
Clemson University
TigerPrints

All Theses Theses

5-2009

Acceleration Methodology for the Implementation
of Scientific Applications on Reconfigurable
Hardware
Phillip Martin
Clemson University, pmmarti@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Martin, Phillip, "Acceleration Methodology for the Implementation of Scientific Applications on Reconfigurable Hardware" (2009).
All Theses. 533.
https://tigerprints.clemson.edu/all_theses/533

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/533?utm_source=tigerprints.clemson.edu%2Fall_theses%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

ACCELERATION METHODOLOGY FOR THE IMPLEMENTATION OF
SCIENTIFIC APPLICATION ON RECONFIGURABLE HARDWARE

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Engineering

by
Phillip Murray Martin

May 2009

Accepted by:
Dr. Melissa Smith, Committee Chair

Dr. Richard Brooks
Dr. Walter Ligon

ABSTRACT

The role of heterogeneous multi-core architectures in the industrial and scientific

computing community is expanding. For researchers to increase the performance of

complex applications, a multifaceted approach is needed to utilize emerging

reconfigurable computing (RC) architectures. First, the method for accelerating

applications must provide flexible solutions for fully utilizing key architecture traits

across platforms. Secondly, the approach needs to be readily accessible to application

scientists. A recent trend toward emerging disruptive architectures is an important signal

that fundamental limitations in traditional high performance computing (HPC) are

limiting break through research. To respond to these challenges, scientists are under

pressure to identify new programming methodologies and elements in platform

architectures that will translate into enhanced program efficacy.

Reconfigurable computing (RC) allows the implementation of almost any

computer architecture trait, but identifying which traits work best for numerous scientific

problem domains is difficult. However, by leveraging the existing underlying framework

available in field programmable gate arrays (FPGAs), it is possible to build a method for

utilizing RC traits for accelerating scientific applications. By contrasting both hardware

and software changes, RC platforms afford developers the ability to examine various

architecture characteristics to find those best suited for production-level scientific

applications. The flexibility afforded by FPGAs allow these characteristics to then be

extrapolated to heterogeneous, multi-core and general-purpose computing on graphics

processing units (GP-GPU) HPC platforms. Additionally by coupling high-level

 ii

languages (HLL) with reconfigurable hardware, relevance to a wider industrial and

scientific population is achieved.

To provide these advancements to the scientific community we examine the

acceleration of a scientific application on a RC platform. By leveraging the flexibility

provided by FPGAs we develop a methodology that removes computational loads from

host systems and internalizes portions of communication with the aim of reducing fiscal

costs through the reduction of physical compute nodes required to achieve the same

runtime performance. Using this methodology an improvement in application

performance is shown to be possible without requiring hand implementation of HLL code

in a hardware description language (HDL)

A review of recent literature demonstrates the challenge of developing a platform-

independent flexible solution that allows access to cutting edge RC hardware for

application scientists. To address this challenge we propose a structured methodology

that begins with examination of the application’s profile, computations, and

communications and utilizes tools to assist the developer in making partitioning and

optimization decisions. Through experimental results, we will analyze the computational

requirements, describe the simulated and actual accelerated application implementation,

and finally describe problems encountered during development. Using this proposed

method, a 3x speedup is possible over the entire accelerated target application. Lastly we

discuss possible future work including further potential optimizations of the application

to improve this process and project the anticipated benefits.

 iii

DEDICATION

I dedicate this to my mom Murray Martin and to everyone who helped along the

way.

 iv

ACKNOWLEDGMENTS

Special thanks to: XtremeData for donating the development system to Clemson

University under their university partners program, the Computational Sciences and

Mathematics division at Oak Ridge National Laboratory and the University of Tennessee

at Knoxville for sponsoring the summer research at Oak Ridge National Laboratory that

lead to this paper, Pratul Agarwal, Sadaf Alam, and Melissa Smith for their involvement

with the research.

 v

TABLE OF CONTENTS

Page

TITLE PAGE..i

ABSTRACT...ii

DEDICATION..iv

ACKNOWLEDGMENTS ...v

LIST OF TABLES..viii

LIST OF EQUATIONS ...ix

LIST OF FIGURES ...x

CHAPTER

 I. INTRODUCTION ...1

 Role of FPGA based acceleration in HPC ...1
 Computation biology basics...3

 II. RESEARCH DESIGN AND METHODS...8

 Research foundation...8
 Framework ...12
 Focused platform and application details ..14

 III. EXPERIMENTAL RESULTS...18

 LAMMPS profiling..18
 LAMMPS ported calculations ...19
 LAMMPS ported communication..22
 Discussion of Implementation challenges ...22
 Results Hardware and Software Simulations...23

 vi

Table of Contents (Continued)

Page

 V. CONCLUSIONS ..28

 VI. FUTURE WORK ..31

APPENDIX: Selected portions of LAMMPS Xprofiler Report33

REFERENCES ..38

 vii

LIST OF TABLES

Table Page

 3.1 Summary of Single-processor LAMMPS Performance...............................18

 3.2 Simulated Implementation Results ...23

 3.3 Hardware Implementation Results ..24

 viii

LIST OF EQUATIONS

Equation Page

 1.1 Potential Energy Function ...3

 3.1 Speedup ..22

 ix

 x

LIST OF FIGURES

Figure Page

 2.1 Bovine Rhodopsin Protein ..9

 2.2 Parallel Scaling of LAMMPS ..10

 2.3 ImpulseC Codeveloper Tool Flow...12

 2.4 XD1000 Development System ...15

 2.5 Excerpt of Stage Master Explorer ...16

CHAPTER ONE

INTRODUCTION

Computer simulations are used extensively to accurately reproduce the process of

interest for the purpose of quantifying costs and benefits. Through the analysis of

different parameters and their effect on the recreated process, real world problems can be

explored. Weather, chemical, atomic, and biological processes are all areas that make

extensive use of computer simulations to develop new findings. The results from these

fields are, however, bound by two universal factors of computer simulation: effort

expended to create an efficient vs. accurate simulation model and the computational

power available to execute the simulation.

Historically, traditional computing solutions have aimed to leverage large-scale

distributed environments to boost computational power. This technique has in turn led to

the development of more complex and accurate models. As the model’s complexity

grows, the communication time needed in these distributed systems typically multiplies.

The inability to scale problems on these large-scale distributed platforms becomes a

critical impediment for new discoveries. To overcome this barrier, many industry vendors

are introducing heterogeneous platforms which pair traditional HPC hardware with

emerging non-RC architectures such as the Cell Broadband Engine™ and general-

purpose graphics processing units (GP-GPU) computing with Nvidia’s Tesla™ products.

Cell and GP-GPU architectures provide the a path to performance through on the use of

many-core. While the many-core approach does provide increased compute power and

internalized communication, a many-core approach is not an application specific solution.

The additional computational power may be underutilized since the underlying

architecture cannot be modified to specifically match the application. When the right

applications are matched to these architectures, they provided a very powerful computing

platform as demonstrated by Roadrunner, the world’s number one supercomputer as of

November 2008 is a heterogeneous platform combining AMD Opteron™ processors with

CellBE processors (Top500, Nov. 2008).

Another class of hybrid computing platforms that are both general purpose (can

be used on a wide variety of applications) and application specific (can be tailored

specifically for an application to achieve the best performance) is heterogeneous

reconfigurable computing. Over forty years since reconfigurable hardware was first

proposed, (Estrin and Turn, 1963), advancements in logic density and the availability of

hardware floating-point macros for reconfigurable platforms have garnered attention

from the scientific community. RC platforms with FPGAs are essentially an extreme

form of heterogeneous computing. The main difference between fixed multi-core (FMC)

or traditional homogeneous computing and FPGA implementations is that the underlying

architecture is not fixed. FPGAs allow the user to define the application-specific

architecture for solving problems in the hardware. Allowing the problem to guide the

underlying architecture is extremely efficient in terms of utilization and computational

density as only elements pertinent to the processing of the problem are included in the

design. The affect is a reduction in energy usage, space use, and often improved

communication versus a general-purpose processor.

 2

The abilities of an Application Specific Integrated Circuit (ASIC) parallel that of

a FPGA. While an ASIC has similar efficiency as an FPGA, it is usually cheaper in large

quantities and slightly faster than a field programmable device since it does not have the

extra routing overhead present in FPGA devices. However, at the time of manufacture an

ASIC’s design is fixed which restricts its use requiring the user to change the design,

develop and manufacture a new ASIC for new features or computations. For example, a

custom ASIC for assisting in simulating supernova most likely will not be useful to a

simulation involving weather forecasting. Thus the reconfigurable nature of a FPGA

more then makes up for the slight performance tradeoff. Further, currently available

FPGAs provide capacities that are necessary for the computationally dense and complex

simulations currently conducted in many fields of research.

Biomolecular simulation is one area that is leading the advancements in

computational biology. The fundamental approach for most biomolecular simulators is

the use of Molecular Dynamics (MD). MD is a method for treating atoms as points with

both mass and charge thereby allowing the use of classical mechanics (IBM Corp., 2006)

to simulate the process. The forces on a single atom are split into two categories: bonded

and non-bonded interactions. The bonded interactions refer to the forces resulting from

the chemical bonds between the atoms in question. Non-bonded forces consist of the

electrostatic and Lennard-Jones potentials of the atoms. The charge and mass along with

the force of any bonds, which includes bond angles and bond torsions, are feed into the

equation of motion to solve for the trajectory of each atom over an extremely small unit

of time (Alam, et al, 2007; IBM Corp., 2006). Predicting the behavior of these atoms

 3

requires a large number of force calculations that can be summarized as shown in the

overall potential energy function shown in equation 1.1:

E(potential) = f (bond)
bonds
∑ + f (angle)

angles
∑ + f (torsion) +

Aij

rij
12 −

Bij

rij
6

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ +

j<i

N

∑
i=1

N

∑ qiq j

εrij

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟

j<i

N

∑
i=1

N

∑
torsions
∑

Equation 1.1: Potential Energy function used in computing particle trajectories
(Alam, et. al, 2007)

 The first three chemical bond terms are constant throughout the simulation as the

number of bonds is kept constant (Alam, et. al, 2007). The latter two terms are the

summations of the van der Waals and electrostatic forces. These non-bonded terms

constitute a more significant portion of the computations than the bonded terms since the

number of atoms increases because the non-bonded terms are calculated between all other

atoms. This results in an O[N2]computations for a simulation with N atoms. Since all

atoms must communicate their current position to each other for the calculation of these

non-bonded interactions, scaling becomes a significant problem for large sets of atoms.

To overcome such challenges MD software packages typically include a ‘cutoff’

distance for non-bonded interactions allowing the users to control the complexity and to

improve algorithm parallelization (or performance) in traditional large-scale HPC

environments. This cutoff value is chosen at the discretion of the investigating scientist to

balance execution time with simulation accuracy. The accuracy achieved through the

selection of the cutoff value is problem dependent. A larger cutoff value results in a

longer but more accurate simulation since an infinite cutoff would result in the ideal

electrostatic force calculation from (Alam, et. al, 2007). Further, the cutoff value not only

 4

determines the number of non-bonded computations, it also establishes the amount of

required communications for a parallel implementation since an atom must exchange the

distance and position of all other atoms within the cutoff distance.

Several custom computing projects, such as Blue Gene/L, Folding@Home, MD-

GRAPE, and others (Bader, 2004), were developed with the aim of improving the

performance of comprehensive MD simulations. However, MD-Grape and

Folding@Home are more application specific solutions and are not versatile enough to be

used in different problem domains. Blue Gene/L, on the other hand is more versatile but

weakly scales for problems that are not easily segmented into smaller sub-problems.

While achievements for MD simulations have been significant, all the platforms still

suffer from the basic substantial communication requirements of particle interactions

(Sandia National Laboratory, 2006; IBM Corp., 2006; Reid and Smith, 2005). These

requirements for numerous particle interactions, which are dominated by global

communication, have previously made MD simulation a difficult candidate for

application acceleration. Early studies of MD simulations on reconfigurable computing

platforms however, have demonstrated the performance potential of this class of systems.

NAMD, a MD simulator similar to LAMMPS, was ported to the SRC-6 platform

by Kindratenko and Pointer (Kindratenko and Pointer, 2006). In this paper the authors

use profiling to perform an analysis on the NAMD code and identify a specific function

that is appropriate for hardware acceleration. The function is then ported using SRC’s

MAP C development tool to perform assisted C to HDL translation. These

implementation steps are similar to the methods and research presented here, however,

 5

the disadvantage of using the MAP C development tool is that it locks the user to a

particular platform, the SRC-MAPstations.

Scrofano also presents the acceleration of a MD simulation on a SRC MAPstation

(Scrofano, et. al, 2006). The focus here is on partitioning the application between

hardware and software. By correctly mapping certain tasks to the software and FPGA

hardware a 2x speedup is achievable. In choosing to keep at least some calculations in

software Scrofano is able to preserve the ability to flexibly add and remove tasks. The

main drawback of this work in comparison to the work presented here, is the choice to

develop and use a custom MD kernel that may not be amenable to applications in

widespread use by the scientific community.

Herbordt and Vancourt present a more focused view on the use of specialized MD

techniques that can be implemented to extract higher performance from FPGAs

(Herbordt and VanCourt, 2007). The twelve methods presented in the paper underscore

the need for development of hardware code that is portable across platforms while

maintaining acceleration for a family of software instead of more targeted, specialized

approaches. These key points were an inspiration for implementing the two large

communication buffers used in this research for shared memory to help hide signaling

overhead.

To address these limitations a flexible methodology is proposed for leveraging

recent advances in RC platforms and software development environments to accelerate

scientific applications. By using FPGAs to remove computational loads from the host

systems, we propose to redirect large portions of communication currently on the

 6

network to internal buses such as the AMD’s HyperTransport™ bus. The additional

computational power per node will also result in a reduced number of physical compute

nodes required to achieve the same runtime performance, which leads to other cost and

power savings. Furthermore, the use of HLL languages for development is emphasized as

a means to allow application scientists to utilize the performance of cutting-edge RC

platforms.

We have shown that there is a need for studying and developing a method for

flexible implementation of a scientific application that maintains platform independence.

This methodology should address the characteristics (computation and communication

profiles) of the targeted application and utilize appropriate tools for producing a hardware

accelerated program that is portable. The next chapter will discuss the LAMMPS

software, our chosen hardware platform and the HLL-to-HDL development environment

that allows scientists easier access to RC hardware.

 7

CHAPTER TWO

RESEARCH DESIGN AND METHODS

To harness the increased computational power provided by reconfigurable

computing (RC) hardware an innovative technique is essential for overcoming the

challenge of porting application code written in a high-level language to a hardware

description language (HDL). Further, traditional methods such as hand porting required

complex modifications to application codes for each potential target platform. These

modifications have been a significant hindrance to the adoption of reconfigurable

computing architectures. Even preliminary questions such as ‘what algorithm would

benefit most from porting to an RC platform’ and ‘how to accurately estimate the

performance gain without an actual implementation in hardware’ seem daunting when

combined with the user-defined nature of FPGAs.

Using a production-level molecular dynamics software package, LAMMPS

(Large-scale Atomic/Molecular Massively Parallel Simulator) developed by Sandia

National Laboratory (Sandia National Laboratory, 2006) we seek to develop and

demonstrate a framework for accelerating scientific applications in RC environments.

LAMMPS’s prevalence in the computational biology field, well defined mathematical

computations, and implementation in the C++ language make it a desirable candidate

application for demonstrating the methods used to accelerate this and similar classes of

scientific applications.

 8

To measure the performance gain against multiple systems we intend to use the

Rhodopsin protein benchmark. In detail the Rhodopsin protein benchmark comprises a

simulation of the interactions of 32,000 atoms contained in the Bovine Rhodopsin protein

in a solvated lipid bilayer (Sandia National Laboratory, 2007). In simple terms the protein

is trapped within a layer of lipid (fat) with water as the solvent surrounding both the top

and bottom of the lipid layer. Figure 2.1 shows a ribbon view of the protein. The

Rhodopsin protein benchmark is an inbuilt simulation provided with the LAMMPS

software as a means for a standard measure of system performance. This benchmark is

the most complex of the inbuilt LAMMPS simulations and a more detailed comparison is

given in chapter three. Additionally the development team has compiled a list, available

at http://lammps.sandia.gov/bench.html, of other traditional HPC platforms in which

performance data was collected for comparison.

 9

Figure 2.1: Bovine Rhodopsin protein shown in ribbon form with random coloring to
better show the alpha helices, the protein does not contain any beta sheets.

In a performance test on the IBM Blue Gene/L, LAMMPS was shown to be the

most parallelizable algorithm - scaling relatively efficiently to 4096 processors (IBM

Corp., 2006). As figure 2.2 shows, scaling beyond 4096 processors results in the overall

communication overhead outweighing the computational benefits – diminishing returns.

Overcoming this scaling limitation, present in many of the currently available high-

performance computing platforms, is the long-term goal of this research.

Figure 2.2: Parallel scaling of LAMMPS on Blue Gene (1M System: 1-million atom
scaled Rhodopsin protein, 4M System: 4-million atom scaled Rhodopsin protein) (IBM
Corp., 2006)

 10

As in the early days of computing, application porting to early RC environments

required the entire program functionality to be hand-coded in HDL. This costly

development method is still in use today due to the ability to produce the most

computationally efficient result with any other available development method. The result

is dependent, however, on several factors: how familiar the developer is with the

intricacies of both the hardware platform and software to be ported and the developer’s

proficiency with HDL. Hardware vendors have responded to this challenge with

intellectual property (IP) libraries that implement certain specific and sometimes limited

functionalities, such as floating-point libraries. These IP libraries however are often

black-boxes, their implementation is completely hidden to the application developer.

Additionally the IP library is almost always tied to that vendor’s hardware making cross

platform support difficult at best. These limitations have driven a recent push toward

complete tool suites that build upon the IP libraries of each hardware vendor to form a

universal SDK for programming RC platforms through the use of HLL abstraction. Of

these HLL-to-HDL suites, ImpulseC was chosen for this research due to its support for a

number of RC platforms of interest, namely the XtremeData XD1000, DRC DS1000 and

Nallatech H101 PCI-X board.

ImpulseC’s CoDeveloper tool suite (ImpulseC Corp., 2008) allows programmers

to conduct application development in a familiar language, C, without requiring an

extensive hardware background or familiarity with obtuse HDL languages. Further,

programmers can optionally cross-develop for multiple platforms with minimal changes.

 11

Various project settings control which platform the CoDeveloper tool suite targets

through specific generation macros. Fig. 2.3 displays an overview of the development

flow within the ImpulseC toolset.

Figure 2.3: ImpulseC Codeveloper tool flow (ImpulseC Corp., 2008)

In the RC development for LAMMPS, which is implemented in C++, we make

use of the ImpulseC development environment for easy integration between RC code and

existing software portions of the application. After modifying select portions of the

original LAMMPS source code with ImpulseC to target the reconfigurable hardware, it is

possible to port these portions of the algorithm to multiple hardware platforms. One of

our objectives is to examine and document the capabilities of the XD1000 with

LAMMPS as a potential platform of study for the scientific community. Later studies will

take advantage of the portability of code developed in ImpulseC to target other RC

platforms including the DRC DS1000 (DRC Computer Corp., 2008).

 12

The advantage of using a C-to-HDL development method, as (Kilts, 2007)

mentions, is that these applications have the ability to compile and run against other C

models. More importantly Kilts states that, “One of the primary benefits of C-level

design is the ability to simulate hardware and software in the same environment.” In this

implementation we extensively use both capabilities to reduce complexity and fast-track

the development on new platforms.

The ImpluseC CoDeveloper tool suite includes a C-to-VHDL (or Verilog)

compiler and development environment. This compiler permits the creation of

communication channels, buffers, and signals through simple function calls from the

high-level language (HLL) environment (Pellerin and Thibault, 2005). Effectually, the

abstraction gained from using HLL interfaces enables two things. Most importantly the

developer is not required to have specific hardware design knowledge to generate results.

An additional benefit is the user’s code is now portable since any platform specific code

is now hidden below these universal function calls making the functionality transparent to

the developer.

The development environment in the tool suite also assists the programmer with

system integration and includes several options for debugging and simulating application

codes in software for a variety of reconfigurable computing platforms. The built-in

simulator’s capabilities include simulating the buffers, communication channels, FPGA

hardware, and host program during run-time as well as logging options useful for

debugging. In detail the CoDeveloper tool suite supports the integer math functions:

addition, subtraction, multiplication, division, and number comparisons. Similar

 13

operations in floating-point are additionally supported to an extent. Issues relating to the

extent of implementation surrounding these floating-point operations are addressed in the

discussion of the results.

There are two main methods for producing VHDL or Verilog from target code

segments in the CoDeveloper tool suite: shared memory or a stream interface approach.

A stream interface allows a direct software-to-hardware channel that can be uni- or bi-

directional. The main benefit of a stream approach is the simplified signal interface to

synchronize producer and consumer functions when accessing data exchanged between

the host processor and FPGA. The more complex shared memory approach however

usually allows for higher data transfer bandwidth. All reads and writes for shared

memory are performed directly to the FPGA’s internal BRAM. The drawback with this

method is the need for the programmer to explicitly manage the synchronization of the

memory accesses in C through the use of signals. While ImpulseC’s development tools

are able to provide transparent communication, the bandwidth and latency is still

determined by the platform hardware.

The target platform is XtremeData Inc.’s XD1000 which has an Altera Stratix II

FPGA module that is an AMD Opteron™ replacement (XtremeData Corp., 2007). The

ability to place an FPGA module into any open Opteron socket allows the FPGA to

leverage the existing cooling, power and communication infrastructure. Further, the

ImpulseC SDK is able to take advantage of AMD’s HyperTransport™ bus present in the

XD1000 system to provide the tightly-coupled communication interface necessary to

 14

improve the scaling of scientific applications. The communication layout of the XD1000

development system is shown in figure 2.4.

Figure 2.4: XD1000 Development System Communication Interface Bandwidths
(XtremeData Corp., 2007)

As shown in figure 2.4, the XD1000 platform allows a developer great flexibility

in application porting through the close integration of the FPGA with the memory and

host CPU. With the knowledge of the underlying architecture, we can further explore the

requirements involved with porting an application. The most challenging part of porting

applications to a hardware platform such as the XD1000, is partitioning the problem such

that it fits into the logic and communication resources of the given FPGA and platform.

The Stage Master Explorer tool in the CoDeveloper tool suite can give the developer a

rough estimate of the potential hardware speedup before conducting the time consuming

 15

tasks of synthesis and place and route that are required to implement the application in

hardware. The Stage Master Explorer tool graphically shows the computations that are

preformed in a flow chart layout. From this graphical view, bottlenecks within the code

can be easily identified allowing the developer to modify the code and minimize the

space and communication costs when porting algorithms to hardware.

Figure 2.5: A screenshot of an Excerpt of the LAMMPS algorithm in Stage Master
Explorer. Square boxes are communication variables, ovals are memory arrays and
trapezoids are execution blocks.

 16

Another feature of the Stage Master Explorer is that the number of stages or

combinatorial cycles is automatically counted. From this number a developer can

determine how many clock cycles that an algorithm may roughly take to complete. There

is one caveat however, the stage count neglects memory and communication overheads

so these must also be taken into consideration. Figure 2.5 is an excerpt of the main

LAMMPS algorithm that was ported. Square boxes represent variables received over the

shared memory stored at the index value 0,1,2,3, etc. or are constants. Ovals are BRAM

memory locations on the FPGA and trapezoids are execution operations. For example

‘+#32’ denotes a 32bit addition. Stage Master Explorer helps a developer to characterize

the datapath of an algorithm and will be used in the next chapter to help characterize the

FPGA communication requirements.

With the background knowledge of LAMMPS, ImpulseC, and our choice of the

XtremeData XD1000 platform we have laid out the tools we will use to demonstrate the

hardware acceleration of a scientific application in the next chapter. Using this

knowledge we will inspect the requirements of the application to better match the task to

the RC hardware. The experimental results will tie together this knowledge and display a

methodology of profiling, porting and the resulting speedup that a general user can

achieve.

 17

CHAPTER THREE

EXPERIMENTAL RESULTS

When considering code for application acceleration on reconfigurable computing

platforms, it is critical to locate and characterize all communication and memory

utilization related to the target code segments. This analysis is key to minimizing data

transfer overheads and maximizing performance (Smith, et. al, 2006). Analysis of the

LAMMPS application code with profiling tools revealed that the function

pair_lj_charmm_coul_long:compute consumes approximately 70% of the total

execution time when running the Rhodopsin benchmark.

A Comparison of the complexity of each benchmark provided in the LAMMPS

code base is given in table 3.1.

Problem: LJ Chain EAM Chute Rhodopsin

CPU/atom/step 1.35E-6 6.25E-7 3.62E-6 5.91E-7 2.47E-5

Ratio to LJ: 1.00 0.46 2.69 0.44 18.40

Table 3.1: A summary of single-processor LAMMPS performance in CPU secs per atom
per timestep for the 5 benchmark problems (Sandia National Laboratory, 2006)

The Rhodopsin Protein benchmark is the most difficult simulation to run of the group at

more than 18 times slower than LJ. As described in the previous section, the expense in

computing a large number of pairwise interactions accounts for the significant increase of

complexity found in the Rhodopsin benchmark. This time-consuming calculation makes

improving the computation of pairwise atomic interactions a desirable candidate for

hardware acceleration.

 18

An ideal target for hardware acceleration would have no child functions,

repetitive intense computations and a minimal amount of communication. The selected

function, pair_lj_charmm_coul_long:compute conforms closely to the two

characteristics: a relatively small amount of communication versus computations and

only one child function. For communication, 16 double-precision floating-point values

are passed to the function and consumed by over a hundred 100 floating-point operations,

consisting of division, multiplication, and addition/subtraction. This task is then repeated

for each atom.

In a traditional parallel implementation of LAMMPS, atoms are divided among

the various processors within a computing system. For each atom of the 32,000 present in

the Rhodopsin protein benchmark, pair_lj_charmm_coul_long:compute must compute

the electrostatic and van der waals forces on each atom resulting from all neighboring

atoms within a given cutoff distance. This cutoff, chosen at the discretion of the

investigating scientist, is used to balance execution time with accuracy and for the

purposes of these experiments a cutoff of 10 angstroms will be used. This cutoff is a

universal value defined in the benchmark itself and is set for the purpose of allowing

comparison between other benchmarked systems. Increasing the cutoff will result in a

decline in parallel efficiency (IBM Corp., 2006; Reid and Smith, 2005).

In light of the effect a cutoff has when using multiple processors or multiple

nodes in a system, LAMMPS was profiled on a single processor to ascertain a more

accurate overview of the structure and computational intensity within the program. This

single-node analysis provided a clear picture of the memory requirements necessary in

 19

the RC system implementation as well as where to target hardware implementation. The

LAMMPS code was profiled running the Rhodopsin benchmark on a single 1.3 Ghz

Power4 processor using Xprofiler. These tests were conducted without exclusive access

to the entire machine, thus the background load is present in the results. Statistical runs

were therefore conducted and the mean runtime was measured to be 194 seconds for the

32,000-atom benchmark. Within the 194 seconds, a total of 132 seconds (68%) were

consumed in the pair_lj_charmm_coul_long:compute function. Since this function

consumed the largest amount of execution time compared to all other functions it is the

prime candidate for hardware implementation. Dividing the total time (132 seconds) by

the total number of timesteps (100) yields 1.32 seconds per timestep, which is the time

required to compute 32,000 atoms.

Implementation of LAMMPS running the Rhodopsin protein benchmark on the

XD1000 development system consisted of decoupling the

pair_lj_charmm_coul_long:compute function from the original application code and

building the interfaces to marshal data between the host code and the FPGA module. The

host code running on the Opteron™ processor of the XD1000 consists of the original

LAMMPS code minus the pair_lj_charmm_coul_long:compute function, plus the

software interfaces to the ported function running on the FPGA module. The

pair_lj_charmm_coul_long:compute function itself was split into an initialization

section and a computation section. The initialization section receives the data that is used

across the entire timestep through a shared memory interface coded in ImpulseC. The

computation section receives each atom’s unique data from a second shared memory

 20

interface, calculates it with almost no changes to the ordering and structure of the

calculations in the function. The preservation of the structure and order of the function

allow easy reference to the original software code as well as reducing the number of

modifications needed to port the algorithm. Once the computation is complete, the values

are written to the FPGA’s internal BRAM where they can be accessed by the host

through another shared memory interface. Most of the changes to the function to port it

to the FPGA module were communication and memory related, the rest of the structure

due to the ability of ImpulseC’s HLL development environment to automatically parse

and compile the C code into a selected HDL, remains functionally the same.

Stepping through the operation of the ported hardware function, each timestep

starts with the receipt of new initial values. These initial values do not change during a

given timestep and can be buffered before calculations commence, eliminating repetitive

communication. The calculation mode is then initiated on the FPGA as normal execution

progresses concurrently on the host side. Currently the hardware implementation loops

64,000 times processing the same data repeatedly that is given at runtime for the purposes

of gathering implementation timing. The FPGA does not communicate any results to the

host during this loop but does write to internal BRAM after each atom calculation. The

host program receives a signal after the completion of the entire loop and collects the

results of the computation from the FPGA module.

Timing is measured from the time the host program signals the FPGA to enter the

loop of 64,000 atom calculations to the time the host receives a signal from the FPGA

indicating completion of all atom calculations. It includes not only the computational

 21

time but also two communication delays, one when sending a message to the FPGA to

commence operation and another at the end of the run when the FPGA signals the host

computations are complete. The latency of the bus is obscured when using the generated

HLL interface provided by the ImpulseC toolset, but it is assumed to be almost

negligible.

Taking advantage of the ImpulseC toolset, the ported

pair_lj_charmm_coul_long:compute function described above was simulated first

within the ImpulseC development environment to verify the functionality and estimate

the performance. The simulated design has a maximum combinational path of 364 clock

cycles; meaning, to computing one atom on the FPGA takes 364 clock cycles. This result

is obtained purely through the automated translation of the HLL-to-HDL in CoDeveloper

leaving the potential for further improvements, which will be discussed later. At the clock

rate of 100Mhz, limited by the floating-point core design, 32,000 atoms (one time step)

can be computed in 114ms based on the number of numerical operations the FPGA must

perform internally. The simulated compute time does not include communication signals

and data transfers overheads to and from the FPGA. Using equation 3.1, the effective

speedup of the estimated function’s computations 11.5x, over an order of magnitude, for

this specific function.

Speedup =
RuntimeMicroprocessor

RuntimeFPGA−acceleration

Equation 3.1: Speedup (Alam, et. al, 2007)

 22

This acceleration translates to a total overall runtime of only 70 seconds and a speedup

for the entire application of 2.7x, neglecting all communication overheads.

In addition to the simulated computational requirements, the communication

performance is another important consideration for the viability of the system. An

analysis of the communication overhead is needed to give an estimation of the bandwidth

requirements for this implementation. In the ported code, a timestep is computed every

100ms or ten timesteps per second. For the Rhodopsin protein benchmark this equates to

transmitting 40.96MB of data or 32,000 atoms with 16 double precision floating-point

numbers per atom to the FPGA. As shown in the previous section, figure 2.3, the

theoretical bandwidth to the FPGA device is 1.6GB/s or 800MB/s bidirectional when

leveraging the HyperTransport™ bus. The HyperTransport™ link provides more than 18

times the required bandwidth for the application, leaving a wide margin for actual

implementation requirements.

The current implementation of the fully-accelerated application is not fully

functional. The execution of the algorithm on the target FPGA results in erroneous

values. The software simulation values are given in table 3.2 and the hardware

implementation values in table 3.3 below. The hardware implementation values are

largely affected by a bug in the handling of over and under flow situations that arise in

the floating-point operations. To counteract the errors several methods were attempted.

First, additional memory was allocated to include every variable in each step of the

computation and variables were interspaced within memory with 64 bit blank blocks.

This extra memory functions as a register, which allowed computations to be observed

 23

with finer granularity. Further, the goal of using extra memory interspaced between each

variable was to allow the capture of any overflow. The additional memory read from the

device was blank indicating overflow from the floating-point operations was not being

addressed. The numerical results were also unchanged.

Columbic Force 0.063911

(1/distance2) 0.900109

Prefactor -4.358398

(1/distance2)3 0.729266

Lenard Jones force 736856.875000

Table 3.2: Software simulation results. ‘Distance’ is the distance between the given atom
pair being computed.

Columbic Force -0.000000

(1/distance2) 3.660845

Prefactor 0.000000

(1/distance2)3 49.061855

Lenard Jones force -66195928.000000

Table 3.3: Hardware implementation results. Note the negative zero value, which
indicates an underflow problem in the floating point core.

Floating-point libraries were switched from XtremeData’s own implementation to

Altera’s. Each floating-point IP library supports different rounding methods and operator

implementations. The shift in libraries was expected to improve the results to within a

 24

reasonable approximation of the software results. There was no change in the value

calculated on the FPGA, which lead to an exploration of the timing and utilization of the

implementation on the FPGA. The implementation uses approximately 35% of the total

logic and all clock tolerances are met. If the utilization of the logic space were high,

incorrect timing and placement of the design on the device might have developed causing

calculation errors.

For this implementation we use 2 blocks of 1MB bram to send and buffer values.

The size of this buffer may be limited by the resources on the FPGA as the Stratix II 180

is cited by Altera as having a maximum of 1.17MB of memory capacity.. The ImpulseC

Codeveloper may also be limiting the size of buffers arbitrarily to ease HLL-to-HDL

translation. Each block of atom values sent to the FPGA must also generate a signal to

confirm that memory values are currently readable. The FPGA must then read a block of

values and then generate a signal back to the host allowing the host to start rewriting that

block of values. While the FPGA is still reading the values, the host is writing to the

second block of values. The two blocks allow the FPGA and host to overlap reading and

writing. Since the benchmark requires 40.96MB of data a second, a minimum of 41

synchronizations are required. These synchronizations over all the transfers become a

significant source of latency. The run time of the hardware implementation with

communication overhead is almost 64 times slower than the original software run time.

To get a better picture of just the computation performance of the hardware-ported

algorithm, the original algorithm was modified to load just one atom’s values and then

repeatedly perform the calculations 64,000 times (computationally equivalent to two

 25

timesteps). The hardware performance figures are taken from this implementation in

order to measure only the core performance of the algorithm’s calculations.

While the results are numerically incorrect, the FPGA must still perform the all

the operations. For example a multiplier will take N number of clock cycles regardless of

it multiplying an erroneous or correct value, allowing timing to be somewhat independent

of the values computed. The meantime of the hardware implementation for performing

64,000 atom calculations, is 163ms and 168ms is the median. This is almost a 16x

speedup due to the fact the run calculates twice the number of atoms, 64,000 atoms,

versus 32,000 used in the software version of the Rhodopsin protein. This measured

result is better than the estimates made with Stage Master Explorer. Results from Stage

Master Explorer and timing runs are based on the core runtime of the algorithm, meaning

they do not include any significant communication overhead which will be discussed

later.

The communication channels between the FPGA and host, as discussed earlier,

are shown to be theoretically sufficient for the amount of data transferred. A previous

implementation attempted to stream values to and from the device. The measured

throughput when using these streaming interfaces was significantly smaller than what

was needed for the ported algorithm. A move to shared memory interfaces did improved

the bandwidth, but due to the synchronization required at every memory update between

the host and FPGA for shared memory interfaces, the latency of the bus deteriorated

performance.

 26

The understanding gained through the method presented of analysis of the

targeted application, simulated implementation, and hardware experimentation is

universally applicable across RC and heterogeneous platforms. Results show significant

possible performance gains if implementation details are suitably addressed in the

continued development of HLL-to-HDL technologies. The acceleration methodology,

flexibility and advancements in the field of FPGAs, and HLL support allow scientific

disciplines to develop application specific hardware that are both potentially powerful

and portable. As we will discuss in the next chapter, FPGAs serve as an increasingly

universal solution to scientist’s needs for application acceleration across a number of

specific problem domains.

 27

CHAPTER FOUR

CONCLUSIONS

The implementation methodology and analysis presented for the targeted

application including profiling and analysis, hardware implementation, simulations,

performance prediction and analysis, and hardware experimentation are universally

applicable across many RC and heterogeneous platforms. The acceleration methodology,

flexibility and advancements in the field of FPGAs and HLL support combine to allow

scientific disciplines to develop application specific hardware that is portable and not

permanently fixed to a specific problem domain. Leveraging these advancements in

reconfigurable computing (RC) hardware and software development has enabled

scientific applications to utilize RC platforms to improve application performance and

circumvent some of the limitations plaguing traditional high-performance computing

platforms.

Using LAMMPS as a representative scientific application this thesis presented an

approach that is targeted at exploring how an application scientist could achieve

application acceleration on RC hardware using a few key techniques. First profiling was

used to characterize the application’s appropriateness for FPGA acceleration and identify

where the majority of the compute time was spent. Next, these specific compute intense

portions of the code were studied in detail to characterize computational and

communication loads. To achieve the most performance, only a few ‘hot spots’ (compute

intense functions) were exploited in ImpulseC for acceleration. Use of the ImpulseC

 28

development environment allowed the estimation of the performance and verification of

functionality in a HLL before deciding on targeting a specific platform.

The specific platform chosen to demonstrate the implementation of the

accelerated LAMMPS application was the XD1000. The XD1000 demonstrated potential

to support HPC applications through its distinctive architecture. However, ImpulseC’s

automated HLL-to-HDL was not able to fully utilize this architecture’s potential, leading

to a cycle of identify and resolve issues on that platform. These issues while currently

limiting should not detract from the focus of the performance gains of a hardware

implementation. Neglecting the communication, the application acceleration is in line

with what was estimated by the ImpulseC toolset.

To further clarify, there are two main issues in the hardware implementation

preventing a fully functional implementation. First, the double-precision floating point

suffers from an underflow that causes a cascade effect down to other values in the

calculation. The results from the hardware are thus numerically inconsistent from the

software-only observations. Second, the interface between the host and FPGA on the

XD1000 platform does function using a shared memory approach; however it is a poor

choice for this type of application. For this reason this work has mainly focused on only

the runtime of the core algorithm that was measured in software-only, in hardware

simulation, and with the hardware implementation

The demands of such an intensive HPC scientific application may necessitate

VHDL hand-coding of a few crucial areas of communication. While developing a custom

interface may be out of the scope of an application scientist, any other portions of the

 29

algorithm can still use the automation and flexibility provided by the ImpulseC toolset.

This leaves a scientist with the ability to update the target hardware to new versions of

software given the hand-coded interface is robustly designed. It is expected that as the

HLL-to-HDL software evolves, issues with platform and floating-point support will also

be resolved.

With minimum optimization and user effort, an appreciable speedup of 3x over

the entire application is achievable. The results shown do neglect most or all of the

communication between the FPGA and host, but sufficient communication present in the

XD1000 platform to allow for implementation overheads. The analysis of the algorithm

and system indicates a data bandwidth available that is substantially greater than

required. However, desired implementation of improved communication techniques to

fully utilize the XD1000 platform outstrips the ImpulseC CoDeveloper’s current abilities

provided by HLL-to-HDL translation. Room for performance optimization in the areas of

pipelining and parallel processing on the FPGA are also plausible given the abundant

bandwidth and current small logic utilization of the implementation. These optimizations

are likely candidates for future work discussed in the next chapter and are projected to

further improve the performance of LAMMPS.

 30

CHAPTER FIVE

FUTURE WORK

The acceleration of the LAMMPS software places several complex demands on

current HLL-to-HDL software. The architecture of the XD1000 is challenging due to the

HyperTransport™ bus and dedicated SRAM that must be controlled and interfaced with

the FPGA logic fabric or user’s design. Additionally the demand of fully functional

double-precision and later single precision floating-point operations utilize libraries that

have to integrate with these relatively unique communication interfaces. Problems such

as timing and bandwidth within the FPGA module itself along with correct floating-point

library implementations must all work properly for a successful hardware

implementation. Future work will examine in more detail the implementation difficulties

and attempt to develop additional solutions to the present problems.

Shared memory interfaces are one such difficulty. This interface type was used

due to the significantly limited performance of the alternative streaming interface. The

result was that for every update to a memory block, a signal had to be generated to allow

the host or FPGA respectively to know that the memory block was now valid for reading.

This signal handshaking required for streaming interfaces introduced a large amount of

latency. In the future, streaming interfaces will be implemented to allow the buffering of

incoming and outgoing data thus eliminating the need for signaling handshaking and is

expected to increase the performance of the communication.

Another future performance enhancement is the implementation of pipelining

techniques for computing the forces on each atom. Initial attempts revealed insufficient

 31

logic in the FPGA device to support a full pipeline of the function. With a revisal of

communication interfaces and hand optimization, it is expected that this pipelined

implementation is an easily achievable goal. The benefits would provide a higher

throughput but a longer latency when observing the computations for an individual atom.

The final goal on the agenda is to also include performance comparison research

between the XtremeData XD1000 platform and the DS1000 system by DRC. These two

systems are very similar in specifications. The main difference is the FPGA device: DRC

DS1000 utilizes a Xilinx Virtex 4 FPGA as opposed to the Altera Stratix II FPGA in the

XtremeData XD1000 platform. It is anticipated that the investigation of these two

platforms will reveal advantages in FPGA devices and RC platforms as well as strategies

in hardware and software that best meet with the needs of the scientific community.

 32

APPENDIX

Selected portions of LAMMPS Xprofiler Report

Flat profile: Abbreviated results

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls Ks/call Ks/call name

 74.33 2813.63 2813.63 101 0.03 0.03 PairLJCharmmCoulLong::compute(int, int)

 13.78 3335.14 521.51 12 0.04 0.05 Neighbor::pair_bin_newton()

 3.20 3456.33 121.19 101 0.00 0.00 PPPM::fieldforce()

 1.69 3520.48 64.15 144365708 0.00 0.00 Neighbor::find_special(int, int)

 1.57 3579.89 59.41 101 0.00 0.00 PPPM::make_rho()

 0.99 3617.41 37.52 101 0.00 0.00 DihedralCharmm::compute(int, int)

 0.83 3648.64 31.24 6464000 0.00 0.00 PPPM::compute_rho1d(double, double, double)

 0.48 3666.64 18.00 101 0.00 0.00 AngleCharmm::compute(int, int)

 0.34 3679.51 12.87 101 0.00 0.00 PPPM::setup()

 0.28 3690.18 10.66 1373 0.00 0.00 pack_3d(double*, double*, pack_plan_3d*)

 0.25 3699.81 9.63 40211534 0.00 0.00 Domain::minimum_image(double*, double*, double*)

 0.21 3707.72 7.91 1272 0.00 0.00 unpack_3d_permute1_2(double*, double*,

pack_plan_3d*)

 0.17 3714.26 6.54 101 0.00 0.00 Pair::virial_compute()

 0.16 3720.46 6.20 101 0.00 0.00 PPPM::poisson(int, int)

 0.14 3725.66 5.20 427533 0.00 0.00 FixShake::shake3angle(int)

 0.13 3730.66 5.00 101 0.00 0.00 Verlet::force_clear(int)

 0.10 3734.45 3.79 606 0.00 0.00 AtomFull::unpack_reverse(int, int*, double*)

call graph profile: Abriviated results

 The sum of self and descendents is the major sort

 for this listing.

 function entries:

index the index of the function in the call graph

 listing, as an aid to locating it (see below).

%time the percentage of the total time of the program

 accounted for by this function and its

 descendents.

self the number of seconds spent in this function

 33

 itself.

descendents

 the number of seconds spent in the descendents of

 this function on behalf of this function.

called the number of times this function is called (other

 than recursive calls).

self the number of times this function calls itself

 recursively.

name the name of the function, with an indication of

 its membership in a cycle, if any.

index the index of the function in the call graph

 listing, as an aid to locating it.

 parent listings:

self* the number of seconds of this function's self time

 which is due to calls from this parent.

descendents*

 the number of seconds of this function's

 descendent time which is due to calls from this

 parent.

called** the number of times this function is called by

 this parent. This is the numerator of the

 fraction which divides up the function's time to

 its parents.

total* the number of times this function was called by

 all of its parents. This is the denominator of

 the propagation fraction.

 34

parents the name of this parent, with an indication of the

 parent's membership in a cycle, if any.

index the index of this parent in the call graph

 listing, as an aid in locating it.

 children listings:

self* the number of seconds of this child's self time

 which is due to being called by this function.

descendent*

 the number of seconds of this child's descendent's

 time which is due to being called by this

 function.

called** the number of times this child is called by this

 function. This is the numerator of the

 propagation fraction for this child.

total* the number of times this child is called by all

 functions. This is the denominator of the

 propagation fraction.

children the name of this child, and an indication of its

 membership in a cycle, if any.

index the index of this child in the call graph listing,

 as an aid to locating it.

 * these fields are omitted for parents (or

 children) in the same cycle as the function. If

 the function (or child) is a member of a cycle,

 35

 the propagated times and propagation denominator

 represent the self time and descendent time of the

 cycle as a whole.

 ** static-only parents and children are indicated

 by a call count of 0.

 cycle listings:

 the cycle as a whole is listed with the same

 fields as a function entry. Below it are listed

 the members of the cycle, and their contributions

 to the time and call counts of the cycle.

granularity: Each sample hit covers 4 bytes.

 called/total parents

index %time self descendents called+self name index

 called/total children

 0.00 194.32 1/1 .__start [2]

[1] 94.0 0.00 194.32 1 .main [1]

 0.00 99.22 1/1 .Run::command(int,char**) [5]

 0.00 94.95 1/1 .System::destroy() [7]

 0.00 0.13 1/1 .ReadData::command(int,char**) [61]

 0.00 0.02 3/3 .Input::next() [116]

 0.00 0.00 1/1 .System::create() [179]

 0.00 0.00 1/1 .System::open(int*,char***) [450]

 0.00 0.00 1/1 .ReadData::ReadData() [435]

 0.00 0.00 1/1 .ReadData::~ReadData() [443]

 0.00 0.00 1/1 .System::close() [449]

 <spontaneous>

[2] 94.0 0.00 194.32 .__start [2]

 0.00 194.32 1/1 .main [1]

 0.00 0.00 1/1 .__C_runtime_startup [476]

 0.00 94.95 1/2 .Update::~Update() [8]

 0.00 94.95 1/2 .Verlet::run() [6]

[3] 91.9 0.00 189.90 2 .Verlet::iterate(int) [3]

 36

 132.58 0.79 100/101 .PairLJCharmmCoulLong::compute(int,int) [4]

 0.02 28.09 11/12 .Neighbor::build() [9]

 0.00 12.87 100/101 .PPPM::compute(int,int) [11]

 0.00 7.43 100/100 .Modify::initial_integrate() [15]

 3.13 0.49 100/101 .DihedralCharmm::compute(int,int) [21]

 1.50 0.48 100/101 .AngleCharmm::compute(int,int) [23]

 0.00 1.04 100/100 .Modify::post_force(int) [26]

 0.35 0.00 100/101 .Verlet::force_clear(int) [41]

 0.00 0.32 100/100 .Modify::final_integrate() [44]

 0.00 0.25 100/101 .Comm::reverse_communicate() [49]

 0.12 0.01 100/101 .BondHarmonic::compute(int,int) [59]

 0.06 0.07 11/12 .Comm::borders() [58]

 0.01 0.11 89/89 .Comm::communicate() [65]

 0.00 0.08 100/100 .Neighbor::decide() [77]

 0.04 0.01 100/101 .ImproperHarmonic::compute(int,int) [88]

 0.00 0.04 11/11 .Modify::pre_neighbor() [103]

 0.02 0.00 11/12 .Comm::exchange() [123]

 0.00 0.00 2/2 .Output::write(int) [165]

 0.00 0.00 513/513 .Timer::stamp(int) [216]

 0.00 0.00 202/202 .Timer::stamp() [230]

 0.00 0.00 11/12 .Domain::pbc() [269]

 0.00 0.00 11/12 .Domain::reset_box() [270]

 0.00 0.00 11/12 .Comm::setup() [268]

 0.00 0.00 11/12 .Neighbor::setup_bins() [271]

 1.33 0.01 1/101 .Verlet::setup() [20]

 132.58 0.79 100/101 .Verlet::iterate(int) [3]

[4] 65.2 133.91 0.80 101 .PairLJCharmmCoulLong::compute(int,int) [4]

 0.57 0.00 101/101 .Pair::virial_compute() [32]

 0.23 0.00 2161526/9150610 .exp [27]

 37

REFERENCES

Alam, S.R., P.K. Agarwal, J.S. Vetter, and M.C. Smith, “Throughput Improvement of

Molecular Dynamics Simulations Using Reconfigurable Computing,” Scalable
Computing: Practice and Experience - Scientific International Journal for
Parallel and Distributed Computing, 8/4, 395-410, (2007).

Alam, S. R., P. K. Agarwal, M. C. Smith, J. S. Vetter, and D. Caliga. “Using FPGA

Devices to Accelerate Biomolecular Simulations.” Computer vol. 40, no. 3.
March 2007. pp. 66-73.

Bader, D. A. “Computational biology and high-performance computing.” Comm. ACM.

vol. 47 no. 11, June 2004. pp. 34-41.

DRC Computer Corp. “DRC DS1000 Dev System.” DRC Computer Corp. product brief.

2008; http://www.drccomputer.com/pdfs/DRC_DS1000_fall07.pdf

Estrin, G. and R. Turn. “Automatic Assignment of Computations in a Variable Structure

Computer System.” IEEE Transactions on Electronic Computers. Vol. EC12 No.
5, December 1963.

Herbordt, M. C., T. VanCourt, Y. F. Gu, B. Sukhwani, A. Conti, J. Model, and D.

DiSabello. “Achieving high performance with FPGA-based computing.”
Computer vol. 40, 2007. pp. 50-57.

IBM Corp. “Life Sciences Molecular Dynamics Applications on the IBM System Blue

Gene Solution: Performance Overview,” IBM Corp. white paper, 2006.

ImpulseC Corp. “ImpulseC CoDeveloper C-to-FPGA tools.” ImpulseC Codeveloper

product website, 2008; http://www.impulsec.com/products_universal.htm

Kilts, S. Advanced FPGA Design: Architecture, Implementation, and Optimization.

Wiley-IEEE Press, 2007.

Kindratenko, V., and D. Pointer. “A case study in porting a production scientific

supercomputing application to a reconfigurable computer.” in IEEE Symposium
on Field-Programmable Custom Computing Machines, 2006.

 38

 39

Pellerin, D. and S. Thibault, Pratical FPGA Programming in C. Upper Saddle River, NJ:
Prentice-Hall, 2005.

Reid, F. and L. Smith, “Performance and Profiling of the LAMMPS Code on HPCx.”

tech. report HPCxTR0508, HPCx Consortium, 2005.

Sandia National Laboratory. LAMMPS Molecular Dynamics Simulator, Release April

2006; http://lammps.sandia.gov.

Scrofano, R., M. Gokhale, F. Trouw, and V. Prasanna, “A Hardware/Software Approach

to Molecular Dynamics on Reconfigurable Computers.” in IEEE Symposium on
Field-Programmable Custom Computing Machines, 2006.

Smith, M.C., S.R. Alam, P. Agarwal, and J.S. Vetter, “A Task-based Development Model

for Accelerating Large-Scale Scientific Applications on FPGA-based
Reconfigurable Computing Platforms.” Reconfigurable Systems Summer Institute,
RSSI’06, Champaign-Urbana, IL: July 10-14, 2006.

Top500 “Top 500 SuperComputers November 2008.” Top 500 Supercomputer website,

2008; http://www.top500.org/lists/2008/11

XtremeData Corp. “XD1000 Development System Product Brief.” XtremeData Corp.

product brief. 2007;8
http://www.xtremedatainc.com/pdf/Dev_Sys_XD1000_Brief.pdf

	Clemson University
	TigerPrints
	5-2009

	Acceleration Methodology for the Implementation of Scientific Applications on Reconfigurable Hardware
	Phillip Martin
	Recommended Citation

	Acceleration Methodology for the Implementation of Scientific Applications on Reconfigurable Hardware

