
Clemson University
TigerPrints

All Theses Theses

8-2011

MULTIVALUED SUBSETS UNDER
INFORMATION THEORY
Indraneel Dabhade
Clemson University, idabhad@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Applied Mathematics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Dabhade, Indraneel, "MULTIVALUED SUBSETS UNDER INFORMATION THEORY" (2011). All Theses. 1155.
https://tigerprints.clemson.edu/all_theses/1155

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1155?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

i

MULTIVALUED SUBSETS UNDER INFORMATION THEORY

A Thesis

Presented to
the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree
Master of Science

Industrial Engineering

by

Indraneel Chandrasen Dabhade
August 2011

Accepted by:
Dr. Mary Beth Kurz, Committee Chair

Dr. Anand Gramopadhye
Dr. Scott Shappell

ii

ABSTRACT

In the fields of finance, engineering and varied sciences, Data Mining/ Machine Learning

has held an eminent position in predictive analysis. Complex algorithms and adaptive

decision models have contributed towards streamlining directed research as well as

improve on the accuracies in forecasting. Researchers in the fields of mathematics and

computer science have made significant contributions towards the development of this

field. Classification based modeling, which holds a significant position amongst the

different rule-based algorithms, is one of the most widely used decision making tools.

The decision tree has a place of profound significance in classification-based modeling.

A number of heuristics have been developed over the years to prune the decision making

process. Some key benchmarks in the evolution of the decision tree could to attributed to

the researchers like Quinlan (ID3 and C4.5), Fayyad (GID3/3*, continuous value

discretization), etc. The most common heuristic applied for these trees is the entropy

discussed under information theory by Shannon. The current application with entropy

covered under the term ‘Information Gain’ is directed towards individual assessment of

the attribute-value sets. The proposed study takes a look at the effects of combining the

attribute-value sets, aimed at improving the information gain. Couple of key applications

have been tested and presented with statistical conclusions. The first being the application

towards the feature selection process, a key step in the data mining process, while the

second application is targeted towards the discretization of data. A search-based heuristic

tool is applied towards identifying the subsets sharing a better gain value than the ones

presented in the GID approach.

iii

DEDICATION

I dedicate this work to Amma, Baba and Sir.

iv

ACKNOWLEDGEMENT

I thank my committee for this opportunity.

v

TABLE OF CONTENTS

Page

TITLE PAGE ... i
ABSTACT .. .ii
DEDICATION ... iii
ACKNOWLEDGEMENT ... iv
LIST OF TABLES .. viii
LIST OF FIGURES .. x
LIST OF ALGORITHMSxi
PROGRAM CODES ... xii

Chapter 1.

1. Introduction .. 1

1.1. Data Mining Background ... 3

1.2. The Decision Tree .. 5

1.3. Discretizing the Datasets .. 5

1.4. Survey of Classification-based Algorithms .. 6

1.4.1. ID3 Algorithms .. 7
1.4.2. CART Algorithm ... 8
1.4.3. ASSISSTANT Algorithm .. 8
1.4.4. The AQ Algorithm ... 9
1.4.5. The CN2 Induction Algorithm ... 9
1.4.6. The Ant-Miner ... 9
1.4.7. GID3 Algorithm ... 9
1.4.8. GID3* Algorithm .. 10

1.5 Critique of Current Research .. 11

Chapter 2.

2. Research Introduction ... 12

2.1. Area of Research .. 12

2.2. Measures ... 13

2.3. Datasets .. 13

2.4. Classifiers ... 15

vi

2.4.1. Ada_Boost ... 15
2.4.2. Iterative Dichotomizer 3 ID3 .. 16
2.4.3. Regression ... 17
2.4.4. Naïve Bayesian Classifier ... 17
2.4.5. Summary of the Classifiers ... 18

2.5. Testing Conditions ... 18

2.6. Adaptive Simulated Annealing .. 19

 2.6.1. Random Number Generation ... 21

Chapter 3.

3. Multivalued Subset based Feature Selection .. 22

Chapter 4.

4. Discretization .. 32

4.1. Unsupervised Discretization .. 32

4.2. Equal Width Discretization .. 33

4.3. Equal Frequency Discretization ... 34

4.4. CAIM Algorithm .. 36

4.5. Supervising the Unsupervised .. 37

4.5.1. Multivalued Discrete .. 38

4.5.1.1. Multivalued Discrete Width ... 38
4.5.1.2. Multivalued Discrete Frequency .. 40

4.6. Variable Intervals ... 41

4.7. Un-supervising the Supervised ... 42

4.7.1. Frequency Multivalued Width ... 43
4.7.2. Frequency Multivalued Frequency ... 43
4.7.3. Frequency-Frequency/Frequency-Width ... 43

Chapter 5.

5. Classifier Performances .. 45

5.1. Supervised, Unsupervised and Semi-supervised .. 45

5.2. Performance Evaluation for ‘Varying Interval Sizes’ 49

vii

5.3. Performance Evaluation for ‘Un-supervising the Supervised’ 51

5.4. Statistical Analysis ... 52

5.4.1. Analysis for Supervised, Unsupervised and Semi-supervised 53

5.4.1.1. Ranking .. 54

5.4.2. Analysis for the ‘Varying Interval Sizes’ ... 58
5.4.3. Analysis for the ‘Un-supervising the Supervised’ 60

Chapter 6.

6. Implications of the Work .. 64

6.1. Contributions to the field of Industrial Engineering 65

6.2. Future Work ... 65

6.2.1. Establishment of bounds .. 65
6.2.2. Width as a platform for the reverse model ‘Un-supervising the

Supervised’ ... 66
6.2.3. Conditional Independence Tests for the Naïve Bayesian Classifiers

after Discretization ... 66

Appendices

Appendix A.1 ... 67

Appendix A.2 ... 68

References .. 97

viii

LIST OF TABLES

1. Data Characteristics .. 15

2. Classifier Characteristics .. 18

3. Illustration of a Feature Selection Process ... 25

4. Illustration for the creation of the multivalued subsets .. 26

5. Iris: Comparison of the ranks (ID3 vs MVS) ... 27

6. Vehicles: Comparison of the ranks (ID3 vs MVS) .. 29

7. Comparison of the Classifier Errors observed between Supervised, Unsupervised

and Heuristic based Semi Supervised Discretization processes 41

8. Comparison of the Classifier Errors observed on varying interval sizes 42

9. Identifying Equal Intervals across Algorithms ... 45

10. Results for the section ‘Un-supervising the Supervised’ 52

11. (Discretizer algorithm vs. Datasets) variance under the width category 54

12. (Discretizer algorithm vs. Classifier algorithms) variance under the width

category .. 55

13. Ranks of the variance based performance evaluation (left: Discretizer algorithm

vs. Datasets) (right: Discretizer algorithms vs. Classifier algorithms) under the

width category .. 55

14. (Discretizer algorithms vs. Datasets) variance under the frequency category ... 55

15. (Discretizer algorithms vs. Classifier algorithms) variance performance under the

frequency category ... 55

16. Ranks of the variance based evaluation (left: Discretizer algorithm vs. Datasets)

(right: Discretizer algorithms vs. Classifier algorithms) under the frequency

category. ... 55

17. (Discretizer algorithms vs. Datasets) variance for cumulative analysis 56

18. (Discretizer algorithms vs. Datasets) ranking scheme applied to the cumulative

variance performance ... 56

19. (Discretizer algorithms vs. Classifier algorithms) variance performance for

cumulative analysis .. 56

ix

20. (Discretizer algorithm vs. Classifier algorithms) ranking scheme applied to the

cumulative variance performance .. 56

21. Ranks of the variance based evaluation (left: Discretizer algorithm vs. Datasets)

(right: Discretizer algorithms vs. Classifier algorithms) under for cumulative

performance analysis. ... 56

22. Table shows the values for the kurtosis under the section Supervised,

Unsupervised and Semi-supervised. .. 57

23. Table showing the kurtosis for the varying interval sizes under the proposed

width based multidiscrete algorithm .. 59

24. Table showing the kurtosis for the varying interval sizes under the proposed

frequency based multidiscrete algorithm. .. 60

25. (Discretizer algorithm vs. Datasets) ranking scheme applied to ‘Un-supervising

the Supervised’. .. 61

26. (Discretizer algorithm vs. Datasets) ranking scheme applied to the results

obtained from the section ‘Un-supervising the Supervised’. 61

27. Ranks of the variance based evaluation (Discretizer algorithm vs. Datasets)

for the section ‘Un-supervising the Supervised’. ... 61

28. (Discretizer algorithm vs. Classifier algorithms) ranking scheme applied to

‘Un-supervising the Supervised’. ... 62

29. (Discretizer algorithm vs. Classifier algorithms) ranking scheme applied to the

results obtained from the section ‘Un-supervising the Supervised’. 62

30. Ranks of the variance based evaluation (Discretizer algorithm vs. Classifier

algorithms) under the section ‘Un-supervising the Supervised’. 62

31. Table shows the values for the kurtosis under the section Supervised,

Unsupervised and Semi-supervised. .. 63

x

LIST OF FIGURES

1. Filter based Feature Selection Method .. 23

2. Search based Feature Selection ... 26

3. Iris: Comparison of the Information Gain ... 28

4. Figure representing the feature selection process for the dataset ‘ Iris’ 28

5. Iris: Classifier Error Performance between Information Gain (ID3 vs. MVS) ... 28

6. Vehicles: Comparison between the Information Gain Values 29

7. Figure representing the feature selection model for the dataset ‘Vehicles’ 30

8. Vehicles: Classifier Error Performance between Information Gain (ID3 vs. MVS)

 ... 30

9. Illustration for the Equal Width Discretization ... 33

10. Illustration for the Equal Frequency Discretization .. 35

11. Illustration for the Multivalued Discrete Width Algorithm 39

12. Supervised, Unsupervised and Semi-Supervised .. 47

13. Illustrating the performances under varying interval sizes under different

classifiers. .. 50

14. Illustration of the extended non-parametric ranking scheme 54

15. Kurtosis chart for Supervised, Unsupervised and Semi-supervised. 58

16. Figure showing the kurtosis for the varying interval sizes under the proposed

width based multidiscrete algorithm. ... 59

17. Figure showing the kurtosis for the varying interval sizes under the proposed

frequency based multidiscrete ... 60

18. Table showing the kurtosis for the varying algorithms under the section ‘Un-

supervising the Supervised’ .. 63

xi

LIST OF ALGORITHMS

A.1. The Adaptive Simulated Annealing (ASA) .. 19

A.2. Multisubset variant using the Adaptive Simulated Annealing 20

A.3. Algorithm for collecting the subsets for the maximum Information Gain 27

A.4. Equal Width Discretization Algorithm .. 34

A.5. Equal Frequency Discretization Algorithm ... 35

A.6. Multivalued Discrete Width / Frequency Algorithm 39-40

A.7. Frequency Multivalued Discrete Frequency / Frequency-Multivalued

Discrete Width Algorithm .. 43

A.8. Frequency-Frequency/ Frequency-Width Discretization Algorithm 44

xii

PROGRAM CODES

Appendix. C.1. Program Code for calculating the information gain under the ID3

rule ... 69

Appendix. C.2. Program Code for calculating the information gain under the GID

rule ... 73

Appendix. C.3. Program Code for Performing the Adaptive Simulated Annealing 76

Appendix. C.4. Program Code for Performing the Equal Width Discretization 86

Appendix. C.5. Program Code for Performing the Equal Frequency

Discretization .. 87

 Appendix. C.6. Code for Performing the Multivalued Discrete Width Algorithm 89

Appendix. C.7. Program Code for Performing the Un-Supervising the Supervised

Algorithm FMF and FMW. ... 91

Appendix. C.8. Program Code for Performing the Unsupervising the Supervised

Algorithm FF and FW. .. 94

1

Chapter 1

 Introduction

Data Mining is defined as a process of making meaningful conclusions from complex

databases. Fayyad (1996) refers to the process as making patterns, associations,

anomalies and statistically significant structures from the databases depending on the

type of rule applied for class identification.

The data mining process is composed of three primary steps:

 Data pre-processing

 Pattern recognition

 Interpreting results

The data pre-processing stage provides meaning to raw data by removing noise and

identifying attributes for the cases in the population. Pattern recognition identifies rules

for including the classes in the database. This phase of data mining identifies the type of

the data-mining tool, to be used for identifying the classes for the population set. Finally,

the extracted patterns are interpreted as knowledge, sometimes referred to as visual

validation.

Data mining has been seen as an important tool for various sectors varying from

industrial application, marketing, and medical to achieving advances in technology like

image recognition, accident investigations and biometric applications. With the

increasing popularity of the World Wide Web, advances in data mining have seen an

increase in popularity among web developers.

This document contains quite a few terms, which might be new for the reader. It is recommended to refer to a Machine-Learning/AI dictionary to
familiarize with the intended terminology and proposed usage.

2

The use of this tool is broadly divided into 2 main categories namely Web Usage Mining

(WUM) and Web Structure Mining (WSM) (Srivastava et al. 2000), (Gong & Miguel

2005). WUM identifies prominent searches made by the user over the Internet to

recognize popular/emerging trends and individual user needs. With the advent of the

social networking sites over the past decade, companies have been able to target specific

users based on their preferences, which resulted in increasing use of the Internet as a

marketing tool. Web marketers’ use advanced data mining algorithms to classify the user

search history on the web and offer products/services as per the user search patterns.

WHOWEDA (WareHOuse of WEbDAta) (Madria 1999) is one of the prominent projects

in the field of web structure mining. The project explored the use of the basic data mining

architecture of links and nodes for creating a hyperlink structure of the web as an

information source. Data mining, with its close proximity with the areas of machine

learning and artificial intelligence, finds extensive use in the field of robotics. Data

mining in soft computing makes use of tools such as fuzzy sets, neural networks and

genetic algorithms to highly complex mixed mode/media datasets (Mitra 2002). The

dynamic natures of the decision-making process and combinatorial massive search spaces

have led to the refinement and development of complex algorithms. These algorithms

will be dealt in the later sections. Jang (1995) focuses on evolving emotions and

decisions making behavior within machines and has tried to combine the human behavior

via fuzzy sets with learning structures of neural networks to create hybrid data mining

algorithms, namely the ‘Neuro-Fuzzy’ systems.

3

1.1. Data Mining Background

Given below are the summaries of some of the most commonly used data mining

methods, which include clustering, classification, regressions and association rules.

Clustering: Clustering, or grouping, creates sets of data that are identical in specific

characteristics. This methodology is also sometimes referred to as k-means clustering

(MacQueen 1967), where ‘k’ refers to the number of clusters that are created with each

cluster centric about a mean. The two main type of clustering techniques are partition-

based and hierarchical. The partition-based technique could create either completely

exclusive groups or overlapping set of groups. The partition method deals with creating

rules based on the similarity of the attribute-value sets chosen, to group similar points

together. The hierarchical method is associated with creating a tree of clusters based on

close proximity of the near-by objects/points/other clusters. Commonly referred to as

‘dendrogram’ (Forina & Raggio 2002), based on the way the tree is built, either “up-

down” (Jain & Dubes 1988) or “down–up” (Kaufmann & Rouseeuw 1990), referred to as

agglomerative or divisive. Apart from these two main categories, some lesser-known

techniques include grid and constraint based, scalable and different algorithms, dealing

with other categories of data. The literature for these techniques can be found in Han &

Kambler (2001).

Classification: Under this methodology of data mining, the examples/items are placed in

differing groups based on the inherent characteristics indicated by the attribute-value sets

taken by the individual items. The algorithms behind this methodology create rules as per

the individual datasets. This characteristic along with rule creation for individual datasets

classifies the methodology under supervised machine learning techniques. A number of

4

algorithms have been developed for classification based data mining techniques. Some of

them include k-Nearest Neighbor, Bayesian and Neural-Net based classifiers. For the k-

Nearest Neighbor (KNN), the new data simply assumes the class of the nearest

item/group (Wasito & Mirkin 2006). This is different from what class boundaries

identified by the decision tree learner based classification identifies, in which constrained

boundaries identify the classes. KNN is one such popular memory based classification

system. Bayesian-based classifiers use probability as a tool to identify the classes for the

dataset. These classifiers show exclusiveness in terms of identifying classes for the

datasets (Zhang 2004). They use the maximum likelihood function as a tool to identify

the rule. In Neural Net-based methods, the model, the activation function and the learning

algorithm help in the pattern recognition and hence prove to be a useful utility in the

process of data mining (Fausett 1994). More information on its applicability and usage

can be found in Bigus (1996).

Regression: Regression in data mining works on the principle of predicting the class of

the example based on the rule generated by the regression function. Based on the

property of error reduction for pattern development, a number of rule-based algorithms

have been developed both for data mining using linear as well as non-linear regression.

CART is a well-known linear regression-based algorithm, whereas the Support Vector

Machine (SVM) is a good example for the non-linear regression based algorithm.

Association Rules: This technique uses decision support as a measure to weigh the

relationship between attributes and establish rules to predict the classes. Some prominent

work in this field has been conducted by Agarwal & Srikant (1994), some of which

include studying the purchasing patterns in supermarkets and creating a ‘Point of Sale’

5

(POS) systems.

 The focus of this research is on the refinement of a classification-based decision

tree. The following section deals with introducing the features of a decision tree.

1.2 The Decision Tree

 The decision tree is defined as a decision tool constructed after learning the data

patterns and associations within a data set. Hence most of the algorithms defined for

decision tree generation are referred to as learning algorithms. Since the optimality for

the decision making process is dependent on how accurate the tree has been constructed,

the data set in use are divided into two parts. The first part deals with the training data,

which are used to learn the algorithm, or in the technical sense, to define the rules for the

rest of the data set. The second part of the data set is used to evaluate the quality of the

rules. Apart from the mentioned approach of data handling, another approach, the k-fold

cross validation, is also quite popular among researchers. But for the purpose of this

study, the dataset would be subjected to the Test-Train Split approach. The datasets

available in the real world vary ranging from categorical, ordinal, and nominal classified

under continuous and discrete. The following section deals with handling the datasets for

the decision tree based data mining technique.

1.3 Discretizing the Data Sets.

 Researchers have attempted to use continuous attributes directly into the data-

mining algorithm. The Genetic Network Program (GNP) (Taboada et al. 2007) is one

such algorithm that directly handles continuous attribute-value sets for data mining. Most

of the other algorithms first convert the continuous attributed data to discrete data

intervals before creating rules. These algorithms apply discretizing methods for

6

converting continuous valued attributes into discrete attributes. The process of

discretization, in its attempt to reduce the dimensionality of the dataset, is subject to loss

of information. Popular algorithms like Ant Miner use an external function like C4.5

(Quinlan 1992) based discretizer (C4.5-Disc) at the pre-processing stage for discretizing

the continuous data sets. An entropy based discretization approach is then applied for the

original ant miner algorithm. The ‘c-Ant Miner’ (Otero 2008), which had the entropy

measure as a function to discretize the continuous attributed data set, proved to be better

than the C4.5–Disc algorithm in only two of the eight datasets that were used for the

experiment. Fayyad & Irani (1993) introduces the ‘Multi-Interval Discretization of

Continuous Valued Attributes’, another discretization method, which uses the Minimum

Description Length Principle (MDLP) to achieve a supervised discretization scheme. The

‘Class Attribute Interdependence Maximization’ (CAIM) (Kurgan & Cios 2004) proved

to be a better discretization tool than the entropy maximization algorithm for discretizing

continuous attributes. The details on the discretization process and the contribution of

this research towards this field will be discussed in greater detail in the section

‘Discretizers’.

1.4 Survey of Classification-based Algorithms

 A number of classification-based algorithms have been developed. Some of the

most prominent ones are described below. However, it is important to first review the

concept of entropy, which forms a key measure to estimate the information gain.

Shannon’s entropy is defined as the uncertainty about the source of a message. As

per Shannon (1951), it would take log n queries to fully encode a message. This gives rise

to extremities; if every message to be encoded is different, results in maximum number of

7

queries required to encode the next unknown message. Similar is the case for the class

prediction; if every item from the dataset coming in for classification is identified to be

different, resulting in maximum amount of information to predict the class for the next

case. For the other extremity, if the same type of message keeps on repeating, no

additional queries will be required to encode the next incoming message, hence no

additional information would be required to predict the class for the new item. There are

certain advantages that have been observed with the use of entropy as a heuristic for

decision-making process. Since it uses a log function, it provides a weight to the heuristic

to make the right decision. Also, entropy will distinguish probabilities. For the purposes

to measure the information in terms of bits, this study uses log to base value 2.

Entropy =

Conclusions on the usage of the entropy as the decision heuristic take different meanings

based on the objective of the algorithm. Though the goal of the study is maximizing the

information gain or conversely, minimizing entropy, there are applications that use the

convex optimality of entropy maximization (Guiasu & Shenitzer 1968).

A description on a few major classification algorithms is as follows.

1.4.1 ID 3 Algorithm
The Iterative Dichotomiser 3 (ID3) algorithm uses information gain as a measure to make

decisions on training the rule and then predicting the classes. Information gain is defined

as the difference between the entropy needed to collect the information about a class

H(T) and the entropy needed to conclude about a class given an attribute value H(X,T).

Gain = H(T)-H(X,T)

! p
i
log2i=1

n

" p
i

8

Where,

H(T) = Entropy for probability distribution of the classes

H(X,T) = Entropy for probability distribution of the classes knowing the dataset partition

on the basis of attribute value X.

The algorithm recursively checks for the gains using different attribute-value sets and

keeps track of the attributes providing the highest gain. This attribute ultimately forms the

node on the decision tree. More details on the working of the algorithm can be found in

Quinlan (1986). The algorithm faces problems regarding large values carried by attributes

since the gain tends to favor attributes with larger values. Appendix C.1 provides the

program used for calculating the information gain under the ID3 algorithm.

1.4.2 CART Algorithm
The classification and regression tree algorithm CART, (Brieman 1984), considered 3

different splitting criteria namely the GINI criterion, Twoing criterion and the Ordered

Twoing criterion. All the three, dealt with change in impurity levels of sending the items

from the dataset either to the left of the node or the right. There were a few problems that

were associated with using ID3 as well as the CART algorithms that led to the formation

of the refined GID algorithm (Fayyad 1988).

1.4.3 ASSISSTANT Algorithm

 This algorithm follows a similar classification criterion as the ID 3, but provides an

improvement on the noise handling capacity (Kononenko 1984). The algorithm tests each

leaf node for further branching. The termination criterion is the test of reduction in

classification accuracy for any further branching.

9

1.4.4 The AQ Algorithm

This classification based data-mining algorithm follows the simple (if-then) rule

creation technique (Michalski & Larson 1983). The main heuristic checks for the purity

i.e. the maximum number of examples covered for the class. The one problem with the

use of this algorithm is that it is less easy to modify, based on its dependency on specific

training examples.

1.4.5 The CN2 Induction Algorithm

The algorithm possesses properties of both the ID3 and the AQ algorithm (Clark &

Niblett 1989). This algorithm uses entropy as criterion for creating an ordered set of

rules. This particular feature created a problem on its scope on general applicability.

Using ‘Laplace Error Estimate’ as an alternative evaluation function, an unordered list of

rules could be derived using the algorithm (Clark & Boswell 1991). One common

problem observed for the CN2 algorithm was with the specificity of the rule selection

algorithm.

1.4.6 The Ant-Miner Algorithm

The Ant-Miner algorithm developed on the basis of ant colony optimization,

proved to be a better suite against the CN2 algorithm considering the reduction and the

simplification in the number of rules (Parpinelli 2002).

 1.4.7 GID3 Algorithm

 The GID3 algorithm developed by Fayyad (1988) considers binary partitions of the

attribute-value pairs. The attribute is divided into two discrete subsets, one that contains

the test-attribute value pair (A=ai) and the other containing the rest of the values (A≠ai).

10

The values for the information gain are collected for all such pairs and the highest value

is selected amongst them. Based on the user-provided threshold limit value, the algorithm

creates a measure to filter out the attribute-value set displaying gain values greater than

the threshold limit. These values are then collected together in what is known as a

Phantom Attribute (PA). Hence this temporary attribute contains the attribute-value sets

that would significantly contribute towards creating purer class sets. This procedure

proves better than branching at each individual attribute-value pairs. The ‘Threshold

Limit’ is a user-defined value. The program for calculating the information gain under the

GID rule is included in the Appendix C.2.

 1.4.8 GID3* Algorithm

 A later refinement of the algorithm, introduced as GID3*, provides a tear measure

to automatically select the threshold level based on how effectively the subset of the

attribute-value pair manages to discretely segregate and separate the distinct classes. A

comparative performance measurement on the functioning of the two algorithms shows

an improvement in the following features of the decision tree:

a. Increase in the number of examples in individual final leaves.

b. Decrease in the average number of leaves.

c. Decrease in the error rate.

d. Increase in the number of decisions per example.

e. Reduction in the number of nodes.

 This refined algorithm too works on the same principle of binary partitioning on

individual values of the attribute. The rest of the values are simply grouped together

corresponding to forming a different set.

11

1.5 Critique of Current Research

 As mentioned above, the ID3 algorithm uses entropy as a criterion to select the

appropriate attribute-value pair for branching at the node. As a part of the algorithm,

branches are being created at individual attribute-value sets. A comparison between

information gains for the pairs is done among pair values. One disadvantage of this

methodology is that the algorithm suffers from lack of relevance from the created

branches on the attribute pair values. Also this algorithm suffers from the missing

values/incomplete dataset. But at the same time the use of information gain, a function of

information entropy, proves to be of good use to get an estimate of the contribution of the

attribute-value pair in the purity of the class (Fayyad 1991).

 The key factors that affect these features of the decision tree are as follows:

a. The test conducted on the node.

b. Number of branches per node.

c. Distribution of the examples across the leaves.

d. Number of examples carried per branch of the tree.

12

Chapter 2

Research Introduction

2.1 Area of Research

The approach of this research is the application of binary partitions to multivalue

sets. Consider a data set for which the attributes in question are A and B possessing

values (a1, a2, a3, a4, a5) and (b1, b2, b3, b4, b5) respectively. After applying the

partition at the attribute node, the attribute A gets divided into two branches/partitions

picking up values (a1, a2) and (a3, a4, a5). Correspondingly the attribute B branches out

to form 2 sets namely (b1, b2) and (b3, b4, b5). The problem, as can be seen considering

the number of partition sets to be considered for the attributes, grows exponentially as the

number of values for the attribute increases. Hence for the above case, the attribute A

consisting of 5 values, there are 25 possible partition sets to be evaluated. To check for

the right partition, the algorithm needs to execute the loop for 32 different partition

combinations. Overall, if the attribute possesses ‘r’ values, there are 2r possible partition

combinations to be evaluated for each attribute. This further has an implication on the

choice of the attribute to create a node. This choice is based on the impurity measure

associated with the attribute. Most of the algorithms, especially the ones mentioned

above, use information gain as the purity measure. This measure is a function of the

attribute-value subsets. This is an adaptation of a problem suggested by Fayyad (1991).

Hence the need is to develop a heuristic that would potentially perform fewer

searches. The task remains to define the binary decision vector. The efficiency of the

heuristic would be based on the purity of the class.

A heuristic-based search approach has been adopted to identify attribute-value

13

subsets, which provide a higher information gain value than the existing GID3 algorithm.

Though these values do not exceed the ID3 information gain values, an application

towards ranking the features has been implemented. Since the application deals with a

greedy search of attribute value pairs showing higher information gain, a semi-supervised

approach has been implemented to discretize attributes. This application has been tested

against the existing unsupervised algorithms of Equal Width (EW) and Equal Frequency

(EF) along with a supervised discretizer CAIM. The developed heuristic in this

application has also been tested for change in interval size values varying from 4 to 20.

For the final section, a reverse build order categorized under ‘Un-supervising the

Supervised’ has been implemented which focuses on building the semi-supervised

algorithm on top of the unsupervised algorithm. The current study proposes the following

models/algorithms, details of which are presented in the sections to follow.

• Multivalued Subset (MVS)

• Multivalued Discrete Frequency/Width (MDF/MDW)

• Frequency Multivalued Frequency/Width (FMF/FMW)

2.2 Measures

The proposed algorithms are subject to percentage classification errors under

different classifiers. The details and distinguishing factors of these classifiers can be

found in the section ‘Classifiers’. A separate section has been dedicated to identifying

the behavior of these classifiers subject to varying constraints as introduced earlier.

2.3 Datasets

This study is aimed at using continuous datasets. The continuous data will be

discretized prior to its usage. Since the algorithm deals with studying the effect of

14

considering more than one attribute-value pair in the testing subset, datasets with

comparatively fewer to none numbers of binary attributes are chosen. The proposed

algorithms are a function of a search heuristic hence, for a few instances as indicated in

their corresponding section; the datasets need to be trimmed prior to subjecting them to

classifiers.

For the purpose of the study, 5 different categories of datasets have been used. All

datasets were obtained from the Machine Learning repository online

(http://archive.ics.uci.edu/ml/). The reason for doing so was to establish a common

platform to compare new models with the existing ones.

One of the motives of the study was to analyze the effect of discretizing the data.

More information on this can be found in the section ‘Discretization’. The choice of the

datasets was made based on the following features.

• Varying number of instances across the different datasets.

• Varying number of unique values per dataset.

• Integers and fractional values to be considered.

• No binary-valued attributes.

• The attribute-value sets were continuous and numeric in nature.

The table [Table 1] briefly summarizes the features of the datasets.

The column 4 in Table 1 indicates the range of the unique values found for individual

datasets. A high value is important to this study since it provides a higher search space

for the multivalued subsets. The other key characteristics for dataset consideration such

as outliers, spread and clustering were too taken into consideration while making the

selection.

15

Table 1. Dataset Characteristics

Dataset Instances Attributes Unique
Values

Data Type Missing
Values

Iris 150 4 22-43 Fractional No
Glass 214 9 32-178 Fractional No

Images 4435 36 49-104 Integer Missing
Class ‘6’

PenDigits^ 7494 16 96-101 Integer No
Vehicles 846 18 13-424 Integer No

2.4 Classifiers

The classifiers play an important part especially when comparing practices (algorithms)

tested on standardized datasets. For the purposes of the current study, four distinct

classifiers have been chosen. This section introduces these classifiers in a moderate depth

and showcases certain distinguishing characteristics between them.

2.4.1 AdaBoost (Freund & Schapire 1996)

Commonly referred to as the AdaBoost (Adaptive Boosting), the key learning algorithm

converges to a single rule by ‘adaptively boosting’ rules created on the smaller sample

sizes. In other words, the algorithm converges to a stronger classifier from a number of

weaker classifiers.

AdaBoost

1. Divide the training set into n distributions .

2. Converge to a local optimal rule on these individual distributions.

3. Adapt the distribution over the training set

Dt + 1 =
Dte

!! t yiht (xi)

Nt

(D1...Dn)

^Due to reasons owing to the complexity of the time required to process this dataset under certain algorithms, it was required to trim the dataset to its first

4350 instances.

16

Where,

= Choice of the weight for individual training distributions contributing towards the

final rule.

 = Hypothesis/ rule for the distribution t.

 = Performance of the local rule on the subset of the sample

4. Identify the convergent value summing the local results.

H (x) =

Key Features:

• Designed for binary classification

• Overfitting# is a function of the noise carried in the dataset. Low noise

seldom leading to overfitting whereas high noise often leads to

considerable overfitting (Ratsch et al. 2001) attributed towards the

boosting nature of the algorithm.

2.4.2 Iterative Dichotomize 3 -ID3 (Quinlan 1986)

As explained in the previous chapter, the key criterion for the functioning of the ID3

decision tree is the information gain. As per the rankings identified under feature

selection, the decision tree based hierarchical rule structure provides a discrete measure

to identify misclassifications on the testing set.

! t

ht

ht (xt) (x !X)

! tht(x)
t=1

T

!

(1, 1)y∈ −

#‘Overfitting’, a term, which is quite often feared in the field of data mining and machine learning attributes to justify the Occam’s razor, or in
other words, complexity degrading the predictive performance.

17

ID3 Classifier

1. Calculate the information gain for individual attributes.

2. Rank the attributes with increasing values of the information gain.

3. Subdivide each set of examples on the following attribute-value sets in the

ranking scheme based on the subset of the examples in the current attribute

scheme.

Key Features:

• Main criterion is ‘Information Gain’.

• Prone to ‘overfitting#’.

2.4.3 Regression

 A regression function is used to split the clustered data.

1. A weighted regression function is identified based on the least mean squared

error.

2. For every new query, provide a ‘decision_class’.

 > 0.5 decision_class =1

 <= 0.5 decision_class =0

2.4.4 Naïve Bayesian Classifier

This classifier provides a decision class on the basis of rule generated with the string of

literals consisting conditional probability, function of the attribute-value and the class.

Consider the following example.

f (x,a) = a
0
+ a

1
x
1
+ ... + adxd

f (x,a) !

f (x,a) !

18

Jimmy wants to make a decision, whether he could go out in the field and play. The

following literal string affects his decision.

P(play=1|condition=hot) x P(play=0|homework=not_completed) x P(play=1|Jake=available)

2.4.5 Summary of the Classifiers

The table provided below compares the characteristics of these classifiers.

Table 2. Classifier Characteristics

Classifier Time to
compute

Nature Rule Generation

AdaBoost Low Stochastic Function of Sample
Size and weighted

predictions
ID3 Low Deterministic Robust Rule

Regression High Deterministic Robust Rule
Naïve Bayesian Low Probabilistic Robust Rule

2.5 Testing Conditions

 Since most of the programs involved are conformant to the use of random number

generators, it would make good sense that all the random number generators for the

different programs follow the same stream and with identical starting positions. As

mentioned in the later section ‘Adaptive Simulated Annealing’, the ‘Mersenne Twister’ is

the pseudorandom number generator implemented for running the programs. The

programs were run on the Palmetto high-performance computing (HPC) environment at

Clemson University with a wall time of 50 hours per run. While most of the datasets were

able to adhere to the fixed wall time, it had been observed that datasets with larger set of

instances needed multiple runs. As mentioned in the section ‘Discretization’, the

algorithms representing the four different set of classifiers required the data fed to be of

the alphanumeric type; an additional set of macros in Excel were utilized to achieve this.

19

 The evaluation of the algorithms was based on the measure of classification errors

identified for the datasets. The datasets were divided into two parts in the ratio 70:30, the

former representing the training data while the later the testing data.

2.6 Adaptive Simulated Annealing (ASA)

This section will provide the information on the metaheuristic tool used for this study.

The key goal of the study is to identify a subset from the attribute-value sets providing a

higher value of the information gain. An adaptive version of the Simulated Annealing

was applied, for reasons pertaining to the time taken to reach an optimal value. The

algorithm shown below has been modified for a maximization function.

Algorithm A.1 : The Adaptive Simulated Annealing (ASA)

generate initial solution
initialize = initial solution
begin
 initialize
 while {
 begin
 initialize
 while

begin
 generate solution ()
 if solution< then change
 if solution> = then change
 evaluate Δ= -L_
 if Δ>0 then L_ =

 if Δ<0 then if then L_ =
then =

 end

 lower

 end
end

Fl,Fh

To,Tend

To > Tend

Lb, I,Lt

Lt < (Lb + I)

Solcurr

Fl Fl

Fh Fh

Solcurr Solcurr

Solcurr Solcurr

e
!/To

> Rand(1) Solcurr Solcurr

Ebest Solcurr

Lt = Lb + (Lb.(1! e)

!(Fh!Fl)

Fh)

To

20

The term represents the adaptive equilibrium condition. With

the inclusion of the information gain criterion, the final version of the algorithm is

interpreted below. One of the keys tasks for evaluating the objective function was to

define the Class Quanta Identity (CQI). The CQI represents the distribution of the

attribute-value sets against the classes. There are few more factors with regards to the

generation of the solution under the multivalued subset scheme, which are covered in

Algorithm A.2. The matrix is built as binary values (rows) against the classes (columns).

Appendix C.1 provides the program used for performing the ‘Adaptive Simulated

Annealing’. Shown below [Algorithm A.2], is the multisubset variant of the Adaptive

Simulated Annealing.

Algorithm A.2: Multisubset variant using the Adaptive Simulated Annealing

generate initial solution
initialize
begin
 initialize
 while {
 begin
 initialize
 while

begin
 Binary-Rand()
 form CQI for the binary subsets
 if solution< then change
 if solution> = then change
 evaluate Δ= -L_
 if Δ>0 then L_ =

 if Δ<0 then if then L_ =
then =

 end

 lower

 end
end

Lt = Lb + (Lb.(1! e)

!(Fh!Fl)

Fh)

Fl,Fh,Ebest,Econfig

To,Tend

To > Tend

Lb, I,Lt

Lt < (Lb + I)

nx1

Fl Fl

Fh Fh

Solcurr Solcurr

Solcurr Solcurr

e
!/To

> Rand(1) Solcurr Solcurr

Ebest Solcurr

Lt = Lb + (Lb.(1! e)

!(Fh!Fl)

Fh)

To

21

2.6.1 Random Number Generation.

 One group of random binary multipliers was generated using the same stream

with changing seed values. Each stream was generated of the ‘Mersenne Twister’

pseudorandom number generation. The seed values provided to the random number

generation played an important role to show adequate variance in the generation of the

solution. Another key observation to be noted with the implementation of this method

was in the area of utilization of the equilibrium condition. Though this condition was

meant to provide self-adjustability in the speed of implementing the algorithm, provided

little to no significant contribution towards improving a solution at the expense of time to

traverse with the decreasing temperature values.

22

Chapter 3

Multivalue subset based Feature Selection

What makes this problem interesting? Is it NP hard ?

When thinking from the perspective of building a decision tree, one of the most familiar

heuristic as mentioned in the previous sections is that of information gain. The previously

defined algorithms (ID3, GID3 and GID3*) have used this heuristic to determine their

own individual decision trees. Though the approach of this research doesn’t define a new

decision tree, it does ask the question, what if more than a single attribute value pairs

were to be combined? How would that influence the information gain? By doing so, the

search space of combining the attribute-value sets against the objective function of

improving the information gain makes the problem NP Hard.

The research initially started with the intention of having built a decision tree that

would hold leaves being tested for more than a single attribute at a time. The earlier

authors who thought about doing this did arrive at a conclusion of it being an NP-hard

problem. It is much more like inferring on a multicolored leaf. Though the intention is to

have a tree with leaves of different color, the hardness of the problem arrives with

deciding on the pureness of the tree based on a multicolored leaf. Does this mean the end

of search for multivalued sets? No. A number of researchers in the field of Computer

Science, Finance, and Engineering etc. focus on the aspect of directly using classifiers to

identify the rules. The basic problem with this approach is from perspective that the

number of attributes being considered is finite. The increase in the number of attributes

emphasizes the need to rank the attributes as per a decision heuristic. Why ‘selecting’?

23

Would one want to consider an attribute impurely dividing the classes in the decision tree

or rather for that matter, any sort of classifier? What is the problem in doing so? As had

been discussed earlier, the ultimate aim for any new algorithm for generating the decision

tree would be to keep the number of leaves to a minimum. The reason, lesser the number

of leaves, the purer the rules and hence better the classification. Fayyad (1991) provides

the proof for the same. Hence, the approach at this point is to identify an alternative

approach towards the pre-processing stage for the classifiers. The stage commonly known

as the ‘Feature Selection’ has played a vital role in a number of fields ranging from

Biology (Sundaravaradan et al. 2010), Text Classification (Forman 2007), Environmental

Studies (Mitrovic et al. 2009) etc. Another popular application of this tool is in the field

of Reinforcement Learning (RL) (Hachiya et al. 2010). Experts in the field of Machine

Learning believe that the next generation evolution of algorithms would potentially need

to provide added flexibility in the decision making process. When one thinks of the

decision making process, it could be either as simple as the ‘Q learning’ technique or a

more advanced form of RL with the integration of changing environmental conditions

which would require a bit of dynamic programming to learn (Sutton 1998). On the whole

the basic feature selection methodology could be divided into 3 main categories (Filter,

Wrapper and Embedded) (Guyon and Elisseeff 2003). Figure 1 represents the process

adopted by this study to analyze the effects of the proposed heuristic based feature

selection method.

Figure 1: Filter based Feature Selection Method

Features Filter
Feature
Subsets Classifier

24

Based on the approach mentioned above, the feature selection process could be divided

into two areas of applicability. First, the applied heuristic measure could be used to

identify the subset providing the maximum information gain, meaning, the applied

hypothesis at this stage would be the need to identify the first ‘k’ attributes, where ‘k’ is a

subset of a larger pool of attributes ‘N’ (). The advantage for this process is that it

provides a directed sequential search, subject to the function characteristics, which could

either be a maximization or minimization function. The other goal of the feature selection

process could be to identify any subset of the features satisfying the objective function.

This subset identified could lie anywhere in the search path. The current study is directed

towards identifying the lower bound for the same set size using a heuristic based search

process. The differentiating factor between this approach and prior work is explained

later in the section. One of the oldest feature selection criterion, information gain has

found tremendous application in the commercial data mining and machine learning

industries.

Quite often the filter mentioned above is the gain-based ranking method. The ranking

starts with the setup of an empty scorecard. Each attribute is independently evaluated for

information gain. The attributes with the maximum gain occupy higher positions in the

scorecard.

Assume that the current classification system contains 10 attributes. Based on the

individual information gain values the scorecard resulted as shown in Table 3.

k !N

25

Table 3: Illustration of a Feature Selection Process

J H E D A C B I G F

Feature Set Classifier Performance

{J, H, E, D, A, C, B, I, G, F} ID3 98%
{J, H, E, D, A, C, B, I, G} ID3 97%

{J, H, E, D, A, C, B, I} ID3 85%
{J, H, E, D, A, C, B} ID3 80%

{J, H, E, D, A, C} ID3 87%
{J, H, E, D, A} ID3 90%

{J, H, E, D} ID3 92%
{J, H, E} ID3 89%

{J, H} ID3 91%
{J} ID3 88%

As shown above the performance of the varying sizes of the sets carrying the ranked

order of the attributes being tested for a single classifier, which in this hypothetical case

is the ID3 Classifier. The above illustration shows that not all attributes are required to be

considered to show an improved performance. This is purely a case of pre-processing the

attributes on a gain-based ranking, prior to testing them on the classifiers. As can be

observed the search space for the attribute set is limited to 10. Also, the ranking heuristic

is irrespective of the nature of the attribute-value sets. There have been a number of

approaches to work around with the choice of attribute sets. A few contributing to the

ranking based heuristics (Duch et al. 2003), while there have been approaches to use

search heuristics to identify the right set prior to classification (Vafaie 1994). The book

by Liu and Motoda provides an additional insight towards the different methods used for

feature selection. On the whole the contribution of different search algorithms have been

towards identifying the attribute subsets.

26

A B C D E F G Class

Figure 2: Search based Feature Selection

The ‘search space’ indicated focuses on the attribute-value subsets and as described in the

earlier sections due to the NP-hard nature of the problem needs the use of a heuristic

search tool. The primary goal is to identify the maximum information gain. The current

research does not provide a theoretical proof for the same but is based on the assumption;

an attribute possessing a maximum information gain, would ultimately take a higher rank

for the attribute selection scorecard. On a similar hypothesis, if a current attribute value

performs poorly to clearly classify a current class, would combining attribute-value sets

provide an increased purity for classification? Consider the example shown in Table 4.

Table 4: Illustration for the creation of the multivalued subsets

Attribute-value sets Class

A.1 1
A.1 1
A.2 1
A.3 2
A.3 2
A.3 3
A.4 4

If attribute-value ‘A.1’ were to be tested against the rest of the attribute-value sets, it

divides the class 1 in the ratio 2:1 against the rest. Hence attribute-value ‘A.1’ does not

provide a pure separation for the classes. But when paired up with attribute value ‘A.2’,

the Class ‘1’ is purely separated.

Search Space

27

Now considering the approaches made by the ID3, GID3 and GID3* algorithms

Algorithm for the Multivalued Set

For the purposes of reducing the complexity of the algorithm, readers are advised to refer

to the section ‘Adaptive Simulated Annealing’ for the algorithm framework of the search

tool used for choosing the attribute-value pairs.

Algorithm A.3: Algorithm for collecting the subsets for the maximum Information Gain.

begin
 size(dataset)
 for features =1:number of attributes
 begin
 Calculate ClassEntropy

perform ‘Adaptive Simulated Annealing’ with respect to collecting
attribute –value pairs.
calculate Information Gain

 end
end

Given below are implementations of the proposed algorithm on the datasets ‘Iris’ and

‘Vehicles’. The data pre-processing (discretization) has been done using the CAIM based

supervised discretizer. The feature subsets identified are illustrated in [Figures 4 & 7].

Dataset : Iris

Ranking Transformation:

Table 5: Iris: Comparison of the ranks (ID3 vs. MVS)

!u, v =|| {t : xt = u, yt = v} ||

!x,"(x) =
x

T
log(x)

Ĥ (Y) = log 2(T)

!"# $%&'()*+,*-

./0,1234' !*5607)86*'9),*' ./0,1234' !*5607)86*'9),*'

:;<=>?@@ < @;A:BAC=

< :;<<>?@@ # @;#<=A#<

: B;DD>E@: : @;:FBAFD

F =;::>E@: F @;:F@=:F

28

Figure 3: Iris: Comparison of the Information Gain

Figure 4: Figure representing the feature selection process for the dataset ‘ Iris’.

Figure 5: Classifier Error Performance between Information Gain (ID3 vs. MVS)

0.00E+00

2.00E‐01

4.00E‐01

6.00E‐01

8.00E‐01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1 2 3 4

GID

MVS

ID3

Attribute

In
fo
rm

at
io
n
G
ai
n

!"#$%&'()*('+,-.++$/(#)0##1# !"#$%&'()*('+ ,-.++$/(#)0##1#

2343536 667668 4323536 667668

23435 667668 53432 667668

234 2979:8 534 667668

2 2979:8 4 2979:8

;<=1#>.?1<)@.$<);A2)B.<C$<D EF*

!"!!#$

%"!!#$

&!"!!#$

&%"!!#$

'!"!!#$

'%"!!#$

(!"!!#$

(%"!!#$

)!"!!#$

&$ '$ ($)$

*+,-./01-+$203+$*4($50+63+7$

89:1;0:9<$=9>=<?$50+63+7$

@3A<$-,$?B<$CD.3>9?<$@<?=$

29

Dataset : Vehicles

Ranking Transformation:

 Table 6: Vehicles: Comparison of the ranks (ID3 vs MVS)

Figure 6: Vehicles: Comparison between the Information Gain Values

!"#$%&'()$"*+')"*#$%*!,- .((%)/0(1* !"#$%&'()$"*+')"*#$%*234* .((%)/0(1

56-789:: 5; :6;<;=;> =

765;8?:5 @ :6;5;><5 A

@6778?:5 55 :65>>>>> 7

A65>8?:5 > :6:=-7=; -

A65-8?:5 7 :6:7-;-= ;

<6==8?:5 5- :6:AA-=A 5>

<6@78?:5 - :6:<7@@> 5:

>67-8?:5 = :6:<@7-7 5@

-6AA8?:5 5: :6:<5>A7 57

-6-@8?:5 A :6:>7<A< @

-6;A8?:5 5 :6:><><@ 55

-6:78?:5 ; :6:-@<-- 5

;6@@8?:5 5> :6:-->A; <

;6>:8?:5 5@ :6:--5=A >

;6-58?:5 57 :6:-:=7 5-

;65;8?:5 < :6:;<A>= 5;

567;8?:5 5A :6:57A=5 5<

56:;8?:5 5< :6:5<7:< 5A

!"!!#$!!%

&"!!#'!(%

)"!!#'!(%

*"!!#'!(%

+"!!#'!(%

("!!#$!!%

("&!#$!!%

(")!#$!!%

("*!#$!!%

(% &% ,%)% -% *% .% +% /% (!% ((% (&% (,% ()% (-% (*% (.% (+%

012%

345678549%:4;<9=%

12,%

>?@A;4=9<%

1B
CD
@E

86
DB

%0
8A
B%
%

30

Figure 7: Figure representing the feature selection model for the dataset ‘Vehicles’. Refer

to Appendix A.2 for the nomenclature for the attribute and class names.

Figure 8: Vehicles: Classifier Error Performance between Information Gain

(ID3 vs. MVS)

Normality Testing

The key objective of this approach is to identify the right subsets, which maximize on the

information gain. Hence, it is essential to ensure that the heuristic displays a normal

behavior with respect to selecting the subsets. Appendix A.1 provides the results of the

normality test performed on the ‘Iris’ dataset. As can be observed that the normality test

!"#$%&'()$"*+')"*!,-*.'"/)"0 123*.'"/)"0

45'66)#)7%*8%%$% 45'66)#)7%*8%%$%

9:;<;99;=;>;9-;-;?;9@;A;9;:;9=;9<;9>;B;9A;9B BBC-:D ?;A;>;-;:;9=;9@;9<;9>;<;99;9;B;=;9-;9:;9B;9A BBC-:D

9:;<;99;=;>;9-;-;?;9@;A;9;:;9=;9<;9>;B;9A B:C@<D ?;A;>;-;:;9=;9@;9<;9>;<;99;9;B;=;9-;9:;9B BBCA<D

9:;<;99;=;>;9-;-;?;9@;A;9;:;9=;9<;9>;B B-C-9D ?;A;>;-;:;9=;9@;9<;9>;<;99;9;B;=;9-;9: B-C=:D

9:;<;99;=;>;9-;-;?;9@;A;9;:;9=;9<;9> B=C:AD ?;A;>;-;:;9=;9@;9<;9>;<;99;9;B;=;9- B=C9-D

9:;<;99;=;>;9-;-;?;9@;A;9;:;9=;9< B=C:BD ?;A;>;-;:;9=;9@;9<;9>;<;99;9;B;= B-C?@D

9:;<;99;=;>;9-;-;?;9@;A;9;:;9= B=C9=D ?;A;>;-;:;9=;9@;9<;9>;<;99;9;B B-C?@D

9:;<;99;=;>;9-;-;?;9@;A;9;: B=C@:D ?;A;>;-;:;9=;9@;9<;9>;<;99;9 B-C?@D

9:;<;99;=;>;9-;-;?;9@;A;9 B=C-<D ?;A;>;-;:;9=;9@;9<;9>;<;99 B=C<:D

9:;<;99;=;>;9-;-;?;9@;A B=C@:D ?;A;>;-;:;9=;9@;9<;9>;< B=C<:D

9:;<;99;=;>;9-;-;?;9@ B=C@:D ?;A;>;-;:;9=;9@;9<;9> BBCBAD

9:;<;99;=;>;9-;-;? B<C?:D ?;A;>;-;:;9=;9@;9< BBCBBD

9:;<;99;=;>;9-;- B<C=BD ?;A;>;-;:;9=;9@ BBCA<D

9:;<;99;=;>;9- B?C=AD ?;A;>;-;:;9= B>C>AD

9:;<;99;=;> B?C::D ?;A;>;-;: B>C<BD

9:;<;99;= B?C::D ?;A;>;- B?CB<D

9:;<;99 B?C::D ?;A;> A9C-BD

9:;< A@CB:D ?;A A:CABD

9: A@CB:D ? A:CA=D

!"#""$%

&"#""$%

'"#""$%

(%)% *% +% !% &% '% ,% -% ("% ((% ()% (*% (+% (!% (&% ('% (,%

./0123451/%647/%.8*%94/:7/;%

<=>5?4>=@%A=BC@D%94/:7/;%

A7E@%10%DF@%GH27B=D@%A@DC%

I
>4
CC
7J
K4
5
1
/
%L
22
1
2%

31

fails when performed on the gain values evaluated for different set sizes. But what can be

observed, that the gains are bounded by an upper value. For the sake of the feature

selection evaluation mentioned above, these maximum values have been taken into

consideration. At the same time the subset sizes selected under these gain values follow a

normal distribution.

As can be seen the information gain value collected follows a normal distribution. With

the selected number of cluster elements (identical between the ID3 and the Multivalued

subsets), the algorithm did manage to find clusters of the attribute sets portraying lower

classification error values. Especially, the results of the tests done on the dataset ‘Iris’

show that the attribute subsets collected as a result of the ranking provided by the

multisubset attribute measure consistently provided a lower bound on the classifier error

until the final attribute. This illustrates that, if the user were to choose an attribute subset

having dimensions between the maximum and the minimum value i.e., a midsize interval,

the multivalued set could provide attribute sets with lower classification error compared

to the normal information gain values.

32

Chapter 4.

Discretization.

‘Data Discretization’ plays a crucial part for any kind of data mining or machine learning

activity. This stage is quite critical especially under data pre-processing. This section

introduces the user to several facets of data discretization and concludes with proposing

newer heuristic-based search models for discretization. The intention is to observe the

behavior of the datasets under the influence of the heuristic based discretization models.

When referring to data discretization, it is the individual attributes which are subject to

the discretization study. Most of the credited classifiers rely on alphanumeric data to

build their prediction models. In other words, it would be easier to use a classifier on a

discrete value rather than a continuous value. On the whole, most of the existing

discretizing schemes could be categorized into 2 distinct classes, supervised and

unsupervised discretization.

4.1 Unsupervised Discretization

The key discriminating factor between the two categories, as introduced in the earlier

paragraph, is the relationship with the classes while carrying out the discretization.

Unsupervised discretization falls in the category where the classes are not taken into

account while carrying out the process. One of the key assumptions while crediting this

process is that of the sorting rule. The continuous values are subjected to a sorting rule

(Kotsiantis & Kanellopoulos 2006(a)). Since the bin-size/bin-width are user defined

parameters, their choice is completely independent of the way the classes would get

distributed when discretized to form one category. Two of the most primitive and the

33

widely used methods under the unsupervised category are namely equal width and equal

frequency discretization.

4.2 Equal Width Discretization.

As the name suggests, the main idea of this algorithm is to allocate a fixed bin width to

the range of attribute-value sets. For the same, the algorithm commences on defining ‘k’,

the width of the bin. The difference between the maximum and the minimum values of

independent attribute-value sets in divided by ‘k’. The range of values for individual

attributes is then binned into these intervals. There have been a number of views and

takes on the value of ‘k’ to be considered while conducting the discretization process. For

the purpose of this study, the Strudges’ formula (Strudges 1926), k=log2(number of

instances)+1, has been utilized to identify the optimal bin width. The intention of doing

so is to have equivalent bin sizes across the algorithms to make an unbiased comparison.

Figure 9 provides an illustrated view of the result of such a binning procedure. The

algorithm for this discretization is as described below. Appendix C.1 provides the

information on the program used to evaluate this algorithm.

 Figure 9: Illustration for the Equal Width Discretization

ATT1 ATT2 ATT3 ATT4 Class
5.1 3.5 1.4 0.2 1
4.9 3 1.4 0.2 1
4.7 3.2 1.3 0.2 1
4.6 3.1 1.5 0.2 1
5 3.6 1.4 0.2 1
5.4 3.9 1.7 0.4 1
4.6 3.4 1.4 0.3 1
5 3.4 1.5 0.2 1
4.4 2.9 1.4 0.2 1
4.9 3.1 1.5 0.1 1
5.4 3.7 1.5 0.2 1
4.8 3.4 1.6 0.2 1
4.8 3 1.4 0.1 1
4.3 3 1.1 0.1 1
5.8 4 1.2 0.2 1
5.7 4.4 1.5 0.4 1
5.4 3.9 1.3 0.4 1
5.1 3.5 1.4 0.3 1
5.7 3.8 1.7 0.3 1
5.1 3.8 1.5 0.3 1
5.4 3.4 1.7 0.2 1
5.1 3.7 1.5 0.4 1
4.6 3.6 1 0.2 1
5.1 3.3 1.7 0.5 1
4.8 3.4 1.9 0.2 1
5 3 1.6 0.2 1

Att1 Att2 Att3 Att4 Class
2 6 1 1 1
2 4 1 1 1
1 5 1 1 1
1 4 1 1 1
2 6 1 1 1
3 7 1 2 1
1 5 1 1 1
2 5 1 1 1
1 4 1 1 1
2 4 1 1 1
3 6 1 1 1
2 5 1 1 1
2 4 1 1 1
1 4 1 1 1
4 7 1 1 1
4 9 1 2 1
3 7 1 2 1
2 6 1 1 1
4 7 1 1 1
2 7 1 1 1
3 5 1 1 1
2 6 1 2 1
1 6 1 1 1
2 5 1 2 1
2 5 2 1 1
2 4 1 1 1

34

Algorithm A.4 : Equal Width Discretization Algorithm

begin
initialize int=zeros(number of rows -1 , number of columns)

for i=i:number of attributes (n)
begin
 sort attribute column

find unique
initialize k = (number of rows +1)

int[1]=min_value
 for fill=2:number of rows-1
 begin

 int[fill]=min_value+(fill-1)*w
end

 for values=1:number of rows
 begin
 UniqueID for values falling in the interval

end
 end

end

This approach provides a ‘unique identity (UniqueID)’ to the clustered attribute-value

sets irrespective of the unique values observed for individual attribute-value. This avoids

the problem of divisibility, explained in the following section.

4.3 Equal Frequency Discretization

As against the previous method of equal width, wherein the intervals calculated are the

function of the maximum and the minimum values of the attribute, the equal frequency

discretization provides bin widths to allocate equal number of unique attribute-values per

bin. This gives rise to an issue, which was raised earlier with regards to finding the right

divisibility factor for the bin. Also, attribute-value sets summing to form a prime number

posed a problem towards finding the right width value for the bins. This issue has been

addressed in this study with providing a small bias (prime number escape) to the last

unique value taking up the ‘UniqueID’ of the previous binning width. Figure 10 shows an

log 2

w =
max_ value(n)!min_ value(n)

k

35

illustration of the functioning of this algorithm tested on one of the datasets. Appendix

C.5 provides the program used to perform the equal frequency discretization. Given

below is the algorithm for the discretization method. For the purposes of providing a

constraint on the upper bound on the values of ‘k’ i.e. the binning width value, a

conditional heuristic has been implemented, log(number of rows)-log(log(number of

rows))<=19 (Jiang et al. 2009).

Figure 10: Illustration for the Equal Frequency Discretization

Algorithm A.5: Equal Frequency Discretization Algorithm

begin
initialize temp=[]

for i=i:number of attributes (n)
begin
 sort attribute column

find unique
if log(number of rows)-log(log(number of rows))<=19
then check divisibility function
if number of unique values is prime
then store the last unique value in the vector [temp]
else divisibility =20
 for bin_cap =1:bin:size_unique
 begin
 for index=bin_cap:(bin_cap+(bin-1))
 begin

ATT1 ATT2 ATT3 ATT4 Class
5.1 3.5 1.4 0.2 1
4.9 3 1.4 0.2 1
4.7 3.2 1.3 0.2 1
4.6 3.1 1.5 0.2 1
5 3.6 1.4 0.2 1
5.4 3.9 1.7 0.4 1
4.6 3.4 1.4 0.3 1
5 3.4 1.5 0.2 1
4.4 2.9 1.4 0.2 1
4.9 3.1 1.5 0.1 1
5.4 3.7 1.5 0.2 1
4.8 3.4 1.6 0.2 1
4.8 3 1.4 0.1 1
4.3 3 1.1 0.1 1
5.8 4 1.2 0.2 1
5.7 4.4 1.5 0.4 1
5.4 3.9 1.3 0.4 1
5.1 3.5 1.4 0.3 1
5.7 3.8 1.7 0.3 1
5.1 3.8 1.5 0.3 1
5.4 3.4 1.7 0.2 1
5.1 3.7 1.5 0.4 1
4.6 3.6 1 0.2 1
5.1 3.3 1.7 0.5 1
4.8 3.4 1.9 0.2 1
5 3 1.6 0.2 1

Att1 Att2 Att3 Att4 Class
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 2 2 1 1
1 2 2 1 1
1 2 2 1 1
1 2 2 1 1
1 2 2 1 1
1 2 2 1 1
1 2 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 3 2 1 1
2 4 2 1 1
2 4 2 1 1

36

 provide UniqueID
 end
 end
 if temp is not empty then provide unique value of the last ‘bin’

 fill in all the UniqueIDs to the row values associated with unique values
 end
end

function check divisibility
 begin
 initialize divisibility =0
 for test=2:19
 begin

if number is divisible by ‘test’ then divisibility takes the value of the
‘test’
if no divisibility value is identified then divisibility returns a ‘prime’
indication

 end
 end

A few points to note about the implementation procedure of the above algorithms:

o The divisibility test would necessarily take in the highest divisibility value

found during the test.

o Both the algorithms have self-generated bin value ‘k’, hence eliminating

the need to have the users input them.

o The value of ‘k’ did not exceed 20, which is an important inference for the

next chapter.

4.4 CAIM Algorithm (Kurgan 2004)

The class-attribute interdependency maximization algorithm (CAIM), is one of the

popular supervised algorithms for discretization. The algorithm works on presetting the

interval boundaries before being tested on for the CAIM criteria. The CAIM criteria is as

defined below:

37

𝐶𝐴𝐼𝑀 =

𝑚𝑎𝑥!
𝑀!!

!!
!!!

𝑛

The values for maxr, M+r are obtained from a Quanta Matrix. ‘Quanta Matrix’ is a matrix

linking the number of attribute-value sets binned per interval width against the interval

sizes. The algorithm iteratively adds an inner boundary to check the value of the CAIM

criteria. The interval boundary providing a higher CAIM measure is retained. The

algorithm runs a greedy search through all the predetermined interval boundaries.

4.5 Supervising the Unsupervised.

The previous section dealt with the study of the unsupervised algorithms. The

performance evaluation would be showcased in the section, ‘Supervised Unsupervised

and Semi-supervised’. Research conducted on these algorithms has been directed towards

identifying the right bin width. This study attempts to utilize a path based metaheuristic

search to find the right set of instances that would improve the information gain of the

discretized sets. Critics might argue about two points with regards to this approach

Neighborhood.

The neighborhood is defined as the adjacency of values, chosen to form the discrete sets.

For the proposed models, values might be randomly picked from the set of all points in

the attribute-value subsets. This might not define a neighborhood of values to discretize

into a single category.

Yes, though this might be true, at this stage the constraint of adjacency, needs to be

relaxed. At the same time, the bin sizes are user defined, a lower bin size also attempts to

increase the generalization of the data being considered for discretization. This is an

38

attempt to understand the role of a search-based approach towards different machine

learning facets.

Bounds.

Since the search is for a better discretizer, the other issue that remains to be answered is

that, why wouldn’t a robust solution of simply sorting the attribute values sets as per

individual classes provide a better discretized set for the classifier? This idea would carry

the same assumption as has been mentioned in ‘Neighborhood’, hence a search based

heuristic approach appears to be a better solution than this one. Also, as can be observed

from the normality tests for the gain values of the subsets for the dataset ‘Iris’ (Appendix

A.1), the values observed with the current implementation environment do not cross a

certain maximum, which attributes to the distribution not following a normal pattern. It

can be assumed at this stage that the gain values have reached a ‘maximum’. Ultimately

the requirement is to have bounds on the values to be taken in for making the

discretization. The research began with the initiative of finding an optimal subset of

values function of increasing the information gain for the identified attribute value pairs.

4.5.1 Multivalued Discrete

The first set of discretization models introduced under this category take up a role of

supervising the unsupervised discretizer, resulting in a heuristic based semi-supervised

algorithm. These could be divided into the following two categories.

4.5.1.1 Multivalued Discrete Width (MDW)

As introduced in Chapters 2&3, the multivalued algorithm creates 2 distinct partitions

(discriminant/s) based on the optimal information gain achieved. This heuristic would be

39

utilized to initially discretize the attribute-value sets and then following the conversion to

a single class as an input towards the bifurcated equal width interval. Figure 11 shows an

illustrated view of the transformation from the original continuous data to the MWD

followed by the algorithm representation of the same. To avoid undue complexity, the

algorithm representation does not include the syntaxes for the heuristic-based searches.

Figure 11: Illustration for the Multivalued Discrete Width Algorithm

Algorithm A.6: Multivalued Discrete Width Algorithm

begin
 initiate by sizing the dataset
 for attributes=1:number of columns
 begin
 assign interval
 initiate UniqueID, check_unique,exit_loop=0
 while check_unique<=intervals or exit_loop==0
 begin
 find the number of unique elements in the column
 if number of unique >=4 then identify and create dataset
 if number of unique<4 then check feasibility
 if feasibility constraints are satisfied then create dataset
 else exit_loop=1
 assign UniqueID to individual discriminant set
 update UniqueID
 end
end

ATT1 ATT2 ATT3 ATT4 Class
5.1 3.5 1.4 0.2 1
4.9 3 1.4 0.2 1
4.7 3.2 1.3 0.2 1
4.6 3.1 1.5 0.2 1
5 3.6 1.4 0.2 1
5.4 3.9 1.7 0.4 1
4.6 3.4 1.4 0.3 1
5 3.4 1.5 0.2 1
4.4 2.9 1.4 0.2 1
4.9 3.1 1.5 0.1 1
5.4 3.7 1.5 0.2 1
4.8 3.4 1.6 0.2 1
4.8 3 1.4 0.1 1
4.3 3 1.1 0.1 1
5.8 4 1.2 0.2 1
5.7 4.4 1.5 0.4 1
5.4 3.9 1.3 0.4 1
5.1 3.5 1.4 0.3 1
5.7 3.8 1.7 0.3 1
5.1 3.8 1.5 0.3 1
5.4 3.4 1.7 0.2 1
5.1 3.7 1.5 0.4 1
4.6 3.6 1 0.2 1
5.1 3.3 1.7 0.5 1
4.8 3.4 1.9 0.2 1
5 3 1.6 0.2 1

Att1 Att2 Att3 Att4 Class
15 9 16 1 2
5 2 14 1 3
6 1 2 2 1
9 1 2 2 1
13 1 2 2 1
7 3 2 2 1
9 5 2 2 1
9 5 2 2 1
6 6 2 2 1
6 6 2 2 1
6 8 2 2 1
9 8 2 2 1
5 9 2 2 1
8 9 2 2 1
8 9 2 2 1
9 1 3 2 1
6 5 3 2 1
6 5 3 2 1
6 5 3 2 1
6 5 3 2 1
8 5 3 2 1
6 6 3 2 1
9 6 3 2 1
13 6 3 2 1
5 8 3 2 1

40

function discrete
begin
 initiate by sizing the dataset

 if number of classes for the dataset size ==1 then perform bifurcated equal
 width

 if number of classes for the dataset size >1 then perform multidiscrete
end

As can be seen from the above framework of the algorithm, each time the generated

discriminant dataset i.e. subset of the original data during a particular iteration instance

finds a pure class, the function performs an equal width division of the dataset, creating

two discriminants. The algorithm is also subjected to ‘check feasibility’ constraint, which

would identify the existence of any subsets of unique values of at least the size of 4. The

program for this algorithm is provided in the Appendix C.6.

4.5.1.2 Multivalued Discrete Frequency (MDF)

The performance of the multivalued discrete frequency is similar to that of the

multivalued discrete width with a slight modification of the convergence function$. In

this case, rather a bifurcation of equal frequency is being preferred. The modification

algorithm function for discretization rule under the MDF is as described below.

function discrete
begin
 initiate by sizing the dataset
 if number of classes for the dataset size ==1 then perform bifurcated equal
frequency
 if number of classes for the dataset size >1 then perform multidiscrete
end

Table 7 showcases a performance of the algorithms. The performance evaluation of the

algorithms is provided in the section ‘Classifier Performance’.

$The convergence function provides an unsupervised discretization on the discriminant set providing equal classes.

41

Table 7: Comparison of the Classifier Errors observed between Supervised, Unsupervised

and Heuristic based Semi Supervised Discretization processes.

4.6 Variable Intervals

The section on multivalued discrete intervals, dealt with a fixed user provided number of

intervals. The next step is to analyze the effect of varying number of intervals on the

developed algorithm. The objective would be to study the classifier performance on the

discretization algorithms with increasing interval bin sizes. The experimental conditions

specified in the section ‘Testing Conditions’, were maintained for every interval type.

Table 8 shows the performance of such an experimental run. Discussion on the results is

provided in the section ‘Classifier Performance’.

Datasets CAIM Equal Frequency Multivalued Frequency Equal Width Multivalued Width

Classifier

AdaBoost Iris 33.33% 15.55% 48.88% 20.00% 22.22%

ID3 22.22% 0.00% 6.67% 6.66% 8.99%

Naïve Bayes 22.22% 0.00% 6.67% 8.88% 8.99%

Regression 22.22% 6.67% 8.89% 8.88% 8.99%

AdaBoost Glass 50.00% 25.00% 64.06% 54.68% 56.25%

ID3 48.43% 1.57% 29.68% 37.50% 29.69%

Naïve Bayes 45.31% 4.68% 28.13% 32.81% 26.56%

Regression 59.38% 7.81% 37.50% 31.25% 31.25%

AdaBoost Images 69.02% 62.33% 66.47% 72.10% 63.15%

ID3 60.52% 43.09% 19.62% 13.99% 22.11%

Naïve Bayes 60.68% 58.71% 18.72% 18.65% 18.05%

Regression 77.67% 43.16% 16.39% 12.03% 15.79%

AdaBoost PenDigits 80.69% 90.26% 81.78% 79.84% 81.15%

ID3 29.73% 89.88% 20.68% 7.27% 21.30%

Naïve Bayes 34.40% 91.80% 16.71% 16.39% 16.39%

Regression 30.50% 89.89% 13.33% 7.81% 14.10%

AdaBoost Vehicles 61.42% 78.74% 58.66% 62.60% 59.84%

ID3 54.72% 79.92% 26.77% 29.92% 33.07%

Naïve Bayes 57.48% 70.87% 31.10% 38.19% 35.43%

Regression 56.69% 77.56% 25.50% 31.10% 29.92%

!"#$$%&%'#(%)*+,--)-

42

Table 8: Comparison of the Classifier Errors observed on varying interval sizes

4.7 Un-supervising the Supervised

The difficulty as identified in the previous section (Supervising the Un-supervised) is

with regards to the validity of picking up the attribute-value pairs with a goal of

increasing the information gain. In order to provide a more robust platform for the initial

stage of discretization, an approach would be to reverse the order of which the algorithms

are conjoined. In this section, the strategy is to have the initial discretization performed

using the unsupervised methods followed by building up a multivalued subset

discretization scheme on top. Four models are introduced, which are more of variants of

the original equal frequency, equal width and multivalued subsets. In the prior section,

the equal width and the equal frequency primarily providing binary divisions to the

multivalued discretizer, but under the current condition, the heuristic-based multivalued

discretizer would provide a binary division to the unsupervised discretizer. To avoid

complexity, the part representing the search heuristic under the multivalued subsets has

been left for the readers to refer to the earlier section on ASA of this document.

!"#"$%#$ &'"$$()(%*$ +,'#($,-$%#./*%0,%12345 +,'#($,-$%#./*%0,%12346 +,'#($,-$%#./*%0,%1234789 +,'#($,-$%#./*%0,%1234:; +,'#($,-$%#.<(=#>45 +,'#($,-$%#.<(=#>46 +,'#($,-$%#.<(=#>478 +,'#($,-$%#.<(=#>4:;

?="@AA$# :;B;;C :;B;;C 5;B;;C 58B88C :5B55C ::B::C 58B88C 5:B::C

D*($ D!E 7FBF6C 77B77C 77B77C 5B55C 7GBGGC 6BHHC 5B55C :B::C

I"JK%9@"3%$("1 6BH;C 5B55C 6B66C :B::C 7FBFFC 6BHHC 77B77C 5B55C

L%M*%$$(A1 77B77C :B::C 77B77C 8B8FC 7FBF6C 6BHHC 5B55C 8B8FC

?="@AA$# 8;BH5C G8B:GC 85B;8C GEB7EC 8;BH5C G8B:GC G5B8HC G5B8HC

N'"$$ D!E E:B67C :HB:5C :HB86C :8BG8C E:B67C :HB8HC :8BG8C :;BE7C

I"JK%9@"3%$("1 5EBFGC :8BG8C :6B7EC 75B;8C 5EBFGC :8BG8C 76BFGC 7:BG;C

L%M*%$$(A1 5:B7HC E7B:GC EFBG;C :;BE7C 5:B7HC E7B:GC :8BG8C :7B66C

?="@AA$# 8:B;HC 8;B8;C 87BGFC 85B:HC 8:B;EC 8;B8;C 8FB6:C 8HBG5C

DO"M%$ D!E EEB;6C :7B;8C 7FBF5C 76B;GC EEB;7C :7B;8C 7FBG:C 78B8HC

I"JK%9@"3%$("1 :8B;:C 7HB5FC 76B7:C 7FB6:C :8B:5C 7HB5FC 76B6;C 7FB75C

L%M*%$$(A1 :GB;5C 76B6;C 7GBH5C 75B:7C :GB;5C 76B6;C 7GBF7C 75B:HC

?="@AA$# FHB;;C 6;B58C 67B::C 6;B::C FHB;;C 6;B58C 67B:EC 6;B:EC

P%1!(M(#$ D!E :6B66C :EB55C :;B86C 7HB;6C :6B66C :EBF;C :;B8HC 7HB;6C

I"JK%9@"3%$("1 :GBG7C 76B8HC 78BF7C 78B8:C :GBG7C 76BHFC 78BF7C 78B8EC

L%M*%$$(A1 :7BH7C 7FB5FC 7EBEEC 75B5;C :7BH:C 7FB5FC 7EBEEC 75B57C

?="@AA$# 8GBEGC 85BGFC 8HB:HC 8;B:5C 8GBEGC 85BGFC 8HB:HC 8;B:5C

Q%>(2'%$ D!E EFB;7C EEB6GC :FB7FC ::B;GC EFB;;C EEB6GC :FB7FC ::B;GC

I"JK%9@"3%$("1 E6BH6C EFB;;C E7B7;C :6BF5C E6BH6C EFB;7C E7B7;C :6BF5C

L%M*%$$(A1 E7B66C EFBFHC :HB75C :FBHGC E7B66C EFBFHC :HB75C :FBHGC

43

4.7.1 Frequency Multivalued Width (FMW)

 In this method, the heuristic based multivalued width algorithm is built on top of

the equal frequency discretization algorithm.

4.7.2 Frequency Multivalued Frequency (FMF)

Similar approach has been applied with the multivalued frequency algorithm.

Appendix C.7 provides the program used to perform the FMF/FMW algorithm.

Algorithm A.7: Frequency Multivalued Discrete Frequency / Frequency-Multivalued

Discrete Width Algorithm

begin
 size dataset
 for features =1:number of attributes
 begin
 sort attribute column
 find unique
 perform equal frequency discretization
 end
 for perform_multidiscrete=1:number of intervals

begin
 perform multidiscrete width or frequency discretization
end

end

4.7.3 Frequency-Frequency (FF) / Frequency Width (FW)

In order to have a fair comparison of the algorithms mentioned above, similar approaches

were applied to the robust algorithm of equal frequency and equal width algorithms. The

framework of these algorithms is similar to the ones mentioned above except for the fact

that the multidiscrete discretization steps are replaced with the equal frequency/equal

width algorithms. Here too the equal width and equal frequency discretization algorithms

44

provide a binary partition. Appendix C.8 provides the program used to perform the

FF/FW algorithms. The algorithms could be explained as indicated below.

Algorithm A.8: Frequency-Frequency/ Frequency-Width Discretization Algorithm

begin
 size dataset
 for features =1:number of attributes
 begin
 sort attribute column
 find unique
 perform equal frequency discretization
 end
 for perform_multidiscrete=1:number of intervals

begin
 perform equal width or equal frequency discretization
end

end

Table 10 shows the result table for this approach. As can be seen, a number of instances

were observed where the multivalued based heuristic managed to provide a lower

classification error value. The implications of all the results identified in the above

sections are summarized in the following chapter.

45

Chapter 5

Classifier Performances

The earlier sections introduced the applications of a proposed philosophy of multivalued

subsets with a couple of distinct applications. Both these applications were presented in

the form of a classifier error output. It would be interesting to see the performances of

these classifiers with regards to the proposed and existing methods. The key classifiers as

had been discussed earlier are ‘AdaBoost, ID3, Naïve Bayes and Regression’.

5.1. Supervised, Unsupervised and Semi-supervised

This subsection highlights the performance of the individual discretization algorithms

against the datasets introduced in Table 1. Since the approaches adopted by the equal

width and the equal frequency discretization algorithms are quite different in terms of

identifying the right interval size, the interval size needs to be manually identified for

their corresponding multivalued subsets [Table 9.].

Table 9: Identifying Equal Intervals across Algorithms

 Width Frequency

Datasets Instances Log2(Instances)+1 Interval size for
Multivalued sets

width

Observed instances
under interval
constraints*

Interval size for
Multivalued sets

frequency
Iris 150 8.22 8 Max(14) 14

Glass 214 8.34 8 Max(16) 16
Images 4435 13.114 13 Max(13) 13

PenDigits 4350 13.086 13 Max(16) 16
Vehicles 896 10.72 11 Max(18) 18

As can be observed from Table 7, the proposed algorithms provided consistent and

moderate classification error rates as compared to the robust unsupervised and the

46

supervised algorithms. The Equal Frequency discretization algorithm provides a

comparatively lower classification error rate for the dataset ‘Iris’, while providing a

higher classification error for the dataset ‘PenDigits’.

Figure 12 showcases the graphical representation of the classification errors identified

across the 3 main categories of discretizers (Supervised, Unsupervised and the Heuristic

based Semi-Supervised). The comparisons have been performed as per the interval sizes

identified in Table 9.

Adaptive Boosting

Width Frequency

Iterative Dichotomizer 3

Width Frequency

!"!!#$

%!"!!#$

&!"!!#$

'!"!!#$

(!"!!#$

)!"!!#$

*!"!!#$

+!"!!#$

,!"!!#$

-!"!!#$

./01$ 23411$.54671$ 879:060;1$ <7=0>371$

?@.A$

BCD43$E0F;=$$

AD3GH43D7$1DI17;J0F;=$$

@F4KLL1;$

.9;7/H43$M0N71$

?
34
11
0O
>4
G
L
9
$B
//
L
/$

!"!!#$

%!"!!#$

&!"!!#$

'!"!!#$

(!"!!#$

)!"!!#$

*!"!!#$

+!"!!#$

,!"!!#$

-!"!!#$

%!!"!!#$

./01$ 23411$.54671$ 879:060;1$ <7=0>371$

?@.A$

BCD43$E/7CD79>F$

AD3GH43D7$1DI17;$J/7CD79>F$

@K4LMM1;$

.9;7/H43$N0O71$

?
34
11
0P
>4
G
M
9
$B
//
M
/$

!"!!#$

%!"!!#$

&!"!!#$

'!"!!#$

(!"!!#$

)!"!!#$

*!"!!#$

+!"!!#$

,-./$ 012//$,3245/$ 6578.4.9/$:5;.<15/$

=>,?$

@AB21$C.D9;$$

?B1EF21B5$

/BG/59H.D9;$$

,95-2EF5$8.<;I9I3.J5-$'$

,795-F21$K.J5/$

=
12
/
/
.L
<
2
E
I
7
$@
-
-
I
-
$

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0" 12300" -43560" 7689/5/:0" ;6</=260"

>?-@"

ABC32"D.6BC68=E"

@C2FG32C6"0CH06:"I.6BC68=E"

-:6.3FG6"9/=<J:J4/K6."&"

-8:6.G32"L/K60"

>
23
0
0
/M
=
3
F
J
8
"A
.
.
J
.
"

47

Naïve Bayesian

Width Frequency

Regression

Width Frequency

Figure 12: Supervised, Unsupervised and Semi‐Supervised

As can be seen, of the four classifiers identified, the ‘Adaptive Boosting’ displayed the

most coherent behavior. The proposed algorithm showed moderate variances in the

performances across the datasets as against the supervised and the unsupervised

algorithms. The proposed algorithm proved to be better for the dataset ‘Iris’ while it

suffered in performance for the dataset ‘Vehicles’ against the supervised algorithm. One

distinguishing factors between these two datasets were in terms of a measure of class

distribution. Under the observance of reduction in the unique-values caused by the

discretization process, the CAIM algorithm triggered a considerably large reduction in

the data dimensions for both datasets. While the reduction in the dimensions were

48

comparatively smaller by the multivalued-based heuristic. From the look of the graphs,

the multivalued heuristic could have provided an ‘overfit’ discretization scheme. Or in

other words the number of intervals could have been an attribute of this cause. In order to

evaluate the behavior of the proposed multivalued heuristic under different interval

conditions, the readers are advised to refer to the section ‘Varying Interval Sizes’.

 As had been mentioned in the earlier section ‘Discretization’, the basis for the

formulation of the proposed model relies on identifying the right attribute value subsets,

which are a function of an improved information gain value. This consistency could also

be a result of the values the attribute randomly picks to create the discrete sets. This

emphasizes the need for a proposed future work on bounds for value collection during the

process and hence would be interesting to see the effect of such an action on the

performance of the classifier curve.

Equal Frequency Bin Size Bounding Problem

As had introduced in the earlier section ‘Discretization’, the main issue with the

unsupervised algorithms is the interval sizes. The variant introduced in the section

provides an upper bound for the number of intervals, which need to be established. The

approach has also provided a ‘prime number escape’, which along with the condition, log

(x)-log (log (x))<=19, provide a constraint with the number of intervals created for the

equal frequency algorithm. The question that arises for this section based on the approach

adopted is about the appropriate interval size for the proposed approach. With varying

interval sizes across different attributes for the same dataset, the approach adopted in this

case is to consider the maximum of all the interval sizes *(max).

49

5.2 Performance Evaluation for ‘Varying Interval Sizes’.

This section provides a performance comparison of the multivalued discrete algorithm

with varying interval sizes. Little to no contributions have been made to understand the

right correspondence between a discretization scheme and the ‘overfit’ting of data. The

process of discretization, as explained earlier, aims at finely categorizing the continuous

valued attributes into discrete categories, thus making it classifier friendly. Thus, this

section aims at understanding the relation between the increase in the interval size of the

multivalued subset as a discretization tool and the classification errors. These results are

plotted as classification error against the number of intervals and the charts are provided

in Figure 13.

Adaptive Boosting

 Width Frequency

Iterative Dichotomizer 3

Width Frequency

!"!!#$

%!"!!#$

&!"!!#$

'!"!!#$

(!"!!#$

)!"!!#$

*!"!!#$

+!"!!#$

,!"!!#$

-!"!!#$

($,$ %*$ &!$

./01$

23411$

.54671$

879:060;1$$

<7=0>371$$

?@4ABB1;$

.9;7/C43$D0E71$

F
34
11
0G
>4
H
B
9
$I
//
B
/$

!"!!#$

%!"!!#$

&!"!!#$

'!"!!#$

(!"!!#$

)!"!!#$

*!"!!#$

+!"!!#$

,!"!!#$

-!"!!#$

($,$ %*$ &!$

./01$

23411$

.54671$

879:060;1$$

<7=0>371$$

?@4ABB1;$

.9;7/C43$D0E71$

F
34
11
0G
>4
H
B
9
$I
//
B
/$

!"!!#$

%"!!#$

&!"!!#$

&%"!!#$

'!"!!#$

'%"!!#$

(!"!!#$

(%"!!#$

)!"!!#$

)$ *$ &+$ '!$

,-./$

012//$

,3245/$

6578.4.9/$$

:5;.<15/$$

,95-2=>5$8.<;?9?3.@5-$($

,795->21$A.@5/$

B
12
//
.C
<2
=
?
7
$D
--
?
-$

,795->21$A.@5/$

B
12
//
.C
<2
=
?
7
$D
--
?
-$

,795->21$A.@5/$

B
12
//
.C
<2
=
?
7
$D
--
?
-$

!"!!#$

%"!!#$

&!"!!#$

&%"!!#$

'!"!!#$

'%"!!#$

(!"!!#$

(%"!!#$

)!"!!#$

)$ *$ &+$ '!$

,-./$

012//$

,3245/$

6578.4.9/$$

:5;.<15/$$

,95-2=>5$8.<;?9?3?@5-$($

,795->21$A.@5/$

B
12
/
/
.C
<
2
=
?
7
$D
--
?
-$

50

Naïve Bayesian

Width Frequency

Regression

Width Frequency

Figure 13: Illustrating the performances under varying interval sizes under

different classifiers

As can be observed, most of the classifiers portrayed a reduction in the classification

error as a function of the increase in the interval size except for the AdaBoost algorithm,

which showed a near-constant performance of the classification error. The ‘Iris’ dataset

showed an increase in the classification error. The boosting is attributed to increase the

weights associated with the incorrect classified examples whereas it decreases the weight

associated with the correctly classified examples (Kotsiantis et al. 2006(b)). In this case,

with the increase in the number of intervals, the datasets are tended to be more specific

than general. For the same classifier, the dataset ‘PenDigits’, showed consistently high

!"!!#$

%"!!#$

&!"!!#$

&%"!!#$

'!"!!#$

'%"!!#$

(!"!!#$

(%"!!#$

)!"!!#$

)%"!!#$

)$ *$ &+$ '!$

,-./$

012//$

,3245/$

6578.4.9/$$

:5;.<15/$$

=54-5//.>7$

,795-?21$@.A5/$

B
12
//
.C
<2
D
>
7
$E
--
>
-$

!"!!#$

%"!!#$

&!"!!#$

&%"!!#$

'!"!!#$

'%"!!#$

(!"!!#$

(%"!!#$

)!"!!#$

)%"!!#$

)$ *$ &+$ '!$

,-./$

012//$

,3245/$

6578.4.9/$$

:5;.<15/$$

,795-=21$>.?5/$

@1
2/
/.
A<
2B

C7
$D
--
C-
$

E54-5//.C7$

51

error rates for multivalue-based frequency and the width discretizer; whereas the

remaining classifiers showed a gradient decent on the performance of the classifiers

across increasing interval sizes. An overall comparison of the performance of the

classifiers shows that the boosting-based classifier performed comparatively poorly as

against the classifiers not supported with the boosting phenomenon. Data

discretization/binning is attributed to one of the methods to handling noisy data. With the

AdaBoost characteristics introduced in section 2.4.1 along with the overfitting

phenomenon introduced earlier, the proposed multivalued discretization process

(Supervising the Unsupervised) did not contribute towards lowering the classification

errors under the noise reduction procedure but could be rather adherent to the

phenomenon of overfitting. Hence, this section provides a mixed response to the behavior

of the classifiers on the phenomenon of overfitting. It would be hard to conclude the

exact influence of overfitting on the behavioral pattern observed, since no considerable

amount of contributions have been made relating the two aspects.

5.3 Performance Evaluation for ‘Un-supervising the Supervised’

As, had introduced in the section ‘Un-supervising the Supervised’, the key idea of this

approach is to have the proposed multivalued subset algorithm to be built on top of the

unsupervised algorithm. For further reasoning and details, the readers are requested to

revisit the section prior to proceeding ahead. Table 10 provides results of the

classification errors calculated under this approach.

52

Table10: Results for the section ‘Un-supervising the Supervised’

As the results showcase, the proposed integrated model did out perform the robust built

up algorithm on quite a few occasions. The approach was tested on the five datasets. The

FMF approach managed to reduce the classifier error for the ‘Iris’ dataset under the

AdaBoost classifier. The results observed were quite consistent for the ‘Glass’ dataset

except for the Naïve Bayesian classifier where it performed poorly. The ID3 and the

Naïve Bayesian classifiers managed to provide a lower bound on the classification errors

for the ‘Vehicles’ dataset. The ‘Images’ dataset showcased mixed a behavior against the

AdaBoost and the Regression classifiers, though the difference in performance when

compared to the robust FF and FW algorithms doesn’t seem to be large.

 5.4 Statistical Analysis

With the above-mentioned approaches, the study calls for a need to statistically

understand the behavior of the interaction of the algorithms with the classifiers and the

datasets. For the purpose of analyzing the effect of the discretization on the datasets, a

‘kurtosis’-based analysis has been provided for each section to visually understand the

!"#"$%#$ &'"$$()(%*$ ++ +,+ +,- +-

./"0122$# 345446 335336 785886 345446

9*($ 9!3 :5::6 :5::6 :5::6 :5::6

;"<=%>1"?%$("@ :5::6 :5::6 :5::6 :5::6

A%B*%$$(2@ C5CD6 85886 C5CD6 C5CD6

./"0122$# 745::6 745::6 745::6 745::6

E'"$$ 9!3 F54C6 F54C6 F54C6 F54C6

;"<=%>1"?%$("@ 35F36 35F36 C5746 35F36

A%B*%$$(2@ F54C6 F54C6 F54C6 F54C6

./"0122$# CG5DD6 C75C36 C75C36 C45G36

9H"B%$ 9!3 3458F6 3C5376 3C5FC6 345FF6

;"<=%>1"?%$("@ 4I57:6 4G5746 4G5376 4I5ID6

A%B*%$$(2@ 3D5GD6 3C53G6 3C5FC6 3D5776

./"0122$# II5GD6 G:54I6 G:54I6 II5GD6

J%@!(B(#$ 9!3 G:5FG6 G:53I6 G:53I6 G:5FF6

;"<=%>1"?%$("@ G:58G6 GF5FG6 GF5FG6 GF5:36

A%B*%$$(2@ II5GD6 IG5876 IG5876 II5GD6

./"0122$# DI5D86 DG5F36 DG5F36 DI5D86

K%L(M'%$ 9!3 DD5FD6 DC5DD6 DC5DD6 DC5DD6

;"<=%>1"?%$("@ D75I36 DF5C46 DF5C46 D75I36

A%B*%$$(2@ DI5D86 DG5G76 I:5DF6 DD5FD6

53

shift of the ‘peakedness’ for data distribution for individual attributes under the act of the

discretizers. ‘Skewness’, which is a measure of symmetrical/unsymmetrical nature of

distribution, coupled with a measure of how peak the distribution is (kurtosis) would

define an indicator of the effect of the discretization on the attributes in the datasets. In

this case, the ‘Iris’ dataset (Section 2.3) has been selected as a test measure since it would

be graphically feasible to show the performance of all the attributes simultaneously in a

single graph. The statistical analysis could be divided into the following sections.

5.4.1 Analysis for Supervised, Unsupervised and Semi-Supervised

As can be observed from Figure 12, the amount of variance portrayed by the

multidiscrete variants is quite lower than the variances shown by the other algorithms

over the mentioned datasets. Hence the first task is to statistically conclude on the

behavioral pattern of the variances observed of the three different sets of algorithms as a

function of the classifiers. This comparison has been performed on the basis of the

classifier results obtained as per the interval considerations observed in Table 5. Table 11

shows the variance evaluations of the 3 algorithms. Hence, conformant to the earlier

statement made, the variance observed by the proposed multidiscrete algorithm is quite

low compared to the variances of the other 2 algorithms. A non-parametric based ranking

system has been implemented for the evaluations of the algorithms. The evaluations have

been divided into three main clusters, width, frequency and combined. Each of these

clusters has been divided into two main considerations. One being the evaluation of the

discretization algorithms against the classifiers a function of the variability in classifier

error; the other being the evaluation of the discretization algorithms against the datasets,

which too being a function of the variability in classifier errors.

54

5.4.1.1 Ranking

The ranking is based on the datasets/classifiers showing a minimum variability holding a

higher rank. The ranking system follows the extended non-parametric system introduced

in Demsar (2006). The figure given below [Figure 14] illustrates the method.

Figure 14: Illustration of the extended non-parametric ranking scheme

As can be seen from the figure given above, Algorithm1 posses a lower rank as compared

to the other two algorithms and hence as per the scheme will be ranked higher. A similar

approach has been applied for the analyzing the results for the section ‘Supervised,

Unsupervised and Semi-supervised’

Table 11: (Discretizer algorithm vs. Datasets) variance under the width category

Table 12: (Discretizer algorithm vs. Classifier algorithms) variance under the width

category

Datasets Algorithm1 Algorithm2 Algorithm3

Dataset1 (0.0013)1 (0.002)2 (0.012)3

Dataset2 (0.003)2 (0.02)3 (0.001)1

Dataset3 (0.01)1 (0.045)3 (0.02)2

Dataset4 (0.3)3 (0.02)2 (0.001)1

Dataset5 (0.001)1 (0.02)2 (0.45)3

Dataset6 (0.003)2 (0.0001)1 (0.4)3

Dataset7 (0.002)3 (0.001)1 (0.0015)2

Sum of Ranks 13 14 15

Datasets CAIM Equal Width Multivalued Width Minimum Variance

Iris 0.0031 0.0036 0.0044 CAIM

Glass 0.0037 0.0115 0.0187 CAIM

Images 0.0067 0.0826 0.0502 CAIM

PenDigits 0.0608 0.1220 0.1029 CAIM

Vehicles 0.0004 0.0231 0.0188 CAIM

55

Table 13: Ranks of the variance based performance evaluation (left: Discretizer algorithm

vs. Datasets) (right: Discretizer algorithms vs. Classifier algorithms) under the width

category

Table 14: (Discretizer algorithms vs. Datasets) variance under the frequency category

Table 15: (Discretizer algorithms vs. Classifier algorithms) variance performance under

the frequency category

Table 16: Ranks of the variance based evaluation (left: Discretizer algorithm vs.

Datasets) (right: Discretizer algorithms vs. Classifier algorithms) under the frequency

category

Algorithms CAIM Equal Width Multivalued Width Minimum Variance

AdaBoost 0.0118 0.0052 0.0115 Equal Width

ID3 0.0303 0.0274 0.0072 Multivalued Width

Naïve Bayesian 0.0207 0.0170 0.0112 Multivalued Width

Regression 0.0550 0.0237 0.0153 Multivalued Width

Rank Algorithm

1 CAIM

2 Multivalued Width

3 Equal Width

Rank Algorithm

1 Multivalued Width

2 Equal Width

3 CAIM

Datasets CAIM Equal Frequency Multivalued Frequency Minimum Variance

Iris 0.0031 0.0054 0.0431 CAIM

Glass 0.0037 0.0110 0.0278 CAIM

Images 0.0067 0.0103 0.0583 CAIM

PenDigits 0.0608 0.0001 0.1061 Equal Frequency

Vehicles 0.0008 0.0016 0.0244 CAIM

Algorithms CAIM Equal Frequency Multivalued Frequency Minimum Variance

AdaBoost 0.032915736 0.107873811 0.014482146 Multivalued Frequency

ID3 0.027042595 0.178155357 0.007887593 Multivalued Frequency

Naïve Bayesian 0.025701939 0.16745357 0.009477698 Multivalued Frequency

Regression 0.051196374 0.148268321 0.01292317 Multivalued Frequency

Datasets

Rank Algorithm

1 CAIM

2 Equal Frequency

3 Multivalued Frequency

Algorithms

Rank Algorithm

1 Multivalued Frequency

2 CAIM

3 Equal Frequency

56

Table 17: (Discretizer algorithms vs. Datasets) variance for cumulative analysis

Table 18: (Discretizer algorithms vs. Datasets) ranking scheme applied to the cumulative

variance performance

Table 19: (Discretizer algorithms vs. Classifier algorithms) variance performance for

cumulative analysis

Table 20: (Discretizer algorithm vs. Classifier algorithms) ranking scheme applied to the

cumulative variance performance

Table 21: Ranks of the variance based evaluation (left: Discretizer algorithm vs.

Datasets) (right: Discretizer algorithms vs. Classifier algorithms) under for cumulative

performance analysis.

Datasets CAIM Equal Frequency Multivalued Frequency Equal Width Multivalued Width Minimum Variance

Iris 0.003085803 0.005428421 0.043103543 0.00362601 0.004375823 CAIM

Glass 0.003662813 0.01096475 0.027755731 0.011548178 0.018717448 CAIM

Images 0.006663709 0.010310414 0.058316129 0.082608402 0.050196809 CAIM

PenDigits 0.060802039 8.34868E-05 0.106117948 0.10345103 0.102936236 Equal Frequency

Vehicles 0.000789207 0.001641249 0.024399075 0.023129829 0.01878165 CAIM

Datasets CAIM Equal Frequency Multivalued Frequency Equal Width Multivalued Width

Iris 1 4 5 2 3

Glass 1 2 5 3 4

Images 1 2 4 5 3

PenDigits 2 1 5 4 3

Vehicles 1 2 5 4 3

Sum of Ranks 6 11 24 18 16

Algorithms CAIM Equal Frequency Multivalued Frequency Equal Width Multivalued Width Minimum Variance

AdaBoost 0.032915736 0.107873811 0.014482146 0.053797667 0.045954153 Multivalued Frequency

ID3 0.027042595 0.178155357 0.007887593 0.019413022 0.008652569 Multivalued Frequency

Naïve Bayesian 0.025701939 0.16745357 0.009477698 0.014725203 0.010333877 Multivalued Frequency

Regression 0.051196374 0.148268321 0.01292317 0.01424111 0.009968933 Multivalued Width

Algorithms CAIM Equal Frequency Multivalued Frequency Equal Width Multivalued Width

AdaBoost 2 5 1 4 3

ID3 4 5 1 3 2

Naïve Bayesian 4 5 1 3 2

Regression 4 5 2 3 1

Sum of Ranks 14 20 5 13 8

Rank Algorithm

1 CAIM

2 Equal Frequency

3 Multivalued Width

4 Equal Width

5 Multivalued Frequency

Rank Algorithm

1 Multivalued Frequency

2 Multivalued Width

3 Equal Width

4 CAIM

5 Equal Frequency

57

As can be observed from [Tables 11-13], the CAIM algorithm provided much better

results for minimum variation on the classification error across the different classification

algorithms contributing a consistent behavior across all the classifiers, whereas the

proposed heuristic based semi-supervised ‘Multivalued Width’ algorithm provided much

more consistency in lower classification errors across the different datasets. A similar

conclusion could be inferred from [Tables 14-16], where CAIM dominated across the

classifiers whereas the proposed heuristic based ‘Multivalued Frequency’ algorithm

showcased consistent performance across the datasets. It would be interesting to

understand the correlations of the paired algorithms across the two main categories,

which are ‘Width’ and ‘Frequency’ [Tables 17-21]. The CAIM algorithm again proves to

be a better discretizer when tested across the datasets whereas the multivalue frequency

algorithm tests better across the classifiers. The kurtosis table [Table 22] and chart

[Figure 15] for this section is as shown below.

Table 22: Table shows the values for the kurtosis under the section Supervised,

Unsupervised and Semi-supervised

Algorithms Att1 Att2 Att3 Att4
No Discretization 2.4264 3.2414 1.6046 1.6648

CAIM 1.3657 75 2.1501 3.4317
Equal Width 2.3426 3.2957 1.5881 1.7267

Equal Frequency 2.1528 3.0215 1.7365 1.7437
Multivalued Width 3.2173 2.7333 1.7482 1.6261

Multivalued Frequency 1.5891 1.897 2.9581 1.6598

58

Figure 15: Kurtosis chart for Supervised, Unsupervised and Semi-supervised

As can be observed from the table and figure given above, 3 of the 4 attributes showed a

consistent kurtosis across the different discretizer algorithms. Attribute 2 shows a high

kurtosis when subjected to the CAIM algorithm.

5.4.2 Analysis of Varying Interval Sizes

One of the biggest concerns as addressed in the earlier chapter was the effect of the

‘overfitting’. To add on to what was mentioned in the earlier chapter, overfitting would

cause the performance to deteriorate. Ideally, under the phenomenon of overfitting, with

the increase in number of intervals, the probability of miss-classifying the testing data

should increase. An important consideration while analyzing the effect of the interval

sizes /bin sizes on the data is the effect on the data distribution. [Figures 16-17] provides

the charts for the kurtosis along different interval sizes based the kurtosis table [Tables

23-24]. This is an important distinguishing factor to portray the ‘working’ of the

intervals/bin sizes since most of the classifiers except for AdaBoost show a declining

trend as a function of increasing the interval sizes. The declining trend shows the

adaptability of the proposed algorithm, where it shares the freedom to choose the values

in an unsorted manner to improve on the function, which in this case is the information

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

!" #" $" %" &"

Iris: Supervised, Un-supervised and Semi-supervised

'(!"

'(#"

'($"

'(%"

)*+,"-'(!."

)*+,"-'(#."

)*+,"-'($."

)*+,"-'(%."

K
u

rt
o

si
s

K
u

rt
o

si
s

Algorithms

59

gain. Again, the intent of the study is not to propose an, ‘improved model’, but rather

understand the application of using multivalued subsets in different aspects of Data

Mining/Machine Learning. The Multivalued frequency algorithm showed a maximum

drop in classifier errors under the Naïve Bayesian classifier for the ‘Glass’ dataset, from

an interval size of 4 to an interval size of 20. One can observe from the kurtosis chart and

table given below, an effective change in the values as a function of increase in the

interval bin size. Again, in this case the final values linger around the ‘2’-value mark.

While some of the attributes show a decrease in the peakedness, the others showed a

moderate increase in the peak heights.

Table 23: Table showing the kurtosis for the varying interval sizes under the proposed

width based multidiscrete algorithm

Figure 16: Figure showing the kurtosis for the varying interval sizes under the proposed

Width based multidiscrete algorithm

Interval sizes Att1 Att2 Att3 Att4

Bin =0 2.4264 3.2414 1.6046 1.6648

Bin=4 1.8028 2.1667 1.8687 2.2866

Bin=8 3.2173 2.7333 1.7482 1.6261

Bin =16 1.8076 1.6554 1.6528 1.7987

Bin =20 1.6289 1.7365 1.9371 1.9175

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

!" #" $" %" &"

Iris Multivalued Width

'(!"

'(#"

'($"

'(%"

)*+,"-'(!."

)*+,"-'(#."

)*+,"-'($."

)*+,"-'(%."

Bin Sizes (0-20 at an interval of 5)

K
u
rt

o
si

s

60

Table 24: Table showing the kurtosis for the varying interval sizes under the proposed

frequency based multidiscrete algorithm

Figure 17: Figure showing the kurtosis for the varying interval sizes under the proposed

Frequency based multidiscrete algorithm

As can be seen from above, the data distributions for the individual attributes follows a

convergence path as a function of the number of bins.

5.4.3 Analysis for the ‘Un-supervising the Supervised’

This section analyzes the results obtained for the algorithms introduced in Section 4.7. A

non-parametric approach similar to the one introduced in the section 5.4.1.1 has been

applied for the statistical analysis of this section.

Interval Sizes Att1 Att2 Att3 Att4

Bin =0 2.4264 3.2414 1.6046 1.6648

Bin=4 1.765 2.0058 1.5846 1.7139

Bin=8 2.9872 2.3792 1.6984 2.0205

Bin =16 1.9058 1.8364 2.0445 2.3516

Bin =20 1.8818 1.7058 1.8708 2.0015

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

!" #" $" %" &"

Iris Multivalued Frequency

'(!"

'(#"

'($"

'(%"

)*+,"-'(!."

)*+,"-'(#."

)*+,"-'($."

)*+,"-'(%."

Bin Sizes (0-20 at an interval of 5)

K
u
rt

o
si

s

61

Table 25: (Discretizer algorithm vs. Datasets) ranking scheme applied to ‘Un-supervising

the Supervised’.

Table 26: (Discretizer algorithm vs. Datasets) ranking scheme applied to the results

obtained from the section ‘Un-supervising the Supervised’

Table 27: Ranks of the variance based evaluation (Discretizer algorithm vs. Datasets) for

the section ‘Un-supervising the Supervised’

Datasets FF FMF FMW FW Minimum Varibility

Iris 0.02875609 0.02579864 0.01332837 0.02875531 FMW

Glass 0.01318464 0.01318568 0.01245108 0.01318568 FMW

Images 0.02717363 0.02034096 0.02070874 0.02384715 FMF

PenDigits 6.4555E-05 5.3725E-05 5.3725E-05 0.00010044 FMF/FMW

Vehicles 0.0007789 0.00138857 0.001565 0.0006314 FW

Dataset FF FMF FMW FW

Iris 4 2 1 3

Glass 2 3 1 3

Images 4 1 2 3

PenDigits 3 1 1 4

Vehicles 2 3 4 1

Sum of Ranks 15 10 9 14

Rank Algorithm

1 FMW

2 FMF

3 FW

4 FF

62

Table 28: (Discretizer algorithm vs. Classifier algorithms) ranking scheme applied to

‘Un-supervising the Supervised’

Table 29: (Discretizer algorithm vs. Classifier algorithms) ranking scheme applied to the

results obtained from the section ‘Un-supervising the Supervised’.

Table 30: Ranks of the variance based evaluation (Discretizer algorithm vs. Classifier

algorithms) under the section ‘Un-supervising the Supervised’

As can be seen from [Tables 25-27], the Frequency Multivalued Width (FMW) provided

a lower variance measure compared to other algorithms over the mentioned datasets. On

a similar note the FW algorithm provided the lowest variance amongst all the classifier

evaluations in the same measure [Tables 28-30]. It could be concluded at this point that

Algorithms FF FMF FMW FW Minimum Varibility

AdaBoost 0.07769381 0.08066978 0.0932709 0.07603428 FW

ID3 0.17488457 0.17441876 0.17444742 0.17406108 FW

Naïve Bayesian 0.16991792 0.17063069 0.16432071 0.17161072 FMW

Regression 0.16130896 0.16909223 0.16651637 0.15870721 FW

Algorithms FF FMF FMW FW

!"#$%%&' 2 3 4 1

()* 4 2 3 1

+#,-./$#0.&1#2 2 3 1 4

3.45.&&1%2 2 4 3 1

Sum of Ranks 10 12 11 7

Rank Algorithm

1 FW

2 FMW

3 FF

4 FMF

63

the ‘equal width’ heuristic played a crucial role for un-supervising the heuristic based

supervised algorithm. The kurtosis table [Table 31] provided below, gives the kurtosis for

the distribution transformation along these algorithms followed by the chart [Figure 18]

showing that attributes stick to their corresponding distribution as a function of the

different discretization algorithms introduced in this section. It can be observed that the

distributions sustain their kurtosis when being subjected to the proposed discretization

algorithms. Hence no significant change in the shape of the distribution can be observed

following the discretization process.

Table 31: Table shows the values for the kurtosis under the section Supervised,

Unsupervised and Semi-supervised

Figure 18: Figure showing the kurtosis for the varying algorithms under the section ‘Un-

supervising the Supervised’

Algorithms Att1 Att2 Att3 Att4

No Discretization 2.4264 3.2414 1.6046 1.6648

FF 2.2782 2.9593 1.7431 1.7716

FMF 2.277 2.9593 1.7361 1.7716

FMW 2.4577 2.9593 1.7635 1.7716

FW 2.3148 2.9593 1.7333 1.7716

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

!" #" $" %" &"

Iris: Unsupervising the Supervised

'(!"

'(#"

'($"

'(%"

)*+,"-'(!."

)*+,"-'(#."

)*+,"-'($."

)*+,"-'(%."

Algorithms

K
u
rt

o
si

s

64

Chapter 6

Implications of the Work

This work has successfully managed to identify subsets of attribute value pairs, which

contribute towards a higher information gain. This study was divided into four major

sections. The first section saw the application of the mentioned philosophy towards a

feature selection process. A comparison was made on the results of the proposed methods

against the standard information gain approach. Results show that though the final

attribute (highest ranked attribute) for the multivalued subset method provided a slightly

higher classification error, there were instances recognized where lower performance

errors resulting from some of the attribute value pairs identified. The next section saw the

application of the multivalued sub-setting in field of controlled discretization of data prior

to subjecting it to a classifier. The two versions of the developed algorithm adherent to

the width based and frequency based discretization were developed and tested against the

corresponding unsupervised versions and a supervised version of CAIM. Results found

that the performance of the semi supervised approach adopted by the proposed heuristic

worked better attribute to uniform performance across different datasets. It did manage to

provide better results comparing to its counterparts during the experimental run. The next

section saw the performance of the proposed algorithm across different interval sizes.

Expect for the Ada_Boost algorithm, the rest of the classification algorithms showcased a

decrease in the performance errors subject to increase in the interval size. The final

section introduced a reverse order procedure for mounting the heuristic based semi-

65

supervised algorithm. The results did manage to show a slightly better performance on

certain occasion against a similar built up of the robust unsupervised discretizers.

6.1 Contributions to the field of Industrial Engineering

Data Mining has been viewed as a growing area of importance for its key application as a

prediction tool. The above-mentioned approach provides the flexibility for the data

collectors to collect real time data (continuous in nature).

Feature Selection:

The algorithm suggested would work in identifying the right set of factors that would

built a better prediction model at the cost of lowering errors on implementation samples.

Discretization:

The method suggested allows the user to collect continuous data and identify the right set

of categories. This study also helps the user to judge the classification error at the cost of

the interval size if the heuristic model were to be implemented.

6.2 Future Work

6.2.1 Establishment of bounds

As had been mentioned in the earlier section, the proposed discretization approaches

relies on a heuristic search result and need not necessarily pick neighboring attribute-

value sets for discretization. The lower bound for this approach could be that it

discretizes all the values as per the same class distribution that exists in the current

dataset, but in order for that situation to occur, the information gain needs to reach the

maximum value. As can be observed from the section ‘Multivalue subset based Feature

Selection’, the information gain values obtained for the multivalue subsets lie between a

66

maximum of the information gain for ID3 collected and the maximum of the GID3 value

which essentially worked for this study. Hence it is essential to develop an upper bound

for the selection of values to be considered while discretizing into a single category.

6.2.2. Width as a platform for the reverse model of ‘Un-supervising the Supervised’.

The models developed under the ‘Un-supervising the Supervised’ algorithms, have only

considered ‘Frequency’ as the platform for building the heuristic based semi-supervised

models. One can evaluate with having the width based platform models similar to ones

presented in this study.

6.2.3 Conditional Independence Tests for the Naïve Bayesian Classifier after

Discretization.

Since the Naïve Bayesian Classifier depends on the conditional independence measure

between the attributes, it would be interesting to see the effect of such a discretization

process on its independence measures.

67

Appendices

Appendix A.1 . Normality Tests for ‘Iris’ Dataset

Normality Tests for Informational Gain values:

Attribute 1 Attribute 2

Attribute 3 Attribute 4

Normality Tests for Subset values:

 Attribute 1 Attribute 2

0.350.300.250.200.150.100.050.00

99.99

99

95

80

50

20

5

1

0.01

C1

P
e

rc
e

n
t

Mean 0.1671
StDev 0.04400
N 1000
AD 45.711
P-Value <0.005

Probability Plot of C1
Normal

0.2000.1750.1500.1250.1000.0750.050

99.99

99

95

80

50

20

5

1

0.01

C1

P
e

rc
e

n
t

Mean 0.1147
StDev 0.02007
N 1000
AD 17.928
P-Value <0.005

Probability Plot of C1
Normal

0.60.50.40.30.20.10.0

99.99

99

95

80

50

20

5

1

0.01

C1

P
e

rc
e

n
t

Mean 0.3052
StDev 0.06545
N 1000
AD 25.577
P-Value <0.005

Probability Plot of C1
Normal

0.80.70.60.50.40.30.20.1

99.99

99

95

80

50

20

5

1

0.01

C1

P
e

rc
e

n
t

Mean 0.4461
StDev 0.08639
N 1000
AD 30.058
P-Value <0.005

Probability Plot of C1
Normal

2520151050-5

99

95

90

80

70

60
50
40
30

20

10

5

1

Att2

P
e

rc
e

n
t

Mean 11.27
StDev 6.231
N 30
AD 0.817
P-Value 0.031

Probability Plot of Att2
Normal

403020100

99

95

90

80

70

60
50
40
30

20

10

5

1

Att1

P
e

rc
e

n
t

Mean 18.83
StDev 9.021
N 30
AD 0.654
P-Value 0.079

Probability Plot of Att1
Normal

68

 Attribute 3 Attribute 4

Appendix A.2 Nomenclature of the Attribute/Class Names

 Vehicle Silkhouttes Iris
Attribute Number Attribute Name

1 Sepal Length
2 Sepal Width
3 Petal Length
4 Petal Width

Class 1 Iris Setosa
Class 2 Iris Versicolor
Class 3 Virginica

50403020100

99

95

90

80

70

60
50
40
30

20

10

5

1

Att3

P
e

rc
e

n
t

Mean 24.5
StDev 10.94
N 30
AD 0.367
P-Value 0.409

Probability Plot of Att3
Normal

2520151050

99

95

90

80

70

60
50
40
30

20

10

5

1

Att4

P
e

rc
e

n
t

Mean 10.8
StDev 5.821
N 30
AD 0.509
P-Value 0.183

Probability Plot of Att4
Normal

Attribute Number Attribute Name

1 Compactness
2 Circularity
3 Distance Circularity
4 Radius Ratio
5 PR. Axis Aspect Ratio
6 Max. Length Aspect

Ratio
7 Scatter Ratio

8 Elongatedness
9 PR. Axis Rectangularity

10 Max. Length
Rectangularity

11 Scaled Variance Along
Minor Axis

12 Scaled Radius Of
Gyration

13 Skewness About Major
Axis

14 Skewness About Minor
Axis

15 Kurtosis About Major
Axis

16 Hollows Ratio
Class 1 OPEL
Class 2 SAAB
Class 3 BUS
Class 4 VAN

69

Matlab Codes

Appendix C.1.Program Code for calculating the information gain under the ID3 rule

% Iterative Dichotomizer 3

% This program will be used for calculating the maximum entropy of all
the
% binary partitions

close all;
clear all;
clc;

readfile = dlmread('attribute.csv', ',' , 'A1..J214');
outfile_ID3= fopen('outfile_ID3.doc','w');

size_rows=size(readfile,1);
size_columns=size(readfile,2);

%Calculating the entropy with respect to class

unique_class=unique(readfile(:,size_columns));
Class_entropy = zeros(numel(unique_class),1);

for class_ent=1:numel(unique_class)
 Class_entropy(class_ent) = 0-
(length(find(readfile(:,size_columns)==(class_ent))))/size_rows.*log2((
length(find(readfile(:,size_columns)==(class_ent))))/size_rows);
end

Entropy_class=sum(Class_entropy,1);

fprintf(outfile_ID3,'\n%d\n',Entropy_class);

Sum_Final=zeros((size_columns-1),1);

% Loop for calculating the entropy of the temporary attributes

70

for attribute = 1:(size_columns-1)

 temp_value = readfile(:,attribute);
 temp_class = readfile(:,size_columns);

 assort=[temp_value temp_class];
 assort = sortrows(assort,[1]);

 value=assort(:,1);
 class=assort(:,2);

 j = unique(value);
%xlswrite('u:\profile.cu\Desktop\Matlab Files\ID3 Datasets\Attribute
19\unique_value.xlsx',j);

ind = ones(length(j),1);
binary_attribute= value;

for i =1:length(j)

ind(i) = length(find(value == j(i)));

end

%xlswrite('u:\profile.cu\Desktop\Matlab Files\ID3 Datasets\Attribute
19\AttributeValue_Count.xlsx', [j ind]);

first_value =0;
end_value =0;
Class_count = zeros(max(class),1);
Class_vector = zeros(length(j), max(class));

for i= 1:length(ind)
 first_value =end_value +1;
 end_value=first_value+(ind(i)-1);

 for window = first_value:end_value

 Class_count(class(window))= Class_count(class(window))+1;

 end

 for class_fill=1:numel(unique_class)

71

 Class_vector(i,class_fill)=Class_count(class_fill);
 end

 % Class_vector(i,:)=[Class_count(1) Class_count(2) Class_count(3)
Class_count(4) Class_count(5) Class_count(6) Class_count(7)];

 for m= 1:max(class)
 Class_count(m)=0;
 end

end

Sum = [j Class_vector sum(Class_vector,2)
sum(Class_vector,2)/size_rows];

Sum_Class=sum(Class_vector,2);

RatioClass_vector = zeros(length(j), max(class));

for i=1:length(j)

 for y=1:max(class)
 RatioClass_vector(i,y)=Class_vector(i,y)/Sum_Class(i);
 end

end

Ratio = [Sum RatioClass_vector];

%xlswrite('u:\profile.cu\Desktop\Matlab Files\ID3 Datasets\Attribute
19\Ratio.xlsx',Ratio);

Value_Zero = RatioClass_vector;

row_cell = ones(1,length(j));

column_cell = ones(1, max(class));

Cell_EliminateZero=mat2cell(Value_Zero, row_cell, column_cell);

72

for p = 1: length (j)
 for t =1:max(class)
 if Cell_EliminateZero{p,t} == 0
 Cell_EliminateZero{p,t}=[];
 end
 end
end

%xlswrite('u:\profile.cu\Desktop\Matlab Files\ID3 Datasets\Attribute
19\Cell_Elimination.xlsx',Cell_EliminateZero);

log_sum=ones(length(j), 1);
log_sum2=log_sum;
for i =1:length(j)
 a =cell2mat(Cell_EliminateZero(i,:));
 for p = 1:length(a)
 a(p)=a(p).*log2(a(p));
 end
 log_sum(i)=0-sum(a);

 log_sum2(i)=(ind(i)/length(value)).*log_sum(i);
end

%Sum_Final(attribute)=sum(log_sum2);

 Sum_Final(attribute)=sum(log_sum2);
end

%dlmwrite('',Sum_Final);
%dlmwrite('Sum.txt', Sum_Final,'precision', '%.6f','delimiter',
',','newline', 'unix');

% Entropy of the attributes-value pairs
for att_value=1:(size_columns-1)

 fprintf(outfile_ID3,'\n%d\n',Sum_Final(att_value));

fprintf(outfile_ID3,'\n\n\n\n--------%d-----------
\n\n\n\n',att_value+1);
end

73

Appendix C.2.Program Code for calculating the information gain under the GID rule

% This program will be used for calculating the maximum entropy of all
the
% binary partitions

close all;
clear all;
clc;

readfile = dlmread('attribute_Id3.csv', ',' , 'A1..S846');
outfile= fopen('outfile.doc','w');

size_rows=size(readfile,1);
size_columns=size(readfile,2);

%Calculating the entropy with respect to class

unique_class=unique(readfile(:,size_columns));
Class_entropy = zeros(numel(unique_class),1);

for class_ent=1:numel(unique_class)
 Class_entropy(class_ent) = 0-
(length(find(readfile(:,size_columns)==(class_ent))))/size_rows.*log2((
length(find(readfile(:,size_columns)==(class_ent))))/size_rows);
end

% Finding the max of the unique values along the different attributes
uni_max=zeros(1,size_columns-1);
for unique_max = 1:size_columns-1
 uni_max(1,unique_max)=numel(unique(readfile(:,unique_max)));
end
max_unique=max(uni_max);

Entropy_class=sum(Class_entropy,1);

% Defining a 3D array for defining the temporary attribute
temp_attribute=zeros(length(readfile),max_unique,size_columns-1);

% Defining the class vector across all the unique values of the
attributes
class_attribute = zeros(length(readfile),size_columns-1);

74

% Creating the temporary attributes

for z = 1:size_columns-1
 readfile = sortrows(readfile,z);
 class_attribute(:,z)=readfile(:,size_columns);
 % xlswrite('temp.xlsx',readfile);
 unique_value=unique(readfile(:,z));

 for y = 1:length(unique_value)
 index = find(readfile(:,z)==unique_value(y));

 for x =1:length(index)

 temp_attribute(index(x),y,z)=1;

 end
 index =0;

 end
 unique_value=0;

end

Sum_Final=zeros(max_unique,1);

% Loop for calculating the entropy of the temporary attributes

for attribute = 1:size_columns-1
 for temp_uniquevalue = 1: length(unique(readfile(:,attribute)))
 temp_value = temp_attribute(:,temp_uniquevalue,attribute);
 temp_class = class_attribute(:,attribute);

 assort=[temp_value temp_class];
 assort = sortrows(assort,[1]);

 value=assort(:,1);
 class=assort(:,2);

 j = unique(value);
%xlswrite('u:\profile.cu\Desktop\Matlab Files\ID3 Datasets\Attribute
19\unique_value.xlsx',j);

ind = ones(length(j),1);
binary_attribute= value;

for i =1:length(j)

ind(i) = length(find(value == j(i)));

end

75

%xlswrite('u:\profile.cu\Desktop\Matlab Files\ID3 Datasets\Attribute
19\AttributeValue_Count.xlsx', [j ind]);

first_value =0;
end_value =0;
Class_count = zeros(max(class),1);
Class_vector = zeros(length(j), max(class));

for i= 1:length(ind)
 first_value =end_value +1;
 end_value=first_value+(ind(i)-1);

 for window = first_value:end_value

 Class_count(class(window))= Class_count(class(window))+1;

 end

 for class_fill=1:numel(unique_class)
 Class_vector(i,class_fill)=Class_count(class_fill);
 end
 for m= 1:max(class)
 Class_count(m)=0;
 end
end

Sum = [j Class_vector sum(Class_vector,2)
sum(Class_vector,2)/size_rows];

Sum_Class=sum(Class_vector,2);

RatioClass_vector = zeros(length(j), max(class));

for i=1:length(j)

 for y=1:max(class)
 RatioClass_vector(i,y)=Class_vector(i,y)/Sum_Class(i);
 end

end

Ratio = [Sum RatioClass_vector];

Value_Zero = RatioClass_vector;

row_cell = ones(1,length(j));

column_cell = ones(1, max(class));

Cell_EliminateZero=mat2cell(Value_Zero, row_cell, column_cell);

for p = 1: length (j)

76

 for t =1:max(class)
 if Cell_EliminateZero{p,t} == 0
 Cell_EliminateZero{p,t}=[];
 end
 end
end

log_sum=ones(length(j), 1);
log_sum2=log_sum;
for i =1:length(j)
 a =cell2mat(Cell_EliminateZero(i,:));
 for p = 1:length(a)
 a(p)=a(p).*log2(a(p));
 end
 log_sum(i)=0-sum(a);

 log_sum2(i)=(ind(i)/length(value)).*log_sum(i);
end

 Sum_Final(temp_uniquevalue,attribute)=Entropy_class-sum(log_sum2);
 end
end

% Entropy of the attributes-value pairs
for att_value=1:size_columns-1
for r=1:length(unique(readfile(:,att_value)))

 fprintf(outfile,'\n%d\n',Sum_Final(r,att_value));

end

fprintf(outfile,'\n\n\n\n--------%d-----------\n\n\n\n',att_value+1);
end

Appendix C.3.Program Code for Performing the Adaptive Simulated Annealing

 function [Global_Best Rand_Value
NumelEl]=discretize(OriginalDataset,attribute_num)

readfile=OriginalDataset;

Dataset_Rows =size(readfile,1);
Dataset_Columns=size(readfile,2);

rand_list=rand(100000000,1);
position_rand=1;
% Class Entropy

Class_entropy = zeros(numel(unique(readfile(:,Dataset_Columns))),1);

77

Classes=unique(readfile(:,Dataset_Columns));

for class_count=1:numel(Classes)
 Class_entropy(Classes(class_count))=0-
(length(find(readfile(:,Dataset_Columns)==(Classes(class_count)))))/Dat
aset_Rows.*log2(length(find(readfile(:,Dataset_Columns)==(Classes(class
_count))))/Dataset_Rows);
end

Entropy_class=sum(Class_entropy,1);

 position_rand=position_rand+1;
 seed_rand=rand_list(position_rand)*1000;
 [stream
]=RandStream.create('mt19937ar','NumStreams',1,'seed',seed_rand);
random_vector=rand(stream,length(unique(readfile(:,attribute_num))),1);

 constant = rand(stream,1,1);

 g=random_vector>constant;

 unique_value = unique(readfile(:,attribute_num));

 unique_value= g.*unique(readfile(:,attribute_num));

 temp_attribute=readfile(:,attribute_num);

 index = find (unique_value(:,1)>0);

 j=index;

 for r=1:length(index)

 j(r,1)=unique_value(index(r),1);
 end

 for t =1:length(j)

 index_temp=find(temp_attribute==j(t));
 for temp=1:length(index_temp)

78

 temp_attribute(index_temp(temp),1)=1;
 end

 end

 for zeros_1=1:length(readfile(:,attribute_num))
 eliminate = find (temp_attribute(:,1)~=1);
 for k=1:length(eliminate)
 temp_attribute(eliminate(k),1)=0;
 end
 end

 temp_value = temp_attribute;
 temp_class = readfile(:,Dataset_Columns);

 assort=[temp_value temp_class];
 assort = sortrows(assort,[1]);

 value=assort(:,1);
 class=assort(:,2);

 j = unique(value);

 Class_count = zeros(max(class), 1);
Class_vector = zeros(length(j), max(class));

% Creating a count on the classes for the

ind = ones(length(j),1);

for i =1:length(j)

ind(i) = length(find(value == j(i)));

end

% Creating a Window for maintaining the count

first_value =0;
end_value =0;

for i= 1:length(ind)
 first_value =end_value +1;
 end_value=first_value+(ind(i)-1);

 for window = first_value:end_value

79

 Class_count(class(window))= Class_count(class(window))+1;

 end

 for fill=1:max(Classes)
 Class_vector(i,fill)=Class_count(fill);
 end

 for m= 1:max(class)
 Class_count(m)=0;
 end

end

Sum = [j Class_vector sum(Class_vector,2)
sum(Class_vector,2)/Dataset_Rows];

Sum_Class=sum(Class_vector,2);

RatioClass_vector = zeros(length(j), max(class));

for i=1:length(j)

 for y=1:max(class)
 RatioClass_vector(i,y)=Class_vector(i,y)/Sum_Class(i);
 end

end

Ratio = [Sum RatioClass_vector];

Value_Zero = RatioClass_vector;

row_cell = ones(1,length(j));

column_cell = ones(1, max(class));

Cell_EliminateZero=mat2cell(Value_Zero, row_cell, column_cell);

80

for p = 1: length (j)
 for t =1:max(class)
 if Cell_EliminateZero{p,t} == 0
 Cell_EliminateZero{p,t}=[];
 end
 end
end

log_sum=ones(length(j), 1);
log_sum2=log_sum;
for i =1:length(j)
 a =cell2mat(Cell_EliminateZero(i,:));
 for p = 1:length(a)
 a(p)=a(p).*log2(a(p));
 end
 log_sum(i)=0-sum(a);

 log_sum2(i)=(ind(i)/length(value)).*log_sum(i);
end

 Sum_Final=Entropy_class-sum(log_sum2);
 Fh=Sum_Final;
 Fl=Sum_Final;

 Initial_Solution_Objective_Value=Sum_Final;
 Global_Best=Initial_Solution_Objective_Value;
 Rand_Value=seed_rand;
 NumelEl=numel(find(g==1));
 Global_Config_Best=temp_attribute;

 Best_Solution=Sum_Final;
 Equilibrium_Best=0;
 Solution_Objective_Value=0;

% Based on the sampling the Initial Temperature is set up
T = 1000;

% Calculating the Ending Temperature
Tend = 1;

%Loop for the Temperature

while T > Tend
 loop =0;

%Loop for the Equilibrium State
Transition_L=2;
Increament = 0;

81

l_Transition=0;

while l_Transition<(Transition_L+Increament)

 position_rand=position_rand+1;
 seed_rand=rand_list(position_rand)*1000;

[stream]=RandStream.create('mt19937ar','NumStreams',1,'seed',seed_rand
);
random_vector=rand(stream,length(unique(readfile(:,attribute_num))),1);

 constant = rand(stream,1,1);

 g=random_vector>constant;

 unique_value=unique(readfile(:,attribute_num));

 unique_value= g.*unique(readfile(:,attribute_num));

 temp_attribute=readfile(:,attribute_num);

 index = find (unique_value(:,1)>0);

 j=index;

 for r=1:length(index)

 j(r,1)=unique_value(index(r),1);
 end

 for t =1:length(j)

 index_temp=find(temp_attribute(:,1)==j(t));
 for temp=1:length(index_temp)

 temp_attribute(index_temp(temp),1)=1;
 end

 end

 for zeros_1=1:length(readfile(:,attribute_num))
 eliminate = find (temp_attribute(:,1)~=1);
 for k=1:length(eliminate)
 temp_attribute(eliminate(k),1)=0;
 end

82

 end

 % Calculating the objective function value for the random sets

 temp_value = temp_attribute(:,1);
 temp_class = readfile(:,Dataset_Columns);

 assort=[temp_value temp_class];
 assort = sortrows(assort,[1]);

 value=assort(:,1);
 class=assort(:,2);

 j = unique(value);

 Class_count = zeros(max(class), 1);
Class_vector = zeros(length(j), max(class));

ind = ones(length(j),1);

for i =1:length(j)

ind(i) = length(find(value == j(i)));

end

first_value =0;
end_value =0;

for i= 1:length(ind)
 first_value =end_value +1;
 end_value=first_value+(ind(i)-1);

 for window = first_value:end_value

 Class_count(class(window))= Class_count(class(window))+1;

 end

 for fill=1:max(Classes)
 Class_vector(i,fill)=Class_count(fill);
 end

83

 for m= 1:max(class)
 Class_count(m)=0;
 end

end

Sum = [j Class_vector sum(Class_vector,2)
sum(Class_vector,2)/Dataset_Rows];

Sum_Class=sum(Class_vector,2);

RatioClass_vector = zeros(length(j), max(class));

for i=1:length(j)

 for y=1:max(class)
 RatioClass_vector(i,y)=Class_vector(i,y)/Sum_Class(i);
 end

end

Ratio = [Sum RatioClass_vector];

Value_Zero = RatioClass_vector;

row_cell = ones(1,length(j));

column_cell = ones(1, max(class));

Cell_EliminateZero=mat2cell(Value_Zero, row_cell, column_cell);

for p = 1: length (j)
 for t =1:max(class)
 if Cell_EliminateZero{p,t} == 0
 Cell_EliminateZero{p,t}=[];
 end
 end
end

log_sum=ones(length(j), 1);
log_sum2=log_sum;
for i =1:length(j)

84

 a =cell2mat(Cell_EliminateZero(i,:));
 for p = 1:length(a)
 a(p)=a(p).*log2(a(p));
 end
 log_sum(i)=0-sum(a);

 log_sum2(i)=(ind(i)/length(value)).*log_sum(i);
end

a= Entropy_class;
b=sum(log_sum2);

 Sum_Final=Entropy_class-sum(log_sum2);

 % Keeping a note of the highest and the lowest solutions

 if Fh<Sum_Final
 Fh=Sum_Final;
 end

 if Fl>Sum_Final
 Fl=Sum_Final;
 end

 New_Solution=Sum_Final;

 %Defining the configurations
 Best_Solution=Initial_Solution_Objective_Value;
 Best_Configuration=temp_attribute;

 %Evaluating the energy difference

 if Initial_Solution_Objective_Value~=0;
 Solution_Objective_Value=Initial_Solution_Objective_Value;
 end

 Change_in_Energy = New_Solution- Solution_Objective_Value;

 if Change_in_Energy>0

 Solution_Objective_Value=New_Solution;
 end

85

 if Change_in_Energy<0

 R=rand(1);

 if exp(Change_in_Energy/T)<R

 Equilibrium_Best=Best_Solution;
 Equilibrium_Config_Best=Best_Configuration;
 Move =0;

 break;

 end

 if exp(Change_in_Energy/T)>R
 Solution_Objective_Value=New_Solution;
 end

 end

 % Keeping a note of the Best Solution so far
 Best_Solution= Solution_Objective_Value;

 % Best_Solution
 if Equilibrium_Best<=Best_Solution

 Equilibrium_Best=Best_Solution;

 %Best_Configuration= temp_attribute;
 Equilibrium_Config_Best=temp_attribute;

 end

 Move =1;
 loop = loop+1;

 l_Transition=l_Transition + 1;
 Initial_Solution_Objective_Value=0;

end
Increament =Transition_L.*(1-exp(-(Fh-Fl)/Fh));

Temp_Best=Equilibrium_Best;
Temp_Config_Best=Equilibrium_Config_Best;

% Defining Global Best Solution
if Global_Best<Temp_Best

 %Global_Best
 Global_Best=Temp_Best;

86

 Rand_Value=seed_rand;

 NumelEl=numel(find(g==1));

end

T=T.*0.90;
end

end

Appendix C.4 .Program Code for Performing the Equal Width Discretization

function [DiscreteData]= perform_equal_width(OriginalData)

%Creating a temporary Original data with dimensions same as the
Original
%Data
Temp_OriginalData=OriginalData;

Rows_Data = size(OriginalData,1);
Columns_Data=size(OriginalData,2)-1;
DiscretInterval=zeros(Rows_Data-1,Columns_Data);
Classes = unique(OriginalData(:,size(OriginalData,2)));

for feature = 1:Columns_Data

 %k=2;
k=log2(Rows_Data)+1;
 W= (max(OriginalData(:,feature))-min(OriginalData(:,feature)))/k;

 max(OriginalData(:,feature))
 min(OriginalData(:,feature))

 DiscretInterval(1,feature)=min(OriginalData(:,feature));

 for interval=2:(Rows_Data-1)

DiscretInterval(interval,feature)=min(OriginalData(:,feature))+(interva
l-1)*W;
 end

dlmwrite('Interval.csv',DiscretInterval,',');

 for example=1:Rows_Data

87

 for discretize=1:numel(DiscretInterval(:,feature))-1
 if
OriginalData(example,feature)<DiscretInterval(discretize+1,feature) &&
OriginalData(example,feature)>=DiscretInterval(discretize,feature)
 Temp_OriginalData(example,feature)=discretize;
 end

 end

 end

end
DiscreteData=Temp_OriginalData;

Appendix C.5 .Program Code for Performing the Equal Frequency Discretization

function [Discrete_Data]=perform_equal_frequency(OriginalData)

Temp_OriginalData=OriginalData;

fprintf('\n Dimension Original Data: %d ',size(OriginalData));

Rows_Data=size(OriginalData,1);
Columns_Data=size(OriginalData,2);

remaining_unique=[];

for i=1:Columns_Data-1

 fprintf('\n Loop: %d ',i);

 OriginalData=sortrows(OriginalData,i);

 ColumnData=unique(OriginalData(:,i));

 fprintf('\n Initial Number Unique: %d',
numel(unique(ColumnData)));

 check_column=ColumnData;

88

 accept=0;

 if log(Rows_Data)-log(log(Rows_Data))<=19

 while accept~=1

 [div]=divisibility_equal_frequency(check_column(:,1));
 if div==21

remaining_unique=[remaining_unique;check_column(numel(check_column))];
 check_column=check_column(1:(numel(check_column)-1),:);
 end

 if div ~=21
 accept =1;
 end

 end

 else div =20;

 end

 div

 fprintf('\n Number Unique: %d \n',numel(check_column));

 size_unique=numel(check_column);

 bin=numel(check_column)/div;

 bin

 temp_assignment=zeros(numel(ColumnData),1);

 ColumnData=[temp_assignment ColumnData];

 id=1;
 bin_cap=[1:bin:size_unique];
 size_unique

 for bin_index=1:bin:size_unique

 if bin_index+(bin-1)>size_unique
 bin = size_unique-bin_cap(size_unique-1);
 end

89

 for index=bin_index:(bin_index+(bin-1))

 ColumnData(index,1)=id;

 end
 id=id+1;
 end
 fprintf('\n Remaining Unique values: %d',size(remaining_unique));

 if size(remaining_unique)~=0

 fprintf('\n Unique value identified id: %d ',id);
 size_rows=size(remaining_unique,1);

 fprintf('\n Remaining Unique: %d', remaining_unique);

 for fill_value=1:size_rows

ColumnData(find(ColumnData(:,2)==remaining_unique(fill_value)),1)=id-1;
 end
 end

 for convert_discrete=1:numel(ColumnData(:,2))

Temp_OriginalData(find(OriginalData(:,i)==ColumnData(convert_discrete,2
)),i)=ColumnData(convert_discrete,1);
 end

 ColumnData

 Discrete_Data=Temp_OriginalData;
 Discrete_Data
 remaining_unique=[];
end

Appendix C.6 .Program Code for Performing the Multivalued Discrete Width Algorithm

* The main function remains constant for both the version of the Multivalued

Discretization approaches, via Width and Frequency.

clear all
clc;

readfile=dlmread('attribute.csv', ',', 'A1..E150');

Rows= size(readfile,1);
Columns=size(readfile,2);
Classes= unique(readfile(:,Columns));

90

temp_data=ones(Rows,1);
temp_data=[temp_data readfile];

for feature_attribute=1:(Columns-1)

attribute_num=feature_attribute;

intervals =16;

id=1;
check_unique=0;
exit_loop=0;
while check_unique<=intervals || exit_loop ==0;

 temp_data=sortrows(temp_data,1);

 check_num=temp_data(1,1);

 % To make sure only more than 3 values are chosen to create a
partition
 find_num=
numel(unique(temp_data(1:numel(find(temp_data(:,1)==check_num)),attribu
te_num+1)));

 if find_num>=4
 Disc=temp_data(find(temp_data(:,1)==check_num),2:Columns+1);

 exit_loop=2;
 end

 if find_num<4

 [break_loop temp_data check_num id] =
check_feasibility_subset(temp_data,check_num,find_num,id,attribute_num)
;

 if break_loop==1
 exit_loop=1;
 break;
 else
 Disc=temp_data(find(temp_data(:,1)==check_num),2:Columns+1);

 exit_loop=2;
 end

 end

 if exit_loop==2

91

 [Disc_Set1 Disc_Set2]=discretize(Disc,attribute_num,id);

 id = id+1;

 for index_1=1:numel(Disc_Set1)

temp_data(find(temp_data(:,attribute_num+1)==Disc_Set1(index_1)),1)=id;

 end

 id=id+1;

 for index_2=1:numel(Disc_Set2)

temp_data(find(temp_data(:,attribute_num+1)==Disc_Set2(index_2)),1)=id;

 end

 check_unique=numel(unique(temp_data(:,1)));

end
end
temp_data(:,feature_attribute+1)=temp_data(:,1);
temp_data(:,1)=1;
end

dlmwrite('Discrete_data.csv',temp_data(:,2:Columns+1),',');

Appendix C.7. Program Code for Performing the Un-Supervising the Supervised

Algorithm FMF and FMW.

* The main function remains constant for both the version of the Multivalued

Discretization approaches, via Width and Frequency.

clear all
clc;

OriginalData=dlmread('attribute.csv',',','A1..AK4435');
Temp_OriginalData=OriginalData;

Rows_Data=size(OriginalData,1);
Columns_Data=size(OriginalData,2);

92

remaining_unique=[];

for i=1:Columns_Data-1

 OriginalData=sortrows(OriginalData,i);

 ColumnData=unique(OriginalData(:,i));

 numel(ColumnData)

 check_column=ColumnData;

 accept=0;

 if log(Rows_Data)-log(log(Rows_Data))<=19

 while accept~=1

 [div]=divisibility_equal_frequency(check_column(:,1));
 if div==21

remaining_unique=[remaining_unique;check_column(numel(check_column))];
 check_column=check_column(1:(numel(check_column)-1),:);
 end

 if div ~=21
 accept =1;
 end

 end

 else div =20;

 end

 size_unique=numel(check_column);

 bin=numel(check_column)/div;

 temp_assignment=zeros(numel(ColumnData),1);

 ColumnData=[temp_assignment ColumnData];

 id=1;
 bin_cap=[1:bin:size_unique];

93

 % Loop for dividing under the
 for bin_index=1:bin:size_unique

 if bin_index+(bin-1)>size_unique
 bin = size_unique-bin_cap(size_unique-1);
 end

 for index=bin_index:(bin_index+(bin-1))

 ColumnData(index,1)=id;

 end
 id=id+1;
 end
 %_________________________%

 % Loop to be send for the multisubset discretizer
 % Output should produce increased 'id' number

 unique_columns=unique(ColumnData(:,1));
 for insert_disc=1:numel(unique_columns)
 if
numel(unique(ColumnData(ColumnData(:,1)==unique_columns(insert_disc),2)
))>=2
 Dataset=[];
 search_index= find(ColumnData(:,1)==unique_columns(insert_disc));

 for insert_dataset=1:numel(search_index)
 search_index(insert_dataset)

Dataset=[Dataset;OriginalData(find(OriginalData(:,i)==ColumnData(search
_index(insert_dataset),2)),:)];

 end
 [id,column]=multivalued_subset(id,Dataset,i);

ColumnData(find(ColumnData(:,1)==unique_columns(insert_disc)),1)=column
(:,1);
 end
 end
 %__________________________________%

 if size(remaining_unique)~=0

 size_rows=size(remaining_unique,1);

94

 for fill_value=1:size_rows

ColumnData(find(ColumnData(:,2)==remaining_unique(fill_value)),1)=id-1;
 end
 end

 for convert_discrete=1:numel(ColumnData(:,2))

Temp_OriginalData(find(OriginalData(:,i)==ColumnData(convert_discrete,2
)),i)=ColumnData(convert_discrete,1);
 end
 remaining_unique=[];
end

dlmwrite('discrete_data.csv',Temp_OriginalData,',');

Appendix C.8. Program Code for Performing the Unsupervising the Supervised

Algorithm FF and FW.

* The main function remains constant for both the version of the Multivalued

Discretization approaches, via Width and Frequency.

clear all
clc;

OriginalData=dlmread('attribute.csv',',','A1..S846');
Temp_OriginalData=OriginalData;

Rows_Data=size(OriginalData,1);
Columns_Data=size(OriginalData,2);

remaining_unique=[];

for i=1:Columns_Data-1

 OriginalData=sortrows(OriginalData,i);

 ColumnData=unique(OriginalData(:,i));

 numel(ColumnData)

 check_column=ColumnData;

 accept=0;

 if log(Rows_Data)-log(log(Rows_Data))<=19

95

 while accept~=1

 [div]=divisibility_equal_frequency(check_column(:,1));
 if div==21

remaining_unique=[remaining_unique;check_column(numel(check_column))];
 check_column=check_column(1:(numel(check_column)-1),:);
 end

 if div ~=21
 accept =1;
 end

 end

 else div =20;

 end

 size_unique=numel(check_column);

 bin=numel(check_column)/div;

 temp_assignment=zeros(numel(ColumnData),1);

 ColumnData=[temp_assignment ColumnData];

 id=1;
 bin_cap=[1:bin:size_unique];

 % Loop for dividing under the
 for bin_index=1:bin:size_unique

 if bin_index+(bin-1)>size_unique
 bin = size_unique-bin_cap(size_unique-1);
 end

 for index=bin_index:(bin_index+(bin-1))

 ColumnData(index,1)=id;

 end
 id=id+1;
 end
 %_________________________%

96

 % Loop to be send for the multisubset discretizer
 % Output should produce increased 'id' number

 unique_columns=unique(ColumnData(:,1));
 for insert_disc=1:numel(unique_columns)
 if
numel(unique(ColumnData(ColumnData(:,1)==unique_columns(insert_disc),2)
))>=2
 Dataset=[];
 search_index= find(ColumnData(:,1)==unique_columns(insert_disc));

 for insert_dataset=1:numel(search_index)
 search_index(insert_dataset)

Dataset=[Dataset;OriginalData(find(OriginalData(:,i)==ColumnData(search
_index(insert_dataset),2)),:)];

 end
 [id,column]=perform_equal_frequency(id,Dataset,i);

ColumnData(find(ColumnData(:,1)==unique_columns(insert_disc)),1)=column
(:,1);
 end
 end
 %__________________________________%

 if size(remaining_unique)~=0

 size_rows=size(remaining_unique,1);

 for fill_value=1:size_rows

ColumnData(find(ColumnData(:,2)==remaining_unique(fill_value)),1)=id-1;
 end
 end

 for convert_discrete=1:numel(ColumnData(:,2))

Temp_OriginalData(find(OriginalData(:,i)==ColumnData(convert_discrete,2
)),i)=ColumnData(convert_discrete,1);
 end
 remaining_unique=[];
end

dlmwrite('discrete_data.csv',Temp_OriginalData,',');

97

References

Agarwal, R., and Srikant, R. (1994). Fast Algorithms for Mining Association Rules in
Large Databases. Proceedings of the 20th International Conference on Very Large Data
Bases, 487-499.

Bigus, P. J. (1996). Data Mining with Neural Networks:Solving Business Problems from
Application Development to Decision Support, McGraw-Hill, NJ.

Breiman. L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification of Regression
Trees.

Cheng, J., Fayyad, U., Irani, K., and Zhaogang, Q. (1988). Improved Decision Tree: A
Generalized Version of ID3. Machine Learning, 100-106.

Clark, P., and Boswell, R. (1991). Rule Induction with CN2: Some Recent
Improvements. Machine Learning EWSL, 91, 151-163.

Clark, P., and Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning, 3,
261-284.

Claude E. S., (1951). Prediction and Entropy. The Bell System Technical Journal, 30.

Demsar, J., (2006). Statistical Comparisons of Classifiers over Multiple Datasets. Journal
of Machine Learning Research, 1-30.

Duch, W., Tomasz, W., Jacek B., and Kachel, A., (2003). Feature Selection and Ranking
Filter. Artificial Neural Networks and Neural Information Processing – ICANN/ICONIP,
251-254.

Fausett, L. (1994). Fundamentals of Neural Networks. Prentice Hall, 289-333.

Fayyad, U. (1991). On Induction Trees for Multiple Concept Learning, University of
Michigan, Ann Arbor. (UMI Order No. GAX92-08535), Retrieved on May 20, 2010.

Fayyad, U., and Irani, K. (1993). Multi-Interval Discretization of Continuous-
ValuedAttributes for Classification Learning. IJCAI (1993): 1022-1029.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to
knowledge Discovery Databases. AI Magazine, 17, 37-54.

Forina, M., and Raggio., A. (2002). Clustering on Dendrograms on Interpretation
Variables. Analytica Chemica Acta, 13-19.

98

Forman, G., (2007). Feature Selection for Text Classification. Computational Methods of
Feature Selection.

Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of
Information and Computer Science

Frueud, Y. Schapire, R. (1996). Experiments with a boosting algorithm. In Proceedings
of the Thirteenth International Conference on Machine Learning, 148-156.

Guiasu, S., and Shenitzer, A. (1968). The Principle of Maximum Entropy. The
Mathematical Intelligencer, 42-48.

Gong, Z., and Miguel, G., K. (2005). Web Structure Mining: An Introduction.
Proceedings of the 2005 IEEE International Conference on Information Acquisition, 590-
595.

Guyon, I., and Elisseff, A. (2003). An Introduction to Variable and Feature Selection.
Journal of Machine Learning, 3, 1157-1182.

Hachiya, H., and Sugiyama, M., (2010). Feature Selection for Reinforcement Learning:
Evaluation Implicit State-Reward Dependency via Conditional Information. Machine
Learning and Knowledge Discovery in Databases, 474-489.

Han, J., and Kambler, M. (2001). Data Mining: Concepts and Techniques. Morgan
Kaufmann.

Jain, A.K., and Dubes, R.C., “Algorithms for Clustering Data.” Prentice Hall (1988).

Jang, J., and Chuen, T. S., (1995). Neuro-fuzzy modeling and control. Proceedings of the
IEEE, 378-406.

Jiang, S., Li, X., Zheng, Q., and Wang, L. (2009). Approximate Equal Frequency
Discretization Method. Global Congress on Intelligence Systems, 514-518.

Kaufmann, L., and Rousseeuw., P. (1990). Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley 9th Edition, 342-347.

Kononenko, I., Bratko, I., and Roskar, E. (1984). Experiments in Automated Learning of
Medical Diagnostic Rules. International School for the Synthesis of Expert’s Knowledge
Workshop.

Kotsiantis, S., and Kanellopoulos, D. (2006). Discretization Techniques: A recent survey.
GESTS International Transactions on Computer Science and Engineering. (a).

99

Kotsiantis, S., and Kanellopoulos, D., and Pintelas, P., (2006). Handling Imbalanced
Datasets: A Review. GESTS International Transactions on Computer Science and
Engineering. (b).

Kurgan, L., and Cios, K. (2004). CAIM Discretization Algorithm. IEEE Transactions on
Knowledge and Data Engineering, 16, 145-153.

Liu, H., and Matoda, H., (2008) Computational methods of feature selection, Chapman
and Hall/CRC.

MacQueen, J. (1967). Some Method for Classification and Analysis of Multivariate
Observations. Fifth Berkeley Symposium on Mathematical Statistics and Probability,
281-297.

Madria, S.K., Bhowmick, S., K Ng, W., and Lim E.P. (1999). Research Issues in Web
Data Mining.” Springer, 1676, 805.

Michalski, R.S., and Larson, J. (1983). Incremental Generation of VL1 Hypothesis: The
Underlying Methodology and the Description of Program AQ11. Technical report
UIUCDCS-F-83-905.

Mitra, S. (2003). Data mining in soft computing framework: a survey. IEEE transactions
on neural networks, 13, 3-14.

Mitrovic, D., Zeppelzauer, M., and Eidenberger, H., (2009). On Feature Selection in
Environmental Sound Recognition. Proceedings of the 51st International Symposium
ELMAR, 210-204.

Otero, F., Freitas, M., and Johnson, C., (2008). c-Ant Miner: An Ant Colony
Classification Algorithm to Cope with Continuous Attributes. Lecture Notes in Computer
Science, 5217, 48-59.

Parpinelli, R.S. (2002). Data Mining with Ant Colony Optimization. IEEE Transactions
on Evolutionary Computation, 6, 321-349.

Quinlan, J. R., (1992). C4.5: programs for machine learning. Morgan Kaufmann Series in
Machine Learning.

Quinlan, J. R., (1986). Induction of Decision Tree. Machine Learning, 1, 81-106.

Ratsch, G., Onoda, T., and Muller, K. -R. (2001). Soft Margins for AdaBoost. Machine
Learning, 42, 287-320.

Srivastava, J, Cooley, R., Deshpande, M., and Tan, R.N. (2000). Web Usage Mining:
Discovery and Applicability of Usage Patterns from Web Data. ACM SIGKDD, 1, 12-23.

100

Struges, H. A., (1926). The Choice of Class Interval. J American Statistical Association,
65-66.

Sundaravaradan, N., Hossain, K., Shreedharan, V., Slotta, D., Vergara, P., Heath, L., and
Ramakrishnan, N. (2010). Extracting Temporal Signatures for Comprehending Systems
Biology Models. Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge discovery and Data Mining, 453-462.

Sutton, S., and Barto, G. (1998). Reinforcement Learning 1: Introduction. Reinforcement
Learning: An Introduction (Adaptive Computation and Machine Learning), Chapter1.

Taboada, K., Shimada, K., Mabu, S., Hirasawa, K., and Hu, J. (2007). Association Rules
Mining for Handling Continuous Attributes using Genetic Network Programming and
Fuzzy Membership Functions. SICE Annual Conference, Japan.

Talbi, E., G. (2009). Metaheuristics. Wiley, New Jersey, USA.

Vafaie, H., and Imam, I., (1994). Feature Selection Genetic vs. Greedy-like Search.
Proceeding of the International Conference on Fuzzy and Intelligent Control Systems.

Wasito, I., and Mirkin., B. (2006). Nearest Neighbours in Least-squares Data Imputation
Algorithms with Different Missing Patterns. Computational Statistics and Data Analysis,
50, 926-949.

Zhang, H. (2004). The Optimality of Naïve Bayes. FLAIRS Conference.

	Clemson University
	TigerPrints
	8-2011

	MULTIVALUED SUBSETS UNDER INFORMATION THEORY
	Indraneel Dabhade
	Recommended Citation

	Microsoft Word - Indraneel Dabhade_Thesis_Final_Revised.docx

