
Clemson University
TigerPrints

All Theses Theses

8-2009

CHARACTERIZATION AND
ENHANCEMENT OF SENSING PROPERTIES
OF PIEZOELECTRIC MATERIALS WITH
APPLICATIONS TO VIBRATION
SUPPRESSION
Siddharth Aphale
Clemson University, saphale@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Engineering Mechanics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Aphale, Siddharth, "CHARACTERIZATION AND ENHANCEMENT OF SENSING PROPERTIES OF PIEZOELECTRIC
MATERIALS WITH APPLICATIONS TO VIBRATION SUPPRESSION" (2009). All Theses. 650.
https://tigerprints.clemson.edu/all_theses/650

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268636308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/280?utm_source=tigerprints.clemson.edu%2Fall_theses%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/650?utm_source=tigerprints.clemson.edu%2Fall_theses%2F650&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

 

CHARACTERIZATION AND ENHANCEMENT OF 

SENSING PROPERTIES OF PIEZOELECTRIC 

MATERIALS WITH APPLICATIONS TO VIBRATION 

SUPPRESSION 

A Thesis Presented to the 

Graduate School of Clemson University 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

Mechanical Engineering 

by 

Siddharth Aphale 

August 2009 

Accepted by: 

Dr. Nader Jalili, Committee Chair 

Dr. Darren M. Dawson 

Dr. Gang Li 

 



i 

 

Abstract 

This thesis undertakes the study of piezoelectric properties of polymer-based fabric and film 

sensors. An enhancement in piezoelectric properties of such sensors, as noted through earlier work, is 

observed with increasing weight ratios of nanomaterials dispersed in the polymer matrix. A 

comprehensive mathematical model using cantilever beams is developed to analyze this enhancement 

both qualitatively and quantitatively. An experimental setup is also developed to implement the 

proposed real time signal processing necessary to collect required data towards the characterization. 

In order to distinguish piezoelectric materials from other materials, study of the frequency response 

of developed fabric sensors to periodic chirp type actuation signals, is also established. 

Linear Euler-Bernoulli beam theory is used, to model piezoelectric actuation of cantilever 

beams. The theory has been extended to integrate piezoelectric sensing with the governing equations 

of motion to obtain a numerical solution to the governing partial differential equation of motion. All 

equations are derived using a distributed-parameters model applying the extended Hamilton 

Principle. Results obtained are compared to base values from literature for known materials. 

Piezoelectric materials are also known to possess bi-stiffness properties, having a higher 

modulus of elasticity in their open circuit configuration as compared to that in their short circuit 

configuration. Through research, it has been observed that the weight ratio of dispersed 

nanomaterials does not affect the piezoelectric properties alone but also has an effect on the 

mechanical properties and beyond a threshold, established for every polymer analyzed, the increase 

in the tensile properties of the fabric developed cannot be ignored. This study is extended to analyze 

the enhancement in the difference between the two moduli of elasticity for the fabric sensors in their 

respective configurations. The bi-stiffness elements can be used effectively to suppress vibrations 

implementing a semi-active vibration damping method known as ‘Switched Stiffness’. This concept 
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is studied in regard to continuous systems, and the underlying principle of switching between two 

configurations is mathematically modeled. The developed control law for vibration suppression is 

then integrated using non-contact type measurement of tip deflection to suppress vibrations induced 

in cantilever beams, using the fabric sensors developed at Clemson University. The damping 

characteristics have been analyzed to study the enhancement in the difference between the higher and 

lower stiffness values and qualitative conclusions are drawn.  

Using the mathematical modeling developed to implement the ‘Switched Stiffness’ concept, 

a novel method to measure the coupling coefficient, k31, a characteristic constant for piezoelectric 

materials, is established and validated. The results of this measurement are used to decouple the 

piezoelectric properties from the mechanical properties and a generalized framework to completely 

characterize piezoelectric materials towards other constants has been proposed. 
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Chapter 1 

Introduction 

 

1.1 Research Background and Literature Review 

The pyroelectric effect, characterized by the generation of electric field in response to temperature 

gradient across a material, was studied by Carolus Linnaeus and Franz Aepinus in the mid-18th 

century. Working on this base, both René Just Haüy and Antoine César Becquerel put forth a theory 

relating the mechanical stress and electric charge [1]. Their formulations, however, were never 

established experimentally. 

The direct piezoelectric effect, which similar to the pyroelectric effect is observed in crystals with no 

defined plane of symmetry, is characterized by the generation of an electric potential in response to a 

mechanical strain induced in the material. It was first demonstrated in 1880 by the brothers Pierre 

Curie and Jacques Curie. “Developing on the knowledge of pyroelectricity, they integrated their 

understanding of the underlying crystal structures to predict crystal behaviour. The direct 

piezoelectric effect was first demonstrated in the crystals of tourmaline, quartz, topaz, cane sugar 

and Rochelle salt (sodium potassium tartrate tetrahydrate)” [1].  

This early work establishing that mechanical strain can generate equivalent electric potential in 

certain materials, which were established as those whose crystals have no defined plane of symmetry, 

led to extensive work in identifying such materials and trying to develop a technology that could 

exploit this phenomenon. Through such studies; polymers like PVDF, PAN, Nylon and Polyurea 

were studied and characterized to be piezoelectric materials.  
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“The 20th century witnessed a revolution in the area of material science and fabrication of new 

materials with certain properties facilitating some of the revolutionary technologies developed over 

the major war periods. One major phase of this revolution was the scientific approach to 

development and characterization of nanomaterials. For quite a few centuries, nanotechnology was 

being used without the realization of its true potential in processes like the manufacturing of steel and 

vulcanization of rubber. The first scientific observations and size measurements were however 

initiated in the first decade of the 20th century, often associated with Richard Adolf Zsigmondy. 

Richard made a detailed study of gold sols and a range of other nanomaterials with sizes as small as 

10 nm or even less. He used ultramicroscope, employing the dark field method for observing 

particles with sizes much less than light wavelength. Zsigmondy was also the first one to use 

the nanometer explicitly for characterizing particle size. He determined it as 1/1,000,000 

of millimeter. The next significant discovery in the area of nanomaterials highly significant to the 

area of piezoelectricity was that of carbon nanotubes” [2]. 

“In 2006, an editorial published in the journal Carbon, by Marc Monthioux and Vladimir Kuznetsov 

established the one of the earliest recorded research related to discovery of carbon nanotubes, which 

being hollow tubes of nanometer range diameters composed of graphite carbon. This discovery is 

often wrongly associated with Sumio Iijima of NEC, in 1991” [2]. 

Further research which evolved around nanomaterials, nanotubes and their production validated that 

nanomaterials too are highly piezoelectric. However with the health and functionality related issues 

with such materials as singled wall nanotubes, it was difficult to exploit these properties to build a 

new technology. Nanomaterials have been long classified as highly carcinogenic materials. 

This limitation changed the course of thought and a novel idea of dispersing the nanomaterials in a 

polymer matrix to enhance the original piezoelectric properties of the piezo-polymers emerged. For 
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implementing this idea effectively, two major processes in effect for a long time for other purposes 

were selected; Electrospinning and Spin Coating [3,4].  

The rapid development in technologies like infusion pumps, power electronics and power amplifiers 

enabled the setup of a novel experimental bench to automate these processes and stimulate the 

research in fabric sensors and actuators which have the potential of revolutionalizing the field of 

NEMS and MEMS as well as areas like energy harvesting and vibration suppression. Developing on 

the setup of electrospinning engineered at Clemson University in 2002-03 [5], the piezoelectric effect 

of a variety of polymers like PVDF, PAN, Polyurea and Nylon has been explored. Expanding the 

project from the manufacturing of piezoelectric fabric sensors and actuators and the static analysis of 

the piezoelectric effect, the Euler Bernoulli beam theory is used to develop a dynamic analysis. The 

initial analysis work was setup under the laser vibrometer of the MSA 400.  

The NSF leased MSA 400 system is used to analyze the mode shapes and perform frequency domain 

analysis on the nonlinearities of NEMS and MEMS. Based on these experiments at micro/nano scale, 

a macro level experiment has been developed to analyze the vibrations produced in the fabric sensors 

through base excited motion and measure the corresponding voltage produced. The base excited 

motion of the sensors has been modeled as base excitation to an Euler Bernoulli beam and then the 

piezoelectric effect was modeled using the constitutive equations of piezoelectricity [6].  

1.2 Research Motivation 

As discussed above, the direct piezoelectric effect is characterized by the generation of a proportional 

electric potential across a piezoelectric material when subjected to mechanical strain. Thus, if one is 

able to induce strain in a controlled manner across a piezoelectric material, the electric potential 

developed can be extracted and used to harvest energy. This makes such materials a huge potential as 
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renewable sources of energy as long as the strain does not exceed the permanent charge saturation 

limit. Recently, there has been significant research in the extraction of energy from mechanically 

strained structures using piezoelectric materials. For example, the tires of automobile are under 

continuous mechanical strain and stress when rolling along the road. The variation in friction 

between the ground and the tires further enhances this strain. If a piezoelectric sensor was to be 

embedded into the tire surface, the strain induced in the tire could be extracted as useful energy 

through the sensor. Another fascinating example of energy harvesting from piezoelectric materials is 

in the case of vibrating structures. Structures such as the blades of a turbine are continuously under 

lateral stress and strain. This strain energy can be harvested in addition to the energy harvested from 

wind or flowing fluid and thus the effective process efficiency can be enhanced.  

The energy harvesting application as seen clearly requires a process where vibrations are either 

imminent or desired. On the other hand, in most applications, vibrations are undesirable. For example 

the vibrations in the members of towers or construction work are undesired. Vibrations in moving 

machinery detiorate the life span of moving elements. In such areas, these vibrations need to be 

suppressed. Piezoelectric materials as established through research are bi-stiffness materials. These 

materials have potentionally different mechanical stiffness. If the two ends of a piezoelectric sensor 

are shorted, the effective mechanical stiffness reduces than the mechanical stiffness possessed in the 

open circuit configuration. Using this peculiar characteristic, an effective semi-active vibration 

scheme, commonly known as ‘switched stiffness’ [7, 8], has been developed to suppress undesirable 

vibrations. 

The converse piezoelectric effect renders these materials as good actuators as well as good candidate 

for active vibration control schemes by applying a control voltage designed to induce out-of-phase 

vibrations in the vibrating member using the piezo-actuator. This application however has the 
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limitation of real time frequency domain analysis to measure the vibrations in the member and then 

apply voltage corresponding to the out-of-phase vibrations which cancel off the net effect. Another 

limitation of this active vibration control scheme is that for a causal system there is a finite delay 

involved in the computation of the control signal and therefore the cancellation may not be effective. 

This limitation has been overcome to some extent by integrating a feedforward term computed 

through numerical pre-processing of the equations but, this process is tedious in general. The 

amplitude of voltage signal required to suppress the vibrations is another limitation. For all these 

reasons, the semi-active vibration suppression schemes are preferred. 

Through this work an attempt to analyze all these aspects of piezoelectric materials and come up with 

one integrated platform to characterize these materials completely has been made. Another aspect of 

the research is the extension of the semi-active scheme to being an active vibration suppression 

method. Modeling the effective damping enhancement related to the switch stiffness control law, 

based on an equivalent structural damping model, am attempt to design a active vibration control 

signal from this effective damping model has been made, which has overcome most of the above 

limitations. This being our motivation we will now discuss the thesis contributions. 

1.3 Thesis Contributions 

A detailed process description and optimization of process conditions has been presented for the 

process of Electrospinning applied to an automated fabrication unit for manufacturing of 

piezoelectric fabric sensors. The effect of concentration of nanotubes dispersed in a polymer matrix 

in comparison to the polymer concentration has been studied for PVDF, PAN and Nylon. This effect 

has been then correlated to the enhancement in sensing properties of the piezo-sensors. The effect of 

infusion rate, voltage applied and distance between the capacitor plates in electrospinning on the 

quality of sensors has been studies in detail. Working on a macro level experiment based on the 
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principle of vibration analysis of cantilever beams, a non-contact type displacement measurement 

integrated test bench has been developed. Through detailed frequency and time domain analysis, the 

vibrations induced in the cantilever beam via various techniques have been correlated to the 

piezoelectric effect observed in the fabric sensors. Both qualitative and quantitative comparisons of 

enhancement in piezoelectric properties as a function of the weight ratio of the nanomaterials 

dispersed in the polymer matrix have been graphed. The electromechanical coupling effect has been 

studied with the integration of the back EMF effect in case of free vibrations and the frequency shift 

has been modeled to analyze the enhancement better. Developing on this work, the switch stiffness 

scheme has been implemented to demonstrate vibration suppression in continuous systems and to 

establish the bi-stiffness property of piezoelectric materials. A novel velocity observer has been used 

to implement the switch stiffness control law and a software based switching logic has been designed 

for actual experimentation. The experiment has been modeled mathematically to characterize the 

piezoelectric materials completely. Finally, an equivalent viscous damping model has been 

developed to model the discontinuous control law and thus integrating this model in to the EOM, a 

novel active vibration control scheme has been designed and implemented. In addition, FEM has 

been applied to solve the free and forced, linear and nonlinear vibrations of Euler-Bernoulli beam 

and a feedforward term has been added to get better control efficiency for vibration suppression. The 

FEM solution has also been used to correlate the enhancement in the piezoelectric constants 

numerically. 

1.4 Thesis Layout 

This thesis discusses the experimental validation and analysis of the characterization of piezoelectric 

polymer sensors, along with the enhancement in the piezoelectric properties by controlled dispersion 

of nanomaterials in the polymer matrix. This, the first chapter, gives the introduction to the research, 

clarifying the intent and the direction of work. It also outlines the stages of contribution and the 
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various aspects of the work. The second chapter focuses on the process of electrospinning as applied 

to a fabrication unit for piezoelectric polymer sensors and the initial analysis. This chapter begins 

with the detailed layout and working principle of the actual process. Following this, the optimization 

of the process conditions is discussed with the related lookup table drawn in detail. An overview of 

previously existing automation is then followed by the initial static and dynamic testing and the 

establishment of a base to distinguish piezoelectric materials from the other materials. The 

experimental bench setup under the MSA 400 leased by NSF is then explained in detail followed by 

the results of this work. 

The third chapter begins with the need to setup a macro stage cantilever beam experiment separately 

with a non-contact laser sensing integration. The cantilever beam experiment is then modeled based 

on the Euler-Bernoulli beam theory [9], stating all the assumptions explicitly. The stress-strain 

relationship is then established without any assumptions and the energy method is used to apply the 

extended Hamilton’s principle [9] to obtain the mathematical model. The corresponding boundary 

conditions are then analyzed and the separation of variables is discussed in detail. The results of the 

experiment are then discussed and tabulated with appropriate inferences explained at the end of the 

chapter. The next chapter discusses the separation of variables at length as a way to solve the EOM 

and analyze the vibrations. Limitations of this method are clarified and a general finite element 

model is developed for a generalized solution. The solution to both free and forced vibrations is then 

analyzed in both time and frequency domain. This analysis leads the need of analysis of nonlinear 

vibrations and the EOM for the modified Euler-Bernoulli beam theory for large vibrations is derived 

again using the extended Hamilton’s Principle. The solution to this EOM is then attempted by 

separation of variables, clarifying the failure and thus the importance of FEM in the area of vibration 

control. The results using this new model are then discussed with updates on the accuracy 

improvement. 
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The fifth chapter introduces the concept of switch stiffness as a semi-active vibration control scheme 

in detail. The mathematical modeling is presented in detail with emphasis on the novel velocity 

observer designed for the real time implementation of the vibration suppression scheme. The 

primarily designed observer is then modified based on a detailed Lyapunov analysis to yield better 

results. This is followed by the stability analysis of both the observer and the integrated nonlinear 

system with both the observer and controller. The discussion is then extended to characterizing the 

piezoelectric materials better and the results of this section are then presented along with a detailed 

interpretation. Chapter 6 is an extension of the theoretical work of chapter 5 to the actual 

experimental bench. The bi-stiffness property of the piezoelectric materials is discussed in detail and 

the experimental implementation to continuous systems is discussed. The discussion is then extended 

to benefits of active vibration control scheme over a semi-active one and based on this an effective 

viscous damping model for the switch stiffness control law is proposed and validated. Following up, 

a novel active vibration control scheme has been developed which overcomes the limitations of 

delays detiorating real time implementation of other active vibration control schemes and the 

limitation on amplitude of the voltage signal. The results are then tabulated in detail and appropriate 

inferences are explained. 

In chapter 7, the complete work is summarized and the characterization is compiled in one single 

result section, presenting an integrated novel test bench to completely characterize any piezoelectric 

material. This is our contribution through this research carried over the last two years. The scope of 

work in the future is then drawn at the conclusion. 
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Chapter 2 

PROCESS DESCRIPTION: ELECTROSPINNING 
 

2.1 Electrospinning 

‘In the 16th century, William Gilbert was studying the behaviour of magnetic and electrostatic 

phenomena, when he observed that when a significantly electrically charged particle of amber was 

brought in the vicinity of water, it would change the surface into a cone from the tip of which small 

droplets of water would eject. Based on this, the first observation of electrospraying, J.F. Cooley 

developed and patented the process now popularly known as electrospinning in 1902’ [3]. The 

process of electrospinning can be better explained by referring to Figure 2.1. 

 

Figure 2.1 The process of electrospinning [5]. 

The process consists of an infusion syringe pump which hosts a syringe containing the solution to be 

electrospun. The positive plate of a parallel plate capacitor rests from the needle of this syringe. The 

negative plate of this capacitor arrangement is used as the collector. When a significant voltage 

difference is applied across the plates, liquid droplets infused into the developed field by the pump 
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form a Tyndall’s cone [3, 5] from the tip of which the droplets get stretched into thin fibres whose 

diameter can be controlled adjusting the process parameters, i.e. infusion rate, voltage difference and 

the distance between the parallel plates. 

“A nonaxisymmetric model is considered for the analysis of the jet whose centerline is curved. As 

the jet bends, the surface charge density is no more uniform across the cross section of the jet. Hence, 

the potential equations for this model have to be modified to account for the higher order 

nonaxisymmetric distortions. Under real conditions, the centerline is curved due to the domination of 

whipping instabilities and hence all the force, torque and electric field equations are based on this 

model. There are different modes in which the electrospinning process takes place. These include; (i) 

dripping, (ii) spindle or spray mode, and (iii) whipping jet mode. The equation of motion due to 

effect of both electrical field and surface charge can be given by equation” [5]: 

2 2
2

2 2 4 2 2
4

2

( 2) 1
( )

4

( 2) 1 3 1

4 4 32

h E
h x s h

R

h E h E
h
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ε β εε ε
π µ
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                                               (2.1) 

This EOM is derived based on the momentum balance, i.e. Navier Stokes equations [5]. It is 

observed that when charge density increases to more than the surface tension, the instabilities in the 

jet arise. Hence, equation of motion has to be modified to include additional terms due to surface 

charge. Although such generalization will involve both linear and nonlinear stages of the whipping 

phenomenon, in most practical cases h <<R and h << L (where L is the contour length of the jet), and 

hence, higher order derivatives of s involving h/R and h/L can be safely neglected. This simplifies the 

equation of motion to the following final form, 

2 22
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π σβε
ρπ π σ ξ πγ χ

ε
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Here, χ = R/h is the dimensionless wavelength of instability [5]. 

2.2 Optimization of process conditions 

As a part of this research, the most optimum set of conditions under which a polymeric solution in a 

suitable solvent with varied weight ratios of nano-particles can produce the best quality fabric 

through the process of Electrospinning has been established. In this process, a polymeric solution, 

made by sonicating the polymer in a suitable solvent, is injected using an infusion pump in the region 

of a high electric field applied through application of very high voltage through 2 parallel plate 

conductors. In the field created by the voltage, the infused solution spins on the surface of a Tindal’s 

Cone [3, 5] and finally fibers are drawn by the withdrawal of solvent under the spin effect. These 

fibers form an unwoven fabric at the collector, which can be also designed such as to weave through 

the fibers produced.  

Based on extensive experimental work, three major parameters that influence the fiber diameter 

which is the eventual measure of process quality have been identified. These parameters are; voltage 

applied at the parallel plates, the infusion rate at the infusion pump and the distance between the two 

conductor plates [5]. The exact nature of the influence of these parameters on the fiber diameter has 

not been put into mathematical equations but work is being put into quantifying these relations for 

designing an adaptive controller for better quality. The relations established through empirical 

formulations are highly non-linear but the approximate relations are: 

• Fiber diameter reduces as the distance between the conductor plates increases. 

• Fiber diameter increases with increase in the infusion rate 

• Fiber diameter reduces as the voltage applied increases. 

Not only are the exact relations non-linear but also they are interactive in nature and not independent. 

So through running of numerous experiments under varying set of conditions, the most optimum 
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conditions for each type of solution have been established. These conditions are reported in Table 

2.1. 

Table 2.1 Optimized process condition sets for various polymer and nanomaterial combinations. 

Type of Solution Optimum Voltage 

(kV) 

Optimum Infusion 

Rate 

(ml/min) 

Optimum distance 

(cm) 

Pure PVDF 24-32 0.05-0.15 10-15 

PVDF with SWNTs 28-34 0.02-0.08 10-15 

PVDF with ZnO 24-30 0.05-0.12 10-15 

Pure PAN 22-30 0.05-0.3 10-20 

PAN with SWNTs 24-30 0.05-0.2 10-15 

PAN with ZnO 24-30 0.05-0.3 10-15 

PAN with C60 24-30 0.05-0.4 10-15 

 

Following the determination of these critical sets, fabrics of varying thickness and varying 

dimensions were produced successfully and tested initially under static modes. The results of static 

measurements of the piezo constants showed that with the doping of the polymer solution with nano-

particles the piezo properties improved. However to establish this fact and for measuring the exact 

enhancement, dynamic measurements were necessary.  
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An experimental bench consisting of a fixed-free cantilever beam was designed for the necessary 

dynamic measurements. Using the fabric produced with the process as an actuator, a cantilever beam 

was excited through a chirp signal. Studying the signal processing applied to the measured data; the 

natural frequencies of the beam were recorded through the displacement and velocity measurements 

by means of the laser vibrometer. Then, the beam was base excited with the same chirp signal and 

the fabric patch was used as a sensor and the voltage produced was measured. Mathematically 

modeling these two experiments using Euler-Bernoulli beam theory [9], mathematical tools like 

MATLAB have been used to computationally solve the equations of motion and thereby solve for the 

piezoelectric constant, d31. The computed values were then compared with the literature and they 

have matched within 10% error. This established a means to make the measurements dynamic. Using 

the same concept of laser vibrometer, a novel dynamic measurement system has been established for 

both the fabric as well as the film sensors. The results of the experiments carried out have been 

compared with literature data and the cross verification has been successful. Displayed in Figure 2.2 

are the pictures of the newly designed experimental setup at Clemson University. 
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(A) (B) 

 

                              

(C)                                                                                 (D) 

Figure 2.2 (A) and (B) The new experimental setup, (C) Close up of the cantilever beam with the commercial actuator and fabric 

sensor, (D) The set up with the DSPACE board for MSA 400 

 

The plots in Figure 2.3 graph the results obtained for the dynamic response of the beam at ‘x = L’. It 

can be seen clearly that as the concentration of SWNTs increases, the corresponding average 

amplitude of the output transverse displacement increases significantly. This is reinstated through the 

last plot comparing the three results. This supports the increase in the value of ‘d31’ as the 

concentration of SWNTs increases. The observed increase in sensor response for 0.05% SWNTs is 

9.5X.  
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Figure 2.3 The Normalized dynamic response of the piezo fabric sensor observed under the MSA 400 

 

The MSA 400 is the microsystem analyzer leased to Clemson University by NSF. These 

measurements have shown the enhancement in the piezo properties of the polymer fabric. The 

enhancement in the 0.0017% weight ratio sample has been measured to be 1.5-2 times and that in the 

0.05% weight ratio is 8-10 times. This initial measurement through the actuator model has been 

refined and backed up from the sensor approach. The experimental setup has been show in the 

pictures above. The results of the final computational model are discussed in the Section 2.3.1.  
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2.3 Discussion of Results 

2.3.1 RESULTS: Piezoelectric properties of PVDF 

Table 2.2 Tabulated Results for PAN (Fabric) 

Type of Nano-particles Weight Ratios(%)/Enhancement in sensor 

response (X times) 

SWNTs 0.01/1.2 0.02/2.8 0.05/6 

ZnO 0.02/2.2   

C60 0.02/1.6   

 

Table 2.3 Tabulated Results for PAN (Film) 

Type of Nano-particles Weight Ratios(%)/Enhancement in sensor 

response (X times) 

SWNTs 0.02/2.5 

ZnO 0.02/2.3 

C60 0.02/1.5 

 

Table 2.4 Tabulated Results for PVDF (Fabric) 

Type of Nano-particles Weight Ratios(%)/Enhancement in sensor 

response (X times)  

SWNTs 0.01/2.5 0.02/5 0.05/9.5 0.1/16.5 

ZnO 0.02/4.2    
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Table 2.5 Tabulated Results for PVDF (Film) 

Type of Nano-particles Weight Ratios(%)/Enhancement in sensor 

response (X times) 

SWNTs 0.02/4.7 0.05/8.2 

ZnO 0.02/3.8  

C60 0.02/4.6  

 

Now, these results have been obtained under estimated parameter model of the Young’s Modulus of 

Elasticity and the Moment of Inertia, ‘I’ for the sample under test. This is because samples are not 

available enough to undertake destructive testing of the fabric or the films to measure these 

parameters and average them out over the range for one type of sample. Hence we have estimated 

these values in the above data set scaling up the base values on the available literature. Expanding 

this range intellectually to broaden the spectrum and lessen the error, we have taken a range of these 

parameter values in the range of plus-minus 250 units. The results for the computation on this range 

are tabulate in the Section 2.3.2. 

2.3.2 RESULTS: Piezoelectric properties of PAN 

Table 2.6 Tabulated Results for PAN (Fabric) 

Type of Nano-particles Weight Ratios(%)/Enhancement in sensor 

response (X times) 

SWNTs 0.01/1-1.6 0.02/2.2-3.4 0.05/3.2-7.8 

ZnO 0.02/1.5-2.6   

C60 0.02/1-2.8   
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Table 2.7 Tabulated Results for PAN (Film) 

Type of Nano-particles Weight Ratios(%)/Enhancement in sensor 

response (X times) 

SWNTs 0.02/2-3.1 

ZnO 0.02/1.7-3.2 

C60 0.02/1.3-2.6 

 

Table 2.8 Tabulated Results for PVDF (Fabric) 

Type of Nano-particles Weight Ratios(%)/Enhancement in sensor response (X 

times)  

SWNTs 0.01/1.8-3.4 0.02/3.6-5.8 0.05/6.2-10.3 0.1/12-17.8 

ZnO 0.02/3.5-5    

 

Table 2.9 Tabulated Results for PVDF (Film) 

Type of Nano-particles Weight Ratios(%)/Enhancement in sensor response 

(X times) 

SWNTs 0.02/3.6-6 0.05/7.5-9.8 

ZnO 0.02/3.1-4.2  

C60 0.02/3.4-7.2  

 

The three basic parameters that are of interest to us from the point of view of characterization are: the 

piezo-electric constant d31, the tensile modulus of elasticity and the damping characteristics. To get a 

qualitative comparison in enhancement of the vibration dampening characteristics, we need to simply 

monitor the impulse response of the beam with the patch firmly attached to the beam. Extensive 

experiments have been carried out towards this characterization and the results are tabulated below. 

Here the calculation of the damping ratio is based on the logarithmic decay ratio model. Please note 
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that the interpretation of these values is necessarily qualitative at this stage and enhancement is 

noted comparatively. 

Table 2.10 Comparative study of the damping characteristics w.r.t. the weight ratio of dispersed 

nanomaterials. 

Serial No. Weight Ratio 

of SWNTs 

(%) 

Damping 

Ratio  

1 Pure PVDF 2.42*10-3 

2 0.02 5.36*10-3 

3 0.05 15.25*10-3 

4 0.1 39.76*10-3 

5 0.2 124.77*10-3 

6 0.25 231.68*10-3 

 

From these sets of results it can be seen that there is an effect of variation in the weight ratio of 

dispersed nanomaterials on the piezoelectric properties of the polymer fabric sensors. However, a 

similar enhancement in the actuation properties is yet to be established, as polymer fabric sensors are 

not good actuators for these properties to be detected by the available equipment. 
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Figure 2.4 Curve fitted plots of the response of the free end of the macro beam, under the influence of damping properties of 

piezoelectric sensor attached. 
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Chapter 3 

MATHEMATICAL MODELING: VIBRATIONS OF CANTILEVER BEAMS 
 

3.1 System Description and Assumptions: 

To establishing a fundamental mathematical model for the experimental bench designed, a model 

based on cantilever beams with the PZT actuator bonded on its top surface and the sensor attached at 

the bottom has been considered [6]. The beam has a uniform cross-section with thickness tb and 

length l, and the PZT actuator has a uniform thickness tp and length (l2-l1). The PZT actuator is 

bonded perfectly to the beam at distance of l1 from the fixed end. We assume that the voltage applied 

to the actuator is only an external signal and independent of x. This assumption is valid for length of 

the PZT being very small compared to the length of the beam which is valid under Euler-Bernoulli 

beam theory assumptions [9]. 

3.1.1 Mathematical Modeling: 

For convenience of all, a uniform coordinate system is defined, the x-axis being along the 

longitudinal direction and the z-axis specified in the transverse direction with the mid-plane of the 

beam corresponding to z=0. This coordinate system is fixed at the base of the beam. This is shown in 

the Figure 3.1 [6]. 
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Figure 3.1 Nomenclature w.r.t. PZT patch bonded to the beam [6]. 

It is assumed in this discussion that there is no axial deformation of the beam and small deflection 

assumption holds. The resultant displacement field under these assumptions is represented by [9]:  

( )
( )

,
, 0, ,

w x t
u z w w x t

x
ν

∂
= − = =

∂
                                                                                                 (3.1)   

where  are the beam displacements in the x-, y-, z- directions respectively. w denotes the 

transverse displacement of the mid-plane of the beam. Utilizing this displacement field, it is trivial 

that the only non-zero strain component for the beam is given by: 

( )
2

2

,
( )

( , )
xx

w x t
z

u w x tx z
x x x

ε

∂
∂ −

∂ ∂∂= = = −
∂ ∂ ∂

                                                                                     (3.2) 

Equation 3.2 is valid if and only if z is measured from the neutral axis of the flexible member. Since 

the PZT actuator is not along the entire length of the beam, the neutral axis shifts in the region where 

the PZT is bonded to the beam. To extend this discussion into determining the strain induced in the 

PZT, we need to first relocate the neutral axis. It is given by [6]: 
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On simplifying, we get 

( ) / 2( )
b b p

n p p b b pz E t t t E t E t= + +                                                                                                   (3.4) 

where, Eb and Ep are the Young’s modulus of elasticity of the beam and PZT respectively. 

Hence, the non-zeros strain in the beam is given by: 
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                                                                                           (3.5) 

The stress in the beam is related to the strain using Hooke’s Law [9], 

b

xx xxEσ ε=                                                                                                                                   (3.6) 

3.1.2 Modeling the PZT: 

The piezoelectric effect was discovered by Pierre and Jacques Curie in 1880 [1]. The direct 

piezoelectric effect consists of the ability of certain crystalline materials (polymers in our interest) to 

generate an electrical charge in proportion of an externally applied force. The direct effect is used in 

force transducers. According to the inverse piezoelectric effect, an electric field parallel to the 

direction of polarization induces an expansion of material. The piezoelectric effect is anisotropic [1]. 

It can only be exhibited by materials whose crystal structure has no center of symmetry.  
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The direction of expansion with respect to the direction of the electrical field depends on the 

constants appearing in the constitutive equations. The material can be manufactured in such a way 

that one of the coefficients dominates the others. Piezoelectric actuators are becoming increasingly 

important in micro-positioning technology.  

The fundamental relations for piezoelectric materials are given by;  

= +E pS s T dE                                                                                                                               (3.7)                               

ε= + T pD dT E                                                                                                                                (3.8)                                                   

These are the fundamental constitutive equations of piezoelectricity [6]. These equations are in 

general matrix representations. We however do not use this generalized form since in piezoelectric 

materials with specific application to structural vibration control, one direction dominates the others. 

Using these relationships, we can now formulate the strain in the PZT.  

Since we are using the laminar design of the PZT actuator, the z-x (31) interaction is dominant and 

the strain induced in the PZT is given by: 

31 ( ) /
p p

xx xx pE E d v t tσ ε= −                                                                                                           (3.9)                              

where v(t) is the excitation voltage applied across the actuator. 

3.1.3 Derivation of Equations of Motion (Extended Hamilton’s principle):  

The strain energy of the system (π) can be expressed as: 

1
( )

2
xx xx yy yy zz zz xy xy xz xz zy zy dVπ σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +                                                           (3.10)                                          
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The strain energy can be now expressed in short hand as, 
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The kinetic energy of the system (T) is given by: 
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There is no external work as a function of input applied since the applied external voltage has been 

incorporated in the strain energy using the constitutive equations of piezoelectricity, but we need to 

consider the effect of gravity, in case of the practical experimental setup. 

( )
0

( , )

l

W A x gw x t dxρ= ∫                                                                                                                (3.16)                             

Applying extended Hamilton’s principle [9], we have: 

( )
2

1

0

t

t

T W dtδ π− + =∫                                                                                                                   (3.17)                              

Now, we have 

( )
( ) ( )

( )( ) ( )
( )

2 2

1 1

2

1

2 2

2 2

0

2

31 2

0

, ,

,
0.5 2

2

t t l

t t

t l

p

p b n

t

w x t w x t
dt EI x dxdt

x x

w x tb
E d v t t t z s x dxdt

x

δ
δ π

δ

  ∂ ∂
=   

∂ ∂  

 ∂
+ + −  

∂ 

∫ ∫∫

∫∫                                                           (3.18)

 

( )
( ) ( )

( )
( )

( )

( )
( )

( )

( )( ) ( )
( )

2 2

1 1

2

1

2 2

2 2

0 0

2

2

2

2

0

2

31 2

0

, , ,
{ ( ) ,

,
( )

, }

0.5 2 ,
2

l l
t t

t t

l

t l

p

p b n

t

w x t w x t w x t
dt EI x EI x w x t

x x x x

w x t
EI x

x
w x t dx dt

x

s xb
E d v t t t z w x t dxdt

x

δ
δ π δ

δ

δ

      ∂ ∂ ∂∂
= −      

∂ ∂ ∂ ∂         

 ∂
∂  

∂ +
∂

 ∂
+ + −  

∂ 

∫ ∫

∫

∫∫
                  (3.19)

                                                                         

Similarly, 
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The resulting EOM is given by: 
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with fixed-free boundary conditions.  

Note that in this derivation, all the terms in the integral have been retained since the effect of all the 

terms is significant for the exact dimensions of the system under consideration. Also, the effect of 

gravity can be ignored by deriving these equations from the equilibrium point. 

Now let us discuss the solution to this EOM. The EOM derived in (3.21) can be expressed as, 
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Assuming that a solution to this non-linear partial differential equation exists and that the x- 

coordinate is separable from the temporal coordinate, let us assume the solution to be in the form of 

an assumed mode expansion. 

( ) ( ), ( )
i i

i

w x t W x q t=∑                                                                                                      (3.23)                                                                     

where, Wi(x) is the spatial mode shape and qi(t) are the temporal coordinates. Substituting this close 

form solution in the boundary conditions, we can solve for the spatial mode shapes as, 
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where ( )2 1 ( )
2

i
l i

π
β ≅ −  

If we substitute the assumed mode expansion of the solution in the equation of motion, we have: 
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Multiplying both sides of the equation by ( )jW x  and integrating over the domain, we can use the 

orthogonality condition of the modes to reform the equations. Thus we have: 

( ) ( )2

0

,

l

i i i iq q W x f x t dxω+ = ∫��                                                                                                       (3.26)                             

The experimental bench is shown in Figure 3.2. 

 

Figure 3.2 Experimental setup. 

Laser vibrometer 

Cantilever beam 

with pzt patch 

bonded to it 

SAE 5 
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3.2 Modeling the Sensor: 

Using the constitutive equations of piezoelectricity, we can express the charge developed on the 

sensor as a function of the vibrations induced in the beam by: 

( )
( ) ( )2 1

31 2 1

, ,
0.5 ( )s

s

w l t w l t
Q bE d l l

x x

∂ ∂
= − −

∂ ∂
                                                                               (3.27)                                         

where, Es is the Young’s modulus of electricity of the sensor material and d31s is the piezoelectric 

constant of the sensor [6]. In this equation we assume the thickness of the sensor and the actuator to 

be the same. 

Now using the linear model of a parallel plate capacitor which is the structure of the sensor, we have: 

( ) /
p

v t Q C=                                                                                                                                (3.28)                              

where, Cp is the capacitance of the sensor which can be measured using an impedance measurement 

circuit. Thus by measuring the voltage output at the sensor electrodes and feed-forwarding the 

solution of the EOM, we can solve for the term (Esd31s). The results of this characterization are 

tabulated in Tables 3.1 to 3.5.  
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Table 3.1 Results of characterization of sensors based on matrix of PVDF and SWNTs. 

Serial No. Weight Ratio of 

SWNTs (%) 
31

s

fE d  

(Averaged over 10 readings) 

1 Pure PVDF 

Es = 1.103*109(Pa) 

0.0254 Theoretical 

0.0267 Experimental 

2 0.02 0.0837 

3 0.05 0.1547 

4 0.1 0.2109 

5 0.2 0.4326 

6 0.25 0.5821 

 

Table 3.2 Results of characterization of sensors based on matrix of PVDF and C60. 

Serial No. Weight Ratio of 

C60 (%) 
31

s

fE d  

(Averaged over 10 readings) 

1 Pure PVDF 

Es = 1.103*109(Pa) 

0.0254 Theoretical 

 

0.0267 Experimental 
 

2 0.05 0.1752 

3 0.1 0.2357 

4 0.25 0.5264 
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Table 3.3 Results of characterization of sensors based on matrix of PVDF and ZnO. 

Serial No. Weight Ratio of 

C60 (%) 
31

s

fE d  

(Averaged over 10 readings) 

1 Pure PVDF 

Es = 1.103*109(Pa) 

0.0254 Theoretical 

 

0.0267 Experimental 
 

2 0.05 0.1352 

3 0.1 0.1964 

4 0.25 0.5372 

 

Table 3.4 Results of characterization of sensors based on matrix of PAN and SWNTs. 

Serial No. Weight Ratio of 

SWNTs (%) 
31

s

fE d  

(Averaged over 10 readings) 

1 Pure PAN 

Es = 

0.5667*109(Pa) 

0.0017 Theoretical 

 

0.0012 Experimental 
 

2 0.05 0.0091 

3 0.1 0.0137 

4 0.25 0.0312 
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Table 3.5 Results of characterization of sensors based on matrix of PAN and C60. 

Serial No. Weight Ratio of 

SWNTs (%) 
31

s

fE d  

(Averaged over 10 readings) 

1 Pure PAN 

Es = 

0.5667*109(Pa) 

0.0017 Theoretical 

 

0.0012 Experimental 
 

2 0.05 0.0103 

3 0.1 0.0183 

 

3.3 Interpretation: 

The results tabulated above show clearly that the dispersion of nanomaterials in the polymer matrix 

enhances the piezoelectric properties of these polymers significantly. However, note that it is the 

product 31

s

fE d  that gets enhanced, i.e. the addition of nanomaterials to polymer matrix enhances the 

electromechanical properties and not just the electrical. This observation leads to the conclusion that 

there exists an electromechanical coupling. Thus, the mechanical strain and electrical effect is 

coupled and hence it can be expected that a back EMF effect is observed when analyzing the data 

closely. This is a topic of the chapters to come but still a point worth the mention here. It is this 

electromechanical coupling that makes the system highly nonlinear and note that empirical 

constitutive equations have been used to establish this coupling, in which the effect of higher order 

terms may be ignored. Let us now explore this in more detail in the chapters to come. 
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Chapter 4 

SOLUTION TO GOVERNING EQUATION: AN EXPANSION TO MODELING 

NONLINEAR VIBRATIONS OF CANTILEVER BEAMS 

 
4.1 Introduction and Literature Review: 

 

In the previous chapter, the linear vibrations of a cantilever beam have been analyzed based on the 

linear Euler-Bernoulli beam theory [9]. Both piezoelectric actuation as well as sensing involved in 

the base experiment to characterize the piezoelectric materials have been modeled based upon the 

constitutive equations of piezoelectricity [6]. Now, to mathematically characterize these materials, a 

solution to the governing equation needs to formulated based on which the measurement data needs 

to be post processed, integrating the solution into a set of integral equations. This chapter introduces 

the two most widely used methods of obtaining the solution to the partial nonlinear multivariable 

differential equation at hand; Assumed Mode analysis and Finite Element Analysis (FEA) [9, 24]. To 

explain the method of finite elements and its necessity as a tool to obtain the solution, it is useful to 

discuss the tool of Finite Difference Method (FDM) [24], not a part of this work, and its limitations 

that leads to the analysis using FEA. 

The governing equations derived in the previous chapter were based on the assumption of small 

vibration amplitude which inherently implies linear strain. However, the experimental conditions are 

not limited to these assumptions and the experimental bench at the macro level requires analysis 

taking into consideration large vibration amplitude i.e. nonlinear strain. The results using the linear 

strain theory and their divergence from expected accuracy is discussed after the section on solution to 

the governing equations derived in the previous chapter. This discussion is then expanded to the 

derivation of the more accurate governing equations based on nonlinear strain theory. Following this 

extensive mathematical modeling the failure of modal analysis is then elaborated extending the 

discussion to the only feasible method of solution, FEA. The finite element formulation is then 
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addressed in detail finally compiling the results. In the final section, the characterization of 

piezoelectric materials based on this analysis is revisited and the improvement is established through 

comparison. In the appendix A1, all the relevant numerical analysis files are attached herewith. 

4.2 Modal analysis and assumed mode expansion theory: 

As discussed in brief in the previous chapter, one method to obtain a numerical solution to the 

governing equation of vibrations of a cantilever beam based on the Euler-Bernoulli beam theory 

(linear strain) is the method of assumed mode analysis. The solution is assumed to be separable in 

space and time, i.e. it is assumed that there is no coupling within the solutions on the two separate 

variables. Thus the solution can be written as, 

( , ) ( ) ( )w x t W x tφ=                                                                                                                            (4.1) 

The fixed-free boundary conditions associated with the vibrations of a cantilever beam are given by, 

2 3

2 3

(0, ) 0, (0, ) 0

( , ) 0, ( , ) 0

w
w t t

x

w w
l t l t

x x

∂
= =

∂

∂ ∂
= =

∂ ∂

                                                                                                              (4.2) 

The homogeneous governing equation of vibration of a beam based on the linear Euler-Bernoulli 

beam theory is given by, 

( )
( )

( )
( )2 22

2 2 2

, ,
0

w x t w x t
A x EI x

t x x
ρ

 ∂ ∂∂
+ = 

∂ ∂ ∂ 
                                                                              (4.3) 

For a beam with uniform cross-section, this reduces to 

( ) ( )4

4

2

2

, ,
0

w x t w x t
A EI

t x
ρ

 ∂ ∂
+ = 

∂ ∂ 
                                                                                                 (4.4) 

Substituting the assumed separable form of solution in this homogeneous governing equation, we 

have 



34 

 

( ) ( )4

2 4

2

( ) ( ) 0
d Wt x

AW x EI t
dt x

ρ φ
φ  ∂

+ = 
∂ 

                                                                                      (4.5) 

i.e. 

( ) ( )4
2

2
4

0
( ) ( )

W xt
xEIdt

t A W x

d φ

φ ρ

 ∂
 

∂ + =                                                                                                           (4.6) 

Thus, both the ratios in the above equation have to be of opposite signs. The ratio, 

( )2

2

( )

t

dt

t

d

φ

φ

 cannot be 

positive since the solution would not be oscillatory which we know is harmonic. For the solution to 

be harmonic,  

( )2

2
2

( )

t

dt

d

t
ω

φ

φ

= −                                                                                                                                   (4.7) 

Thus, we have 

( )
2

4

4

4

2( )

x

x

W x c

W

ω
β

 ∂
 

∂  = = where, c
A

EI

ρ
=                                                                                          (4.8) 

i.e. 

( )4

4

4 ( ) 0
W x

W x
x

β
 ∂

− = 
∂ 

                                                                                                                (4.9) 

Let us assume the solution to the above governing equation of the spatial mode to be exponential, i.e. 
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( ) sxW x Ce= where C and s are constants. Substituting this assumption into the governing equation, 

we have 

4 4 0s β− = , the roots of which are s β= ± and s iβ= ±  

Thus the spatial solution can be written compactly as [9], 

1 2

3 4

( ) (cos( ) cosh( )) (sin( ) sinh( ))

(cos( ) cosh( )) (sin( ) sinh( ))

W x C x x C x x

C x x C x x

β β β β

β β β β

= + + +

+ − + −
                                                         (4.10)             

On substituting this generalized solution to the spatial function in the boundary conditions, it 

degenerates into '
i

sω corresponding to the different mode shapes of the vibrations of the cantilever 

beam. These frequencies are called modal frequencies. The resulting closed form solution is thus the 

expansion of the assumed separable solution over the modes, i.e. 

( , ) ( ) ( )
i i

i

w x t W x tφ=∑                                                                                                                    (4.11) 

Now, this is with regards to the homogeneous governing equation. To solve the governing equation 

with an external forcing function, an expansion of the same theory is required. In general the modal 

frequencies derived earlier are the inherent properties of the beam and thus do not change under the 

influence of a force which does not permanently deform the system. Thus without loss of generality, 

the spatial modes can be assumed to have the same structure even when analyzing the forced 

vibrations. This means that one needs to reformulate the governing equations of the temporal 

coordinates. In this numerical analysis, it can be a computational limitation to use only a pre-

specified number of modes. This in turn loads the temporal coordinates since a solution in general 

consisting of infinite modes is being formulated based on a few prominent ones. The convergence of 

solution depends on the number of modes considered. As derived in the previous chapter, to analyze 
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forced vibrations, let us substitute the above assumed mode expansion of the solution into the 

equation of motion and then using the orthogonality condition of the spatial modes, one can derive 

the governing equation for the temporal coordinates of the forced vibrations.  

A numerically more extensive but easier to handle mathematically solution is to obtain trial functions 

for the spatial mode which satisfies only the essential boundary conditions and then consider more 

number of modes to better converge on the exact solution, there by loading the temporal coordinates 

extensively. This is mathematically easier to handle because in this case the spatial functions are 

mostly simple sinusoids. Another method is not to consider harmonic nature of spatial modes but use 

polynomials. This is the easiest method to handle mathematically since all the load is now on the 

numerical computation of the temporal modes and more the number of modes considered, 

convergent is the solution. For analyzing the vibrations of a cantilever beam however, it is not 

computationally difficult if one uses the exact spatial mode functions.  

The solution to the governing equation of forced vibrations using modal analysis is discussed in the 

result section following the next section on FEA of the governing equation. 

4.3 Finite Element Analysis of the governing EOM: 

The method of modal analysis has two major limitations. Firstly the solution needs to be separable 

and secondly one needs to consider more number of modes for a more accurate solution which can be 

computationally tedious. For systems with discrete elements like a discrete damper or tip mass, the 

boundary conditions are non-homogeneous and thus the separation of variables fails. There is a way 

to work around this by modeling the discrete elements as external forcing functions with a spatial 

impulse functions weighing there effect at the point at which they act. This change in approach needs 

us to consider more modes for an accurate solution. For all these reasons, finite element method is 
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very effective to solve the governing equation accurately. Finite difference method using central 

difference formulas has been implemented in many works till now but the method suffers from the 

effect of artificial damping which gets introduced due to the inherent formulation of the FDM.  

The FEA was first used as a solution tool as a remedy to overcome this effect of damping introduced 

by the FDM. In theory, the FEM is very easy to explain. Basically, the principle of the FEM is to 

divide the domain of interest into small elements and then express the governing equation as an 

integral equation over the elements and thereby solve a set of algebraic difference equations 

recursively over the smaller domain. The final solution is then assembled using the individual 

element solutions into organized system matrices. Finally, instead of solving the differential 

equation, we solve an equivalent algebraic matrix equation [24].  
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Chapter 5 

VIBRATION CONTROL AND CHARACTERIZATION OF PIEZOELECTRIC 

MATERIALS BASED ON STATE-SWITCH TYPE SEMI-ACTIVE CONTROL LAW 

 
5.1 Literature Review: 

 A state-switch concept based semi-active control scheme is proposed to enhance damping properties 

of piezoelectric materials [7, 8, 20]. The state-switch is related to the stiffness properties of 

piezoelectric materials, associating the difference between their stiffness properties in open circuit 

and short circuit configurations to an enhancement in the effective structural damping provided by 

these materials. Effectively switching the configuration of the piezoelectric sensor bonded to a 

cantilever beam from open circuit to short circuit when moving towards equilibrium condition and 

from short circuit to open circuit when moving away from the equilibrium, leads to change in stored 

potential energy of the system, thereby reducing the total energy. This control scheme is 

implemented in real time applying assumed-mode analysis for control law development. 

Unavailability of velocity sensors and the noise associated with numerical differentiation technique 

leads to the design of an output feedback variable structure observer, robust in nature and piece-wise 

continuous. Simulation and experimental results establish effectiveness of the vibration suppression 

method based on ‘switched stiffness’ [7]. 

5.2 Introduction 

Active vibration control concepts are best suited for suppressing structural vibrations. However, 

when suppressing structural vibrations in continuous media, the effective equation of motion and 

their formulation involved in developing a robust enough active vibration control law is highly non-

linear, thereby rendering the control law implementation computationally extensive. Also the energy 

of the active control inputs required for enforcing a specific damping characteristic is typically high 

which may lead to instability in the system under certain conditions. Intervention of noise riding 
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most of the feedback sensor measurements and the phase lag associated with filters implemented for 

noise reduction are known to cause problems in the area of vibration suppression. Another major 

problem associated with active control law implementation for vibration suppression in continuous 

media is the time delay associated with the effect of the control action taken in one section of the 

media to translate to the measurement points which is finitely significant [8, 18, 19]. On the other 

hand, passive vibration control methods are relatively simpler and have much improved stability 

characteristics but are less effective in vibration suppression with higher response times. To put aside 

the drawback of the individual methods and combine the inherent positives, hybrid methods such as 

adaptive passive and semi-active configurations for vibration control have been developed [18, 19]. 

‘A recent development in this area is formulation and implementation of a state-switch based semi-

active vibration control configuration. In this method, energy is dissipated by changing the effective 

stiffness of the system. A simple control law to effectively switch the stiffness so as to maximize the 

damping characteristics has been developed based on position and velocity feedbacks. The system 

must have effectively two stiffness values, referred to as high stiffness and low stiffness’ [7, 8]. The 

high stiffness value is used when the system is moving away from the equilibrium condition so as to 

maximize the potential energy stored in the system. At the maximum amplitude of corresponding 

half-cycle when the potential energy stored is at its maxima, the stiffness is switched from high 

stiffness value to low stiffness value, dissipating the difference in the maximum potential energy 

proportional to the difference in the two stiffness values. Implementing this control method, the 

effective energy dissipated per cycles is maximized and damping characteristics of the system can be 

enhanced. 

This energy dissipation method can be used for vibration suppression in both transient and 

continuously excited systems. However a functional drawback in real-time application of the state-

switch control law is the requirement of accurate velocity measurements and the availability of bi-
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stiffness members. To resolve the issue of expensive velocity sensors, a novel velocity observer 

developed by Xian et al. [22] is implemented. For vibration suppression of continuous systems, 

effective bi-stiffness characteristics of piezoelectric materials can be used. 

5.3 Switched stiffness vibration suppression concept 

It has been established that piezoelectric materials have two values for their Young’s modulus of 

elasticity, a higher modulus of elasticity in their open circuit configuration than that in their short 

circuit configuration [7, 8]. Let Khigh denote the stiffness corresponding to the open circuit 

configuration and Klow be the stiffness corresponding to the short circuit configuration. Then, the 

potential energy stored in the open circuit and short circuit configurations at extreme deflection is 

equivalent to: 

2

max. . 0.5high highP E K w=                                                                                                                     (5.1) 

2

max. . 0.5
low low

P E K w=                                                                                                                       (5.2)                          

 This equivalently means that if the configuration of the piezoelectric patch is switched from open 

circuit to short circuit when the system moves towards equilibrium point and vice versa when system 

moves through the equilibrium point then per cycle of motion, an extra energy, 

2

max. . 0.5( )high lowP E K K w= −                                                                                                            (5.3)                                                                       

can be dissipated per half cycle, thereby increasing the damping effect of the piezoelectric material.  

5.3.1 Switched stiffness control law formulation 

This concept of enhancing the damping properties in a system through state-switching is popularly 

known has Switch-Stiffness. The governing control law can be written as: 
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( ) , 0highK t K ww= ≥�                                                                                                                        (5.4) 

( ) , 0lowK t K ww= ≤�                                                                                                                     (5.5)               

This can be expressed in one single equation as 

( ) sgn( )
2 2

high low high low
K K K K

K t ww
+ −   

= +   
   

�                                                                             (5.6)            

Implementing this semi-active vibration control law, one can measure the effective enhancement in 

the damping characteristics of the piezoelectric patch which can then be related to the enhancement 

in K∆ as a function of the weight ratio of nanomaterials. This experimental work can give a 

qualitative estimate of the coupling coefficient of the piezoelectric material which is the one of the 

key parameters of interest when selecting piezoelectric materials for specific applications. 

5.3.2 Lyapunov-based stability analysis of the switched stiffness method 

Consider the mass spring equivalent model of a distributed parameter system as 

 

Fig 5.1 Mass-Spring-Damper equivalent of a distributed parameter system. 
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The governing equation of motion for this system is, 

( ) ( , ) ( , ) 0m x y c x t y k x t y+ + =�� �                                                                                                        (5.7)             

Let us analyze the following special case: 

( , ) 0c x t =  

( , ) sgn( )
2 2

high low high low
k k k k

k x t yy
+ −   

= +   
   

�                                                                               (5.8)                                                         

For this system consider the following candidate Lyapunov function 

2 21
( )

2

high low
k k

V y y
m

+ 
= +  

 
�                                                                                                        (5.9)     

Taking the first time derivative, we have, 

sgn( )
2

high low
k k

V yy
− 

= − 
 

� � , incorporating the system dynamics.                                                (5.10) 

Now, V�  is negative semi-definite and V is both positive definite and radially unbounded. Hence 

using the Invariant Set Theorem it can be proved that the system under consideration is globally 

asymptotically stable [14, 15, 16]. 

5.4 Output feedback velocity observer design 

To implement the control law given by equation 5.6, a measure, observation or estimate of two states 

of the system, i.e. the deflection and the velocity of the free end of the beam is required. Necessarily 

it is not needed to have the exact values but just the signs are sufficient to effectively switch between 

the two configurations. Now, from the solution to the EOM one can feed-forward the value of 
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displacement, which will be accurate in sign. However, velocity cannot be measured directly. One 

solution is to use the numerical differentiation of the displacement signal to extract the sign but 

numerical differentiation has many problems associated with it. Hence it is necessary to either 

observe or estimate the velocity signal for its sign, implementing a velocity observer [10, 11, 14, 16, 

21]. 

In state-space matrix representation, the system given by equations 5.7 and 5.8 can be expressed as 

[ ]
0 1

, 10
/ 0

A C
K m

 
= = − 

                                                                                                        (5.11) 

We suggest the following structure of a full state observer: 

ˆ ˆx Ax Ly= −� �                                                                                                                                 (5.12)     

where, L is the state feedback gain matrix to be designed for desired positioning of observer poles, 

and  y�  is measure of observer error. Let  

1

2

K
L

K

 
=  
 

                                                                                                                                    (5.13)    

This completes the observer design to be 

1
ˆ yy p K= + ��                              (5.14) 

2

K
p y K

m
y= − +� �                                                                                                                          (5.15)  

Note that this observer design is in the structure of a second order filter.  
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Now let us examine the stability of this design. For this, let’s obtain the error dynamics. The observer 

error is given by 

ˆy y y= −�                                                                                                                                     (5.16) 

Thus, 

1
ˆ

k
y y y y p yK

m
= − = − − −����� �� ���                                                                                                      (5.17) 

It can be seen that we need to redesign the observer for both stable and converging nature desired of 

the observer. We now suggest the following structure, retaining the second order filter design. 

1
ˆ yy p K= + ��                                                                                                                                     (5.18) 

( )
2

ˆ2 sgn
2 2

( )

high low high lowk k k k

y

yy

p y K
m

+ −   
+   

   = − +

�

� �                                                                (5.19)        

Using this design, the error dynamics can be rewritten as: 

( )
2 1

ˆsgn
2

high lowk k
yy

y y K
m

yKy

− 
 
 = − −�

�

�� ���                                                                                      (5.20) 

Consider the following candidate Lyapunov function to analyze the stability of the design. 

2 2 2 221 1

2 2 2 2

high low
k k K

V y y y y
m

+
= + + +�� � �                                                                                    (5.21)      

Differentiating with time and incorporating the error dynamics, we get 
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( ) 2

1

( )
ˆ ˆsgn

2

high low
k k

V yy yy K
m

y
−

= − −� ��� �                                                                                          (5.22) 

Now, V� is negative semi-definite and V is radially unbounded [20, 21]. Thus using the Invariant Set 

Theorem [20, 21], it can be proved that the overall system with the defined control law and the 

refined observer design is globally asymptotically stable. 

5.5 Characterization of piezoelectric materials (Mathematical Modeling) 

Consider the homogeneous equation of motion of a cantilever beam which is given by: 

( )
( )

( )
( )2 22

2 2 2

, ,
0

w x t w x t
A x EI x

t x x
ρ

 ∂ ∂∂
+ = 

∂ ∂ ∂ 
                                                                            (5.23)   

 Let this cantilever beam have a PZT patch bonded to it which acts just as a sensor. Now let us 

analyze the motion under vibrations induced only because of initial conditions. As a function of the 

displacement of the vibrations, the charge accumulating on the PZT patch is given by  

2 1
31 2 1

( , ) ( , )
0.5 ( )( )s

s

w l t w l t
Q bE d l l

x x

∂ ∂
= − −

∂ ∂
                                                                                  (5.24)     

 

where, 
sE is the Young’s modulus of electricity of the sensor material and 31s

d  is the piezoelectric 

constant of the sensor.  

 Initially there is no voltage applied to the patch which is acting only as a sensor. However, the 

sensor being a potential parallel plate capacitor, charge developed on it will produce output voltage 

that can be sensed. Now since the patch is bonded to the beam this voltage can be seen as an 

excitation signal applied to the beam. This is the source of the electromechanical coupling in the 

piezoelectric material. Depending on the sign of the voltage and the charge accumulating on the 
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patch, the motion of the beam will be altered and this can be seen as the source of the vibration 

damping characteristics of the piezoelectric sensors. Therefore the charge developing on the patch 

can be rewritten to incorporate the electromechanical coupling effect. 

( )2 1
31 2 1

( , ) ( , )
0.5 ( )( )

p

s

s

v t
A

t

w l t w l t
Q bE d l l

x x

ε∂ ∂
= − −

∂
+

∂
  where ‘A’ is the area of the patch.        (5.25)    

This equation can also be written from the constitutive equations of piezoelectricity considering the 

effect of the field produced by voltage applied to the patch. When one analyzes forced vibrations, the 

effect of sensed voltage is negligible compared to the order of the applied voltage but in the analysis 

of vibrations induced due to initial conditions, incorporating this effect may give us some added 

insight. 

Now, from equation 5.25, 

( )
( )

( ) ( )

( ) ( ) ( )

2 1

31 2 1

31 2 1

, ,
0.5

1

0.5 , ,

p

p

p p

p

p p

w l t w l t
bE d l l

x x
v t

A
C

t C

E d volume w l t w l t

t C A x x

ε

ε

 ∂ ∂   
− −     ∂ ∂    = =

 
−  

 

 ∂ ∂   
−     − ∂ ∂    

                       (5.26) 

which gives the net voltage that can be seen as externally applied to the piezoelectric patch when 

analyzing vibrations due to initial conditions. Thus going back and reforming our equation of motion 

as: 



47 

 

( )
( )

( )
( )

( ) ( ) ( ) ( )

2 22

2 2 2

2 22
31 2 1 2 1

2

, ,

0.5 ( ) , ,
( ( ))

p

p p

w x t w x t
A x EI x

t x x

bE d l l s x volume w l t w l t

x t C A x x

ρ

ε

 ∂ ∂∂
+ = 

∂ ∂ ∂ 

− − ∂ ∂   ∂
−   

∂ − ∂ ∂   

                                        (5.27)                

Assuming that a solution to this non-linear partial differential equation exists and that the x- 

coordinate is separable from the temporal coordinate, let us assume the solution to be in the assumed 

mode expansion given by, 

( ) ( ), ( )
i i

i

w x t W x q t=∑                                                                                                                (5.28) 

Substituting the assumed mode expansion of the solution in the equation of motion, we have: 

( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )( )

2
''

2

2 22
31 2 1 ' '

2 12

(

0.5 ( )
( ( ) )

i i i i

i

p

i i i

i p p

A x W x q EI x W x q
x

bE d l l s x volume
W l W l q

x t C A

ρ

ε

∂
+ =

∂

− −∂
−

∂ −

∑

∑

��

                                         (5.29)                             

Multiplying both sides of the equation by ( )jW x  and integrating over the domain, one can use the 

orthogonality condition of the modes to reform the equations. Thus we have: 

( ) ( )
2

2

2

0

( )

l

i i i i i iq B q s x W x dx
x

q ω
∂

+ =
∂∫

��                                                                                             (5.30) 

where,  
( ) ( )

( ) ( )( )
2 2

31 2 1 ' '

2 1

0.5
( )

p

i i i

p p

bE d l l volume
B W l W l

t C Aε

− −
= −

−
 

and 
2 0.5

4
((2 1) ) ( )

2
i

EI
i

Al

π
ω

ρ
= −         



48 

 

Let ( ) ( )
2

2

0

( )

l

i iN s x W x dx
x

∂
=

∂∫
                                                                                                       (5.31) 

Integrating by parts, we have 

( ) ( )2 1i i

i

dW l dW l
N

dx dx
= −                                                                                                                 (5.32) 

Thus we have  

2
( ( )) 0i i i i iq B N qω+ − =��                                                                                                                  (5.33)             

as the governing equation of the temporal coordinates.  

It is observed that the natural frequency of vibrations in the temporal coordinate is shifted. It is easy 

to establish that the sign of the product ‘BI’ is negative and hence the shift in frequency is towards 

the higher side. Now, 
i

ω is the frequency of mechanical vibrations, the natural frequency 

corresponding to the ith mode. The shift in this frequency is observed after considering the effect of 

the electromechanical coupling and incorporating it into the equations of motion.  

Using the governing equations derived in 5.33, let us now discuss the implementation of the Switch-

Stiffness control law. Using the governing equation for the temporal coordinates and implementing 

the observer for every coordinate function, the exact sign of the product ww� . However, for this it is 

needed to separate the initial condition, w(x,0) on to the initial conditions of the temporal coordinates 

of each mode. Let us now discuss this last piece of work towards the complete characterization. 

For this, consider the homogeneous equation of motion given by equation 5.23. Assume the solution 

to this EOM to be in the form of a closed loop assumed mode expansion given by equation 5.28. For 

a given initial condition, w(x,0), have 
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( ) ( ),0 (0)
i i

i

w x W x q=∑                                                                                                               (5.34)           

( ) ( )( ) ,0 ( ) (0)
i i

i

A x w x A x W x qρ ρ=∑                                                                                         (5.35) 

( ) ( ) ( ) ( )
0 0

( ) ,0 (0) ( )

l l

j i i j

i

A x w x W x dx q A x W x W x dxρ ρ=∑∫ ∫                                                         (5.36) 

Applying the orthogonality condition of the modes, we have  

( ) ( ) ( )
0

0 ( ) ,0

l

i iq A x w x W x dxρ= ∫                                                                                                 (5.37)      

Similarly, 

( ) ( ) ( )
0

0 ( ) ,0

l

i iq A x w x W x dxρ= ∫
�

�                                                                                                   (5.38)                                                      

Using this one can distribute the initial condition of motion on all the modes considered. Combining 

with this with the discussion on the shift in frequency observed, the implementation designed is 

shown in figure 5.2 
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Fig.5.2 Simulink model for implementation of switched stiffness control law. 
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5.6 Discussion of results 

5.6.1 Simulation results implementing the velocity observer 

To obtain the velocity feedback required to implement the switched stiffness control law developed 

in Section 5.2, an output feedback velocity observer has been designed. In this section let us discuss 

the results obtained by implementing this observer design. Figure 5.3(a) plots the actual position 

measured and the observed position. As can be seen the observer’s estimate of position is not in 

accordance with the measured position in terms of magnitude, but the observed signal follows the 

same sign which is the key factor in implementing the switched stiffness control law. 

A similar observation can be made between the actual velocity of simulation signal and its observer 

signal. This comparison is presented in Figure 5.3(b). It can be seen that even though the observer 

does not observe the exact signal, the sign of the actual signal and the observed signals match 

accurately. 
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Fig. 5.3 (a) Comparison of measured and observed position signals and their signs and (b) Comparison of measured and observed 

velocity signals and their signs.  

  

 

5.6.2 Experimental results and discussion 

The switched stiffness formulation developed in Section 5.2 has been implemented in real time 

incorporating the output feedback state observer in the control law to suppress vibration induced by 

initial conditions in a cantilever beam fixed at one end and free at the other. A sensor fabricated from 

piezoelectric polymers such as PVDF and PAN is used as the bi-stiffness member and the 

configuration of this member is changed between open circuit and short circuit through a novel 

software switching code. The experimental bench is shown Figure 5.4. 
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Fig. 5.4. Experimental bench 
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The results of the experiment conducted are tabulated below. 
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Fig.5.5 (a) Experimental response of the free end of the beam for initial condition induced vibrations with fabric sensor fabricated 

from pure PVDF bonded to the beam and (b) Experimental response of the free end of the beam for initial condition induced 

vibrations with fabric sensor fabricated from pure PVDF and 0.25% SWNTs bonded to the beam. 

 

From the above results it is clearly seen that the switched stiffness control law proposed for semi-

active vibration suppression enhances the damping characteristics of the pzt sensor material. Also, it 

can be seen, addition of SWNTs to the mother solution of the polymer enhances the piezoelectric 

properties of the fabric sensor. 

5.7 Results for characterization of piezoelectric materials 

Developing on the analysis performed in Section 5.5, a formulation for the estimate of the coupling 

coefficient, k31 [25] is proposed based on the observation of the associated frequency shift which is 

now a function of both the electrical mode as well as the mechanical mode,  

31 , 1
i i i i

i

B N
k i

ω ω

ω

− −
= =                                                                                                        (5.39)                                                    
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For the ease of this estimation the following lookup table has been developed, based on the numerical 

values of the mechanical properties of the actual experimental bench. 

 

Lookup Table 5.1. (l1=10mm, l2=50mm): 

 

 

 

 

 

The results of this section are discussed in table 5.1. 

Table 5.1. Results for the estimation of the coupling coefficient k31 and its comparison with literature 

values for validation. 

Serial No. Type of 

sensor 

attached 

Natural 

Frequency of 

beam in first 

mode, 

calculated. 

(hz) 

Natural 

Frequency of 

first mode 

observed in 

experimental 

mode. (hz) 

Calculated  

k31 

Theoretical 

k31 

1 Commercial 

PZT patch 

10 16.8 0.32 0.35 

2 PVDF 10 19 0.0875 0.11 

3 PVDF with 

0.1% 

SWNTs 

10 18.5 0.1535  

4 PVDF with 

0.25% 

SWNTs 

10 18 0.2105  

Serial No. (i) 
i

ω (Hz) 
i

N  

1 10 -2.2056 

2 85.51 -11.1321 

3 251.7 -11.9237 

4 569.63     9.3053 
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Chapter 6 

EQUIVALENT STRUCTURAL DAMPING MODEL: DESIGN AND 

IMPLEMENTATION OF AN ACTIVE VIBRATION SUPPRESSION SCHEME 
 

6.1 Literature Review and Introduction 

 

As discussed in the last chapter, the switched stiffness vibration suppression scheme is a semi-active 

vibration suppression method which exploits the bi-stiffness property of piezoelectric materials to 

add structural damping to a continuous member [12, 13]. This concept has been modeled extensively 

in the last chapter. This chapter expands the discussion further and looks into whether we can model 

the same vibration damping law as an active vibration suppression method. This work is based 

completely on the energy method of deriving equations of motions, using the extended Hamilton’s 

principle [9].  

As seen in the last chapter, the switched stiffness concept dissipates energy equivalent to the 

maximum vibration amplitude every cycle. The bi-stiffness property of the piezo-sensor allows us to 

switch between the two configurations using computer software. Now the proposed real time 

implementation requires a velocity observer which is really difficult to implement on continuous 

systems. For continuous systems, real time analysis of the continuous EOM with just the tip 

displacement to observe tip velocity has the limitation of mode expansion. Also the modal method 

introduces a significant software delay and thus the switching cannot be perfectly synchronized. As a 

result even though the vibrations may go close to zero for sometime but the delays may act up as 

actuators as seen from the experimental results. Thus the damping scheme is not smooth and sudden 

shoot up as a result of actuation is not acceptable.  

Proposed is this discussion is the expansion of the semi-active vibration suppression method into an 

active one. Modeling the energy dissipation per cycle as energy dissipated by an equivalent discrete 

damper, a new set of governing equations with an explicit damping term which reflects as an external 
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force is derived. This enables us to design a control voltage to functionalize the piezo-sensor as an 

actuator to apply active voltage equivalent to the damping characteristics of the switched stiffness 

concept. This actuation eliminates the software delays and a clean exponential damping characteristic 

is verified experimentally.  

From the example of classical SDOF systems, the dissipative energy function for structural damping 

in the Lagrangian or Hamilton’s principle method of obtaining the governing equations is given by: 

0

1

2

l

eq x
D c w dx= ∫ �                                                                                                                                 (6.1) 

where ceq is the equivalent structural damping coefficient [10]. 

The energy dissipated per cycle can be modeled to fit this structural damping energy term and the 

equivalent damping coefficient can be established. This equivalence then needs to be verified by 

extensive numerical simulations and finally experimental results. This in general is the layout of this, 

the penultimate chapter. 

6.2 Mathematical modeling of the switch stiffness control logic as equivalent dissipated energy: 

As per the switch stiffness concept introduced and explained in the last chapter, the variable stiffness 

of the system can be written is one single equation as: 

( ) ( )sgn
2 2

high low high low
k k k k

k t ww
+ −   

= +   
   

�                                                                                  (6.2) 

The energy stored in this varying stiffness is the dissipated energy per cycle. This average energy 

dissipated per vibration cycle can be modeled as: 

( )
0

1
T

domain

w
E k t w dxdt

T x

∂
=

∂∫ ∫                                           (6.3) 
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Without loss of generality we can assume that at t = 0, the beam is at equilibrium position moving 

away from it. Under this valid assumption, the average energy dissipated per vibration cycle is given 

by, 

 
2 2 2 2

1 1 1 1

/4 /2 3 /4

0 /4 /2 3 /4

1
l l l lT T T T

high low high low

l T l T l T l

w w w w
E k w dxdt k w dxdt k w dxdt k w dxdt

T x x x x

 ∂ ∂ ∂ ∂ 
= + + + 

∂ ∂ ∂ ∂  
∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫  (6.4) 

i.e. 

2 2 2 2

1 1 1 1

/4 /2 3 /4

2 2 2 2

0 /4 /2 3 /4

1

2

T T T T
l l l l

high low high low
l l l l

T T T

E k w dt k w dt k w dt k w dt
T

 
       = + + + +        

 
∫ ∫ ∫ ∫                   (6.5) 

Extending the concept of the equivalent energy dissipated by a discrete structural damper from 

SDOF systems to continuous systems, the energy dissipated by an equivalent structural damper can 

be written as, 

2

1

2

0

1
lT

d eq

l

w
E c dxdt

T t x

∂
=

∂ ∂∫ ∫                                                                                                               (6.6) 

where, ceq is the equivalent structural damping coefficient [10].  

 

The equivalent structural damping coefficient is a term that we have introduced to model the original 

semi-active vibration suppression scheme into an active vibration suppression scheme. This 

structural damping coefficient is established through the equivalence of the energy dissipated. 

Equivalent to the average energy dissipated over one vibration cycle as given by equations 6.5 and 

6.6, comparing the energy dissipated over one half cycle, 

2 2
max max

( ) ( )

4 2

eq
c w T k w∆

=
�

                                                                                                                (6.7) 

i.e. 
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( )
2

max

2

max

( )
2

( ( ))
eq

w L
c k

T w L
= ∆

⋅ �
                                                                                                                  (6.8) 

Without loss of generality we can assume an exponential decay in the vibration amplitude of the free 

end of the beam, which is the only point of measurement, we have 

max max( ) ( )w L w Lλ= −� , where λ is the logarithmic decay ratio.                                                      (6.9) 

Therefore, the equivalent damping coefficient is given by, 

2

2
eq

k
c

Tλ

∆
=                                                                                                                                        (6.10) 

As seen, the equivalent damping coefficient depends on three important factors; the difference 

between the higher and lower stiffness values for the piezo-patch, the period of vibrations and the 

logarithmic decay ratio. Developing our theory further based on this established equivalence, let us 

now derive the new set of governing equations with the structural damping equivalence as an 

external forcing function. 

6.3 Mathematical modeling of the new set of governing equations: 

The kinetic energy and the strain (potential) energy of the beam under vibrations as derived in 

chapter 3, is given by, 

2

0

( )( )

l
w

T A x dx
t

ρ
∂

=
∂∫                                                                                                                      (6.11) 

2
2

2

0

( )( )

l
w

EI x dx
x

∂
Π =

∂∫                                                                                                                     (6.12) 

Based on the expression of energy dissipated in a structural damper for SDOF systems, the external 

forcing function which is the equivalent energy dissipation in the structural damping model, is given 

by 
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2

0

( )

l

eq

w
W c s x dx

t x

∂
=

∂ ∂∫                                                                                                                   (6.13) 

Applying the generalized Hamiltonian principle, we have 

2

1

( ) 0

t

t

T W dtδ Π − − =∫                                                                                                                      (6.14) 

The variation on the kinetic and potential energy terms has been performed extensively in the 

discussion in chapter 3. Here let us discuss the variation on the external forcing function. 

2 2 2

1 1 1

2 2

1 1

0 0

0 0

( ) ( )
( ) ( )

( ) ( )

tt tl l

eq eq

t t t

t tl l

eq eq

t t

w w
Wdt c s x dtdx c s x dxdt

t x x t

w w
c s x wdxdt c s x wdxdt

t x x t

δ δ
δ

δ δ

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂   
= − −   

∂ ∂ ∂ ∂   

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

                                                  (6.15) 

Substituting this in equation (), we obtain the governing equation 

( ) ( ) ( ) ( )
22 2

2 2 2 eq eq

w w w w
A x EI x c s x c s x

t x x t x x t
ρ

 ∂ ∂ ∂  ∂ ∂ ∂ ∂    
+ = − +      

∂ ∂ ∂ ∂ ∂ ∂ ∂     
                               (6.16) 

This new governing equation has the same original fixed-free boundary conditions associated with it. 

 

From the governing equation of a piezoelectric actuator as derived in chapter 3, we have  

( )
( )

( )
( )

( )( ) ( )( )
2 22 2

312 2 2 2

, ,
0.5 2p

p b n

w x t w x t
A x EI x bE d v t t t z s x

t x x x
ρ

 ∂ ∂∂ ∂
+ = − + − 

∂ ∂ ∂ ∂ 
           (6.17) 

The governing equation given by equation 6.16 has to be now modeled as the governing equation 

6.17 by designing a control voltage which dictates the same energy over one vibration cycle as the 

energy dissipated per cycle by the structural damping structure, i.e. 

( ) ( ) ( )
2 2

2

0 0

l l

eq

t t

w w
c s x dxdt B s x v t dxdt

t x x

∂ ∂
= ⋅

∂ ∂ ∂∫ ∫ ∫ ∫  , where ( )310.5 2
2

P

p b n

b
B E d t t z= ⋅ + −        (6.18) 
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Design of the control voltage v(t) from the above integral equation is mathematically tedious without 

the knowledge of the structures of the signals involved in the integrand. To simplify this issue, lets 

obtain the numerical solution to the governing equation with structural damper as an external forcing 

function. The solution to the governing equation derived using FEA [24], which will be in terms of 

ceq, can be used to compare the solution to the actuator equation and that of the equivalent damping 

model, and thereby design a compensating structure for the voltage v(t). The analysis from here on is 

purely numerical and computational.  

6.3.1 Modal analysis of the new governing equation set: 

As discussed above, the new set of governing equations has the same fixed-free boundary conditions 

associated with it. Thus the spatial shape function or mode shape will not change in fundamental 

mathematical formulation. Substituting the assumed mode solution in its expanded form in the 

governing equation, we have 

( ) ( ) ( ) ( )( ) ( )
2

'' '

2

'

( ) ( ) 2 ( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )

i i i i eq i i

eq

eq i i i i

A x W x q t EI x W x q t c s x W x q t
x

c
c s x W x q t s x W x q t

x t

ρ
 ∂

+ + +  ∂
= 

∂∂ ⋅ +
 ∂ ∂ 

∑
��

�

                         (6.19) 

 

Multiplying throughout by Wj(x), and applying the orthogonality conditions of the mode shapes of a 

Euler-Bernoulli beam [9], the governing equation for the ith temporal coordinate is obtained as, 

 

( ) ( ) ( )

( )
2

'' '' ' '

0 0 0

' '

0

( )
( ) ( ) ( ) ( )

( ) 2 ( ) 0

l l l

i i j i i j i eq i j

ll

eq

i eq i j i i j

l

s x
q t A x W x W x dx q t EI x W W dx q t c W W dx

x

c
q t c s x W W dx q t W W dx

t

ρ
∂

+ +
∂

∂
+ + =

∂

∫ ∫ ∫

∫ ∫

�� �

�

                          (6.20) 

i.e. 
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0
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( ) ( )

( ) 2 ( ) 0

l

i i i i eq i j

ll
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i eq i j i i j
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s x
q t q t q t c W W dx

x

c
q t c s x W W dx q t W W dx

t

ω
∂

+ +
∂

∂
+ + =

∂

∫

∫ ∫

�� �

�

                                                                     (6.21)

6.4 Discussion of Results: 

6.4.1 Numerical Simulation: Validation of equivalent damping model: 
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Figure 6.1 Numerical simulation for validation under two different sets of beam specifications 
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Figure 6.2 Simulink based model layout to validate equivalent damping model. 

 

As seen from the tabulation of results in Figure 6.1, it is seen that the equivalent damping model 

developed and proposed in this work is accurate enough for beams with lower first natural 

frequencies. The proposed model however disintegrates for beams with higher first natural 

frequencies as compared to the actual switch stiffness control law. This is due to the period 

dependence of the equivalent structural damping coefficient [10, 12]. As the period of vibration 

reduces, the decay ratio is not exactly logarithmic, implying the decay is not exponential. This is not 

in accordance with the exponential decay assumption which forms the base of the derived 

mathematical equivalence of the structural damping coefficient. This is however as far as we discuss 
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this mathematical tool in the scope of this thesis. In the concluding remarks made in the final chapter, 

future work in this area is discussed. 

6.4.2 Application of Switched Stiffness control law using the equivalent structural damping 

model and its comparison versus implementation of the semi-active vibration suppression 

method: 

Extending the concept of the semi-active vibration suppression scheme of switched stiffness to the 

concept of equivalent structural damping, the damping effect of the scheme was modeled as 

equivalent damping energy and a structural damping term equivalent to the piezoelectric effect was 

introduced to implement an active vibration damping scheme by designing appropriate voltage signal 

to the piezoelectric actuator which overcomes the inherent delay introduced due to the 

instrumentation in the semi-active vibration suppression scheme. The result of this work is a much 

sharper and faster exponential decay.  
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Figure 6.3 Comparison between applied switched stiffness control logic and equivalent damping model based active vibration 

control characteristics. 

When applying the semi-active vibration suppression scheme, there is finite and significant delay 

involved in the mathematical processing of the tip displacement measured using the laser vibrometer 

principle. This delay results in the soft switching logic developed not being synchronized with the 

exact change in the sign of the product, ‘ ww� ’. As a result sometimes instead of removing energy 

from the system, the logic may actuate the system due to the switching not being in sync. This is seen 
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in the above tabulation of primary results. The Figure 6.4 is the simulink model developed to 

implement the switch stiffness vibration suppression method. 
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Figure 6.4 Simulink based model layout to implement the switched stiffness control law. 
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6.5 Characterization of piezoelectric materials, a summary of results: 

Chapter 5 discusses the formulation and implementation of the state-switch based semi active control 

law. Based on the mathematical modeling a novel formulation of the coupling coefficient, k31 [21, 

25], has been proposed and validated. Here, let us discuss the decoupling of the mechanical and 

electrical properties of the piezoelectric materials based on this coupling coefficient model. 

6.5.1 Piezoelectric Constant gij 

“The piezoelectric coefficient gij denotes the electric field developed along i-axis (electrodes 

perpendicular to i-axis) due to an applied stress along j-axis provided all other external stresses are 

constant. It also expresses the strain developed along j-axis due to a unit electric charge per unit area 

of electrodes applied along i-axis (electrodes perpendicular to j-axis). For example g33 denotes field 

developed in direction 3 due to an applied stress in direction 3 when all other stresses are zero. It also 

denotes the strain developed in direction 3 due to a unit charge per unit area of electrodes applied 

along direction 3. In a similar way, g15 denotes shear strain induced around direction 2 due to a unit 

applied charge per unit electrode area with electrodes normal to direction l.” [25] 

Mathematically,  

g = Field Developed/Applied Stress = Strain Developed/Applied Charge Density                       (6.22) 

i.e., 

31 0 31d K gε=                                                                                                                                    (6.23) 

where, K is the relative dielectric constant of the material and 0ε is the permittivity of free space. 

 

 

 

 



68 

 

6.5.2 Coupling Coefficient kij 

“The coupling coefficient defines the ability of a piezoceramic material to transform electrical energy 

to mechanical energy or vice versa. This effect is employed in both the sensors (force, pressure, 

acceleration measurement) and actuators (efficiency) arena. Coupling squared shows the ratio of 

transformed energy and total energy input and the same coefficient is used for both conversions, 

electrical to mechanical and mechanical to electrical. For example, k31
2 is the transformed electric 

energy causing mechanical strain in direction 1 with no external stress divided by electric energy 

input in direction 3. It is also the transformed mechanical energy causing electrical charge in 

direction 3 divided by the mechanical energy input as a result of stress in direction 1 with no other 

external stress.” [25] 

Mathematically, 

k31
2 = mechanical energy stored/electrical energy applied                                                             (6.24) 

After detailed mathematical modeling, not a subject of current discussion, we arrive at the final 

equation, 

2

2 ij

ij E T

ij ij

d
k

s ε
=                                                                                                                                      (6.25) 

where, 
1E

ij E
s

C
= , 

E
C being the short circuit stiffness. 

These are the set of equations , correlating k31, d31, g31, and the open circuit and short circuit stiffness 

for the piezoelectric materials. Solving these equations simultaneously for a consistent solution, one 

can now characterize any given piezoelectric material for its 31 constants. Given the scope and 

timeline of this work, exact characterization results at this stage have not been obtained but this still 

remains the starting point of future research. Laid out here is the general framework which is in 
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complete compliance with theory. Substituting actual values obtained in the previous chapters 

remains only an algebraic problem for the polymer fabric sensors developed at Clemson University. 
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 
 

7.1 Conclusions: 

As a part of this work, we have studied the process of Electrospinning in detail and optimized the 

process conditions for the fabrication of polymer based piezoelectric fabric with varying weight 

ratios of nanomaterials dispersed in the polymer matrix. A lookup table has been prepared for this 

purpose. The threshold of dispersion of nanomaterials has been validated experimentally against the 

noted theoretical thresholds.  

In the next stage, the produced fabric sensors have been analyzed for their piezoelectric properties, in 

both frequency and time domain. Based on the initial frequency domain analysis, a macro level 

cantilever beam based test bench has been designed and validated experimentally to characterize 

piezoelectric materials. Conducting extensive experiments based on piezoelectric actuation, free 

initial condition induced vibrations and step and impulse responses, numerical data has been 

assembled for the characterization.  

Following this experimental work, extensive numerical analysis in both simulink and MATLAB has 

been addressed to measure the piezoelectric constants. At this stage, coupling between the 

mechanical and electrical properties has been established and the concept of switch stiffness, 

introduced as a method for vibration suppression has been extended to model the coupling 

coefficient. Results have been verified using commercial piezo-actuators. Based on this modeling, a 

novel software switching function has been developed to implement the switch stiffness control law 

for vibration suppression in continuous systems. At this stage, the frequency domain analysis carried 
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out initially on the numerical data has been integrated into the derived mathematical model. As a 

result, the switch stiffness control law has been implemented in real time successfully.  

Noting the delay of numerical analysis of data in the implementation of this control law to be 

significant, a novel approach of equivalent viscous damping has been introduced to develop an active 

vibration suppression method, implementing the switch stiffness control law by actuating the beam 

based on a voltage control signal designed from the equivalent viscous damping model. Finally, the 

methods of modal analysis and FEA have been compared as methods to obtain numerical solution to 

the EOM for vibrations in cantilever beams. Noting the deviation of solution from experimental 

measurement, a nonlinear strain based EOM has been derived and analyzed to give better results. The 

solution through FEA has been finally incorporated in the control as a feedforward control signal to 

obtain better vibration suppression characteristics. 

Finally, a framework to completely characterize the piezoelectric materials for their 31 constants has 

been proposed based on a theory developed from the constitutive equations of piezoelectricity. 

7.2 Scope for future work: 

One of the primary objectives of this research still remains untouched. The existing control system 

based on image processing was to be updated with a nonlinear adaptive controller with both feedback 

and feedforward signals integrated into the structure. Given the unavailability of the right resources, 

this up gradation still remains to be analyzed. Furthermore, not all nanomaterials have been analyzed 

for enhancement in peizoeletric properties of the polymer fabric sensors. The scope of introducing 

boronitride SWNTs into polymer matrix of polymers like PVDF is large. 

We have laid out the framework for complete characterization of piezoelectric materials with regards 

to their 31 properties but given the time, we have not been able to quantify the results. The proposed 
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framework has many applications and is generic for testing any new materials. The extension of the 

switch stiffness concept into an equivalent active vibration suppression method has opened up a large 

pool of applications where earlier the level of control voltage required was a big problem in using 

these materials. The exploration of these results in the area of NEMS and MEMS is probably the 

most important research in progress currently, i.e. the replacement of peizoresistive sensors with 

piezoelectric. 
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Appendix 

A1: Source codes and supporting files for Chapter 4. 

 

A1.1 Modal Analysis: 

Main code: 

close all; 
clear all; 
clc; 

  
Eb=200e9; 
Ep=15.857e9; 
tb=0.254e-3; 
tp=0.3e-3; 
pb=8000; 
pp=5887; 
b=25.4e-3; 
l=0.2794; 
zn=Ep*tp*(tp+tb)/(2*(Eb*tb+Ep*tp)); 

  
x=0:0.0001:0.2794; 

  
for i=1:1:length(x) 
    if x(i)<0.01 
        pA(i)=pb*b*tb; 
        EI(i)=Eb*(tb^3)*b/12; 
    elseif x(i)>=0.01&&x(i)<=0.05 
        pA(i)=(pb*tb+pp*tp)*b; 
        

EI(i)=(Eb*(tb^3)*b/12)+(Eb*tb*(zn^2)*b)+(Ep*b*(((tp^3)/3)+tp*(zn^2)+(tp*(tb/2

)^2+(tb/2)*(tp)^2)-zn*((tp)^2+tp*tb))); 
    else 
        pA(i)=pb*b*tb; 
        EI(i)=Eb*(tb^3)*b/12; 
    end 
end 

  
b1=1.875; 
b2=4.694; 
b3=7.855; 
b4=11; 

  
p1=pb*b*tb; 
p2=(pb*tb+pp*tp)*b; 

  
e1=Eb*(tb^3)*b/12; 
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e2=(Eb*(tb^3)*b/12)+(Eb*tb*(zn^2)*b)+(Ep*b*(((tp^3)/3)+tp*(zn^2)+(tp*(tb/2)^2

+(tb/2)*(tp)^2)-zn*((tp)^2+tp*tb))); 

  
c1=0.2792434923; 
c2=0.2764783324; 
c3=0.2645214224; 
c4=0.2454611406; 

  
d1=0.0001099883709; 
d2=0.002905396970; 
d3=0.01490442909; 
d4=0.03428048488; 

  

  
for i=1:1:length(x) 
    W1(i)=(1/sqrt(c1*p1+d1*p2))*(cos(b1*x(i)/l)-cosh(b1*x(i)/l)-

((cos(b1)+cosh(b1))/(sin(b1)+sinh(b1)))*(sin(b1*x(i)/l)-sinh(b1*x(i)/l))); 
    W2(i)=(1/sqrt(c2*p1+d2*p2))*(cos(b2*x(i)/l)-cosh(b2*x(i)/l)-

((cos(b2)+cosh(b2))/(sin(b2)+sinh(b2)))*(sin(b2*x(i)/l)-sinh(b2*x(i)/l))); 
    W3(i)=(1/sqrt(c3*p1+d3*p2))*(cos(b3*x(i)/l)-cosh(b3*x(i)/l)-

((cos(b3)+cosh(b3))/(sin(b3)+sinh(b3)))*(sin(b3*x(i)/l)-sinh(b3*x(i)/l))); 
    W4(i)=(1/sqrt(c4*p1+d4*p2))*(cos(b4*x(i)/l)-cosh(b4*x(i)/l)-

((cos(b4)+cosh(b4))/(sin(b4)+sinh(b4)))*(sin(b4*x(i)/l)-sinh(b4*x(i)/l))); 
end 

  
g=9.81; 

  
w1=(b1^2)*sqrt(e1/(p1*(l^4))); 
w2=(b2^2)*sqrt(e1/(p1*(l^4))); 
w3=(b3^2)*sqrt(e1/(p1*(l^4))); 
w4=(b4^2)*sqrt(e1/(p1*(l^4))); 

  
f1=(1/sqrt(c1*p1+d1*p2))*(-0.1746105568e-2); 
f2=(1/sqrt(c2*p1+d2*p2))*(-0.9161232455e-2); 
f3=(1/sqrt(c3*p1+d3*p2))*(-0.2124973153e-1); 
f4=(1/sqrt(c4*p1+d4*p2))*(-0.3320559694e-1); 

  
g1=(1/sqrt(c1*p1+d1*p2))*(-0.2170029190); 
g2=(1/sqrt(c2*p1+d2*p2))*(-0.1120936582); 
g3=(1/sqrt(c3*p1+d3*p2))*(-0.4985171868e-1); 
g4=(1/sqrt(c4*p1+d4*p2))*(-0.1736926319e-1); 

  
h1=(f1*p2+g1*p1)*g; 
h2=(f2*p2+g2*p1)*g; 
h3=(f3*p2+g3*p1)*g; 
h4=(f4*p2+g4*p1)*g; 

  
d31=-170e-12; 

  
m1=-0.5*Ep*b*d31*(tb+tp-2*zn)*(1/sqrt(c1*p1+d1*p2))*(-2.2046); 
m2=-0.5*Ep*b*d31*(tb+tp-2*zn)*(1/sqrt(c2*p1+d2*p2))*(-11.1321); 
m3=-0.5*Ep*b*d31*(tb+tp-2*zn)*(1/sqrt(c3*p1+d3*p2))*(-11.9237); 
m4=-0.5*Ep*b*d31*(tb+tp-2*zn)*(1/sqrt(c4*p1+d4*p2))*(9.3053); 
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x1=(1/sqrt(c1*p1+d1*p2))*(-0.4433564621e-1); 
x2=(1/sqrt(c2*p1+d2*p2))*(-0.6748957114e-2); 
x3=(1/sqrt(c3*p1+d3*p2))*(-0.1759136345e-2); 
x4=(1/sqrt(c4*p1+d4*p2))*(-0.4194039318e-4); 

  
y1=(1/sqrt(c1*p1+d1*p2))*(-0.6563514626e-4); 
y2=(1/sqrt(c2*p1+d2*p2))*(-0.3400000479e-3); 
y3=(1/sqrt(c3*p1+d3*p2))*(-0.7760827802e-3); 
y4=(1/sqrt(c4*p1+d4*p2))*(-0.1185007279e-2); 

  
c=-0.1; 

  
ic1=c*(y1*p2+x1*p1); 
ic2=c*(y2*p2+x2*p1); 
ic3=c*(y3*p2+x3*p1); 
ic4=c*(y4*p2+x4*p1); 

  
ic=[ic1;0;ic2;0;ic3;0;ic4;0]; 

  
t=3; 

  
v=1000; 

  
omega=2*pi*6; 

  
[t,response]=ode45('myfunc_q_sol',t,ic,[],w1,w2,w3,w4,m1,m2,m3,m4,h1,h2,h3,h4

,v,omega); 

  
q1=response(:,1); 
q2=response(:,3); 
q3=response(:,5); 
q4=response(:,7); 

  
plot(t,q1) 
hold on 
plot(t,q2,'r') 
plot(t,q3,'g') 
plot(t,q4,'k') 

  
A1=q1*W1; 
A2=q2*W2; 
A3=q3*W3; 
A4=q4*W4; 

  
A=A1+A2+A3+A4; 

  
figure(2) 

  
plot(t,A(:,2795)) 
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Supplement file: 

 
function 

state_derivative=myfunc_q_sol(t,state,flag,w1,w2,w3,w4,m1,m2,m3,m4,h1,h2,h3,h

4,v,omega) 

  
state_derivative=zeros(8,1); 
state_derivative(1)=state(2); 
state_derivative(3)=state(4); 
state_derivative(5)=state(6); 
state_derivative(7)=state(8); 

  
state_derivative(2)=-(w1^2)*state(1)+m1*v*sin(omega*t)+h1; 
state_derivative(4)=-(w2^2)*state(3)+m2*v*sin(omega*t)+h2; 
state_derivative(6)=-(w3^2)*state(5)+m3*v*sin(omega*t)+h3; 
state_derivative(8)=-(w4^2)*state(7)+m4*v*sin(omega*t)+h4; 

 

A1.2 FEA of governing equation based on linear strain Euler Bernoulli Beam Theory: 

 
Main Code: 

 

 
close all; 
clear all; 
clc; 

  
% Parameters 
Eb=200e9; 
Ep=15.857e9; 
tb=0.254e-3; 
tp=0.3e-3; 
pb=8000; 
pp=5887; 
b=25.4e-3; 
l=0.280; 
zn=Ep*tp*(tp+tb)/(2*(Eb*tb+Ep*tp)); 

  
x=0:0.001:0.280; 

  
for i=1:1:length(x) 
    if x(i)<0.01 
        pA(i)=pb*b*tb; 
        EI(i)=Eb*(tb^3)*b/12; 
    elseif x(i)>=0.01&&x(i)<=0.05 
        pA(i)=(pb*tb+pp*tp)*b; 
        

EI(i)=(Eb*(tb^3)*b/12)+(Eb*tb*(zn^2)*b)+(Ep*b*(((tp^3)/3)+tp*(zn^2)+(tp*(tb/2

)^2+(tb/2)*(tp)^2)-zn*((tp)^2+tp*tb))); 
    else 
        pA(i)=pb*b*tb; 
        EI(i)=Eb*(tb^3)*b/12; 
    end 
end 
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% Constants Evaluation 
he=x(2)-x(1); 
M=(he/420)*[156,-22*he,54,13*he;-22*he,4*he^2,-13*he,-3*he^2;54,-

13*he,156,22*he;13*he,-3*he^2,22*he,4*he^2]; 
K1=(2/he^3)*[6,-3*he,-6,-3*he;-3*he,2*he^2,3*he,1*he^2;-6,3*he,6,3*he;-

3*he,1*he^2,3*he,2*he^2]; 
K2=(1/7)*[432/(5*he^5),-8/(he^2),-432/(5*he^5),-8/(he^2);-

18/(he^4),256/(15^he),18/(he^4),32/(15*he);-

432/(5*he^5),8/(he^2),432/(5*he^5),8/(he^2);-

18/(he^4),32/(15^he),18/(he^4),256/(15*he)]; 
num_node=length(x); 
num_element=num_node-1; 

  
K1_global=zeros(2*num_node,2*num_node); 
K2_global=zeros(2*num_node,2*num_node); 
M_global=zeros(2*num_node,2*num_node); 

  
F=zeros(2*num_node,1); 

  
% sid_elements=zeros(num_element,3); 
% sid_nodes=zeros(num_node,2); 
%  
% for i=1:1:num_element 
%     for j=1:1:3 
%         if j==3 
%             sid_elements(i,j)=i+1; 
%         else 
%             sid_elements(i,j)=i; 
%         end 
%     end 
% end 
% for i=1:1:num_node 
%     for j=1:1:2 
%         if j==1 
%             sid_nodes(i,j)=i; 
%         else 
%             sid_nodes(i,j)=x(i); 
%         end 
%     end 
% end 

  
% Elemental Calculations and Assmbly 
for i=1:1:num_element 
    if x(i)==0.05 
        k1=EI(i+1)*K1; 
        k2=EI(i+1)*K2; 
        m=pA(i+1)*M; 
    else 
        k1=EI(i)*K1; 
        k2=EI(i)*K2; 
        m=pA(i)*M; 
    end     
    for p=1:1:4 
        for q=1:1:4 
            K1_global(p+2*i-2,q+2*i-2)=K1_global(p+2*i-2,q+2*i-2)+k1(p,q); 
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            K2_global(p+2*i-2,q+2*i-2)=K2_global(p+2*i-2,q+2*i-2)+k2(p,q); 
            M_global(p+2*i-2,q+2*i-2)=M_global(p+2*i-2,q+2*i-2)+m(p,q); 
        end 
    end 
end 

  
% Imposing BCs 
K1_global_bc=zeros(2*num_node-2,2*num_node-2); 
K2_global_bc=zeros(2*num_node-2,2*num_node-2); 
M_global_bc=zeros(2*num_node-2,2*num_node-2); 

  
for i=1:1:(2*num_node-2) 
    for j=1:1:(2*num_node-2) 
        K1_global_bc(i,j)=K1_global(i+2,j+2); 
        K2_global_bc(i,j)=K2_global(i+2,j+2); 
        M_global_bc(i,j)=M_global(i+2,j+2); 
    end 
end 
% Minv=inv(M_global_bc); 

  
% Time domain discretization 

  
alpha=1/2; 
gama=1/2; 

  
t=0:0.01:1; 

  
del_t=t(2)-t(1); 

  
c1=gama*(del_t^2)/2; 
c2=(1-gama)*(del_t^2)/2; 
c3=(2*alpha)/(gama*del_t); 
c4=((2*alpha)/(gama))-1; 
c5=(((1*alpha)/(gama))-1)*del_t; 

  
U=zeros((2*num_node-2),length(t)); 
U1=zeros((2*num_node-2),length(t)); 
U2=zeros((2*num_node-2),length(t)); 
A=zeros((2*num_node-2),length(t)); 
B=zeros((2*num_node-2),length(t)); 

  
for i=1:1:(2*num_node-2) 
        if rem(i,2)==0 
            U(i,1)=-(pi/(2*l))*sin((pi/(2*l))*x((i/2)+1)); 
        else 
            U(i,1)=cos((pi/(2*l))*x(((i+1)/2)+1))-1; 
        end 
end 
temp1=0; 

  
for j=2:1:length(t) 
    for k=1:1:100 
        for q=1:1:(2*num_node-2) 
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            for r=1:1:(2*num_node-2) 
        

A(q,j)=A(q,j)+(M_global_bc(q,r)+c1*K1_global_bc(q,r))*U(r,j)+c1*K2_global_bc(

q,r)*(U(r,j).^3)-M_global_bc(q,r)*(U(r,j-1)+del_t*U1(r,j-1)+c2*U2(r,j-1)); 
        if q==r 
        

B(q,j)=B(q,j)+3*c1*K2_global_bc(q,r)*(U(r,j).^2)+(M_global_bc(q,r)+c1*K1_glob

al_bc(q,r)); 
        else 
        

B(q,j)=B(q,j)+c1*K2_global_bc(q,r)*(U(r,j).^3)+(M_global_bc(q,r)+c1*K1_global

_bc(q,r))*U(r,j); 
        end 
            end 
        end 
        for i=1:1:(2*num_node-2) 
        if abs(A(i,j))<0.00000000001 
            temp1=1; 
        else 
            for p=1:1:(2*num_node-2) 
                U(p,j)=U(p,j)-A(p,j)/B(p,j); 
            end 
            temp1=0; 
            break 
        end   
        end 
        for s=1:1:(2*num_node-2) 
        U2(s,j)=(1/c1)*(U(s,j)-U(s,j-1))-(1/c1)*del_t*U1(s,j-1)-((1/gama)-

1)*U2(s,j-1); 
        U1(s,j)=U1(s,j-1)+(1-alpha)*del_t*U2(s,j-1)+alpha*del_t*U2(s,j); 
        end 

  
        if temp1==1 
            break 
        end 
%             k=k+1; 

  

          
    end 
%     for s=1:1:(2*num_node-2) 
%         U2(s,j)=(1/c1)*(U(s,j)-U(s,j-1))-(1/c1)*del_t*U1(s,j-1)-((1/gama)-

1)*U2(s,j-1); 
%         U1(s,j)=U1(s,j-1)+(1-alpha)*del_t*U2(s,j-1)+alpha*del_t*U2(s,j); 
%     end 
end 

               

A1.3 FEA of governing equation based on nonlinear strain Euler Bernoulli Beam Theory: 

 

 

Main code: 

 

 
close all; 
clear all; 



80 

 

clc; 

  
% Parameters 
Eb=200e9; 
Ep=15.857e9; 
tb=0.254e-3; 
tp=0.3e-3; 
pb=8000; 
pp=5887; 
b=25.4e-3; 
l=0.280; 
zn=Ep*tp*(tp+tb)/(2*(Eb*tb+Ep*tp)); 

  
x=0:0.001:0.280; 

  
for i=1:1:length(x) 
    if x(i)<0.01 
        pA(i)=pb*b*tb; 
        EI(i)=Eb*(tb^3)*b/12; 
    elseif x(i)>=0.01&&x(i)<=0.05 
        pA(i)=(pb*tb+pp*tp)*b; 
        

EI(i)=(Eb*(tb^3)*b/12)+(Eb*tb*(zn^2)*b)+(Ep*b*(((tp^3)/3)+tp*(zn^2)+(tp*(tb/2

)^2+(tb/2)*(tp)^2)-zn*((tp)^2+tp*tb))); 
    else 
        pA(i)=pb*b*tb; 
        EI(i)=Eb*(tb^3)*b/12; 
    end 
end 
% Constants Evaluation 
he=x(2)-x(1); 
M=(he/420)*[156,-22*he,54,13*he;-22*he,4*he^2,-13*he,-3*he^2;54,-

13*he,156,22*he;13*he,-3*he^2,22*he,4*he^2]; 
K1=(2/he^3)*[6,-3*he,-6,-3*he;-3*he,2*he^2,3*he,1*he^2;-6,3*he,6,3*he;-

3*he,1*he^2,3*he,2*he^2]; 
K2=(1/7)*[432/(5*he^5),-8/(he^2),-432/(5*he^5),-8/(he^2);-

18/(he^4),256/(15^he),18/(he^4),32/(15*he);-432/(5*he^5),8/(he^2),... 
    432/(5*he^5),8/(he^2);-18/(he^4),32/(15^he),18/(he^4),256/(15*he)]; 
K3=[-198/(35*he^4),-198/(35*he^4),-

198/(35*he^4),36/(35*he^3);36/(35*he^3),36/(35*he^3),-

6/(35*he^3),2/(7*he^2);... 
    198/(35*he^4),198/(35*he^4),198/(35*he^4),-36/(35*he^3);-6/(35*he^3),-

6/(35*he^3),36/(35*he^3),-102/(35*he^2)]; 
K4=[648/(35*he^5),-4/(35*he^2),-648/(35*he^5),-4/(35*he^2);-

54/(35*he^4),6/(7*he),54/(35*he^4),2/(35*he);... 
    -

648/(35*he^5),4/(35*he^2),648/(35*he^5),4/(35*he^2);54/(35*he^4),2/(35*he),54

/(35*he^4),6/(7*he)]; 
K5=[-198/(35*he^4),36/(35*he^3),198/(35*he^4),36/(35*he^3);-6/(35*he^3),-

102/(35*he^2),36/(35*he^3),-2/(7*he^2);... 
    198/(35*he^4),-36/(35*he^3),198/(35*he^4),36/(35*he^3);-

36/(35*he^3),2/(7*he^2),-6/(35*he^3),102/(35*he^2)]; 
K6=[-72/(35*he^4),-36/(35*he^3),-

72/(35*he^4),36/(35*he^3);36/(35*he^3),18/(35*he^2),36/(35*he^3),-

18/(35*he^2);... 
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    72/(35*he^4),36/(35*he^3),72/(35*he^4),-

36/(35*he^3);36/(35*he^3),18/(35*he^2),36/(35*he^3),-18/(35*he^2)]; 
K7=[-648/(35*he^5),-4/(35*he^2),648/(35*he^5),-

4/(35*he^2);324/(35*he^4),2/(35*he),-324/(35*he^4),2/(35*he);... 
    648/(35*he^5),4/(35*he^2),-

648/(35*he^5),4/(35*he^2);324/(35*he^4),2/(35*he),-324/(35*he^4),2/(35*he)]; 
K8=[-72/(35*he^4),36/(35*he^3),72/(35*he^4),-36/(35*he^3);36/(35*he^3),-

18/(35*he^2),36/(35*he^3),18/(35*he^2);... 
    72/(35*he^4),-36/(35*he^3),72/(35*he^4),36/(35*he^3);36/(35*he^3),-

18/(35*he^2),36/(35*he^3),18/(35*he^2)]; 
K9=[108/(7*he^4),-12/(7*he^3),108/(7*he^4),12/(7*he^3);-

144/(35*he^3),16/(35*he^2),-12/(7*he^3),-16/(35*he^2);... 
    -108/(7*he^4),12/(7*he^3),-108/(7*he^4),-12/(7*he^3);-

12/(7*he^3),16/(35*he^2),-144/(35*he^3),-16/(35*he^2)]; 

  

  

  
num_node=length(x); 
num_element=num_node-1; 

  
K1_global=zeros(2*num_node,2*num_node); 
K2_global=zeros(2*num_node,2*num_node); 
K3_global=zeros(2*num_node,2*num_node); 
K4_global=zeros(2*num_node,2*num_node); 
K5_global=zeros(2*num_node,2*num_node); 
K6_global=zeros(2*num_node,2*num_node); 
M_global=zeros(2*num_node,2*num_node); 

  
% Time domain discretization 

  
alpha=1/2; 
gama=1/2; 

  
t=0:0.001:1; 

  
del_t=t(2)-t(1); 

  
c1=gama*(del_t^2)/2; 
c2=(1-gama)*(del_t^2)/2; 
c3=(2*alpha)/(gama*del_t); 
c4=((2*alpha)/(gama))-1; 
c5=(((1*alpha)/(gama))-1)*del_t; 

  
U=zeros((2*num_node),length(t)); 
U1=zeros((2*num_node),length(t)); 
U2=zeros((2*num_node),length(t)); 
A=zeros((2*num_node),length(t)); 
B=zeros((2*num_node),length(t)); 

  
for i=1:1:(2*num_node) 
        if rem(i,2)==0 
            U(i,1)=-(pi/(2*l))*sin((pi/(2*l))*x((i/2))); 
        else 
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            U(i,1)=cos((pi/(2*l))*x(((i+1)/2)))-1; 
        end 
end 
temp1=0; 

  

  
for j=2:1:length(t)               
for i=1:1:(num_element) 
    if x(i)==0.05 
        k1=EI(i+1)*K1; 
        k2=EI(i+1)*K2; 
        k3=EI(i+1)*K3; 
        k4=EI(i+1)*K4; 
        k5=EI(i+1)*K5; 
        k6=EI(i+1)*K6; 
        k7=EI(i+1)*K7; 
        k8=EI(i+1)*K8; 
        k9=EI(i+1)*K9; 
        m=pA(i+1)*M; 
    else 
        k1=EI(i)*K1; 
        k2=EI(i)*K2; 
        k3=EI(i)*K3; 
        k4=EI(i)*K4; 
        k5=EI(i)*K5; 
        k6=EI(i)*K6; 
        k7=EI(i)*K7; 
        k8=EI(i)*K8; 
        k9=EI(i)*K9; 
        m=pA(i)*M; 
    end     
    for p=1:1:4 
        for q=1:1:4 
            K1_global(p+2*i-2,q+2*i-2)=K1_global(p+2*i-2,q+2*i-2)+k1(p,q); 
            K2_global(p+2*i-2,q+2*i-2)=K2_global(p+2*i-2,q+2*i-2)+k2(p,q); 
            if q==1 
                  K3_global(p+2*i-2,q+2*i-2)=K3_global(p+2*i-2,q+2*i-

2)+(k3(p,q)+k6(p,q))*U(1+2*i-2+1,j-1); 
            elseif q==2 
                  K3_global(p+2*i-2,q+2*i-2)=K3_global(p+2*i-2,q+2*i-

2)+(k3(p,q)+k6(p,q))*U(1+2*i-2+2,j-1); 
            elseif q==3 
                  K3_global(p+2*i-2,q+2*i-2)=K3_global(p+2*i-2,q+2*i-

2)+(k3(p,q)+k6(p,q))*U(1+2*i-2+3,j-1); 
            else 
                  K3_global(p+2*i-2,q+2*i-2)=K3_global(p+2*i-2,q+2*i-

2)+(k3(p,q)+k6(p,q))*U(1+2*i-2,j-1); 
            end 
            if q==1 
                  K4_global(p+2*i-2,q+2*i-2)=K4_global(p+2*i-2,q+2*i-

2)+(k4(p,q)+k7(p,q))*U(1+2*i-2+2,j-1); 
            elseif q==2 
                  K4_global(p+2*i-2,q+2*i-2)=K4_global(p+2*i-2,q+2*i-

2)+(k4(p,q)+k7(p,q))*U(1+2*i-2+3,j-1); 
            elseif q==3 
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                  K4_global(p+2*i-2,q+2*i-2)=K4_global(p+2*i-2,q+2*i-

2)+(k4(p,q)+k7(p,q))*U(1+2*i-2,j-1); 
            else 
                  K4_global(p+2*i-2,q+2*i-2)=K4_global(p+2*i-2,q+2*i-

2)+(k4(p,q)+k7(p,q))*U(1+2*i-2+1,j-1); 
            end  
            if q==1 
                  K5_global(p+2*i-2,q+2*i-2)=K5_global(p+2*i-2,q+2*i-

2)+(k5(p,q)+k8(p,q))*U(1+2*i-2+3,j-1); 
            elseif q==2 
                  K5_global(p+2*i-2,q+2*i-2)=K5_global(p+2*i-2,q+2*i-

2)+(k5(p,q)+k8(p,q))*U(1+2*i-2,j-1); 
            elseif q==3 
                  K5_global(p+2*i-2,q+2*i-2)=K5_global(p+2*i-2,q+2*i-

2)+(k5(p,q)+k8(p,q))*U(1+2*i-2+1,j-1); 
            else 
                  K5_global(p+2*i-2,q+2*i-2)=K5_global(p+2*i-2,q+2*i-

2)+(k5(p,q)+k8(p,q))*U(1+2*i-2+2,j-1); 
            end 
            if q==1 
                  K6_global(p+2*i-2,q+2*i-2)=K6_global(p+2*i-2,q+2*i-

2)+(k9(p,q))*U(1+2*i-2+1,j-1)*U(1+2*i-2+2,j-1); 
            elseif q==2 
                  K6_global(p+2*i-2,q+2*i-2)=K6_global(p+2*i-2,q+2*i-

2)+(k9(p,q))*U(1+2*i-2+2,j-1)*U(1+2*i-2+3,j-1); 
            elseif q==3 
                  K6_global(p+2*i-2,q+2*i-2)=K6_global(p+2*i-2,q+2*i-

2)+(k9(p,q))*U(1+2*i-2+3,j-1)*U(1+2*i-2,j-1); 
            else 
                  K6_global(p+2*i-2,q+2*i-2)=K6_global(p+2*i-2,q+2*i-

2)+(k9(p,q))*U(1+2*i-2,j-1)*U(1+2*i-2+1,j-1); 
            end 
            M_global(p+2*i-2,q+2*i-2)=M_global(p+2*i-2,q+2*i-2)+m(p,q); 
        end 
    end 

  
    for k=1:1:100 
        for pq=1:1:(2*num_node) 
            for r=1:1:(2*num_node) 
        

A(pq,j)=A(pq,j)+(M_global(pq,r)+c1*(K1_global(pq,r)+K6_global(pq,r)))*U(r,j)+

c1*K2_global(pq,r)*(U(r,j).^3)+c1*(K3_global(pq,r)+K4_global(pq,r)+K5_global(

pq,r))*(U(r,j).^2)-M_global(pq,r)*(U(r,j-1)+del_t*U1(r,j-1)+c2*U2(r,j-1)); 
        if pq==r 
        

B(pq,j)=B(pq,j)+3*c1*K2_global(pq,r)*(U(r,j).^2)+(M_global(pq,r)+c1*(K1_globa

l(pq,r)+K6_global(pq,r)))+2*c1*(K3_global(pq,r)+K4_global(pq,r)+K5_global(pq,

r))*(U(r,j)); 
        else 
        

B(pq,j)=B(pq,j)+c1*K2_global(pq,r)*(U(r,j).^3)+(M_global(pq,r)+c1*(K1_global(

pq,r)+K6_global(pq,r)))*U(r,j)+c1*(K3_global(pq,r)+K4_global(pq,r)+K5_global(

pq,r))*(U(r,j).^2); 
        end 
            end 
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        end 
        for n=3:1:(2*num_node) 
        if abs(A(n,j))<0.00000000001 
            temp1=1; 
        else 
            for mn=3:1:(2*num_node) 
                U(mn,j)=U(mn,j)-A(mn,j)/B(mn,j); 
            end 
            U(1,j)=0; 
            U(2,j)=0; 
            temp1=0; 
            break 
        end   
        end 
        for s=1:1:(2*num_node) 
        U2(s,j)=(1/c1)*(U(s,j)-U(s,j-1))-(1/c1)*del_t*U1(s,j-1)-((1/gama)-

1)*U2(s,j-1); 
        U1(s,j)=U1(s,j-1)+(1-alpha)*del_t*U2(s,j-1)+alpha*del_t*U2(s,j); 
        end 

  
        if temp1==1 
            break 
        end 
%             k=k+1; 

  

          
    end 
%     for s=1:1:(2*num_node-2) 
%         U2(s,j)=(1/c1)*(U(s,j)-U(s,j-1))-(1/c1)*del_t*U1(s,j-1)-((1/gama)-

1)*U2(s,j-1); 
%         U1(s,j)=U1(s,j-1)+(1-alpha)*del_t*U2(s,j-1)+alpha*del_t*U2(s,j); 
%     end 
end 
end 
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