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ABSTRACT 

 

In this thesis, a new technique to recognize and estimate the pose of a given 3-D object 

from a single real image provided known prior knowledge of its approximate structure is 

proposed. Metrics to evaluate the correctness of a calculated pose are presented and analyzed. 

The traditional and the more recent approaches used in solving this problem are explored and the 

various methodologies adopted are discussed.  

 

The first step in disassembling a given assembly from its image is to recognize the 

attitude and translation of each of its constituent components – a fundamental problem which is 

being addressed in this work. The proposed algorithm does not depend on uniquely identifiable 

3D model surface features for its operation – this makes it ideally suited for object recognition 

for assemblies. The algorithm works well even for low-resolution occluded object images taken 

under variable illumination conditions and heavy shadows and performs markedly better when 

these factors are removed.  

 

The algorithm uses a combination of various computer vision concepts such as 

segmentation, corner detection and camera calibration, and subsequently adopts a line-based 

object pose estimation technique (originally based on the RANSAC algorithm) to settle on the 

best pose estimate. The novelty of the proposed technique lies in the specific way in which the 

poses are evaluated in the RANSAC-like algorithm. In particular, line-based pose evaluation is 

adopted where the line chamfer image is used to evaluate the error distance between the 

projected model line and the image edges. The correctness of the computed pose is determined 
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based on the number of line matches computed using this error distance. As opposed to the 

RANSAC algorithm where the search process is pseudo-random, we do an exhaustive pose 

search instead. Techniques to reduce the search space by a large amount are discussed and 

implemented.  

 

The algorithm was used to estimate the pose of 28 objects in 22 images, where some 

images contain multiple objects. The algorithm has been found to work with a 3-D mismatch 

error of less than 2.5cm in 90% of the cases and less than 1cm error in 53% of the cases in the 

dataset used. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1  THE PROBLEM AND MOTIVATION 

 

Much progress has been made in the process of automating assembly processes in the 

manufacturing industry. In contrast, the reverse process of automated disassembly is currently 

plagued by numerous practical difficulties and remains an unsolved real-world problem. 

Products that go through the disassembly process are most likely to be recycled and one could 

generally expect random deformations in them. Thus, any algorithm that is tailored for 

disassembly must be robust to minor object deformations.  

 

Robotic disassembly of used products is increasingly relevant due to legal requirements 

placed upon manufacturers to recycle their products. However, disassembly of end-of-life 

products has traditionally been a manual process owing to the numerous technical difficulties 

associated with it. The deformed shape of waste products constitutes a common obstacle and 

poses a considerable challenge to the application of robotic arms in this process. A natural 

consequence of the difficulties associated with this process has been the adoption of recycling 

methodologies without any kind of inbuilt intelligence. Such recycling techniques usually 

involve the use of shredders, smelters and similar equipment that “blindly” convert a bunch of 

scrap into a heterogeneous mass of recycled material, losing much of the potential initial worth 

of the products. 
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In addition to this, a task like recycling of electronic waste usually entails dealing with 

toxic, hazardous substances. These factors combined with the persistent need for manual labor in 

this industry leads to a situation where the cost of recycling a used product often exceeds the cost 

of manufacturing a new, similar product. Extensive studies on the associated cost analysis have 

been done earlier by Yuksel and Baylakoglu [1]. In a nutshell, their study concluded that a 

specific, optimized disassembly plan for a given product would be economically feasible. Our 

work essentially constitutes an attempt to help generalize the disassembly process for any given 

assembly. We will proceed to discuss the various traditional approaches adopted towards solving 

the disassembly problem and subsequently transition to the discussion on pose estimation in the 

following few paragraphs. 

 

The earliest approaches which aimed to solve the disassembly problem were almost 

exclusively based on Maximum Likelihood estimation (ML estimation) and Maximum a 

posteriori Probability estimation (MAP estimation), and have been used to estimate the relative 

positions of parts in a known assembly using an image. A typical ML approach is by Sanderson 

[2], where the assemblability of a set of assembly components in a configuration is explored in 

terms of ML-based constraint clearance in their vicinity. This measure of assemblability was 

incorporated into an AND/OR graph described by Mello and Sanderson [3] to make a decision 

on the sequence of steps for the disassembly procedure for an object with known construction. 

 

The more noise-robust MAP estimate can be looked at as a variant of the Maximum 

Likelihood estimate in the sense that here we make use of a known a posteriori object probability 

distribution along with the data used for maximum likelihood estimation. Tretter [4] had earlier 
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used a fast multi-scale technique to compute the Sequential MAP (SMAP) of the unknown 

position, scale factor and 2-D rotation for each subassembly. This technique affords additional 

accuracy over the MAP estimate owing to the search through multiple resolution levels. The 

drawback with the estimation techniques is that they are extremely application-specific in terms 

of their success and prior knowledge of the associated assembly structure is needed for reliable 

pose estimation. 

 

It is imperative to have a good way of representing assemblies prior to thinking about 

their disassembly. Sagerer [5] had proposed the use of context free grammars to represent 

assemblies. The core idea behind this representation is the reusability of the mating properties of 

the subassemblies. Each assembly can be looked at as a valid sentence constructed using certain 

predefined rules. These rules are a direct consequence of the configuration of the subassemblies. 

Valid sentences (an assembly, in this case) are a byproduct of substitution of a given rule in other 

rules in myriad ways. This is explained through a specific example in [6]. 

 

As noted earlier, there are well developed techniques to represent assemblies in terms of 

their subassemblies. Mello and Tretter’s work [3][4] on assemblability and assembly inspection 

shows that if the components and configuration of an assembly are known beforehand, the 

problem of optimal disassembly breaks down into a simple graph search. There are standard 

techniques such as the Ant Colony optimization which is used for evaluating the sequence of 

disassembly operations with an aim of arriving at the most optimal solution and has been 

described by Shan [7].  
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However, these techniques can be applied to a practical assembly at hand for an 

automated disassembly process only if the individual subassemblies are first recognized and their 

poses computed. This would mean that one could then, for instance, construct the AND/OR 

assembly graph using these poses straightaway and proceed to using the Ant-colony optimization 

algorithm mentioned earlier. In other words, to actuate the process of disassembly of a real 

assembly given its image, one needs to first find out the location and orientation of each of the 

assembly components in order for a robot to be able to take them apart. 

 

As mentioned earlier, most assembly objects in line for recycling need not necessarily, in 

practice, conform to the exact dimensions as specified by the prior object attribute information. 

Pose estimation can be looked at as an Artificial Intelligence problem, the solution for which 

seeks to emulate human intelligence in recognizing the position and orientation of a given object 

placed amidst a cluster of connected/disconnected objects in a scene with numerous visual 

constraints enumerated earlier. 

 

Pose-estimation is an essential and a fundamental step that one must take prior to any 

disassembly process planning. This is because pose-estimation helps reveal some information 

about how the assembly components are oriented or interconnected in space and could 

potentially help generate directions on how to actuate the disassembly process using robotic arms 

or an equivalent actuator. A general disassembly algorithm is fundamentally more complex than 

a generic assembly algorithm. This is because a disassembly process generally may take place in 

a less structured environment without much a priori information about the constituent assembly 

object components. While there has been a significant amount of work done in designing a 



5 

 

disassembly plan [3] given a graph composed of nodes of connected components, such 

information might not be known in advance. 

 

The object pose estimation problem is a partially unsolved problem with limited success 

on a real image. In this research work, an algorithm that would reliably estimate the true pose of 

a given object with known 3D configuration from a single image with high accuracy under 

variable lighting conditions and object occlusions is proposed.  

 

In this thesis the problem of pose estimation of known objects from a single real image 

without having any prior information about known point or edge correspondences is solved. 

Given the 3-D model of a specific object represented using its corners and faces we can reliably 

estimate the true rotation and translation of this object in the given image despite the presence of 

shadows, variable lighting conditions and occlusions. In this work, the methodologies discussed 

are generally suited for a typical connected/disconnected assembly or its components. We also 

present and analyze two metrics, one discrete and another continuous, each of which give an 

estimate of the correctness of the calculated pose. 

 

This thesis is organized into 5 major chapters in the following order: Introduction, The 

RANSAC with Line Features, Results and Discussion, Conclusions and Future work, and 

References. The first chapter, Introduction, is organized into two subdivisions: the first 

describing the problem solved and the motivation behind and the second containing the literature 

review involved in this research. The second chapter is divided into two parts. The first part 

gives the necessary background for understanding the subsequent material in the Algorithm 
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subsection. Owing to the complex, abstract nature of pose estimation, we further divide this part 

into three subdivisions: perspective transformation, pose estimation with known correspondences 

and image processing and 3D modeling. The second part of the chapter on Theory, describes the 

algorithm and its implementation. The third chapter presents the results and draws a contrast on 

the strengths and weakness of the proposed algorithm. The penultimate chapter discusses the 

potential improvements to the proposed algorithm and gives a direction for future research. The 

final chapter enumerates the references used over the course of this work. 

 

1.2 LITERATURE SURVEY 

 

Pose estimation is the process of determining the rotation and translation of 3-D object 

representation in an image with respect to a given coordinate system. Pose estimation usually 

involves matching the 3-D object features onto the corresponding 2-D image features. Given the 

correspondences between object and image features, rotation and translation can be computed. 

However, these correspondences cannot be easily determined given just the 3-D model and the 

object image and remains an unsolved problem in case of images with featureless assemblies 

thus far.  

 

Pose estimation using known correspondences is a thoroughly studied problem. The 

solution to a fundamentally important solved problem within pose estimation is the Perspective 

three-point problem (also known as the P3P problem) which gives us a way to solve the pose 

estimation problem with known correspondences. The POSIT (Pose from Orthography and 

Scaling with iterations) algorithm by Dementhon [8] utilizes known correspondences for 
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determining the object rotation and translation matrices. This algorithm first uses the POS (Pose 

from Orthography) for estimating the rotation and translation matrices given a set of known 

correspondences. The POSIT algorithm constitutes an improvement over the POS algorithm in 

that it first utilizes the POS algorithm to obtain a deterministic solution for a good initial guess of 

the pose. Subsequently, an iterative procedure to refine the obtained pose is proposed. This 

algorithm, in addition to being computationally efficient, is claimed to be relatively robust to 

both noise and errors in correspondence set. 

 

Dementhon subsequently proposed an iterative algorithm called the SoftPOSIT algorithm 

[9] which did not require known correspondences to match a set of 3-D model points to image 

points. The SoftPOSIT algorithm alternately estimates the correspondence probabilities given the 

current pose and then estimates the pose given the correspondences. This algorithm takes a set of 

3-D model points and another set of 2-D image points as parameters. Note that the sets may be of 

different sizes. The principal idea behind this iterative algorithm is to use a doubly stochastic 

matrix, the entries of which signify correspondence weights in terms of probability densities, 

over subsequent iterations to refine the point matches. This matrix is utilized in a proposed 

metric to minimize the error between the set of 3-D points projected onto the image plane and 

the set of corresponding 2-D image points. Later work by Dementhon utilizing line features 

rather than corner features [9] [10] has been shown to produce results that are more robust to 

noise. This is expected as line features contain more information than point features. 

 

Another prominent correspondenceless pose estimation technique is the Gravitational 

Pose Estimation Algorithm (GPE Algorithm) by Ugurdag [11]. This algorithm utilizes the 
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distance between the rays shooting out from the camera focus and passing through the object 

features (which are taken to be corners in this algorithm’s implementation) and the image 

features visible in the given object image. The idea behind the formulation of this algorithm is to 

utilize appropriate force vectors from the image points that would make the object at an arbitrary 

initial pose converge to its correct location using an iterative process. In each iteration, the force 

vectors that act on the 3-D model points is successively refined based on the distance between 

the object rays and the image features. The algorithm is assumed to have converged and 

terminates when the change in pose metric between successive refinements is below a predefined 

threshold. A metric based on the rays and the image points is proposed and its performance is 

evaluated. 

 

The RANSAC algorithm proposed by Fischler and Bolles [12] is by far the most relevant 

piece of research that meshes most closely with our work. The RANSAC algorithm in a single 

pass, assigns three random correspondences between 3-D object features (usually corners) and 

the image points. The resulting correspondence problem is then solved to obtain the associated 

object model point depths using the solution for the Perspective three-point problem, also known 

as the P3P problem. This solution is then translated to the corresponding rotation and translation 

matrices. It is to be noted that the P3P problem may have more than one valid solution. This will 

be discussed again in a greater depth in the chapter 2. There has been a scarcity of robust metrics 

tested on real data that could be interfaced to the RANSAC algorithm to test the goodness of an 

estimated pose. This is exactly where our work fits into the bigger picture. We utilize the 

solution to the P3P problem for each set of possible 3-D model to 2-D image three-point 

correspondences and deterministically calculate the pose of the object. The estimated pose is 
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now projected onto the image plane and its appropriateness for the image at hand is evaluated 

using an object-edge based metric which will be proposed in the next chapter. 

 

The SoftPOSIT algorithm utilizing only the point features has been found to work well 

only on synthetic images when the initial guesses are relatively close. When the object’s initial 

pose is kept at an arbitrary location in the presence of stray points, the algorithm converges to a 

false pose most of the time. The SoftPOSIT algorithm using lines is relatively more robust to the 

presence of false features. However, this algorithm requires a good initial guess for a given pose 

hypothesis in order for it to converge to the true object position. To overcome this problem, this 

algorithm utilizes a large number of poses and applies the iterative convergence algorithm to 

each of the cases. The best fit among the converged poses is the one that minimizes a predefined 

objective function. However, this algorithm has been tested only using accurate 3-D models and 

images with sharp, distinct features. Even under such circumstances, the resulting average pose 

estimation error computed is found to average about 20-30 degree rotation from the original 

pose. 

 

The Gravitational Pose estimation suffers from similar disadvantages. The GPE, like the 

SoftPOSIT needs a decent initial guess for guaranteed convergence to the right pose. Further, 

this algorithm has been only tested on 2-D scenes viewed in 3-D and without the presence of 

additional noise.  

 

The RANSAC algorithm, in its current state requires to be interfaced with techniques 

from computer vision and a good metric for estimating and measuring the goodness of a pose. 
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The proposed RANSAC-based algorithm works in conjunction with both line features and a 

plethora of Computer Vision techniques. We realize that this two-pronged approach is absolutely 

essential to recognizing the true object pose from real images taken under heavy clutter, 

occlusions and heavily varying lighting conditions. Further, this approach would enable us to 

detect the pose of the object in the image even if its 3-D model is does not match exactly with the 

actual object model in the image.  

 

The fundamental difference between the line-based SoftPOSIT algorithm and the 

RANSAC-based algorithm we propose lies in the area of application. The line-based SoftPOSIT 

algorithm, by its very formulation, is more suited to pose estimation in a natural, cluttered scene. 

On the other hand, we try and solve the pose estimation problem for assemblies. This makes the 

two algorithms very different from each other as each is designed and optimized for the 

application it was intended for and would be inappropriate for direct comparison. SoftPOSIT 

with lines is more suited to scenes with an abundance of line features while our algorithm is 

adapted for images with very few features present. Though theoretically our algorithm would 

give results that are comparable or better than SoftPOSIT owing to its reliance on an exhaustive 

search, a major drawback would be the high computation time involved. 

 

The other pose estimation techniques that have been proposed earlier are the genetic 

algorithm based EvoPose and approaches based on Neural Networks and Lookup tables.  

 

There has been much prior work done on Genetic Algorithm based pose estimation. 

Toyama’s work on Model based pose estimation [13] involved searching for the most probable 
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poses through a six-dimensional space where the best one of the lot was picked using a fitness 

criterion. Kayanuma [14] had used a 3-D object model with features to determine the object pose 

through a single image. The pose search is done using a genetic algorithm and the number of 

model-image feature matches determines the fitness of the pose. 

 

Another notable genetic algorithm based technique is the EvoPose [15]. The EvoPose is 

similar in operation to Toyama’s method in that it searches through a six-parameter space; 

however, the EvoPose relies solely on points rather than edges.  

 

Neural Network approaches have been used in the past by Langley [22] for estimating the 

pose of a Fixtureless assembly. However the results obtained using this approach is contingent 

on the presence of a sufficient number of surface features and an appropriate training data set, 

and has been found only moderately successful against simple assemblies. 

 

Another computer-vision based approach for pose estimation is to have a huge dataset of 

an object with known poses. The camera image at hand is then compared with each of these 

images. The database image with the best match is singled out in the process and its pose is read 

from the lookup table. An example of related work is by Rother [16] who used 3-D shape priors 

to estimate the image appearance by projecting them down on the image plane and then 

computing probability of image match. While this approach could guarantee good results without 

much real-time computation, the necessity of having a large database for each object in a variety 

of different environments rules out the use of such an approach in a practical scenario. 
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David Lowe’s seminal paper on SIFT [17] (Scale Invariant Feature Transform) is an 

interesting place to begin work on pose estimation. The work provides us an extremely robust 

way to recognize known 2-D objects in a cluttered scene containing them. Each feature is 

uniquely identified using local gradient information represented in a 128-bit format. The image 

features chosen are image points with distinct gradient vectors. This makes them invariant to 

rotation, translation and scaling. The drawback with this technique is that it cannot be adapted 

for objects with few, poor feature descriptors. Moreover, the SIFT algorithm was originally 

designed to operate only on 2-D object features. 

 

The SIFT features are relevant to pose estimation because they provide a way to obtain 

scale and rotation invariant image features. They are particularly useful when the object under 

consideration has plenty of distinct identifiable surface features. In such cases, the object’s pose 

can be computed using pose estimation techniques utilizing known correspondences.  

 

This technique could be extended to 3-D objects by having a picture of each face of the 

object and recognizing them separately. Ambiguity arises when we have a general, rounded 

object whose faces are not clearly defined. Savarese’s work [18] utilizes this idea and gets the 

SIFT features of the “parts” (or faces, in the paper) of a given 3-D object. The faces are 

recognized separately and a homography matrix to transform the priori images to match the 

rotated images in the scene is computed. The object is viewed as a connected graph of the 

images. 
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Correspondence-based pose estimation could be a viable research direction to proceed on 

provided the 3-D object model has a sufficient number of distinct features that could be readily 

identified from its 2-D image. This process will most likely be subject to correspondence errors 

in case of a real image. To overcome this problem, Haralick [19] proposed a pose estimation 

technique using known correspondences that would be robust for up to thirty percent of 

correspondence mismatches. This is in contrast to the least-squares based solution provided 

earlier, where such situational errors give rise to meaningless solutions. As stated earlier, this 

doesn’t prove particularly useful in our work as we deal with images having a paucity of feature 

points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

CHAPTER TWO 

THE RANSAC WITH LINE FEATURES ALGORITHM 

 

2.1 BACKGROUND 

 

2.1.1 PERSPECTIVE PROJECTION 

 

The process of capturing the image of a 3D model is essentially a linear mapping of the 

3D model points in the world onto a 2D image plane. This transformation, also known as 

perspective projection is crucial for understanding pose estimation. 

 

For real images shot in practical scenes, a common approximate model is the pinhole 

camera model, which models the camera as a perspective projection. This model describes the 

mathematical relationship between observed 3D point in the scene and the corresponding 2D 

image point. In this model, the camera aperture is assumed to be a single point with multiple rays 

converging on it from various directions. An inverted image of the scene is formed on the plane 

containing the camera focus. Equivalently, one could think of the rays converging directly at the 

camera focus, with the image being formed at the plane passing through the aperture. The 

perpendicular distance of this plane from the focus is equal to the focal length of the camera.  
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Figure 2.1: Pinhole camera model 

 

In Figure 2.1, I is the point of intersection of the ray OR with the image plane. The focal 

length is f and the observed model point is R. 

By triangle similarity of triangles OIP and ORL,  

 

x
u=f

z
 and 

y
v=f

z
 

Thus, we see that the intersection coordinates are just the scaled versions of the normalized 

world coordinates. This leads us to the principal idea behind camera calibration. 

 

For mapping a 3-D model observed using an image captured using a pinhole camera onto 

the corresponding 2-D image plane, one of the first steps one must take is to calibrate the 

camera. Camera calibration matrix describes the transformation between the 3-D points 

measured in the camera coordinate system and the 2-D coordinates using the image coordinate 

system. 
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Figure 2.2 shows the different coordinate systems we use in camera calibration. Oc is 

origin of the camera coordinate system. Its corresponding Z-axis, Zc is perpendicular to the 

image plane and passes through the principal point of the image, (u0, v0). Xc and Yc are chosen 

parallel to the image coordinate axis Xi and Yi as shown in the figure. Xo, Yo and Zo refer to the 

object coordinate system which is assumed to be attached to the object at hand. They are useful 

for expressing object dimensions in a more lucid fashion. 

 

 
 

Figure 2.2: Representation of the various coordinate systems 

 

Ow is the center of the world coordinate system with axes Xw , Yw and Zw. It is sometimes 

used since it is more natural to think about the rotation and translation of an object with respect 

to a fixed world coordinate system that is usually somewhere in the vicinity of the object as 

opposed to the camera coordinate system. This is because the camera coordinate system changes 

for different camera views and would not, consequently, provide a standard reference frame. 
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The camera calibration matrix, C, relates the 3-D model point, [Xi Yi Zi]
T
, measured with 

respect to the camera coordinate system with a point on the ray [xi yi zi]
T
 starting from the camera 

focus and passing through the object model point whose position is measured with respect to the 

camera coordinate system with the image coordinate metric. 

 

0

00

0 0 1

i u i

i v i

i i

x u X

y v Y

z Z

α γ
α

     
     =     
          

          (2.1) 

Equation 2.1 represents perspective projection of the 3-D model point onto the image plane. Camera 

calibration is the process of finding the perspective projection matrix (or camera calibration matrix) for a 

specific camera. 

 

 

 
 

Figure 2.3: Camera coordinate system 
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Here, ∝u is the scaling factor along the X-axis and ∝v is the scaling factor along the Y-

axis. γ is the image skew factor and [u0 v0]
T
 is the principal point and generally lies at the 

geometric center of the image. This point specifies the translation of the intersection point 

between Zc and the image plane with respect to the image coordinate system. If [u0 v0]
T
 were 

made equal to [0 0]
T
, it would imply that all the image coordinate measurements were made from 

the image coordinate system with an origin translated to the center of the image. 

 

For a normal camera without distortions, the skew factor γ is generally negligible and can 

be taken to be 0. ∝u and ∝v are generally in practice, equal to the focal length of the pinhole 

camera (A generalization which we do not assume in our case) and can be thought of the pixel 

scaling factors along the X and Y axes respectively. The equation 2.1 then becomes: 
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i v i

i i
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y v Y
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α
α

     
     =     
          

          (2.2) 

 

Since [xi yi zi]
T
 represents a point along a ray with coordinates measured with respect to 

the camera coordinates in image coordinate metric, we could obtain the actual image coordinates 

as measured from the screen by normalizing this vector, that is dividing xi, yi  and zi by zi. 

The actual image coordinates of the point is [xi/zi yi/zi 1]
T
. 

 

Put briefly, camera calibration is the process of finding the characteristic transformation 

matrix that transforms 3-D object points into the corresponding image points. One of the most 

popular techniques for calibrating a given camera is Zhang’s method [20]. The camera 
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calibration matrix when multiplied with the 3-D object coordinates results in a point along the 

ray passing through the camera focus and the 3-D object point. On normalizing the output vector 

by dividing each element in the vector by the Z-value, we can get the actual image point. 

 

Basically, camera calibration is a tool to directly transform the points on the rays passing 

through the image into the 3-D object points and vice-versa. This implies that if we associate 

three image feature points with corresponding object points, we could find out the angle 

subtended at the focus by each pair of the feature points. The angle subtended by any two object 

model points at the camera focus is computed as the cosine inverse of the dot-product of the 

vectors shooting out from the focus in the directions of the model points. Due to the image point 

and 3-D object point association, we know the true distances between the selected image feature 

points. Thus, the problem of pose estimation reduces to solving the perspective three-point 

problem which we shall discuss soon. 

 

2.1.2  POSE ESTIMATION USING KNOWN CORRESPONDENCES 

 

There are several methods of estimating the object pose, given correspondences between 

image points and points two of which will be presented here. The first method is based on the 

solution to the P3P problem. The P3P solution is used in the RANSAC algorithm while the 

second method used in computing the “true” pose of objects in the data set in Chapter 3. 

 

We will now discuss the pose estimation using the solution to the perspective three-point 

problem. The various coordinate systems have already been described using Figures 2.2 and 2.3. 
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We now look at the problem of mapping a model triangle, originally in 3-D space at a known 

position and orientation into another an observed location through a rotation and translation. 

 

Figure 2.4 shows the triangle ABC initially present in 3-D model being rotated and 

translated to a position to match with the visible triangle in the image. When this rotation and 

translation for a particular triangle in the 3-D model is found to match well with a triangle seen 

in image, we can take that rotation and translation to be the pose of the object visible in the 

image computed with respect to the camera coordinate system. In general, a good matching 

criterion would be that all the visible corner feature points that are present in the 3-D model be 

regenerated using the pose transformation matrix which ideally matches with the image corner 

features.  

 

 

Figure 2.4: Rotation and translation of a triangle in space 
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The rotation and transformation of the triangle described earlier is found using the 

solution to the perspective three-point problem, or simply, the P3P problem. Let us now look at 

its problem statement and solution in greater detail. 

 

Assume we are looking at a triangle of known dimensions using a pinhole camera. In our 

problem, we look at the 3-D object as being made up of triangles, one of which is under current 

consideration. As discussed earlier, camera calibration helps compute the angle subtended to the 

focus by the 3-D object points visible in the image as corner features.  

 

The perspective 3-point problem deals with the problem of finding out the actual 

distances from the focus to each of the object points represented by the triangle provided the 

triangle dimensions and the angle subtended at the focus is known. Once these distances are 

known, we can compute the rotation and translation of this triangle on the object with respect to 

a predefined initial position with respect to the camera focus assumed originally. The perspective 

three-point problem can have a maximum of eight real solutions, out of which a maximum of 

four can be positive. This solution is presented in the appendix of [12]. 

 

Figure 2.5 shows the diagram describing the perspective three-point problem. O is the 

focus of the camera looking at the triangle ABC with sides Rab, Rac and Rbc. The points A, B and 

C have the depths a, b, c with angles between OA, OB and OC rays shooting from the camera 

represented as θ1, θ2 and θ3. 
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Figure 2.5: Perspective three-point problem 

 

By cosine formula,  

2 2 2
12 cos( )abR a b ab θ= + −  

2 2 2
22 cos( )acR a c ac θ= + −  

2 2 2
32 cos( )bcR b c bc θ= + −  

Let us now define variables K1, K2, G0, G1, G2, G3 and G4 as follows: 

2

1
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R
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R
=  
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=  
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2 2
4 1 2 1 2 1 2 3( ) 4 cos ( )G K K K K K K θ= − − −  

3 1 2 1 2 2 1 1 1 3 1 2 2 1 2

2 1 3

4( ) (1 )cos( ) 4 cos( )[( . ) cos( )

         2 cos( ) cos( )]

G K K K K K K K K K K K

K

θ θ θ
θ θ

= − − − + + − +
 

2
2 2 1 1 1 2 1 2 1 2 1 2

2 2
1 1 2 3 2 1 2 2 1 1 2 3

[2 (1 ) cos( )] 2[ ][ ]

           4 [( ) cos ( ) (1 ) cos ( ) 2 (1 )cos( )cos( )cos( )]

G K K K K K K K K K K

K K K K K K K

θ

θ θ θ θ θ

= − + + − − − +

− + − − +
 

1 1 2 1 2 2 1 1 1 1 2 1 2 2 3

2
1 2 1 2

4( ) (1 )cos( ) 4 [( )cos( )cos( )

             2 cos( ) cos ( )]

G K K K K K K K K K K K

K K

θ θ θ

θ θ

= + − − + − + +
 

2 2 2
0 1 2 1 2 1 2 2( ) 4 cos ( )G K K K K K K θ= + − −  

 

The solution to the P3P problem is obtained from the roots of the following quartic equation: 

4 3 2
4 3 2 1 0 0G x G x G x G x G+ + + + =  

 

Now, 

2
12 cos( ) 1

abR
a

x x θ
=

− +
 

.b a x=  

2 2
2

2 2
2

cos( ) cos ( )
acR a

y
a

θ θ
−

= ± +  

.c y a=  

 

The a, b and c values must be verified by the cosine equations we started out with before 

they can be accepted. There can be a maximum of 8 real solutions and a maximum of 4 positive 

real roots. 
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The direct solution of the 3-point perspective problem yields distances rather than the 

rotation and translation matrices for the pose of an object. The distances can be transformed into 

the rotation and translation matrices using as follows. 

 

Let P1, P2 and P3 be the three model points chosen from the 3-D object model initially 

placed at the camera focus. The distances of the three feature points from the camera focus are 

detected assuming the feature points in the image correspond to the model points. Since the 

vectors from O to A, B and C are known (From the camera calibration matrix formula discussed 

earlier), the 3-D position of the feature points are also known. Let us represent them by variables 

P1’, P2’ and P3’. 

 

Let us now define matrices M1 and M2 containing vectors describing the triangle object 

coordinate system as follows: 

[ ]1 2 1 3 1 2 1 3 1( ) ( ) ( ) ( )M P P P P P P P P= − − − × −  

[ ]22 2 1 3 1 1 3 1( ' ') ( ' ') ( ' ') ( ' ')M P P P P P P P P= − − − × −  

The approximate rotation matrix, Rapprox is obtained using the following equations: 

2 . 1approxM R M=  

1
2 1approxR M M −=  

Rapprox is now subjected to singular value decomposition and is forced into a true rotation matrix 

of determinant equal to 1 using the following two equations. If the determinant of the resulting 

matrix is found to be -1 instead, the matrix is subject to scalar multiplication by -1 to make the 

determinant equal to 1.  Now, the rotation matrix, Rapprox is calculated as a product of the 

orthogonal matrices U and V
T
: 
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T
approxU V RΣ =  

T
approxR UV=  

The corresponding translation is found using the traditional pose-transformation formula, where 

P is a general point from the original pose and P’ is the transformed point after rotation and 

translation: 

'
0 1 1

R T P
P

   
=    
   

 

1 1 1'T P RP= −  

2 2 2'T P RP= −  

3 3 3'T P RP= −  

The translation, which must ideally have T1=T2=T3, is now subject to error minimization by 

taking the average of the three vectors T1, T2 and T3. 

 

1 2 3

3

T T T
T

+ +
=  

 

We will now discuss the second pose estimation technique using sets of known 

correspondences mentioned in the beginning of this section. It would be quite useful to discuss 

the mathematics behind the computation of pose given a set of 3-D object points with respect to 

a known world coordinate and the corresponding 2-D image points. This technique is used for 

refining the estimated pose and obtaining the true pose by superimposing the estimated pose over 

the image of the object under consideration. This pose estimation technique differs slightly from 

the P3P pose estimation technique. In the P3P pose estimation technique, we have known 

correspondences between just three model points and three image features. In contrast, in this 
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pose estimation technique, we have known correspondences between at least six image points 

which are chosen manually and the associated object model points. In other words, we do not 

depend on the features detected by the corner detector, on the contrary, we hand-pick the image 

points corresponding to the object corners. An outline of this technique is described in [9]. 

 

Let Xi, Yi and Zi be the 3-D model coordinates with respect to the camera coordinate 

system and xi and yi be the corresponding image coordinates of depth s. The relationship between 

the two can be expressed as: 
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If Xi, Yi and Zi are in terms of the object coordinate system, the object rotation and 

translation with respect to the camera coordinate system is given by: 
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         (2.3) 

 

Here, r1, r2 and r3 are the horizontal rows of the rotation matrix and t1, t2 and t3 are the 

scalar values present in the translation vector. 
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Thus, 
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From equation 2.3, multiplying by the inverse of the camera calibration matrix, C, on both sides, 

we get: 

[ ]1 1

3 1

1 3 1
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i x
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R t Y
sC y C C

Z

− −
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 

⊙
⊙

 

Multiplying the inverse of the camera calibration matrix with the image coordinates yields a 3D 

point [xi’ yi’ zi’]
T
 along the ray that emanates from the camera focus and passes through the 3D 

object corner:  
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−

   
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         (2.4) 

Note that point [xi’ yi’ zi’]
T
 has units based on the camera coordinate system while point [xi yi]

T
 is 

in image coordinate system and with values typically measured in pixels.  

 

For 3D object model points rotated and translated from the camera focus to somewhere out in 

space by an appropriate rotation and translation matrix, the equation becomes: 
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Expanding and rewriting the first two entries in the matrix on the left, we get: 

1 1'

i

i i

i

X

sx r Y t

Z

 
 = + 
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         (2.5) 
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         (2.6) 

The depth can be obtained directly from equation 2.3: 
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          (2.7) 

Combining equations 2.5, 2.6 and 2.7,  
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       (2.9) 

Let us now define a column vector, Q, containing 12 elements – the entries of the rotation and 

the translation matrices as: 
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And another matrix J: 

0 0 0 ' ' ' 1 0 '

0 0 0 ' ' ' 0 1 '

i i i i i i i i i i

i i i i i i i i i i

X Y Z X x Y y Z x x
J

X Y Z X y Y y Z y y

 
 − − − − =
 − − − −
 
 

⋮ ⋮ ⋮

⋮ ⋮ ⋮

 

We notice that we could rewrite equations 2.8 and 2.9 in matrix form as: 

2 12#
JQ ×= ⊙  

 

Here, N is the number of 3D-2D point correspondences given to us. The J matrix contains 

2N rows and 12 columns. Since we have the 3D and 2D point correspondences and points 

themselves, we could construct the J matrix as described above. We must be careful to use the 

[xi’ yi’]
T
 values rather than [xi yi] in the matrix. [xi’ yi’] is obtained from [xi yi]  as given by 

equation 2.4. 

 

To solve for the best non-trivial solution for Q, we use the singular value decomposition 

(SVD) technique on matrix J: UΣVTJ = . The best solution for Q is the last column of the V 

matrix, as it minimizes the norm of the matrix JQ. Values for the rotation and translation 

matrices are now extracted from Q. 

The obtained rotation matrix �R  is again subjected to singular value decomposition to obtain its 

U, ∑ and V matrices: 

� TR U V= Σ  

This matrix is forced to give an orthogonal matrix �
�
R by multiplying U and V

T
 matrices: 

�� TR UV=  
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If the �
�
R  matrix is found to have a determinant equal to -1, each element in the matrix is 

multiplied with -1 to force the determinant to be 1. Thus, we now obtain a true orthogonal 

rotation matrix satisfying:  

�� ��
T T

R R RR I= =  

The associated translation matrix is given by: 

��

�

1

2

3

t R

t t
R

t

 
 =  
  

ɵ  

These steps constitute the solution for pose estimation using known correspondences. 

 

2.1.3   IMAGE PROCESSING AND 3D MODELING 

 

 This section describes the different image processing concepts used by the proposed 

algorithm. The algorithm uses a corner detector, an edge chamfer image and incorporates a 

color-based segmentation algorithm. This section also presents an overview of the representation 

of the 3D object model in the algorithm and associated rotation formulae. 

 

The proposed algorithm uses corners as image feature points. Some of the corners 

detected in the image will most probably correspond to the true object corners which are also the 

3D model points. There is always a question of detecting the best and the most probable corners 

in a given image. Xiao and Yung [21] proposed an adaptive algorithm to detect corners based on 

the local and global curvature properties of the image edges. The edges are detected using the 

conventional canny edge detector.  
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 The distance of the projected lines from the image lines is computed using the chamfer 

distance image generated from the edge image. The distance data from chamfer images is 

directly used in the error metric proposed in the algorithm. A chamfer edge image can be thought 

of as a lookup table generated from a binary edge image that contains the distance at each pixel 

to the nearest edge. A pre-computed chamfer edge image helps reduce the computation time in 

the algorithm we are about to propose. There are three different kinds of norms used 

prominently: 1-norm (Also known as the Manhattan distance), 2-norm or the Euclidean which 

we use and the infinite norm (or the Chessboard distance). 

  

We estimate the pose of the model to lie largely in the segmented region of the image that 

separates the object from its background. Segmenting out the desired object in the image is 

particularly useful in avoiding a lot of potential false positives in pose estimation, in addition to 

decreasing the computation time. In our case, we assume that objects in the image can be one of 

the following three colors: red, green and yellow. 

 

A reliable way to segment out the different objects based on color is to use the ratio of the 

color channels. For example, the red object in the image would have a ratio of red to green and 

red to blue considerably higher at the image pixels that represent the object. Similarly, the green 

object in the image would have a higher ratio of green to red and green to blue channels. The 

segmentation of the yellow object is slightly different. It is common knowledge that the yellow 

color is made up of an equal combination of the red and green components with no blue ideally. 

If the red and green channels are of comparable intensity and the ratios of red-blue and green-

blue is comparatively high, we may classify the pixel to be on the yellow object in the image. 
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The segmented out region is dilated by a small amount to make sure that the edges of the 

object which contain the most relevant corners are not left out of consideration. Analyzing the 

clustered patches of segmented regions using connected components gives us a way to identify 

multiple physically well-separated similar objects in the same image. 

 

 Prior to pose estimation of an object, one needs a reasonably general method to represent 

a 3D object. This aids the process of projecting the model onto the image plane and computing 

the set of visible edges used in the algorithm. 

 

A 3-D convex polyhedron can be looked at as a set of surfaces, each of which is 

characterized by a set of vertices. The vertices are ordered so that the application of the right-

hand thumb rule to the ordered vertices will result in a vector that is parallel to the outward 

surface normal. The advantage of using this representation is the easy way it provides in 

determining whether a surface is visible in the image or not. The normal of a visible surface 

when projected onto the image will have a negative-Z component as it faces the camera. The 

camera coordinate system chosen is just as described earlier in camera calibration. 

 

 

Figure 2.6: Representation of a 3D model 
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The cuboid shown in Figure 2.6 can be represented by two matrices: One matrix holding 

the set of all the vertices with each column holding vertex coordinates and another holding the 

set of ordered vertices of each surface in successive rows. The set of vertices for this cuboid is 

given by V={1,2,3,4,5,6,7,8} while the set of surfaces is given by: S={(1,3,4,2), (2,4,8,6), 

(5,7,3,1), (5,1,2,6), (3,7,8,4), (6,8,7,5)}. 

 

A general polyhedron made up of polygons, in particular, have certain interesting 

properties that make them an ideal place to start formulating an algorithm for general pose 

estimation. To begin with, we can be sure that for any perspective camera view of the object, we 

can see at least one surface of the object fully provided the object is fully covered by the image. 

If we were to pick out any three vertices of a convex polyhedron, there is always a camera view 

that exists that can capture all three vertices simultaneously. These principles are indirectly used 

in the algorithm we will be formulating in the next section. 

 

Another formula worth noting would be the Rodrigues’ rotation formula. According to 

this theorem, any rotation matrix can be expressed as a rotation about a particular vector, h and is 

given by the formula
ɵhR e θ= . 

 

Equivalently the rotation matrix can be expressed as, 

ɵ sin( ) ( ' ).(1 cos( ))R I h hh Iθ θ= + + − −  

Here, 
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And,  

ɵ

0 3 2

3 0 1

2 1 0

h h

h h h

h h

− 
 = − 
 − 

 

 

2.2    ALGORITHM 

 

The proposed RANSAC-like algorithm, in a given loop iteration, hypothesizes 

correspondences between a triplet of model points and another triplet of detected image corner 

feature points. Over time, the algorithm exhausts all such possible hypotheses and settles on a 

best pose of this population which is then output. The implementation of this algorithm takes 

object model and its image as parameters and estimates the pose of the object using just this 

information without any knowledge of point correspondences. It must be noted that this 

technique explodes rapidly when the number of corner points is large. However, in the 

experiments done here, a number of techniques are used in parallel to offset this problem. This is 

in contrast to a conventional RANSAC implementation where a fixed number of poses is 

selected at random to overcome this problem. Two metrics, one discrete and another continuous 

to evaluate the suitability of each of the poses is presented and evaluated against the real image. 

The metrics proposed are based on two parameters: 1.) Average visible line mismatch error 2.) 

Total mismatch error for all the visible lines. 

 

This RANSAC-like line-based algorithm is novel not because of the exhaustive pose 

search adopted, but rather because of the specific way of evaluating each pose. The proposed 

algorithm uses data from the chamfer image constructed using image edge information in the 
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metrics to estimate the correctness of a pose. The data read off the chamfer image corresponding 

to the visible lines gives an idea of how close the projected line is actually present in the image. 

This is the primary contributor to the mathematical soundness of the algorithm. Additional 

techniques employed by the algorithm include color-based object segmentation and local/global 

ratios which eliminate potential false positives.  

 

The algorithm can be summarized in the following steps: 

1.) Segment the image based on the red, green and yellow colors as described earlier. We get 

three corresponding segmented images.  

2.) For each of the segmented images, we find the various segmented connected components. 

3.) Each of the connected components of the segmented region is dilated by a few pixels 

separately to make sure the object in the image lies completely within the segmented 

region. For each of the connected components, we identify the image corners in the 

region.  

 

 

Figure 2.7: Segmented object 
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4.) For each of the connected components, we have a chamfer edge image that corresponds 

to the image edges present within the segmented region. The data read off the pixels of 

this image corresponding to the visible projected model edges is used to compute the 

error distance between the image edges and the projected model edges. This information 

is crucial in computing the average line mismatch error and total line mismatch error used 

in the proposed metric. 

 

 

Figure 2.8: Edge image 

 

 

Figure 2.9: Chamfer edge image 
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5.) In our database, we have a set of 3-D object models which are present in the image. We 

try and fit each of the models to each of the connected components of the segmented 

region of image successively. 

6.) To do this, we pick out all permutations of three image corner-point sets and associate 

them with the corners of each of the unique triangles that make up the 3-D model. 

 

 

Figure 2.10: Prominent corners in the segmented region 

 

7.) For each such association, we get a perspective three-point problem with multiple 

solutions. 

8.) Each of the solutions is translated into the appropriate rotation and translation matrices. 

9.) The rotation and translation matrices combined with the camera calibration matrix helps 

find the get the positions of the new 3-D coordinates and project them onto the image 

plane. 

10.) Since the new 3-D model pose is known, the sets of visible edges can be computed. 

These edges are now compared against the edge-based chamfer distance image. The 
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visibility of each of the surfaces is calculated by computing the surface normal of each 

of the surfaces with ordered vertices after projection onto the image plane. If the surface 

normal has a negative Z component, we say that the surface faces the camera and is 

hence visible. In this process, care must be taken to make sure that all the projected 

vertices lie within the image boundaries. If any of the vertices overshoot these 

boundaries, the pose can be directly discarded.   

11.) Now we compute the average pixel mismatch error for each of the visible lines. If the 

average pixel error for a line is below a predefined threshold, we consider that line a 

match. 

12.) We also compute the total mismatch error for all the matched lines. 

13.) The discrete metric ranks the poses in a lexicographical order, with the poses with 

higher line matches and then lower total mismatch error for all the visible given a higher 

priority. Thus, the pose with the minimum total line mismatch error among the poses 

with the maximum number of line matches is considered the best estimate. 

14.) The continuous metric, on the other hand, is formulated as a summation of a function of 

average line mismatch error and total mismatch error for each of the lines. This gives us 

a single number whose magnitude gives a quantitative representation of the 

appropriateness of the pose. 
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Elimination of false positives: 

 

For each of the object 3-D poses projected onto the image plane, we define two ratios and 

make sure they are above a predefined threshold: 

1.) Global ratio: Ratio of the area of the convex hull of the projected model and the 

segmented out region. 

2.) Local ratio: Ratio of the area of the intersection of segmented region and the convex hull 

and the area of the convex hull itself. 

Optionally, we might employ a constraint on the translation vector to make sure the object’s 

estimated pose does not go any further beyond a predefined value.  

 

Figure 2.11: Computing Average and Total Line Mismatch Error 

 

 Let Ai be the average mismatch error and Ti be the total mismatch error for line i. The 

average mismatch error of line i is defined as the average value of the pixels in the chamfer 

image that correspond to the i
th

 visible model line projected onto the image plane. The total 

mismatch error of line i is defined as the total value of the pixels in the chamfer image that 

correspond to the i
th

 visible model line projected onto the image plane. 
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The average and total mismatch error for red line 1 shown in Figure 2.11 is lesser than 

that of line 2 due to a better match with the darker regions of the chamfer image.  

 

Let the mismatch threshold be Tm. Let the total number of visible lines be N. The 

continuous metric Mc is defined by the equation: 

  
1

i

#
A

c i

i

M T e
=

= −∑  

A pose with a higher value of Mc is said to be a better pose estimate. 

 

For evaluating the discrete metric, we consider two parameters: 

1.) Count – it refers to the number of visible lines with an average mismatch error lesser than 

or equal to Tm. 

2.) Total – it refers to the sum of the mismatch error of all the visible lines which have an 

average mismatch error lesser than or equal to Tm. 

 

The possible poses are arranged in a lexicographical order with the poses arranged in 

order of decreasing “count” values. Among the poses with equal values of “count”, the poses are 

rearranged in the order of increasing “total” values. Thus, the poses with the highest value of 

 = Sum of all corresponding pixel valuesiT

Sum of all corresponding pixel values

Total number of line pixels
iA =
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“count” are considered to be the better poses. Among them the pose with the least value of 

“total” is taken to be the best pose.  

 

 

 
 

 

Figure 2.12: Global and Local ratios used in the algorithm 

 

In Figure 2.11, the ellipse represents the segmented out region while the rectangle 

represents the convex hull of the pose of the 3-D object projected onto the image plane. 

 

The global ratio, GR is defined as: 

Area of yellow region + Area of green region
GR

Area of red region + Area of yellow region
=  

The local ratio, LR is defined as: 

Area of yellow region
LR

Area of red region + Area of yellow region
=  
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CHAPTER THREE 

RESULTS AND DISCUSSION 

 

3.1 DATA USED AND METHODOLOGIES 

 

The experiment can be summarized as follows. A USB web camera was mounted on a 

camera stand and was positioned to look down at different assembly scenes. The images of the 

assemblies were then stored in a standard format; the jpeg image format was used in this 

experiment. A measure of the true pose of the assembly components was done manually - this 

will be described later in this section. The images were fed as a parameter to the algorithm 

implemented in Matlab to produce the estimated poses of the assembly objects. 

 

The images of the object were taken under typical uneven home illumination conditions 

under an overhead CFL light source. The objects used were Screw Blocks with rounded corners 

and holes with little or no surface texture information. The camera used was a Logitech C250 

webcam which can afford a maximum resolution of 640x480. We use a more typical webcam 

resolution of 320x240 in our experiments to put to test the strength of the algorithm. The 

webcam was fixed in a camera stand of height of about 20 cm with an angle of descent of about 

45 degrees. 

 

About 22 images of the Lego blocks were taken under varying lighting conditions and a 

variety of poses. 17 of these images included the red Lego cuboid in the actual image, 13 

included the green Lego cube and 17 included stray yellow cube(s) for providing clutter and 
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noise which is precisely the conditions under which the algorithm is designed to work robustly. 

The cuboid used was of the dimensions 6x3x3cm while the cube was of the dimensions 

3x3x3cm. 

 

The algorithm was implemented in Matlab version R2007 under the Windows Vista 

(Service pack 1) operating system. The OpenCV 2.0 implementation for camera calibration was 

used to get the camera calibration matrix while the Matlab corner detector implementation by He 

and Yung was used to detect the prominent corners in the images. 

 

Implementation details: 

 

Prominent Matlab function routines developed: 

1.) CheckBlob.m: This function is the top-level function which calls all the other functions. 

This function takes the image file, 3D object model, and threshold parameters for 

segmented image dilation, corner detector thresholds and discrete metric threshold.  

2.) SegmentCC.m: It is called by CheckBlob.m recursively to return the discrete connected 

components of blobs of each color separately by calling the function implemented in 

Segment.m file. 

3.) Controlpointgen.m: This function generates the set of unique triplets of 3-D model points 

(Which we call control point sets) which by themselves are enough to exhaustively 

search the entire possible pose mapping from the object model to 2D image points for a 

symmetric object like a cube or a cuboid. 



44 

 

4.) P3P_solve.m: This function solves the Perspective 3-point pose estimation problem 

mentioned earlier and returns the depths of the image points. 

5.) RT.m: This function converts the solution to the P3P problem into the corresponding 

rotation and translation matrices.  

6.) Edge_distance_compare_match.m: It takes the chamfer edge distance image of the edge 

image, the projected image points, the set of visible lines for the estimated pose and the 

threshold for computing the discrete metric. It returns a measure of pose suitability 

computed both using the discrete and the continuous metrics discussed earlier. 

7.) Convhullparea.m: This function computes the Local and Global ratios described earlier. 

It takes the projected image model points and the segmented image as parameters. 

 

We use two threshold values for generating the corners and the corresponding edges 

using the corner detector. The first threshold which is used for obtaining the set of corners is 

made moderately high so that only the prominent image corners are chosen. The second 

threshold which is used for specifying the percentage of edges detected is made low so that a 

sufficiently high amount of edge information is used for pose estimation. This approach 

increases the reliability of the pose estimated while maintaining relatively low pose computation 

times. 

 

The true pose of the object was estimated by carefully selecting the corresponding image 

points for the visible 3-D model points and solving the pose estimation problem with known 

correspondences discussed earlier. Further pose refinement was done using a GUI developed for 

fine-tuning pose estimates through close visual inspection. This could have been done in an 
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alternate way: by physically measuring the rotation and translation with respect to a world 

coordinate system. Physical measurements are not, in practice, completely error free and the 

measurements might prove quite unrepeatable in cases where we might need to come back to a 

particular exact test setup in the future for additional measurements. Since we would be fine-

tuning these estimates through close visual inspection using the Matlab GUI developed for this 

purpose anyway, one might argue that there would be little difference between the two estimates.  

 

The values of the standard tuning parameters used in the algorithm implementation are: 

Global ratio: 50 percent 

Local Ratio: 50 percent 

Extent of dilation of segmented region: 15 pixels 

Discrete metric threshold: 2 pixels 

Translation constraint: 40 cm from camera focus 

Threshold used to detect prominent corners: 0.5 

Threshold used to detect prominent edges: 0.1 

 

3.2 RESULTS 

 

This section presents the typical results got from the program run. The blue lines 

represent the measured pose, which is also assumed to be the true pose of the object. The red 

lines are obtained by plotting the 3D model on the image plane using the best pose computed 

during the program run. 
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The following abbreviations have been used in the results section and have been defined in the 

subsequent paragraphs: 

MSPE – Mean squared pixel error 

NE – Norm error 

RME – Rotation mismatch error 

TME – Translation mismatch error 

3DME – 3D mismatch error 

 

 
(a) MSPE: 4.7114; NE: 0.8748; RME: 0.0724; 

TME: 0.8718; 3DME: 0.6990 

 

 
(b) MSPE: 19.6079; NE: 0.2198; RME: 0.1041; 

TME: 0.2076; 3DME: 0.3854 

 

 
(c) MSPE: 17.1985; NE: 1.4975; RME: 0.0833; 

TME: 1.4952; 3DME: 1.3547 

 

 
(d) MSPE: 36.5514; NE: 1.1882; RME: 0.4335; 

TME: 1.1063; 3DME: 1.3139 
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(e) MSPE: 64.1339; NE: 0.7009; RME: 0.1870; 

TME: 0.6768; 3DME: 0.6475 

 

 
(f) MSPE: 338.306; NE: 1.8328; RME: 0.8299; 

TME: 1.7586; 3DME: 2.2175 

 
(g) MSPE: 18.0037; NE: 0.7518; RME: 0.0524; 

TME: 0.7500; 3DME: 0.8114 

 

Figure 3.1 (a-g) – True and estimated poses of the red cuboid 

 

 
(a) MSPE: 0.7773; NE: 0.5490; RME: 0.6323; 

TME: 0.0390; 3DME: 0.6323 

 

 
(b) MSPE: 16.8409; NE: 0.5464; RME: 0.0780; 

TME: 0.5408; 3DME: 0.5263 
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(c) MSPE: 74.9824; NE: 2.3954; RME: 1.5019; 

TME: 2.3715; 3DME: 2.0771 

 

Figure 3.2 (a-c) – True and estimated poses of the green cuboid 

 

 

 

Figure 3.3: 3D Mismatch Error Performance plot 
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Figure 3.4: Translation Mismatch Error Performance plot 

 

3.3 DISCUSSION 

 

The performance plot shown in Figure 3.3 summarizes the accuracy of the algorithm 

which was tested on a 22-image dataset with 28 assembly component poses considered. As 

observed from the graph, the algorithm works with a 3D mismatch error of less than 2.5cm error 

in 90% of the cases (Groups 1 and 2 together) and less than 1cm error in 53% of the cases 

(Group 1).  

 

The proposed algorithm works quite well in cases in relatively uniform lighting 

conditions where the corner features appear more distinct. In cases where the features are 
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indiscernible owing to poor lighting, occlusions due to surrounding objects or the actual pose of 

the object itself with few surfaces visible, the detected pose, as is evident from the images is less 

accurate.  As evinced by the results, the algorithm works pretty well for well-lit objects much of 

which is visible in the image. The algorithm is hampered in a few cases owing to the presence of 

heavy shadows by the surrounding objects which affect the estimated orientation of the target 

object. 

 

The strength of the algorithm lies in its ability to work despite all these conditions and 

give a result that is not off from the true one by a large margin. The segmentation approaches 

make sure that the object translation is close enough to the true one. The discrete line-match 

based metric tries to make sure that most of the object edges are matched as closely as possible 

making the estimate as close as possible to the true one. The continuous metric is found to be 

more prone to errors compared to the discrete metric in converging to the true pose of the object. 

The reason for this could be attributed to the nature of the continuous metric which is designed to 

take the global metrics into consideration much more than the local metrics. This is in sharp 

contrast with the discrete metric which gives a higher preference to local matching thresholds. 

 

The discrete metric has been found to give consistently better results compared to the 

continuous metric. Thus, we take the pose computed by the discrete metric as the final output of 

the implementation and list the match computed by the continuous metric along for reference. 

 

To adapt this algorithm for a disassembly process, a good approach would be to find out 

the subassemblies with the best metric and try removing them from the assembly first as their 
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pose is more reliable. This process is repeated until there are no more subassemblies left in the 

scene. 

 

The results presented in the previous section illustrate the typical outputs generated by 

the algorithm implementation. The mean squared pixel error is defined as the average of the 

squared distances between the corresponding projected image model points and the image points. 

The norm error refers to the minimum norm of the difference of the measured object pose and 

the estimated poses (with all the possible poses generated by equivalent local rotations 

considered).  

 

The norm error gives a better picture of the actual difference in poses as it works for an 

N-dimensional space (In our case, N=3).  On the other hand, Mean square pixel error is highly 

sensitive to slight changes in local orientation of the object and comparatively static to 

translation, especially along the Z-axis. 

 

The drawback with the norm error is that it does not distinguish between the rotation and 

translation mismatches. To present a clearer picture, we compute and present these mismatch 

values separately. The translation mismatch is defined as the norm of the difference between the 

vectors TM and TC. The rotation mismatch, on the other hand, is defined as the norm of the 

matrix 1[ . ]I RM RC −− , or equivalently, norm of the matrix 1[ . ]I RC RM −− . Here, RM and TM 

are the rotation and translation matrices obtained from the actual measurement and are assumed 

to represent the true pose of the object. RC and TC are the rotation and translation matrices 

computed during the program run and represent the estimated object pose. Since the norm error 
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involves computing the norm of the matrix containing difference of both the rotation and 

translation vectors, it is hard to intuitively understand the physical significance of its 

mathematical value. 

 

The most natural choice of error measurement metric would be the 3D mismatch error 

metric. This metric is defined as the average 3D distance error between the corresponding 

corners of the true and the estimated object poses. This metric, unlike the others, is quite intuitive 

as it gives us a way to visualize the mismatch errors between the poses in 3D space. It is for this 

reason that this error metric is preferred over the others for the Mismatch error-Population plot. 

 

The performance plot gives the relation between the percentages of population with the 

corresponding 3D error metric below a given value. As mentioned before, in ninety percent of 

the cases, the 3D error was less than 2.5cm on an average; and in fifty three percent of the cases, 

the 3D error was less than 1cm. Close observation of the plot gives rise to the hypothesis of the 

existence of three discrete groups of object images, each having a distinct range of error. Further 

investigation reveals that group 1, with the lowest error; consists primarily of the cases where the 

object remains relatively unaffected by occlusions or shadows. Group 2, on the other hand, is 

moderately affected by both occlusions and shadows, while in cases in group 3, are severely 

occluded and subject to heavy shadows. This suggests a clear metric-based demarcation between 

the various cases considered. 

 

The adopted exhaustive search technique, on a higher level looks computationally 

expensive making its implementation appear infeasible for any practical application. This is 
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particularly true in our case where we iterate through each of the connected components of each 

color segmented out and subsequently try matching every model in the database to the target 

region. On closer observation, we realize this problem has a huge search space that can easily be 

reduced to a much smaller one. This is evident from the practical implementation of the 

algorithm, where the search is done in typically less than 3 minutes for the given images. Thus, 

the drawback of having a high computation order and time is partly offset by filtering out the 

majority of possible poses which turn out to be false positives for the most part using specific 

techniques incorporated in the algorithm which have been discussed earlier. 

 

The algorithm primarily derives its reasonably reliable performance from the fact that 

reliable, repeatable color-based segmentation can be performed on objects with most of the false 

positives can be done away with using the Global and Local ratios discussed earlier. We further 

reduce the computational time by using specific triplets of 3-D model points which are chosen in 

such a way that at least one valid mapping between a triplet and an identified set of three valid 

object image corner features exist. In other words, this set of triplets is sufficient to generate all 

the possible valid poses while simultaneously eliminating any pose redundancies along the way. 

In addition to this, feeding two appropriate thresholds to the corner detector, one kept low to just 

get a set of corner points that have at least three valid object corners for pose estimation, and 

another kept high to get a sufficient number of edges to enhance reliability of the estimated pose. 

Since we iterate through the corners alone, the computation time is considerably reduced. While 

these approaches do not change the order of computation as such, but the overall number of 

iterations that one has to take to come up with a reasonable pose estimate is considerably 

reduced. 
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The algorithm, in its current state, places a greater focus on arriving at a more reliable 

solution rather than an optimal, computationally less expensive solution and consequentially 

takes a disproportionate amount of time for utility in a fast-paced, real time scenario. We will 

proceed to discuss how this handicap could be potentially eliminated in the next chapter. 
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CHAPTER FOUR 

CONCLUSIONS AND FUTURE WORK 

 

The results obtained indicate that the algorithm is reasonably suited for toy problems 

involving disassembly of small assemblies with few features. The experiments performed were 

in a largely structured environment under relatively uneven illumination conditions and moderate 

occlusions. However, the proposed algorithm can be expected to work in most cases even in an 

unstructured environment, provided reliable segmentation is achieved.  

 

A major source of error in results produced by the algorithm arises from the modules 

used to detect the corners and edges. The 3D object is modeled as a set of edges forming faces 

with sharp corners. The actual object model, on the other hand, possesses rounded corners which 

are often not detected by the corner detector used. The algorithm remains relatively resistant to 

this weakness since it requires just three true object corners be detected in the image with 

negligible error. Much of this drawback with corner detection could be overcome if we 

employed an alternate approach where edge detection is based on regions with similar local 

color/texture rather than on local gradients. Once we have a reliable method to detect edges, the 

problem of obtaining reliable corners will be a natural consequence. This approach would enable 

us to have a reliable pose estimate even when similar-looking objects are stacked together in the 

image. However, this implies we cannot employ this technique on a largely texture-free object. 

Since most real-world assemblies can be assumed to have surface-texture in some form, this idea 

might be useful to consider.  
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Another notable weakness with the algorithm implementation stems from the color-based 

segmentation technique. While the color-based segmentation technique is extremely reliable for 

uniformly colored objects, problems arise when similar colored objects are placed very closely 

and their dilated segmented regions in the image overlap. This calls for an intelligent, content-

aware segmentation technique.  

 

The algorithm has been found to produce a higher pose-estimate error in cases where 

heavy shadows are predominant, leading to false edges. As discussed earlier, while one might 

argue that this problem could be eliminated using color/texture-based edge detection to arrive at 

a set of true edges, we also could view this problem a little differently. High pose estimate errors 

arise when the number of line matches is high owing to multiple object model line matches on 

the same image line. To offset this, we could potentially introduce a constraint where 3D object 

model edges which map a little too close on the image plane be appropriately penalized. Again, 

the drawback with this approach is that such cases are quite possible in real images and errors 

may arise in certain cases due to the penalization itself. 

 

The algorithm, at present, works well for objects with corners (both sharp and rounded) 

and well defined sides. However, the algorithm is not expected to work on a surface devoid any 

noticeable corners and straight edges. This could be viewed as a drawback in for an algorithm 

like this as and can be largely expected to fail while attempting to find a solution for the pose of 

a smooth object like a sphere or an ellipsoid in an image given an approximate 3-D model 

constructed using a Delaunay triangulation. Approximating a rounded object usually entails 

having a large number of object model vertices. Thus, even if at least three false corners are 
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detected on the smooth object, they could still be used to determine the object pose. An 

implementation that requires permutations of all the possible corner points in the model would be 

highly impractical and would lead to very high implementation runtime. It is imperative that an 

alternate formal approach to deal with such cases be formulated to obtain an algorithm that 

works on a bigger class of objects. 

 

An alternate approach would be to have an automated technique to map features on 3D 

objects onto an image plane and find out the appropriate correspondences between the synthetic 

and the real images. This is closely related to the method discussed in literature survey section 

where a given database is searched for the best matching pose. Unfortunately, such an approach 

would not be feasible for objects with little or no identifiable visual surface features - much like 

the ones we have tested our algorithm on. Also, we now have an additional correspondence-

determination problem at hand. 

 

To overcome the problem of pose estimation of occluded objects, one could first find out 

the poses of objects with the highest metric in 3-D space. The poses of objects with a lower 

metric could subsequently be corrected based on the poses we place a greater trust on (The poses 

with a higher metric). 

 

Looking at the problem of occlusion with the disassembly process in perspective, we can 

expect this to pose an insignificant practical impediment to the real problem we are trying to 

solve. This is because we can build a system that would actuate the removal of objects in the 
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order of their decreasing metric. This would subsequently ensure the visibility of the once-

occluded objects leading to the dismantling of the entire assembly over time. 

 

A second look at the algorithm would reveal that the search process is really independent 

of the previous state that was evaluated. This implies that the whole algorithm could be 

parallelized and made to run in real-time using a cluster of GPU-enhanced machines. This 

arrangement would be another step in building a machine to emulate the human brain in figuring 

out the best way in taking apart a given assembly without much delay. 

 

Concurrently, one could adopt a line-based version of an iterative algorithm like the 

SoftPOSIT. Starting out with initial random pose guesses from every local region of the camera 

view volume and letting them converge independently would result in a population of potentially 

viable poses. Each of these poses could then be subject to evaluation using the techniques 

discussed in this thesis. 
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