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Abstract

Consider Fr[t] where r = pm for some prime p and m ∈ N. Let f(t) be an irreducible

square-free polynomial with even degree in Fr[t] so that the leading coefficient is not a square

mod Fr. Let A = L = Fr[t]
[√

f(t)
]
.

We will examine the basic set-up required for a dimension two rank one Drinfeld

module over L along with an explanation of our choice of f(t). In addition we will show the

construction for the exponential function.
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Chapter 1

Introduction

Consider Fr[t] where r = pm for some prime p and m ∈ N. Let f(t) be an irreducible

square-free polynomial with even degree in Fr[t] so that the leading coefficient is not a square

mod Fr. Let A = L = Fr[t]
[√

f(t)
]
. We will examine the basic set-up required for this

dimension two rank one Drinfeld module along with an explanation of our choice of f(t). In

addition we will show the construction for the exponential function.

In 1973, Vladimir Drinfeld invented Elliptic modules commonly referred to as Drinfeld

modules. The following year he produced a proof of Langlands conjecture for GL2 over

a global function field of positive characteristic. Langlands conjecture for function fields

roughly states that there exists a bijection between cuspidal automorphic representations of

GLn and certain representations of a Galois group. Drinfeld used these modules in his proofs

of these conjectures. Continued research enabled Drinfeld to generalize Drinfeld modules to

shtukas, which allowed him to fully prove Langlands conjecture for GL2. In 1990, Drinfeld

was awarded the Fields Medal for his work.

1



1.1 Brief Overview of Drinfeld Modules

In order to understand Drinfeld modules, we need to set-up some notation. Here,

we will give a general set-up, which we will specialize later. Let X be a smooth, projective

geometrically connected curve over the finite field Fr. Let P∞ ∈ X be a fixed closed rational

point over Fr. Set k to be the function field of X and A ⊂ k to be the ring of functions

which are regular outside P∞. Let v∞ be the valuation associated to the point P∞ and let

K = k∞ be the completion with respect to v∞. Let K be a fixed algebraic closure of K and

C∞ be the completion of K. This comes from the canonical extension of v∞ to K. Define τ

to be the rth power mapping, i.e. τ i(x) := xr
i
. Let M be a complete extension of K ⊆ C∞.

Then M{τ} is the composition ring of Frobenius polynomials in τ .

1.1.1 Properties of M{τ}

The following is a concise overview of properties of M{τ}. For a more thorough

explanation, the reader should refer to Goss [5]. It can be shown that τ i(x) is an additive

polynomial for all i and hence all polynomials spanned by τ i are additive. Using properties

of additive polynomials, we have that M{τ} forms a ring under composition. Since M 6= Fr,

it follows that M{τ} is not commutative, however

τα = αrτ ∀ α ∈M

Since M is a field of characteristic r, it can be shown that the set of absolutely additive

polynomials over M is M{τ}.
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Some notation that will be useful is

1. If P (x) is additive, then P (τ) will denote its representation in M{τ}. Similarly, if P (x)

is Fr-linear, then P (τ) is its representation in M{τ}. It is important to note that P (τ)

is not obtained from P (x) by substituting τ in for x.

2. The multiplication, P (τ) ·Q(τ), will refer to multiplication in M{τ}.

3. P (τ) is monic if and only if P (x) is monic.

4. Let P (τ) =
t∑
i=0

αiτ
i with αt 6= 0. Set t = deg (P (τ)). Notice that

rt = deg (P (x))

The following theorem shows the relationship between M [x] and M{τ}.

Theorem 1. Let f(x) ∈M [x]. Then there exists g(τ) ∈M{τ} such that f(x) divides g(x).

It is important to notice that the set of all g(τ) satisfying the condition of the theorem

forms a left ideal in M{τ}.

Next, we will briefly discuss the left and right division algorithms for M{τ} along

with some other properties. Let {f(τ), g(τ)} ⊂M{τ}. Notice that f(τ) · g(τ) = 0 in M{τ}

implies that f(τ) or g(τ) must be 0. Therefore multiplication in M{τ} has both left and

right cancellation properties.

Definition 1. 1. f(τ) is right divisible by g(τ) if there exists h(τ) ∈M{τ} such that

f(τ) = h(τ) · g(τ)

2. f(τ) is left divisible by g(τ) if there exists m(τ) ∈M{τ} such that

f(τ) = g(τ) ·m(τ)

3



We can see that if f(τ) is right divisible by g(τ) then g(x) divides f(x).

The following proposition is the right division algorithm in M{τ}.

Proposition 2. Let {f(τ), g(τ)} ⊂ M{τ} with g(τ) 6= 0. Then there exists {h(τ), r(τ)} ⊂

M{τ} with deg (r(τ)) < deg (g(τ)) such that

f(τ) = h(τ) · g(τ) + r(τ)

Moreover, h(τ) and r(τ) are uniquely determined.

Now that we have a right division algorithm, the following corollary gives us an

important property about left ideals in M{τ}.

Corollary 3. Every left ideal of M{τ} is principal.

To state the left division algorithm, we need the following definition.

Definition 2. M is perfect if and only if τM = M .

Since τ has trivial kernel, a counting argument can be used to show that all finite

fields are perfect. Furthermore, every algebraically closed field is perfect. It can be shown

that every finite extension of a perfect field is separable. Now we can define the left division

algorithm on M{τ} with an additional assumption on M .

Proposition 4. Let M be perfect and let {f(τ), g(τ)} ⊂ M{τ} with g(τ) 6= 0. Then there

exists {h(τ), r(τ)} ⊂M{τ} with deg (r(τ)) < deg (g(τ)) such that

f(τ) = g(τ) · h(τ) + r(τ)

Furthermore, h(τ) and r(τ) are uniquely determined.

The left division algorithm leads to the following corollary about right ideals.

4



Corollary 5. If M is perfect, then every right ideal of M{τ} is principal.

Using the Euclidean Algorithm we can compute the right greatest common divisor

of f(τ) and g(τ). It is defined as the monic generator of the left ideal generated by f(τ)

and g(τ). We will denote it as (f(τ), g(τ)). This leads us to the final lemma we will discuss

about M{τ}.

Lemma 6. Let h(τ) = (f(τ), g(τ)). Then h(x) is the greatest common divisor of f(x) and

g(x).

1.1.2 Background Definitions and Theorems

To state the general definition of a Drinfeld module, we will present the following

definitions and theorem. For further details, the reader should refer to Goss [5].

Definition 3. An A-submodule L ⊂ C∞ (with the usual multiplication of A) is called an

M -lattice (or lattice) if and only if

1. L is finitely generated as an A-module

2. L is discrete in the topology of C∞

3. Let M sep ⊆ C∞ be the separable closure of M . Then L is contained in M sep and be

stable under Gal(M sep/M)

The rank of L is its rank as a finitely generated torsion-free submodule of C∞. Define

d := rankA(L).

Definition 4. Let L be an M -lattice. Then set

eL(x) = x
∏
α∈L
06=α

(1− x/α)

5



Drinfeld proved the following result, which is fundamental to the theory behind Drin-

feld modules.

Theorem 7. Let 0 6= a ∈ A. Then

eL(ax) = aeL(x)
∏

06=α∈a−1L/L

(1− eL(x)/eL(α))

We shall not go through the proof here, however, it leads us to the following definition.

Definition 5. Let 0 6= a ∈ A. Then define

φa := ax
∏

06=α∈a−1L/L

(1− x/eL(α))

From the proof of Theorem 7, we can conclude that φa ∈ M{τ}. With some work,

it can be shown that deg(φa(τ)) = d deg(a). For a ∈ A, the mapping a 7→ φa is Fr-linear.

Also, if a ∈ Fr ⊂ A then φa = aτ 0. Finally,

φab(τ) = φa(τ)φb(τ) = φb(τ)φa(τ) = φba(τ).

This last property is not obvious since multiplication in M{τ} is not commutative.

1.1.3 Definition of a Drinfeld Module

Now we are ready to define a Drinfeld module.

Definition 6. The injection which maps A into M{τ} by a 7→ φa, associated to L is called

the Drinfeld module associated to L. Its rank is d = rankA(L).

We can actually give a more general definition of a Drinfeld module. For this, we will

use the following definitions.
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Definition 7. An A field F is a field, F , equipped with a fixed morphism ι : A → F .

Define the characteristic of F , ℘, to be the kernel of ι which is a prime ideal. We say F

has generic characteristic if and only if ℘ = (0); otherwise we say that ℘ is finite and F has

finite characteristic.

Over F we have the ring F{τ}. Let

f(τ) =
v∑
i=0

aiτ
i ∈ F{τ}

Set

Df := a0 = f ′(τ)

Then the mapping from F{τ} to F defined by f 7→ Df is a morphism of Fr-algebras.

So another definition of a Drinfeld module is given by the following.

Definition 8. Let φ : A→ F{τ} be a homomorphism of Fr-algebras. Then φ is a Drinfeld

module over F if and only if

1. D ◦ φ = ι

2. For some a ∈ A, φa 6= ι(a)τ 0

1.2 The Carlitz Module

Prior to Drinfeld’s discovery, Leonard Carlitz discovered the Carlitz module in 1938.

He used the Carlitz module to give an explicit construction of the class field theory of Fr(t).

The Carlitz module is a dimension one rank one Drinfeld module. Here, we let A = Fr[t]

and L = A, which implies that k = Fr(t). For d ≥ 0, define

A(d) = {α ∈ A : deg(α) < d}

7



So A(d) is a d-dimensional Fr-vector space of polynomials of degree less than d. And

A =
⋃

A(d)

Set e0(x) = x and for d > 0,

ed(x) =
∏

α∈A(d)

(x− α)

=
d∑
i=0

(−1)d−ixr
i Dd

DiLri
d−i

where

[i] = tr
i − t

Di = [i][i− 1]r . . . [1]r
i−1

Li = [i][i− 1] . . . [1]

It can be shown that ed(τ) ∈ A{τ} and

[i] =
∏

f monic polynomial
deg(f)|i

f

Di = [i]Dr
i−1 =

∏
g monic
deg(g)=i

g

Li = lcm of all polynomials of degree i

Now dividing our formula for ed(x) by

∏
06=α∈A(d)

α

8



then taking the limit as d approaches infinity, we obtain the Carlitz exponential:

eC(x) =
∞∑
j=0

xr
j

Dj

For x ∈ C∞ and a ∈ A with a =
v∑
j=0

ajt
j where aj ∈ Fr and av 6= 0 we have that

eC(ax) = aeC(x) +
v∑
j=1

C(j)
a eC(x)r

j

where {C(j)
a } ⊂ A and C

(v)
a = av.

Now set

Ca(τ) = aτ 0 +
v∑
j=1

C(j)
a τ j

So

eC(ax) = Ca(eC(x))

The mapping C : A→ k{τ} defined by a 7→ Ca which is an injection of Fr-algebras is called

the Carlitz Module.

Later on, we will generalize this construction to a quadratic extension of Fr(t). In

Chapter 3, we will explicitly define the corresponding valuation to our quadratic extension;

while in Chapter 4, we construct ed(x) and give a formula which recursively defines it.

9



Chapter 2

Set-up

Let Fr be the finite field with r = pm elements. In this example, we will be examining

the function field Fr(t) and its quadratic extension. Let f(t) be a square-free polynomial

in Fr[t], then Fr(t)
(√

f(t)
)

is a quadratic extension of Fr(t). This is a special case of the

set-up which was given for a general Drinfeld module.

2.1 Background on the Point at Infinity

We will give a brief discussion about points of certain function fields. The reader

should refer to Rosen [7] for a more in depth discussion. Let Fr be a finite field. A function

field in one variable over Fr is a field k containing Fr and at least one element t, transcendental

over Fr, such that k/Fr(t) is a finite algebraic extension. A field with this property has

transcendental degree one over Fr. It can be shown that the algebraic closure of Fr in k is

finite over Fr.

There is a natural one-to-one correspondence between function fields over Fr and

smooth projective curves over Fr. Under such correspondence, a closed point of the curve

corresponds to a place of the function field. A place of k is, by definition, a discrete valuation

10



ring of k. The valuation ring associated to a place has quotient field equal to k.

In the case that k = Fr(t), the corresponding curve is P1

Fr
. And P1

Fr
is covered by two

subvarities P1

Fr
− {P0} and P1

Fr
− {P∞}. They are both affine lines A1 ∼= Spec (Fr[T ]) and

A1 ∼= Spec (Fr[t]) respectively. Here T = 1/t and the point P0 corresponds to the distinct

valuation v0(t) = 1. And the point P∞ corresponds to the distinct valuation v∞(t) =

v∞ (1/T ) = −1. Every other non-zero place of Fr(t) is given by a unique monic irreducible

p in Fr[t].

In our case that F = k = F(t)
(√

f(t)
)

, the corresponding curve, denoted by X, is

a double cover of P1

Fr
. The curve X is also covered by two affine subvarieties, which are

double covers of P1

Fr
− {P0} and P1

Fr
− {P∞} respectively.

Now we investigate the behavior of the inverse image of P∞ in X. Let O′F denote

the integral closure of Fr[T ] in F = Fr(t) = Fr(T ). Also, let m∞ denote the prime of Fr[T ]

corresponding to P∞. Then P∞, is ramified in X if and only if m∞O′F = m2 for some

non-zero prime ideal m in O′F . Otherwise, P∞ is unramified, in which case, either P∞ splits

completely or P∞ is inert in X. If P∞ splits, then m∞O′F = m1m2 where m1 and m2 are

distinct prime ideals in O′F . On the contrary, if P∞ is inert, then m∞O′F remains a prime

ideal in O′F .

2.2 Integral Closure

We will begin by constructing the integral closure for the quadratic extension of our

function field. Recall that the ring of functions which are regular outside P∞ is A = Fr[t].

Proposition 8. Fr[t] + Fr[t]
[√

f(t)
]

is the integral closure of Fr[t] in Fr(t)
(√

f(t)
)

.

Proof. Let OF be the integral closure of Fr[t] in Fr(t)
(√

f(t)
)

. Consider

a ∈ Fr[t] + Fr[t]
[√

f(t)
]
.

11



(Observe that we are actually referring to the direct sum, but for simplicity of notation, we

will denote this by plus.) So

a =

k1∑
i=0

αit
i +
√
f(t)

k2∑
j=0

βjt
j

Then a is a zero of the polynomial

(
x−

k1∑
i=0

αit
i +
√
f(t)

k2∑
j=0

βjt
j

)(
x−

k1∑
i=0

αit
i −
√
f(t)

k2∑
j=0

βjt
j

)

=

(
x−

k1∑
i=0

αit
i

)2

− f(t)

(
k2∑
j=0

βjt
j

)2

So a is a zero of a monic polynomial in Fr[t][x]. Hence Fr[t] + Fr[t]
[√

f(t)
]
⊆ OF .

Now suppose that g ∈ OF . Then g2 + a1g + a0 = 0 for some a0, a1 ∈ Fr[t]. We know

that g = p+q
√
f(t) with p, q ∈ Fr[t]. Note that if q = 0, then clearly g ∈ Fr[t]+Fr[t][

√
f(t)].

So, assuming q 6= 0,

(
p+ q

√
f(t)

)2

+ a1

(
p+ q

√
f(t)

)
+ a0 = 0

Multiplying this out we can see that this implies

√
f(t) (2pq + a1q) = 0

or

2p = −a1

Since 2 is invertible, it follows that p = −2−1a1 ∈ Fr[t].

12



Also,

0 = p2 + q2f(t) + a1p+ a0

= (a1)
2 ((2−1)2 − 2−1) + a0 + q2f(t)

or

q2f(t) = − (a1)
2 ((2−1)2 − 2−1

)
− a0

Recall that f(t) is square-free, so we can conclude that q ∈ Fr[t]. It follows that OF ⊆

Fr[t] + Fr[t]
[√

f(t)
]
. Thus the proposition is proved.

2.3 Quadratic Extensions of Fr(t)

Now that we have constructed the integral closure in Fr[t] of Fr(t)
(√

f(t)
)

, we want

to examine the behavior of P∞ in the function field Fr(t)
(√

f(t)
)

. Hence, we have the

following result.

Theorem 9. Let d = deg(f(t)) and let T = 1/t. Then

1. P∞ is ramified if and only if d is odd.

2. P∞ is inert if and only if d is even and Tdf (1/T ) is not a square mod (T ).

3. P∞ splits if and only if d is even and Tdf (1/T ) is a square mod (T ).

2.3.1 Examples

Before we prove Theorem 9, let’s look at some specific examples.

Example 1. Let f(t) = t+1, and T = 1/t. Then Fr(t)
(√

t+ 1
)

becomes Fr (T )
(√

1/T + 1
)

.

13



Notice that √
1/T + 1 =

√
(T + 1)/T

=
√

(T 2 + T )/T 2

= (1/T )
√
T 2 + T

So Fr (T )
(√

1/T + 1
)

= Fr (T )
(√

T 2 + T
)
.

Using a similar argument to the one given in Proposition 8, it can be verified that

O′F = Fr [T ] + Fr [T ]
[√

T (T + 1)
]

Let m =
(
T,
√
T 2 + T

)
⊂ O′F . We claim that m is a maximal ideal. It is enough to show

that O′F/m ∼= Fr. Define ϕ : O′F → Fr by

ϕ : α + β
√
T (T + 1) 7→ α0

where α, β ∈ Fr[T ] and α0 is the constant term of α.

It is easy to see that our map is well-defined. Next we will show that ϕ is a homo-

morphism. Let α, β, γ, δ ∈ Fr[T ]. Then

ϕ
((
α + β

√
T 2 + T

)
+
(
γ + δ

√
T 2 + T

))
= ϕ

(
(α + γ) + (β + δ)

√
T 2 + T

)

= α0 + γ0

= ϕ
(
α + β

√
T 2 + T

)
+ ϕ

(
γ + δ

√
T 2 + T

)

14



Next notice that since ϕ
(√

T 2 + T
)

= 0, it follows that ϕ (T 2 + T ) = 0. So,

ϕ
((
α + β

√
T 2 + T

) (
γ + δ

√
T 2 + T

))
= ϕ

(
αγ + (βδ) (T 2 + T ) + (αδ + βγ)

√
T 2 + T

)

= α0γ0

= ϕ
(
α + β

√
T 2 + T

)
ϕ
(
γ + δ

√
T 2 + T

)
So ϕ is a homomorphism.

We claim that m = kerϕ. Clearly m ⊆ kerϕ. Let s ∈ kerϕ. Then

s =

k1∑
i=0

aiT
i +
√
T 2 + T

k2∑
j=0

bjT
j.

Since ϕ(s) = 0 we can conclude that a0 = 0. Therefore

s = T

k1∑
i=1

aiT
i−1 +

√
T 2 + T

k2∑
j=0

bjT
j ∈ m

Thus m = kerϕ. So O′F/m ∼= Fr and it follows that m is a maximal ideal, and hence a prime

ideal.

Now, let’s look at m2. We can calculate that

m2 =
(
T 2, T

√
T 2 + T , T 2 + T

)
.

Since T = T 2 + T + (−1)T 2 that implies TO′F ⊆ m2. So it follows that the ramification

index of T with respect to m is at least 2.
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We claim that TO′F = m2. It is enough to show that the generators of m are contained

in TO′F . Clearly T 2, T 2 + T ∈ TO′F . And since
√
T 2 + T ∈ O′F , it follows that T

√
T 2 + T ∈

TO′F . So m2 ⊆ TO′F , TO′F = m2 and therefore TO′F is ramified in O′F .

Example 2. Let f(t) = t − t2, T = 1/t and r ≡ 3 (4). Then Fr(t)
(√

t− t2
)

becomes

Fr (T )
(√

(1/T )(1− 1/T )
)

. Notice that

√
(1/T )(1− 1/T ) =

√
(1/T 2)(T − 1)

= (1/T )
√
T − 1

Hence Fr(t)
(√

t− t2
)

becomes Fr (T )
(√

T − 1
)
.

Again, using a similar argument to Proposition 8, it can be shown that

O′F = Fr [T ] + Fr [T ]
[√

T − 1
]
.

Define ϕ : O′F → Fr[y]/ (y2 + 1) by

ϕ : α + β
√
T − 1 7→ α0 + β0y +

(
y2 + 1

)
where α, β ∈ Fr[T ], α0 is the constant term in α and β0 is the constant term in β. Observe

that y2 + 1 is an irreducible polynomial in Fr[y].

We can see that ϕ is well-defined. Next we will show that ϕ is a homomorphism.
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Let α, β, γ, δ ∈ Fr[T ]. Then

ϕ
((
α + β

√
T − 1

)
+
(
γ + δ

√
T − 1

))

= ϕ
(
(α + γ) + (β + δ)

√
T − 1

)

= α0 + γ0 + (β0 + δ0) y + (y2 + 1)

= (α0 + β0y + (y2 + 1)) + (γ0 + δ0y + (y2 + 1))

= ϕ
(
α + β

√
T − 1

)
+ ϕ

(
γ + δ

√
T − 1

)
Next notice that since ϕ

(√
T − 1

)
= y, it follows that ϕ(T − 1) = y2. Then

ϕ
((
α + β

√
T − 1

) (
γ + δ

√
T − 1

))

= ϕ
(
αγ + βδ (T − 1) + (γβ + αδ)

√
T − 1

)

= α0γ0 + β0δ0y
2 + (γ0β0 + α0δ0) y + (y2 + 1)

= (α0 + β0y) (γ0 + δ0y) + (y2 + 1)

= ϕ
(
α + β

√
T − 1

)
ϕ
(
γ + δ

√
T − 1

)
Thus ϕ is a homomorphism.

Next we will show that kerϕ = TO′F . Recall, that ϕ(T − 1) = y2. So ϕ(T ) = y2 + 1.
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Hence TO′F ⊆ kerϕ. Now let s ∈ kerϕ. So

s =

k1∑
i=0

aiT
i +
√
T − 1

k2∑
j=0

bjT
j.

Since ϕ(s) = y2 + 1, this implies that a0 = b0 = 0. So

s = T

(
k1∑
i=1

aiT
i−1 +

√
T − 1

k2∑
j=1

bjT
j−1

)
∈ TO′F

Hence TO′F = kerϕ. Therefore we can conclude that O′F/TO′F ∼= Fr[y]/ (y2 + 1). Since

Fr[y]/ (y2 + 1) is a field, it follows that O′F/TO′F is a field and thus TO′F is maximal. We

conclude that TO′F is prime and so TO′F is inert in O′F .

Example 3. Let f(t) = t2+t and T = 1/t. Then Fr(t)
(√

t2 + t
)

= Fr (T )
(√

(1/T )(1 + 1/T )
)

.

Notice that √
(1/T )(1 + 1/T ) =

√
(1/T 2)(T + 1)

= (1/T )
√
T + 1

Hence Fr(t)
(√

t2 + t
)

becomes Fr (T )
(√

T + 1
)
.

We can show, using a similar argument to Proposition 8, that

O′F = Fr [T ] + Fr [T ]
[√

T + 1
]
.

Let m1 =
(
T,
√
T + 1 + 1

)
and m2 =

(
T,
√
T + 1− 1

)
. Define ϕ1 : O′F → Fr by

ϕ1 : α + β
√
T + 1 7→ α0 + β0

where α, β ∈ Fr[T ] and α0 and β0 are the constant terms of α and β respectively.

Clearly ϕ1 is well-defined. First, we will check that ϕ1 is a homomorphism. Let
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α, β, γ, σ ∈ Fr [T ]. Then

ϕ1

((
α + β

√
T + 1

)
+
(
γ + σ

√
T + 1

))

= ϕ1

(
(α + γ) + (β + σ)

√
T + 1

)

= α0 + γ0 + (β0 + σ0)

= α0 + β0 + γ0 + σ0

= ϕ1

(
α + β

√
T + 1

)
+ ϕ1

(
γ + σ

√
T + 1

)
And

ϕ1

((
α + β

√
T + 1

) (
γ + σ

√
T + 1

))

= ϕ1

(
(αγ) + (βσ) (T + 1) + (γβ + ασ)

√
T + 1

)

= α0γ0 + β0σ0 + (γ0β0 + α0σ0)

= (α0 + β0) (γ0 + σ0)

= ϕ1

(
α + β

√
T + 1

)
ϕ1

(
γ + σ

√
T + 1

)
Hence ϕ1 is a homomorphism.

We claim that kerϕ1 = m1. We know that ϕ1(T ) = 0 and since

ϕ1

(√
T + 1− 1

)
= 1− 1 = 0,
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it follows that m1 ⊆ kerϕ1. Now, let s ∈ kerϕ1. So

s =

k1∑
i=0

aiT
i +
√
T + 1

k2∑
j=0

bjT
j.

Since ϕ1(s) = 0, it follows that a0 = b0 = 0. So

s = T

(
k1∑
i=1

aiT
i−1 +

√
T + 1

k2∑
j=1

bjT
j−1

)
∈ m1

So m1 = kerϕ1. Therefore O′F/m1
∼= Fr, so O′F/m1 is a field. Hence m1 is a maximal and

thus a prime ideal.

Similarly, we can define ϕ2 : O′F → Fr by

ϕ2 : α + β
√
T + 1 7→ α0 − β0

where α, β ∈ Fr[T ] and α0, β0 are the constant terms of α and β respectively.

Clearly ϕ2 is well-defined. First we will check that ϕ2 is a homomorphism. Let
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α, β, γ, σ ∈ Fr [T ]. Then

ϕ2

((
α + β

√
T + 1

)
+
(
γ + σ

√
T + 1

))

= ϕ2

(
(α + γ) + (β + σ)

√
T + 1

)

= α0 + γ0 − (β0 + σ0)

= α0 − β0 + γ0 − σ0

= ϕ2

(
α + β

√
T + 1)

)
+ ϕ2

(
γ + σ

√
T + 1

)
And

ϕ2

((
α + β

√
T + 1

) (
γ + σ

√
T + 1

))

= ϕ2

(
(αγ) + (βσ) (T + 1) + (γβ + ασ)

√
T + 1

)

= α0γ0 + β0σ0 − (γ0β0 + α0σ0)

= (α0 − β0) (γ0 − σ0)

= ϕ2

(
α + β

√
T + 1

)
ϕ2

(
γ + σ

√
T + 1

)
Hence ϕ2 is a homomorphism.

We claim that kerϕ2 = m2. We know that ϕ2(T ) = 0 and since

ϕ2

(√
T + 1 + 1

)
= −1 + 1 = 0,
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t follows that m2 ⊆ kerϕ2. Now, let s ∈ kerϕ2. So

s =

k1∑
i=0

aiT
i +
√
T + 1

k2∑
j=0

bjT
j.

Since ϕ2(s) = 0, it follows that a0 = b0 = 0. So

s = T

(
k1∑
i=1

aiT
i−1 +

√
T + 1

k2∑
j=1

bjT
j−1

)
∈ m2

So m2 = kerϕ2. Therefore O′F/m2
∼= Fr, so O′F/m2 is a field. Hence m2 is a maximal and

thus a prime ideal.

Finally, we observe that

m1m2 =
(
T 2, T

(√
T + 1− 1

)
, T
(√

T + 1 + 1
)
, T
)

So it is obvious that m1m2 ⊆ TO′F . Consider
(
T
(√

T + 1− 1
)
, T
(√

T + 1 + 1
))

, which is

contained in m1m2. Then the difference of our two generators must be in this ideal and

T
(√

T + 1− 1
)
− T

(√
T + 1 + 1

)
= 2T

Hence

TO′F ⊆
(
T
(√

T + 1− 1
)
, T
(√

T + 1 + 1
))
⊆ m1m2

Thus TO′F = m1m2. So TO′F splits in O′F .
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2.3.2 Proof of Theorem 9

Now let’s prove Theorem 9. Here, P∞ is the ideal generated by 1
t
.

Proof. Let d = deg(f(t)) and let T = 1/t. Since we have f(t) is square-free, we can write

f(t) = tεf0(t)

where ε ∈ {0, 1} and t - f0(t). Let F = Fr(t)
(√

f(t)
)

. Then

Fr(t)
(√

f(t)
)

= Fr (T )
(√

f (1/T )
)

= Fr (T )
(
T dd/2e

√
f (1/T )

)

=


Fr (T )

(√
Tdf (1/T )

)
d is even

Fr (T )
(√

Td+1f (1/T )
)

d is odd

Let

f̃(T ) =


Tdf (1/T ) d is even

Td+1f (1/T ) d is odd

Let d̃ = deg
(
f̃(T )

)
. So

d̃ =


d ε = 0

d− 1 ε = 1

So

f̃(T ) =
d̃∑
i=0

f̃iT
i
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Using a similar argument as in Proposition 8, we can show that

O′F = Fr[T ] + Fr[T ]

[√
f̃(T )

]

Thus, P∞ = (T ) in Fr[T ]. There are three cases that we need to consider.

Case 1: d is odd

So f̃(T ) = T
(
Tdf(1/T )

)
. Let m =

(
T,
√
f̃ (T )

)
. Define ϕ : O′F → Fr by

ϕ : α + β

√
f̃ (T ) 7→ α0

where α, β ∈ Fr[T ] and α0 is the constant term of α.

Clearly, ϕ is well-defined. First, we want to show that ϕ is a homomorphism. Let

α, β, γ, δ ∈ Fr [T ]. Then

ϕ

((
α + β

√
f̃(T )

)
+

(
γ + δ

√
f̃(T )

))

= ϕ

(
(α + γ) + (β + δ)

√
f̃(T )

)

= α0 + γ0

= ϕ

(
α + β

√
f̃(T )

)
+ ϕ

(
γ + δ

√
f̃(T )

)
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Notice that ϕ

(√
f̃(T )

)
= 0, it follows that ϕ

(
f̃(T )

)
= 0. Therefore,

ϕ

((
α + β

√
f̃(T )

)(
γ + δ

√
f̃(T )

))

= ϕ

(
αγ + βδf̃(T ) + (γβ + αδ)

√
f̃(T )

)

= α0γ0

= ϕ

(
α + β

√
f̃(T )

)
ϕ

(
γ + δ

√
f̃(T )

)

Thus ϕ is a homomorphism.

Next we want to show that kerϕ = m. Clearly m ⊆ kerϕ. Now, let s ∈ kerϕ. Then

s =

k1∑
i=0

aiT
i +

√
f̃(T )

k2∑
j=0

bjT
j.

So ϕ(s) = 0. This implies that a0 = 0 and hence

s = T

k1∑
i=1

aiT
i−1 +

√
f̃(T )

k2∑
j=0

bjT
j ∈ m.

So kerϕ ⊆ m. Thus m = kerϕ. Using the First Isomorphism Theorem, we can conclude

that O′F/m ∼= Fr. So O′F/m is a field and hence m is maximal.

Now, let’s look at m2. So

m2 =

(
T 2, T

√
f̃(T ), f̃(T )

)

Since T = f̃(T ) − aT 2 for some a ∈ Fr[T ], TO′F ⊆ m2. Recall that f̃(T ) = T
(
Tdf(1/T )

)
.
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So f̃(T ) is divisible by T and not by T 2. Then v∞

(
f̃(T )

)
= 1 and so

TO′F =
(
T 2, f̃(T )

)

Since
√
f̃(T ) ∈ O′F , it follows that T

√
f̃(T ) ∈ TO′F . Therefore m2 = TO′F . Thus TO′F is

ramified.

Case 2: d is even and f̃0, the constant term of f̃(T ), is not a square in Fr

Define ϕ : O′F → Fr[y]/
(
y2 − f̃0

)
by

ϕ : α + β

√
f̃ (T ) 7→ α0 + β0y +

(
y2 − f̃0

)

where α, β ∈ Fr[T ] and α0, β0 are the constant terms of α and β respectively. Observe that

y2 − f̃0 is an irreducible polynomial in Fr[y]. To see this, suppose that

y2 − f̃0 = (y + δ)(y + γ)

= y2 + (δ + γ)y + δγ

This implies that δ+γ = 0 or δ = −γ. So δγ = −γ2 = −f̃0. This contradicts our assumption

that f̃0 is not a square in Fr. So Fr[y]/
(
y2 − f̃0

)
is a field.

Again, ϕ is well-defined. We will show that ϕ is a homomorphism. Let α, β, γ, δ ∈
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Fr [T ]. Then

ϕ

((
α + β

√
f̃(T )

)
+

(
γ + δ

√
f̃(T )

))

= ϕ

(
(α + γ) + (β + δ)

√
f̃(T )

)

= α0 + γ0 + (β0 + δ0) y +
(
y2 − f̃0

)

=
(
α0 + β0y +

(
y2 − f̃0

))
+
(
γ0 + δ0y +

(
y2 − f̃0

))

= ϕ

(
α + β

√
f̃(T )

)
+ ϕ

(
γ + δ

√
f̃(T )

)

Next notice that since ϕ

(√
f̃(T )

)
= y, it follows that ϕ

(
f̃(T )

)
= y2. Then

ϕ

((
α + β

√
f̃(T )

)(
γ + δ

√
f̃(T )

))

= ϕ

(
αγ + βδf̃(T ) + (γβ + αδ)

√
f̃(T )

)

= α0γ0 + β0δ0y
2 + (γ0β0 + α0δ0) y +

(
y2 − f̃0

)

= (α0 + β0y) (γ0 + δ0y) +
(
y2 − f̃0

)

= ϕ

(
α + β

√
f̃(T )

)
ϕ

(
γ + δ

√
f̃(T )

)
Thus ϕ is a homomorphism.
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Next we will show that kerϕ = TO′F . Recall that ϕ
(
f̃(T )

)
= y2. So

ϕ

 d̃∑
i=1

f̃iT
i

 = y2 − f̃0.

So ϕ(T ) = y2 − f̃0. Hence TO′F ⊆ kerϕ. Now let s ∈ kerϕ. So

s =

k1∑
i=0

aiT
i +

√
f̃(T )

k2∑
j=0

bjT
j.

Since ϕ(s) = y2 − f̃0, this implies that a0 = b0 = 0. So

s = T

(
k1∑
i=1

aiT
i−1 +

√
f̃(T )

k2∑
j=1

bjT
j−1

)
∈ TO′F

Hence TO′F = kerϕ. Therefore we can conclude that O′F/TO′F ∼= Fr[y]/
(
y2 − f̃0

)
. Since

Fr[y]/
(
y2 − f̃0

)
is a field, it follows that O′F/TO′F is a field and hence TO′F is maximal.

Thus we conclude that TO′F is prime and so TO′F is inert in O′F .

Case 3: d is even and f̃0, the constant term of f̃(T ), is a square in Fr

Since f̃0 is a square in Fr, f̃0 = δ2 for some δ ∈ Fr. Let m1 =

(
T,
√
f̃ (T )− δ

)
and

m2 =

(
T,
√
f̃ (T ) + δ

)
. Define ϕ1 : O′F → Fr by

ϕ1 : α + β

√
f̃ (T ) 7→ α0 + β0δ

where α, β ∈ Fr[T ] and α0, β0 are the constant terms of α and β respectively.

Clearly ϕ1 is well-defined. First we will check that ϕ1 is a homomorphism. Let
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α, β, γ, σ ∈ Fr [T ]. Then

ϕ1

((
α + β

√
f̃(T )

)
+

(
γ + σ

√
f̃(T )

))

= ϕ1

(
(α + γ) + (β + σ)

√
f̃(T )

)

= α0 + γ0 + (β0 + σ0) δ

= α0 + β0δ + γ0 + σ0δ

= ϕ1

(
α + β

√
f̃(T )

)
+ ϕ1

(
γ + σ

√
f̃(T )

)

And

ϕ1

((
α + β

√
f̃(T )

)(
γ + σ

√
f̃(T )

))

= ϕ1

(
(αγ) + (βσ) f̃ (T ) + (γβ + ασ)

√
f̃(T )

)

= α0γ0 + β0σ0δ
2 + (γ0β0 + α0σ0) δ

= (α0 + β0δ) (γ0 + σ0δ)

= ϕ1

(
α + β

√
f̃(T )

)
ϕ1

(
γ + σ

√
f̃(T )

)
Hence ϕ1 is a homomorphism.

We claim that kerϕ1 = m1. We know that ϕ1(T ) = 0 and since

ϕ1

(√
f̃ (T )− δ

)
= δ − δ = 0,
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it follows that m1 ⊆ kerϕ1. Now, let s ∈ kerϕ1. So

s =

k1∑
i=0

aiT
i +

√
f̃(T )

k2∑
j=0

bjT
j.

Since ϕ1(s) = 0, it follows that a0 = b0 = 0. So

s = T

(
k1∑
i=1

aiT
i−1 +

√
f̃(T )

k2∑
j=1

bjT
j−1

)
∈ m1

So m1 = kerϕ1. Therefore O′F/m1
∼= Fr, so O′F/m1 is a field. Hence m1 is a maximal and

thus a prime ideal.

Similarly, we can define ϕ2 : O′F → Fr by

ϕ2 : α + β

√
f̃ (T ) 7→ α0 − β0δ

where α, β ∈ Fr[T ] and α0, β0 are the constant terms of α and β respectively.

Clearly ϕ2 is well-defined. First we will check that ϕ2 is a homomorphism. Let
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α, β, γ, σ ∈ Fr [T ]. Then

ϕ2

((
α + β

√
f̃(T )

)
+

(
γ + σ

√
f̃(T )

))

= ϕ2

(
(α + γ) + (β + σ)

√
f̃(T )

)

= α0 + γ0 − (β0 + σ0) δ

= α0 − β0δ + γ0 − σ0δ

= ϕ2

(
α + β

√
f̃(T )

)
+ ϕ2

(
γ + σ

√
f̃(T )

)

And

ϕ2

((
α + β

√
f̃(T )

)(
γ + σ

√
f̃(T )

))

= ϕ2

(
(αγ) + (βσ) f̃ (T ) + (γβ + ασ)

√
f̃(T )

)

= α0γ0 + β0σ0δ
2 − (γ0β0 + α0σ0) δ

= (α0 − β0δ) (γ0 − σ0δ)

= ϕ2

(
α + β

√
f̃(T )

)
ϕ2

(
γ + σ

√
f̃(T )

)
Hence ϕ2 is a homomorphism.

We claim that kerϕ2 = m2. We know that ϕ2(T ) = 0 and since

ϕ2

(√
f̃ (T ) + δ

)
= −δ + δ = 0,

31



it follows that m2 ⊆ kerϕ2. Now,let s ∈ kerϕ2. So

s =

k1∑
i=0

aiT
i +

√
f̃(T )

k2∑
j=0

bjT
j.

Since ϕ2(s) = 0, it follows that a0 = b0 = 0. So

s = T

(
k1∑
i=1

aiT
i−1 +

√
f̃(T )

k2∑
j=1

bjT
j−1

)
∈ m2

So m2 = kerϕ2. Therefore O′F/m2
∼= Fr, so O′F/m2 is a field. Hence m2 is a maximal and

thus a prime ideal.

Finally, we observe that

m1m2 =

(
T 2, T

(√
f̃ (T )− δ

)
, T

(√
f̃ (T ) + δ

)
, f̃ (T )− δ2

)

Notice that f̃ (T ) − δ2 = f̃ (T ) − f̃0, so it is divisible by T . Therefore it is obvious that

m1m2 ⊆ TO′F . Consider

(
T

(√
f̃ (T )− δ

)
, T

(√
f̃ (T ) + δ

))
, which is contained in m1m2.

Then the difference of our two generators must be in this ideal and

T

(√
f̃ (T )− δ

)
− T

(√
f̃ (T ) + δ

)
= 2δT

Hence

TO′F ⊆
(
T

(√
f̃ (T )− δ

)
, T

(√
f̃ (T ) + δ

))
⊆ m1m2

Thus TO′F = m1m2. So TO′F splits in O′F .
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Chapter 3

Valuations

In this chapter, we will explicitly define the valuation that corresponds to P∞ in X

when P∞ of P1
∞ is inert in X.

Let f(t) be a square-free irreducible polynomial in Fr[t] with degree d. Let T = 1
t
.

Define

v∞ : Fr(t)→ R ∪ {∞} where v∞ (T ) = 1

We need to extend this to Fr(t)
(√

f(t)
)

. We will only consider the inert case.

Recall that in the inert case, f(t) has even degree and f̃ (T ) = Tdf (1/T ) is not a

square mod (T ). So

f̃ (T ) =
d̃∑
i=0

f̃iT
i where f̃0 is not a square in Fr

Let a, b ∈ Fr. Then

(
a+ b

√
f̃ (T )

)(
a− b

√
f̃ (T )

)
= a2 − b2f̃ (T )

= a2 − b2f̃0 − b2
d̃∑
i=1

f̃iT
i
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We know that

v∞

(
a2 − b2f̃ (T )

)
≥ min

v∞(a2), v∞(b2f̃0), v∞

b2 d̃∑
i=1

f̃iT
i


with equality if a2 6= b2f̃0. However, since f̃0 is not a square in Fr, a2 6= b2f̃0, thus

v∞

(
a2 − b2f̃ (T )

)
= min

v∞(a2), v∞(b2f̃0), v∞

b2 d̃∑
i=1

f̃iT
i

 = 0

Therefore we can conclude that

v∞

(
a± b

√
f̃ (T )

)
= 0

So we define the valuation in the extension Fr(t)
(√

f(t)
)

as

v∞

(√
f(t)

)
= −d

2

Lemma 10. Let α ∈ Fr[t][
√
f(t)] where

α =

k1∑
i=0

ait
i +

k2∑
j=0

bjt
j
√
f(t)

Then, in the inert case, assuming some ai and bj are not zero,

v∞ (α) = −max

{
k1, k2 +

d

2

}

Proof. We have two cases to consider.
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Case 1: Assume k1 6= k2 + d
2
. Then

v∞

(
k1∑
i=0

ait
i

)
= −k1

and

v∞

(
k2∑
j=0

bjt
j
√
f(t)

)
= −

(
k2 +

d

2

)
Hence,

v∞

(
k1∑
i=0

ait
i

)
6= v∞

(
k2∑
j=0

bjt
j
√
f(t)

)

So,

v∞ (α) = −max

{
k1, k2 +

d

2

}
Case 2: Assume k1 = k2 + d

2
. Then

α =
k1∑
i=0

ait
i +

k1−d/2∑
j=0

bjt
j
√
f(t)

=
k1∑
i=0

ait
i +

k1−d/2∑
j=0

bjt
j+d/2

√
f̃ (T )

Define {bl}k1l=0 where

bl =


0, 0 ≤ l < d/2

bl−d/2, d/2 ≤ l ≤ k1

Then

α =

k1∑
i=0

(
ai + bi

√
f̃ (T )

)
ti
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But since v∞

(
ai + bi

√
f̃ (T )

)
= 0 for all i, it follows that

v∞(α) = −k1 = −k2 −
d

2
.

36



Chapter 4

Construction of e(x)

In this chapter we will construct ed(x) for our specialized case in a similar way as in

the Carlitz module. We will give a formula which allows us to recursively define ed(x).

Let f(t) be a square-free irreducible polynomial in Fr[t] with even degree where

f̃ (T ) = (T )deg(f(t)) f (1/T ) is not a square mod (T ). Then

√
f(t) = t

deg(f(t))
2

√
f̃ (T )

Let d > 0. Define

L(d) =
{
α ∈ Fr[t]

[√
f(t)

]
: −d < v∞(α) ≤ 0

}
Then Fr[t]

[√
f(t)

]
=
⋃
d

L(d) ∪ {0}. Define

e0(x) = x

and for d > 0,

ed(x) = x
∏

α∈L(d)

(x− α)

So deg(ed(x)) = |L(d)|+ 1.
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4.1 Degree of ed(x)

Proposition 11. Let D = 2d− deg(f(t))
2

. Then

deg (ed(x)) =


rd d ≤ deg(f(t))

2

rD d > deg(f(t))
2

Proof. Suppose that d ≤ deg(f(t))
2

. We know that

v∞

(√
f(t)

)
= −deg(f(t))

2
≤ −d

So
√
f(t) /∈ L(d). Then for all α ∈ L(d),

α =
d−1∑
i=0

ait
i

Therefore, since we are working over Fr, |L(d)| = rd − 1. So, in this case,

deg(ed(x)) = |L(d)|+ 1 = rd.

Now suppose that d > deg(f(t))
2

. Then

v∞

(√
f(t)

)
= −deg(f(t))

2
> −d
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Let α ∈ L(d). Then α can have one of the following forms

α1 =
k1∑
i=0

ait
i

α2 =
k2∑
i=0

bit
i
√
f(t)

α3 =
k1∑
i=0

ait
i +

k2∑
j=0

bjt
j
√
f(t)

If α = α1, then v∞(α) = −k1.

If α = α2, then v∞(α) = −k2 + deg(f(t))
2

.

Finally, if α = α3, then by Lemma 10, we know that

v∞(α) = −max

{
k1, k2 +

deg(f(t))

2

}

So k1 < d and k2 + deg(f(t))
2

< d. Hence

|L(d)| = rd
(
rd−

deg(f(t))
2

)
− 1 = r2d−deg(f(t))

2 − 1

Thus, in this case, deg(ed(x)) = rD where D = 2d− deg(f(t))
2

.

4.2 Recursively Defining ed(x)

The following lemma is important in the construction of our final proposition.

Lemma 12. ed(x) is an additive polynomial.

Proof. We know that the zeros of ed(x) are all the elements of L(d) ∪ {0}. Also, ed(x) ∈

Fr(t)
(√

f(t)
)

. Let w ∈ Fr(t)
(√

f(t)
)

. If w ∈ L(d) ∪ {0}, then ed(x + w) = ed(x). So
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assume y ∈ Fr(t)
(√

f(t)
)
\ (L(d) ∪ {0}). Define

H(x) = ed(x+ y)− ed(x)− ed(y)

So deg (H(x)) < deg (ed(x)) since the leading terms cancel in H(x). Also, for w ∈ L(d)∪{0},

H(w) = ed(w + y)− ed(w)− ed(y)

= ed(y)− ed(y)

= 0

Therefore, since |L(d)|+ 1 = deg (ed) > deg (H), it follows that H(x) ≡ 0.

Now let z be an arbitrary indeterminate and define

H1(z) = ed(x+ z)− ed(x)− ed(z)

So H1(z) ∈ Fr(t)
(√

f(t)
)

[x, z]. Then, for all α ∈ Fr(t)
(√

f(t)
)

, we conclude that H1(α) =

0. Since Fr(t)
(√

f(t)
)

is infinite, H1(z) ≡ 0. Hence ed(x) is additive.

Finally, we will define the following notation before stating our recursive formula for

ed(x). Let δ :=
√
f̃ (T ). Define

Dd := ed
(
td
)

and D′d := ed
(
tdδ
)

Since ed(x) is an additive polynomial, we are able to generate all polynomials of valuation d.

Note if d ≤ deg(f(x))
2

, then we are in the case of the Carlitz module described in Chapter 1.

Therefore all properties of ed(x), which hold for Carlitz, will hold here. So, we will focus on

the case d > deg(f(x))
2

. We have the following proposition on how to recursively define ed(x).
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Proposition 13. If d > deg(f(t))
2

, then

ed(x) = er
2

d−1(x) +Bd−1 · erd−1(x) + Cd−1 · ed−1(x)

where

Bd−1 :=
−
(
Dr2−1
d−1 −

(
D′d−1

)r2−1
)

Dr−1
d−1 −

(
D′d−1

)r−1

and

Cd−1 :=
Dr2−1
d−1

(
D′d−1

)r−1 −Dr−1
d−1

(
D′d−1

)r2−1

Dr−1
d−1 −

(
D′d−1

)r−1

Proof. Let β = deg(f(t))
2

and assume d > β. We want to show that

ed(x) = er
2

d−1(x) +B · erd−1(x) + C · ed−1(x)

It is enough to show that both the left and right hand side are monic, have the same degree

and the same set of roots. We know by construction that ed(x) and ed−1(x) are monic. Also,

since d > β, we have that deg(ed(x)) = r2d−β. If d = β + 1, then deg(ed−1(x)) = rd−1. And

so

deg
(

(ed−1(x))r
2
)

= rd−1r2

= rd+1

= rβ+2

= r2(β+1)−β

= r2d−β

If d > β + 1, then deg(ed−1(x)) = r2(d−1)−β and hence

deg
(

(ed−1(x))r
2
)

= r2d−2−βr2

= r2d−β
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Also,

deg
(
erd−1(x)

)
= rd,

and for d > β,

r2dβ > rd > rd−1

Therefore both the left and the right hand side are monic and have the same degree. It

remains to show that they have the same zeros (i.e. L(d)∪{0}). Clearly, 0 is a root of both,

so let α ∈ L(d). If α ∈ L(d− 1), ed−1(α) = 0, so clearly it is a root of the right hand side of

our equation. Now assume α ∈ L(d) \ L(d− 1). Then α = ζh where v∞(h) = −(d− 1) and

ζ ∈ F∗r. So ζr = ζ. And

h =
d−1∑
i=0

ait
i +

d−1−β∑
j=0

bjt
j+β

√
f̃(T )

Observe that

ed−1(h) = ad−1ed−1(t
d−1) + bd−1ed−1(t

d−1δ).
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Therefore it suffices to show that the right hand side is zero for h = td−1 and h = td−1δ. So

(ed−1(ζh))r
2

+Bd−1 · (ed−1(ζh))r + Cd−1 · ed−1(ζh)

= ζr
2 (
Dd−1 +D′d−1

)r2
+Bd−1 · ζr

(
Dd−1 +D′d−1

)r
+ Cd−1 · ζ

(
Dd−1 +D′d−1

)

= ζ (Dd−1)
r2 +

−(Dr2−1
d−1 −(D′d−1)

r2−1
)

Dr−1
d−1−(D′d−1)

r−1

 ζ (Dd−1)
r +

(
Dr2−1

d−1 (D′d−1)
r−1
−Dr−1

d−1(D′d−1)
r2−1

Dr−1
d−1−(D′d−1)

r−1

)
ζ (Dd−1)

+ζ
(
D′d−1

)r2
+

−(Dr2−1
d−1 −(D′d−1)

r2−1
)

Dr−1
d−1−(D′d−1)

r−1

 ζ
(
D′d−1

)r
+

(
Dr2−1

d−1 (D′d−1)
r−1
−Dr−1

d−1(D′d−1)
r2−1

Dr−1
d−1−(D′d−1)

r−1

)
ζ
(
D′d−1

)

= ζ

(
(Dd−1)

r2 +
−(Dd−1)r2+r−1−(Dd−1)r(D′d−1)

r2−1

Dr−1
d−1−(D′d−1)

r−1 +
Dr2

d−1(D′d−1)
r−1
−Dr

d−1(D′d−1)
r2−1

Dr−1
d−1−(D′d−1)

r−1

)

+ζ

(D′d−1

)r2
+
−
(
Dr2−1

d−1 (D′d−1)
r
−(D′d−1)

r2+r−1
)

Dr−1
d−1−(D′d−1)

r−1 +
Dr2−1

d−1 (D′d−1)
r
−Dr−1

d−1(D′d−1)
r2

Dr−1
d−1−(D′d−1)

r−1



= ζ(0) + ζ(0)

= 0

So they have the same zeros. Thus the equation holds.

43



Chapter 5

Future Work

First, we have shown that we can recursively compute the exponential function, ed(x),

in terms of ed−1(x), Dd−1 and D′d−1 when d > deg(f(t))
2

. This formula is nice, however, we

were unable to find a way to express the coefficient of each term of ed(x) similar to how was

described in Chapter 1.

Second, it is important for the reader to keep in mind that the Drinfeld module we

constructed is only one of the possible rank one dimension two Drinfeld modules. In our

paper, we chose to use the standard lattice. However, there are many other ways to choose

a lattice. The number of non-isomorphic Drinfeld modules equals the class number of the

ring we are working over.

This leads us to alternate directions for further research. One direction would be

to construct a rank two dimension one Drinfeld module. In this case, we might take A =

Fr[t] and L = Fr[t]
[√

f(t)
]
, where f(t) is chosen appropriately. Another approach would

be to construct a rank two dimension two Drinfeld module. In this case we may take

A = Fr[t]
[√

f(t)
]

and L to be an extension of A of degree 2, where, again, f(t) is chosen

appropriately. We could even explore more complicated examples by choosing an ideal I of A

which is not in the trivial class group and take L = I. Moreover, the ideal I we choose could
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be in the function field of A, which would increase the dimension of our Drinfeld module.

These are just a few possibilities for further work.
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