times to save energy. The schedules are assigned to 

minimize the end-to-end packet delivery latency and maximize the network throughput. 

Conflict-free transmission slots are assigned to sensors along road segments leading to a 

common intersection based on locally discovered topology. The slot assignment adopts a 

heuristic that rotates among segments, assigns closest possible slots to neighboring nodes 

in a pipelined fashion, and exploits radio capture effects when possible. Based on the 

single-intersection approach, centralized and distributed multi-intersection scheduling 

methods are proposed to resolve conflicts among nodes belonging to different 

intersections. The centralized approach designates a controller as the leader to collect 

topology information of a set of contiguous intersections and assign schedules using the 

same single-intersection algorithm. The distributed approach has each intersection 

determine its own schedule independently and then exchange the topology information 
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and schedules with its adjacent intersections to resolve conflicts locally. Based on 

simulation studies in ns-2, the centralized approach achieves better performance, while 

the distributed approach tries to approach the centralized performance at much lower 

communication costs. A communication cost analysis is performed to assess the trade-off 

between the centralized and distributed approaches.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii 



DEDICATION 

 

This thesis is dedicated to my beloved family – my mother, my father, and my 

friends. Their support has helped me climb the steps of success in every phase of my life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv 



ACKNOWLEDGEMENTS 

 

 I would like to thank my advisor, Dr. Kuang-Ching Wang, for all his guidance 

and motivation. During all my time of study and research at Clemson University, he gave 

me valuable support and advices and always helped direct my thoughts in the right 

direction. I would like to thank him for all the valuable knowledge and experience he has 

shared with me. I appreciate the time we have spent together working on the research 

issues and driving it towards the direction.  

 I would also like to thank Dr. Ronnie A. Chowdhury for all the knowledge that he 

has shared with us during our ITS meetings and for all the support and motivation he 

gave during us during the project. I would also like to thank all the people in the ITS 

group.  

 I would like to thank all the colleagues in the wireless group for their friendship 

and help. I have had a great time conducting my research within such an active group. I 

have enjoyed all the time spent with my colleagues in the lab and office. 

 

 

 

 

 

 

 

v 



TABLE OF CONTENTS 

 

Page 
 
 

TITLE PAGE....................................................................................................................i 
 
ABSTRACT.....................................................................................................................ii 
 
DEDICATION................................................................................................................iv 
 
ACKNOWLEDGEMENTS.............................................................................................v 
 
LIST OF TABLES.........................................................................................................vii 
 
LIST OF FIGURES ........................................................................................................ix 
 
CHAPTER 
 
1.  INTODUCTION.........................................................................................................1 
 
2.  BACKGROUND AND RELATED ...........................................................................5 
 2.1 Current Traffic Control Practices.........................................................................5 
 2.2 Distributed Architectures .....................................................................................8 

 2.2.1 Architectures and Addressing .....................................................................8 
 2.2.2 Example of Distributed ...............................................................................9 
2.3 Sensor MAC Concepts.......................................................................................11 

 
3.  NETWORK ARCHITECTURE AND ROUTING ..................................................15 
 3.1 Network Architecture and Addressing...............................................................15 
 3.2 Routing...............................................................................................................17 
 3.3 Medium Access Control ....................................................................................18 
 
4.  SINGLE INTERSECTION TRANSMISSION SCHEDULING .............................20 
 4.1 Fundamental Concepts.......................................................................................23 

 4.1.1 Reducing sleep latency .............................................................................23 
 4.1.2 Increasing end-to-end Throughput............................................................24 
 4.1.3 Increasing Energy Efficiency....................................................................25 
4.2 Scheduling Algorithm........................................................................................25 
4.3 Variants of Scheduling Algorithm.....................................................................29 
4.4 Simulation Studies .............................................................................................36 
 4.4.1 Simulation Settings ...................................................................................36 
 4.4.2 Performance metrics for topology changes...............................................38 
 4.4.3 Performance metrics for algorithm variations ..........................................41 

vi 



                                                                                                                                  Page 
 
 
 4.4.4 Performance metrics for different slot lengths..........................................43 
 4.4.5 Performance metrics for weighted assignments .......................................47 
 4.4.6 Energy Efficiency .....................................................................................52 
4.5 Conclusion .........................................................................................................54 

 
5.  MULTIPLE INTERSECTIONS TRANSMISSION SCHEDULING......................56 
 5.1 Centralized Scheduling ......................................................................................57 
 5.2 Distributed Scheduling.......................................................................................57 
 5.3 Communication Costs........................................................................................61 
 5.4 Simulation Studies .............................................................................................63 

 5.4.1 Simulation Settings ...................................................................................64 
 5.4.2 Performance metrics for different algorithms...........................................64 
 5.4.3 Performance metrics for different slot lengths..........................................66 
 5.4.4 Performance metrics for topology changes...............................................68 
5.5 Conclusion .........................................................................................................70 

 
6. CONCLUSION AND FUTURE WORK ..................................................................71 
 6.1 Conclusion .........................................................................................................71 
 6.2 Future Work .......................................................................................................72 
 
APPENDIX....................................................................................................................74 
 A.1 Message Format ................................................................................................74 
 A.2 Local Topology Discovery................................................................................76 
 A.3 Hierarchical Cluster Formation.........................................................................79 
 A.4 Packet Routing Algorithm ................................................................................82 
 A.5 Routing Examples .............................................................................................84 
 
REFERENCES ..............................................................................................................88 

vii 



LIST OF TABLES 
 
 
Table               Page 
 
4.1 Rounds completed for different cycle lengths .........................................................28 
 
4.2 End-to-end delay and slot length .............................................................................36 
 
4.3 Simulation parameters .............................................................................................37 
 
4.4 Input rates supported by system...............................................................................48 
 
4.5 Per segment throughput and network throughput....................................................51 
 
4.6 Number of assigned slots at different nodes ............................................................53 
 
A.1 Segment of routing table at controller.....................................................................85 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

viii 



LIST OF FIGURES 
 
 
Figure                                                                                                                             Page 
 
2.1 Traffic monitoring wireless sensor network ............................................................10 
 
3.1 Network architecture................................................................................................16 
 
4.1 Single intersection topology ....................................................................................21 
 
4.2 Single intersection topology conflict graph .............................................................22 
 
4.3 Single intersection topology conflict graph matrix representation ..........................22 
 
4.4 Sleep latency ............................................................................................................23 
 
4.5 Pipelined assignment ...............................................................................................25 
 
4.6 Scheduling algorithm...............................................................................................26 
 
4.7 Sample run of scheduling algorithm........................................................................27 
 
4.8 Example arrangement of transmitter and receiver ...................................................31 
 
4.9 Capture effect and offsets ........................................................................................32 
 
4.10 Without offset and with offset packet transmissions .............................................33 
 
4.11 Four segment single intersection scenario .............................................................38 
 
4.12 Throughput VS Number of sensors per segment...................................................39 
 
4.13 Topologies corresponding to different degree of conflict......................................40 
 
4.14 Throughput VS degree of conflict .........................................................................41 
 
4.15 Throughput for different algorithms ......................................................................42 
 
4.16 End-to-end delay for different algorithms .............................................................43 
 
4.17 Throughput for different slot lengths.....................................................................44 
 
4.18 End-to-end delay for different slot lengths ............................................................45 
 
4.19 Per hop delay analysis............................................................................................46 

ix 



Figure                                                                                                                             Page 
 
4.20 Per segment throughput - scenario A.....................................................................49 
 
4.21 Per segment throughput - scenario B .....................................................................49 
 
4.22 Per segment throughput - scenario C .....................................................................50 
 
4.23 Per segment throughput - scenario D.....................................................................50 
 
4.24 Total throughput achieved on all segments ...........................................................52 
 
4.25 Energy efficiency (Number of saved slots) ...........................................................53 
 
4.26 Energy efficiency with TMAC option ...................................................................54 
 
5.1 Controllers and sensors of multiple intersections ....................................................56 
 
5.2 Distributed without sliding ......................................................................................60 
 
5.3 Distributed with sliding............................................................................................61 
 
5.4 Cost computation .....................................................................................................62 
 
5.5 Throughput for different algorithms for multiple intersection scenario ..................65 
 
5.6 End-to-end delay for different algorithms for multiple intersection scenario .........66 
 
5.7 Throughput for different slot length for multiple intersection scenario ..................67 
 
5.8 End-to-end delay for different slot length for multiple intersection scenario..........67 
 
5.9 Multiple intersection scenario – 10 segment scenario – scenario 2.........................68 
 
5.10 Multiple intersection scenario – 10 segment scenario – scenario 3.......................69 
 
5.11 Throughput for different multiple intersection scenarios ......................................69 
 
A.1 Packet header ..........................................................................................................74 
 
A.2 Local topology discovery algorithm .......................................................................78 
 
A.3 Topology request message propagation..................................................................79 
 
A.4 Cluster announcement.............................................................................................81 
 

x 



Figure                                                                                                                             Page 
 
A.5 Cluster join..............................................................................................................81 
 
A.6 Packet routing algorithm.........................................................................................84 
 
A.7 Routing examples....................................................................................................85 

xi 



CHAPTER 1 

INTRODUCTION 

 

Countries around the globe are adopting Intelligent Transportation Systems (ITSs) 

for continuous monitoring and real-time control of vehicle traffic on highways and major 

roads [1], [2], [3]. Sensors are laid down along the roads to collect the data and route the 

data to the traffic management centers (TMCs) that take the appropriate actions. The data 

is sent to the TMC via various types of communication links for analysis by traffic 

engineers for highway traffic management. Communication links between sensors and 

TMCs are hence the lifeline of such systems, determining the sustainable scope and 

response efficacy of the system. State-of-the-art ITSs largely depend on wired 

communication technologies, while advancements in wireless sensor network 

technologies have brought opportunities in building wireless traffic sensor networks 

permitting easier deployment, more variety in operation, and more extensive coverage. In 

this thesis a distributed wireless sensor network solution for highway traffic monitoring is 

studied. 

A few ITS systems have already started to utilize wireless data links recently [4], 

[5]. One fundamental limitation to an ITS system’s scale is due to its centralized data 

collection model, where sensors must feed data to TMCs via wired, wireless, or a 

combination of both types of links. Leveraging the processing capability of advanced 

wireless sensor devices, it is possible to construct a distributed system, where sensors 

locally collaborate in processing traffic data and initiating appropriate control responses, 

while reporting to TMCs only data of known significance. The vision has been posed in 
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[6] where the importance of a distributed wireless sensor network is explained, while in 

[7] a distributed sensor system based on hierarchical network architecture was proposed, 

for implementing traffic control operations in a distributed manner. The hierarchical 

architecture considers sensors as lowest level devices organized in clusters, each of which 

has a designated cluster head called controller. A set of controllers along with the clusters 

controlled by it form a higher level cluster. In this system, sensors and controllers 

coordinate to carry out distributed traffic sensing and control operations. This thesis 

builds on this concept to study the transmission scheduling problem for such systems.  A 

practical routing method pertaining to the architecture is also proposed in this thesis to 

facilitate the study.  

Wireless sensor devices are envisioned by many to be battery-powered. To 

conserve energy, numerous studies have been made by means of energy-efficient medium 

access control methods [8-16] that assign sleep-awake cycles to sensor nodes. Turning 

off the sensor radios during sleep periods provides energy savings but leads to 

degradation of transmission delay and throughput. For traffic control operations requiring 

high throughput and stringent delay requirements, the thesis proposes a transmission 

scheduling solution that simultaneously improves energy efficiency, network throughput 

and packet delivery latency.  

Existing energy-efficient MAC layer protocols address certain specific issues. 

SMAC [8] was the first to study energy savings for sensors by scheduling them to receive 

and transmit in pre-decided slots.  TMAC [9] discusses turning off the radio for 

scheduled slots that do not have any data to be transmitted and thus provides for 

additional savings. DMAC [10] proposes to reduce the end-to-end delay for wireless 
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sensor networks. It proposed to avoid sleep latency by assigning schedules such that the 

receiver in slot n becomes the sender in slot n+1. In [17], hierarchical PEGASIS allows 

spatially separated nodes to simultaneously transmit in the same slot and increase the 

network throughput. In this thesis, the aforementioned concepts were incorporated to 

derive a topology-aware scheduling solution tailored for a large scale highway traffic 

sensor network. 

The proposed scheduling method is based on the following concepts: 

 Intersection based topology discovery and slot assignment. A scalable distributed 

system must discover and adapt to local changes in network topology. The algorithm 

considers a network to be composed of numerous road segments connected by controllers 

at intersections. A controller collects the topology information of all sensors belonging to 

its cluster and executes the scheduling algorithm to assign them non-conflicting 

transmission schedules. 

 Closest-possible, directional, and pipelined slot assignment for adjacent nodes. 

To minimize delay of forwarding packets along the road in a particular direction, the 

adjacent node towards that direction is assigned the closest non-conflicting time slot 

according to the current schedule and the conflict graph. To maximize throughput, time 

slots are assigned in a pipelined fashion such that, along each road segment, subsequent 

messages are scheduled at the earliest time following the last message’s departure. The 

pipelining allows spatially separated nodes along the same segment to transmit in the 

same slot thereby providing higher throughput. 

 Rotated assignment among road segments of a common intersection. Assuming 

messages arriving from any of the connected road segments are of equal probability and 
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priority, one node on every segment is scheduled in a round robin manner until the 

specified schedule length is met. This assures fair message throughput along each 

segment. However, weighted assignment can be used to divide the throughput between 

the segments based on their communication requirements. 

 Topology propagation and schedule negotiation among multiple intersections. 

Each intersection controller determines the schedule for a set of nodes without 

considering potential conflicts with nodes managed by other intersection controllers. 

Multiple intersections need to have conflict free schedules which can be achieved in a 

centralized or distributed manner. In centralized assignment a leader collects the 

topology of all intersections and constructs a complete conflict graph that is used to 

assign conflict free schedules. In the distributed assignment the intersections negotiate 

their schedules to achieve conflict free schedules. 

The remaining of the thesis is organized as follows. In chapter 2 the related work 

and achievements are described. In chapter 3 the hierarchical traffic sensor network 

architecture and the hierarchical packet routing are described. In chapter 4 the single 

intersection transmission scheduling algorithm and its variations are described and the 

chapter ends with the simulation studies showing the effectiveness of the algorithm. In 

chapter 5 the multiple intersection transmission scheduling algorithms are described and 

the simulation studies show the effectiveness of the transmission scheduling algorithms. 

In chapter 6 the conclusion and future work are presented. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

Wireless sensor networks are composed of large number of sensors that are 

battery powered and the lifetime of the network depends on the life of these sensors. The 

sensors follow a sleep-awake schedule to help them save energy in the no activity period. 

The thesis studies a scheduling solution for highway traffic monitoring wireless sensor 

networks that can improve different data transmission metrics. In this chapter, the current 

traffic control practice, the distributed sensor networking architecture, and several 

energy-efficient sensor MAC protocols are reviewed.  

 

2.1 Current Traffic Control Practices 

The 2004 U.S. ITS survey conducted by the U.S. Department of Transportation 

reveals the nation’s latest traffic control operations and deployed infrastructure [18] 

portraying similar practices in other parts of the world. These systems adopt a centralized 

architecture with TMCs at the core and sensors and remote control devices on the roads. 

The functions of the different elements of this system are as follows: 

• Sensors acquire real-time traffic data of monitored road segments. Widely adopted 

are loop detectors, closed circuit television (CCTV) cameras, video detection systems 

(VDS), infra-red laser, acoustic, microwave radar, and piezo-electric strain gauge 

sensors. Typical metrics acquired are traffic speed, volume, road occupancy, and road 

conditions (pavement integrity, ice on pavements, fog, inclement weather conditions 

such as snow, rain, and tornadoes).  
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• TMCs collect, archive, and analyze the sensor data. TMC operators detect traffic 

incidents, dispatch incident removal teams, and publish current traffic information to 

the public via Internet, highway advisory radio, TV, operator hotlines (511), in-car 

navigation systems, and call-outs to subscribed travelers. 

• Offsite control devices are controlled by TMCs to regulate traffic flow. Mostly 

adopted are Dynamic Message Signs (DMS), ramp meters, traffic signals, etc. 

Traffic management systems have to perform several traffic management 

operations for proper functioning of the highway traffic: 

• Traffic regulation – Controlling or reprogramming offsite control devices based on 

current and historical traffic data to regulate traffic flows against congestion. 

• Traveler information – Providing travelers with current traffic condition, such as 

travel time estimates, driving advices, suggesting alternative routes, etc. 

• Incident prevention – Disseminating real time alerts, such as dangerous road 

conditions, misbehaving vehicles, and interfering entities, to prevent incidents. 

• Incident management – Expanding surveillance coverage for quicker incident 

detection and removal.  

Traffic control strategies differ in urban and rural areas. They also differ for 

freeways and local roads [18]. In urban areas, traffic features high volumes with larger 

and faster variations. Typically more resourceful, urban systems can afford more sensors, 

wider data bandwidth, and more control devices for fine-grained traffic control and 

guidance [19]. In contrast, rural roads stretch long distances with few cross roads or 

alternative roads. Traffic is sparser, faster, and seldom interrupted, while incidents are 

often severe and mostly due to unexpected interruption (e.g., animal crossing). Rural 
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roads typically cannot afford centrally controlled sensing and control devices. Distributed 

system can involve local processing of data and execution of traffic management 

operations thereby reducing the communication overhead. 

Freeway Performance Measurement System (PeMS) in California [4], is a large 

centralized sensor systems in U.S. that links more than 25,000 loop detectors to the TMC. 

The system collects data from each detector every 30 seconds, accumulating more than 2 

GB data per day in a central database. Sensors can be connected with different mediums 

like fiber cables, GPRS wireless cellular links [5], CDPD cellular wireless links [20]. 

Recently, the PEDAMACS project [21] unties the sensors from TMCs; instead, sensors 

in each cluster send data to a wireless gateway, which is then directly wired with the 

TMC. Multi-hop forwarding is used by sensors to send data to the gateway but not 

beyond the cluster. Data collection remains centralized and rooted at the TMC. An 

industrial vision of a fully distributed system is portrayed in [22] without further 

technical insights. A distributed system can scale over large area and based on the 

requirements the operations can be carried out locally. In [7] a hierarchical sensor 

network architecture is proposed that can support the formation of a distributed system. 

The sensors form clusters with controllers and the operations that need communication 

between sensors of a cluster can be carried out locally. Many clusters combine to form 

higher level clusters that can carry out operations needing communication limited within 

the scope of higher level cluster. Thus the hierarchical network architecture helps form a 

distributed system that can carry out operations more effectively without needing the 

communication overhead to communicate with the TMC. 

 

 - 7 - 



  2.2 Distributed Operations and Hierarchical Architecture 

 The distributed operations can be supported by the hierarchical architecture using 

hierarchical addressing and routing. The following explains the choice of hierarchical 

addressing and illustrates examples of distributed operations. 

 

2.2.1 Architectures and Addressing schemes 

It is commonly agreed that sensor addressing and routing is application specific 

and the key is to intimately reflect the sensor data contexts. Sensor addressing can be 

considered in four contexts: geographic, ad hoc, hierarchical, and data addressing/routing. 

Geographic addresses are suitable for sensors deployed in unstructured terrains with 

geographic locations being their only identity [23][24][25]. Ad hoc addresses are context-

less identifiers (ID), useful when individual sensors are insignificant and communications 

are predominantly one way towards the data sinks [26]. Data addresses are not device 

specific identifiers but data type descriptors, useful when only data types are of interest, 

e.g., [27]. Hierarchical addresses are useful when the application features an inherent 

hierarchy. It is noticed that if the network is structured according to the application and 

has a large scope then hierarchical addressing is a good choice.  

The traffic sensor network being studied certainly operates in a hierarchy, where 

sensors interact with local controllers, who then interact with regional controllers and can 

extend several levels until reaching the TMC. The communications, however, are not 

rooted at a single node but require complex interactions across different levels of the 

hierarchy. The scope of the network is very large and such a network should be able to 

scale to long highways spread over large geographical areas. Because of the nature of the 
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network being structured and the large scope of the network it is suitable to use 

hierarchical addressing. Hierarchical architecture and addressing thereby have advantages 

for highway traffic monitoring wireless sensor networks.  

In [7] the authors have defined a hierarchical architecture composed of sensors, 

controllers, and other higher level controllers for highway traffic monitoring wireless 

sensor networks. The idea of cluster formation for sensor networks was first proposed by 

LEACH [28] as it helps for efficient energy management whereby nodes with high 

energy become the cluster heads. In the proposed architecture [7] the controllers (cluster 

heads) are assumed to have more energy as compared to sensors. Initially it was proposed 

by LEACH to have direct transmissions from every sensor to the cluster head. This 

involved higher energy consumption as the transmission power required is directly 

proportional to the square (or higher exponent) of the distance and square of the sum is 

always higher than sum of the squares. It was thereby proposed by PEGASIS [29] to 

transmit the data from a sensor to the cluster head using multi-hop transmissions to save 

more energy. In this way the proposed hierarchical network has sensors and controllers 

forming clusters where data is forwarded over multiple hops to reach the controller. 

 

2.2.2 Example of Distributed Operation 

A simple traffic control operation for incident detection is explained in the 

following section to illustrate the distributed communication patterns in such a system. 

An example of a wireless sensor network for highway traffic monitoring on a segment of 

I-85 near Spartanburg, South Carolina is shown in Fig. 2.1. The sensors monitor the data 

at a time interval, delta [∆]. There are traffic algorithms running at the application layer 
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of the sensors that can help the sensor determine the event of an incident on the 

monitored segment. If the sensor collects data that determines the occurrence of an 

incident, then it sends a message to the neighboring sensors where the accuracy of the 

incident detection is checked. If the neighboring sensor confirms the incident then it 

reports the data to the controller. The controller can send a message to the upstream 

controller asking it to divert the cars on another segment thereby avoiding the cars 

queuing up on the segment where the incident had occurred. It is seen from the above 

example that the sensors and controllers could communicate locally and make the 

decision that can help divert the traffic without needing to communicate to the TMC.  

Another application is travel time updates. The sensors along the segment 

periodically report the vehicular speed recorded by them to the controller. The controllers 

periodically report the average speeds along the segments to higher level controllers that 

are controlling the high level clusters. The higher level controllers know the average  

 

 

Figure 2.1: Traffic monitoring wireless sensor network 
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speed on all the segments in its cluster and thereby can calculate the travel time for 

traveling from one segment to any other segment in its cluster.  Thus the average speed 

from one point to another can be calculated at the high level controller and then 

distributed to any other controller without any communication with the TMC. In this way 

a hierarchical architecture facilitates distributed control operations.  

 

2.3 Sensor MAC Concepts 

The distributed wireless sensor network system is made up of battery powered 

sensors and thus the lifetime of the network depends on the life of the sensors. The four 

major sources of energy wastage are collision, overhearing, control packet overhead and 

idle listening. The energy wasted in idle listening is 50-100% of that spent in receiving 

[30] [31]. There have been MAC layer protocols that propose to increase the lifetime of 

the network by turning off the radio in period of inactivity but this increases the end-to-

end delay and decreases the end-to-end available throughput. The delay incurred at every 

node is the sum of back-off delay, processing delay, propagation delay, transmission 

delay, queuing delay and sleep latency which is the defined as the delay incurred when 

the sender has to wait till the receiver wakes up before transmitting the packet. The end-

to-end delay consists of the sum of the delay incurred at every forwarding node.  

SMAC (sensor-Mac) [8] was the first to propose the sleeping mechanism for 

sensors to save energy. A node remains awake for sometime and sleeps for the remaining 

time instead of idle listening thereby saving energy. The amount of energy saved will be 

inversely proportional to the duty cycle which is defined as the ratio of listen interval 

(active time) to the frame length (active time + sleep time).  It is seen that with 10% duty 
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cycle they achieve very high energy efficiency at the cost of high sleep latency. SMAC 

proposed an adaptive listening mechanism to reduce the sleep latency whereby a node 

that overhears its neighbor’s transmission wakes up for a short period of time at the end 

of the transmission, so that if it is the next hop of its neighbor, it can receive the message 

without waiting for its scheduled active time. 

TMAC (Timeout MAC) [9] is another algorithm proposed for energy efficient 

MAC layer protocol that provides higher energy efficiency than SMAC. Like SMAC, 

TMAC also decides schedules for the different nodes and thereby allows the nodes to 

sleep and save energy. TMAC addresses that the traffic rate can vary from time to time 

and hence it is difficult to predict the optimal duty cycle. TMAC provides a mechanism 

of having dynamic active periods sufficient for relaying the instantaneous traffic load. 

With TMAC, a node in its active period monitors the medium for a time interval; if there 

is no activity seen in a timeout interval TA, the node assumes that there is no data to be 

received and it goes back to sleep. Thus TMAC gives additional energy savings as 

compared to SMAC. 

The DMAC [10] protocol provides an energy efficient solution to reduce the end-

to-end delay. For DMAC it is assumed that there is a fixed topology (a tree formation) 

and the data always flows from far away nodes to the sink. Because of this assumption, 

the slots should be assigned to nodes in such a way that packets flow continuously 

without incurring any sleep latency. It achieves this by assigning the receiver in slot n to 

be the transmitter in slot n+1 thereby removing any sleep latency. DSMAC (Dynamic 

SMAC) [11] is a modified version of SMAC where a node doubles its duty cycle when 

the latency of packets received crosses a certain threshold. The neighboring nodes get this 
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information in a sync packet and they double their duty cycle. Thus DSMAC tries 

changing the duty cycle based on the observed delay.  

For PMAC (Pattern MAC) [12] every node calculates the load that is present in its 

queue and depending on the load it sends out a pattern which is exchanged with the 

nearby nodes to achieve a common schedule. This schedule is followed by every node for 

transmitting data. The main advantage of PMAC is that the slots are assigned 

dynamically based on the traffic load at the nodes. For WiseMAC [13] every node 

transmits a preamble before sending out a data packet. The nodes send out a preamble 

during the sampling time of the receiver. By doing this the receiver will read the 

information from the preamble and will stay awake till the data packet transmission is 

completed. The main advantage of WiseMAC is that the preamble contains all the 

information about which nodes have to be awake and for what time and the receiver has 

to be awake to only sample the medium for a small interval of time. The traffic-adaptive 

MAC protocol (TRAMA) [14] divides time into slots that have random access periods 

and then scheduled access periods. One node is elected as transmitter in the random 

access period and it tells the surrounding nodes the duration of its transmission and the 

intended receivers, thereby allowing the other nodes to sleep. 

The distributed energy aware MAC protocol (DE-MAC) [15] increases the 

network lifetime by trying to save energy for the node that has the least energy among all 

the nodes in the network. When the energy at a node falls below a certain threshold then 

the node starts an election process and after the election process the node with the least 

energy is elected to sleep for a longer time thereby saving more energy and increasing 

network lifetime. ZMAC [16] is a hybrid MAC protocol that incorporates the advantages 
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of both CSMA and TDMA mechanisms by making the nodes function in CSMA mode 

during low traffic periods and switching them to TDMA mode during high traffic 

periods. 

It can be seen from the previous discussion that there has been a lot of research 

for providing energy efficiency for sensor networks. Some protocols, like SMAC and 

TMAC address energy efficiency but not packet delivery latency. Protocols like PMAC, 

WiseMAC and TRAMA address procedures to adjust to dynamic loads but not sleep 

latency. DMAC and DSMAC address sleep latency but have not considered the overall 

network throughput. Thus there has not been a complete study that considers all the 

different metrics for performance. To increase throughput, reduce packet delivery 

latency, and increase energy efficiency the proposed solution integrates concepts from 

DMAC and TMAC in its topology aware scheduling solution. 
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CHAPTER 3 

NETWORK ARCHITECTURE AND ROUTING 

 

The proposed wireless sensor network system is based on a hierarchical 

architecture and hierarchical addressing scheme proposed in [7] and a description of the 

same is given below. 

 

3.1 Network Architecture and Addressing 

In [7] the authors have defined a hierarchical architecture composed of sensors, 

controllers, and other higher level controllers. A set of sensors together with one 

controller (cluster head) form a cluster that is controlled and managed by the controller. 

As shown in Fig. 3.1, sensors on the same side of a road form a segment and all segments 

in the direction leading to the controller form a cluster controlled by that controller. A 

controller is connected with multiple segments and the segments that form clusters 

controlled by that controller are called the associated segments of that controller. The 

connected segments that form clusters controlled by the controller on the other end of the 

segment are known as the neighbor-associated segments of the controller. Fig. 3.1 shows 

an example of associated and neighbor-associated segments for controller C2. Each 

sensor or controller device can serve one or multiple logical functions according to the 

one or multiple logical identities assigned to the device. In the hierarchical architecture, 

multiple sensors form a cluster with a controller and multiple clusters form a higher level 

cluster with a higher level controller controlling it.  
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Figure 3.1: Network architecture 

 

The following address format is adopted to identify any sensor or controller [7]: 

[RID; Milepost; Level; Direction] 

A brief description of each filed in the address is given. 

• RID – A 3 character field representing the highway ID on which the sensor is 

located. For example: I85 

• Milepost – A 4 character field indicating the mileage on the highway where the 

sensor is located. For example: 0127 

• Level – A 1 character field indicating the level at which the node is functioning. 

For example: 1-Sensor, 2-Level 1 Controller, 3-Level 2 Controller 
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• Direction – A 1 character field indicating the side of the road the node is located. 

For example: 1- North bound (North-South Highway) and East bound 

(East-West Highway), 2- South bound (North-South Highway) and West 

bound (East-West Highway). 

While simple and intuitive, the address fully exposes the contextual information 

necessary for message routing and handling of distributed control operations. Note that 

each unit can have multiple addresses if it serves multiple roles.  

 

3.2 Routing 

For routing data between sensors the authors of [7] proposed to have a 

hierarchical routing protocol. A detailed routing procedure, however, was not available.  

In this thesis a complete routing procedure is explained that explains cluster formation 

and data routing in such a hierarchical network. The routing procedure can be divided 

into three phases – local topology discovery, hierarchical cluster formation and data 

routing. The detailed procedures are explained in the Appendix.  

The local topology discovery is performed to establish local connectivity and 

form local clusters in the network. During the local topology discovery phase, every 

sensor identifies the adjacent sensor on its road segment towards its cluster head as its 

parent. A sensor X becomes a child of another sensor Y, if Y is the parent of X. 

Hierarchical cluster formation is performed to form higher level clusters controlled by 

higher level controllers. During this phase every controller registers to a cluster 

controlled by higher level controllers. The higher level controller thereby becomes the 

parent of the low level controller that has registered to its cluster. After the local topology 

 - 17 - 



discovery and hierarchical cluster formation phases have completed, packets can be 

routed from one part of the network to another using the hierarchical routing protocol. 

For routing messages the controllers maintain routing tables storing the next controller 

information to reach any other part node in the network. It is important to minimize the 

packet delivery latency for sending messages from controller to its adjacent controllers. A 

scheduling solution is thereby provided in the following chapter that tries to minimize 

delay for sending messages from controller to controller forwarded by sensors along the 

connecting road segment. 

 

3.3 Medium Access Control  

The proposed scheduling solution operates over a carrier-sense multiple-access 

link-layer protocol.  Nodes are assumed capable of coarse grain synchronization, with 

which the scheduling algorithm assigns collision-free time slots for nodes to transmit data 

packets. Specifically, IEEE 802.11 is considered without its Request-To-Send/Clear-To-

Send (RTS/CTS) option. Each data packet is transmitted directly (after an initial idle 

period) from a sender to the receiver, and if the packet is received correctly, the receiver 

transmits an acknowledgement to the sender. 

The carrier-sense multiple-access with collision-avoidance (CSMA/CA) scheme 

of IEEE 802.11 requires a sender to sense the channel to be idle before sending a data 

packet.  The duration a sender must sense the channel to be idle is one distributed inter 

frame spacing (DIFS) duration plus initial random backoff duration.  The sensing timer is 

paused whenever the channel is not idle. A receiver on receiving the packet correctly 

waits for one short inter frame spacing (SIFS) duration before sending its 
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acknowledgement.  Upon receiving the acknowledgement the sender has to wait for the 

DIFS and random backoff duration again before transmitting the next packet. IEEE 

802.11 adopts an exponential random backoff algorithm [33].  The random backoff time 

is incurred to resolve contention when two stations want to access the medium at the 

same time. Each station randomly selects the number of slots to wait between 0 and its 

contention window variable.  The contention window starts with a minimum default 

value, doubles if a transmission fails, and resets to minimum after each successful 

transmission.  

We adopt a model for IEEE 802.11 that accounts for the capture effect [34]. The 

capture effect states that, if a conflicting signal arriving during an ongoing transmission is 

perceived at a power less than 1/κ of the ongoing transmission power then the ongoing 

data reception will proceed without error; if the conflicting transmission power is larger 

than 1/κ the ongoing transmission’s power, both packets will be corrupted.  Here, κ is 

denoted as the capture ratio and the typical values are 0 < κ < 10.  In our model we 

consider the capture ratio  κ  is 10db [35]. Routing protocol assumes the nodes to be 

capable of adapting the transmission power to reach nodes that are multiple hops away. 

However, we consider the base case of tuning the power to reach the adjacent neighbors. 
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CHAPTER 4 

SINGLE INTERSECTION TRANSMISSION SCHEDULING 

 

The scheduling algorithms proposed aims at increasing throughput, decreasing 

end-to-end delay and increasing energy efficiency for the proposed wireless sensor 

network. The scheduling solution incurs a topology discovery phase, followed by the slot 

assignment for individual intersections and across multiple intersections.  The following 

describes the single-intersection scheduling algorithm. 

A single intersection denotes the collection of an intersection controller and all 

sensors along its connected road segments controlled by it, as shown in Fig. 4.1. The 

intersection controller shown in Fig. 4.1 is associated with four segments. The nodes in 

the figure are denoted as segment.member, where segment is the segment number and 

member is the member number for that particular segment. After the topology discovery 

phase, the controller knows the hierarchical and geographical addresses and the transmit 

power of the nodes on its associated segments and constructs a conflict graph of these 

nodes.  In the conflict graph, a pair of nodes are connected with an edge if they can 

interfere with each other when both are active (transmitting or receiving) and at least one 

of them is transmitting.  Fig. 4.2 shows the conflict graph and the associated matrix 

representation for the intersection is shown in Fig. 4.3. Given the conflict graph, the 

controller can calculate non-conflicting transmission schedules for all nodes associated 

with the intersection.  
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Figure 4.1:  Single intersection topology 
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Figure 4.2:  Single intersection topology conflict graph 

 

Figure 4.3:  Single intersection topology conflict graph matrix representation 
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4.1  Fundamental Concepts 

 The scheduling algorithm is based on the following three key concepts. 

 

4.1.1   Reducing sleep latency 

The sensor radios are set to sleep mode to save energy when no communication is 

needed.  For neighboring sensors to communicate, a sleep-awake schedule is agreed on.  

Packets arriving at a node during sleep durations must wait for the next active period for 

the receiver and this duration is referred to as the sleep latency [8]. The sleep latency 

varies for each packet according to their arrival time at every node and the node’s sleep-

awake schedule.  Fig. 4.4 illustrates scenarios for the best and worst case latencies.  

As shown in the Fig. 4.4, the child to parent relationship is indicated by arrows 

pointing from child to parent. Every node is allotted a slot for transmission and the parent 

of that node will be active in that slot for reception of the packet. With no pipelining the 

controller would decide a cycle length of 8 as every slot for transmission can be used by 

only one node on the segment. 

 

 
 

Figure 4.4:  Sleep latency 
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The worst case scenario is when the slot assignment is such that the node that is 

next to transmit is allotted the slot which is farthest away in time from the current slot. 

Thus the worst case is when a child is allotted a transmission slot of m and parent is 

allotted a transmission slot in the previous slot. With such assignment the parent gets the 

packet in slot m and it has to wait for (cycle length - m) slots till the end of cycle and then 

for m - 1 slots in the new cycle to forward the packet. Thus the packet will be buffered at 

every node for (cycle_length–1) slots. The worst case end-to-end sleep latency can 

therefore be represented as: 

end-to-end sleep latency = (cycle_length-1)*number of nodes 

The best case scenario is if the child node is allotted a transmission in slot m and parent is 

allotted a transmission in slot m+1. In such an assignment the packet will not be buffered 

and the sleep latency is reduced. 

 

4.1.2   Increasing End-to-end Throughput 

In order to achieve high throughput the scheduling algorithm assigns slots in a 

pipelined fashion, whereby, multiple nodes on the same segment in spatially separated 

regions can transmit in the same slot. Thus spatial reuse helps create a pipeline of 

transmissions for forwarding end-to-end data along a segment. It is shown in Fig. 4.5 that 

if the transmission range is affecting the nodes in two hop neighborhoods then with 

pipelining every node gets a slot every 3 slots and without pipelining it gets a slot every 8 

slots. Thus pipelined assignment provides the nodes with more transmission opportunities 

thereby providing a high end-to-end throughput. 
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Figure 4.5:  Pipelined assignment 

 

4.1.3   Increasing Energy Efficiency 

The pipelined assignment provides for higher throughput by assigning more slots 

to every node but the nodes might require fewer slots based on the input traffic load 

experienced. A node should save energy by switching to sleep mode in the assigned slot 

for which it does not have any data to be exchanged. The transmitter in that slot should 

monitor its input queue and the receiver should monitor the medium for any data for a 

small interval of time (TA) and if there is no data to be exchanged then the transmitter’s 

queue is empty and receiver will not detect any activity in the medium. Under such a 

scenario they should switch to the sleep mode thereby saving energy and this concept 

incorporated into the scheduling is known as the TMAC option. 

 

4.2 Scheduling Algorithm 

The pseudo code for the scheduling algorithm is given in Fig. 4.6. The controller 

knows the parent and child relationship for nodes in its cluster and creates a linear tree for 

every cluster with the farthest node on a segment being the last node on the tree. The 

controller starts to assign the slots from the farthest node which is also called end member  
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CG: conflict graph matrix T: current time slot to be scheduled  
T.SendSet: set of nodes scheduled to send in T  
T.RecvSet: set of nodes scheduled to receive in T  
CS: current candidate segment  
CS.NextSegment: next candidate segment following CS  
CS.Sender: current candidate sender node in CS  
CS.FirstNode: first node in CS  
CS.StartSlot: start slot assigned to CS for this round  
CS.Sender.Parent: parent node of CS.Sender  
CS.rounds[i]: total rounds completed per segment in ith interval  
S: Number of slots in one cycle  
Cycle_length.schedued : an event which triggers when S slots have been completely scheduled since the last event  
START: 
T=0; CS=1; CS.Sender=CS.FirstNode; CS.rounds = 0;  
while (1)  

if (Cycle_length.schedued ) 
 flag = SET; 
 for (k=i to k=i-20) 
   if (CS.roounds[k] != CS.rounds[k-1]) 
   flag = NOT_SET; 
   break; 
  endif 
 end for 
 if (flag == SET) 
  break;  

else  
CS.rounds_prev = CS.rounds_curr  
CONFLICT_TEST_LOOP:  
for each node n in T.SendSet,  

if CG(CS.Sender.Parent, n)>0,  
T=T+1; GOTO CONFLICT_TEST_LOOP  

endif  
end for  
for each node n in T.RecvSet,  

if CG(CS.Sender, n)>0,  
T=T+1; GOTO CONFLICT_TEST_LOOP  

else if AGGRESSIVE*CG(CS.Sender.Parent,n)>0,  
      T=T+1; GOTO CONFLICT_TEST_LOOP  

endif  
end for  

T.SendSet = T.SendSet + CS.Sender  
T.RecvSet = T.RecvSet + CS.Sensder.Parent  
if CS.Sender == CS.FirstNode  

CS.StartSlot = T  
 endif  
 if CS.Sender.Parent is a controller  

CS.Sender = CS.FirstNode  
CS.rounds[i] = CS.rounds[i] + 1  

    endif  
    CS.Sender = CS.Sender.Parent  
   CS = CS.NextSegment 

  endif 
  endif 
end while  

Figure 4.6: Scheduling algorithm. 
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of the cluster. It assigns the first slot to the end member of one cluster and tries to assign 

the same slot to the end member of the other cluster thereby ensuring fairness between 

the slots assigned to nodes of different clusters. In case of conflicts the latter node would 

be assigned the nearest non-conflicting slot. Once one node of every cluster has been 

assigned a slot the controller starts assigning slots to the parent of the scheduled node of 

every cluster and the process repeats iteratively. The controller tries to assign the parent 

the closest possible non-conflicting slot following the slot in which the child was 

scheduled for transmission. This slot assignment strategy is followed to avoid sleep 

latency. After all the nodes on the cluster have been scheduled the controller starts 

assigning slots again to the end members of the clusters and thus the next round of 

assignment begins. A sample run of the scheduling algorithm over the network shown in 

Fig. 4.1 and the conflict graph show in Fig. 4.2 is shown in Fig. 4.7, where Y and N 

indicate the slots in which the node can transmit and can not transmit respectively. 

 
 

Figure 4.7:  Sample run of scheduling algorithm 
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Table 4.1: Rounds completed for different cycle lengths 

 

 

In Fig. 4.7 it is seen that the nodes are represented as 1.1…1.7, 2.1 … 2.6, 3.1 … 

3.6, 4.1 … 4.6 and the slot numbers assigned are 1, 2,… 25. Number of rounds 

completed is defined as the minimum of the number of slots possessed by nodes on a 

segment at any given time. A cycle length to assign schedules to the nodes is initially 

agreed upon by the different controllers. The controller starts executing the scheduling 

algorithm and keeps monitoring the rounds completed on the segments for a given 

window. Here window is the same as cycle length and the controller slides the window 

along the slot numbers to monitor the rounds completed in different windows. When the 

rounds completed in different windows stabilizes it stops executing the scheduling 

algorithm. Table 4.1 shows the rounds completed by sliding the window of different 

cycle lengths along the sample run of scheduling algorithm shown in Fig. 4.7. The 

controller then selects the cycle for assigning the schedules as the window that gives the 

maximum rounds completed. 
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The scheduling algorithm can be modified to assign slots in a weighted manner as 

there might be scenarios where some segments require higher data rate compared to other 

segments. Weighted assignment can thereby provide proper division of the bandwidth 

that can improve the overall network throughput. The scheduling algorithm proposed can 

perform better with certain variations that are explained in the following section. 

 

: 

4.3  Variants of Scheduling Algorithm 

In order to avoid collisions it is necessary to ensure the following rules

1. The intended sender is not in the carrier sensing range of any other active transmitter. 

2. The intended sender is not in the carrier sensing range of any actively receiving node 

other than the intended receiver. 

3. The intended receiver is not in the carrier sensing range of any active transmitter 

other than the intended transmitter. 

4. The intended receiver is not in the carrier sensing range of any other active receiver. 

The scheduling solution can be used with different versions to decide a more aggressive 

schedule for the nodes. There are different assignments possible for the scheduling 

algorithm and are described below. 

 

Non-aggressive assignment:   

The non-aggressive assignment enforces all four rules for conflict avoidance 

mentioned earlier.  Essentially, no other nodes within the carrier sensing range of a 

scheduled sender and receiver pair are allowed to either transmit or receive. 
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Aggressive assignment without offset:

By relaxing the fourth rule, more simultaneous transmissions are possible, with 

the risk of an acknowledgment from one receiver colliding with another valid data 

transmission.  A close inspection of all such events reveals that, due to radio capture 

effects, not all such conflicts will corrupt the transmissions.  In the proposed wireless 

sensor network the topology structure is such that most of the data transmissions will 

have high reception power compared to an interfering signal and thus the capture effect 

helps in correct reception of data packet. This statement can be supported with an 

example for our network. 

Fig. 4.8 shows the scenario used for simulation. The sensors are placed at a 

distance of 100 meters apart and thus the transmitter and receiver are 100 meters apart. 

The transmission power at sensors is adjusted such that the transmission range is 128 

meters and the carrier sensing range is 256 meters. Because of rule 3 there is no active 

interfering node transmitting data in the carrier sensing range of the receiver B. Rule 1 

and rule 2 ensure that there is no node transmitting or receiving within 256 meters from 

transmitter A, which implies that there is no interfering receiver within 156 meters of  

receiver B. The received power at B for a transmission by A is such that any node beyond 

a radius of 175 meters from B cannot cause interference at the receiver. The interfering 

region is defined as the region outside the sensing range of the transmitter and inside the 

interfering range (175 meters from B). Thus only a receiver in the interfering region 

shown in Fig. 4.8 transmitting an acknowledgement can cause collision at the receiver B. 

The aggressive scheduling is thereby expected to achieve better performance compared to 

non-aggressive scheduling.  
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Figure 4.8: Example arrangement of transmitter and receiver 

 

Aggressive assignment with offset:   

Fig. 4.9 shows that there are four possible scenarios representing the order in 

which a data packet and a simultaneously interfering acknowledgement are received. 

These scenarios are represented as scenario A, B, C and D. It is assumed that the 

difference in the power of the data packet being received and that of the interfering 

acknowledgement is more than the capture ratio κ. Under such conditions the capture 

effect can help the reception of the data packet provided the packets are received in a 

certain order. Fig. 4.9 shows that only in the fourth scenario (scenario D) will the receiver 

not correctly receive the data packet. The capture effect helps the reception of the correct 

packet for scenario A while in the scenarios B and C the packets are received at different 

times and thus there is no chance of a collision.  

To look at an example, consider our sample network in Fig.4.1, where nodes are 

denoted as segment.member and node 1.2 is sending data packets to 1.1 while node 2.3 is 

sending data packets to 2.2 in the same slot.  
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Figure 4.9: Capture effect and offsets 

 

Let us assume that the third data packet from 2.3 starts when 1.1 is transmitting its 

acknowledgement to 1.2, node 2.2 will not be able to correctly receive from 2.3 since the 

received power is not much less than the ongoing acknowledgement’s.  Instead, if node 

2.3 had started to transmit data prior to the start of the acknowledgement, node 2.2 would 

have successfully locked the reception of the packet. If nodes are provided different 

offsets then the occurrence of scenario D can be minimized. This suggests the benefit of 

nodes scheduled in the same slot to start transmission with different offsets to their slot’s 

start time. As shown in Fig. 4.9 the order of arrival of packets at the receiver determines 

whether the packet is lost or captured and this order in turn is determined by the time at 

which the first packet is sent out at the beginning of the time slot. As shown in Fig. 4.10, 

offsets help to reduce the possibility of a packet loss but do not totally avoid the 

possibility of a loss. In wireless sensor networks for highway traffic monitoring, the data 

is predictable and collected periodically. If the data packet lengths are predictable then 

the offsets help to provide the necessary change in timing to avoid collisions.  
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Figure 4.10:  Without offset and with offset packet transmissions 

 

The choice of the offset is very critical in determining the achieved improvement 

in the throughput. The slot length is defined as the time duration of a single slot. Given a 

slot length there can be k packets expected to be transmitted in that particular slot length. 

The time taken to completely transmit one packet is defined as the packet completion 

time and this time is the sum of DIFS, packet transmission time, SIFS, acknowledgement 

transmission time and a random back off between transmissions. The completion time is 

thus variable depending on the random back off and the average completion time is 

defined as the average of completion times for different packets of the same length. Thus 

the total time necessary T to transmit k packets is given by  

T = k*average completion time 
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The value of (slot length – T) gives the upper threshold on the total offset that can be 

provided to the nodes. The offset is used to avoid the packet loss between a weak 

acknowledgement and a strong data packet and if there are N segments then each will 

require an offset that is a multiple of basic offset θ. The value of θ is determined as: 

    θ = (slot length – T) / N  

 

Effects of slot length 

The choice of slot length greatly affects the end-to-end delay. Within a cycle 

length, based on the scheduling assignment, there are certain slots assigned to every node 

for transmission. Fig. 4.7 shows the assignment of the first 25 slots and it is seen that 

node 1.1 gets the 10th, 15th, 20th and 25th slot for transmission in a cycle length of 30 slots. 

The system will be in its stable state if the input rate can be supported by the bottleneck 

node. Node 1.1 is a bottleneck node for cluster 1 as it is located in high contention region 

and thereby receives the least number of slots. Considering the packet size to be 1000 

bytes, 4 packets (32 kbits) can be transmitted in a slot length of 0.1 seconds. The 

bottleneck node 1.1 gets 4 slots in one cycle of length 30 and thus in every cycle it can 

transmit 128 kbits of data. The cycle length is 30 * 0.1 = 3 seconds. The scheduled 

throughput is the input rate that can be supported by the bottleneck node on the segment 

and its value for segment 1 is 42.6 kbps. If we consider a slot length of 0.2 seconds then 

every node can transmit 8 packets in a slot and thus after 4 slots a node can transmit 256 

kbits of data. However the total time for the cycle length is 30 * 0.2 = 6 seconds showing 

that the supported input rate can be 42.6 kbps. Thus the scheduled throughput for every 

segment remains the same irrespective of the slot length.  
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The end-to-end delay is proportional to the slot length. For comparison let us 

consider the same two scenarios as mentioned earlier with the input rate constrained such 

that the system is in the stable state. Fig. 4.7 shows the sample run of scheduling 

algorithm and considering a cycle of 30 slots node 1.7 is assigned slot number 1, 3, 5, 7, 

9, 11, …, for transmission and node 1.1 is assigned slot number 10, 15, 20 and 25 for 

transmission. It is observed that 4 slots in every cycle are sufficient to support the input 

rate and thus node 1.7 uses only 4 of its assigned slots for transmitting data. It is assumed 

that these slots are the first four slots of the cycle and this is done to achieve fairness in 

comparison. Table 4.2 shows the end to end delay for packets transmitted along segment 

1. Looking at Table 4.2, the average end-to-end delay for a slot length of 0.1 and 0.2 are 

given in equations 4.1 and 4.2 respectively. 

average end-to-end delay (for slot length 0.1)=(1.0+1.3+1.6+1.9)/4 = 1.45 seconds   (4.1) 

average end-to-end delay (for slot length 0.2)=(2.0+2.6+3.2+3.8)/4 = 2.90 seconds   (4.2) 

 

The average end-to-end delay with a slot length of 0.1 seconds is 1.45 seconds and that 

with a slot length of 0.2 seconds is 2.9 seconds thereby indicating that the end-to-end 

delay is directly proportional to the slot length. 

average end-to-end delay = slot length * constant 
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Table 4.2: End-to-end delay and slot length 

 

 

4.4 Simulation Studies 

 The key concepts explained in the section 4.1 are analyzed with the help of 

simulations carried out in ns-2. The following sections provide the simulation results. 

 

4.4.1 Simulation Settings 

The scenario shown in Fig. 4.11 involves 4 clusters along the 4 associated 

segments of the concerned cluster controller, each consisting of 5 sensors. The number of 
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sensors on the segment indicates the cluster length. The sensors are placed at a distance 

of 100 meters and are addressed according to their location on the highway. The sample 

addresses are shown in the Fig. 4.11. The simulation parameters are given in Table 4.3. 

Each road segment has one exponential ON/OFF 50%-duty-cycle UDP flow from 

each “other cluster controller” to the concerned cluster controller. The packet size used 

for the simulations is fixed at 1000 Bytes. The input rate during the experiment is varied 

from 15 kbps to 165 kbps. Since only one intersection is considered, no traffic is 

generated along the other direction, and the “other cluster sensors” are inactive in this 

scenario. The simulation has four exponential flows set up from the four end sensors (i.e 

1.5, 2.5, 3.5 and 4.5) flowing towards the intersection controller which is also their 

cluster head. This is the basic simulation settings and it is referred to as the basic single 

intersection scenario.  Conflict set is defined as the set of nodes in a given network such 

that all the nodes are interfering with each other. A node X is said to be interfering with 

another node Y, if either the node itself or its receiver is in carrier sensing range of the 

node Y. The conflict degree of a network is the number of nodes in the maximum conflict 

set. 

 

Table 4.3 Simulation parameters 
 

Parameter Abbreviation Value 
Receiving Threshold RXThresh 4.99e-9 
Sensing Threshold CSThresh 3.12e-10 

Transmit Power Px 0.265 W 
Capture Threshold CPThresh 10.0 

Transmission Range Tx 128 meters 
Carrier Sensing Range Cx 256 meters 
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Figure 4.11:  Four segment single intersection scenario  

 

4.4.2   Performance metrics for topology changes 

The following section explains the effects of topology changes on the available 

network throughput. 

 

Throughput versus Cluster Length 

The basic single intersection scenario shown in Fig. 4.11 has a conflict degree of 

8. The nodes that are away from the controller are in a less dense area and thus can be 

allotted transmission slots more frequently than the nodes in the denser area. Even if the 

number of sensors along the highways is different for different segments the achievable 

end-to-end throughput is limited by the bottleneck node. To demonstrate this effect, 
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simulation scenarios were set up with different number of sensors along four segments of 

the same basic single intersection scenario. There were 5 different scenarios set up with 

5, 10, 15, 20 and 25 sensors along each of the four segments. It was found that for each of 

the five scenarios the bottleneck nodes got 50 slots out of a cycle length of 400 slots. The 

nodes got 50 slots as they were facing a conflict degree of 8 and thus the 400 slots were 

divided among the 8 nodes fairly thereby showing that the available throughput is 

independent of the cluster length. To demonstrate this by simulations, the different 

scenarios were simulated and exponential flows were set up over the 4 segments. Figure 

4.12 shows that the saturation throughput achieved is independent of the number of 

sensors on the segment. Saturation throughput is defined as the input rate that can be 

supported with 90% of the packets delivered successfully. 
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Figure 4.12: Throughput VS Number of sensors per segment 
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Throughput versus Degree of Conflict 

As the degree of conflict increases the available end-to-end throughput decreases 

because the available slots are divided between more nodes which can not be transmitting 

at the same time. As shown in Fig. 4.13, four scenarios A, B, C and D with degree of 

conflict 4, 8, 12 and 14, respectively, are simulated. Scenario E is a modified version of 

D which has the node placements such that degree of conflict is 16. It can be seen from 

Fig. 4.14 that the saturation throughput achieved is inversely proportional to the degree of 

conflict. 

 

Figure 4.13: Topologies corresponding to different degree of conflict 
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Figure 4.14: Throughput VS degree of conflict 

 

4.4.3  Performance metrics for algorithm variations 

As explained in the earlier sections there are possible variations to the algorithm 

which try to improve the throughput performance available from the scheduling 

algorithm. Fig. 4.15 shows the per-segment end-to-end throughput for the non-

aggressive, the aggressive without offset, and the aggressive with offset algorithms for 

the basic single intersection scenario shown in Fig. 4.11. A threshold line is plotted to 

indicate the 90% success rate boundary, beyond which the network becomes unstable and 

the throughput and delay measures becomes less meaningful due to the excessive number 

of packets dropped. As shown in Fig. 4.15, unscheduled IEEE 802.11 is able to provide 

stable per-segment throughput up to approximately 58 kbps, while the non-aggressive 

method achieves 82 kbps, a 35% increase. The aggressive without offset provided a 

stable throughput at 92 kbps, which is a 51% increase. The aggressive with offset gave a 

stable throughput at 100 kbps, which is a 63% increase. 
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Figure 4.15: Throughput for different algorithms 

 

Fig.4.16 shows the average per-segment end-to-end packet forwarding delays 

measured for the different algorithms and the unscheduled IEEE 802.11. The end-to-end 

delay consists mainly of the queuing and transmission delays incurred at each node. 

Without collisions, the transmission time with the scheduled approach is approximately 

constant (initial random backoff + data transmission + inter-frame spacing +  

acknowledgement). The end-to-end delay is almost the same for the different algorithms 

but smaller for unscheduled IEEE 802.11 as it does not incur any sleep latency. As shown 

in the Fig. 4.15 the different algorithms have different saturation throughputs and it is 

seen in Fig. 4.16 that the end-to-end delay starts rising as the systems get close to 

saturation. This is because the queuing delay starts increasing rapidly thereby affecting 

the end-to-end delay. 

 - 42 - 



0

2

4

6

8

10

12

15 30 45 60 75 90 105 120 135 150 165

Per-Segment Input Rate (kbps)

A
vg

. E
nd

-t
o-

en
d 

D
el

ay
 (S

ec
on

ds
)

IEE Mac 802.11
Non Aggressive
Aggressive W/O offset
Aggressive w ith offset

IEEE 802.11

Non Aggressive

Aggressive w ith 
Offset

Aggressive W/O offset

 

   Figure 4.16: End-to-end delay for different algorithms 

 

4.4.4   Performance metrics for different slot lengths 

Experiments were run with different slot lengths for one selected algorithm 

(Aggressive without offset). The time to complete the transmission of a packet is denoted 

by tx. In every slot a node can not transmit in the last tx seconds as it has to finish 

transmitting the packet before the end of slot. It is explained in section 4.3 that the 

scheduled throughput remains the same for different slot lengths (sl). However, the 

achievable throughput differs slightly based on the slot length: 

achievable throughput = (sl-tx)/tx * scheduled throughput   (4.3) 

It can be seen from the Fig. 4.17 that the throughput differs slightly based on the slot 

length. However, as the slot length increases the improvement is throughput becomes 

smaller. 
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  Figure 4.17: Throughput for different slot lengths 

 

The slot length is an important parameter determining the end-to-end delay. The 

end-to-end delay consists of the queuing and transmission delays and sleep latency 

incurred at each node. The sleep latency depends on the chosen slot length; the longer 

slot length, the longer average sleep latency. Fig. 4.18 shows that the end-to-end delay for 

the scheduled approach is clearly proportional to the chosen slot length. As the slot length 

reduces, the delay reduces to approach that of IEEE 802.11. For example, the smallest 

slot length simulated was 0.05 seconds incurring a small end-to-end delay of 

approximately 0.7 seconds. Thus it is seen that by changing the slot length from 0.05 

seconds to 0.8 seconds the achievable throughput changes from 82 kbps to 98 kbps, an 

increase of 19%. On the other hand the end-to-end delay changes from 0.7 seconds to 

10.7 seconds, an increase of 1428%.  
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Figure 4.18: End-to-end delay for different slot lengths 

 

Per Hop Delay Analysis  

An analysis of per-hop delay shows that the maximum delay is incurred when 

packets are forwarded by the bottleneck nodes. Considering the network in Fig. 4.11 it is 

seen that the nodes that are not more than three hops away from the controller are the 

bottleneck nodes as they are assigned only 50 slots for transmission in a cycle length of 

400 slots. Given a schedule cycle every node is assigned certain slots for transmission. 

One frame interval is defined as the time elapsed from the beginning of one scheduled 

slot to the beginning of the next scheduled slot. The average frame size F for a node is 

defined as the average of all frame intervals for that node in the given schedule cycle. For 

a given network, bottleneck frame size FBTN indicates the avg. frame size of the 

bottleneck nodes 
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Figure 4.19: Per hop delay analysis 
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For the network in Fig. 4.11, FBTN is 0.8 seconds. Fig. 4.19 shows that at high 

input rates the nodes that are more than 3 hops away from the controller forward most of 

their packets with a delay less than one FBTN as they have more scheduled slots to 

transmit as compared to the other nodes. However, the nodes that are one, two and three 

hops away from the controller have fewer slots and thus are not able to transmit all the 

packets with a delay less than one FBTN at high input rates. The longest queuing delays are 

at the nodes 3 hops away from the controller as these nodes are the first bottleneck from 

where the packets have to be forwarded.  

 

4.4.5  Performance metrics for weighted assignments 

Some road segments might require high rate of data communication as compared 

to others. In such scenarios it is advantageous to divide the total capacity among the 

segments according to their needs. In this section the advantages of having weighted 

assignment over non-weighted assignment are shown. Non-weighted assignment assigns 

the weight of 1:1:1:1 on the four segments irrespective of the throughput requirements 

whereas the weighted assignment considers the throughput requirements and assigns the 

weights accordingly. With different weights assigned in the scheduling algorithm, the 

same basic single intersection scenario with different throughput requirements on the four 

segments as listed in Table 4.4 are studied. It was seen earlier that with a ratio of 1:1:1:1 

all the segments are able to achieve a throughput of 92 kbps thereby achieving a total 

network throughput (network capacity) of 368 kbps. The total network capacity is 

divided according to the ratio of traffic on segments to give the input rate that the system 

should be able to support as shown in Table 4.4. 
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Table 4.4: Input rates supported by system 
 

 Ratio for segments 
seg1:seg2:seg3:seg4 

Network Capacity Supported Input 
Rate (kbps) 

Scenario A 1:1:1:1 368 kbps 92:92:92:92 
Scenario B 2:1:1:1 368 kbps 147.2:73.6:73.6:73.6 
Scenario C 1:2:2:2 368 kbps 52.57:105.1:105.1:105.1 
Scenario D 1:2:3:4 368 kbps 36.8:73.6:110.4:147.2 

 

Fig. 4.20 shows the achieved throughput for scenario A. It is seen that weighted 

scheduling and non-weighted scheduling provide the same throughput for all the four 

segments and unscheduled IEEE 802.11 provides lower throughput comparatively. Fig. 

4.21 shows the achieved throughput for scenario B and it is seen that the weighted 

scheduling provides higher throughput for the first segment as it can support 142 kbps as 

compared to 102 kbps for unscheduled IEEE 802.11 and 92 kbps for non weighted 

scheduling. For the other three segments the input rate is less than 92 kbps and thereby 

both weighted and non-weighted scheduling can support that input rate to give a per-

segment throughput of 73 kbps. Fig. 4.22 shows the achieved throughput for scenario C. 

The last three segments have an input rate of 105 kbps which cannot be supported by non 

weighted scheduling. It is able to provide a throughput of 92 kbps and unscheduled IEEE 

802.11 is able to provide a throughput of 80 kbps. The weighted scheduling is able to 

support the input rate of 105 kbps on all the three segments. Fig. 4.23 shows the achieved 

throughput for scenario D. It is seen that segments three and four have an input rate 

greater than 92 kbps and thus the non-weighted scheduling can only provide throughput 

of 92 kbps and the weighted scheduling is able to provide a throughput of 105 kbps and 

142 kbps for segments 3 and 4 respectively.  

 - 48 - 



0
10
20
30
40
50
60
70
80
90

100

100 300 500 700 900
Time (Seconds)

Pe
r-

Se
gm

en
t T

hr
ou

gh
pu

t (
kb

ps
) Weighted Seg 1

Weighted Seg 2
Weighted Seg 3
Weighted Seg 4
IEEE 802.11 Seg 1
IEEE 802.11 Seg 2
IEEE 802.11 Seg 3
IEEE 802.11 Seg 4
Non-w eighted Seg 1
Non-w eighted Seg 2
Non-w eighted Seg 3
Non-w eighted Seg 4

 
 

Figure 4.20: Per segment throughput - scenario A 
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Figure 4.21: Per segment throughput - scenario B 
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Figure 4.22: Per segment throughput - scenario C 
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Figure 4.23: Per segment throughput - scenario D 
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The throughput analysis for the four scenarios is summarized in Table 4.5. 
 
 

Table 4.5: Per segment throughput and network throughput 
 

Weighted Assignment 
 Input Rate for segments (kbps) Total Output Rate for segments 

(kbps) 
Total 

 Seg 1 Seg 2 Seg 3 Seg 4  Seg 1 Seg 2 Seg 3 Seg 4  
Scenario 1 92 92 92 92 368 90 90 90 90 360 
Scenario 2 147.2 73.6 73.6 73.6 368 144 72 72 72 360 
Scenario 3 52.57 105.14 105.14 105.14 368 48 102 102 102 354 
Scenario 4 36.8 73.6 110.4 147.2 368 36 71.5 105 143.5 356 
Non-Weighted Assignment 
 Input Rate for segments (kbps) Total Output Rate for segments 

(kbps) 
Total 

 Seg 1 Seg 2 Seg 3 Seg 4  Seg 1 Seg 2 Seg 3 Seg 4  
Scenario 1 92 92 92 92 368 90 90 90 90 360 
Scenario 2 147.2 73.6 73.6 73.6 368 92 72 72 72 308 
Scenario 3 52.57 105.14 105.14 105.14 368 50 92 92 92 326 
Scenario 4 36.8 73.6 110.4 147.2 368 37 72 92  92 293 
Unscheduled IEEE 802.11 
 Input Rate for segments (kbps) Total Output Rate for segments 

(kbps) 
Total 

 Seg 1 Seg 2 Seg 3 Seg 4  Seg 1 Seg 2 Seg 3 Seg 4  
Scenario 1 92 92 92 92 368 80 80 80 80 320 
Scenario 2 147.2 73.6 73.6 73.6 368 103 68 65 63 299 
Scenario 3 52.57 105.14 105.14 105.14 368 47 80  79  81  287 
Scenario 4 36.8 73.6 110.4 147.2 368 37 62   78  101 278 

 
 

Figure 4.24 shows the total throughput achieved by weighted scheduling, non-

weighted scheduling, and unscheduled IEEE 802.11 for the four different scenarios. It is 

assumed that weighted assignment changes the slot assignment instantaneously based on 

the throughput requirement on the associated segments and achieves almost constant 

throughput at 360 kbps. The throughput achieved by non-weighted scheduling and 

unscheduled IEEE 802.11 is different for different scenarios. 
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Figure 4.24: Total throughput achieved on all segments 

 

4.4.6 Energy Efficiency 

To simulate the amount of energy saved the same basic single intersection 

scenario is simulated with the aggressive without offset algorithm. The average number 

of slots allotted to the nodes is shown in Table 4.6. Fig. 4.25 shows the number of slots 

saved at different nodes when switching to sleep option (TMAC option) is used when 

there is no data available to exchange. The numbers of slots saved are out of a total of 

6000 available slots for the entire simulation length. The nodes at 4 hops away from the 

controller saved the most number of slots as shown in Fig. 4.25. The ON time percentage 

for the nodes is the percentage of time the nodes are actively transmitting and receiving 

data. The ON time percentage is shown in Fig. 4.26. The 4 hop nodes are active for 75% 

of time without the TMAC option. However, with TMAC option being used they end up 

being active 30% of time when the input rate is close to the saturation limit. The one and 
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two hop nodes use almost all their slots with the input rate near saturation and thus are 

active 24% of time.  

Table 4.6: Number of assigned slots at different nodes 
 

 # of assigned slots 
(sending, receiving) 

Total slots On time percentage without 
TMAC  

1 Hop Nodes 50,50 400 25 

2 Hop Nodes 50,50 400 25 
3 Hop Nodes 50,150 400 50 
4 Hop Nodes 150,150 400 75 
5 Hop Nodes 150,0 400 37.5 
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Figure 4.25: Energy efficiency (Number of saved slots) 
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Figure 4.26: Energy efficiency with TMAC option 

 

4.5 Conclusion 

 In this chapter the single intersection transmission scheduling is studied and the 

scheduling algorithm is explained. Fundamental concepts to lower delivery latency, 

increase network throughput and, increase energy efficiency are studied and incorporated. 

Simulations are conducted with different network topologies to show that the 

bottleneck end-to-end throughput is independent of the cluster length and inversely 

proportional to the degree of conflict. The end-to-end throughput varies depending on the 

chosen algorithm and the non-aggressive, aggressive without offset and aggressive with 

offset algorithms are able to achieve a 35%, 51% and 63% increase over the end-to-end 

throughput achieved by unscheduled IEEE 802.11. The weighted assignment is shown to 

achieve better network throughput as compared to the non-weighted assignment as it 

divided the capacity among segments based on the communication needs. 
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It is shown that packet delivery latency is proportional to the slot length and this 

is confirmed with the help of simulations. It is also noticed that the end-to-end throughput 

is slightly affected by the slot length as longer slot lengths gave slightly higher end-to-

end throughput. 

The algorithm assigned slots such that high end-to-end throughput is achieved and 

thus every node was assigned high number of transmission slots. However, all the slots 

would not be used as there might not be data available at the node to be transmitted. 

During such opportunities the nodes saved their energy by switching to the sleep mode. 

Simulations supported this claim by showing that certain nodes ended up spending only 

30% energy where they would have otherwise spent 75% energy.   
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CHAPTER 5 

MULTIPLE INTERSECTION TRANSMISSION SCHEDULING 

 

The single-intersection algorithm produces a conflict free schedule for nodes 

associated with a single intersection without considering any surrounding nodes.  With 

multiple intersections in place, their independently discovered schedules are bound to 

have conflicts as the controllers do not know the topology information of the nodes 

belonging to clusters controlled by neighboring controllers. To resolve conflicts, 

controllers at nearby intersections must share their topology information and schedules to 

derive or negotiate for a mutually compatible schedule in a centralized or distributed 

manner. The details of the two approaches are given in the later sections.  

 

 

Figure 5.1: Controllers and sensors of multiple intersections. 
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5.1 Centralized Scheduling 

The centralized approach collects the entire topology of all nodes in the set of 

concerned intersections at a node called the leader. The controllers collect all the 

topology information in the topology discovery phase and send this information to the 

leader. The leader constructs a complete conflict graph of all the nodes in the set of 

concerned intersections. The single-intersection algorithm described in Chapter 4 is 

applied to all the segments with the knowledge of the complete conflict graph to 

determine the schedules for all the nodes in the concerned intersections.  In a hierarchical 

network, a level 2 controller can be a leader of multiple level 1 controllers that it 

oversees.  Fig. 5.1 shows an example with 4 intersections.  Let controller 1 be the chosen 

leader, then it collects topology information from all other controllers, executes the 

single-intersection algorithm considering 16 road segments, and distributes the schedule 

to the respective controllers. The controllers in turn distribute the schedules to the nodes 

in their clusters. 

 

5.2  Distributed Scheduling 

The distributed approach allows each intersection to individually determine its 

schedule and then iteratively negotiate its schedules with adjacent controllers to resolve 

any conflicts.  For the distributed scheduling the process initiates at one controller which 

is called the seed; its associated clusters are denoted as the seed clusters.  A higher level 

controller can be a natural candidate for the task.  A seed controller iteratively requests its 

adjacent controllers to submit their schedules and their topology and it constructs an 

extended conflict graph using this information. Given the schedules and an extended 
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conflict graph, the seed controller determines the new schedules as follows: 

1. The seed controller compares its schedule with each adjacent controller’s 

schedule one slot at a time to determine if in any slot conflicting senders have 

been scheduled.  For each conflict found, among the conflicting nodes one of the 

two conflicting nodes will give up the slot. There can be different approaches 

adopted to decide which node gives up the slot. 

 

Throughput Maximizing Heuristic

The node in the seed cluster gives up the slot, until it becomes a bottleneck node. 

A bottleneck node is the node with the least number of slots on its segment. The 

achievable end-to-end throughput, i.e., the bottleneck throughput, along a 

particular segment is limited by the number of slots allotted to the bottleneck 

node.  Nodes with more slots than the bottleneck node can give up the excessive 

slots without degrading the bottleneck throughput.  If the node in the seed cluster 

has remaining slots equal to the bottleneck, than the node in the adjacent cluster 

must give up the slot.  If both nodes have reached their bottleneck slots, then the 

node belonging to the seed cluster will give up the slot. It is seen that this 

approach tries to ensure that the nodes not belonging to the seed cluster save most 

of their slots which are later on given up when their cluster becomes the seed 

cluster thereby achieving high throughput. 

Fairness Heuristic 

The node with more additional slots gives up the slot. Additional slots are defined 

as the number of slots in excess of the slots available to the bottleneck node.  
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2. The extended conflict graph also reveals conflicts between any two of the seed’s 

adjacent intersections, which may not be directly adjacent to each other.  For 

example in Fig. 5.1, controllers 2 and 4 are both adjacent to controller 1 but not 

each other.  Controllers 2 and 4 later on become the seed controllers and negotiate 

their schedules with their adjacent controllers but since they are not adjacent to 

each other they do not get a chance to negotiate the inter-cluster conflicts in their 

schedules. Controller 1 has the opportunity to solve for their conflicts with its 

extended conflict graph. The seed hence compares the schedules of its adjacent 

intersections and resolves any conflicts with a heuristic approach. The fairness 

heuristic is used to determine which node will give up the slot in case of conflicts. 

3.  The seed concludes by distributing all schedule changes to the corresponding 

controllers. 

 

Controllers iteratively assume the role of a seed, until all controllers have 

performed the three-step procedure once. The quality of the conflict-free schedule 

resulting from the distributed algorithm, in terms of per-segment end-to-end throughput, 

is dependent on the initial schedules produced at each individual intersection.  The 

temporal relation between the allotted slots may contribute positively or negatively to the 

eventual negotiated schedule.  The achievable bandwidth can vary with slight changes to 

the slots, such as shifting the schedule of all nodes in one segment by a same number of 

slots.  An example is given in Fig. 5.2 to illustrate such opportunities. 
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    Fig. 5.2: Distributed without sliding        Figure 5.3: Distributed with sliding 

 

Consider that A1, A2, …, A5 are part of cluster A and B1, B2, …, B5 are part of 

cluster B. The controllers of A and B have allotted the local schedule as shown in Fig. 

5.2. The controllers are unaware that A1 and B1 are conflicting with each other. When 

the distributed algorithm is run over the slots it is found that A1 and B1 end up 

conflicting in slots 4, 7, 10, 13, 16 and 19. Thus either of them ends up giving up slots. 

However, it can be seen that if the cluster B slides its schedules by one slot then the 

conflicts are avoided as shown in Fig. 5.3. It can be seen that the conflict occurring at 

slots 4, 7, 10, 13, 16 and 19 have been resolved at the cost of a new conflict in slot 1. 

Therefore sliding schedules can help in resolving conflicts. 

If we keep the schedule of one cluster fixed and slide the schedule of the other 

cluster one slot at a time for g times, where g is the cycle length then several possible 

schedules are evaluated. The best schedule is selected as the version which gives the least 

conflicts and thereby allowing more slots to be allotted to every bottleneck node. 

However, it is important that we select a schedule such that the conflicts affecting the 

bottleneck nodes are removed and thus we can achieve a higher end-to-end throughput 
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for all the segments. In case of large cycle lengths sliding the entire schedule might incur 

a lot of computational overhead. There is a trade-off between the computational overhead 

for sliding and the available throughput. It is observed that when g is selected to be 10% 

of the cycle length the achievable throughput is close to that achieved with g equal to 

100% of cycle length. This version of distributed protocol with g selected to be 10% of 

cycle length is called 10% distributed and it involves lower computation as compared to 

100% distributed.  

 

    5.3 Communication Costs  

The centralized algorithm can provide conflict free schedules for all the nodes 

with the help of the complete conflict graph and the scheduling algorithm. The distributed 

algorithm also provides a conflict free schedule but the available throughput is not as 

high as the centralized algorithm. The disadvantage of the centralized algorithm is that it 

requires the complete graph and thus for any change in the network the entire algorithm 

has to be rerun and this incurs a lot of communication cost. An analysis of the 

communication costs of the centralized and distributed algorithms is given below: 

Centralized Algorithm 

Dependent on the size of the network, the centralized approach is not always more costly 

than the distributed.  The communications incurred in the centralized approach include: 

A. The leader floods an announcement to all subsidiary controllers requesting them 

to submit their clusters topology information. 

B.  Each controller unicasts its topology to the leader 

C.  The leader distributes the final schedule to corresponding controllers 
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D.  Each controller distributes the schedule to subsidiary sensors.   

We can consider a tree consisting of all the controllers as nodes and the elected leader as 

the root. The topology is such that every controller has four neighboring controllers and 

thus the tree is such that each node in the tree has four branches. An approximate 

estimation considers the cost of steps (A) and (D) much less than steps (B) and (C) as 

steps (A) and (D) are message that do not carry the information of the complete topology 

of the cluster. Steps (B) and (C) are symmetric and both trace a complete spanning tree.  

Assuming each node has 4 downstream branches, the cost to traverse the tree one way is 

( )14 4 1 ... 4h hh h−⋅ + − + + ⋅1  

where, h is the depth of the tree and the cost to relay a message between two adjacent 

controllers is 1.  Assuming a complete spanning tree and depth h of the tree we can 

calculate the number of nodes in the tree to be N,  

( ) ( )2 11 4 4 ... 4 4 1 4 1h hN += + + + + = − −  
solving for h, 

( )4lo g 3 1h N= + . 
 

Thus the total cost for the centralized algorithm is mainly dominated by (2) and (3) and 

for a network of N intersection controllers it is:  

costCENT = 2 *[ ( )14 4 1 ... 4h hh h− 1⋅ + − + + ⋅ ]                         (5.1) 

 

Figure 5.4: Cost computation 
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Distributed Algorithm 

The distributed approach incurs the following communications: 

A. The seed requests schedules and topology from each adjacent intersection 

controller 

B. The adjacent controllers send the schedule to the seed 

C. The seed sends final schedule (or changes) to each adjacent controller 

D. Steps (A), (B) and (C) repeats for each controller.   

Assuming cost of step (A) as negligible and steps (B) and (C) as symmetric, the cost 

for the negotiation initiated by each controller is 4+4=8, and the total cost for a network 

of N controllers with a tree of depth h is 8N. Hence the total cost for the distributed 

algorithm is mainly dominated by steps (B) and (C) and for a network of N controllers it 

is: 

costDIST = 8N      (5.2) 

Equations 5.1 and 5.2 were derived assuming schedules of all nodes in the 

network must be changed. Such changes are not necessary for a small change in some 

particular cluster. With distributed scheduling, the nearby clusters can accommodate such 

changes with slight modifications to their existing schedules and this helps in reducing 

the cost for communication.  

 

5.4 Simulation Studies 

 To study the effect of centralized and distributed algorithms over a simple 

network, multiple intersection scenario is simulated. 
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5.4.1  Simulation Settings 

To analyze the performance of our scheduling algorithm in a multiple intersection 

scenario, the scenario as shown in Fig. 5.1 consisting of four complete intersections is 

studied. However, the nodes belonging to different intersections are within conflicting 

range of each other. This multiple intersection scenario is the basic multiple intersection 

scenario that is used for the simulations. The simulations consider 2 variations of the 

distributed algorithm and 10% distributed.  It was observed that sliding the slots improves 

the throughput. Sliding involves computational overhead and thus experiments were 

conducted to observe the improvement in throughput possible by sliding the schedules by 

different percentages of the schedule length. It was noticed that the best available 

throughput was mostly available by just sliding the slots by 10% as several combinations 

were considered by sliding the slots by 10% and thus 10% distributed version was 

selected for running the experiments.  

 

5.4.2  Performance metrics for different algorithms 

It can be seen in the Fig. 5.1 that the available bandwidth was divided between 12 

nodes as the degree of conflict was 12. As seen in Fig. 4.15 the saturation throughput per 

segment should be 60 kbps for a conflict degree of 12. The centralized algorithm 

achieved a saturation throughput of 58 kbps. The distributed algorithm achieved a 

throughput of 46 kbps and the 10% distributed algorithm achieved a throughput of 48 

kbps. The throughput achieved by the distributed algorithms as expected was much lower 

than that achieved by the centralized algorithm. The per segment saturation throughput 

achieved by unscheduled IEEE 802.11 is approximately 42 kbps.  
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Figure 5.5: Throughput for different algorithms for multiple intersection scenario 

 

It is important to notice that it is possible to have a hybrid solution combining the 

advantages of both distributed and centralized algorithms that can initially use the 

centralized algorithm to allot the schedules and switch to distributed algorithms for 

adjusting to small changes in the networks. This will reduce communication costs as well 

as achieve high overall network throughput. 

The delay analysis shows that both the centralized and distributed algorithms have 

a small end-to-end delay at low input rates. The end-to-end delay starts increasing as the 

input rate starts getting closer to the saturation throughput supported by that particular 

algorithm. When the input rate is lesser than the saturation throughput it is noticed that 

distributed algorithm has a higher end-to-end delay as compared to centralized algorithm. 

This is because the distributed algorithm gives up slots from the original schedules in 

case of conflicts following a throughput maximizing heuristic. Thus the slot assignment 

which was done to minimize the delay is disturbed leading to higher end-to-end delay. 
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Figure 5.6: End-to-end delay for different algorithms for multiple intersection scenario 
 
 

5.4.3   Performance metrics for different slot lengths 

The schedule obtained from the centralized algorithm was used to run 

experiments with varying slot lengths. Fig. 5.7 shows that the throughput for different 

slot lengths is almost the same and only varies slightly as explained for the single 

intersection scenario. With the slot length of 0.05 seconds the saturation throughput 

achieved is 57 kbps and for a slot length of 0.4 seconds the saturation throughput 

achieved is 60 kbps. Fig. 5.8 shows that the end-to-end delay for the schedule obtained by 

centralized algorithm with different slot lengths is directly proportional to slot length. For 

a slot length of 0.05 seconds the end-to-end delay is approximately 0.8 seconds and for a 

slot length of 0.1 seconds it increases to 1.6 seconds. For a slot length of 0.2 seconds and 

0.4 seconds the end-to-end delays are 3.2 and 6.4 seconds respectively. 
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Figure 5.7: Throughput for different slot length for multiple intersection scenario 
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Figure 5.8: End-to-end delay for different slot length for multiple intersection scenario 
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5.4.4 Performance metrics for topology changes 

Fig. 5.9 and 5.10 represent multiple intersection scenarios that are similar to the 

scenario shown in Fig. 5.1 with slight variations. Fig. 5.9 and Fig. 5.10 have 10 sensors 

and 15 sensors along four segments that initially had 5 sensors for the scenario shown in 

Fig. 5.1. The three scenarios vary in the network topology as they have different number 

of sensors on the 4 segments. However, after running the scheduling algorithm the 

bottleneck nodes are assigned 66 slots out of a cycle of 800 slots for all the three 

scenarios. Thus it can be concluded that the end-to-end throughput is only limited by the 

number of slots available to bottleneck nodes and is independent of the number of sensors 

along the highways. Fig. 5.11 shows the throughput achieved for the centralized 

algorithm for the three scenarios is approximately the same. Scenario 1 (5 sensors), 

Scenario 2 (10 sensors), Scenario 3 (15 sensors) are the three scenarios simulated. 

 

 

Figure 5.9: Multiple intersection scenario – 10 segment scenario – scenario 2 
 

 - 68 - 



 

Figure 5.10: Multiple intersection scenario – 15 segment scenario – scenario 3 
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Fig. 5.11: Throughput for different multiple intersection scenarios 

 

It is important to notice that because there is a bottleneck on both ends of the 

segments the nodes in between the bottleneck nodes also end up getting fewer numbers of 

slots in spite of them not being in high conflict region. This happens because we schedule 
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any parent node in the slot immediately after its child. Since the end member of a cluster 

is also a bottleneck node it is assigned fewer slots according to the degree of conflict and 

this leads to the parent nodes being assigned fewer slots.  

 

5.5 Conclusion 

 This chapter proposes different techniques that can be adopted to produce conflict 

free schedules that can spread across multiple intersections. It proposes two approaches 

centralized and distributed to resolve the conflicts between nodes belonging to different 

intersection controllers. The centralized algorithm involves high communication costs as 

compared to the distributed algorithm in case of large networks. However, it is observed 

that the centralized algorithm achieved better throughput performance as compared the 

distributed algorithm because it had all the necessary information for constructing the 

complete conflict graph and assigning conflict free schedules. Simulations are conducted 

for a multiple intersection scenario to show that centralized assignment strategy achieved 

25% higher throughput as compared to distributed assignment strategy. It is important to 

note, for small changes in the network it is cost efficient to solve the conflicts in a 

distributed manner whereby a few controllers exchange their schedules and resolve 

conflicts without needing to change the schedules of nodes belonging to any other cluster. 

Thus it can be concluded that it is a good idea to start with a centralized assignment and 

make the network adapt to local topology changes distributively. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

 In this thesis a transmission scheduling solution for highway traffic monitoring 

wireless sensor network is proposed.  

 

6.1  Conclusions 

 Highway traffic monitoring has been done centrally and this raises a bottleneck as 

all the traffic management applications require communication with the TMC. A 

distributed system can enhance scalability. Based on the hierarchical architecture and 

addressing scheme previously proposed this thesis describes a practical routing scheme, 

based on which the transmission scheduling problem on such networks is studied. 

 The wireless sensor networks have limited lifetime as the sensors are battery 

powered. The thesis proposes a scheduling solution that provides for improving energy 

efficiency, network throughput, and packet delivery latency. The scheduling solution uses 

the concepts of sleep-awake cycle, pipelining and avoiding sleep latency (adjacent nodes 

assigned nearest slots) to provide for energy efficiency, high network throughput, and 

low delivery latency. The energy efficiency is further increased by making the nodes 

switch to sleep mode during scheduled slots when there is no data to be exchanged.  

The thesis also proposes certain variations in the algorithm that can help increase 

the throughput. It explains 3 different types of algorithms: non-aggressive, aggressive 

without offset, and aggressive with offset which provide 35%, 53% and 61% increase in 
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end-to-end throughput as compared to unscheduled IEEE 802.11. The impact of changing 

the slot length on the performance metrics is studied. It is seen with simulations that the 

end-to-end delay is proportional to the slot length and the end-to-end throughput is 

approximately the same for different slot lengths. The weighted assignment strategy helps 

divide the available bandwidth between different clusters according to their respective 

traffic loads, with which the achieved overall network throughput is much higher than a 

non-weighted assignment strategy. 

For multiple intersections, the thesis proposes centralized and distributed 

approaches to achieve conflict free schedules. The communication costs and performance 

metrics for the two approaches are analyzed and compared with simulations. The 

distributed approach is more cost-effective in large networks with few changes, though it 

achieves less throughput as compared to the centralized approach.  

 

6.2 Future Work 

The hierarchical routing scheme routes packet along the roads and the controller 

hierarchy to deliver it to the packet destination.  The paths identified are not necessarily 

the shortest path and can have path lengths far above the shortest path.  Optimization of 

the routes is possible by nodes actively collecting or passively overhearing topology 

information of nearby clusters, such that a shorter path can be used for routing packets to 

nearby destinations. 

Our proposed slot assignment strategy reduces end-to-end delay on a segment in a 

particular direction. It is seen in the multiple intersection scenario that there are unused 

slots which can be reassigned to nodes in the low conflict region. These slots can be 

 - 72 - 



assigned to the nodes to reduce the message latency in the opposite direction. The proper 

usage of these slots needs a detailed study of the type of applications that are to be 

supported by the system. 

Support of real-time communication in such networks has not been addressed as 

the algorithm tries to reduce the delay but does not guarantee to meet hard deadlines for 

routing packets. Support for real time communication needs to be studied in much detail 

and new concepts need to be incorporated into the scheduling solution in order for it to 

meet the deadlines provided for real time communication.  

The scalability of the hierarchical routing protocol depends on the traffic patterns 

and the cluster organization.  The scenarios studied in this thesis are still limited in scope.  

Formal validation of the scalability remains to be conducted.  Realistic scenarios with 

large networks involving distributed operations should be studied for accurate analysis of 

the routing and scheduling solution proposed. 
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APPENDIX 

 

 The detailed routing procedure is explained in this section. The complete 

procedure for local topology discovery, cluster formation and data routing are explained 

in this section. 

A.1 Message Format 

Each packet has a common header with routing specific or data specific headers. 

Fig. A.1 shows the different packet headers. 

 

Figure A.1: Packet header 

The common header fields are defined below: 

PURP (Purpose): A 8 bit field indicating the type of information carried by the packet. 

The different types of messages are topology request (TOPO_REQ), topology 

response (TOPO_RESP), cluster announcement (CLUS_ANN), cluster discovery 

(CLUS_DISC) and data packet (DATA). 

HS (Hierarchical Source Address): A 88 bit field indicating the hierarchical address of 

the source 

HD (Hierarchical Destination Address): A 88 bit field indicating the hierarchical address 

of the destination 
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PH (Previous Hop): A 88 bit field indicating the previous hop forwarding the message 

GS (Geographic co-ordinates of Source): A k bit field indicating the geographic(X, Y) 

co-ordinates of the source 

GD (Geographic co-ordinates of Destination): A k bit field indicating the 

geographic(X,Y) co-ordinates of the destination 

 

The routing specific header fields are defined below: 

PSN (Packet Sequence Number): A 8 bit field indicating the packet sequence number 

SCOPE: A k bit field indicating the geographical scope of the packet 

PC (Previous Controller): A 88 bit field indicating the previous controller forwarding the 

message 

CSHA (Cluster Sensor Hierarchical Address): A n*88 bit field indicating the address of 

the sensors belonging to the cluster. Here n is the number of sensors in the cluster. 

Sensors append their hierarchical addresses in this field. 

CSGA (Cluster Sensor Geographical co-ordinates): A n*k bit field indicating the 

geographical co-ordinates of the sensors belonging to the cluster. Sensors append 

their geographical addresses in this field. 

 

The data specific header fields are defined below: 

RF (Redirection Flag): A 1 bit field which when set indicates that the packet is redirected 

HRDA (Hierarchical Redirected Destination Address): A 88 bit field that carries the 

hierarchical address of the redirected destination which is the destination of the packet 

when the packet is redirected 
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A.2 Local Topology Discovery 

 Upon reboot, each node is aware of its preprogrammed address. Based on the 

level field of the address, each node determines its logical function (as a sensor or 

controller). To establish local network connectivity and form local clusters, the local 

topology discovery phase is performed as follows. The local topology discovery 

algorithm is given in Fig. A.2. 

 Upon reboot, a controller starts periodically broadcasting a topology request 

message with increasing packet sequence number. This message is received by 

surrounding sensors and the sensors along the associated segments of the packet initiating 

controller record the packet sequence number. The sensors next broadcast the message if 

the packet sequence number is higher than the earlier recorded packet sequence number. 

The sensors determine whether they are on the associated segments by comparing the 

Mileage and DIR field of its address with that of the message initiating controller. The 

sensor is along the associated segment if its DIR field is ‘1’ and it is at a higher mileage 

than the packet initiating controller or its DIR field is ‘2’ and it is at a lower mileage then 

the packet initiating controller. The sensors on the associated segment will hear the 

topology request packet from several nearby nodes among which it will record the 

nearest sensor on the associated segment towards the packet initiating controller as it 

parent. The sensor determines its nearest sensor by checking the mileage field of the 

address of the previous sensor forwarding the packet. The process continues until a 

controller on the other end of the segment, namely the end controller, receives the packet. 

Fig. A.3 explains the flow of topology request message. 
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 Upon receiving the topology request message the end controller recognizes the 

nearest sensor towards the packet initiating controller as its next hop to reach the 

initiating controller and sends a topology response message to the initiating controller. 

The unicast topology response message is relayed by each sensor to its parent until it 

reaches the initiating controller. The sensors while relaying the topology response 

message record the closest neighbor towards the end controller as their child. The 

initiating controller upon receiving the topology response message recognizes the nearest 

sensor towards the end controller on its associated segment as its child. Each node is 

assumed to be aware of its geographical co-ordinates and while relaying the topology 

response message appends its geographical co-ordinates and hierarchical address 

information in the packets CSGA and CSHA fields respectively. 

The topology request message is transmitted periodically with increasing packet 

sequence number for certain time duration, called the topology discovery time, as some 

nodes on the initiating controllers associated segment might not receive the broadcast 

message because of packet collision and thereby do not register with the cluster.  

 

 

 

 

 

 

 

 

 - 77 - 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N is the set of hierarchical addresses of a node. 
For incoming packet P at node N: 
if N is a controller 

if P is a topology request 
if P originates from N 

P.forwarder = N 
P.source = N 

  Broadcast P 
else 

if P.forwarder is closer to N than N.next_hop 
     Neighbor_cont = P.source 

  Neighbor_cont.next_hop = P.forwarder 
endif 
construct topology response packet R 
R.source = N 
R.destination = N.next_hop 
R.forwarder = N 
Store N and its geographic coordinates in R  

            Unicast R to R.destination 
endif 

endif 
if P is a topology response 
   if P.destination == N 

   N.child = P.forwarder 
Local topology discovery completed, proceed to slot assignment phase 

endif 
endif 

endif 
 

if N is a sensor 
if P is a topology request 

if ((N.RID == P.forwarder.RID) && (P.forwarder resides between N and P.source)) 
   if((N.DIR == ‘1’ && N.MIL > P.source.MIL) ||   (N.DIR == ‘2’ && N.MIL < P.source.MIL)) 
      if(P.forwarder is closer to N than N.parent) 

      N.parent = P.forwarder 
      P.forwarder = N 
   endif 
   if (P.PSN > recorded.PSN) 
      Broadcast P 
    recorded.PSN = P.PSN 
   endif 

      endif 
endif 
if P is a topology response 

N.child = P.forwarder 
P.forwarder = N 
Store N and its geographic coordinates in P 
Unicast P to N.parent 

endif 
endif 

Figure A.2: Local topology discovery algorithm 
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Figure A.3: Topology request message propagation 

 

The topology discovery phase concludes when the topology discovery time has 

elapsed and at the end of this phase the initiating controller knows the hierarchical 

addresses and geographical locations of all nodes along its associated segments. 

 

A.3 Hierarchical Cluster Formation 

The controllers identify the complete cluster structure and build their hierarchical 

routing tables in the hierarchical cluster formation phase. 

 

Type of messages & Routing 

For sensors:  

The sensors forward the messages to its parents if they have been forwarded to it by its 

child and vice versa. While forwarding they update the PREV_HOP field to its 

hierarchical address. If the packet is destined for that particular sensor then it will send it 

to the application layer. 
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For controllers 

1. Cluster Announcement:  A controller of level i>2, floods a route specific message 

of with the purpose field CLUS_ANN along all its neighbor-associated segments. 

The controller specifies its own level, scope, and populates the HA and PC field 

with its hierarchical address. Each controller receiving the message updates the PC 

field to be its hierarchical address before forwarding the packet.  All controllers of 

level i-1, that have not registered with a higher level cluster will record the source 

controller as its parent controller and register to the cluster formed by its parent 

controller.  Duplicate copies of the packet received at a controller from its 

associated segments can be identified using the PSN field and are discarded. The 

scope of the packet is a circular region with the source controller at the centre of the 

circle and the radius specified in the scope field of the packet. The process 

concludes when the packet has exceeded its scope. Fig. A.4 illustrates the handling 

of a CLUS_ANN message. 

2. Cluster Join: On receiving the CLUS_ANN message each controller of level i-1 

sends a CLUS_JOIN message to its parent. The controller puts its hierarchical and 

geographical addresses and its parent hierarchical and geographical addresses in the 

HS, GS, HD and GD fields, respectively. The CLUS_JOIN message is forwarded 

like a CLUS_ANN message with its scope being limited using similar protocol to 

location aided routing [32]. The scope of the packet is exceeded when the packet 

has traveled more than D meters away from the X and Y co-ordinates range of the 

source and destination. The process concludes when the packet reaches the parent 

controller. Fig. A.5 explains the message flow.  
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The CLUS_ANN and CLUS_JOIN process is repeated iteratively by controllers at 

different levels until the highest level controller is reached and a hierarchical tree 

structure is formed.  

          

     Figure A.4: Cluster announcement                 Figure A.5: Cluster join 

 

As the CLUS_ANN and CLUS_JOIN messages are forwarded every intermediate 

controller receiving the packet will record an entry in the routing table, where the 

DESTINATION is the packet initiating controller, NEXT CONTROLLER is the 

previous controller (PC) that has forwarded the message and NEXT HOP is the next hop 

on its neighbor-associated segment connecting it to the previous controller that has 

forwarded the message. An example of a segment of the routing table at the controller 

with addresses I85.0500.1.1 and I95.2500.1.1 is shown in Table A.1. The controller 

stores the cost to reach each controller from which it has heard the CLUS_ANN or  

CLUS_JOIN message. Multiple entries can exist for the same destination and the least 
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cost path will be used for routing the packet. In scenarios where the least cost path fails to 

route the packet, alternative routes are available from the table for routing the packet. 

 

Table A.1: Segment of routing table at controller 

 

 

A.4      Packet Routing Algorithm 

For sensors 

Packet routing at the sensors remains same as explained in section A.3. If the packet is 

originated at the sensor then it sends the packet to its presiding controller. The presiding 

controller of a sensor is the controller managing the cluster to which it belongs 

For controllers  

Controllers upon receiving a packet from another node or from the application layer will 

take the following actions: 
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1. If destination address RID matches one of its RIDs, the controller compares the 

mileage of the destination address and forwards the packet to the next hop on its 

neighbor-associated segment having the same RID and mileage closer to the 

destination. 

2. If the destination RID is different from all of its RIDs, the controller checks in its 

table if there is any reachable controller having a matching RID. If there is a 

match, the controller sends a packet to the next controller corresponding to the 

matched entry. 

3. Otherwise, the packet is redirected to the parent controller by setting the RF field 

and putting the parent controllers address in the HRDA field. 
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If a packet P is received by a node N 
If N is controller, Controller Address is cont 
If N is a sensor, Sensor Addressv is sens 
The parent of N, Parent Address is parent 
The child of N, Child Address is child 
Packet Destination Address: P.dest 
Set of next hops along all of the controller’s neigbor-associated  segments: NH 
 
For Sensors 
if ((P.PREV_HOP == parent) && (P.dest != sens)) 
  forward P to child 
if ((P.PREV_HOP ==child) && (P.dest != sens)) 
  forward P to parent 
if (P.dest == sens) 
  send P to application 
 
For Controllers 
if (P.dest.RID == cont.RID) { 
  if (P.dest.Mileage > cont.Mileage) 
    forward P to next_hop where (next_hop IN NH && P.dest.Mileage >next_hop.Mileage > cont.Mileage) 
  if (dest.Mileage < cont.Mileage) 
    forward P to next_hop where (next_hop IN NH && P.dest.Mileage <next_hop.Mileage <  cont.Mileage) 
} 
else { 
   if (dest.RID == table_ent.DESTINATION.RID) 
      forward P to table_ent.NEXT_HOP 
   else {  
      P.RF = SET; P.HRDA = parent; 
      forward P to table_ent.NEXT _HOP where (table_ent.DESTINATION ==parent)  
          } 
      } 

Figure A.6: Packet routing algorithm 

 

A.5 Routing Examples 

 

To demonstrate the routing procedure, five different type of routing examples to 

route packet from source to destination were considered. Fig. A.7 has two higher level 

clusters with each higher level cluster controlling 4 intersections (16 clusters). The 

controllers 1, 2, 3 and 4 form the first level 2 cluster which is controlled by controller 4. 

The controllers 5, 6, 7 and 8 form the second level 2 cluster which is controlled by 

controller 8. The level 3 cluster consists of both the level 2 clusters and is controlled by 
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controller 1. Every node will always forward packet on the segment giving lesser delay as 

described in the scheduling algorithm. We show the routing of five different packets in 

the following section. 

 

 
 

Figure A.7: Routing examples 
 

 
S1(IX1.1200.1.2)  D1(IX1.1350.1.2) 
 
S1 sends the packet to its parent and the parent forwards it to its parent till it finally 

reaches the destination D1. 
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S2 (IX2.1350.1.2)   D2 (IX2.1200.1.2) 

S2 sends the packet to its parent who forwards the packet to its parent and the packet 

after multi-hop forwarding reaches their cluster head (controller 6). The controller 6 

checks the destination address RID field and finds that destination is on the same 

highway. It then compares the mileage field of the destination and recognizes that the 

destination is at a lower mileage and thereby forwards the packet to the next hop along its 

neighbor-associated segment having the same RID as that of the destination and at a 

lower mileage. The controller 4 gets the packet and again runs the same checks and 

forwards the packet which gets delivered at the destination by multi-hop forwarding. 

 

S3 (IX1.0850.1.1)  D3 (IY1.0850.1.1) 

The source S3 as before routes the packet to its cluster head (controller 1). The controller 

1 checks the RID fields of the destination address and recognizes that the destination is 

on one of its connected segment. It then checks the mileage to find that the destination is 

at a higher mileage and thereby forwards the packet to the next hop on its neighbor-

associated segment having the same RID and located at a higher mileage. The packet 

finally reaches the destination by multi-hop forwarding. 

 

 

S4 (IX1.2250.1.1)  D4 (IX2.1700.1.1) 

The source S4 as before routes the packet to its cluster head (controller 7). Controller 7 

tries to check the RID of the destination address but it fails to find a match with its RIDs. 

It then looks into the table and figures out that RID of the address of controller 8 matches 

 - 86 - 



with that of the destination and thereby routes the packet to controller 8. Controller 8 then 

delivers the packet to the destination. 

 

S5 (IY2.0200.1.2)  D5 (IY3.0850.1.1) 

The sensor sends the packet to its cluster head (controller 3). Controller 3 tries to check 

the RID of the destination address but it fails to find a match with its RIDs and thereby 

tries to look up the table. The routing table entries at controller 3 also do not show a 

matching controller with the same RID as the destination. The controller 3 thereby routes 

the packet to its parent – its level 2 cluster head (controller 4). Controller 4 also fails to 

find a route to the destination as it only has the entries for controllers belonging to its 

cluster and thereby forwards the packet to its parent - its level 3 cluster head (controller 

1). Controller 1 upon receiving packet checks to see its routing table entries and the 

routing table at controller 1 has the entry of all the controllers in the simulated network. It 

finds a match with the routing table entry of controller 5 and thereby forwards the packet 

towards controller 5. Controller 5 upon receiving the packet delivers it to the correct 

destination. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 - 87 - 



REFERENCES 
 
 
 
[1]European Commission, “Intelligent transport systems,” 
http://europa.eu.int/comm/transport/.  
 
[2] New South Wales, Australia, “Sydney coordinated adaptive traffic system (SCATS),” 
http://www.traffic-tech.com/pdf/scatsbrochure.pdf
 
[3] U.S. Dept. of Transportation, “Intelligent transport systems: Technology overview,” 
http://www.its.dot.gov/index.htm
 
[4] U. C. Berkeley, “Freeway Performance Measurement System (PeMS),” 
http://pems.eecs.berkeley.edu/
  
[5] Speedinfo Inc., “SpeedInfo deploys real time traffic sensor network for SFO Bay 
area,” http://www.speedinfo.com
  
[6] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the world with 
wireless sensor networks,” in Proceedings of IEEE ICASSP, pp.2033-2036, 2004 
 
[7] K.-C. Wang, M. Chowdhury, R. Fries, M. Atluri, and N. Kanher, “Real-time traffic 
monitoring and automated response with wireless sensor networks,” in Proceedings of 
the ITS World Congress, Oct. 2005 
 
[8] W. Ye, J. Heidemann, D. Estrin, “Medium access control with coordinated adaptive 
sleeping for wireless sensor networks”, IEEE/ACM Transactions on Networking, 
Volume: 12, Issue: 3, Pages:493 - 506, June 2004 
 
[9]  T.V. Dam and K. Langendoen, “An Adaptive energy-efficient MAC protocol for 
wireless sensor networks”, The First ACM Conference on Embedded Networked Sensor 
Systems (Sensys‘03), Los Angeles, CA, USA, November, 2003 
 
[10] Gang Lu, Bhaskar Krishnamachari, Cauligi Raghavendra, “An Adaptive Energy-
Efficient and Low Latency MAC for Data Gathering in Sensor Networks”, in 4th IEEE 
International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor 
Networks WMAN, April 2004. 
 
[11] P. Lin, C. Qiao, and X. Wang, “Medium access control with a dynamic duty cycle 
for sensor networks”, IEEE Wireless Communications and Networking Conference, 
Volume: 3, Pages: 1534 - 1539, 21-25 March 2004 
 
 
 
 

 - 88 - 

http://www.traffic-tech.com/pdf/scatsbrochure.pdf
http://www.its.dot.gov/index.htm
http://pems.eecs.berkeley.edu/
http://www.speedinfo.com/


[12] Tao Zheng, Sridhar Radhakrishnan, Venkatesh Sarangan, "PMAC: An adaptive 
energy-efficient MAC protocol for wireless sensor networks," 19th IEEE International 
Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop 12, p.237.1, Apr 
04-08, 2005. 
 
[13] C. C. Enz, A. El-Hoiydi, J-D. Decotignie, V. Peiris, “WiseNET: An ultralow-power 
wireless sensor network solution”, IEEE Computer, Volume: 37, Issue: 8, August 2004 
 
[14] V. Rajendran, K. Obraczka, J.J. Garcia-Luna-Aceves, “Energy-efficient, collision-
free medium access control for wireless sensor networks”, Proc. ACM SenSys 
 
[15] R. Kalidindi, L.Ray, R. Kannan, S. Iyengar, “Distributed energy aware MAC layer 
protocol for wireless sensor networks”, in International Conference on Wireless 
Networks , Las Vegas, Nevada, June 2003 
 
[16] Injong Rhee, Ajit Warrier, Mahesh Aia, and Jeongki Min, “ZMAC: a hybrid mac for 
wireless sensor networks”, ACM Sensys, Nov. 2005 
 
[17] S. Lindsey, C. S. Raghavendra and K. Sivalingam, "Data gathering in sensor 
networks using the energy*delay metric", in the Proceedings of the IPDPS Workshop on 
Issues in Wireless Networks and Mobile Computing, San Francisco, CA, April 2001 
 
[18] “ITS survey 2004,” http://itsdeployment2.ed.ornl.gov/its2004/, 2004 
 
[19] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y.Wang, “Review 
of road traffic control strategies,” in Proceedings of the IEEE, 2003, pp. 2043–2067 
 
[20] Federal Highway Administration, “Intelligent transportation systems in work zones,” 
http://ops.fhwa.dot.gov/wz/technologies/springfield/
 
[21] S. Coleri-Ergen and P. Varaiya, “Pedamacs: Power efficient and delay aware 
medium access protocol for sensor networks”, IEEE Trans. on Mobile Computing, 5 
(2006), pp. 920 - 930, 2004. 
 
[22] Now Wireless Limited, “Mesh-enabled solutions for intelligent transportation 
systems,” http://www.nowwireless.com/nm/app transportation.htm. 
 
[23] K.-C. Wang and P. Ramanathan, “Location-centric networking in distributed sensor 
networks,” in Frontiers in Distributed Sensor Networks, CRC Press, 2003. 
 
[24]Y. Yu, D. Estrin, and R. Govindan, “Geographical and energy-aware routing: A 
recursive data dissemination protocol for wireless sensor networks,” UCLA Computer 
Science Department Technical Report, UCLA-CSD TR-01-0023, May 2001. 
 
[25] Tomasz Imieliński , Julio C. Navas, “GPS-based geographic addressing, routing, and 
resource discovery”, Communications of the ACM, v.42 n.4, p.86-92, April 1999 

 - 89 - 

http://itsdeployment2.ed.ornl.gov/its2004/
http://ops.fhwa.dot.gov/wz/technologies/springfield/
http://www.nowwireless.com/nm/app%20transportation.htm
http://portal.acm.org/citation.cfm?id=299176&dl=ACM&coll=portal&CFID=21600705&CFTOKEN=79735641
http://portal.acm.org/citation.cfm?id=299176&dl=ACM&coll=portal&CFID=21600705&CFTOKEN=79735641


[26] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu and Jorjeta Jetcheva 
“A performance comparison of multi-hop wireless ad-hoc network routing protocols”,  in 
Proceedings of the Fourth Annual International Conference on Mobile Computing and 
Networking (MobiCom'98), ACM, Dallas, TX, October 1998. 
 
[27] T. Imielinski and S. Goel, “DataSpace: Querying and monitoring deeply networked 
collections in physical space,” IEEE Personal Communications Magazine, vol. 7, pp. 4–
9, October 2000. 
 
[28] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-efficient 
communication protocol for wireless sensor networks," in the Proceeding of the Hawaii 
International Conference System Sciences, Hawaii, January 2000. 
 
[29] S. Lindsey and C. S. Raghavendra, "PEGASIS: Power Efficient Gathering in Sensor 
Information Systems," in the Proceedings of the IEEE Aerospace Conference, Big Sky, 
Montana, March 2002. 
 
[30] M. Stemm and R. H. Katz, “Measuring and reducing energy consumption of 
network interfaces in hand-held devices,” IEICE Trans.Commun., vol. E80-B, no. 8, pp. 
1125–1131, Aug. 1997. 
 
[31] O. Kasten. Energy consumption. Eldgenossische Technische Hochschule Zurich. 
[Online]. Available: 
http://www.inf.ethz.ch/~kasten/research/bathtub/energy_consumption.html
 
[32] Young-Bae Ko , Nitin H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc 
networks”, in Proceedings of the 4th annual ACM/IEEE international conference on 
Mobile computing and networking, p.66-75, October 25-30, 1998, Dallas, Texas, United 
States   
 
[33] B. Crow et al., “Investigation of the IEEE 802.11 Medium Access Control (MAC) 
Sublayer Functions,” in Proceedings of  INFOCOM 97, Kobe, Japan, Apr. 1997, pp. 
126–33. 
 
[34] K. Whitehouse, A. Woo,F. Jian, J. Polastre, and D. Culler, “Exploiting The Capture 
Effect For Collision Detection and Recovery”, in Proceedings of the IEEE Em-NetS-II 
Workshop, May 2005. 
 
[35] Z. Hadzi-Velkov and B. Spasenovski, “On the capacity of IEEE 802.11 DCF with 
capture in multipath-faded channels,” International Journal of Wireless Information 
Networks, vol. 9, no. 3, pp. 191–199, July 2002. 
 
 
 

 - 90 - 

http://www.inf.ethz.ch/%7Ekasten/research/bathtub/energy_consumption.html
http://portal.acm.org/citation.cfm?id=288252&dl=GUIDE&coll=GUIDE&CFID=28123383&CFTOKEN=92852354
http://portal.acm.org/citation.cfm?id=288252&dl=GUIDE&coll=GUIDE&CFID=28123383&CFTOKEN=92852354
http://portal.acm.org/citation.cfm?id=288252&dl=GUIDE&coll=GUIDE&CFID=28123383&CFTOKEN=92852354
http://portal.acm.org/citation.cfm?id=288252&dl=GUIDE&coll=GUIDE&CFID=28123383&CFTOKEN=92852354

	Clemson University
	TigerPrints
	8-2007

	Topology-aware transmission scheduling for distributed highway traffic monitoring wireless sensor networks
	Devang Bagaria
	Recommended Citation


	Table_of_contents_final.pdf
	Tableofcontents2.pdf
	 I would also like to thank Dr. Ronnie A. Chowdhury for all the knowledge that he has shared with us during our ITS meetings and for all the support and motivation he gave during us during the project. I would also like to thank all the people in the ITS group. 
	 I would like to thank all the colleagues in the wireless group for their friendship and help. I have had a great time conducting my research within such an active group. I have enjoyed all the time spent with my colleagues in the lab and office.

	TABLE OF CONTENTS3.pdf
	table_of_contents4.pdf
	Thesis_chapters_final.pdf

