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ABSTRACT

The broadcast domination problem is a variant of the classical minimum dominating set
problem in which a transmitter of powerat vertexv is capable of dominating (broadcasting
to) all vertices within distance from v. Our goal is to assign a broadcast poviév) to
every vertew in a graph such thgt, ., f(v) is minimized, and such that every veriewith
f(u) = 0 is within distancef (v) of some vertex with f(v) > 0. The problem is solvable
in polynomial time on a general graphd], and Blair et al. §] gave anO(n?) algorithm
for trees. In this paper, we provide &{n) algorithm for trees. Our algorithm is notable
due to the fact that it makes decisions for each vevtbased on “non-local” information
from vertices far away frona, whereas almost all other linear-time algorithms for trees only

make use of local information.
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Chapter 1

Introduction

Many variants of domination and covering problems in graphs have been studied over
the years, and as a rule of thumb, most of these tend to be NP-hard. A remarkable exception
is the broadcast domination problefidl, 12], in which a transmitter of powep at some
vertexv is capable of dominating (i.e., broadcasting to) any vertex within distprioem
v. The goal of the problem is to assign a broadcast pd@rto every vertex/ in a graph,
at minimum total cosf ey f(v), so that every vertex with f(u) = O is within distance
f(v) of some vertex with f(v) > 0 (i.e., u can hear the broadcast @f. As shown by
Heggernes and Lokshtano{q], this problem is solvable in polynomial time on a general
graph withn vertices. Their algorithm runs i®(n®) time, although much faster algorithms
have been constructed for special types of graphs. Blair ejajiie anO(n®) algorithm
for interval graph, an O(nr*) = O(n°) algorithm for series-parallel graphs with radius
r = rad(G), and anO(nr) = O(n?) algorithm for trees. One can also solve the minimum
broadcast domination problem in a tree using a “primal-dual” meth8dll6, 18], although
a straightforward implementation of this approach requidés’) time. In this paper, we

focus on the broadcast domination problem in a tree, and devi&¢mmlgorithm.

The existence of a new linear-time algorithm for trees is typically not so interesting
to the algorithmic community, since hundreds of such algorithms are known. The vast
majority of these algorithms can even be generated in a mechanical fashion using general-
purpose techniques for constructing dynamic programming algorithms on trees and graphs

of bounded treewidth — for example, “table building” approacted §], or by express-

A simple reformulation of the dynamic programming approach usef]imfproves the running time for
interval graphs t@(1?).



ing a problem using monadic second order lodicq, 9, 10]. The broadcast domination
problem, however, seems to be one of the rare problems that does not fit into any of these
methodologies, primarily because a dynamic programming algorithm for this problem must
make decisions based on “non-local” information. Whereas for many problems (e.g., mini-
mum dominating set, minimum vertex cover, minimum maximal irredundant set, etc.) one
can solve subproblems for a particular vendased solely on subproblem solutionsyisr
children or immediate descendants, the broadcast domination problem requires information
from much larger distances in order to determine the optimal amount of power to allocate
to a transmitter at vertex. Accordingly, in order to achieve a linear running time, our

algorithm must incorporate several novel and sophisticated techniques.



Chapter 2

Preliminaries

Consider a tred = (V,E) with n = |V| vertices. Letdist(u,Vv) denote the distance
between vertices andv in T, letdiam(T) = maxXdist(u,v) : u,v € V} be the diameter of
T, and letB(v,r) = {u : dist(u,v) < r} denote the ball of radius aroundv. A function
f:V - {0,12...,diamT)} is called abroadcast where a vertex with f(v) > 0
is interpreted as a transmitter of powiE(w), whose transmission reaches every vertex in
B(v, f(v)). A broadcasff is dominatingif every vertexu with f(u) = 0 hears the broadcast
of at least one other vertex, and itegicientif every vertexu with f(u) = 0 hears the
broadcast from exactly one other vertex. For fiitient dominating broadca$t we define
its ball graph B f) as the graph obtained by contracting the vertices in evenBgalif (v))

for f(v) > 0 down to a single vertex.

Theminimum-cost broadcast domination problamwolves finding a dominating broad-
castf that minimizescos(f) = >,y f(V). One can certainly conceive of more elaborate
cost functions to minimize as an objective. For example a more realistic cost for building
a transmitter av might have the forntyixed + Cpower f(V)), Wherecyixeq is a fixed one-
time cost anctpower iS an increasing function of the broadcast power (both of which may
conceivably depend ow). A prototypical application in this setting would be installing a
minimum-cost collection of facilities in a graph, where each facility involves some fixed
cost for its initial installation plus a variable cost that depends on the size of the facility
(a larger facility being able to service a larger geographic area). Many other applications
are conceivable; any problem where one wishes to cover a graph with variable-sized “ball-
shaped” regions (larger regions being more expensive to install than smaller regions) can be
modeled as a broadcast domination problem. For consistency with the existing literature,
we focus in this paper on the simpler objective of minimizjg., f(v). In our conclud-

ing remarks in SectioB, we discuss the extension of our results to more complicated cost



functions.

The broadcast domination problem was first introduced by Eri#hgdnd subsequently
studied by Horton et al.1[7], Blair et al. [6], and Dunbar et al.][1] before its complexity
was finally resolved in a breakthrough paper by Heggernes and Lokshtespwho gave a
polynomial time algorithm for broadcast domination on a general graph. This result is quite
surprising since, anecdotally, most domination and covering problems on general graphs
tend to be NP-hard. The algorithm af depends highly on two important structural

properties of optimal dominating broadcasts:

Lemma 1 [11] For any graplG, one can find an optimal dominating broadcagBdhat is

efficient.

Lemma 2 [15] For any graplG, one can find an optimal dominating broadchasuch that

(i) f is efficient and (i) every vertex iB(f) has maximum degree 2.

Corollary 3 For any tre€l, one can find an optimal dominating broadcastuch that (i)

f is efficient, and (ii)B(f) is a path.

A dominating broadcast that uses a single transmitter at the cenftesfqfowerrad(T)
is called aradial broadcast. It is an interesting open question to characterize the class of
trees for which an optimal dominating broadcast is radial. Since one can easily compute an
optimal radial broadcast in a tree in linear time, we henceforth assume Hastan optimal
efficient dominating broadcagtin which B(f) is a path with at least two vertices. Once
we assign a root td, this orientsB(f) so that we can speak of one ballfirbeing “above”
or “below” another ball (i.e., balB; is above balB; if B; contains a vertex of lower depth
than all the vertices iBy). Every ball except the one containing the root will have exactly
one neighboring ball above it and at most one below it.

The overdominationof vertexv in a non-zero broadcadt is defined addonk(v) =
max f(u) — dist(u,v) : f(u) > 0}, and represents the excess power availablefadm its
strongest nearby transmitter.dbmy (v) > 0, then we say is overdominatedNote thatf

is dominating if and only itlom (v) > O for all v.



2.1 Precomputation on a Rooted Tree

Our algorithm will rootT at two diferent vertices over the course of its operation, and
each timeT is rooted it spend®(n) time performing some useful precomputation. We first
compute (in linear time) the depti{v) and heighth(v) of every vertexv, where the depth

of the root is zero and the height of a leaf is zero. For simplicity of notation, we d{ie
andh(v) rather thard, (v) andh, (v) wherer is the root, with the understanding ttd{t) and

h(v) are relative to the current tree root (these quantities and any others dependent on the

root are recomputed after the single root change).

Let 7(v) denote the parent efandny(v) denote thékth level ancestor of — that is, the
ancestor of/ of depthd(v) — k. Using a data structure initially due to Berkman and Vishkin
[4] and then substantially simplified by Bender and Farach-Col8nwe can compute
(V) in only O(1) time for anyk andv, after initially expendingd(n) preprocessing time
and space. LetCA(u,Vv) denote the lowest common ancestoruondv, the vertex of
highest depth in the tree that is an ancestor of lidindv. Otherwise stated, ip, and py
are the respective paths from the root dowm eindv, thenLCA(u, v) is the deepest vertex
in common betweerp, and py. Using a data structure initially due to Harel and Tarjan
[14] and again substantially simplified by Bender and Farach-CoRpmje can compute
LCA(u, V) in only O(1) time for anyu andyv, after initially expendingd(n) preprocessing
time and space.

As a further preprocessing step, we greedily partifidnto vertex-disjoint paths as fol-
lows. Initially, in O(n) processing time we compute for each ver@xpointer tadee pegw),

a leaf of maximum depth in's subtree. This is done recursivelgeepegi) = vif vis a

leaf, otherwisalee pegi) = deepegu) whereu is a child ofv with maximum heighh(u).

Next, we take the rooted path from the raadown todeepegt) and remove the vertices

and edges along this path from This potentially splitsT' into several disjoint rooted sub-
trees, which are themselves then decomposed into vertex-disjoint rooted paths in the same
fashion. The entire process takef) time if implemented appropriately. For each vertex

v, we denote byP, the path in our decomposition containixg In order to facilitate cer-

tain future operations along these paths, we store each path in an array, and we maintain a



pointer from each vertex to the arrayP, containingv. Note thatv also knows its index
within P, as this can be computed in constant time by taking tffergince betweed(v)
and the depth of root d®,.

Finally, we compute for each vertaxits second heighty(v) and third heightsz(v),
wherehy(v) is defined as the maximum value oftlh(u) over all ofv's childrenu ¢ Py.
Similarly, hz(v) is the maximum of & h(u) over allv's childrenu ¢ Py, excluding the child
used to defindi(v). In English,hy(v) is the length of a deepest path descending from
that branchesf® P, atv, andhs(v) is the length of a second-deepest such path. In order to
locate these pathdfiently, we maintain a pointer fromto c;(v) (the child ofv on P,),
c2(V) (the child ofv that defined(v)), andcs(v) (the child ofv that definesiz(v)). We set
hs(v) = 0 if v has fewer than 3 children, atgd(v) = O if v has only 1 child. Implemented

appropriately, all of this information tak&3(n) time to compute.



Chapter 3

The High-Level Algorithm

In a treeT with rootr, we say that a broadcastis properif (i) f is dominating and
efficient, (ii) B(f) is a path, (iii) the ball containing is an endpoint oB(f), and (iv)r is
not overdominated. Letost[v] denote the optimal cost of a proper broadcast for just the
subtree rooted at. If such a proper broadcast does not exist (for examphejsfa leaf),
we setcost[v] = +oo. The bulk of our algorithm is focused on computiogst[v] in O(1)

amortized time for eache V.

If f satisfies only conditions (i) and (ii) above, we say gésni-proper Due to Lemmas
1 and2, every tree has an optimal broadcast that is semi-proper. Moreover, since we are
assuming thatl is optimally dominated by somefeientnon-radialbroadcast *, we can
decomposd* into a union of two proper sub-broadcasts as follows. We first compute a
diameterD of T in linear time, whose endpoints we denotedgndb. Next, we rootT
ata and computecost[V] for everyv in O(n) time, and then we rodf atb and compute
cosp[v] for everyv in O(n) time. Sincef* is not radial, there must be some edges D
that crosses the boundary between two ball§*inBy examining all edges ob, we are

guaranteed to find such an edge, from which we can compute

cos(f*) = migl {cost[V] + cosp[u]}. (3.2)
dist(a,ﬂ)vjdist(av)

Therefore, to computeos{(f*) in O(n) time, all we need is a®(n) procedure for com-
puting cost[v] for all verticesv in a rooted tree. By restricting our focus only to proper
broadcasts, we simplify this task quite a bit. We can assume when composhfy] that

v is dominated by the broadcast emanating from a single transimtién f(t) = dist(v, t),
whereB(t, f(t)) has at most one neighboring ball below it (whereas in a semi-proper so-

lution we would need to have considered the added possibility of two neighboring balls



beneathB(t, f(t))). Let us now distinguish two important cases: we say tatexternally
dominatedby a transmittett if f(t) > h(t). In this case, we call an externaltransmit-
ter, since its transmission reaches all the way to the bottom of its own subtreés nbt
externally dominated, we say it iaternally dominatedoy aninternal transmittert with
f(t) < h(t). We defineecost[V] as the optimal cost of a proper broadcast that dominates
only v's subtree, such thatis externally dominated, and we defilcest [Vv] similarly for the
internal case (if no such broadcast exists, then we®est[v] = +oo Oricost[V] = +0).

During a single postorder scan ©f we will compute bothecost[v] andicost[v] for
every vertex and then setost[v] = min(ecost[v], icost[V]). In the next two chapters, we
show how to computecos|v] andicos{v] each inO(1) amortized time per vertex (since
the root is fixed for these computations, we will drop the subscriggm our notation).

Our algorithm can be construed as a dynamic programming algorithm, and as with
most dynamic programming algorithms we focus our exposition on computing the cost of
an optimal solutiorf*, rather than the structure of this solution. If structure is desired, it is

relatively easy to augment our algorithm to comptitéy) for every vertex.



Chapter 4

The External Case

We call a pair {, p) wheref(t) = p a configurationthat describes a potential external
transmitter. LeN(t, p) = {v: dist(t,v) = p + 1}\{rp.1(t)} denote the set of all neighboring
vertices below the balB(t, p). We call the configurationt(p) valid if and only if p €
{h(t), h(t) + 1}, p < d(t), and|N(t, p)| < 1. Invalid configurations can be safely ignored
for the external case. Ib < h(t) thent cannot be an external transmitter.pf> h(t) + 2,
we could move to n(t) and decreasp by one to obtain a better dominating broadcast. If
p > d(t), thenB(t, p) would overdominate the root, so the resulting broadcast would not be
proper. If|N(t, p)| > 1, then the balB(t, p) would have at least two neighboring balls below
it, so the resulting broadcast would not be proper. In a moment, we will describe a method
for testing whether a configuratiot) p) is valid in onlyO(1) worst-case time.

The key idea behind the external case is now the following:

Lemma 4 If a configuration {, p) is valid, then it is only relevant for the computation of

ecos}v] for the single vertex = mp(t).

Proof. The vertexv = mp(t) is the only one satisfying the propertiesgix, p) is contained

in V's subtree, and (iiflist(v, t) = p, sov is dominated but not overdominated ty m|

As a preprocessing step after rootihgwe spendd(n) time iterating over all @ trans-
mitter configurationst(p) with p € {h(t), h(t) + 1}. For each such configuration that is
valid, we add the pairt(p) to a linked listLy attached tos = mp(t). Afterwards, during the
main algorithm we can compugeos}v] for any vertexv by minimizing over the possible

choices inLy:

ueN(t,p)

ecostv]:(tprj)ierllv{p+ Z cos(u]}. 4.1

Note thatcos{u] will already have been computed by the time we commatesfv], since
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Figure 4.1: Searching for vertices iN(t, p).

the sole vertex (if any) itN(t, p) belongs tov's subtree. SincéN(t, p)| < 1, evaluating the
formula above take®(|L,|) time for a particular vertex, andO(n) time in total to compute

ecos|v] for every vertexv.

4.1 Checking a Configuration for Validity

Consider a particular configuratioty p) with p € {h(t), h(t) + 1}. In order to checkt( p)
for validity, it is easy to check whethgr > d(t), so we assume that < d(t) and focus on
the more challenging question of determining whether orlN@t p)| < 1. Letv = mp(t)
denote the unique vertex for whict) ) is relevant for computingcosfv]. Sincep > h(t),
the ball B(t, p) engulfs the entire subtree rootedtatnd so we can restrict our search for
vertices inN(t, p) to those vertices in’'s subtree that are not irs subtree. Consider now

two cases:

1. t € P,. Recall that the deepest path descending frpR,, is stored in an array. Let
Py[v...xn(t)] denote the segment of this array corresponding to the path\rdown

to z(t). In order to simplify our exposition, we are abusing notation slightly by using

10



Check-Validity (t, p):

If p > d(t), Then Stop.t( p) is invalid.

v = mp(t)

Ifte Py, Then
Findx € Py[v...n(t)] maximizing a1(X) (@2(¥) = ha(x) — d(y))
If @1(X) < p— d(t), Then Stop.  p) is valid. (sinceN(t, p) = 0)

k= a1(x) —d(t) - (p+ 1) ; w = m(deepegtz(x)))
If hg(x) + d(t) — d(x) > p

or maxai(y) :y€ Py[v...n(X)]} > p—d(t)
ormaxai(y) : y € Py[ci(X)...7(1)]} > p—d(t)

or maxaz(y) 1y € Pu[C2(X) ... a(W)]} > p—d(t) + 2d(x),  (e2(y) = ha(y) + d(y))
Then Stop.t(p) is invalid. (sincgN(t, p)| > 1)
t, p) is valid, andN(t, p) = {w}.
Else
k=nh(t)+d(t)-d(@ -1;Z = n(deepegt))
Ift ¢ P,, Then Stop. p) is invalid. (sinceN(t, p)| > 1)

If (Z = cx(2) And h3(2) + d(t) — d(2) > p)

or € # cy(2) And hy(2) + d(t) — d(2) > p)

or maxay(x) : xe Py[v...n(2]} > p—d(t)

or maxaz(X) : x € Py[cy(V)...a(W)]} > p—d(t) + 2d(2)

or maxai(x) : xe Py[V ...2()]} > p—d(t)
Then Stop.t(p) is invalid. (sincgN(t, p)| > 1)
t, p) is valid, andN(t, p) = {w}.
Endif

Algorithm 4.1: Checking if ¢, p) is valid in O(1) time.

vertices as array indices; in an actual implementation, we would need to figure the
integer index corresponding to a vertekased ord(v) and the depth of the highest
vertex onP,. Any vertices inN(t, p) can be located by checking for the presence of
paths branchingfd Py[v...z(t)] that are séficiently long to escape frorB(t, p), as
shown in Figuret.1(a). We first try to locate one such path, branchifigab a vertex

x € Py[v...n(t)], and crossing out oB(t, p) along the edgew, n(w)), as shown in

the figure. The vertew will be our first entry inN(t, p). If our search fow succeeds,

then we launch another search for a second “escaping path” (not shown in the figure).

If a second such path exists, thénp) is not valid.

In order to findx andw in O(1) time, we employ a data structure for range maximum
gueries (RMQs). The RMQ problem involves preprocessing an afay..n] so
that subsequent queries for the maximum element in a subAfray. j] can be an-

swered quickly. By building a Cartesian tree fra¥in linear time, we can translate

11



an instance of the RMQ problem into an equivalent instance of the LCA problem
(see B]), so by using fast LCA data structure®4] 2] one can answer RMQ queries
in O(1) time after initially expendin@(n) preprocessing time and space. In our case,
we assign each vertexthe valuea1(v) = hy(v) — d(v) and preprocess each of the
arraysPy into which we have decomposed our tree. This taB@y total time since
these arrays collectively haveelements. Returning to the problem of finding an
x € Py[v...n(t)] from which a long path branchedtpnote that the second height
ho(x) gives the length of the longest path branchirfgR, at x. Therefore, all we
need to do is locate a vertexe Py[v...n(t)] for which hy(X) + d(t) — d(x) > p.

We can rewrite this condition ag (X) > p — d(t), so by performing an RMQ for the

x € Py[v...n(t)] maximizing @1(x) and comparing againgt — d(t), we can locate

a suitablex (if it exists) in O(1) time. If no suchx exists, ¢, p) is valid and we are
finished. Otherwise, we can fiwdin O(1) time, sincen = m(deepegty(X))), where

k = a1(X) + d(t) — (p + 1). The final check for a second long branching path (that
would render {, p) invalid) requires 3 more RMQs for the subpatdgv...x(X)],
Py[ci(X)...x(1)], andPy[co(X) ... r(w)], in addition to a check based ¢B(Xx) to see

if such a path branchegtoc. Complete details are given in pseudocode in Algorithm

4.1

.t ¢ Py. As shown in Figured.1(b), t resides on a path that branche$ B, at

the vertexz = LCA(deepedl),t). Note thatB(t, p) cannot dominate all the way
down todeepedW), so the vertexv € N(t, p) always exists. If it were the case that
deepedv) € B(t, p), then we would have > h(2)+1 > h(t)+2, which contradicts our
assumption thap € {h(t), h(t) + 1}. In O(1) time, we can locates = m(deepegy)),
wherek = h(2) + d(t) — d(2 — p. Note thatdist(v, z) = dist(x(w), 2). To ensure that

(t, p) is valid, we now only need to check whether or hift, p) contains any vertices
other thanw. This is done as in the previous case using a small number of RMQs,
the details of which are given in pseudocode in Algorithrih The only subtle ob-
servation one needs to make is thaté P, (with Z defined as in the pseudocode in

Algorithm 4.1), then €, p) is not valid because this implies tHat would contribute a

12



second vertex tol(t, p) as it descends downward froBft, p) (by the same argument

we used to show tha&, contributes the vertew to N(t, p)).

13
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Chapter 5

The Internal Case

In the external case, we have the advantage of knowing what power to assign to a
transmitter. This no longer holds in the internal case, but fortunately we can rely on another
useful structural property instead. As we see in the following lemma, the internal case
reduces to a somewhat complicated one-dimensional dynamic programming problem along

the paths in our deepest path decomposition.

Lemma 5 Consider the computation afos{v] for some vertew. If icosfv] # +co, then
we can writeicos{v] = f(t) + cos{w], wheret € P, is an internal transmitter and € P, is

the unique vertex imN(t, f(t)).

Proof. Assume thaicos{v] # +co0, and consider an optimal proper broadchttat dom-
inates only's subtree, such thatis internally dominated. Letbe the unique transmitter
responsible for dominating Sincef is proper we havéN(t, f(t))| < 1, and since is an
internal transmitter we also hayé(t, f(t))| > 1, in particular sincd, descends downward
out of B(t, f(t)). Letw denote the unique vertex M(t, f(t)), contributed byP, (see Figure
5.1(a) for a picture of the arrangement @ft, andw). If t ¢ Py, then since is not an
external transmitter we know thé&{t) < h(t), from which we infer thaP; would contribute
another element tdl(t, f(t)) (distinct fromw) as it descends downward out Bft, f(t)),

again contradicting the fact thg(t, f(t))| = 1. m]

Note that if we are givenr and a particulaw (as defined by the preceding lemma), we
can computef(t) = (d(w) — d(v) — 1)/2 andt = m¢g+1(W). Similarly, we can compute
w givent, albeit with a slightly more cumbersome formula. Sinces{v] is completely

determined once we know, we can obtaincos{v] by minimizing over diferent choices



for w belowv on Py:

icosfv] = VrJ;an {L;I(V)—l + cos{w]} (5.1
= —(dv)+1)/2+ Vr;gi:n{d(w)/Z + cosfw]} (5.2)
= —(d(v)+1)/2+ VrvreliFn{vaI(w)} (5.3)

where we defingal(w) = d(w)/2 + cosfw], and wherd~, c P, denotes the set déasible
choicesfor w when computingcosfv] according to $.3). In order to characterize the set
Fv, we first introduce some additional notation. [Bt, = B(t, f(t)), wheret and f (t) are
computed as above based wandw. Note that for the balB,,, to exist at all, its radius
f(t) = (d(w) — d(v) — 1)/2 must be a positive integer, sijw) must have dterent parity
from d(v), and alsow # c1(v). If By exists, we also defini,,, = N(t, f(t)) to be its lower
neighbor set. We can now give a simple characterizatioR§ow € F, if and only if (i) Byw
exists, and (iiNyw = {w}. Condition (i) is easy to satisfy as long as we searciwfamong
the set of vertices below (v) on P, for which d(w) andd(v) differ in parity. Condition (i)

is slightly more complicated. It disqualifies a vertwexf there is a s#ficiently long path
that branchesf® P, insideB,,, and escapes from,,,, contributing another lower neighbor
to Ny in addition tow. We call such patheverhangsand discuss their exact behavior in a

moment.

We are now ready to describe our algorithm for the internal case. At a high level, it
computesicos{v] using 6.3 for every vertexv during the same postorder scanTofin
which we computeecosfv] and cos{v]. We can think of this computation a collection of
independent computations, one for each of the “deep paths” into which we have decom-
posedT. Along each such path, we are scanning upward and compigtisgv] for each
vertexv in sequence. We henceforth restrict our focus to just one such path.

A direct application of $.3) would spend at leagd(n) time computingicosfv] for a
particularv. To improve this, we note that the minimization i5.§ behaves in a very
“stable” fashion: the same will achieve the minimum as long dS, does not change for
successive vertices In our casefy N Fry) = 0 due to parity constraints, bif, and

Frxv) are highly related. Using appropriate data structures, we will show how to compute
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Active segment (in bold)
F,only contains vertices ~

)/ in this segment due
| to upward overhang
\ from vertex |.
(evicted '~ =
fromFy due
to downward
overhang \ nextl(l)
from x) <
nextl(nextl (1))
h,(x)

(b)

Figure 5.1: lllustration of the downward and upward overhang conditions. In (a), the downward
overhang of lengt,(x) branching & x permanently disqualifies the(x) vertices in its “shadow”
below x on P, from belonging ta~,. In (b), the upward overhang froh{actually a downward path

that branchesfband descends fropwhich we visualize by stretching it out upward) prevents any
choice ofw belowl from belonging td=,. When our algorithm steps fromto 7(v), we will “escape”

from this upward overhang and be constrained instead by the larger upward overhang braffiching o
nex{l). The current stack of nested upward overhangs brancHinig wex{l), and so on, forms
what we call thd-list.

icos{m(x(v))] in only O(1) amortized time after already having compuigas{v].

5.1 Overhang Conditions

Recall that we must haws,,, = {w} in order forw to belong toF,. That is, the balB,,
can have onlyv itself as a lower neighbor, so any brandfi B, inside B,,, must therefore
be completely contained withiB,,,. The following twooverhang conditionsise this fact

to restrictF,,.

e The Downward Overhang Condition. For every vertexx € Py[v...deepedv)],

none of thehy(x) vertices immediately below on P, can belong td-,.

e The Upward Overhang Condition. For every vertexx € Py[v...deepedgv)], if

ho(x) > d(x) — d(v), then none of the vertices belowon P, can belong td-,.

Let us briefly try to develop an intuitive notion of these two conditions. An overhang

is a path branchingfbP,[v.. ] that restricts the feasible sEt. Each such branching path
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plays the role of both a downward overhang and an upward overhang. As shown in Figure
5.1(a), consider taking the longest path branchiffigrertexx € Py[v...] (of lengthhx(x)),

and stretching this path out downward alonggfjeAccording to the downward overhang
condition, all verticesv € Py in its “shadow” are disqualified from belonging to the feasible
setF,. Note also that these vertices are permanently disqualified since this same downward
overhang constraint will apply for successive vertices the algorithm continues scanning
upward alongP,. Consider now taking a similar path (for example, branchiffgrertex

I in Figure5.1(b)), and stretching it out upward alongsiBl¢ If this path extends as high

asv, thenl satisfies the upward overhang condition and no vertex bélcan belong to

Fv. However, as opposed to downward overhang constraints, upward overhang constraints
are only temporary, since eventually we will “escape” from an upward overhang once we
finally step upward to a vertexthat is high enough alonB,. Upward overhangs form a
nesting structure (shown in the figure), where an escape from one upward overhang may
leave us constrained by a larger upward overhang that branihegfoom an even deeper
vertex. In a moment we will introduce a data structure called-iis for maintaining the
nested structure of these upward overhangs as our algorithm proceeds to scan upward along

Py.

Lemma 6 For a giverv andw € Py, if By, exists, therNyy, = {w} (i.e.,w € F,) if and only

if wis not disqualified by the downward or upward overhang conditions.

Proof. Suppose thatv violates the downward overhang condition with respect to some
vertexx. As one can see in Figutel(a), a choice ofv from any of theh,(x) vertices below

x leads to a balB,,, with [N\, > 1, since the path branchindgfoc would escape fronB,,,

and contribute a second lower neighbor in additiomwtdNow suppose thaw violates the
upward but not the downward overhang condition with respegt &s illustrated in Figure
5.1(b). Here,w cannot be chosen from the(x) vertices immediately below, so let us
assume thatv has even lower depttw) > d(x) + ho(X). The transmitter at the center of
B.w would then satisfyd(t) = d(w) — 1 — p(w) > d(X), and so its transmission would travel
upward tox and then branch, reachingbefore it reaches the end of the path branching

off x. Consequently, the path of heidi(x) branching & x would escape fronB,,, and
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contribute an extra lower neighbor k,,. Finally, suppose thall,,, contains some vertex
z in addition tow, and letx = LCA(w,2) € P,. If d(X) > d(t) for the transmittert of

Bww On Py, then we must havily(x) > d(w) — d(x), sow violates the downward overhang
condition with respect t&. On the other hand, di(x) < d(t) then it must be the case that

ha(x) > d(x) — d(v), sow violates the upward overhang condition with respectto O

Using overhang conditions, we now have a means of characterizing the feasible set
Fy over which we are minimizing at each step of our algorithm. We now introduce some
simple data structures that allow us to keep track of relevant overhang constraints (and thus

maintainF, implicitly) over the course of the algorithm as it scans upward al®ng

5.2 Managing Upward Overhangs: Thel-list

When computing=, for a particular vertex, there might be several verticese P[v...]
that qualify for the upward overhang condition. The highest of these @gigthe most
interesting, since it provides the tightest bound on the feasible,sé&t/e call this vertex,
since it provides a lower bound on the range of valid choicewferf, that captures every
upward overhang constraint. As we move up the tree during our algorithm, every time we
encounter a vertex from whichhy(v) > 0, this introduces a new upward overhang, and as
a result we must resétto point tov. However, whenever this happens, we remember the
previous location of by first setting a pointenext(v) = |. The resulting chain of pointers
forms a linked list that we call thelist, shown in Figures.1(b). The elements in thielist
partition P,[v...] into regions that we calbegments The highest of thesdl\[v...l], is
called theactive segmenthe next segment iBy[ci(l)...next(l)], and so on. Due to the
upward overhang condition, we know tHat contains only vertices in the active segment.
As we see in Figuré.1(b), thel-list encodes a set of upward overhangs that is “nested”,
so we can rightfully think of thé-list as a stack. As we scan upward aldhgduring the
course of the algorithm, we adjust thist by popping df any vertices from whose upward
overhangs we manage to “escape”. Thatis, at each venexcheck ifd(l)—d(v) > hy(1). If
so, we have “escaped” from the upward overhang branchiigand so we accordingly pop

| off thel-list (settingl = next(1)) and enlarge the active segment. Since itis possible that we
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can escape from several overhangs in a single step, we may continue to pop éhthies o
top of thel-list until we finally reach a vertekthat provides a valid upward overhang. Itis
possible foll to scan all the way to the end of théist, in which case we sétto dee pegv)
since all of P [v...deepegw)] should now be the active segmehtg also initialized to
deepegv) at the very beginning of our scan &y).

All updates to thd pointer requireO(1) amortized time per vertex we examine, so
we now have a convenient andfieient way to track the exact set of verticegv...l]

surviving the upward overhang condition.

5.3 Maintaining the Minimum: The mtlists

We maintain two more doubly linked lists embedded within the vertices of our current path
Py, which we call thamtlists (m for “minimum”), one of which is shown in Figurg.2(a).
An mtlist contains a set of all vertices that could conceivably be the optivalF, used
for computingicos{:] of v or one of its ancestors according ®3). Since vertices of odd
depth allow only for verticess € F, of even depth and vice versa, we maintain twdists.
Theeven rdist contains only even-depth vertices and is used for computogfv] where
v has odd depth, and vice versa for thakd nilist. We maintain pointerfieyenandmggg to
the highest vertices on the even and oditists. When computingcos{v] for a particular
vertexv, we will sometimes speak of “theftlist, by which we mean then-list having the
opposite parity od(v) (i.e., the one relevant for computirigosf{v]). We usem to refer
generically to the top entry in this list (eithBgyenOr Mogq)-

Consider the sequence @l(x) values for verticex along anmtlist. For bothm-lists,
we maintain the invariant that this sequence will be monotonically increasing from top to
bottom within each segment of thdist. In particular, this means the vertexminimizing
(5.3) can be found by looking at the topmost vertex in tirést within the active segment of
thel-list — in other wordsm. This allows us to computieos{v] = —(d(v) + 1)/2 + val[m]|
in O(1) time. If it so happens that there are no entries imtHast within the active segment
of thel-list (i.e., if d(m) > d(I) or if the mlist is completely empty), then we instead set

icosv] = +oo.
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nextl (nextl (1)) Y

Figure 5.2: lllustrations of (a) am-list (drawn with dotted links), and (b) the operation of splicing
together the portions of the-list belonging to the top two segments of fHiést. This event happens
whenevew “escapes” from the current upward overhang friofupward overhangs are emphasized
in the figure by stretching these paths upward). The attést of different parity is not pictured,
but it would also be spliced in the same fashion. The boxed number shown at axertet(x).

Vertices are removed from-lists whenever it is clear that they are no longer relevant
choices forw for minimizing (5.3) for the currentv or any ancestor of on P, that we
will encounter in the future. For example, when we reach a verteith hy(v) > 0, the
downward overhang fromdisqualifies all vertices up ta(v) steps below from inclusion
in the current, and all futureF,’s. Therefore, as long a{{meven < Vv + hy(V), we remove
Mevenfrom the head of the evan-list, and we do the same for the oddlist. Since vertices
are never re-admitted to anlist, we spend at mogD(1) time per vertex in total for all
mlist deletions. Finally, note that deletion of the top part of amjist due to a downward
overhang preserves the invariant that tiMists are monotonically increasing from top to

bottom in each-list segment.

When our algorithm advances to some vernexve addv's great-grandchild orPy,
g = ci(ci(c1(v))), as a new candidate on the top of thdist. Recall thatv andc;(c1(v)) are

not in F, since they share the same depth parity,aandc:(v) ¢ Fy since therB,,, would
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not be defined (its radius would be zero). We therefore plan to introgue® the new
topmost element on thexlist. However, ifm andg are in the same segment of thiést
(which we can easily check i®(1) time) andval[m] < val[g], then we forgo adding to
themtlist, since from now onm will always be at least as good a candidate for minimizing
(5.3 whenevenq is a candidate. Any future deletion (say, due to downward overhang) that
removesm will also removesy, sinceg is abovem. Therefore, it is safe to omg from

the mlist. Moreover, since we only add a new vertex to thdist if its value is lower
than the current topmost vertex, this preserves our invariant thattts¢ is monotonically
increasing from top to bottom within each segment.

The only remaining update to thme-list we need to describe issplice operation that
takes place any time we escape from an upward overhang. Recall that here the active
segment of the-list is repeatedly merged with the segment immediately below it as we
remove vertices from the top of tdist. Whenever two adjacent segmesisands; in the
I-list are merged, we need to splice together the monotonically increasing portions of both
the even and odah+lists in s; and ins, to form one large monotonically increasing list over
s1U S, as shown in Figur8.2(b). This is done as follows: starting from the top ofrasist
in 5, (the lower of the two segments), scan upward intoghand delete vertices from the
bottom of themtlist in s; until the twomtlists form a single monotonic chain. Due to the
same reasoning as above, these vertices are safe to delete since they are each “dominated”
by a more optimal vertex lower in the sarhbist segment. Since deletions are permanent
and only contributéd(1) running time per vertex, the only operation we must treat with
some care in this case is that of finding the toprrodist vertex in a segment. This is
done by maintaining bidirectional pointers from each ventem the l-list to the topmost
elements on the odd and everlists within the segment below. With appropriate care,
these pointers require onfy(1) time to update per vertexthat we visit.

This concludes the description of the algorithm for compuiig{v]. Its running time
is clearlyO(n) in total since we spen@(1) time per vertex visited, plus an addition&(1)

time per vertex to possibly remove it in the future fromredtist.
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Chapter 6

Extensions and Future Directions

Our algorithm easily generalizes (with no degradation in running time) to handle the
extended problem variant where there is a fixed cost for building each transmitter in addition
to a linear cost based on its power. This is possible because Letharas2 generalize
to this case, so the structure of an optimal solution can still be assumed to be a path of
disjoint balls. Itis important, however, that the fixed cost must be independent of transmitter

location; otherwise, the lemmas fail to apply.

Since a concave functiohsatisfiesf (x+Yy) < f(x)+ f(y) for x,y > 0, Lemmasl and2
also generalize to the case where the cost of a transmitter at vagteX the formcsixeq +
Cpower f(V)), Wherecyixeq is a fixed one-time cost anthower is @ concave function of the
broadcast power, and whet@yed andcpower do Not depend om (this also implies that the
algorithm of Heggernes and Lokshtandg] for broadcast domination of a general graph
extends automatically to this more sophisticated problem variant). Concave transmitter
costs are generally realistic, due to economies of scale. In our algorithm, the affcbedtyli
with concave transmitter costs is that in the internal case, the optimal vertex among the
elements in amtlist might move down the list monotonically over time, rather than staying
at the top of the list as it does now. However, we can still adapt our algorithm without any
running time penalty, if we incorporate additional logic that monitors and removes the top

element from amn-list in the active segment whenever it becomes sub-optimal.

Since they no longer satisfy Lemmasand 2, convex transmitter costs seem much
more dificult to accommodate in a highhffient fashion on trees (and for a general
graph, these make the problem NP-hard since the minimum dominating set problem is a
special case of this problem where the transmitter cost jumps from zero to infinity at power
level 2). A similarly-behaving problem (NP-hard on general graphs for the same reason) is

the distance-attenuated case where a transmitter gradually loses power according to some



decreasing function of transmission distance, and every vertex must hear at least some min-
imum amount of total transmission power (possibly from a combination of transmitters).
Other interesting variants include the problem variant with non-unit edge lengthmsuttie
covervariant where some nodes must hear multiple broadcasts for fault-tolerance purposes,
and the partial cover problem where we can leave certain vertices uncovered at a cost (one
can think of such a vertex as a zero-power transmitter in the fixed cost model). The patrtial
cover variant is particularly interesting as it satisfies both Leminasd 2, and yet still

seems perhapsfticult to solve in polynomial time on a general graph as well as in linear
time on a tree (it can be solved in polynomial time on a tree; $8€lp, 18]).

As shown in [L3, 16], the natural fractional relaxation of the broadcast domination
problem to a linear program always admits an integer-valued optimal solution, and so does
its dual. The dual problem of broadcast domination is actually interesting in its own right
and in its integer version does not appear to have been studied previously. Here our goal is
to select a maximum-cardinality subset of verti€eso thatlS N B(v,r)| < r forallve V
andr > 1. In other words, we would like to locate facilities throughout a graph subject to
a “density” constraint that prohibits too many facilities from being opened in any particular
radial region. One can solve this problenQ(m?®) time in trees 1.3, 16], but it is not known
if one can do so in nearly-linear time (say, by adapting the result from this paper).

Blair and Horton 7] study the related problem @foadcast coveringn a graph, where
the goal is to find a broadcast that covers all the edges, rather than all the vertices of a graph.
This problem is much easier than the broadcast domination problem since in any graph one
can find an optimal broadcast cover that is radial, allowing for a si@ft¢ algorithm on
trees. For the broadcast domination problem, it remains a challenging open problem (even

in the case of trees) to characterize which inputs admit optimal radial solutions.
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