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ABSTRACT

The broadcast domination problem is a variant of the classical minimum dominating set

problem in which a transmitter of powerpat vertexv is capable of dominating (broadcasting

to) all vertices within distancep from v. Our goal is to assign a broadcast powerf (v) to

every vertexv in a graph such that
∑

v∈V f (v) is minimized, and such that every vertexu with

f (u) = 0 is within distancef (v) of some vertexv with f (v) > 0. The problem is solvable

in polynomial time on a general graph [15], and Blair et al. [6] gave anO(n2) algorithm

for trees. In this paper, we provide anO(n) algorithm for trees. Our algorithm is notable

due to the fact that it makes decisions for each vertexv based on “non-local” information

from vertices far away fromv, whereas almost all other linear-time algorithms for trees only

make use of local information.
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Chapter 1

Introduction

Many variants of domination and covering problems in graphs have been studied over

the years, and as a rule of thumb, most of these tend to be NP-hard. A remarkable exception

is thebroadcast domination problem[11, 12], in which a transmitter of powerp at some

vertexv is capable of dominating (i.e., broadcasting to) any vertex within distancep from

v. The goal of the problem is to assign a broadcast powerf (v) to every vertexv in a graph,

at minimum total cost
∑

v∈V f (v), so that every vertexu with f (u) = 0 is within distance

f (v) of some vertexv with f (v) > 0 (i.e., u can hear the broadcast ofv). As shown by

Heggernes and Lokshtanov [15], this problem is solvable in polynomial time on a general

graph withn vertices. Their algorithm runs inO(n6) time, although much faster algorithms

have been constructed for special types of graphs. Blair et al. [6] give anO(n3) algorithm

for interval graphs1, an O(nr4) = O(n5) algorithm for series-parallel graphs with radius

r = rad(G), and anO(nr) = O(n2) algorithm for trees. One can also solve the minimum

broadcast domination problem in a tree using a “primal-dual” method [13, 16, 18], although

a straightforward implementation of this approach requiresO(n3) time. In this paper, we

focus on the broadcast domination problem in a tree, and devise anO(n) algorithm.

The existence of a new linear-time algorithm for trees is typically not so interesting

to the algorithmic community, since hundreds of such algorithms are known. The vast

majority of these algorithms can even be generated in a mechanical fashion using general-

purpose techniques for constructing dynamic programming algorithms on trees and graphs

of bounded treewidth — for example, “table building” approaches [5, 19], or by express-

1A simple reformulation of the dynamic programming approach used in [6] improves the running time for
interval graphs toO(n2).



ing a problem using monadic second order logic [1, 8, 9, 10]. The broadcast domination

problem, however, seems to be one of the rare problems that does not fit into any of these

methodologies, primarily because a dynamic programming algorithm for this problem must

make decisions based on “non-local” information. Whereas for many problems (e.g., mini-

mum dominating set, minimum vertex cover, minimum maximal irredundant set, etc.) one

can solve subproblems for a particular vertexv based solely on subproblem solutions forv’s

children or immediate descendants, the broadcast domination problem requires information

from much larger distances in order to determine the optimal amount of power to allocate

to a transmitter at vertexv. Accordingly, in order to achieve a linear running time, our

algorithm must incorporate several novel and sophisticated techniques.
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Chapter 2

Preliminaries

Consider a treeT = (V,E) with n = |V| vertices. Letdist(u, v) denote the distance

between verticesu andv in T, let diam(T) = max{dist(u, v) : u, v ∈ V} be the diameter of

T, and letB(v, r) = {u : dist(u, v) ≤ r} denote the ball of radiusr aroundv. A function

f : V → {0,1,2, . . . ,diam(T)} is called abroadcast, where a vertexv with f (v) > 0

is interpreted as a transmitter of powerf (v), whose transmission reaches every vertex in

B(v, f (v)). A broadcastf is dominatingif every vertexu with f (u) = 0 hears the broadcast

of at least one other vertex, and it isefficient if every vertexu with f (u) = 0 hears the

broadcast from exactly one other vertex. For an efficient dominating broadcastf , we define

its ball graph B( f ) as the graph obtained by contracting the vertices in every ballB(v, f (v))

for f (v) > 0 down to a single vertex.

Theminimum-cost broadcast domination probleminvolves finding a dominating broad-

cast f that minimizescost( f ) =
∑

v∈V f (v). One can certainly conceive of more elaborate

cost functions to minimize as an objective. For example a more realistic cost for building

a transmitter atv might have the formcf ixed + cpower( f (v)), wherecf ixed is a fixed one-

time cost andcpower is an increasing function of the broadcast power (both of which may

conceivably depend onv). A prototypical application in this setting would be installing a

minimum-cost collection of facilities in a graph, where each facility involves some fixed

cost for its initial installation plus a variable cost that depends on the size of the facility

(a larger facility being able to service a larger geographic area). Many other applications

are conceivable; any problem where one wishes to cover a graph with variable-sized “ball-

shaped” regions (larger regions being more expensive to install than smaller regions) can be

modeled as a broadcast domination problem. For consistency with the existing literature,

we focus in this paper on the simpler objective of minimizing
∑

v∈V f (v). In our conclud-

ing remarks in Section6, we discuss the extension of our results to more complicated cost



functions.

The broadcast domination problem was first introduced by Erwin [12] and subsequently

studied by Horton et al. [17], Blair et al. [6], and Dunbar et al. [11] before its complexity

was finally resolved in a breakthrough paper by Heggernes and Lokshtanov [15], who gave a

polynomial time algorithm for broadcast domination on a general graph. This result is quite

surprising since, anecdotally, most domination and covering problems on general graphs

tend to be NP-hard. The algorithm of [15] depends highly on two important structural

properties of optimal dominating broadcasts:

Lemma 1 [11] For any graphG, one can find an optimal dominating broadcast ofG that is

efficient.

Lemma 2 [15] For any graphG, one can find an optimal dominating broadcastf such that

(i) f is efficient and (ii) every vertex inB( f ) has maximum degree 2.

Corollary 3 For any treeT, one can find an optimal dominating broadcastf such that (i)

f is efficient, and (ii)B( f ) is a path.

A dominating broadcast that uses a single transmitter at the center ofT of powerrad(T)

is called aradial broadcast. It is an interesting open question to characterize the class of

trees for which an optimal dominating broadcast is radial. Since one can easily compute an

optimal radial broadcast in a tree in linear time, we henceforth assume thatT has an optimal

efficient dominating broadcastf in which B( f ) is a path with at least two vertices. Once

we assign a root toT, this orientsB( f ) so that we can speak of one ball inf being “above”

or “below” another ball (i.e., ballB1 is above ballB2 if B1 contains a vertex of lower depth

than all the vertices inB2). Every ball except the one containing the root will have exactly

one neighboring ball above it and at most one below it.

The overdominationof vertex v in a non-zero broadcastf is defined asdomf (v) =

max{ f (u) − dist(u, v) : f (u) > 0}, and represents the excess power available atv from its

strongest nearby transmitter. Ifdomf (v) > 0, then we sayv is overdominated. Note thatf

is dominating if and only ifdomf (v) ≥ 0 for all v.

4



2.1 Precomputation on a Rooted Tree

Our algorithm will rootT at two different vertices over the course of its operation, and

each timeT is rooted it spendsO(n) time performing some useful precomputation. We first

compute (in linear time) the depthd(v) and heighth(v) of every vertexv, where the depth

of the root is zero and the height of a leaf is zero. For simplicity of notation, we writed(v)

andh(v) rather thandr (v) andhr (v) wherer is the root, with the understanding thatd(v) and

h(v) are relative to the current tree root (these quantities and any others dependent on the

root are recomputed after the single root change).

Let π(v) denote the parent ofv andπk(v) denote thekth level ancestor ofv — that is, the

ancestor ofv of depthd(v) − k. Using a data structure initially due to Berkman and Vishkin

[4] and then substantially simplified by Bender and Farach-Colton [3], we can compute

πk(v) in only O(1) time for anyk andv, after initially expendingO(n) preprocessing time

and space. LetLCA(u, v) denote the lowest common ancestor ofu and v, the vertex of

highest depth in the tree that is an ancestor of bothu andv. Otherwise stated, ifpu andpv

are the respective paths from the root down tou andv, thenLCA(u, v) is the deepest vertex

in common betweenpu and pv. Using a data structure initially due to Harel and Tarjan

[14] and again substantially simplified by Bender and Farach-Colton [2], we can compute

LCA(u, v) in only O(1) time for anyu andv, after initially expendingO(n) preprocessing

time and space.

As a further preprocessing step, we greedily partitionT into vertex-disjoint paths as fol-

lows. Initially, inO(n) processing time we compute for each vertexva pointer todeepest(v),

a leaf of maximum depth inv’s subtree. This is done recursively:deepest(v) = v if v is a

leaf, otherwisedeepest(v) = deepest(u) whereu is a child ofv with maximum heighth(u).

Next, we take the rooted path from the rootr down todeepest(r) and remove the vertices

and edges along this path fromT. This potentially splitsT into several disjoint rooted sub-

trees, which are themselves then decomposed into vertex-disjoint rooted paths in the same

fashion. The entire process takesO(n) time if implemented appropriately. For each vertex

v, we denote byPv the path in our decomposition containingv. In order to facilitate cer-

tain future operations along these paths, we store each path in an array, and we maintain a

5



pointer from each vertexv to the arrayPv containingv. Note thatv also knows its index

within Pv, as this can be computed in constant time by taking the difference betweend(v)

and the depth of root ofPv.

Finally, we compute for each vertexv its second heighth2(v) and third heighth3(v),

whereh2(v) is defined as the maximum value of 1+ h(u) over all of v’s childrenu < Pv.

Similarly, h3(v) is the maximum of 1+ h(u) over allv’s childrenu < Pv, excluding the child

used to defineh2(v). In English,h2(v) is the length of a deepest path descending fromv

that branches off Pv at v, andh3(v) is the length of a second-deepest such path. In order to

locate these paths efficiently, we maintain a pointer fromv to c1(v) (the child ofv on Pv),

c2(v) (the child ofv that definesh2(v)), andc3(v) (the child ofv that definesh3(v)). We set

h3(v) = 0 if v has fewer than 3 children, andh2(v) = 0 if v has only 1 child. Implemented

appropriately, all of this information takesO(n) time to compute.

6



Chapter 3

The High-Level Algorithm

In a treeT with root r, we say that a broadcastf is proper if (i) f is dominating and

efficient, (ii) B( f ) is a path, (iii) the ball containingr is an endpoint ofB( f ), and (iv) r is

not overdominated. Letcostr [v] denote the optimal cost of a proper broadcast for just the

subtree rooted atv. If such a proper broadcast does not exist (for example, ifv is a leaf),

we setcostr [v] = +∞. The bulk of our algorithm is focused on computingcostr [v] in O(1)

amortized time for eachv ∈ V.

If f satisfies only conditions (i) and (ii) above, we say it issemi-proper. Due to Lemmas

1 and2, every tree has an optimal broadcast that is semi-proper. Moreover, since we are

assuming thatT is optimally dominated by some efficientnon-radialbroadcastf ∗, we can

decomposef ∗ into a union of two proper sub-broadcasts as follows. We first compute a

diameterD of T in linear time, whose endpoints we denote bya andb. Next, we rootT

at a and computecosta[v] for everyv in O(n) time, and then we rootT at b and compute

costb[v] for everyv in O(n) time. Sincef ∗ is not radial, there must be some edgeuv ∈ D

that crosses the boundary between two balls inf ∗. By examining all edges onD, we are

guaranteed to find such an edge, from which we can compute

cost( f ∗) = min
uv∈D

dist(a,u)<dist(a,v)

{costa[v] + costb[u]}. (3.1)

Therefore, to computecost( f ∗) in O(n) time, all we need is anO(n) procedure for com-

puting costr [v] for all verticesv in a rooted tree. By restricting our focus only to proper

broadcasts, we simplify this task quite a bit. We can assume when computingcostr [v] that

v is dominated by the broadcast emanating from a single transmittert with f (t) = dist(v, t),

whereB(t, f (t)) has at most one neighboring ball below it (whereas in a semi-proper so-

lution we would need to have considered the added possibility of two neighboring balls



beneathB(t, f (t))). Let us now distinguish two important cases: we say thatv is externally

dominatedby a transmittert if f (t) ≥ h(t). In this case, we callt an externaltransmit-

ter, since its transmission reaches all the way to the bottom of its own subtree. Ifv is not

externally dominated, we say it isinternally dominatedby an internal transmittert with

f (t) < h(t). We defineecostr [v] as the optimal cost of a proper broadcast that dominates

only v’s subtree, such thatv is externally dominated, and we defineicostr [v] similarly for the

internal case (if no such broadcast exists, then we setecostr [v] = +∞ or icostr [v] = +∞).

During a single postorder scan ofT, we will compute bothecostr [v] and icostr [v] for

every vertexv and then setcostr [v] = min(ecostr [v], icostr [v]). In the next two chapters, we

show how to computeecost[v] and icost[v] each inO(1) amortized time per vertex (since

the root is fixed for these computations, we will drop the subscriptr from our notation).

Our algorithm can be construed as a dynamic programming algorithm, and as with

most dynamic programming algorithms we focus our exposition on computing the cost of

an optimal solutionf ∗, rather than the structure of this solution. If structure is desired, it is

relatively easy to augment our algorithm to computef ∗(v) for every vertexv.

8



Chapter 4

The External Case

We call a pair (t, p) where f (t) = p a configurationthat describes a potential external

transmitter. LetN(t, p) = {v : dist(t, v) = p+ 1}\{πp+1(t)} denote the set of all neighboring

vertices below the ballB(t, p). We call the configuration (t, p) valid if and only if p ∈

{h(t),h(t) + 1}, p ≤ d(t), and |N(t, p)| ≤ 1. Invalid configurations can be safely ignored

for the external case. Ifp < h(t) thent cannot be an external transmitter. Ifp ≥ h(t) + 2,

we could movet to π(t) and decreasep by one to obtain a better dominating broadcast. If

p > d(t), thenB(t, p) would overdominate the root, so the resulting broadcast would not be

proper. If|N(t, p)| > 1, then the ballB(t, p) would have at least two neighboring balls below

it, so the resulting broadcast would not be proper. In a moment, we will describe a method

for testing whether a configuration (t, p) is valid in onlyO(1) worst-case time.

The key idea behind the external case is now the following:

Lemma 4 If a configuration (t, p) is valid, then it is only relevant for the computation of

ecost[v] for the single vertexv = πp(t).

Proof. The vertexv = πp(t) is the only one satisfying the properties (i)B(t, p) is contained

in v’s subtree, and (ii)dist(v, t) = p, sov is dominated but not overdominated byt. �

As a preprocessing step after rootingT, we spendO(n) time iterating over all 2n trans-

mitter configurations (t, p) with p ∈ {h(t),h(t) + 1}. For each such configuration that is

valid, we add the pair (t, p) to a linked listLv attached tov = πp(t). Afterwards, during the

main algorithm we can computeecost[v] for any vertexv by minimizing over the possible

choices inLv:

ecost[v] = min
(t,p)∈Lv

p+
∑

u∈N(t,p)

cost[u]

 . (4.1)

Note thatcost[u] will already have been computed by the time we computeecost[v], since
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Figure 4.1: Searching for vertices inN(t, p).

the sole vertex (if any) inN(t, p) belongs tov’s subtree. Since|N(t, p)| ≤ 1, evaluating the

formula above takesO(|Lv|) time for a particular vertexv, andO(n) time in total to compute

ecost[v] for every vertexv.

4.1 Checking a Configuration for Validity

Consider a particular configuration (t, p) with p ∈ {h(t),h(t) + 1}. In order to check (t, p)

for validity, it is easy to check whetherp > d(t), so we assume thatp ≤ d(t) and focus on

the more challenging question of determining whether or not|N(t, p)| ≤ 1. Let v = πp(t)

denote the unique vertex for which (t, p) is relevant for computingecost[v]. Sincep ≥ h(t),

the ballB(t, p) engulfs the entire subtree rooted att and so we can restrict our search for

vertices inN(t, p) to those vertices inv’s subtree that are not int’s subtree. Consider now

two cases:

1. t ∈ Pv. Recall that the deepest path descending fromv, Pv, is stored in an array. Let

Pv[v . . . π(t)] denote the segment of this array corresponding to the path fromv down

to π(t). In order to simplify our exposition, we are abusing notation slightly by using

10



Check-Validity (t, p):
1. If p > d(t), Then Stop. (t, p) is invalid.
2. v = πp(t)
3. If t ∈ Pv, Then
4. Findx ∈ Pv[v . . . π(t)] maximizingα1(x) (α1(x) = h2(x) − d(y))
5. If α1(x) ≤ p− d(t), Then Stop. (t, p) is valid. (sinceN(t, p) = ∅)
6. k = α1(x) − d(t) − (p+ 1) ; w = πk(deepest(c2(x)))
7. If h3(x) + d(t) − d(x) > p
8. or max{α1(y) : y ∈ Pv[v . . . π(x)]} > p− d(t)
9. or max{α1(y) : y ∈ Pv[c1(x) . . . π(t)]} > p− d(t)

10. or max{α2(y) : y ∈ Pw[c2(x) . . . π(w)]} > p− d(t) + 2d(x), (α2(y) = h2(y) + d(y))
11. Then Stop. (t, p) is invalid. (since|N(t, p)| > 1)
12. (t, p) is valid, andN(t, p) = {w}.
13. Else
14. k = h(t) + d(t) − d(z) − 1 ; z′ = πk(deepest(t))
15. If t < Pz′ , Then Stop. (t, p) is invalid. (since|N(t, p)| > 1)
16. If (z′ = c2(z) And h3(z) + d(t) − d(z) > p)
17. or (z′ , c2(z) And h2(z) + d(t) − d(z) > p)
18. or max{α1(x) : x ∈ Pv[v . . . π(z)]} > p− d(t)
19. or max{α2(x) : x ∈ Pv[c1(v) . . . π(w)]} > p− d(t) + 2d(z)
20. or max{α1(x) : x ∈ Pv′ [v′ . . . π(t)]} > p− d(t)
21. Then Stop. (t, p) is invalid. (since|N(t, p)| > 1)
22. (t, p) is valid, andN(t, p) = {w}.
23. Endif

Algorithm 4.1: Checking if (t, p) is valid inO(1) time.

vertices as array indices; in an actual implementation, we would need to figure the

integer index corresponding to a vertexv based ond(v) and the depth of the highest

vertex onPv. Any vertices inN(t, p) can be located by checking for the presence of

paths branching off Pv[v . . . π(t)] that are sufficiently long to escape fromB(t, p), as

shown in Figure4.1(a). We first try to locate one such path, branching off at a vertex

x ∈ Pv[v . . . π(t)], and crossing out ofB(t, p) along the edge (w, π(w)), as shown in

the figure. The vertexw will be our first entry inN(t, p). If our search forw succeeds,

then we launch another search for a second “escaping path” (not shown in the figure).

If a second such path exists, then (t, p) is not valid.

In order to findx andw in O(1) time, we employ a data structure for range maximum

queries (RMQs). The RMQ problem involves preprocessing an arrayA[1 . . . n] so

that subsequent queries for the maximum element in a subarrayA[i . . . j] can be an-

swered quickly. By building a Cartesian tree fromA in linear time, we can translate
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an instance of the RMQ problem into an equivalent instance of the LCA problem

(see [2]), so by using fast LCA data structures [14, 2] one can answer RMQ queries

in O(1) time after initially expendingO(n) preprocessing time and space. In our case,

we assign each vertexv the valueα1(v) = h2(v) − d(v) and preprocess each of the

arraysPv into which we have decomposed our tree. This takesO(n) total time since

these arrays collectively haven elements. Returning to the problem of finding an

x ∈ Pv[v . . . π(t)] from which a long path branches off, note that the second height

h2(x) gives the length of the longest path branching off Pv at x. Therefore, all we

need to do is locate a vertexx ∈ Pv[v . . . π(t)] for which h2(x) + d(t) − d(x) > p.

We can rewrite this condition asα1(x) > p− d(t), so by performing an RMQ for the

x ∈ Pv[v . . . π(t)] maximizingα1(x) and comparing againstp − d(t), we can locate

a suitablex (if it exists) in O(1) time. If no suchx exists, (t, p) is valid and we are

finished. Otherwise, we can findw in O(1) time, sincew = πk(deepest(c2(x))), where

k = α1(x) + d(t) − (p + 1). The final check for a second long branching path (that

would render (t, p) invalid) requires 3 more RMQs for the subpathsPv[v . . . π(x)],

Pv[c1(x) . . . π(t)], andPw[c2(x) . . . π(w)], in addition to a check based onh3(x) to see

if such a path branches off x. Complete details are given in pseudocode in Algorithm

4.1.

2. t < Pv. As shown in Figure4.1(b), t resides on a path that branches off Pv at

the vertexz = LCA(deepest(v), t). Note thatB(t, p) cannot dominate all the way

down todeepest(v), so the vertexw ∈ N(t, p) always exists. If it were the case that

deepest(v) ∈ B(t, p), then we would havep ≥ h(z)+1 ≥ h(t)+2, which contradicts our

assumption thatp ∈ {h(t),h(t) + 1}. In O(1) time, we can locatew = πk(deepest(v)),

wherek = h(z) + d(t) − d(z) − p. Note thatdist(v, z) = dist(π(w), z). To ensure that

(t, p) is valid, we now only need to check whether or notN(t, p) contains any vertices

other thanw. This is done as in the previous case using a small number of RMQs,

the details of which are given in pseudocode in Algorithm4.1. The only subtle ob-

servation one needs to make is that ift < Pz′ (with z′ defined as in the pseudocode in

Algorithm 4.1), then (t, p) is not valid because this implies thatPz′ would contribute a

12



second vertex toN(t, p) as it descends downward fromB(t, p) (by the same argument

we used to show thatPv contributes the vertexw to N(t, p)).
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Chapter 5

The Internal Case

In the external case, we have the advantage of knowing what power to assign to a

transmitter. This no longer holds in the internal case, but fortunately we can rely on another

useful structural property instead. As we see in the following lemma, the internal case

reduces to a somewhat complicated one-dimensional dynamic programming problem along

the paths in our deepest path decomposition.

Lemma 5 Consider the computation oficost[v] for some vertexv. If icost[v] , +∞, then

we can writeicost[v] = f (t) + cost[w], wheret ∈ Pv is an internal transmitter andw ∈ Pv is

the unique vertex inN(t, f (t)).

Proof. Assume thaticost[v] , +∞, and consider an optimal proper broadcastf that dom-

inates onlyv’s subtree, such thatv is internally dominated. Lett be the unique transmitter

responsible for dominatingv. Since f is proper we have|N(t, f (t))| ≤ 1, and sincet is an

internal transmitter we also have|N(t, f (t))| ≥ 1, in particular sincePv descends downward

out of B(t, f (t)). Let w denote the unique vertex inN(t, f (t)), contributed byPv (see Figure

5.1(a) for a picture of the arrangement ofv, t, andw). If t < Pv, then sincet is not an

external transmitter we know thatf (t) < h(t), from which we infer thatPt would contribute

another element toN(t, f (t)) (distinct fromw) as it descends downward out ofB(t, f (t)),

again contradicting the fact that|N(t, f (t))| = 1. �

Note that if we are givenv and a particularw (as defined by the preceding lemma), we

can computef (t) = (d(w) − d(v) − 1)/2 andt = π f (t)+1(w). Similarly, we can compute

w given t, albeit with a slightly more cumbersome formula. Sinceicost[v] is completely

determined once we knoww, we can obtainicost[v] by minimizing over different choices



for w belowv on Pv:

icost[v] = min
w∈Fv

{
d(w) − d(v) − 1

2
+ cost[w]

}
(5.1)

= −(d(v) + 1)/2+ min
w∈Fv

{d(w)/2+ cost[w]} (5.2)

= −(d(v) + 1)/2+ min
w∈Fv

{val(w)} (5.3)

where we defineval(w) = d(w)/2+ cost[w], and whereFv ⊂ Pv denotes the set offeasible

choicesfor w when computingicost[v] according to (5.3). In order to characterize the set

Fv, we first introduce some additional notation. LetBvw = B(t, f (t)), wheret and f (t) are

computed as above based onv andw. Note that for the ballBvw to exist at all, its radius

f (t) = (d(w) − d(v) − 1)/2 must be a positive integer, sod(w) must have different parity

from d(v), and alsow , c1(v). If Bvw exists, we also defineNvw = N(t, f (t)) to be its lower

neighbor set. We can now give a simple characterization forFv: w ∈ Fv if and only if (i) Bvw

exists, and (ii)Nvw = {w}. Condition (i) is easy to satisfy as long as we search forw among

the set of vertices belowc1(v) on Pv for which d(w) andd(v) differ in parity. Condition (ii)

is slightly more complicated. It disqualifies a vertexw if there is a sufficiently long path

that branches off Pv insideBvw and escapes fromBvw, contributing another lower neighbor

to Nvw in addition tow. We call such pathsoverhangs, and discuss their exact behavior in a

moment.

We are now ready to describe our algorithm for the internal case. At a high level, it

computesicost[v] using (5.3) for every vertexv during the same postorder scan ofT in

which we computeecost[v] andcost[v]. We can think of this computation a collection of

independent computations, one for each of the “deep paths” into which we have decom-

posedT. Along each such path, we are scanning upward and computingicost[v] for each

vertexv in sequence. We henceforth restrict our focus to just one such path.

A direct application of (5.3) would spend at leastO(n) time computingicost[v] for a

particularv. To improve this, we note that the minimization in (5.3) behaves in a very

“stable” fashion: the samew will achieve the minimum as long asFv does not change for

successive verticesv. In our case,Fv ∩ Fπ(v) = ∅ due to parity constraints, butFv and

Fπ(π(v)) are highly related. Using appropriate data structures, we will show how to compute
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Figure 5.1: Illustration of the downward and upward overhang conditions. In (a), the downward
overhang of lengthh2(x) branching off x permanently disqualifies theh2(x) vertices in its “shadow”
belowx on Pv from belonging toFv. In (b), the upward overhang froml (actually a downward path
that branches off and descends froml, which we visualize by stretching it out upward) prevents any
choice ofw belowl from belonging toFv. When our algorithm steps fromv toπ(v), we will “escape”
from this upward overhang and be constrained instead by the larger upward overhang branching off

next(l). The current stack of nested upward overhangs branching off l, next(l), and so on, forms
what we call thel-list.

icost[π(π(v))] in only O(1) amortized time after already having computedicost[v].

5.1 Overhang Conditions

Recall that we must haveNvw = {w} in order forw to belong toFv. That is, the ballBvw

can have onlyw itself as a lower neighbor, so any branch off Pv insideBvw must therefore

be completely contained withinBvw. The following twooverhang conditionsuse this fact

to restrictFv.

• The Downward Overhang Condition. For every vertexx ∈ Pv[v . . . deepest(v)],

none of theh2(x) vertices immediately belowx on Pv can belong toFv.

• The Upward Overhang Condition. For every vertexx ∈ Pv[v . . . deepest(v)], if

h2(x) > d(x) − d(v), then none of the vertices belowx on Pv can belong toFv.

Let us briefly try to develop an intuitive notion of these two conditions. An overhang

is a path branching off Pv[v . . .] that restricts the feasible setFv. Each such branching path
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plays the role of both a downward overhang and an upward overhang. As shown in Figure

5.1(a), consider taking the longest path branching off vertexx ∈ Pv[v . . .] (of lengthh2(x)),

and stretching this path out downward alongsidePv. According to the downward overhang

condition, all verticesw ∈ Pv in its “shadow” are disqualified from belonging to the feasible

setFv. Note also that these vertices are permanently disqualified since this same downward

overhang constraint will apply for successive verticesv as the algorithm continues scanning

upward alongPv. Consider now taking a similar path (for example, branching off vertex

l in Figure5.1(b)), and stretching it out upward alongsidePv. If this path extends as high

asv, then l satisfies the upward overhang condition and no vertex belowl can belong to

Fv. However, as opposed to downward overhang constraints, upward overhang constraints

are only temporary, since eventually we will “escape” from an upward overhang once we

finally step upward to a vertexv that is high enough alongPv. Upward overhangs form a

nesting structure (shown in the figure), where an escape from one upward overhang may

leave us constrained by a larger upward overhang that branches off Pv from an even deeper

vertex. In a moment we will introduce a data structure called thel-list for maintaining the

nested structure of these upward overhangs as our algorithm proceeds to scan upward along

Pv.

Lemma 6 For a givenv andw ∈ Pv, if Bvw exists, thenNvw = {w} (i.e.,w ∈ Fv) if and only

if w is not disqualified by the downward or upward overhang conditions.

Proof. Suppose thatw violates the downward overhang condition with respect to some

vertexx. As one can see in Figure5.1(a), a choice ofw from any of theh2(x) vertices below

x leads to a ballBvw with |Nvw| > 1, since the path branching off x would escape fromBvw

and contribute a second lower neighbor in addition tow. Now suppose thatw violates the

upward but not the downward overhang condition with respect tox, as illustrated in Figure

5.1(b). Here,w cannot be chosen from theh2(x) vertices immediately belowx, so let us

assume thatw has even lower depthd(w) > d(x) + h2(x). The transmitter at the center of

Bvw would then satisfyd(t) = d(w) − 1− p(w) > d(x), and so its transmission would travel

upward tox and then branch, reachingv before it reaches the end of the path branching

off x. Consequently, the path of heighth2(x) branching off x would escape fromBvw and
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contribute an extra lower neighbor toNvw. Finally, suppose thatNvw contains some vertex

z in addition tow, and letx = LCA(w, z) ∈ Pv. If d(x) ≥ d(t) for the transmittert of

Bvw on Pv, then we must haveh2(x) ≥ d(w) − d(x), sow violates the downward overhang

condition with respect tox. On the other hand, ifd(x) < d(t) then it must be the case that

h2(x) > d(x) − d(v), sow violates the upward overhang condition with respect tox. �

Using overhang conditions, we now have a means of characterizing the feasible set

Fv over which we are minimizing at each step of our algorithm. We now introduce some

simple data structures that allow us to keep track of relevant overhang constraints (and thus

maintainFv implicitly) over the course of the algorithm as it scans upward alongPv.

5.2 Managing Upward Overhangs: Thel-list

When computingFv for a particular vertexv, there might be several verticesx ∈ P[v . . .]

that qualify for the upward overhang condition. The highest of these alongPv is the most

interesting, since it provides the tightest bound on the feasible setFv. We call this vertexl,

since it provides a lower bound on the range of valid choices forw ∈ Fv that captures every

upward overhang constraint. As we move up the tree during our algorithm, every time we

encounter a vertexv from whichh2(v) > 0, this introduces a new upward overhang, and as

a result we must resetl to point tov. However, whenever this happens, we remember the

previous location ofl by first setting a pointernextl(v) = l. The resulting chain of pointers

forms a linked list that we call thel-list, shown in Figure5.1(b). The elements in thel-list

partition Pv[v . . .] into regions that we callsegments. The highest of these,Pv[v . . . l], is

called theactive segment, the next segment isPv[c1(l) . . . nextl(l)], and so on. Due to the

upward overhang condition, we know thatFv contains only vertices in the active segment.

As we see in Figure5.1(b), thel-list encodes a set of upward overhangs that is “nested”,

so we can rightfully think of thel-list as a stack. As we scan upward alongPv during the

course of the algorithm, we adjust thel-list by popping off any vertices from whose upward

overhangs we manage to “escape”. That is, at each vertexv, we check ifd(l)−d(v) > h2(l). If

so, we have “escaped” from the upward overhang branching off l, and so we accordingly pop

l off thel-list (settingl = nextl(l)) and enlarge the active segment. Since it is possible that we
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can escape from several overhangs in a single step, we may continue to pop entries off the

top of thel-list until we finally reach a vertexl that provides a valid upward overhang. It is

possible forl to scan all the way to the end of thel-list, in which case we setl to deepest(v)

since all ofPv[v . . . deepest(v)] should now be the active segment (l is also initialized to

deepest(v) at the very beginning of our scan upPv).

All updates to thel pointer requireO(1) amortized time per vertexv we examine, so

we now have a convenient and efficient way to track the exact set of verticesPv[v . . . l]

surviving the upward overhang condition.

5.3 Maintaining the Minimum: The m-lists

We maintain two more doubly linked lists embedded within the vertices of our current path

Pv, which we call them-lists (m for “minimum”), one of which is shown in Figure5.2(a).

An m-list contains a set of all vertices that could conceivably be the optimalw ∈ Fv used

for computingicost[·] of v or one of its ancestors according to (5.3). Since verticesv of odd

depth allow only for verticesw ∈ Fv of even depth and vice versa, we maintain twom-lists.

Theeven m-list contains only even-depth vertices and is used for computingicost[v] where

v has odd depth, and vice versa for theodd m-list. We maintain pointersmevenandmodd to

the highest vertices on the even and oddm-lists. When computingicost[v] for a particular

vertexv, we will sometimes speak of “the”m-list, by which we mean them-list having the

opposite parity ofd(v) (i.e., the one relevant for computingicost[v]). We usem to refer

generically to the top entry in this list (eithermevenor modd).

Consider the sequence ofval(x) values for verticesx along anm-list. For bothm-lists,

we maintain the invariant that this sequence will be monotonically increasing from top to

bottom within each segment of thel-list. In particular, this means the vertexw minimizing

(5.3) can be found by looking at the topmost vertex in them-list within the active segment of

the l-list — in other words,m. This allows us to computeicost[v] = −(d(v) + 1)/2+ val[m]

in O(1) time. If it so happens that there are no entries in them-list within the active segment

of the l-list (i.e., if d(m) > d(l) or if the m-list is completely empty), then we instead set

icost[v] = +∞.
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Figure 5.2: Illustrations of (a) anm-list (drawn with dotted links), and (b) the operation of splicing
together the portions of them-list belonging to the top two segments of thel-list. This event happens
wheneverv “escapes” from the current upward overhang froml (upward overhangs are emphasized
in the figure by stretching these paths upward). The otherm-list of different parity is not pictured,
but it would also be spliced in the same fashion. The boxed number shown at a vertexx is val(x).

Vertices are removed fromm-lists whenever it is clear that they are no longer relevant

choices forw for minimizing (5.3) for the currentv or any ancestor ofv on Pv that we

will encounter in the future. For example, when we reach a vertexv with h2(v) > 0, the

downward overhang fromv disqualifies all vertices up toh2(v) steps belowv from inclusion

in the currentFv and all futureFv’s. Therefore, as long asd(meven) ≤ v+ h2(v), we remove

mevenfrom the head of the evenm-list, and we do the same for the oddm-list. Since vertices

are never re-admitted to anm-list, we spend at mostO(1) time per vertex in total for all

m-list deletions. Finally, note that deletion of the top part of anym-list due to a downward

overhang preserves the invariant that them-lists are monotonically increasing from top to

bottom in eachl-list segment.

When our algorithm advances to some vertexv, we addv’s great-grandchild onPv,

g = c1(c1(c1(v))), as a new candidate on the top of them-list. Recall thatv andc1(c1(v)) are

not in Fv since they share the same depth parity asv, andc1(v) < Fv since thenBvw would
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not be defined (its radius would be zero). We therefore plan to introduceg as the new

topmost element on them-list. However, ifm andg are in the same segment of thel-list

(which we can easily check inO(1) time) andval[m] ≤ val[g], then we forgo addingg to

them-list, since from now on,mwill always be at least as good a candidate for minimizing

(5.3) wheneverg is a candidate. Any future deletion (say, due to downward overhang) that

removesm will also removesg, sinceg is abovem. Therefore, it is safe to omitg from

the m-list. Moreover, since we only add a new vertex to them-list if its value is lower

than the current topmost vertex, this preserves our invariant that them-list is monotonically

increasing from top to bottom within each segment.

The only remaining update to them-list we need to describe is aspliceoperation that

takes place any time we escape from an upward overhang. Recall that here the active

segment of thel-list is repeatedly merged with the segment immediately below it as we

remove vertices from the top of thel-list. Whenever two adjacent segmentss1 ands2 in the

l-list are merged, we need to splice together the monotonically increasing portions of both

the even and oddm-lists in s1 and ins2 to form one large monotonically increasing list over

s1∪ s2, as shown in Figure5.2(b). This is done as follows: starting from the top of anm-list

in s2 (the lower of the two segments), scan upward into thes1 and delete vertices from the

bottom of them-list in s1 until the twom-lists form a single monotonic chain. Due to the

same reasoning as above, these vertices are safe to delete since they are each “dominated”

by a more optimal vertex lower in the samel-list segment. Since deletions are permanent

and only contributeO(1) running time per vertex, the only operation we must treat with

some care in this case is that of finding the topmostm-list vertex in a segment. This is

done by maintaining bidirectional pointers from each vertexx in the l-list to the topmost

elements on the odd and evenm-lists within the segment belowx. With appropriate care,

these pointers require onlyO(1) time to update per vertexv that we visit.

This concludes the description of the algorithm for computingicost[v]. Its running time

is clearlyO(n) in total since we spendO(1) time per vertexv visited, plus an additionalO(1)

time per vertex to possibly remove it in the future from anm-list.
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Chapter 6

Extensions and Future Directions

Our algorithm easily generalizes (with no degradation in running time) to handle the

extended problem variant where there is a fixed cost for building each transmitter in addition

to a linear cost based on its power. This is possible because Lemmas1 and2 generalize

to this case, so the structure of an optimal solution can still be assumed to be a path of

disjoint balls. It is important, however, that the fixed cost must be independent of transmitter

location; otherwise, the lemmas fail to apply.

Since a concave functionf satisfiesf (x+y) ≤ f (x)+ f (y) for x, y ≥ 0, Lemmas1 and2

also generalize to the case where the cost of a transmitter at vertexv is of the formcf ixed+

cpower( f (v)), wherecf ixed is a fixed one-time cost andcpower is a concave function of the

broadcast power, and wherecf ixed andcpower do not depend onv (this also implies that the

algorithm of Heggernes and Lokshtanov [15] for broadcast domination of a general graph

extends automatically to this more sophisticated problem variant). Concave transmitter

costs are generally realistic, due to economies of scale. In our algorithm, the added difficulty

with concave transmitter costs is that in the internal case, the optimal vertex among the

elements in anm-list might move down the list monotonically over time, rather than staying

at the top of the list as it does now. However, we can still adapt our algorithm without any

running time penalty, if we incorporate additional logic that monitors and removes the top

element from anm-list in the active segment whenever it becomes sub-optimal.

Since they no longer satisfy Lemmas1 and 2, convex transmitter costs seem much

more difficult to accommodate in a highly-efficient fashion on trees (and for a general

graph, these make the problem NP-hard since the minimum dominating set problem is a

special case of this problem where the transmitter cost jumps from zero to infinity at power

level 2). A similarly-behaving problem (NP-hard on general graphs for the same reason) is

the distance-attenuated case where a transmitter gradually loses power according to some



decreasing function of transmission distance, and every vertex must hear at least some min-

imum amount of total transmission power (possibly from a combination of transmitters).

Other interesting variants include the problem variant with non-unit edge lengths, themulti-

covervariant where some nodes must hear multiple broadcasts for fault-tolerance purposes,

and the partial cover problem where we can leave certain vertices uncovered at a cost (one

can think of such a vertex as a zero-power transmitter in the fixed cost model). The partial

cover variant is particularly interesting as it satisfies both Lemmas1 and2, and yet still

seems perhaps difficult to solve in polynomial time on a general graph as well as in linear

time on a tree (it can be solved in polynomial time on a tree; see [13, 16, 18]).

As shown in [13, 16], the natural fractional relaxation of the broadcast domination

problem to a linear program always admits an integer-valued optimal solution, and so does

its dual. The dual problem of broadcast domination is actually interesting in its own right

and in its integer version does not appear to have been studied previously. Here our goal is

to select a maximum-cardinality subset of verticesS so that|S ∩ B(v, r)| ≤ r for all v ∈ V

andr ≥ 1. In other words, we would like to locate facilities throughout a graph subject to

a “density” constraint that prohibits too many facilities from being opened in any particular

radial region. One can solve this problem inO(n3) time in trees [13, 16], but it is not known

if one can do so in nearly-linear time (say, by adapting the result from this paper).

Blair and Horton [7] study the related problem ofbroadcast coveringin a graph, where

the goal is to find a broadcast that covers all the edges, rather than all the vertices of a graph.

This problem is much easier than the broadcast domination problem since in any graph one

can find an optimal broadcast cover that is radial, allowing for a simpleO(n) algorithm on

trees. For the broadcast domination problem, it remains a challenging open problem (even

in the case of trees) to characterize which inputs admit optimal radial solutions.
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