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ABSTRACT 
 
 

The role of heterogeneous multi-core architectures in the industrial and scientific 

computing community is expanding. For researchers to increase the performance of 

complex applications, a multifaceted approach is needed to utilize emerging 

reconfigurable computing (RC) architectures. First, the method for accelerating 

applications must provide flexible solutions for fully utilizing key architecture traits 

across platforms. Secondly, the approach needs to be readily accessible to application 

scientists. A recent trend toward emerging disruptive architectures is an important signal 

that fundamental limitations in traditional high performance computing (HPC) are 

limiting break through research. To respond to these challenges, scientists are under 

pressure to identify new programming methodologies and elements in platform 

architectures that will translate into enhanced program efficacy.  

Reconfigurable computing (RC) allows the implementation of almost any 

computer architecture trait, but identifying which traits work best for numerous scientific 

problem domains is difficult. However, by leveraging the existing underlying framework 

available in field programmable gate arrays (FPGAs), it is possible to build a method for 

utilizing RC traits for accelerating scientific applications. By contrasting both hardware 

and software changes, RC platforms afford developers the ability to examine various 

architecture characteristics to find those best suited for production-level scientific 

applications. The flexibility afforded by FPGAs allow these characteristics to then be 

extrapolated to heterogeneous, multi-core and general-purpose computing on graphics 

processing units (GP-GPU) HPC platforms. Additionally by coupling high-level 
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languages (HLL) with reconfigurable hardware, relevance to a wider industrial and 

scientific population is achieved. 

To provide these advancements to the scientific community we examine the 

acceleration of a scientific application on a RC platform. By leveraging the flexibility 

provided by FPGAs we develop a methodology that removes computational loads from 

host systems and internalizes portions of communication with the aim of reducing fiscal 

costs through the reduction of physical compute nodes required to achieve the same 

runtime performance. Using this methodology an improvement in application 

performance is shown to be possible without requiring hand implementation of HLL code 

in a hardware description language (HDL) 

A review of recent literature demonstrates the challenge of developing a platform-

independent flexible solution that allows access to cutting edge RC hardware for 

application scientists. To address this challenge we propose a structured methodology 

that begins with examination of the application’s profile, computations, and 

communications and utilizes tools to assist the developer in making partitioning and 

optimization decisions. Through experimental results, we will analyze the computational 

requirements, describe the simulated and actual accelerated application implementation, 

and finally describe problems encountered during development. Using this proposed 

method, a 3x speedup is possible over the entire accelerated target application. Lastly we 

discuss possible future work including further potential optimizations of the application 

to improve this process and project the anticipated benefits. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

Computer simulations are used extensively to accurately reproduce the process of 

interest for the purpose of quantifying costs and benefits. Through the analysis of 

different parameters and their effect on the recreated process, real world problems can be 

explored. Weather, chemical, atomic, and biological processes are all areas that make 

extensive use of computer simulations to develop new findings. The results from these 

fields are, however, bound by two universal factors of computer simulation: effort 

expended to create an efficient vs. accurate simulation model and the computational 

power available to execute the simulation. 

Historically, traditional computing solutions have aimed to leverage large-scale 

distributed environments to boost computational power. This technique has in turn led to 

the development of more complex and accurate models. As the model’s complexity 

grows, the communication time needed in these distributed systems typically multiplies. 

The inability to scale problems on these large-scale distributed platforms becomes a 

critical impediment for new discoveries. To overcome this barrier, many industry vendors 

are introducing heterogeneous platforms which pair traditional HPC hardware with 

emerging non-RC architectures such as the Cell Broadband Engine™ and general-

purpose graphics processing units (GP-GPU) computing with Nvidia’s Tesla™ products. 

Cell and GP-GPU architectures provide the a path to performance through on the use of 

many-core. While the many-core approach does provide increased compute power and 

internalized communication, a many-core approach is not an application specific solution. 

 



The additional computational power may be underutilized since the underlying 

architecture cannot be modified to specifically match the application. When the right 

applications are matched to these architectures, they provided a very powerful computing 

platform as demonstrated by Roadrunner, the world’s number one supercomputer as of 

November 2008 is a heterogeneous platform combining AMD Opteron™ processors with 

CellBE processors (Top500, Nov. 2008). 

Another class of hybrid computing platforms that are both general purpose (can 

be used on a wide variety of applications) and application specific (can be tailored 

specifically for an application to achieve the best performance) is heterogeneous 

reconfigurable computing. Over forty years since reconfigurable hardware was first 

proposed, (Estrin and Turn, 1963), advancements in logic density and the availability of 

hardware floating-point macros for reconfigurable platforms have garnered attention 

from the scientific community. RC platforms with FPGAs are essentially an extreme 

form of heterogeneous computing. The main difference between fixed multi-core (FMC) 

or traditional homogeneous computing and FPGA implementations is that the underlying 

architecture is not fixed. FPGAs allow the user to define the application-specific 

architecture for solving problems in the hardware. Allowing the problem to guide the 

underlying architecture is extremely efficient in terms of utilization and computational 

density as only elements pertinent to the processing of the problem are included in the 

design. The affect is a reduction in energy usage, space use, and often improved 

communication versus a general-purpose processor. 
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The abilities of an Application Specific Integrated Circuit (ASIC) parallel that of 

a FPGA. While an ASIC has similar efficiency as an FPGA, it is usually cheaper in large 

quantities and slightly faster than a field programmable device since it does not have the 

extra routing overhead present in FPGA devices. However, at the time of manufacture an 

ASIC’s design is fixed which restricts its use requiring the user to change the design, 

develop and manufacture a new ASIC for new features or computations. For example, a 

custom ASIC for assisting in simulating supernova most likely will not be useful to a 

simulation involving weather forecasting. Thus the reconfigurable nature of a FPGA 

more then makes up for the slight performance tradeoff. Further, currently available 

FPGAs provide capacities that are necessary for the computationally dense and complex 

simulations currently conducted in many fields of research. 

Biomolecular simulation is one area that is leading the advancements in 

computational biology. The fundamental approach for most biomolecular simulators is 

the use of Molecular Dynamics (MD). MD is a method for treating atoms as points with 

both mass and charge thereby allowing the use of classical mechanics (IBM Corp., 2006) 

to simulate the process. The forces on a single atom are split into two categories: bonded 

and non-bonded interactions. The bonded interactions refer to the forces resulting from 

the chemical bonds between the atoms in question. Non-bonded forces consist of the 

electrostatic and Lennard-Jones potentials of the atoms. The charge and mass along with 

the force of any bonds, which includes bond angles and bond torsions, are feed into the 

equation of motion to solve for the trajectory of each atom over an extremely small unit 

of time (Alam, et al, 2007; IBM Corp., 2006). Predicting the behavior of these atoms 

 3



requires a large number of force calculations that can be summarized as shown in the 

overall potential energy function shown in equation 1.1: 
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Equation 1.1: Potential Energy function used in computing particle trajectories 
(Alam, et. al, 2007) 
 
 
 The first three chemical bond terms are constant throughout the simulation as the 

number of bonds is kept constant (Alam, et. al, 2007). The latter two terms are the 

summations of the van der Waals and electrostatic forces. These non-bonded terms 

constitute a more significant portion of the computations than the bonded terms since the 

number of atoms increases because the non-bonded terms are calculated between all other 

atoms. This results in an O[N2]computations for a simulation with N atoms. Since all 

atoms must communicate their current position to each other for the calculation of these 

non-bonded interactions, scaling becomes a significant problem for large sets of atoms. 

To overcome such challenges MD software packages typically include a ‘cutoff’ 

distance for non-bonded interactions allowing the users to control the complexity and to 

improve algorithm parallelization (or performance) in traditional large-scale HPC 

environments. This cutoff value is chosen at the discretion of the investigating scientist to 

balance execution time with simulation accuracy. The accuracy achieved through the 

selection of the cutoff value is problem dependent. A larger cutoff value results in a 

longer but more accurate simulation since an infinite cutoff would result in the ideal 

electrostatic force calculation from (Alam, et. al, 2007). Further, the cutoff value not only 
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determines the number of non-bonded computations, it also establishes the amount of 

required communications for a parallel implementation since an atom must exchange the 

distance and position of all other atoms within the cutoff distance. 

Several custom computing projects, such as Blue Gene/L, Folding@Home, MD-

GRAPE, and others (Bader, 2004), were developed with the aim of improving the 

performance of comprehensive MD simulations. However, MD-Grape and 

Folding@Home are more application specific solutions and are not versatile enough to be 

used in different problem domains. Blue Gene/L, on the other hand is more versatile but 

weakly scales for problems that are not easily segmented into smaller sub-problems. 

While achievements for MD simulations have been significant, all the platforms still 

suffer from the basic substantial communication requirements of particle interactions 

(Sandia National Laboratory, 2006; IBM Corp., 2006; Reid and Smith, 2005). These 

requirements for numerous particle interactions, which are dominated by global 

communication, have previously made MD simulation a difficult candidate for 

application acceleration. Early studies of MD simulations on reconfigurable computing 

platforms however, have demonstrated the performance potential of this class of systems.  

NAMD, a MD simulator similar to LAMMPS, was ported to the SRC-6 platform 

by Kindratenko and Pointer (Kindratenko and Pointer, 2006). In this paper the authors 

use profiling to perform an analysis on the NAMD code and identify a specific function 

that is appropriate for hardware acceleration. The function is then ported using SRC’s 

MAP C development tool to perform assisted C to HDL translation. These 

implementation steps are similar to the methods and research presented here, however, 
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the disadvantage of using the MAP C development tool is that it locks the user to a 

particular platform, the SRC-MAPstations. 

Scrofano also presents the acceleration of a MD simulation on a SRC MAPstation 

(Scrofano, et. al, 2006). The focus here is on partitioning the application between 

hardware and software. By correctly mapping certain tasks to the software and FPGA 

hardware a 2x speedup is achievable. In choosing to keep at least some calculations in 

software Scrofano is able to preserve the ability to flexibly add and remove tasks. The 

main drawback of this work in comparison to the work presented here, is the choice to 

develop and use a custom MD kernel that may not be amenable to applications in 

widespread use by the scientific community. 

Herbordt and Vancourt present a more focused view on the use of specialized MD 

techniques that can be implemented to extract higher performance from FPGAs 

(Herbordt and VanCourt, 2007). The twelve methods presented in the paper underscore 

the need for development of hardware code that is portable across platforms while 

maintaining acceleration for a family of software instead of more targeted, specialized 

approaches. These key points were an inspiration for implementing the two large 

communication buffers used in this research for shared memory to help hide signaling 

overhead. 

To address these limitations a flexible methodology is proposed for leveraging 

recent advances in RC platforms and software development environments to accelerate 

scientific applications. By using FPGAs to remove computational loads from the host 

systems, we propose to redirect large portions of communication currently on the 
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network to internal buses such as the AMD’s HyperTransport™ bus. The additional 

computational power per node will also result in a reduced number of physical compute 

nodes required to achieve the same runtime performance, which leads to other cost and 

power savings. Furthermore, the use of HLL languages for development is emphasized as 

a means to allow application scientists to utilize the performance of cutting-edge RC 

platforms. 

We have shown that there is a need for studying and developing a method for 

flexible implementation of a scientific application that maintains platform independence. 

This methodology should address the characteristics (computation and communication 

profiles) of the targeted application and utilize appropriate tools for producing a hardware 

accelerated program that is portable. The next chapter will discuss the LAMMPS 

software, our chosen hardware platform and the HLL-to-HDL development environment 

that allows scientists easier access to RC hardware.  
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CHAPTER TWO 

RESEARCH DESIGN AND METHODS 

 

To harness the increased computational power provided by reconfigurable 

computing (RC) hardware an innovative technique is essential for overcoming the 

challenge of porting application code written in a high-level language to a hardware 

description language (HDL). Further, traditional methods such as hand porting required 

complex modifications to application codes for each potential target platform. These 

modifications have been a significant hindrance to the adoption of reconfigurable 

computing architectures. Even preliminary questions such as ‘what algorithm would 

benefit most from porting to an RC platform’ and ‘how to accurately estimate the 

performance gain without an actual implementation in hardware’ seem daunting when 

combined with the user-defined nature of FPGAs. 

Using a production-level molecular dynamics software package, LAMMPS 

(Large-scale Atomic/Molecular Massively Parallel Simulator) developed by Sandia 

National Laboratory (Sandia National Laboratory, 2006) we seek to develop and 

demonstrate a framework for accelerating scientific applications in RC environments. 

LAMMPS’s prevalence in the computational biology field, well defined mathematical 

computations, and implementation in the C++ language make it a desirable candidate 

application for demonstrating the methods used to accelerate this and similar classes of 

scientific applications. 
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To measure the performance gain against multiple systems we intend to use the 

Rhodopsin protein benchmark. In detail the Rhodopsin protein benchmark comprises a 

simulation of the interactions of 32,000 atoms contained in the Bovine Rhodopsin protein 

in a solvated lipid bilayer (Sandia National Laboratory, 2007). In simple terms the protein 

is trapped within a layer of lipid (fat) with water as the solvent surrounding both the top 

and bottom of the lipid layer.  Figure 2.1 shows a ribbon view of the protein. The 

Rhodopsin protein benchmark is an inbuilt simulation provided with the LAMMPS 

software as a means for a standard measure of system performance.  This benchmark is 

the most complex of the inbuilt LAMMPS simulations and a more detailed comparison is 

given in chapter three. Additionally the development team has compiled a list, available 

at http://lammps.sandia.gov/bench.html, of other traditional HPC platforms in which 

performance data was collected for comparison. 
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Figure 2.1: Bovine Rhodopsin protein shown in ribbon form with random coloring to 
better show the alpha helices, the protein does not contain any beta sheets. 

 

In a performance test on the IBM Blue Gene/L, LAMMPS was shown to be the 

most parallelizable algorithm - scaling relatively efficiently to 4096 processors (IBM 

Corp., 2006). As figure 2.2 shows, scaling beyond 4096 processors results in the overall 

communication overhead outweighing the computational benefits – diminishing returns. 

Overcoming this scaling limitation, present in many of the currently available high-

performance computing platforms, is the long-term goal of this research. 

 

Figure 2.2: Parallel scaling of LAMMPS on Blue Gene (1M System: 1-million atom 
scaled Rhodopsin protein, 4M System: 4-million atom scaled Rhodopsin protein) (IBM 
Corp., 2006) 
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As in the early days of computing, application porting to early RC environments 

required the entire program functionality to be hand-coded in HDL. This costly 

development method is still in use today due to the ability to produce the most 

computationally efficient result with any other available development method. The result 

is dependent, however, on several factors: how familiar the developer is with the 

intricacies of both the hardware platform and software to be ported and the developer’s 

proficiency with HDL. Hardware vendors have responded to this challenge with 

intellectual property (IP) libraries that implement certain specific and sometimes limited 

functionalities, such as floating-point libraries. These IP libraries however are often 

black-boxes, their implementation is completely hidden to the application developer. 

Additionally the IP library is almost always tied to that vendor’s hardware making cross 

platform support difficult at best. These limitations have driven a recent push toward 

complete tool suites that build upon the IP libraries of each hardware vendor to form a 

universal SDK for programming RC platforms through the use of HLL abstraction. Of 

these HLL-to-HDL suites, ImpulseC was chosen for this research due to its support for a 

number of RC platforms of interest, namely the XtremeData XD1000, DRC DS1000 and 

Nallatech H101 PCI-X board. 

ImpulseC’s CoDeveloper tool suite (ImpulseC Corp., 2008) allows programmers 

to conduct application development in a familiar language, C, without requiring an 

extensive hardware background or familiarity with obtuse HDL languages. Further, 

programmers can optionally cross-develop for multiple platforms with minimal changes. 
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Various project settings control which platform the CoDeveloper tool suite targets 

through specific generation macros. Fig. 2.3 displays an overview of the development 

flow within the ImpulseC toolset.  

 

Figure 2.3: ImpulseC Codeveloper tool flow (ImpulseC Corp., 2008) 

In the RC development for LAMMPS, which is implemented in C++, we make 

use of the ImpulseC development environment for easy integration between RC code and 

existing software portions of the application. After modifying select portions of the 

original LAMMPS source code with ImpulseC to target the reconfigurable hardware, it is 

possible to port these portions of the algorithm to multiple hardware platforms. One of 

our objectives is to examine and document the capabilities of the XD1000 with 

LAMMPS as a potential platform of study for the scientific community. Later studies will 

take advantage of the portability of code developed in ImpulseC to target other RC 

platforms including the DRC DS1000 (DRC Computer Corp., 2008). 
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The advantage of using a C-to-HDL development method, as (Kilts, 2007) 

mentions, is that these applications have the ability to compile and run against other C 

models. More importantly Kilts states that, “One of the primary benefits of C-level 

design is the ability to simulate hardware and software in the same environment.” In this 

implementation we extensively use both capabilities to reduce complexity and fast-track 

the development on new platforms. 

The ImpluseC CoDeveloper tool suite includes a C-to-VHDL (or Verilog) 

compiler and development environment. This compiler permits the creation of 

communication channels, buffers, and signals through simple function calls from the 

high-level language (HLL) environment (Pellerin and Thibault, 2005). Effectually, the 

abstraction gained from using HLL interfaces enables two things. Most importantly the 

developer is not required to have specific hardware design knowledge to generate results. 

An additional benefit is the user’s code is now portable since any platform specific code 

is now hidden below these universal function calls making the functionality transparent to 

the developer.  

The development environment in the tool suite also assists the programmer with 

system integration and includes several options for debugging and simulating application 

codes in software for a variety of reconfigurable computing platforms. The built-in 

simulator’s capabilities include simulating the buffers, communication channels, FPGA 

hardware, and host program during run-time as well as logging options useful for 

debugging. In detail the CoDeveloper tool suite supports the integer math functions: 

addition, subtraction, multiplication, division, and number comparisons. Similar 
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operations in floating-point are additionally supported to an extent. Issues relating to the 

extent of implementation surrounding these floating-point operations are addressed in the 

discussion of the results.  

There are two main methods for producing VHDL or Verilog from target code 

segments in the CoDeveloper tool suite: shared memory or a stream interface approach. 

A stream interface allows a direct software-to-hardware channel that can be uni- or bi-

directional. The main benefit of a stream approach is the simplified signal interface to 

synchronize producer and consumer functions when accessing data exchanged between 

the host processor and FPGA. The more complex shared memory approach however 

usually allows for higher data transfer bandwidth. All reads and writes for shared 

memory are performed directly to the FPGA’s internal BRAM. The drawback with this 

method is the need for the programmer to explicitly manage the synchronization of the 

memory accesses in C through the use of signals. While ImpulseC’s development tools 

are able to provide transparent communication, the bandwidth and latency is still 

determined by the platform hardware. 

The target platform is XtremeData Inc.’s XD1000 which has an Altera Stratix II 

FPGA module that is an AMD Opteron™ replacement (XtremeData Corp., 2007). The 

ability to place an FPGA module into any open Opteron socket allows the FPGA to 

leverage the existing cooling, power and communication infrastructure. Further, the 

ImpulseC SDK is able to take advantage of AMD’s HyperTransport™ bus present in the 

XD1000 system to provide the tightly-coupled communication interface necessary to 
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improve the scaling of scientific applications. The communication layout of the XD1000 

development system is shown in figure 2.4.  

 

Figure 2.4: XD1000 Development System Communication Interface Bandwidths 
(XtremeData Corp., 2007) 
 

As shown in figure 2.4, the XD1000 platform allows a developer great flexibility 

in application porting through the close integration of the FPGA with the memory and 

host CPU. With the knowledge of the underlying architecture, we can further explore the 

requirements involved with porting an application. The most challenging part of porting 

applications to a hardware platform such as the XD1000, is partitioning the problem such 

that it fits into the logic and communication resources of the given FPGA and platform. 

The Stage Master Explorer tool in the CoDeveloper tool suite can give the developer a 

rough estimate of the potential hardware speedup before conducting the time consuming 
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tasks of synthesis and place and route that are required to implement the application in 

hardware. The Stage Master Explorer tool graphically shows the computations that are 

preformed in a flow chart layout. From this graphical view, bottlenecks within the code 

can be easily identified allowing the developer to modify the code and minimize the 

space and communication costs when porting algorithms to hardware. 

 

Figure 2.5: A screenshot of an Excerpt of the LAMMPS algorithm in Stage Master 
Explorer.  Square boxes are communication variables, ovals are memory arrays and 
trapezoids are execution blocks. 
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Another feature of the Stage Master Explorer is that the number of stages or 

combinatorial cycles is automatically counted. From this number a developer can 

determine how many clock cycles that an algorithm may roughly take to complete. There 

is one caveat however, the stage count neglects memory and communication overheads 

so these must also be taken into consideration. Figure 2.5 is an excerpt of the main 

LAMMPS algorithm that was ported. Square boxes represent variables received over the 

shared memory stored at the index value 0,1,2,3, etc. or are constants. Ovals are BRAM 

memory locations on the FPGA and trapezoids are execution operations. For example 

‘+#32’ denotes a 32bit addition. Stage Master Explorer helps a developer to characterize 

the datapath of an algorithm and will be used in the next chapter to help characterize the 

FPGA communication requirements. 

With the background knowledge of LAMMPS, ImpulseC, and our choice of the 

XtremeData XD1000 platform we have laid out the tools we will use to demonstrate the 

hardware acceleration of a scientific application in the next chapter. Using this 

knowledge we will inspect the requirements of the application to better match the task to 

the RC hardware. The experimental results will tie together this knowledge and display a 

methodology of profiling, porting and the resulting speedup that a general user can 

achieve. 
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CHAPTER THREE 

EXPERIMENTAL RESULTS 

When considering code for application acceleration on reconfigurable computing 

platforms, it is critical to locate and characterize all communication and memory 

utilization related to the target code segments. This analysis is key to minimizing data 

transfer overheads and maximizing performance (Smith, et. al, 2006). Analysis of the 

LAMMPS application code with profiling tools revealed that the function 

pair_lj_charmm_coul_long:compute consumes approximately 70% of the total 

execution time when running the Rhodopsin benchmark. 

A Comparison of the complexity of each benchmark provided in the LAMMPS 

code base is given in table 3.1. 

Problem: LJ Chain EAM Chute Rhodopsin 

CPU/atom/step 1.35E-6 6.25E-7 3.62E-6 5.91E-7 2.47E-5

Ratio to LJ: 1.00 0.46 2.69 0.44 18.40

Table 3.1: A summary of single-processor LAMMPS performance in CPU secs per atom 
per timestep for the 5 benchmark problems (Sandia National Laboratory, 2006) 

 

The Rhodopsin Protein benchmark is the most difficult simulation to run of the group at 

more than 18 times slower than LJ. As described in the previous section, the expense in 

computing a large number of pairwise interactions accounts for the significant increase of 

complexity found in the Rhodopsin benchmark. This time-consuming calculation makes 

improving the computation of pairwise atomic interactions a desirable candidate for 

hardware acceleration. 
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An ideal target for hardware acceleration would have no child functions, 

repetitive intense computations and a minimal amount of communication. The selected 

function, pair_lj_charmm_coul_long:compute conforms closely to the two 

characteristics: a relatively small amount of communication versus computations and 

only one child function. For communication, 16 double-precision floating-point values 

are passed to the function and consumed by over a hundred 100 floating-point operations, 

consisting of division, multiplication, and addition/subtraction. This task is then repeated 

for each atom. 

In a traditional parallel implementation of LAMMPS, atoms are divided among 

the various processors within a computing system. For each atom of the 32,000 present in 

the Rhodopsin protein benchmark, pair_lj_charmm_coul_long:compute must compute 

the electrostatic and van der waals forces on each atom resulting from all neighboring 

atoms within a given cutoff distance. This cutoff, chosen at the discretion of the 

investigating scientist, is used to balance execution time with accuracy and for the 

purposes of these experiments a cutoff of 10 angstroms will be used. This cutoff is a 

universal value defined in the benchmark itself and is set for the purpose of allowing 

comparison between other benchmarked systems. Increasing the cutoff will result in a 

decline in parallel efficiency (IBM Corp., 2006; Reid and Smith, 2005). 

In light of the effect a cutoff has when using multiple processors or multiple 

nodes in a system, LAMMPS was profiled on a single processor to ascertain a more 

accurate overview of the structure and computational intensity within the program. This 

single-node analysis provided a clear picture of the memory requirements necessary in 
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the RC system implementation as well as where to target hardware implementation. The 

LAMMPS code was profiled running the Rhodopsin benchmark on a single 1.3 Ghz 

Power4 processor using Xprofiler. These tests were conducted without exclusive access 

to the entire machine, thus the background load is present in the results. Statistical runs 

were therefore conducted and the mean runtime was measured to be 194 seconds for the 

32,000-atom benchmark. Within the 194 seconds, a total of 132 seconds (68%) were 

consumed in the pair_lj_charmm_coul_long:compute function. Since this function 

consumed the largest amount of execution time compared to all other functions it is the 

prime candidate for hardware implementation. Dividing the total time (132 seconds) by 

the total number of timesteps (100) yields 1.32 seconds per timestep, which is the time 

required to compute 32,000 atoms. 

Implementation of LAMMPS running the Rhodopsin protein benchmark on the 

XD1000 development system consisted of decoupling the 

pair_lj_charmm_coul_long:compute function from the original application code and 

building the interfaces to marshal data between the host code and the FPGA module. The 

host code running on the Opteron™ processor of the XD1000 consists of the original 

LAMMPS code minus the pair_lj_charmm_coul_long:compute function, plus the 

software interfaces to the ported function running on the FPGA module.  The 

pair_lj_charmm_coul_long:compute function itself was split into an initialization 

section and a computation section. The initialization section receives the data that is used 

across the entire timestep through a shared memory interface coded in ImpulseC. The 

computation section receives each atom’s unique data from a second shared memory 
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interface, calculates it with almost no changes to the ordering and structure of the 

calculations in the function. The preservation of the structure and order of the function 

allow easy reference to the original software code as well as reducing the number of 

modifications needed to port the algorithm. Once the computation is complete, the values 

are written to the FPGA’s internal BRAM where they can be accessed by the host 

through another shared memory interface.  Most of the changes to the function to port it 

to the FPGA module were communication and memory related, the rest of the structure 

due to the ability of ImpulseC’s HLL development environment to automatically parse 

and compile the C code into a selected HDL, remains functionally the same. 

Stepping through the operation of the ported hardware function, each timestep 

starts with the receipt of new initial values. These initial values do not change during a 

given timestep and can be buffered before calculations commence, eliminating repetitive 

communication. The calculation mode is then initiated on the FPGA as normal execution 

progresses concurrently on the host side. Currently the hardware implementation loops 

64,000 times processing the same data repeatedly that is given at runtime for the purposes 

of gathering implementation timing. The FPGA does not communicate any results to the 

host during this loop but does write to internal BRAM after each atom calculation. The 

host program receives a signal after the completion of the entire loop and collects the 

results of the computation from the FPGA module. 

Timing is measured from the time the host program signals the FPGA to enter the 

loop of 64,000 atom calculations to the time the host receives a signal from the FPGA 

indicating completion of all atom calculations. It includes not only the computational 
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time but also two communication delays, one when sending a message to the FPGA to 

commence operation and another at the end of the run when the FPGA signals the host 

computations are complete.  The latency of the bus is obscured when using the generated 

HLL interface provided by the ImpulseC toolset, but it is assumed to be almost 

negligible. 

Taking advantage of the ImpulseC toolset, the ported 

pair_lj_charmm_coul_long:compute function described above was simulated first 

within the ImpulseC development environment to verify the functionality and estimate 

the performance. The simulated design has a maximum combinational path of 364 clock 

cycles; meaning, to computing one atom on the FPGA takes 364 clock cycles. This result 

is obtained purely through the automated translation of the HLL-to-HDL in CoDeveloper 

leaving the potential for further improvements, which will be discussed later. At the clock 

rate of 100Mhz, limited by the floating-point core design, 32,000 atoms (one time step) 

can be computed in 114ms based on the number of numerical operations the FPGA must 

perform internally. The simulated compute time does not include communication signals 

and data transfers overheads to and from the FPGA. Using equation 3.1, the effective 

speedup of the estimated function’s computations 11.5x, over an order of magnitude, for 

this specific function. 

 

Speedup =
RuntimeMicroprocessor

RuntimeFPGA−acceleration
 

Equation 3.1: Speedup (Alam, et. al, 2007) 
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This acceleration translates to a total overall runtime of only 70 seconds and a speedup 

for the entire application of 2.7x, neglecting all communication overheads. 

In addition to the simulated computational requirements, the communication 

performance is another important consideration for the viability of the system. An 

analysis of the communication overhead is needed to give an estimation of the bandwidth 

requirements for this implementation. In the ported code, a timestep is computed every 

100ms or ten timesteps per second. For the Rhodopsin protein benchmark this equates to 

transmitting 40.96MB of data or 32,000 atoms with 16 double precision floating-point 

numbers per atom to the FPGA. As shown in the previous section, figure 2.3, the 

theoretical bandwidth to the FPGA device is 1.6GB/s or 800MB/s bidirectional when 

leveraging the HyperTransport™ bus. The HyperTransport™ link provides more than 18 

times the required bandwidth for the application, leaving a wide margin for actual 

implementation requirements. 

The current implementation of the fully-accelerated application is not fully 

functional. The execution of the algorithm on the target FPGA results in erroneous 

values. The software simulation values are given in table 3.2 and the hardware 

implementation values in table 3.3 below. The hardware implementation values are 

largely affected by a bug in the handling of over and under flow situations that arise in 

the floating-point operations. To counteract the errors several methods were attempted. 

First, additional memory was allocated to include every variable in each step of the 

computation and variables were interspaced within memory with 64 bit blank blocks. 

This extra memory functions as a register, which allowed computations to be observed 
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with finer granularity. Further, the goal of using extra memory interspaced between each 

variable was to allow the capture of any overflow. The additional memory read from the 

device was blank indicating overflow from the floating-point operations was not being 

addressed. The numerical results were also unchanged. 

Columbic Force 0.063911 

(1/distance2) 0.900109 

Prefactor -4.358398 

(1/distance2)3 0.729266 

Lenard Jones force 736856.875000 

 
Table 3.2: Software simulation results.  ‘Distance’ is the distance between the given atom 
pair being computed. 
 

Columbic Force -0.000000 

(1/distance2) 3.660845 

Prefactor 0.000000 

(1/distance2)3 49.061855 

Lenard Jones force -66195928.000000 

 
Table 3.3: Hardware implementation results. Note the negative zero value, which 
indicates an underflow problem in the floating point core. 
 

Floating-point libraries were switched from XtremeData’s own implementation to 

Altera’s. Each floating-point IP library supports different rounding methods and operator 

implementations. The shift in libraries was expected to improve the results to within a 
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reasonable approximation of the software results. There was no change in the value 

calculated on the FPGA, which lead to an exploration of the timing and utilization of the 

implementation on the FPGA. The implementation uses approximately 35% of the total 

logic and all clock tolerances are met. If the utilization of the logic space were high, 

incorrect timing and placement of the design on the device might have developed causing 

calculation errors. 

For this implementation we use 2 blocks of 1MB bram to send and buffer values. 

The size of this buffer may be limited by the resources on the FPGA as the Stratix II 180 

is cited by Altera as having a maximum of 1.17MB of memory capacity.. The ImpulseC 

Codeveloper may also be limiting the size of buffers arbitrarily to ease HLL-to-HDL 

translation. Each block of atom values sent to the FPGA must also generate a signal to 

confirm that memory values are currently readable. The FPGA must then read a block of 

values and then generate a signal back to the host allowing the host to start rewriting that 

block of values. While the FPGA is still reading the values, the host is writing to the 

second block of values. The two blocks allow the FPGA and host to overlap reading and 

writing. Since the benchmark requires 40.96MB of data a second, a minimum of 41 

synchronizations are required. These synchronizations over all the transfers become a 

significant source of latency. The run time of the hardware implementation with 

communication overhead is almost 64 times slower than the original software run time.  

To get a better picture of just the computation performance of the hardware-ported 

algorithm, the original algorithm was modified to load just one atom’s values and then 

repeatedly perform the calculations 64,000 times (computationally equivalent to two 
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timesteps). The hardware performance figures are taken from this implementation in 

order to measure only the core performance of the algorithm’s calculations. 

While the results are numerically incorrect, the FPGA must still perform the all 

the operations. For example a multiplier will take N number of clock cycles regardless of 

it multiplying an erroneous or correct value, allowing timing to be somewhat independent 

of the values computed. The meantime of the hardware implementation for performing 

64,000 atom calculations, is 163ms and 168ms is the median. This is almost a 16x 

speedup due to the fact the run calculates twice the number of atoms, 64,000 atoms, 

versus 32,000 used in the software version of the Rhodopsin protein. This measured 

result is better than the estimates made with Stage Master Explorer. Results from Stage 

Master Explorer and timing runs are based on the core runtime of the algorithm, meaning 

they do not include any significant communication overhead which will be discussed 

later. 

The communication channels between the FPGA and host, as discussed earlier, 

are shown to be theoretically sufficient for the amount of data transferred. A previous 

implementation attempted to stream values to and from the device. The measured 

throughput when using these streaming interfaces was significantly smaller than what 

was needed for the ported algorithm. A move to shared memory interfaces did improved 

the bandwidth, but due to the synchronization required at every memory update between 

the host and FPGA for shared memory interfaces, the latency of the bus deteriorated 

performance. 
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The understanding gained through the method presented of analysis of the 

targeted application, simulated implementation, and hardware experimentation is 

universally applicable across RC and heterogeneous platforms. Results show significant 

possible performance gains if implementation details are suitably addressed in the 

continued development of HLL-to-HDL technologies. The acceleration methodology, 

flexibility and advancements in the field of FPGAs, and HLL support allow scientific 

disciplines to develop application specific hardware that are both potentially powerful 

and portable. As we will discuss in the next chapter, FPGAs serve as an increasingly 

universal solution to scientist’s needs for application acceleration across a number of 

specific problem domains. 
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CHAPTER FOUR 

CONCLUSIONS 

The implementation methodology and analysis presented for the targeted 

application including profiling and analysis, hardware implementation, simulations, 

performance prediction and analysis, and hardware experimentation are universally 

applicable across many RC and heterogeneous platforms. The acceleration methodology, 

flexibility and advancements in the field of FPGAs and HLL support combine to allow 

scientific disciplines to develop application specific hardware that is portable and not 

permanently fixed to a specific problem domain. Leveraging these advancements in 

reconfigurable computing (RC) hardware and software development has enabled 

scientific applications to utilize RC platforms to improve application performance and 

circumvent some of the limitations plaguing traditional high-performance computing 

platforms. 

Using LAMMPS as a representative scientific application this thesis presented an 

approach that is targeted at exploring how an application scientist could achieve 

application acceleration on RC hardware using a few key techniques. First profiling was 

used to characterize the application’s appropriateness for FPGA acceleration and identify 

where the majority of the compute time was spent. Next, these specific compute intense 

portions of the code were studied in detail to characterize computational and 

communication loads. To achieve the most performance, only a few ‘hot spots’ (compute 

intense functions) were exploited in ImpulseC for acceleration. Use of the ImpulseC 
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development environment allowed the estimation of the performance and verification of 

functionality in a HLL before deciding on targeting a specific platform. 

The specific platform chosen to demonstrate the implementation of the 

accelerated LAMMPS application was the XD1000. The XD1000 demonstrated potential 

to support HPC applications through its distinctive architecture. However, ImpulseC’s 

automated HLL-to-HDL was not able to fully utilize this architecture’s potential, leading 

to a cycle of identify and resolve issues on that platform. These issues while currently 

limiting should not detract from the focus of the performance gains of a hardware 

implementation. Neglecting the communication, the application acceleration is in line 

with what was estimated by the ImpulseC toolset. 

To further clarify, there are two main issues in the hardware implementation 

preventing a fully functional implementation. First, the double-precision floating point 

suffers from an underflow that causes a cascade effect down to other values in the 

calculation. The results from the hardware are thus numerically inconsistent from the 

software-only observations. Second, the interface between the host and FPGA on the 

XD1000 platform does function using a shared memory approach; however it is a poor 

choice for this type of application. For this reason this work has mainly focused on only 

the runtime of the core algorithm that was measured in software-only, in hardware 

simulation, and with the hardware implementation 

The demands of such an intensive HPC scientific application may necessitate 

VHDL hand-coding of a few crucial areas of communication. While developing a custom 

interface may be out of the scope of an application scientist, any other portions of the 
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algorithm can still use the automation and flexibility provided by the ImpulseC toolset. 

This leaves a scientist with the ability to update the target hardware to new versions of 

software given the hand-coded interface is robustly designed. It is expected that as the 

HLL-to-HDL software evolves, issues with platform and floating-point support will also 

be resolved. 

With minimum optimization and user effort, an appreciable speedup of 3x over 

the entire application is achievable. The results shown do neglect most or all of the 

communication between the FPGA and host, but sufficient communication present in the 

XD1000 platform to allow for implementation overheads. The analysis of the algorithm 

and system indicates a data bandwidth available that is substantially greater than 

required. However, desired implementation of improved communication techniques to 

fully utilize  the XD1000 platform outstrips the ImpulseC CoDeveloper’s current abilities 

provided by HLL-to-HDL translation. Room for performance optimization in the areas of 

pipelining and parallel processing on the FPGA are also plausible given the abundant 

bandwidth and current small logic utilization of the implementation. These optimizations 

are likely candidates for future work discussed in the next chapter and are projected to 

further improve the performance of LAMMPS. 
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CHAPTER FIVE 

FUTURE WORK 

The acceleration of the LAMMPS software places several complex demands on 

current HLL-to-HDL software. The architecture of the XD1000 is challenging due to the 

HyperTransport™ bus and dedicated SRAM that must be controlled and interfaced with 

the FPGA logic fabric or user’s design. Additionally the demand of fully functional 

double-precision and later single precision floating-point operations utilize libraries that 

have to integrate with these relatively unique communication interfaces. Problems such 

as timing and bandwidth within the FPGA module itself along with correct floating-point 

library implementations must all work properly for a successful hardware 

implementation.  Future work will examine in more detail the implementation difficulties 

and attempt to develop additional solutions to the present problems. 

Shared memory interfaces are one such difficulty.  This interface type was used 

due to the significantly limited performance of the alternative streaming interface. The 

result was that for every update to a memory block, a signal had to be generated to allow 

the host or FPGA respectively to know that the memory block was now valid for reading. 

This signal handshaking required for streaming interfaces introduced a large amount of 

latency.  In the future, streaming interfaces will be implemented to allow the buffering of 

incoming and outgoing data thus eliminating the need for signaling handshaking and is 

expected to increase the performance of the communication. 

Another future performance enhancement is the implementation of pipelining 

techniques for computing the forces on each atom. Initial attempts revealed insufficient 
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logic in the FPGA device to support a full pipeline of the function. With a revisal of 

communication interfaces and hand optimization, it is expected that this pipelined 

implementation is an easily achievable goal. The benefits would provide a higher 

throughput but a longer latency when observing the computations for an individual atom. 

The final goal on the agenda is to also include performance comparison research 

between the XtremeData XD1000 platform and the DS1000 system by DRC. These two 

systems are very similar in specifications. The main difference is the FPGA device: DRC 

DS1000 utilizes a Xilinx Virtex 4 FPGA as opposed to the Altera Stratix II FPGA in the 

XtremeData XD1000 platform. It is anticipated that the investigation of these two 

platforms will reveal advantages in FPGA devices and RC platforms as well as strategies 

in hardware and software that best meet with the needs of the scientific community. 
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APPENDIX 

Selected portions of LAMMPS Xprofiler Report 

Flat profile: Abbreviated results 

Each sample counts as 0.01 seconds. 

  %   cumulative   self              self     total            

 time   seconds   seconds    calls  Ks/call  Ks/call  name     

 74.33   2813.63  2813.63      101     0.03     0.03  PairLJCharmmCoulLong::compute(int, int) 

 13.78   3335.14   521.51       12     0.04     0.05  Neighbor::pair_bin_newton() 

  3.20   3456.33   121.19      101     0.00     0.00  PPPM::fieldforce() 

  1.69   3520.48    64.15 144365708     0.00     0.00  Neighbor::find_special(int, int) 

  1.57   3579.89    59.41      101     0.00     0.00  PPPM::make_rho() 

  0.99   3617.41    37.52      101     0.00     0.00  DihedralCharmm::compute(int, int) 

  0.83   3648.64    31.24  6464000     0.00     0.00  PPPM::compute_rho1d(double, double, double) 

  0.48   3666.64    18.00      101     0.00     0.00  AngleCharmm::compute(int, int) 

  0.34   3679.51    12.87      101     0.00     0.00  PPPM::setup() 

  0.28   3690.18    10.66     1373     0.00     0.00  pack_3d(double*, double*, pack_plan_3d*) 

  0.25   3699.81     9.63 40211534     0.00     0.00  Domain::minimum_image(double*, double*, double*) 

  0.21   3707.72     7.91     1272     0.00     0.00  unpack_3d_permute1_2(double*, double*, 

pack_plan_3d*) 

  0.17   3714.26     6.54      101     0.00     0.00  Pair::virial_compute() 

  0.16   3720.46     6.20      101     0.00     0.00  PPPM::poisson(int, int) 

  0.14   3725.66     5.20   427533     0.00     0.00  FixShake::shake3angle(int) 

  0.13   3730.66     5.00      101     0.00     0.00  Verlet::force_clear(int) 

  0.10   3734.45     3.79      606     0.00     0.00  AtomFull::unpack_reverse(int, int*, double*) 

----------------------------------------------------------------------------------------- 

call graph profile: Abriviated results 

          The sum of self and descendents is the major sort 

          for this listing. 

 

          function entries: 

 

index     the index of the function in the call graph 

          listing, as an aid to locating it (see below). 

 

%time     the percentage of the total time of the program 

          accounted for by this function and its 

          descendents. 

 

self      the number of seconds spent in this function 
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          itself. 

 

descendents 

          the number of seconds spent in the descendents of 

          this function on behalf of this function. 

 

called    the number of times this function is called (other 

          than recursive calls). 

 

self      the number of times this function calls itself 

          recursively. 

 

name      the name of the function, with an indication of 

          its membership in a cycle, if any. 

 

index     the index of the function in the call graph 

          listing, as an aid to locating it. 

 

 

 

          parent listings: 

 

self*     the number of seconds of this function's self time 

          which is due to calls from this parent. 

 

descendents* 

          the number of seconds of this function's 

          descendent time which is due to calls from this 

          parent. 

 

called**  the number of times this function is called by 

          this parent.  This is the numerator of the 

          fraction which divides up the function's time to 

          its parents. 

 

total*    the number of times this function was called by 

          all of its parents.  This is the denominator of 

          the propagation fraction. 
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parents   the name of this parent, with an indication of the 

          parent's membership in a cycle, if any. 

 

index     the index of this parent in the call graph 

          listing, as an aid in locating it. 

 

 

 

          children listings: 

 

self*     the number of seconds of this child's self time 

          which is due to being called by this function. 

 

descendent* 

          the number of seconds of this child's descendent's 

          time which is due to being called by this 

          function. 

 

called**  the number of times this child is called by this 

          function.  This is the numerator of the 

          propagation fraction for this child. 

 

total*    the number of times this child is called by all 

          functions.  This is the denominator of the 

          propagation fraction. 

 

children  the name of this child, and an indication of its 

          membership in a cycle, if any. 

 

index     the index of this child in the call graph listing, 

          as an aid to locating it. 

 

 

 

          * these fields are omitted for parents (or 

          children) in the same cycle as the function.  If 

          the function (or child) is a member of a cycle, 
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          the propagated times and propagation denominator 

          represent the self time and descendent time of the 

          cycle as a whole. 

 

          ** static-only parents and children are indicated 

          by a call count of 0. 

 

 

 

          cycle listings: 

          the cycle as a whole is listed with the same 

          fields as a function entry.  Below it are listed 

          the members of the cycle, and their contributions 

          to the time and call counts of the cycle. 

granularity: Each sample hit covers 4 bytes. 

 

                                  called/total       parents 

index  %time    self descendents  called+self    name         index 

                                  called/total       children 

 

                0.00      194.32       1/1           .__start [2] 

[1]     94.0    0.00      194.32       1         .main [1] 

                0.00       99.22       1/1           .Run::command(int,char**) [5] 

                0.00       94.95       1/1           .System::destroy() [7] 

                0.00        0.13       1/1           .ReadData::command(int,char**) [61] 

                0.00        0.02       3/3           .Input::next() [116] 

                0.00        0.00       1/1           .System::create() [179] 

                0.00        0.00       1/1           .System::open(int*,char***) [450] 

                0.00        0.00       1/1           .ReadData::ReadData() [435] 

                0.00        0.00       1/1           .ReadData::~ReadData() [443] 

                0.00        0.00       1/1           .System::close() [449] 

 

----------------------------------------------- 

                                                   <spontaneous> 

[2]     94.0    0.00      194.32                 .__start [2] 

                0.00      194.32       1/1           .main [1] 

                0.00        0.00       1/1           .__C_runtime_startup [476] 

 

----------------------------------------------- 

                0.00       94.95       1/2           .Update::~Update() [8] 

                0.00       94.95       1/2           .Verlet::run() [6] 

[3]     91.9    0.00      189.90       2         .Verlet::iterate(int) [3] 
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              132.58        0.79     100/101         .PairLJCharmmCoulLong::compute(int,int) [4] 

                0.02       28.09      11/12          .Neighbor::build() [9] 

                0.00       12.87     100/101         .PPPM::compute(int,int) [11] 

                0.00        7.43     100/100         .Modify::initial_integrate() [15] 

                3.13        0.49     100/101         .DihedralCharmm::compute(int,int) [21] 

                1.50        0.48     100/101         .AngleCharmm::compute(int,int) [23] 

                0.00        1.04     100/100         .Modify::post_force(int) [26] 

                0.35        0.00     100/101         .Verlet::force_clear(int) [41] 

                0.00        0.32     100/100         .Modify::final_integrate() [44] 

                0.00        0.25     100/101         .Comm::reverse_communicate() [49] 

                0.12        0.01     100/101         .BondHarmonic::compute(int,int) [59] 

                0.06        0.07      11/12          .Comm::borders() [58] 

                0.01        0.11      89/89          .Comm::communicate() [65] 

                0.00        0.08     100/100         .Neighbor::decide() [77] 

                0.04        0.01     100/101         .ImproperHarmonic::compute(int,int) [88] 

                0.00        0.04      11/11          .Modify::pre_neighbor() [103] 

                0.02        0.00      11/12          .Comm::exchange() [123] 

                0.00        0.00       2/2           .Output::write(int) [165] 

                0.00        0.00     513/513         .Timer::stamp(int) [216] 

                0.00        0.00     202/202         .Timer::stamp() [230] 

                0.00        0.00      11/12          .Domain::pbc() [269] 

                0.00        0.00      11/12          .Domain::reset_box() [270] 

                0.00        0.00      11/12          .Comm::setup() [268] 

                0.00        0.00      11/12          .Neighbor::setup_bins() [271] 

 

----------------------------------------------- 

                1.33        0.01       1/101         .Verlet::setup() [20] 

              132.58        0.79     100/101         .Verlet::iterate(int) [3] 

[4]     65.2  133.91        0.80     101         .PairLJCharmmCoulLong::compute(int,int) [4] 

                0.57        0.00     101/101         .Pair::virial_compute() [32] 

                0.23        0.00 2161526/9150610     .exp [27] 
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