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ABSTRACT 

 

Metrology systems take coordinate information directly from the surface of a 

manufactured part and generate millions of (X, Y, Z) data points. The inspection process 

often involves fitting analytic primitives such as sphere, cone, torus, cylinder and plane to 

these points which represent an object with the corresponding shape. Typically, a least 

squares fit of the parameters of the shape to the point set is performed. The least squares 

fit attempts to minimize the sum of the squares of the distances between the points and 

the primitive. The objective function however, cannot be solved in the closed form and 

numerical minimization techniques are required to obtain the solution. These techniques 

as applied to primitive fitting entail iteratively solving large systems of linear equations 

generally involving large floating point numbers until the solution has converged. The 

current problem in-process metrology faces is the large computational times for the 

analysis of these millions of streaming data points. This research addresses the bottleneck 

using the Graphical Processing Unit (GPU), primarily developed by the computer gaming 

industry, to optimize operations. 

The explosive growth in the programming capabilities and raw processing power 

of Graphical Processing Units has opened up new avenues for their use in non-graphic 

applications. The combination of large stream of data and the need for 3D vector 

operations make the primitive shape fit algorithms excellent candidates for processing via 

a GPU. The work presented in this research investigates the use of the parallel processing 

capabilities of the GPU in expediting specific computations involved in the fitting 

procedure. The least squares fit algorithms for the circle, sphere, cylinder, plane, cone 
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and torus have been implemented on the GPU using NVIDIA‟s Compute Unified Device 

Architecture (CUDA). The implementations are benchmarked against those on a CPU 

which are carried out using C++. The Gauss Newton minimization algorithm is used to 

obtain the best fit parameters for each of the aforementioned primitives. The computation 

times for the two implementations are compared. It is demonstrated that the GPU is about 

3-4 times faster than the CPU for a relatively simple geometry such as the circle while the 

factor scales to about 14 for a torus which is more complex.  
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CHAPTER I 

INTRODUCTION 

 

Traditional Metrology 

 Metrology is the science of measurement. It is a very important aspect of the 

design and manufacturing process. Any part is manufactured based on a set of desired 

characteristics it should possess which are specified by the designer It is required to have 

a quantification of how well the part or artifact meets the design requirements. This is 

generally done by the inspection process or measurement which involves procuring the 

dimensional characteristics of the part and comparing it with the design.  

 Traditionally, manufactured parts are measured based on specific features such as 

diameter, length and flatness using instruments such as calipers, micrometers and other 

gauges. This measurement however is one or two-dimensional and neglects the three 

dimensional characteristics of the part. Further, this kind of measurement is susceptible to 

human error as it is not automated. The continuous quality improvement has given rise to 

the need for a new generation of metrology tools. To this end, a variety of metrology 

systems have been developed to take 3D coordinate information directly from the surface 

of the part and the process is termed as Coordinate Metrology. 

 

Coordinate Metrology  

Coordinate metrology or computational metrology provides more complete 

information of the manufactured parts. This process involves the application of 
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mathematical models or tools to solve problems encountered in metrology. Generally 

these problems involve the analysis of coordinate measurements made from a Coordinate 

Measuring Machine (CMM) or any other measuring system such as theodolites, laser 

tracking systems and the like. There are a wide variety of approaches to analyze the data 

and determine whether the points in the data set match the intended geometry described 

in the CAD file. Currently, state-of-the-art measuring devices generate millions of data 

points and their analysis requires complicated procedures and algorithms. This analysis 

often requires comparison of these large number of data points to thousands of surfaces 

represented by the CAD model to register or localize the points to it by doing a least 

squares fit. The other problem that arises is the need to fit a primitive shape such as a 

plane, sphere, cone, cylinder or torus to a collection of large 3D data measured from an 

object of the corresponding shape. The solution is the least squares fit of the parameters 

of the shape to the point set. In both the problems mentioned above, the major concern is 

the speed with which the required analysis or computations can be carried out. This 

problem has been addressed previously by the development of novel analytical routines 

which have provided significant speed increases. However, the development of new 

higher speed hardware, has further pushed the limits of analytical tools and hence there is 

a need for software to analyze the data accurately and efficiently.  

 

Research Objective 

The work presented in this research addresses the bottleneck in the least squares 

fitting of geometric primitives to coordinate data by using currently available hardware, a 

Graphical Processing Unit (GPU). Recently, GPUs have undergone an evolution to 
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powerful and flexible processing units. They have been shown to provide substantial gain 

in processing time in areas other than graphics such as general purpose as well as 

scientific computation including fluid flow simulation, finite element analysis and many 

other applications.  

The least squares fit for analytic primitives to 3D data involve construction of a 

function by determining the distance from each point in the data set to the surface in 

contention. Generally, this function cannot be solved in the closed form and requires 

numerical techniques such as the Newton method. This method requires computation of 

the first derivative of the distance function with respect to the minimization parameters 

along with other arithmetic intensive 3D vector operations. These qualities of the 

problem make it an excellent candidate for processing via a GPU.  

The goal of this research is to identify and implement specific computations 

involved in the least squares minimization algorithms of analytic primitives viz. circle, 

sphere, cylinder, plane, cone and torus on the GPU. Furthermore, these implementations 

are benchmarked against CPU implementations of the same to investigate the potential 

gain in processing time. 

 

Thesis Outline 

The thesis is organized as explained in this section. Chapter 2 presents prior work 

in the field of least squares minimization techniques, coordinate metrology and the use of 

GPUs in various engineering and general purpose applications. Chapter 3 provides an 

insight on the hardware and software architecture used in this work. Chapter 4 describes 

the mathematical formulation of the algorithm, the C++ and GPU implementations for 



 

  4 

each primitive mentioned. The next chapter includes the comparison of results and 

discussions. Chapter 7 includes conclusions of the work.  

 

 



CHAPTER II 

LITERATURE REVIEW 

 

Coordinate Metrology and Fitting  

Hopp was one of the first to coin the term „Computational Metrology‟. In his 

article, he addresses aspects of metrology such as fitting objectives and their 

implementation in data analysis software and a procedure to test coordinate measuring 

system (CMS) software. He applied least squares fit and extremal fit objectives to a circle 

fitting problem in the presence of perturbations (measurement errors) and compared the 

fits. He confirmed that extremal fits propagate more of the point measurement error than 

least squares fit. The article mainly identifies problems with fitting software and proposes 

a „Black Box‟ approach to test the analysis software. The testing method is limited to 

supplying the procedure with the fitting problems and analyzing the fit results[1]. 

Lin et al. compare fitting algorithms for the Coordinate Measuring Machine 

(CMM). They benchmarked four algorithms namely least squares methods, minimax 

max-deviation method, minimum average deviation method and the convex hull method. 

The algorithms are evaluated with respect to tolerance zone size, solution uniqueness and 

computational efficiency. They concluded that the least squares has numerical qualities 

that make it robust and useful in computational metrology even though they do not 

explicitly state that any particular method is best for all CMM data analysis [2]. 

Choi in his dissertation addresses computational analysis of 3D measurement data 

which involves evaluating geometric dimensions from the data and verification of 

conformance to tolerances. He formulated problems for both least squares fit and extreme 
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fits. He states that extreme fits are useful because they conform to tolerance theory. Choi 

also investigated the uncertainty associated with dimensional evaluation. He concluded 

that evaluation uncertainty is mainly due to the stochastic noise that dominates in least 

squares fits and the sampling uncertainty in the case of extreme fits[3]. He applied 

statistical theories in terms of confidence regions for estimated parameters to formalize 

the uncertainty.  

Gass et al. investigated the problem of analyzing CMM data taken against circular 

(spherical) features of manufactured parts. In this paper, they describe a linear 

programming approach for the algebraic Chebychev formula to determine reference 

circles and spheres and related tolerance annuluses. They compare the solutions obtained 

with the algebraic least squares solutions and conclude that this method yields concentric 

circles whose separation is less than that of the corresponding least squares solution [4]. 

Shakarji and Clement describe reference algorithms developed at the National 

Institute of Standards and Technology to fit geometric shapes to data using Chebychev, 

maximum-inscribed and minimum-circumscribed criteria. Using an improved, approach 

they develop more reliable reference algorithms for Chebychev fitting of lines, planes, 

circles, spheres, cylinders and cones. For each of these, they obtain the fit through an 

iteration that begins using a least squares fit and then refine it to the desired Chebychev 

fit. They outline the steps taken for each geometric shape to reduce the number of fit 

parameters thus improving the performance of their algorithms. They document their test 

results and demonstrate that their algorithms perform better than the algorithms found in 

industrial use [5]. 
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 Hopp and Levenson discuss the importance of the performance of fitting software 

used in a Coordinate Measuring Systems to evaluate the geometric characteristics of 

manufactured parts.  They lay out a set of criteria in developing performance measures 

for testing the software developed by the National Institute of Standards and Technology 

(NIST). Seven geometry types are considered, namely, line, circle, plane, sphere, 

cylinder, cone and torus. The procedure involves collection of data sets for each 

geometry type, generating a fit for each data set, called the “Reference Fit” using NIST-

developed fitting algorithms, and comparing this to a “Test Fit” generated by the 

software. The differences between each pair of fits are represented by a set of “Difference 

Parameters”. A statistical approach is used to interpret the difference parameters as a 

performance measure. They also perform an uncertainty analysis of the software to 

provide quantitative measures of performance[6].  

 In 1997 Zwick outlined the applications of Orthogonal Distance Regression 

(ODR) which connotes a form of non-linear least squares regression in coordinate 

metrology [7]. He presents a few problems such as fitting geometric elements such as 

lines planes, cones, cylinders and parametric surfaces such as B-splines and NURBS 

surfaces and discusses the procedures involved in utilizing the variants of ODR explicit, 

implicit and parametric in solving these problems. 

 

Least Squares Fitting Techniques 

Various techniques have been developed for least squares fitting of curves, 

surfaces and geometric primitives (Plane, Cube, Sphere and Torus) to a set of 3D data 

points. Pratt developed direct least squares methods namely exact fit, simple fit and 
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spherical fits which require roughly the work of matrix inversion or extraction of Eigen 

values. All these methods consider the algebraic distance from a point in the data set to 

the surface. He showed that the primitives when considered as algebraic surfaces rather 

than conventional parametric lend themselves directly to least squares techniques as 

naturally as parametric surfaces. The exact fit method gives a good solution of 

approximately fitting a shape to n-1 points in a set of n points. But this method is 

computationally expensive for large number of points as the matrix set up is first 

triangularized then the co-factors are computed to obtain the polynomial approximating 

the surface to be fit. Also the method does not treat the case where the rank of the matrix 

is less than n-1 whence the points underdetermine the shape. The simple fit method uses 

the Cholesky decomposition to obtain an upper triangular matrix which is then treated in 

the same method as in the exact fit method. The computational cost using this increases 

drastically when the number of points increases.  Furthermore, the quality of fit obtained 

by applying this technique has not been analyzed. The spherical fit method overcomes the 

problem of obtaining a bad fit as the curve of best fit approaches a line. But, for scattered 

data, the algorithm is not very efficient in that the invariant is larger for outlying data 

which causes the fit to be more responsive and hence decreases the curvature of fit. 

Another drawback of this method is that it involves the extraction of Eigen vectors [8].  

Taubin (1991) develops least square fitting techniques by representing the 

approximate distance (Minimum Mean Squared Approximate Distance) from the points 

to the surface by implicit equations. He replaces the original implicit function with a new 

one whose value is a better approximate of the distance. The problem of fitting curves 
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and surfaces is the minimization of the approximate mean square distance which can be 

reduced to the generalized Eigen vector computation [9]. 

Keren and Gotsman provide a novel approach in the use of a family of 

parameterized implicit polynomials for fitting star-shaped curves and surfaces (2D and 

3D). In their paper, they discuss the advantages and disadvantages of using implicit 

polynomials as modeling tool in fitting of surfaces approximated by them. They develop 

two methods „Line Convexity‟ and „Focus of Expansion‟ to force the polynomial to be 

convex (function of one variable) to overcome the pathologies in fit such as loops and 

holes [10].  

Blane, Lei, Civi and Cooper show that the conventional Eigen value/ Eigen vector 

and the Minimum Mean Squared Euclidean Distance methods provide unfaithful fits 

when the data are not accurately represent able by a polynomial. They develop a new 

algorithm called the “3L Algorithm”. They present a method which involves setting up a 

surface whose value is the Euclidean distance from a point on it to the closest point in the 

data set. They then implement the least squares fit of this surface with an explicit 

polynomial. They show that their algorithm can handle 2D curves and 3D surfaces 

represented by 16
th

 and 10
th

 degree polynomial respectively and claim that it yields 

physically meaningful representations even when the object is too complex to be fit 

exactly by the degree polynomial used [11]. 

Michael Plass and Maureen Stone present a method for fitting shapes defined by a 

discrete set of data points with a parametric piecewise cubic polynomial curve. Their goal 

was to give an efficient representation for graphic arts. They developed two techniques, 

one being dynamic programming for determining the knot positions and the other an 
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iterative method for fitting a parametric cubic with optional end point and tangent vector 

constraints to a set of data points [12].  

 Sourlier and Bucher developed an algorithm to standardize the procedure of data 

fitting. Their paper illustrates the unification of the process of fitting standard analytic 

primitives and parametric sculpted surfaces. They developed a single minimization 

routine based on the L2 – Norm which operates independently of the surface function and 

arrives at the theoretical best fit. Thus they provide a modular program with subroutines 

for different geometries (i.e., plane, spheres, torus, splines) [13]. 

 Alistair B. Forbes (1990) describe algorithms designed for the use of coordinate 

measuring systems (CMS), for finding the best fit geometric elements (lines, planes, 

circles, spheres, cylinders and cones) to metrological data.  The first model he discusses 

is the isotropic model, where the residual errors are computed normal to the surface and 

the measurement errors in all directions are assumed to be equal and uncorrelated. He 

developed robust and efficient parameterizations and optimization algorithms for this 

model. The best fit line and plane are obtained by performing the Singular Value 

Decomposition (SVD) on the matrix whose columns are obtained by subtracting the 

centroid of the , ,x y z data points. Circle and sphere fitting procedures are analogous 

due to the fact that the residual error is formulated by computing the distance from the 

measured points and their centers and the resulting objective function is solved iteratively 

by using the Gauss-Newton or Newton minimization algorithm. The algebraic 

formulation of the residual error is solved to obtain the initial guesses for the two 

problems. He suggests a novel and efficient method to fit cylinders and cones, these 

geometries are translated and rotated such that they are in the standard position (aligned 
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with the z -axis) before implementing the Gauss-Newton algorithm. This avoids the 

cumbersome calculations involved in formulating the Jacobian matrices [14]. Forbes then 

compared the results of the cylinder fit from this model with the second model namely 

the anisotropic model wherein the measurement error is unequal in the x , y and 

z directions. He summarizes that results from both models are similar but the anisotropic 

model has advantages in that it can be used in different CMS and also a wide variety 

surfaces and data fitting problems can be tackled using the routines based on this model. 

Ames addresses the problem of fitting of sphere, right-circular cone and right-

circular cylinders. He states that the traditional approach of taking partial derivatives of 

the objective function, equating them to zero and solving the equations is unstable due to 

bad numerical behavior. He employed the Singular Value Decomposition least squares to 

construct solid models from 3D data. The problem is formulated by setting up fixed 

functions called the Basis functions. These functions are solved by iterating through the 

terms, removing the zero term to construct reduced basis functions and eventually solve 

the system of equations [15]. 

 Ahn et al. (2001) proposed simple non-parametric algorithms for the geometric 

fitting of circle/sphere and ellipse/hyperbola/parabola. Their algorithms are based on the 

coordinate description of the corresponding point on the geometric feature for a given 

point, where the connecting line of the two points is the shortest path from the given 

point to the geometric feature. They use the Gauss-Newton method to minimize the 

objective function. The initial parameter vector for the circle and sphere are given by the 

center of gravitation and the Root Mean Square (RMS) central distances [16]. 
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 Gander, Golub and Strebel compare the accuracy and computational cost of three 

types of fitting viz. algebraic distance minimization, geometric distance minimization and 

geometric distance fitting in parametric form as applied to the least squares fit of circles 

and ellipses. They conclude that though the algebraic solution is computationally cheaper 

by a factor of 10-100 compared to the other algorithms, it is quite unstable and 

inaccurate. Furthermore, they implemented non-linear least squares algorithms including 

Gauss-Newton, Newton, Gauss-Newton with Marquardt modification, variable projection 

(varpro) and orthogonal distance regression (odr) algorithms to compute the geometric fit 

and compare them with respect to stability and efficiency. They observed that while the 

Newton method is most efficient, when applied to the parameterized algorithm if the 

problem is well posed, „odr‟ is competitive with algorithms specifically written for fitting 

ellipses and „varpro‟ is computationally expensive as well as inefficient [17] . 

Lukacs, Marshall and Bajcsky (1997) show that the straightforward algebraic 

methods developed by [8] work well when applied to fitting of spheres, for which, under 

suitable normalization, the minimized algebraic distance reflects the geometric distance, 

but these methods approximate the true geometric distance in an unfaithful way for other 

geometries. They show that the partial derivatives of their modified distance function 

with respect to any of the surface parameters and spatial parameters are the same as the 

original distance function. They provide methods for parameterization of analytic 

primitives in which the exact expression for the distance is replaced by a simplified 

function which is much easier to compute.  The technique of parameterization given by 

them is robust in the sense that as the principal curvature of the surfaces being fitted 

decreases, the results converge to surfaces which best describe the data. They propose a 
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method to obtain initial estimates of the parameters by computing the rotational axis for 

each of the primitives (except sphere) based on the estimate of a surface normal vector. 

They also outlined the implementation of these techniques in the segmentation of data 

based on a recover and select paradigm [18]. 

Lukacs et al. validate their least squares fitting routines for geometric primitives 

and the segmentation strategy developed in [18] by implementation on simulated data as 

well as real data obtained from a laser scanner in the presence of noise. They provide 

results of these implementations and conclude that their methods work successfully in 

practical environments and are accurate for their intended tasks. Their paper demonstrates 

that their methods are robust and handle degeneracy in both estimating and fitting 

surfaces with very low curvature [19]. 

Shakarji (1998) developed and implemented least squares fitting algorithms for 

linear as well as non-linear geometries as reference software for the NIST‟s Algorithm 

Testing System. He presents the defining parameters, distance equations, the objective 

functions, their derivatives and normalizations required to fit planes, lines, spheres, 

cones, cylinders and tori. Langrange multipliers are used in solving the constrained 

minimization problems which are developed into the standard Eigen vector problems to 

fit linear geometries (planes).  The Levenberg-Marquardt algorithm is used to minimize 

the objective function for the other geometries [20]. 

 Atieg and Watson address the problem of developing good numerical methods to 

fit a curve or surface to data in metrology and pattern recognition applications. The paper 

is concerned with a modification of the basic non-linear least squares problem in which 

the orthogonal distances from the data points to the curve or the surface may not always 
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be defined. Analogues of the Gauss-Newton method are developed, analyzed and 

illustrated by 2D and 3D examples such as line, circular disc and non solid cylinder.  The 

method adopted involves rotating the data set so that the object to be fit is aligned along a 

coordinate axes. They show that this simplifies the problem by effectively removing 

variables that can be defined at each iteration. This enables the direct calculation  of the 

gradient of the objective function thus avoiding the need for second derivatives[21]. 

 Atieg and Watson further survey and compare a class of particular methods to 

solve non-linear least squares problems and place the members of this class into a unified 

framework.  They show that, of the two variants of the Gauss-Newton method developed, 

the one involving the computation of the second derivative is preferred over the method 

described earlier for fitting 3D curves as this avoids ill-conditioning of the problem. 

However, the first variant is preferred while fitting geometric elements because of the 

simplicity in computation and lesser number of iterations required for the solution to 

converge. They conclude that this method is strong when good initial guesses of the 

parameters are available [22]. 

Claudet presents the defining parameters and formulates the computation of 

deviation from the data points to the primitives viz. plane, sphere, cylinder, cone and 

torus. He discusses the differences between the three major minimization procedures viz. 

the Newton, Gauss-Newton and the Levenberg-Marquardt methods. He adopts the 

Levenberg-Marquardt method for minimization of the sum of squares of deviations.  He 

verified and presented the results of parameter fitting of the geometries by selecting a 

reasonable initial value as input to the fitting routines [23]. 
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Most least squares techniques mentioned require a good starting point or initial 

approximation for the minimization method to converge to a good fit. Kurfess and Chen 

developed Bounding Box strategies namely Axis Aligned and Minimum Bounding Box 

techniques to arrive at good initial guesses for Sphere, Plane, Torus, Line and Plane. The 

algorithms involved in these techniques are simple to implement and very fast [24]. 

 

Graphical Processing Units (GPUs)  

GPUs have evolved from being fixed function pipelines to fully programmable, 

floating point pipelines. They are highly optimized for fast rendering of geometries and 

image generation required in the gaming industry. They have a high memory bandwidth 

and support floating point arithmetic. The ability to reconfigure the graphics pipeline 

through shader programming coupled with parallel processing capabilities makes the 

GPU versatile. Recently, GPUs have been deployed in numerous non-graphic 

applications such as general purpose computing.  

Olano and Lastra created a parallel graphics multi computer, Pixel Flow, using a 

shading language.  This interactive graphics platform not only achieved very high frame 

rates but also could perform mathematical operations to calculate pixel values [25]. 

Thompson et al. indicated that GPUs can be used for purposes other than graphics 

rendering by developing a framework for solving general purpose problems on them. The 

framework is capable of accelerating regular operations on large vectors. They 

investigated this by applying the framework to matrix multiplication operations [26]. 

Kruger and Westermann described a general framework for the implementation of 

numerical simulation techniques on GPUs. They provided a novel approach by 
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considering matrices as diagonal or column vectors and by representing vectors as 2D 

texture maps which considerably accelerated matrix vector and vector-vector operations. 

They also provided a GPU implementation of the conjugate gradient method to 

numerically solve 2D wave equation [27]. 

Buck et al. present Brook, a system of general-purpose computation on GPUs. 

They provide a compiler and a runtime system that maps the Brook language onto the 

existing programmable GPU Application Programming Interfaces (APIs). They 

implemented three different implementations on Brook to evaluate the performance. 

Their initial implementation included a vector scale and sum operations, dense matrix 

vector product followed by a scaled vector add. The other two implementations include a 

segmentation algorithm followed by a Fast Fourier Transform (FFT) application. They 

compare the results with corresponding CPU implementations. They achieve 

considerably greater performance with their implementation being 7 and 4.7 times faster 

than the CPU for the matrix operations and segmentation algorithms respectively. 

However the FFT was found to be only marginally quicker than its CPU counterpart. The 

major drawback of the system developed by them is that it does not allow the render-to-

texture operation [28].  

Galoppo et al. developed a novel algorithm to solve a dense linear system of 

equations on the graphics card to exploit its inherent parallelism. They implemented the 

LU decomposition algorithm with varying complexities and the results were 

benchmarked against the highly optimized ATLAS implementation on the CPU. Their 

implementation outperformed the CPU [29]. 
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Jung implemented the Cholesky decomposition on the GPU to solve symmetric 

and positive definite matrices. This has been done based on a Primal-Dual Interior-Point 

Method with Brooks GPU (a stream programming model). He performs the Cholesky 

decomposition in two forms, the inner product and outer product form and compares their 

performance in two environments. He demonstrates the interior point method is best 

suited for implementation on the computational resources of the GPU [30]. 

Hoff et al. present a method for rapid computation of discrete Voronoi diagrams 

in two and three dimensions using graphics hardware. Their paper describes techniques 

developed for creating mesh of the distance function for each site with bounded error and 

how the mesh computes the Voronoi diagram rapidly. Their application is aimed at 

effectively solving the problem of finding collision free path for a moving robot [31].  

Rumpf and Strzodka demonstrated a GPU finite element implementation to solve 

the linear heat equation and the anisotropic diffusion problem in image processing. Their 

basic idea of computing used the blending capacities and texture environment functions 

and its extensions to perform algebraic operations on images and also to optimize 

operations to reduce the number of rendering passes. They utilize the texture memory to 

store the initial, intermediate and final data of calculations. The paper illustrates the 

representation of the 2D grid of the finite element discretizations in the form of vectors 

on the graphics hardware on which numerical schemes operate. The Jacobi and conjugate 

gradient iterations are used to solve the system of linear equations.  Their implementation 

of the Jacobi solver achieved 300 MOP/s which outperforms any software 

implementation on the CPU [32]. 
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 Wu et al. solve a 2D fluid flow problem completely on the GPU. They adopted 

Semi-Lagrangian method to solve the Navier Stokes Equations to obtain real-time fluid 

effects. They adopted a method in which the scalar and vector variables are packed into 

four channels of texels. Taking into account the arbitrary boundary conditions, they group 

the grid nodes into different types according to their positions relative to obstacles and 

search the node that determines the value of the current node. The texture coordinate 

offsets are then computed according to the type of boundary condition of each node to 

determine the corresponding variables. They demonstrate that the GPU performs 

considerably faster than the CPU as the grid size is increased [33]. 

Hillesland et al. cast non-linear optimization as a data streaming process that is 

well matched to modern GPUs. They develop a framework capable of solving large non-

linear optimizations concurrently and use it to solve image-based modeling problems, the 

light field mapping approximation of surface light fields and fitting the Lafortune model 

to spatial bidirectional reflectance distribution functions. The article describes the 

implementation of two optimization algorithms viz. Conjugate Gradient and the Steepest 

Descent algorithms and their implementation in solving the problems addressed. They 

observed that the Conjugate Gradient achieves much better convergence in a few 

iterations when compared to the Steepest Descent method. Furthermore, comparison 

between the CPU and GPU implementations indicated that the latter is about 5 times 

faster [34]. 

Computer-Aided Design applications stand to gain substantial benefits from the 

raw computational power of the GPU. McMains, Khardekar and Burton were the first 

ones to use GPUs in manufacturing analysis and design feedback. They present hardware 
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accelerated algorithms to test 2D moldability of geometric parts and assist part design. 

These algorithms efficiently identify and graphically display undercuts as well as 

minimum and insufficient draft angles. They make use of the depth buffer to store the 

distance to the visible facet for each pixel. The efficiency of their algorithms lies in the 

fact that they identify groups of directions to determine whether they are undercut-free or 

not. They compared the GPU implementation with the commercial Solid Works face 

based undercut highlighting and indicate that the commercial results are not only far less 

informative about the exact location of undercuts  but also take 600 times longer to 

calculate and display [35]. 

Gray, Ismail and Bedi present a graphics hardware assisted approach to 5-Axis 

surface machining that builds upon a tool positioning strategy named the Rolling Ball 

Method. The depth buffer of the GPU is used to compute the data needed for this method 

which generates a gouge-free 5-axis curvature matched tool positions. In their 

implementation, some aspects of computation for tool positioning utilize the GPU; 

namely computation of Shadow Checking Grid Points‟ spatial displacements which are 

used to compute the pseudo-radius for each pixel from which the final radius of the 

rolling ball is selected. They outline that the graphics assisted approach eliminates the 

need for parameterization of the surface to be machined, thus allowing the machining of 

multiple patch triangulated surfaces [36]. 

 A mechanistic model based on an adaptive and local depth buffer to calculate 

milling forces when machining a part on a multi-axis milling machine has been 

developed by Roth et al. Their paper presents a novel method of calculating chip 

geometry and volume of material removed during machining in order to determine the 
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cutting forces. The terms “adaptive” and “local” depth buffers are used as the depth 

buffer is changed to be constantly aligned with the tool axis and sized to the tool instead 

of the work piece respectively.  Previous tool positions are rendered to the scene and the 

depth buffer is saved. The current tool position is then rendered and the depth buffer is 

saved again to obtain the in-process chip geometry, which is the difference between the 

two states of the depth buffer. However, this model is limited to only flat end mills and 

inefficient as most of the depth buffer holds previous tool positions as it is sized to cover 

the tool [37]. The implementation has been modified to overcome the limitations of the 

model.  The algorithm is updated to handle more complex tool shapes. The depth buffer 

is sized to the cutter teeth, thereby improving the memory requirements resulting in 

efficient usage [38]. 

 Pabst et al. presented the concept of extended graphics pipeline that allows the 

rendering of complex primitive such as parametric and implicit surfaces. Their pipeline 

adds an intersection stage between the rasterization stage and the fragment program. The 

intersection stage reconstructs corresponding ray from the viewpoint for each fragment 

generated from the rasterization unit and computes the intersection with the surface 

contained in the bounding volume of the object to be displayed.  The intersection point 

and the normal are passed into the fragment program. This integration into the graphics 

pipeline combines its high efficiency with the advantages of ray casting. They address the 

direct real-time rendering of trimmed NURBS surfaces.  They use the Newton iteration 

for the intersection test and Iterative Bezier Clipping for exact trimming of the NURBS 

surfaces [39]. 



CHAPTER III 

BACKGROUND ON GPU‟S 

 

Overview 

Graphical processing units (GPU‟s) have undergone an evolution from fixed-

function processors to powerful, fully programmable, floating point pipelines. They are 

highly optimized for fast rendering of geometric primitives and image generation in 

computer gaming. Recently, they have been used for applications beyond graphics such 

as general purpose computation as well as scientific computation as discussed in the 

previous chapter. One of the main reasons for this explosive growth in the processing 

power of the GPU has been the increased interest in computer gaming which has pushed 

technology to the limit. The GPU is specialized for arithmetic intensive, parallel 

computations required in graphics rendering and is therefore designed such that more 

transistors are devoted to data processing rather than memory management or flow 

control. It is well suited for problems that require instructions be executed on large data 

sets at the same time.  

 Until now, the major issues that prevented access to all of the GPU‟s 

computational capabilities were [40]: 

 A graphics API was required to program the hardware resulting in an overhead of 

learning the API as well as a high learning curve to the novice.  

 GPU programs could read (gather) data from the hardware memory also called 

DRAM, but could not write (scatter) data to any part of the memory which 

resulted in a loss of programming flexibility. 
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  The DRAM memory bandwidth was low resulting in bottlenecks and under 

utilization of the available computation power. 

This chapter describes a novel hardware architecture and programming model 

developed by NVIDIA® which provides a solution to the aforementioned problems and 

exposes the GPU as a parallel computing device. 

 

CUDA Architecture 

 CUDA stands for Compute Unified Device Architecture. It is a new hardware and 

software architecture that avoids the need for a graphics API to program the GPU to 

perform as a parallel computing device. The schematic below illustrates the software 

stack of this model. 

 

Figure 1: CUDA Software Stack [40] 

 

The driver, API and its runtime and two high-level mathematical libraries form 

the software stack. The two highly optimized and efficient mathematical libraries 

supported by CUDA are the CUFFT-Fast Fourier Transform and the CUBLAS- Basic 
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Linear Algebra Subprograms. The CUDA API is an extension to the C programming 

language which allows for high programming flexibility as well as ease of learning. The 

read and write access operations to the DRAM of the card are extremely fast as CUDA 

features a memory space called the shared memory which brings data closer to the 

Arithmetic Logic Units (ALU) making them independent of memory bandwidth.  

 The GPU (device) can be programmed to operate as a multi-threaded co-

processor to the CPU (host) to execute compute intensive portions of an application via 

CUDA. The portion of an application that needs to be executed many times on different 

data elements can be off-loaded to the GPU as an instruction set written in the form of a 

program called the kernel which is executed on the card as different threads. These 

threads are organized as a grid of thread blocks. A thread block consists of a batch of 

threads that access data from the shared memory and execute instructions in parallel. The 

maximum number of threads that can be specified per block is 512 for a G80. 

Synchronization points can be specified within a kernel program to coordinate memory 

accesses of these threads in runtime. Every thread within a block is addressed by a thread 

ID. A block can be one, two or three dimensional. A grid of thread blocks consists of a 

number of blocks that execute the same kernel and these are arranged in two dimensions. 

The main advantage is that the number of threads that can be launched in a single call to 

the kernel increase significantly by specifying a greater number of blocks. However, 

threads within one block cannot communicate with those in another resulting in reduced 

thread cooperation. Blocks are also addressed by their IDs within a grid. This model 

allows kernels to be efficiently executed on various devices with different parallel 

capabilities. 
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Memory Model 

GPU memory is primarily divided into six memory spaces namely: 

 Registers 

 Local memory 

 Shared memory 

 Global memory 

 Constant memory 

 Texture memory 

The registers and local memories are per thread and the global, constant and 

texture memory spaces are per-grid while the shared memory space is per-block. The host 

or the CPU can read from or write to the constant, global and texture memory spaces 

while thee registers, local and shared memory spaces can be accessed only from the 

device. The global, constant and texture memory spaces are optimized for different 

memory usages. Figure 2 illustrates the memory model based on which a thread has 

access to the device memory through the set of memory spaces described in this section. 
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Figure 2: CUDA Memory Model 

 

Hardware Implementation 

 For all practical purposes, the GPU is implemented as set of multiprocessors each 

of which executes the same instruction on different data elements. In other words, each 

multiprocessor has Single Instruction Multiple Data (SIMD) architecture. The 

multiprocessor has four types of on-chip memory as shown in Figure 3 [40]; a set of 32-
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bit local registers per processor, a shared memory that is shared by all processors, a read-

only constant cache that speeds up reads from the constant memory space and a read-only 

texture cache that speeds up reads from the texture memory space . The constant and 

texture caches are also shared by all the processors.  

 

 

Figure 3: Hardware Model 
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The execution – A kernel is executed as grid of blocks in such a manner that one 

or more blocks are executed by each multiprocessor. The threads within a block are split 

into SIMD groups of equal thread size called warps. These are executed by a 

multiprocessor in SIMD fashion and hence it is necessary to ensure that all threads within 

a warp execute the same arithmetic instruction. A multiprocessor can execute several 

blocks in parallel by distributing the sets of registers in an efficient manner among them. 

 This research employs the mentioned novel architecture and programming model 

to save significant computation time in the least squares fits of analytic primitives by 

identifying and implementing specific computations involved in the non-linear 

minimization algorithms.  
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CHAPTER IV  

FORMULATION AND IMPLEMENTATION 

 

Introduction 

 This chapter describes the mathematical formulation and the implementation of 

algorithms used for the least squares fit of six analytic geometry types namely circle, 

sphere, cylinder, plane, cone and torus on the CPU as well as the Graphical Processing 

Unit (GPU). The CPU implementation is done in C++ while the implementation on the 

graphics hardware is done using NVIDIA Corporation‟s novel software architecture 

CUDA. The first element required for the analysis is coordinate data which represents the 

geometries mentioned. The procedure for the generation of test data for all primitives is 

presented. 

 The least squares fit of all geometries except the plane is a non-linear 

minimization problem. The field of numerical optimization is rich in minimization 

techniques that can be made use of for finding the least squares solution or the “Best Fit”. 

Techniques based on the Newton‟s method are considered to be the efficient in terms of 

speed and accuracy. The Gauss-Newton method is used to minimize the objective 

functions for all geometries except the plane. Computations from this algorithm that can 

be solved in parallel are identified and their implementation on the graphics hardware is 

explained.   The graphics hardware implementation for the circle and sphere are similar 

while there are modifications for the cylinder, cone and torus. Further, the computation 

implemented on the hardware for a plane is different from all of the above and this  is 

explained in this chapter.  
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Point cloud generation 

 This section describes the method used to generate test data for all six of the 

above mentioned primitives. Coordinate data representing the geometry of all primitives 

is generated using MATLAB. All the codes written provide the flexibility of translating 

or rotating primitive data to any position in coordinate space. Suitable transformation 

matrices are included. Further more, the density of data generated can be specified by the 

user. The data generated for all primitives is written into suitable files for ease of 

analysis.  

 

Circle 

 

For our implementation, the ,x y  coordinates for a circle in a plane are 

generated by defining a vector θ in the interval 0,2  and specifying   

 *cosx r  (4.1) 

 *siny r  (4.2) 

 where r  is the radius of the circle. This procedure generates the coordinates for a circle 

which has its center at the origin. 

 

Sphere 

 

The , ,x y z  coordinates are generated by defining two vectors  and  in the 

interval [0,2π] specifying  

 *cos *sinx r  (4.3)

 *sin *siny r  (4.4) 
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 *cosz r  (4.5) 

where r  is the radius of the sphere. The coordinates for the surface of the sphere obtained 

with this procedure are such that the center is at the origin. In other words, the sphere is 

centered about the origin. Figure 1 below shows a sample data set generated as compared 

to an ideal model of the sphere. 

 

 

 
 

Figure 4: Test data compared to an ideal model (Sphere) 

 

 

Plane 

 

The parametric equation for a plane in 3D space is given by  

 0Ax By Cz D  (4.6) 

Where the vector , ,A B C  forms the normal to the plane. Figure 5 shows a typical X-Y 

plane. The normal to this plane is given along the z -axis as shown in the figure. 

Similarly, if the plane is in any arbitrary  
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Figure 5: X-Y Plane 

 

 

 

 

Three dimensional coordinate data for a plane for our implementation are 

generated by specifying the length and width of the plane in x and y  directions 

respectively. The desired number of points along each axis is specified and the length and 

width are divided into vectors of corresponding sizes. The z -coordinate is constant for 

all x and y coordinates. The data can be translated and rotated to any position using 

suitable transformation matrices. 

 

Cylinder 

 

 The parametric equations for the x  and y  coordinates of a cylinder are the same 

as those specified for the circle. In general, a cylinder can be of infinite length and hence 

a length needs to be specified for completeness. A typical right circular cylinder with 

length l  and radius r  aligned with the z - axis is as shown in Figure 6.  
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Figure 6: Typical right-circular cylinder 

 

3D coordinate data for the cylinder are generated by specifying x  and 

y coordinates as given by equations (4.1) and(4.2) respectively. The z -coordinates are 

specified such that they are constant for one set of x  and y -coordinates. This is done by 

dividing the length into a vector of size same as that of the vector . In other words, the 

cylinder data are a stack of circles (of desired radius) aligned along the vertical axis with 

spacing between them depending on the length required. 
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Cone 

 
Figure 7: Cross-section of a cone aligned with the z axis 

 

 

The parametric equations for a cone having axis of symmetry on the z - axis and apex at 

any height h  above the origin with the apex is given by the following  

 * *cos
h z

x r
h

 (4.7) 

 * *sin
h z

y r
h

 (4.8) 

 

Where, r is the radius of the base of the cone, h is the height at which the apex is 

positioned, z is the desired step from the vector in the interval 0,h  and  is a vector in 

the interval 0,2 . In the more general case, a cone can be defined only by its apex-semi 

angle ( ) by positioning the apex at the origin. The height or the base radius are not 

necessary parameters. However, either of these parameters is specified for completeness 

of the geometry as shown in Figure 7.  
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In this implementation, the x , y  and z -coordinates for a cone are specified in the 

similar manner as that for a cylinder. The z -coordinates are specified by dividing the 

height of the cone into a vector of size equal to the number of rings desired in the cone. 

Another vector  of size equal to the number of points desired in each ring is defined 

from 0,2 .The radius is computed at each z -coordinate and the x  and y coordinates 

are specified in the same way as given by equations (4.1) and  (4.2). Two different types 

of data sets of varying sizes are generated for the cone. In the first type the, points 

generated include the apex of the cone while the latter does not consider the presence of 

the apex. This is done to address two different scenarios faced in the least squares fit of a 

cone which are discussed in the following section. 

 

Torus 

 
Figure 8: Cross-section of a standard torus 

 

 

 Torus is a geometry which is more commonly known as the “donut”. The cross 

section of a standard torus is as shown in Figure 8. The parametric equations for the x , 

y  and z -coordinates of this torus are given by 

 *cos *cos *cosx R r  (4.9) 
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 *sin *cos *siny R r  (4.10) 

 *sinz r  (4.11) 

Where, R  is the major radius, r  is the minor radius. If the major radius is less than or 

equal to the minor radius ( R r ), the torus degenerates into a spindle torus or a sphere 

respectively. The data in our case are generated based on these parametric equations. 

Two vectors  and  are defined from 0,2 . 

 

Noise 

 

Noise is induced in all coordinate data that are generated in the form of a random 

number that is added to the x , y  and z coordinates. However, the random numbers 

generated are normally distributed with a mean of zero and a standard deviation which is 

a fraction of one. In the case of the circle which is 2D, noise is added while computing 

the x  and y  coordinates as explained earlier. For the 3D case, it is added to all the three 

coordinate data. Figure 9 shows the effect of adding noise to a data point in 3D space. 

 

Figure 9: Noise added to a 3D point 

 

The normally distributed noise added to any point in 3D results in the point being 

displaced to any position within the circle shown in the figure. 
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Transformations 

 

Homogenous transformations are an essential part of point cloud generation. In 

general data sampled off a manufactured part are in an arbitrary position in 3D space. To 

simulate a practical situation, a provision is made to transform the data generated to any 

desired position. A 4 4  homogenous transformation matrix consisting of three rotations 

xR , yR , zR and three translations xT , yT  and zT  for the three coordinate axes is set up. 

The array consisting of the coordinate data for a particular primitive is multiplied by this 

to obtain the transformed data. However, in the case of the circle (2D), the translation 

parameters xT  and yT are added to the origin. Similarly for the sphere, all the three 

translations mentioned above are added to the center to obtain the transformed position. 

This is because these geometries are generated about the origin (centered) and the circle 

does not have the z coordinate while the sphere remains the same with any number of 

rotations due to symmetry. The general transformation is carried out based on the 

following 

 

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

xR  (4.12) 

 

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

yR  (4.13) 

 

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

zR  (4.14) 
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1 0 0

0 1 0

0 0 1

0 0 0 1

x

y

r

z

T

T
T

T
 (4.15) 

 * * *r x y zT T R R R  (4.16) 

Here, ,  and  are the desired angles of rotation about the x , y  and z  axes. This 

4 4 homogenous transformation matrix T is multiplied by each point in the data set as 

follows to obtain the transformed data and these coordinates are written into 

corresponding data files. 

 

'

'

'
*

11

x x

yy
T

zz
 (4.17) 

 

Table 1 below summarizes the experimental parameters used for all the non-linear 

geometries and the noise. Noise added has a mean of zero and a standard deviation of 0.1. 

As mentioned earlier, the length of the cylinder does not matter but is specified for 

completeness of the geometry. 

The data for all these non-linear geometries are generated such that they are 

centered about the origin. However, all the data are transformed to a different position in 

3D space and then the analysis is carried out to determine the best fit parameters for the 

corresponding primitive.  
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Table 1: Summary of parameters and noise levels for non-linear geometries 

 

Geometry  Parameters 

Standard 

Deviation 

of Noise 

Circle Radius = 10 0.1 

Sphere Radius = 10 0.1 

Cylinder 
Radius = 15 

0.1 
Length = 30 

Cone 
Base Radius =10 

0.1 
Apex semi-angle = 30o  

Torus 
Major Radius = 8 

0.1 
Minor Radius = 2 

 

Implementation 

This section presents the mathematical formulation of the least squares fitting 

problem for each analytic primitive and its implementation on the CPU as well as the 

graphics hardware (GPU). The algorithms and the programs written in C++ and CUDA 

are described. The GPU is programmed via the kernel to perform the compute intensive 

operations identified for all implementations while the C++ implementations are straight 

forward as explained. The benchmarking technique and the results for both forms of the 

implementations are discussed in the next chapter.  

 

Circle in a plane 

 

A circle is defined by its center and radius. The equation of a circle is given by  

 
2 2 2

0 0x x y y r  (4.18) 
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Since any point on a circle must satisfy the above equation, it can be expanded, 

simplified and expressed as a linear system, 

 Ax B  (4.19) 

where A  is a matrix of dimension 3n  containing the n  data points with 

coordinates ( , )i ix y  and a column of ones resulting from the linearization. x  is the design 

vector of dimension 3 1  and B  is the right hand side vector of dimension 1n . 

Solving this over-determined system in the least squares sense, i.e. 

 T TA Ax A B  (4.20) 

 

 
1

T Tx A A A B  (4.21) 

 

yields the design vector x  consisting of the coordinates of the center 0 0,x y  and the 

radius 0r . These values are used as initial estimates for the minimization procedure to 

find the best fit parameters. The error or the distance equation for a circle is given by 

equation (4.22) 

 
2 2

0 0 0i if x x y y r  (4.22) 

 

The objective function which is to be minimized is the sum of squares of the error 

which is given by  

 
2

2 2

0 0 0 0 0 0, , i iF x y r x x y y r  (4.23) 

 

The expression (4.22) is evaluated at each data point and also the initial estimates 

of the parameters. This is assembled in a vector. The elements of the Jacobian matrix 
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J are found from the partial derivatives of the distance equation f with respect to each of 

the parameters 0 0 0, ,x y r  which are given by 

 0 0

0

( ) /i

f
x x f r

x
 (4.24) 

 0 0

0

( ) /i

f
y y f r

y
 (4.25) 

 
0

1
f

r
 (4.26) 

These partials are evaluated at each data point and initial guess to populate the 

Jacobian. This matrix and the vector of values for the objective function expressed as a 

linear system of equations, 

 Ju d  (4.27) 

 

Where, J  is the Jacobian of dimension 3n , u  is vector of dimension 3 1  containing 

the parameter updates and d  is a vector of dimension 1n  whose elements are the 

distance function f evaluated at each data point. The system of equations is over-

determined and is solved as follows to obtain the updates 

 
1

T Tu J J J d  (4.28) 

The parameters are updated after each iteration as given by the equations below 

 0 0 1x x u  (4.29)

 0 0 2y y u  (4.30) 

 0 0 3r r u  (4.31) 
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Where 1u , 2u  and 3u are the elements of the vectoru . These iterations are repeated until 

the change in parameters is negligible. The last updated parameters are the least squares 

best fit parameters for a circle.  

C++ Implementation 

The C++ implementation of the aforementioned procedure is described in this 

section.  A class “Data” is created to model the coordinate data points. The class uses the 

vector template to store the data read in from the corresponding data file. It consists of a 

copy constructor, constructor, destructor, input operator and an overloaded output 

operator. It also provides full encapsulation and public interface to enable reading, 

writing and manipulation of the data. The class allows passing object references rather 

than the object itself.  

Another class “Matrix” is created to perform the required mathematical 

computations on the data. This class also consists of a copy constructor, constructor and a 

destructor. Four essential functions are created, transpose () to multiply the transpose of a 

matrix with itself and return the product, jacobian () to populate the Jacobian matrix, 

chold() to perform the Cholesky decomposition to solve the matrix obtained by 

multiplying its transpose with itself and runTest() to iteratively solve for the vector 

containing the updates and add it to the parameters. Since the linear system of equations 

is over-determined, i.e., the number of rows of the matrix are greater than the number of 

columns, we obtain a symmetric positive definite matrix upon multiplication and hence 

the Cholesky decomposition is implemented. 
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The algorithm is as follows. 

 The main() function reads the data from the file and stores in a “Data” class 

object. 

 The object is passed into the constructor of the class “Matrix” by reference and 

the data are stored in an array. 

 The array is passed by reference into the function transpose() to obtain the 

product and the right hand side vector which are then passed to chold() to obtain 

the initial estimates of the center and radius.  

 This vector along with the array containing the data are passed into the function 

runTest() which performs the Gauss-Newton minimization. 

 The functions jacobian(), transpose() and chold() are called sequentially within 

runTest() to obtain the updates. 

  The convergence condition is specified by declaring a tolerance value in the order 

of 310  and comparing the sum of the updates ( 1 2 3u u u ) to this value. A condition is 

set such that the iterations stop when the sum is lower than the specified tolerance. 

The implementation is tested for different sizes of data and is observed to provide 

accurate and reliable results.  

CUDA Implementation 

The motivation of this research is to implement the existing minimization 

algorithms for the least squares fitting of analytic primitives on the GPU to explore its 

capabilities in parallelizing the computations involved thus cutting down the computation 

time. However, due to certain limitations such as the hardware and software model, and 
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the inherent nature of the problem itself, it is necessary to identify specific parts of the 

computation that are to be delegated to the GPU rather than the entire computation.  

The graphics card used for the implementation is NVIDIA Corporation‟s state-of-

the-art GeForce 8800 GTX (G80) which is one of the superior graphics processors 

currently available in the market. The software interface Compute Unified Driver 

Architecture (CUDA) is used for issuing and managing computations on the GPU. This 

consists of a minimal set of extensions to the C programming language that allows 

targeting portions of the source code for execution on the card. The instruction set or 

code is compiled by a built in NVIDIA CUDA Compiler (NVCC). The program consists 

of two components, 

 The host component that runs on the CPU (host) and provides functions to control 

and access the operations on the card.  

 The device component also called the “kernel” which is described in the previous 

chapter. This component is executed on the GPU (device) in blocks consisting of 

threads. 

The GPU has 3 memory partitions; the local or device memory, the constant 

memory and the shared memory. The data to be processed is copied to the device 

memory from the host. This is then passed onto the shared memory from where it is 

accessed by threads in each block to execute the instructions.  

The source code contains two main functions: 

 runTest(), a host function serving as wrapper to the kernel. 
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 kernel(), the device function (kernel) that executes the required computation on 

the device. 

 The arithmetic intensive operations involved in the least squares minimization 

algorithm for the circle fit include population of the Jacobian and the right hand side 

vector, multiplication of the transpose of this matrix with itself and the vector and finally, 

the Cholesky decomposition and forward substitution to solve the system of equations. 

 However, the memory model adopted to obtain maximum utilization of the 

computational power of the hardware does not permit implementation of all of the above 

mentioned mathematical operations. The computations executed on the GPU involve 

population of the Jacobian and the right hand side vector. The CUDA implementation of 

this procedure is similar to the C++ implementation explained in the previous section. 

For this implementation, the host or wrapper function runTest() is the one within which 

the Gauss Newton minimization procedure is performed. This function takes in data set 

and the vector of initial estimates as inputs performs the following operations: 

 It allocates enough global memory to store the data array, the initial estimates and 

the results using cudaMalloc(). 

 It copies the coordinate data and the initial estimates from host memory to global 

memory using cudaMemcpy(). 

 The execution configuration parameters for the kernel function- the number of 

blocks and the number of threads in each block (block size) are set up. For the 

circle fit, the block size used is 16 16  and the number of blocks in the grid is 

selected such that it is a multiple of the block size and equal to n , the number of 
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points .The function kernel() is then executed to populate the Jacobian and the 

right hand side vector. 

 The inputs to the function kernel() are the same as those for runTest() except that  

additional pointers for the results are passed in and these pointers point to the 

device memory instead of host memory. 

 Within the function kernel() the following sequence of operations occur: 

a. x  and y  coordinate data for the circle are separately loaded as blocks on 

to the shared memory using the thread indices.  

b. The arithmetic instructions required to populate the Jacobian and the right 

hand side vector are specified separately for each set of coordinate data. 

The function syncthreads() is used to ensure that the data in all blocks are 

processed. 

c. Finally, the processed data are copied back to the device memory such that 

each array or vector forms a separate column of the Jacobian and the last 

array copied back to the device forms the right hand side vector. 

 The results are copied back from the device to the host (CPU) using the function 

cudaMemcpy() with each column of the Jacobian as well as the right hand side 

vector being stored in separate arrays.  

 The arrays containing the columns of the Jacobian are assembled into a single 

array and this is passed into the function transpose() along with the right hand side 

vector. This function returns the product of the transpose of the Jacobian with 

itself and the right hand side vector. 
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 These are passed into the function chold() which computes the Cholesky 

decomposition of the 3 3 product matrix and solves the resulting system by 

forward substitution to obtain the updates for the parameters. 

  The parameters are then updated and the entire procedure is iteratively repeated 

until the convergence condition is satisfied. The updated parameters form the new 

estimates and are copied back on to the GPU at the beginning of each iteration. 

The convergence condition and the tolerance value for the termination of this iterative 

procedure remains the same as that in the C++ implementation. The source codes from 

the two implementations are tested for different data sets and the results are found to be 

accurate.  

 

Sphere 

 

The sphere is analogous to a circle. It is parameterized by in 3D space by its 

center ( 0 0 0, ,x y z ) and radius 0r .The equation is given by  

 
2 2 2 2

0 0 0 0( )x x y y z z r  (4.32) 

 

Since the only parameter different in a sphere from a circle is the z-coordinate, the above 

equation can be linearized to form the linear system of equations in equation (4.19) where 

the matrix A is of size 4n and the design vector x  is of size 4 1 . This system when 

solved as mentioned earlier yields the design vector x  which consists of the initial 

estimates of the coordinates of the center 0 0 0, ,x y z  and the radius 0r .The distance 

function or the error for the sphere is given by  
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2 2 2

0 0 0 0i i if x x y y z z r  (4.33) 

 

The Gauss-Newton method is used to minimize the objective function for a sphere which 

is given by  

 
2

2 2 2

0 0 0 0 0 0 0 0, , , i i iF x y z r x x y y z z r  (4.34) 

 

 

The partial derivatives of the function f with respect to each of the parameters 

0 0 0 0, , ,x y z r  are given by 
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 (4.38) 

The Jacobian matrix and right hand side vectors are populated in the same manner as that 

for the circle. However, the size of the Jacobian matrix is now 4n  and the right hand 

side vector is 4 1 . This is again solved using the relation given by equation (4.28) to 

obtain the updates which in this case is a 4 1vector. 

The parameters are updated after each iteration 

 0 0 1x x u  (4.39) 

 0 0 2y y u  (4.40) 
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 0 0 3z z u  (4.41) 

 0 0 4r r u  (4.42) 

 

These iterations are repeated until the algorithm converges and the last updated 

parameters are the least squares best fit parameters for a sphere.  

C++ Implementation 

The C++ implementation for the finding the least squares best fit parameters of a 

sphere is very similar to that for a circle.  The class “Data” mentioned in the previous 

section is modified to read in the z-coordinate from the file created in MATLAB. The 

class “Matrix” also mentioned in the previous section is modified to store and manipulate 

the coordinate points. Necessary changes are made in the functions transpose(), 

jacobian() and runTest()to account for the change in the size of the array and vectors. The 

size of the Jacobian in this case is 4n , the right hand side remains 1n  and the vector 

of updates has a size 4 1 . The algorithm for this implementation is also the same as 

described in the previous section.  

  The sum of the updates ( 1 2 3 4u u u u ) is compared to the tolerance value 

(same as that for circle) to check for convergence and the iterations are terminated when 

the sum goes below the tolerance. The implementation has been tested for different sizes 

of coordinate data sets and the tests indicate that the results are accurate and reliable. 

CUDA Implementation 

 Since the solution procedure for the circle and the sphere is the same, the parts of 

the computation implemented on the GPU are valid for the sphere as well. The host and 

device source codes for the CUDA implementation used earlier (runTest() and kernel() 
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respectively) remain the same as that for a circle. The two functions take in the same 

inputs and return similar elements as outputs. The algorithm and the sequence of 

operations is also the same as that explained in the CUDA implementation of the circle. 

The only significant differences between the two implementations are 

 The specification of the size for the allocation of memory on the host and the 

device for the vectors and arrays used is changed to accommodate for the three 

dimensional aspect or the z -coordinate of the sphere. 

 The function kernel() takes in an additional pointer as input to store and return  

the additional column in the Jacobian.   

The convergence condition for the termination of the minimization loop within the 

function runTest() and the tolerance value remain the same. Execution of the program 

with different data sets indicates that the implementation is accurate. 

 

Plane 

 

 The plane is a linear geometry which is defined by a point , ,x y z  and the 

direction cosines of the normal to it , ,a b c . The problem of finding the least squares 

best fit plane is a rather simple Eigen-value problem. The distance from any point 

, ,i i ix y z  in space to a plane is given by 

 . . .i i id a x x b y y c z z  (4.43) 

 

The sum of the squares of this error forms the objective function to be minimized. This is 

given by 

 
2

, , , , , . . .i i iF x y z a b c a x x b y y c z z  (4.44) 
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It can be shown that the least-squares plane passes through the centroid or mean of the 

data , ,x y z  [20]. Hence the centroid of the coordinate data can be considered as the 

point that defines the plane. It is required to find the direction cosines associated with this 

point. It is shown that the Eigen vector corresponding to the smallest Eigen value of the 

matrix formed by subtracting the mean from each point in the data set is the normal to the 

least squares plane. The matrix is formulated as  

 , ,i i iA x x y y z z  (4.45) 

Where  

 
ix

x
n

 (4.46) 

 
iy
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n

 (4.47) 

 

 
iz

z
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 (4.48) 

 

Typically, a Singular Value Decomposition of the matrix given by (4.45) is done and the 

vector corresponding to the smallest singular value of the matrix A forms the direction 

cosines of the normal to the plane. This is analogous to finding the Eigen values of TA A  

which is a matrix of size3 3 . In our case, for simplicity of implementation, the Eigen 

values are computed by finding the roots of the cubic equation obtained by setting up the 

determinant of the 3 3 matrix. Therefore, the centroid of the data and the Eigen vector 

corresponding to the minimum Eigen value of the above mentioned matrix define the 

least squares best fit plane. 
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C++ Implementation 

 Since the plane is a linear geometry, the solution involved is not iterative. A C++ 

source code is written to perform the sequence of operations explained above. The 

algorithm for this implementation is  

 The execution starts with the main function which again uses the class “Data” to 

read in the , ,x y z  coordinate data representing a plane and stores it in a vector. 

 The function mean() takes in the vector as input and returns the centroid of the 

data ( , ,x y z ). 

 The data along with the vector containing the mean is then passed into the 

function create_matrix() which returns the matrix whose columns are formulated 

by subtracting the centroid of the data from the x , y and z coordinates. 

 The matrix is passed in as an argument to the function transpose() which returns 

the 3 3 product matrix. 

 The function cal_abc() then computes the coefficients a , b and c of the cubic 

equation. 

 The function cubic_root() is coded to find the roots of a cubic equation. The 

coefficients computed in the previous step are passed into this function which 

returns the roots or Eigen values of the matrix. 

 These are then compared to determine the minimum value which is passed into 

the function eig_vec() where the corresponding Eigen vector is computed based 

on Cramer‟s rule. 
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Thus, the best fit plane to three dimensional coordinate data are defined by the point 

which is the centroid of the data and the Eigen vector computed above which represents 

the direction cosines of the normal to the plane. 

CUDA implementation 

 The compute intensive operations involved in the least squares fit procedure of a 

plane are matrix multiplication, calculation of cubic roots and the computation of the 

Eigen vector. Ideally, parallelizing all these operations would result in a significant gain 

in computation time but due to certain limitations of the hardware, and also with some 

experimentation, only the portion of the computation involving the translation of the data 

by the centroid is implemented on the GPU.   

 The source code for the GPU implementation is the same as the C++ 

implementation. The major difference is that the function create_matrix() from the C++ 

implementation is modified such that it forms the wrapper for the function kernel() which 

executes the data translation operation on the GPU. The inputs to this function include 

3D coordinate data for the plane and the vector containing the centroid. In this case it is 

modified such that it returns the product TA A  where A  is the matrix obtained by 

translating the data by the centroid and is populated on the GPU. The function transpose() 

to compute the product matrix is called from within the function create_matrix(). 

 The execution configuration parameters – the block size and the grid size are the 

same for all implementations. The number of threads in a block is16 16 . i.e., there are 

256 threads in all blocks and the grid size or the number of blocks in a grid is computed 

based on the size of the data set. In general, the number of blocks are chosen such that the 

number is a multiple of 256 and the total number of threads in all blocks is equal to the 
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total number of elements in the data set. The data along with the centroid is copied to the 

device memory. The ,x y  and z coordinates are loaded onto shared memory as separate 

blocks and suitable instructions are specified to execute the data translation operation. 

The translated data are copied back to the host memory as separate vectors and assembled 

into one single dimensional array. The sequence of operations that follows is the same as 

that explained in the algorithm for the C++ implementation. Furthermore, the functions in 

the source code used to execute the rest of the computation involved are the same as 

those used in the C++ implementation. 

 

Utility functions 

 

  The distances from a point in space to a line and to plane or the line and plane 

distance functions are an essential part of the next three non-linear geometries – cylinder, 

cone and torus. These are therefore defined as given in [20] . The distance from a point 

, ,i i ix y z  to line defined by a point 0 0 0, ,x y z  and normalized direction cosines , ,a b c  

is given by  

 2 2 2

if u v w  (4.49) 

Where  

 0 0* *i iu c y y b z z  (4.50) 

 0 0* *i iv a z z c x x  (4.51) 

 0 0* *i iw b x x a y y  (4.52) 

The distance from a point , ,i i ix y z  to a plane defined by a point 0 0 0, ,x y z  and the 

normal direction , ,a b c  is given by  
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 0 0 0* * *( )i i i ig a x x b y y c z z  (4.53) 

 

The derivatives for the expressions (4.49) and (4.53) with respect to certain defining 

parameters play an important role in the non-linear least squares minimization of the 

aforementioned geometries and are given in [20]  

 

Cylinder 

 

 A cylinder is defined by a point 0 0 0, ,x y z  on its axis, a vector , ,a b c pointing 

along the axis (the direction cosines) and its radius r .The distance from a point to the 

surface of a cylinder is given by  

 id f r  (4.54) 

 

Where if  is the distance from a point in space to a line given by equation (4.49) and r is 

the radius of the cylinder. The objective function is given by  

 
2

0 0 0, , , , , , iF x y z a b c r f r  (4.55) 

 

The initial estimates for the defining parameters of a cylinder are obtained by considering 

the ideal case that all points lay on the surface. In other words, the error is considered to 

be zero. By equating the relation given by (4.54) to zero, rearranging the terms and 

squaring the resulting expression yields 

 2 2 2 2u v w r  (4.56) 

 

Substituting for u , v  and w  in the above equation and simplifying gives  

 2 2 2 0i i i i i i i i i i i iAx By Cz Dx y Ex z Fy z Gx Hy Iz J  (4.57) 



 

 56 

 

The coefficients A  to J  are given by 

 

 2 2A b c  (4.58) 

 2 2B a c  (4.59) 

 2 2C a b  (4.60) 

 2D ab  (4.61) 

 2E ac  (4.62) 

 2F bc  (4.63) 

 2 2

0 0 02 2 2G b c x aby acz  (4.64) 

 2 2

0 0 02 2 2H abx a c y bcz  (4.65) 

 2 2

0 0 02 2 2I acx bcy a b z  (4.66) 

2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 02 2 2J b c x a c y a b z bcy z acx z abx y r  (4.67) 

 

Equation (4.57) is normalized with respect to its first coefficient A and expressed as a 

system of linear equations. This is solved in the least squares sense to obtain a vector 

consisting of the remaining nine normalized coefficients
B

A
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A
and 

J

A
. These elements are compared for their proximity to 1 and 0 and based on the 

relations in equations (4.59) through (4.63) the initial estimates for the direction cosines 

, ,a b c  are computed. Once the direction cosines are determined, the definitions of the 

coefficientsG , H , I and the relation between the direction cosines and the axis 

 0 0 0 0ax by cz  (4.68) 
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a system of linear equations in the form of equation (4.19) is set up and solved in the least 

squares sense to obtain the initial estimates of the point on the axis 0 0 0, ,x y z . The initial 

estimate of the radius is then computed by substituting the values computed into 

equation(4.67).  

 The Gauss-Newton minimization method is modified to find the least squares best 

fit parameters for a cylinder. At the beginning of each iteration a copy of the cylinder 

data are translated so that the point on the axis is the origin of the coordinate system. The 

data are then rotated to be aligned with the z -axis (standard position) by multiplying the 

data with a suitable rotation matrix. The advantage of this constraint is that it reduces the 

time to evaluate the derivatives of the distance function. This in turn simplifies the 

computation involved in setting up and solving the Jacobian. The partial derivatives of 

the distance function for a cylinder in standard position are given by 
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In the general case, the Jacobian would be an 7n matrix of the partial derivatives of the 

distance function with respect to the seven defining parameters. By applying the 

technique mentioned, the point on the axis is at 0,0,0  and the direction cosines are 

constrained to be 0,0,1 . The derivatives then reduce to the equations (4.69) 

through(4.75). Consequently, evaluating these partials at each data point is significantly 

simplified and the Jacobian also reduces to an 5n matrix which is easy to solve. The 

right hand side vector is again the distance function evaluated at all data points. The 

Jacobian and the right hand side vector are solved to obtain the updates. Since these 

updates are for the cylinder in standard position, the parameters are updated in a different 

manner to obtain the values in the original position. If the rotation matrix is defined by 

U and the vector of updates is defined by p which consists of 5 elements, then the 

parameters are updated as follows: 
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 (4.77) 

 

 5r r p  (4.78) 

 

Where, TU is the transpose of the rotation matrix, 1p through 5p are the values of the 

updates for 0x , 0y , a , b and the radius r  in the same order. It can be seen the rotation 

matrix does not affect the radius of the cylinder as it remains a constant. This procedure 
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is performed iteratively until the solution has converged. In the first step of the 

subsequent iteration the copy of the original data set is used rather than the transformed 

data set from the previous iteration. The tolerance for the convergence specified is 310 . 

The tolerance value is greater in this case as the algorithm is sensitive to noisy data. In 

this case, the sum of the updates 1p through 5p  is compared to the tolerance value to 

determine whether the solution has converged. The other condition is the number of 

iterations which is set to a hundred. In other words, the iterations stop when the value of 

the sum of updates is less than the tolerance value or when the number of iterations is 

hundred. 

C++ Implementation 

 The entire source code for the C++ implementation is written in a modular 

fashion, i.e., different functions are defined and written to carry out each step of the 

procedure explained above. The structure of the source code is similar to the circle and 

sphere implementations. The algorithm for the procedure is 

 The main() uses the class “Data” to read in coordinate data from the 

corresponding file and stores it in a vector template. 

 This is passed into a function calc_AJ() wherein the coefficients of equation 

(4.57) normalized with respect to the first coefficient are computed and returned 

in a vector. 

 The function then calc_abc() takes in this vector as input and returns the initial 

estimates of the direction cosines. 

 The direction cosines are then passed into the function calc_xyz_r_0() which 

returns the initial estimates of the point on the axis and the radius. 
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 The initial estimates along with the coordinate data are then passed into the 

function runTest() where the iterations for the minimization are carried out. The 

sequence of operations within this function are: 

a. The data and initial estimates are first copied into different variables. 

b. A call to the function calc_rot_mat_vec() is made to compute the rotation 

matrix required to rotate the coordinate data from its current position to 

the standard position 0,0,1 . This function is written in a generic manner 

to return the suitable rotation matrix required to rotate data whose axis is 

defined by one direction vector to another direction vector. 

c. The rotation matrix, the copy of the data and initial estimates are passed in 

as inputs to the function transform() which first translates the data and 

then rotates it so that the data are in the standard position. 

d. The functions jacobian(), transpose() and chold() are then called in the 

same order to set up the Jacobian and right hand side vector, multiply the 

transpose of the Jacobian with itself and the right hand side vector, and 

finally to solve the system to obtain the updates respectively.  

e. The parameters are updated as explained and the entire procedure is 

repeated until the convergence condition is met. 

 The function runTest() then returns the last updated values of the parameters 

which form the solution. 

CUDA implementation 

 Apart from two arithmetic intensive operations; the population of the Jacobian 

and the right hand side vector which were the identified in the circle and sphere fits, the 
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transformation of the data, i.e., the translation and rotation of the 3D data to be axis 

aligned at the beginning of every iteration is also implemented on the GPU in the case of 

the cylinder fit. The source code again consists of two major components namely 

runTest()-host component and kernel()-the device component. The initial estimates are 

computed within the main() function by using the necessary functions explained in the 

C++ implementation. These along with the coordinate data are inputs to the function 

runTest(). The sequence of operations within runTest() remain the same except that the 

operations executed in the functions transform() and Jacobian() are executed on the GPU. 

Since a copy of the original data are transformed to be axis aligned at the beginning of 

every iteration, the data transfer between the host and the device is avoided by loading 

the data onto the device once and storing it in an array on the device memory for use in 

every subsequent iteration.  

The structures of the host and device components are the same as that of the 

CUDA implementations for the circle and sphere. The major difference is in the inputs to 

the kernel function. In the case of the cylinder, the rotation matrix and the point on the 

axis of the cylinder which are required for the data transformation are the additional 

inputs. Furthermore, the kernel function also takes additional pointers to device memory 

as inputs to store the columns of the Jacobian matrix which in the case of the cylinder is 

five. The instructions within the function kernel() are also suitably changed to perform 

the transformation on the data and operate on the transformed data to obtain the Jacobian 

and right hand side vector according to the equations presented earlier. The results are 

copied back to the host and passed into the function transpose() as inputs. The resukting 

product matrix and vector obtained are solved within the function chold() to obtain the 
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updates. The parameters are then updated as explained in the C++ implementation and 

the updated parameters are used to generate the new rotation matrix and the entire 

procedure is repeated until the solution has converged and the last updated parameters are 

the best fit parameters. The convergence condition and tolerance remain the same as 

explained earlier.  

 

Cone 

 

 The defining parameters for a cone are a point on its axis 0 0 0, ,x y z  which is not 

the apex, the direction cosines of the axis , ,a b c , the orthogonal distance from the point 

on the axis to the cone s and its apex semi-angle denoted by . The distance equation or 

the error for a cone is given by  

 *cos *sini id f g s  (4.79) 

Where if  is the distance from a point , ,i i ix y z in space to a line which in this case is the 

axis of the cone given by equation(4.49). ig  is the distance from a point to a plane 

defined in equation (4.53) and s is defined above. The objective function is the sum of 

the squares of this error given by  

 
2

0 0 0( , , , , , , , ) *cos *sini iF x y z a b c s f g s  (4.80) 

Since the distance equation cannot be linearized, the initial estimates for the 

parameters in the case of the cone are guesses. The concept of finding the least squares 

best fit cone to 3D coordinate data are the same as that for the cylinder. A copy of the 

data are transformed using the rotation matrix at the beginning of each iteration such that 

it is in standard position or aligned with the z -axis. This technique simplifies the 
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computation of partial derivatives of the distance equation with respect to the defining 

parameters as the point on the axis and direction cosines are known in the standard 

position. The partial derivatives of (4.79)are dependent on the partial derivatives of the 

line and plane distance functions if  and ig  respectively. For the general case, the partials 

for the distance equation of the cone in simplified form are  
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However, in the event that a point or points in the data set lies on the axis 

(generally the apex), the line distance function if  is zero. Hence its partial derivatives 

with respect to the point on the line and the direction cosines are not defined as explained 

in [20]. This causes the partials for the distance equation of the cone also to be undefined 
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at these points. The gradient for line distance function is modified for such cases and 

hence the partial derivatives of (4.79) with respect to 0x , 0y , a  and b  are given by 
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The remaining derivatives remain the same. The transformed data and initial estimates 

are used to compute the Jacobian matrix as well as the right hand side vector. The 

Jacobian matrix is now an 6n matrix instead of an 8n matrix.  The line and plane 

distance functions, if  and ig  are computed using the inputs. The Jacobian is then 

populated by using equations (4.89) through (4.92) when the value of if  is zero and 

equations (4.83) through (4.88) otherwise. The rest of the solution procedure remains the 

same as that for the cylinder. There are six updates for the parameters in this case The 

point on the axis and the direction cosines for the cone are updated in the same manner as 

given by equations (4.76) and(4.77). The remaining two values in the vector containing 

the updates are added to the orthogonal distance s  and the apex semi-

angle respectively as these do not change immaterial of the cone‟s orientation The 

iterations are terminated either when the sum of updates is below the tolerance specified 

( 310 ) or when the number of iterations is hundred. 
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C++ Implementation 

Two separate programs are developed to treat the two possible cases for the cone. 

The first case is theoretical wherein the data set is assumed to have a point or a set of 

points sampled off the apex of the cone during the process of measurement. In the second 

case, which occurs in reality, the coordinate data sampled from a surface of the cone is 

assumed to have no apex. This is a more common case because in reality the apex is 

rounded off and hence no points are sampled off the surface during measurement. 

Although the programs for both the aforementioned cases are essentially the same, the 

major difference between them is discussed in this section. 

The C++ implementation of the least squares fit for a cone is a variation of that 

for the cylinder. The functions implemented to compute the initial estimates are 

eliminated and the function jacobian() is modified to accommodate the necessary changes 

in computation which explained in this section. The user entered initial estimates and data 

read in from the file using the “Data” class are passed into the function runTest() which 

returns the best fit parameters. The sequence of operations within this function is the 

same as that for the cylinder.  

The transformed data and estimates are inputs to the function jacobian(). The line 

and plane distance functions are evaluated at each data point. For the case with apex 

singularity, an if condition is set to determine if the value of line distance function if  is 

zero at any data point. If this condition is true, the corresponding elements of the 

Jacobian matrix are computed by using relevant equations [(4.89)-(4.92)] and if it is false 

the equations (4.81) through (4.88) are used. The right hand side vector is the distance 

function itself evaluated at each data point in the point cloud. The Jacobian which is an 
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array of size 6n  and the vector of size 1n  are passed into the function transpose() 

which returns the product of the transpose of the Jacobian with itself and the right hand 

side vector. The 6 6 product matrix and the 6 1  vector are solved by Cholesky 

decomposition and forward substitution to obtain the updates. The parameters are 

updated and the iterations are terminated according to the convergence conditions as 

explained in the previous section.  

The only significant difference in the C++ implementation for the second case 

(cone data with no apex) is within the function jacobian() wherein the control flow 

instruction if is eliminated and the elements of the Jacobian are computed in a straight 

forward manner using equations (4.81) through (4.88).  

The drawback of the implementation is that it requires good initial guesses of the 

parameters as the algorithm is not numerically robust. The number of iterations required 

for the solution to converge increases with poor initial guesses. 

CUDA Implementation 

 Similar to the C++ implementations, two separate GPU (CUDA) implementations 

are developed for the two cases mentioned in the least squares fit of a cone.  The structure 

of the   implementation remains the same as that for cylinder. The operations executed on 

the GPU include transformation of the data to be axis aligned, population of the Jacobian 

matrix and the right hand side vector. The function runTest() forms the platform for the 

kernel() function which executed theses operations. Memory allocation for the input and 

the results on the device id carried out using cudaMalloc(). The coordinate data are 

loaded on to the device in a one time data transfer using cudaMemcpy(). This is stored in 

an array on device memory and used for the transformation at the beginning of every 
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iteration in the minimization procedure. Thus, unnecessary data transfer between the 

device and host is avoided lending the implementation efficient. The functions 

transform() and jacobian() from the C++ implementation are replaced by kernel() to 

which executes the mentioned computations on the GPU. The block and grid sizes for the 

execution of the kernel are specified in the same manner as explained for all previous 

implementations. The inputs to the function kernel() are different from that for the 

cylinder implementation. In this case, a pointer to the array required to store another 

column of the Jacobian matrix is one additional input.  For the case where the apex 

singularity of the cone is taken into consideration, an if condition is specified within the 

kernel to determine at which points the value of the line distance function is zero and the 

Jacobian is populated using the necessary mathematical equations as explained 

previously. However, this control flow instruction is specified such that all the threads in 

a warp and in general within all the blocks follow the same path of the condition to avoid 

serializing the operations. The performance of this implementation is compared to the 

one in which the apex singularity for the cone is neglected. In this case, the control flow 

instruction is eliminated and the elements of the Jacobian are computed in the same 

manner as explained in the C++ implementation. The outputs from the kernel are copied 

back to the host (CPU) and solved to obtain the updates. The initial estimates are then 

updated as explained previously and the new estimates are used to generate the new 

rotation matrix. The elements of this matrix along with the updated estimates are copied 

back to the device and the procedure is repeated until the solution converges. 
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Torus 

 

The torus is a non-linear geometry which is parameterized by its 3D center 

0 0 0, ,x y z , the direction cosines of its axis , ,a b c , the major radius r and the minor 

radius R . The distance from any point , ,i i ix y z  to the surface of the torus is given by  

 
22

i id g f r R  (4.93) 

Where if  and ig  are the line and plane distance functions respectively which are defined 

previously The sum of the squares of this distance from each point in the data set to the 

torus is the objective function to be minimized. This is given by  

 
2

22

0 0 0( , , , , , , , ) i iF x y z a b c r R g f r R  (4.94) 

The distance function given by equation cannot be linearized and hence initial estimates 

have to be good guesses. The strategy used to solve for the best fit parameters for the 

cylinder and the cone is used for the torus as well. The data are transformed to the 

standard position at the beginning of every iteration of the Gauss Newton minimization 

procedure. Since the data are in the standard procedure, the partial derivatives of the 

distance equation with respect to the parameters are simplified and given by 

 
0

* 1 /i ix r fd

x d R
 (4.95) 

 
0

* 1 /i iy r fd

y d R
 (4.96) 

 
0

izd

z d R
 (4.97) 

 
* * /i i ix z r fd

a d R
 (4.98) 
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* * /i i iy z r fd

b d R
 (4.99) 

 0
d

c
 (4.100) 

 
if rd

r d R
 (4.101) 

 1
d

R
 (4.102) 

These partial derivatives are evaluated at each point of the coordinate data and the initial 

estimates and assembled in columns to form the Jacobian matrix which in this case is 

of 7n , n being the size of the data set. The right hand side vector is the distance 

function evaluated at all the data points and is of size 1n . These are then solved in the 

least squares sense using the previously explained procedure to obtain the vector of 

updates which in this case is a 7 1vector ( p ). The first three updates 1 2 3, ,p p p  are for 

the point on the axis, the next two 4 5,p p are for the direction cosines and last two 

values 6 7,p p  of the vector are for the major and minor radius. The procedure to update 

the parameters remains the same as that for the cone and the cylinder except for the 

center point of the torus which is updated as follows: 

 

0 0 1

0 0 2

1 4 2 5 30 0

*

( * * )*

T

x x p

y y U p

p p p p pz z

 (4.103) 

Where TU is the transpose of the rotation matrix required to rotate the data to the 

standard position. The noticeable change here is the inclusion of the update 3p for the 

z coordinate of the center point. The tolerance value for the convergence remains 310 but 
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condition for convergence is set such that the iterations terminate when the value of sum 

of first five updates is compared to tolerance or the limit for the number of iterations 

(hundred) is reached.  

C++ Implementation 

 The structure and sequence of operations in the C++ implementation for the torus 

fit remains the same as that for the cone. All functions that were used for the various 

steps in computations in this implementation are reused for the torus. The only significant 

changes made are in the function jacobian() where the formulae used to populate and 

store the Jacobian matrix and the right hand side vector are changed. Consequently, the 

other change is in the size of array used to store the Jacobian matrix. The product of the 

transpose of the Jacobian with itself is a 7 7 matrix which is solved to obtained the 

updates using the function chold(). The update for the center point of the torus is 

programmed according to equation (4.103) while the rest of the updates are similar to 

those in the implementation for the cone. The iterations are terminated according to the 

convergence conditions specified in the previous section.  

CUDA Implementation 

 Since the entire procedure, algorithm and the computations involved for finding 

the least squares best fit torus to data are very similar to the cone, the graphics hardware 

implementation for this primitive is also developed on the same lines. The only 

significant changes are  

 In the size of memory allocated on the device and the number of variables used to 

store the intermediate results and outputs. The kernel program in this case takes in 
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an additional input which is a pointer to the array used to store the additional 

column in the Jacobian. 

 The updates for the center point of the torus is changed according to equation 

(4.103). 

The rest of the source code remains the same as that for the cone. The last updates 

parameters are the least squares best fit parameters for a torus.  

 



CHAPTER V 

RESULTS AND DISCUSSIONS 

 

This chapter describes the procedure developed to benchmark parts of 

computation carried out on the GPU against those on the CPU. The CPU used for the 

C++ implementation is a 2.13 GHz Intel Core 2 Duo processor with a 2.0 GB Random 

Access Memory (RAM) while the GPU as is an NVIDIA GeForce 8800 GTX card with 

an on board memory of 768MB. The implementations are suitably time profiled and the 

results obtained are presented with relevant observations.  

 

Benchmarking 

 The C++ and graphics hardware (CUDA) implementations of the least squares of 

all non-linear geometries viz. circle, sphere, cylinder, cone and torus are similar in 

structure and are benchmarked against each other to determine the gain in computation 

time. Since the computations for which the time comparison is to be drawn are within the 

Gauss-Newton minimization loop, a procedure for timing these specific operations in 

both C++ as well as the GPU implementations is developed and is explained in this 

section. The method is valid for all the aforementioned non linear geometries. However 

the functions timed in the case of the circle and sphere are different from those for the 

cylinder, cone and torus and this is discussed in this section.  

In the GPU implementations for the circle and sphere fits, the operations executed 

on the GPU include setting up the Jacobian and right hand side vector. These operations 
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are carried out in a separate function called jacobian() on the CPU (C++ implementation). 

Hence, in both cases a variable is declared to record the time in each iteration and the 

times for the subsequent iterations are added to get the total computation time. The 

standard Win32 function QueryPerformanceCounter() is used to time the operation in the 

case of the CPU implementations. This function returns the current value of the high-

resolution performance counter. The timing function is invoked before the function 

jacobian() and terminated just after its execution. The device or GPU part of the code is 

timed by using CUDA timer functions viz. cutCreateTimer(), cutStartTimer(), 

cutStopTimer() and cutGetTimerValue(). In the first iteration, the value returned by these 

functions is stored in a variable. The timer is reset at the start of the next iteration and the 

value returned is added to the value previously stored. Thus the total computation time is 

obtained. The functions to reset and start the timer are invoked before copying the 

updated parameters from the host device in the case of the circle, sphere, cylinder, cone 

and torus. The call to terminate the timer is made after the results are copied back from 

the device to host. However, the functions timed in the CPU implementations for the 

cylinder, cone and torus are the transform() and jacobian() as the operations executed on 

the GPU include transformation of the data as well as population of the Jacobian and the 

right hand side vector.   

The benchmarking technique for either implementations of the plane fit is straight 

forward as it does not involve iterative solution. The only operation executed on the GPU 

involves translation of the coordinate data by its centroid. The timer functions for the 

GPU implementation are invoked before the data and vector containing the centroid is 

loaded on to the device memory and terminated after the resulting matrix has been copied 



 

 74 

back to the host memory for further computation. Whereas for the CPU implementation, 

the function create_matrix() is timed as the translation of the data are executed within this 

function. 

Results  

All the CPU and GPU implementations are executed with data sets of sizes ranging from 

8000 to about 12 million data points to establish a deterministic relation between the way 

the CPU implementations scale with large data streaming as compared to the way GPU 

implementations perform. Table 2 includes the computation times for the circle and 

sphere fits. The times taken for the execution of operations in the cylinder and torus fits 

are tabulated in Table 3. Table 4 gives a comparison of the theoretical and practical cases 

for a cone fit. Finally, Table 5 shows the computation times for the CPU and GPU 

implementations of the plane fit. 

 

Table 2: Results for Circle and Sphere fit 

 

CPU Vs GPU 

Time (msecs) 

  Circle Sphere 

Data size CPU CUDA (GPU) CPU CUDA (GPU) 

8192 0.578 0.237 1.109 0.626 

16384 1.005 0.392 2.254 0.938 

36864 2.265 0.779 3.978 1.966 

65536 4.866 1.251 5.758 2.994 

98304 7.097 1.863 7.985 4.357 

147456 10.128 3.318 17.43 6.245 

196608 13.145 3.874 22.297 9.023 

262144 17.245 4.687 32.423 11.62 

393216 25.608 6.91 59.117 16.574 

589824 37.412 10.317 88.392 25.761 

786432 57.483 13.945 117.719 32.158 

1048576 124.608 34.913 157.229 48.396 
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Table 3: Results for Cylinder and Torus fit  

 

CPU Vs GPU 

Time (msecs) 

  Cylinder Torus 

Data size CPU CUDA (GPU) CPU CUDA (GPU) 

8192 8192 2.498 14.02 2.544 

16384 16384 4.972 21.709 3.461 

36864 36864 11.203 51.821 6.137 

65536 65536 20.075 96.942 9.813 

98304 98304 31.078 153.129 13.963 

147456 147456 49.517 263.684 20.295 

196608 196608 66.095 333.897 27.361 

262144 262144 87.712 472.126 36.771 

393216 393216 131.267 663.213 51.096 

589824 589824 197.464 1042.09 83.055 

786432 786432 262.523 1461.5 109.672 

1048576 1048576 349.01 1927.7 138.984 

 

 

Table 4: Results for Cone fit 

 

CPU Vs GPU 

Time (msecs) 

  Cone (with Apex) Cone (without Apex) 

Data size CPU CUDA (GPU) CPU CUDA (GPU) 

8192 11.001 2.504 10.85 2.448 

16384 21.618 4.134 19.898 4.066 

36864 51.095 7.911 48.569 7.217 

65536 96.215 12.7 91.007 11.784 

98304 162.154 18.6005 158.081 17.642 

147456 255.563 26.754 252.86 26.393 

196608 331.55 34.969 328.208 34.151 

262144 463.381 46.281 461.094 44.329 

393216 681.066 68.663 675.849 67.859 

589824 1037.34 101.545 1031.01 100.571 

786432 1381.08 138.341 1372.04 136.389 

1048576 1833.96 179.692 1824.06 178.345 
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Table 5: Results for Plane fit 

 

CPU Vs GPU 

  Time (msecs) 

Data size CPU 

CUDA(GPU) 

with data 

transfer 

CUDA (GPU) 

without data 

transfer 

16384 0.068 0.535 0.113 

36864 0.184 1.057 0.207 

65536 0.531 1.817 0.563 

98304 0.668 2.56 0.811 

147456 0.867 3.752 0.974 

196608 1.15 4.97 1.217 

262144 1.662 7.037 1.446 

393216 2.752 9.277 2.574 

589824 4.837 14.869 4.682 

786432 6.147 20.13 6.031 

1048576 8.67 26.65 8.61 

1572864 13.077 38.772 12.652 

 

 

It is observed from the tables that the GPU implementations are significantly 

faster than the CPU implementations in all cases except the plane fit. The tremendous 

gain in computational speed for these cases is mainly due to the memory model adopted. 

In other words, the manner in which the data are loaded on to the shared memory and 

operated on contributes significantly to the performance gain. As explained earlier, the x , 

y  and z  coordinates for any primitive are processed independently of each other as 

individual threads in a block. Many such blocks are processed simultaneously in a grid 

and thus any arithmetic instruction specified for a particular data set is executed 

simultaneously on all elements in the set which results in the performance boost.   

The plane fit on the other hand is a closed form solution and the only operation 

carried out on the GPU is the translation of the data. The entire data are copied on to the 
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device for processing. The overhead of copying the data back and forth from the device 

to the host is greater than any gain in computation time.  Furthermore, since this 

operation involves subtraction of a single value from a set of blocks, all the threads from 

different blocks tend to access the same memory location causing bank conflicts. This 

serializes all the computation and hence no significant gain is observed. All the results 

tabulated above are for data sets consisting of a million points. However, as mentioned 

above the programs are executed with data sets of up to 12 million points to gain a better 

insight on the performance of the hardware as the data sizes scale up. A statistical 

analysis of the data is carried out to determine the relation between the computation time 

and the size of data set for all primitives. 

CPU Vs GPU (Circle Fit)
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Figure 10: CPU Vs GPU (Circle Fit) 
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The comparison of computation times of the CPU and GPU for a circle fit for data 

sets consisting of approximately 8000 points to about 12 million points is plotted in 

Figure 10 based on the results tabulated in Table 2. A linear regression is carried out on 

the data to determine the relation between the times taken for increase in data set sizes. 

The observation is that for very large data sizes, the computation time on the GPU is 

about 0.3 times the computation of the CPU owing to the parallel processing capabilities 

of the hardware. In other words the GPU is about 3-4 times faster than the CPU in 

performing the same computations. This is determined by taking the ratio of the slopes 

between the two trend lines from the regression analysis as shown in Figure 10. It is 

noticed that the trend line for the CPU Vs Data size has a negative y-intercept. This does 

not give the exact interpretation of the process as it is not practically possible that the 

CPU takes negative time when there are no data points. However, this trend can be 

attributed to the fact that for some data sets, the increase in time taken does not follow a 

linear trend causing the line to have a negative y-intercept. This is because of the 

randomly generated noise added to the data. Some data sets take lesser computation times 

than the predicted value by the linear model while others take more than the predicted 

value. The trend line for the GPU results on the other hand has a positive y-intercept 

which accounts for the set up time required within the kernel program. 

To ensure that the noise in the data is the cause for the trends observed, four data 

sizes are chosen and ten data sets for each of these data sizes are generated with the same 

noise level. These are used as inputs to execute the CPU and GPU implementations. The 

error bars corresponding to these data sets shows the effect of noise. The y-intercept is 
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negative for the CPU trend line because of the high computation times for certain data 

sets especially the ones consisting of a large number of points. 

 

CPU Vs GPU (Circle Fit)
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Figure 11: CPU Vs GPU (Circle Fit with small data sets) 

 

Another interesting aspect in this implementation is the number of points beyond 

which the GPU out performs the CPU. The memory model adopted requires that a 

minimum of 1024 points be processed to obtain the results. Hence, the implementations 

are benchmarked with smaller data sets than earlier and these are plotted above in Figure 

11. It is evident that the CPU outperforms the GPU when the number of points in the data 

set is less than 4096. This indicates that when the computational complexity is less, 
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which is the case with the circle fit, the GPU is good with data sets which contain more 

than 4000 points. 

 

CPU Vs GPU (Sphere Fit)
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Figure 12: CPU Vs GPU (Sphere Fit)  

 

A similar analysis is carried out on the time data for the sphere fit in Figure 12 

which is based on the values tabulated in Table 2. However, the maximum size of the 

data set in this case is about 10 million. This is because the number of variables required 

is greater which induces a memory limitation during execution. The ratio of the slopes of 

the trend lines for the results from the two implementations gives us an estimate that on 

an average the GPU is about 5 times faster which implies that the total computation time 

for the operations on the GPU take about 0.2 times the total computation time on the 
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CPU. Furthermore, the trend line for the CPU results has a negative y-intercept which 

again indicates that the time taken for larger data sets by the CPU increases non-linearly. 

Experimentation with smaller data sets indicates that the GPU is slower than the CPU for 

the least possible number of points (1024). To determine the size of the data set for which 

the GPU outperforms the GPU the computation times for both implementations for small 

data sets are shown in Figure 13. In this case, as expected, the GPU outperforms the CPU 

for a data set consisting of 2048 points which is lesser than that for the circle fit (4096). 

There is an increase in computational complexity but the execution of all these operations 

in parallel on the GPU results in the performance gain even with a comparatively small 

data set. Hence, the minimum number of points for which the GPU can be used for 

computations for a sphere fit is 2048. 
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CPU Vs GPU (Sphere Fit)
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Figure 13: CPU Vs GPU (Sphere Fit with smaller data sets) 

 

Figure 14 shows interpretation of the results from the two implementations of the 

cylinder fit which is based on the values tabulated in Table 3. As the number of variables 

required for computations is larger, the maximum size of the data set with which these 

implementations can be tested gets smaller and hence the number of points used in this 

analysis is limited to about 8 million. 
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CPU Vs GPU (Cylinder Fit)
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Figure 14: CPU Vs GPU (Cylinder Fit) 

 

 The regression analysis of the results obtained indicates that the GPU is about 

3.75 times faster than the CPU for the data sets tested. This is determined by taking the 

ratio of the slopes from the trend lines obtained from the regression. This can also be 

expressed by stating that the computation on the GPU takes about 0.26 times the total 

computation time on the CPU. Although these trends contradict the trends observed in the 

circle and sphere fits which indicated that the increase in complexity increases the 

performance gain, there are two reasons for the observations made for the cylinder. First, 

the data set consists of about 8 million points as compared to the 10 million points used 

in the sphere and circle analysis. As seen earlier, the actual time taken for computations 
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on the CPU does not increase linearly with very large data sets which would result in the 

slope of the CPU trend line being greater. Secondly, the computations performed on the 

GPU for the cylinder fit include rotation and translation of the data along with the 

population of the Jacobian and the right hand side vector. Since the rotation and 

translation operations involve various threads accessing the same memory location on 

shared memory, serialization of operations occur. However, the gain obtained in the 

population of the Jacobian and the right hand side vector overcomes this overhead. 
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Figure 15: CPU Vs GPU (Cylinder Fit with smaller data sets) 

 

Another important observation made from this analysis is that the GPU times for 

the last two data sets increases non-linearly resulting in the negative intercept of the trend 
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line. Furthermore, the time profiling of both implementations for the minimum data size 

of 1024 data points reveals the CPU is faster than the CPU. Hence the implementations 

are tested with smaller data sets to determine the minimum number of points at which the 

GPU‟s performance gain is observed. This is depicted in Figure 15 and as observed the 

gain in performance of the GPU is for data sets consisting of over 4096 points.  

 

CPU Vs GPU (Cone Fit without Apex)
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Figure 16: CPU Vs GPU (Cone Fit without Apex) 
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CPU Vs GPU (Cone Fit with Apex)
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Figure 17: CPU Vs GPU (Cone Fit with Apex) 

 

The results from the two separate cases for the least squares fit of a cone are 

analyzed. Figure 16 projects the practical case in which the data set does not contain 

points sampled off the apex of the cone. Figure 17 presents the theoretical case which 

includes the apex in the data. Both the figures are plotted based on the values recorded in 

Table 4. The analysis focuses on determining the effect of using the control flow 

instruction (if) on the instruction throughput or the efficiency of the GPU 

implementation. However, as seen from above, there is no significant change in 

computation time even with the inclusion of this statement although there is some 

difference. The control flow instruction for the GPU implementation is specified in such 
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a manner that all the threads follow the same path of execution thus avoiding serialization 

of operations. 

From both figures it is evident that the GPU takes about 0.11 of the time taken by 

the CPU to execute the same instructions. In other words, the GPU is approximately 9 

times faster than the CPU in operation (ratio of slopes). This implies that the linear model 

used gives us a fairly good estimate as the actual data indicates that the number of times 

the GPU is faster than the CPU ranges from about 5-10. Further, the trend lines for the 

CPU and GPU in both cases have negative intercepts with the ones for the CPU being 

highly negative. This is again due to the noise in the data. 

Unlike the trends observed in the cylinder fit the performance gain of the GPU for 

the cone fit is more pronounced though the same operations are executed in both cases. 

However, in the cone fit, the population of the Jacobian is more computationally complex 

than that for the cylinder and the parallelization of these operations on the GPU accounts 

for the gain. 

Time profiling the CPU and GPU implementations for both cases of the cone fit 

for very small data set (1024 coordinate points) indicates that the GPU is about 1.3 times 

faster than the CPU for the cone with an apex while it is 1.4 times faster.  
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CPU Vs GPU (Torus Fit)
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Figure 18: CPU Vs GPU (Torus Fit) 

 

The results from the time profiling of the CPU and GPU implementations for the 

torus fit (Table 3) and the linear regression analysis of the same is presented in Figure 18. 

The GPU implementation in this case is again orders of magnitude faster than that of the 

CPU. The total time taken to execute the operations involving transformation of data and 

population of the Jacobian matrix and right hand side vector on the GPU is about 0.055 

times the total time taken by the CPU to execute the same operations. The ratio of the 

slope of the CPU trend line to that of the GPU trend line indicates that the GPU is about 

18 times faster than the CPU. The actual data indicates that the gain in performance is 

about 14. The effect of noise is more pronounced in this case which is evident with the 
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high negative value of the y-intercept in the CPU trend line and the high value of the 

slope. As in the case of the circle fit, four data sizes are chosen and ten data sets for each 

of these are generated, and the implementations are executed. It is observed that the 

variations are slightly larger for the torus as compared to those in the case of the circle fit. 

This is because we have noise in 3D in the case of the torus, while the noise gets added 

only to the x  and y coordinates for the circle. Furthermore, the GPU‟s performance gain 

is observed even with very small data sets which conform to the expectation that the 

GPU‟s performance increases significantly with increase in arithmetic intensity of 

operations being executed by it. 

Further, experiments are conducted with the same data sets for the torus but at 

three different noise levels to determine the trends for the two implementations. In the 

first case, all the data are generated with a noise of zero while for the second case they 

are generated with a noise of standard deviation 0.01. The third case considered here 

presents the computation times for both implementations of the torus fit when the noise 

added is much higher (standard deviation ( )of 0.5). Figure 19, Figure 20 and Figure 21 

illustrate the analysis with the above mentioned data sets respectively. 
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CPU Vs GPU (Torus Fit)

CPU Time = 0.0017x (Data size) + 17.08

GPU Time = 0.0001x (Data size) + 2.0156
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Figure 19: CPU Vs GPU (Torus Fit with no noise) 

 

 When the noise in the data is eliminated, the variation in computation times for 

both implementations is more linear as observed above. It is observed that the y-intercept 

is positive for the CPU trend line in this case. Further, the ratio of the slopes of the trend 

lines is 17 which conform to the expectation that the gap between the two lines should 

reduce in the absence of noise. The implementations are executed 10 times for each of the 

last four data sets. It is observed there is almost negligible change in computation times 

for the CPU and the GPU with each subsequent data set signifying the role of noise. 

 In the second case, as expected low noise (0.01) does not affect the computations 

times too much although there is some variation. This accounts for the negative y-
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intercept for the CPU trend line. Four largest data sizes are chosen and the two 

implementations are executed for 10 different data sets for each data size to determine the 

effect of noise. Figure 20 indicates the time spread for the last four data sets. The ratio of 

slopes for the two trend lines remains the same as that in Figure 19. 

 

CPU Vs GPU (Torus Fit)

CPU Time = 0.0017x (Data size) - 6.4174

GPU Time = 0.0001x (Data size) + 0.7993
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Figure 20: CPU Vs GPU (Torus Fit with low noise (0.01)) 

 

Magnifying the noise significantly increases the randomness in the data as seen in 

Figure 21. As explained previously, 10 data sets are generated for each of the last four 

data sizes are used for analysis. Although the both the trend lines have a positive y-

intercept, their slopes vary significantly as compared to those in Figure 18. Furthermore, 

in this case the randomness is more significant for the data sets consisting of 8192 and 
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16384 points due to the effect of noise. This accounts for the high positive y-intercept 

values in the trend lines.  

 

CPU Vs GPU (Torus Fit)
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Figure 21: CPU Vs GPU (Torus Fit with high noise (0.5)) 
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Table 6: Time spreads for various noise levels (Torus Fit) 

 

Number of 

Points 

Time spread for 

Noise  = 0  

(msecs) 

Time spread for 

Noise  = 0.01  

(msecs) 

Time spread for 

Noise  = 0.1 

(msecs) 

Time spread for 

Noise  = 0.5 

(msecs) 

CPU GPU CPU GPU CPU GPU CPU GPU 

4194304 15.7 17.3 104.25 20.65 139.1 36.38 111.67 34.88 

6291456 24.4 18.7 106.9 49.97 183.9 51.82 394.3 126.47 

8388608 28.9 27.4 92.1 33.4 574.8 189.75 426.3 120.12 

10485760 87.8 24.05 149.2 36.7 509.2 150.1 605.3 299.7 

 

Table 6 summarizes the variations in computation times or the time spreads of the 

CPU and GPU implementations for various noise levels used for analyzing the effect 

with 4 different data sets. The time spreads for the GPU implementations are smaller. 

This is because of the fact that the GPU time to execute the same operations is 

significantly lesser than the CPU. In general, the observations made indicate that with 

data sets consisting of the large number of points, the time spread or variation is bigger. 

Further, increase in noise also results in bigger time spreads.  

The trends in Figure 10 through Figure 18 indicate that as the computational 

complexity or in other words the arithmetic intensity of operations executed on the 

graphics hardware increases, the gain in speed increases linearly. Moreover, the nature of 

the problems being addressed here is such that the number of computations required 

increases with the increase in the number of points in the data set. The parallel 

architecture of the graphics hardware and its ability to perform better with increase in 

computational intensity accounts for the trends observed from the linear regression 

analysis explained above. Comparison of the CPU and GPU implementations between 

the torus and circle fit explains this phenomenon. The GPU is about 3 times faster than 

the CPU in the case of the circle fit where the arithmetic instructions executed on the 
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hardware include population of two columns of the Jacobian and the right hand side 

vector. In comparison, the GPU implementation for the torus fit which involves 

computation of six columns of the Jacobian matrix and the right hand side vector is about 

14 times faster than the CPU implementation. 

 

CPU Vs GPU (Plane Fit)

GPU time with data transfer = 3E-05x (Data size)- 0.0191
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Figure 22: CPU Vs GPU (Plane Fit) 

 

 

Figure 22 illustrates the computation times for the CPU and GPU 

implementations of the plane fit based on Table 5. The GPU implementation is 

benchmarked with and without taking data transfer time into consideration. This is done 

to demonstrate that the data transfer between the host and the device plays a significant 
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role in the performance. As seen from the plot and also from the relation obtained from 

the regression analysis the CPU and GPU operations take the same time for almost all the 

data sets when data transfer time is not considered. The non-linearity discussed in the 

earlier implementations is present in the case of the plane as well. The trend lines for all 

the three cases considered have a negative y-intercept. However, the slopes of these lines 

give a fair estimate of the actual phenomenon observed. The GPU implementation of the 

translation operation without data transfer is about 1.125 times faster than the CPU 

implementation which in turn is about 3 times faster than the GPU implementation with 

data transfer. This is due to the fact that all the threads executing translation operation try 

to access the same memory location which causes serialization. Unlike all the other 

implementations, the entire data are copied to the device and back which takes a 

significant amount of the total computation time.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

 The least squares fitting algorithms for analytic geometries namely circle, sphere, 

plane, cylinder, cone and torus are implemented on a CPU using C++. More specifically 

the Gauss Newton algorithm as applicable to all non linear geometries has been 

implemented. Computationally expensive operations in this algorithm are identified and 

these are implemented on a GPU using CUDA kernel programming. All the 

implementations are validated for accuracy and are benchmarked with data sets of 

varying sizes.  

 An efficient memory model has been adopted for all the GPU implementations 

and this is shown to achieve a significant reduction in computational time. This is 

demonstrated for implementations of all primitives except the plane and relevant 

observations are made. From the observations, it is evident that with increase in 

arithmetic intensity of operations being executed on the GPU, the performance gain 

obtained increases significantly. The computations common to all GPU implementations 

except the plane are population of the Jacobian matrix and right hand side vector which 

involve executing the same arithmetic instructions on all the data in consideration. Thus, 

increasing the data size increases the number of arithmetic instructions linearly. 

Furthermore, the considering of the variety of arithmetic instructions executed in the 

circle, sphere, cylinder, cone and torus fits, the computational complexity increases 
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further. A comparison is drawn between the performances of the GPU in the least 

computationally expensive implementation (circle) with that in the most computationally 

expensive implementation (torus). The GPU is about 3 times faster than the CPU in 

operation for the circle fit but the factor increases to about 14 for the torus fit. This is 

largely due to the fact that the parallel processing capabilities of the GPU are exploited 

efficiently in the case of the torus fit with more number of processors executing the large 

volume of instructions. 

 Control flow instructions do not affect performance of the GPU significantly 

when specified in an efficient manner as demonstrated with the two cases of the cone.  It 

is also observed that a minimum number of points are required in a data set for the GPU 

to outperform the CPU when the complexity of the arithmetic instructions is not high. 

In the case of the plane fit, there is no significant performance gain observed 

when the GPU is benchmarked against the CPU. The GPU is 3 times slower than the 

CPU with data transfer and about 1.125 times faster without considering the data transfer 

time. The reasons for these trends in the results are explained.  

However, there are certain limitations with the model and in general with the 

hardware and software. Some of these are identified as follows 

 Instructions cannot be issued and managed directly on the hardware. A CPU 

(host) platform is required which adds an overhead of data transfer. 

 The model adopted for this particular problem limits the mathematical operations 

that can be executed on the card. Only operations such as transformation and 

population of Jacobian and the right hand side vector can be performed 

efficiently. 
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 The number of data points in a data set should always be in the order of 2n . This is 

because the number of threads in a block is always a multiple of 16. 

 Numerical operations such as matrix multiplication or the QR decomposition as 

applicable to the problems in this research be performed efficiently. This is due to 

the fact that the data are processed on blocks which induce a limitation in the 

control of memory accesses. 

 Although the Cholesky decomposition has been previously implemented on 

graphics hardware[30], in this specific problem the limitations of the hardware 

and software model do not permit the efficient implementation of this operation. 

Moreover, the sizes of the positive symmetric definite matrices obtained for these 

problems are trivial and hence the implementation of this matrix operation is not 

efficient. 

 Debugging in run time is difficult and it is not possible to store or view the 

intermediate results until the entire kernel program has terminated operation. 

 

Recommendations 

The work carried out in this research and the results obtained demonstrate that 

Graphical Processing Units (GPUs) are a useful tool in solving least squares fitting of 

analytic primitives in a significantly less amount of time. The validation of the 

implementations with actual measurement data can produce significant gain in processing 

time in coordinate metrology problems.  

However, the next generation GPUs can play a very important role in problems 

such as the one addressed in this work. Feasibility to read and write data directly onto the 
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hardware instead of using a CPU platform, better performance indices can be attained. 

Furthermore, increased flexibility in programming would allow more number of 

operations to be handed off to the GPU along with ones already implemented essentially 

allowing the entire computation to be executed in parallel. 

More robust fitting algorithms such as the Levenberg-Marquardt algorithm can be 

implemented on the GPU. It is possible to check the feasibility of deploying two or more 

analytic primitive fitting algorithms simultaneously for parts which are a combination of 

many primitives.   

 

Contributions 

The major contributions in this research include 

 Implementations of the non-linear minimization algorithms as applicable to the 

least squares fitting of geometric primitives (circle, sphere, cylinder, cone, torus 

and plane) on the CPU in a fairly efficient manner.  

 Identification of an efficient memory model to implement specific computations 

involved in these algorithms on the GPU and its integration with the CPU. 

 Benchmarking the CPU as well as the GPU implementations to demonstrate that 

the parallel processing capabilities of the hardware are exploited in an efficient 

manner to obtain significant gain in computation times. 
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