A set of tournaments with many Hamiltonian cycles

Hayato Ushijima-mwesigwa
Clemson University,hushiji@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses
Part of the Applied Mathematics Commons

Recommended Citation

Ushijima-mwesigwa, Hayato, "A set of tournaments with many Hamiltonian cycles" (2012). All Theses. 1422.
https:/ /tigerprints.clemson.edu/all_theses/1422

A set of tournaments with many Hamiltonian cycles

A Thesis
Presented to
the Graduate School of
Clemson University
of the Requirements for the Degree
Master of Science
Mathematics
In Partial Fulfilment
August 2012
Hayato Ushijima-Mwesigwa
Accepted by:
Ar. Neil Calkin, Committee Chair
Dr. Beth Novick
Dr. Daniel Warner

Abstract

For a random tournament on 3^{n} vertices, the expected number of Hamiltonian cycles is known to be $\left(3^{n}-1\right)!/ 2^{3^{n}}$. Let T_{1} denote a tournament of three vertices v_{1}, v_{2}, v_{3}. Let the orientation be such that there are directed edges from v_{1} to v_{2}, from v_{2} to v_{3} and from v_{3} to v_{1}. Construct a tournament T_{i} by making three copies of $T_{i-1}, T_{i-1}^{\prime}, T_{i-1}^{\prime \prime}$ and $T_{i-1}^{\prime \prime \prime}$. Let each vertex in T_{i-1}^{\prime} have directed edges to all vertices in $T_{i-1}^{\prime \prime}$, similarly place directed edges from each vertex in $T_{i-1}^{\prime \prime}$ to all vertices in $T_{i-1}^{\prime \prime \prime}$ and from $T_{i-1}^{\prime \prime \prime}$ to T_{i-1}^{\prime}.

In this thesis, we shall study this family of highly symmetric tournaments. In particular we shall present two different algorithms to calculate the number of Hamiltonian cycles in these tournaments and compare them with the expected number and with known bounds for random tournaments. This thesis is motivated by the question of the maximum number of Hamiltonian cycles a tournament can have.

Acknowledgments

I would like to acknowledge my committee chair Dr. Calkin for his advice and guidance throughout this project. I would also like to give a special thanks to my committee members Dr. Novick and Dr. Warner for much needed guidance. Lastly, I would like to acknowledge fellow graduate students, Nate Black and Thilo Strauss for their useful questions and comments along the way.

Contents

Title Page i
Abstract ii
Acknowledgments iii
1 Introduction 1
1.1 Basic definitions 1
1.2 Previous work 2
$1.3 T_{n}$ 3
2 Exact counting Algorithm 5
2.1 Computing $F\left(w, m_{1}, m_{2}, m_{3}\right)$ 7
3 Approximation Algorithm 17
4 Computational Results 19
4.1 Approximate Counts for $H\left(T_{n}\right)$ 19
4.2 Exact Counts for $H\left(T_{n}\right)$ 21
5 Conclusions and Discussion 23
6 Future Work 24
Appendices 25
A \quad Sage(Python) code for building T_{n} 26
B Sage(Python) code for Approximation algorithm 28
C Python code for Exact counting Algorithm 32
D Exact Values for $H\left(T_{n}\right)$ 36
Bibliography 38

Chapter 1

Introduction

1.1 Basic definitions

We first present some basic definitions. We mostly follow the treatment in [2].

Definition A directed graph (digraph) is a pair (V, E) where V is the set of vertices (or nodes, or points) and $E \subset V \times V$ is a set of edges, which we regard as ordered pairs of vertices. In the edge (u, v), we refer to u as the initial vertex and v as the terminal vertex. We call (u, v) an edge from u to v (see figure 1). Sometimes we denote (u, v) simply by $u v$. If $u=v$, then the corresponding edge is called a loop. In this thesis, none of the digraphs we present contain loops.

Figure 1

A (directed) path is a non-empty directed graph $P=(V, E)$ of the form

$$
V=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\} E=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}\right\}
$$

where the x_{i} are all distinct. The vertices x_{0} and x_{k} are called its end vertices. We often refer to a path by the natural sequence of its vertices, writing, say, $P=x_{0} x_{1} \ldots x_{k}$ and calling P a path from x_{0} to x_{k}. If $P=x_{0} x_{1} \ldots x_{k-1}$ is a path and $k \geq 3$, then the graph $C:=P+x_{k-1} x_{0}$ is called a cycle.

A Hamiltonian path of a directed graph G is a path containing every vertex in G. Similarly, a Hamiltonian cycle is a cycle containing every vertex in G.

A tournament T is a directed graph in which for every $u \neq v$ exactly one of the edges (u, v) and (v, u) is in E. We can think of T as the outcomes of a sports event in which pairs of teams play once and there are no ties, only wins and losses. The name tournament derives from a round-robin tournament.

1.2 Previous work

If we construct a tournament T by independently choosing the edge between vertices u and v to be (u, v) and (v, u) with equal probability, then we can use the linearity of expectation to compute the expected number of Hamiltonian cycles (similarly Hamiltonian paths) in a random tournament. Since the number of cycles is non-negative, there must exists a tournament with at least these many cycles (paths). Szele [7] in 1943 was the first to use this observation and showed that

$$
\begin{equation*}
P(n) \geq n!/ 2^{n-1} \tag{1.1}
\end{equation*}
$$

where $P(n)$ denotes the maximum possible number of Hamiltonian paths in a tournament on n vertices and the right-hand side of the inequality is the expected number.

Szele's proof is considered to be the first application of the probabilistic method in combinatorics. The same argument shows

$$
\begin{equation*}
C(n) \geq(n-1)!/ 2^{n} \tag{1.2}
\end{equation*}
$$

where $C(n)$ denotes the maximum possible number of Hamiltonian cycles in a tournament on n vertices and the right-hand side of the inequality is the expected number of Hamiltonian cycles.

In the same paper Szele established an upper bound on $P(n)$ by showing that

$$
\begin{equation*}
P(n) \leq c_{1} \cdot n!/ 2^{\frac{3}{4} n}, \tag{1.3}
\end{equation*}
$$

where c_{1} is a positive constant independent of n, and conjectured that

$$
\lim _{n \rightarrow \infty}\left(\frac{P(n)}{n!}\right)^{\frac{1}{n}}=\frac{1}{2} .
$$

Later, Alon [1] proved this conjecture and improved the upper bound to

$$
P(n) \leq c_{2} \cdot n^{\frac{3}{2}} n!/ 2^{n-1}
$$

where $c_{2}>0$ is independent of n.
Kahn and Friedgut [3] later improved this upper bound further by showing that for any
$\xi<2(1-\exp [\sqrt{3 / 4}-1]) \approx 0.2507 \ldots$,

$$
\begin{equation*}
C(n)<O\left(n^{1 / 2-\xi} n!2^{-n}\right) \tag{1.4}
\end{equation*}
$$

and (consequently)

$$
\begin{equation*}
P(n)<O\left(n^{3 / 2-\xi} n!2^{-n}\right) \tag{1.5}
\end{equation*}
$$

These are the best known upper bounds of $C(n)$ and $P(n)$ and we note that these bounds beat the expected number by a factor that is dependent on n. Wormald [8] conjectured that in fact $C(n) \approx 2.855958$. $(n-1)!/ 2^{n}$.

In this thesis, we will restrict our attention to a particular tournament, T_{n} on 3^{n} vertices constructed in a manner which we might hope to give a large number of Hamiltonian cycles. We will give an approximate algorithm and an exact algorithm to count the number of Hamiltonian cycles in this tournament, and compute the approximate and exact counts for $n \leq 6$.

$1.3 T_{n}$

We consider a sequence of tournaments $T_{0}, T_{1}, T_{2}, \ldots$. We'll construct the tournament T_{n} recursively as follows:
T_{0} is:
T_{1} is:

and T_{n} is a tournament on 3^{n} vertices consisting of three copies of T_{n-1}, placed in a triangle, with edges between the T_{n-1} 's oriented in a counterclockwise fashion as in figure 2 , where $T_{n-1}^{\prime}, T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$ represent

Figure 2. $T_{n-1}^{\prime}, T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$ are 3 copies of T_{n-1}
the three copies of T_{n-1} and the $\Longrightarrow^{\prime} s$ represent the directions of the edges between the copies.
More formally, and for purposes of computation, T_{n} will have the vertex set $0,1, \ldots, 3^{n}-1$ in base 3; to construct it, we take 3 copies of T_{n-1}, replace each vertex v in T_{n-1} by $3 v, 3 v+1$ and $3 v+2$ in the three copies respectively. Then the direction of an edge $u v$, where u and v are from different copies of T_{n-1} is determined by their final ternary digits in such a way that the direction is from 0 to 1,1 to 2 and 2 to 0 .

Chapter 2

Exact counting Algorithm

Let $H\left(T_{n}\right)$ denote the number of Hamiltonian cycles in T_{n}. In this section we present some theorems and propositions leading to an exact counting algorithm to compute $H\left(T_{n}\right)$.

Definition A path cover of a directed graph G is a set of disjoint directed paths in G which together contain all the vertices of G. An m-path cover is a path cover of cardinality m.

By definition, the 1-path covers are the Hamiltonian paths. We will first reduce the problem of computing $H\left(T_{n}\right)$ to the problem of counting the number of m-path covers for $1 \leq m \leq 3^{n-1}$ in T_{n-1}. We make this reduction by making the following observation:For $n \geq 1$, let $T_{n-1}^{\prime}, T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$ be the three copies of T_{n-1} from which T_{n} was constructed. Take any Hamiltonian cycle C, of T_{n}, and consider C restricted to T_{n-1}^{\prime}, $T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$. Since a Hamiltonian cycle on T_{n} contains every vertex in $T_{n-1}^{\prime}, T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$ exactly once, C restricted to T_{n-1}^{\prime} would form a k-path cover of T_{n-1}^{\prime} for some $1 \leq k \leq 3^{n-1}$. Similarly for $T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$. Now if C restricted to T_{n-1}^{\prime} induces a k-path cover for a fixed k, then it must be the case that C also induces a k-path cover in $T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$. It is easy to show that the number of ways of joining the k-path covers to form a Hamiltonian cycle is $k!^{3} / k$. Thus if P_{k}^{n-1} denotes the number of k-path covers of T_{n-1}, then the number of Hamiltonian cycles of T_{n} that induce k-path covers in $T_{n-1}^{\prime}, T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$ is $\left(k!\cdot P_{k}^{n-1}\right)^{3} / k$.

Thus, if P_{i}^{n-1} is the number of i-path covers of T_{n-1}, for $1 \leq i \leq 3^{n-1}$, then

$$
\begin{equation*}
H\left(T_{n}\right)=\sum_{i=1}^{3^{n-1}} \frac{\left(i!\cdot P_{i}^{n-1}\right)^{3}}{i} \tag{2.1}
\end{equation*}
$$

where the $i^{t h}$ term in the sum counts the number of choices for i-path covers for $T_{n-1}^{\prime}, T_{n-1}^{\prime \prime}$ and $T_{n-1}^{\prime \prime \prime}$, and the number of ways of joining them to create a Hamiltonian cycle.

We now focus on calculating P_{i}^{n-1} for $1 \leq i \leq 3^{n-1}$. For T_{1}, we can easily count P_{i}^{1} for $1 \leq i \leq 3$ and get $P_{1}^{1}=3$ (Hamiltonian paths in T_{1}), $P_{2}^{1}=3$ and $P_{3}^{1}=1$ (trivial paths). We will compute P_{i}^{n-1} for $1 \leq i \leq 3^{n-1}$ recursively, so for now we will assume P_{i}^{n-2} is known for $1 \leq i \leq 3^{n-2}$.

For each i, j and k - path cover of $T_{n-2}^{\prime}, T_{n-2}^{\prime \prime}$ and $T_{n-2}^{\prime \prime \prime}$ respectively, we wish to know how many ways they can be joined to give a path cover of T_{n-1}. If we add a directed edge from an end vertex of a path in the path cover of T_{n-2}^{\prime}, to an end vertex in a path in the path cover of $T_{n-2}^{\prime \prime}$ to obtain a new path, we form a $(i+j+k-1)$-path cover of T_{n-1}. Thus our problem for counting $H\left(T_{n}\right)$ reduces to the following problem:

Problem 2.0.1. For each i, j and k - path cover of $T_{n-2}^{\prime}, T_{n-2}^{\prime \prime}$ and $T_{n-2}^{\prime \prime \prime}$, how many ways can we connect them with m edges to form $a(i+j+k-m)$-path cover of T_{n-1} ?

Notice that trivially, these i, j and k-path covers together form an $(i+j+k)$-path cover of T_{n-1}. Thus if we consider all ways of creating disjoint paths by adding m edges between the i, j and k-path covers without creating cycles for all $1 \leq i, j, k \leq 3^{n-2}$ and $0 \leq m \leq 3^{n-1}$, we would have in fact constructed all path covers of T_{n-1}

For simplicity, we can view the i disjoint paths in an i-path cover as a set of i independent vertices, as shown in the figure below.

(a)

Disjoint paths in (a) correspond to independent vertices in (b)

This can can also be viewed as contracting each disjoint path in $T_{n-2}^{\prime}, T_{n-2}^{\prime \prime}$ and $T_{n-2}^{\prime \prime \prime}$ to a singleton. Then problem 2.0.1 is equivalent to the following problem. Here m_{1}, m_{2} and m_{3} replace i, j and k respectively:

Let M_{1}, M_{2} and M_{3} be three sets of vertices with $\left|M_{1}\right|=m_{1},\left|M_{2}\right|=m_{2}$ and $\left|M_{3}\right|=m_{3}$ and let G be a digraph with vertex set $V(G)=M_{1} \cup M_{2} \cup M_{3}$, and let the edges in G be such that each vertex in M_{1} can only
have a directed edge to any vertex in M_{2}, any vertex in M_{2} can only have a directed edge to any in M_{3} and any in M_{3} can only have a directed edge to any in M_{1}.

Problem 2.0.2. How many ways can we add w edges to G such that G

1. contains no cycles, and
2. for every vertex v in $G,\left|d^{+}(v)\right| \leq 1$ and $\left|d^{-}(v)\right| \leq 1$, where $\left|d^{+}(v)\right|$ is the out degree of v and $\left|d^{-}(v)\right|$ is the in degree of v.

Let $\mathscr{F}_{w, m_{1}, m_{2}, m_{3}}$ be the set of all digraphs satisfying (1) and (2) formed by adding exactly w edges to G and let $F\left(w, m_{1}, m_{2}, m_{3}\right):=\left|\mathscr{F}_{w, m_{1}, m_{2}, m_{3}}\right|$. Then P_{i}^{n-1} is given by:

$$
\begin{equation*}
P_{i}^{n-1}=\sum_{\substack{m_{1}, m_{2}, m_{3} \\ 1 \leq m_{1}, m_{2}, m_{3} \leq 3^{n-2}, m_{1}+m_{2}+m_{3} \geq i}} P_{m_{1}}^{n-2} P_{m_{2}}^{n-2} P_{m_{3}}^{n-2} \cdot F\left(m_{1}+m_{2}+m_{3}-i, m_{1}, m_{2}, m_{3}\right) \tag{2.2}
\end{equation*}
$$

2.1 Computing $F\left(w, m_{1}, m_{2}, m_{3}\right)$

In this section we answer problem 2.0.2 to get an expression for $F\left(w, m_{1}, m_{2}, m_{3}\right)$. Consider a "relaxation" of this problem without the first restriction, i.e., we allow cycles. Call the resulting set of graphs formed by adding w edges in all possible ways $\mathscr{E}_{w, m_{1}, m_{2}, m_{3}}$ and let $E\left(w, m_{1}, m_{2}, m_{3}\right):=\left|\mathscr{E}_{w, m_{1}, m_{2}, m_{3}}\right|$, then

$$
\begin{equation*}
E\left(w, m_{1}, m_{2}, m_{3}\right)=\sum_{a+b+c=w}\binom{m_{1}}{a}\binom{m_{2}}{a}\binom{m_{2}}{b}\binom{m_{3}}{b}\binom{m_{3}}{c}\binom{m_{1}}{c} \cdot a!b!c!. \tag{2.3}
\end{equation*}
$$

The above expression for $E\left(w, m_{1}, m_{2}, m_{3}\right)$ is derived as follows: In order to satisfy the indegree and out degree constraint (2), choose a vertices from M_{1} and M_{2} and a bijection between them, b vertices from M_{2} and b from M_{3} and a bijection between them and lastly c vetices from M_{3} and M_{1} and a bijection between them subject to $a+b+c=w$.

Clearly $\mathscr{F}_{w, m_{1}, m_{2}, m_{3}} \subseteq \mathscr{E}_{w, m_{1}, m_{2}, m_{3}}$ and $\mathscr{E}_{w, m_{1}, m_{2}, m_{3}} \backslash \mathscr{F}_{w, m_{1}, m_{2}, m_{3}}$ is the set of all graphs in $\mathscr{E}_{w, m_{1}, m_{2}, m_{3}}$ that contain at least one cycle, thus,

$$
\begin{equation*}
F\left(w, m_{1}, m_{2}, m_{3}\right)=E\left(w, m_{1}, m_{2}, m_{3}\right)-\left|\mathscr{E}_{w, m_{1}, m_{2}, m_{3}} \backslash \mathscr{F}_{w, m_{1}, m_{2}, m_{3}}\right| . \tag{2.4}
\end{equation*}
$$

Proposition 2.1.1.

$$
F\left(w, m_{1}, m_{2}, m_{3}\right)=E\left(w, m_{1}, m_{2}, m_{3}\right)-m_{1} m_{2} m_{3} \cdot E\left(w-3, m_{1}-1, m_{2}-1, m_{3}-1\right)
$$

For the remainder of this section, we present a detailed proof for proposition 2.1.1. We prove this by applying the "inclusion-exclusion principle" and state and prove a theorem about integer partitions which we use to simplify the expression we get from the inclusion-exclusion principle.

Theorem 2.1.2. (Inclusion-Exclusion principle)
For finite sets $A_{0}, A_{1}, \ldots, A_{m}$. The following identity holds;

$$
\left|\bigcup_{i=0}^{m} A_{i}\right|=\sum_{i=0}^{m}\left|A_{i}\right|-\sum_{\substack{i, j \\ 1 \leq i<j \leq m}}\left|A_{i} \cap A_{j}\right|+\sum_{\substack{i, j, k \\ 1 \leq i<j<k \leq m}}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{m-1}\left|A_{1} \cap \cdots \cap A_{m}\right|
$$

The above theorem can be proved by induction. The details of the proof can be found in [4].
If we add w edges to the independent sets, cycles of different lengths can be formed. We call a cycle of length k an k-cycle. Since we have 3 independent sets, the cycles formed will have lengths a multiple of 3. Let $X_{1}, X_{2}, \ldots, X_{v}$ be all the possible individual cycles that can be formed by adding w edges, and let $A_{X_{1}}, A_{X_{2}}, \ldots, A_{X_{m}}$ be the set of graphs in $\mathscr{E}_{w, m_{1}, m_{2}, m_{3}}$ which contain $X_{1}, X_{2}, \ldots, X_{V}$ respectively. Then we are interested in calculating $\left|\bigcup_{i=1}^{v} A_{X_{i}}\right|$, the number of graphs with at least one cycle. Thus $F\left(w, m_{1}, m_{2}, m_{3}\right)$ is now expressed as:

$$
\begin{equation*}
F\left(w, m_{1}, m_{2}, m_{3}\right)=E\left(w, m_{1}, m_{2}, m_{3}\right)-\left|\bigcup_{i=1}^{v} A_{X_{i}}\right| \tag{2.5}
\end{equation*}
$$

where $\left|\bigcup_{i=1}^{v} A_{X_{i}}\right|$ is obtained by directly applying the inclusion-exclusion principle, i.e.

$$
\left|\bigcup_{i=1}^{v} A_{X_{i}}\right|=\sum_{i=1}^{v}\left|A_{X_{i}}\right|-\sum_{\substack{i, j \\ 1 \leq i<j \leq v}}\left|A_{X_{i}} \cap A_{X_{j}}\right|+\sum_{\substack{i, j, k \\ 1 \leq i<j<k \leq v}}\left|A_{X_{i}} \cap A_{X_{j}} \cap A_{X_{i}}\right|-\cdots+(-1)^{v-1}\left|A_{X_{i}} \cap \cdots \cap A_{X_{v}}\right|
$$

Note that the degree constraints imply that all cycles formed are disjoint. Thus if two cycle X_{i}, X_{j} are not disjoint then $A_{X_{i}} \cap A_{X_{j}}=\emptyset$.

Let σ_{j} be the number of ways of getting a $3 j$-cycle, $\sigma_{j_{1}, j_{2}}$ be the number of ways of getting a $3 j_{1_{1}}$ cycle and $3 j_{2}$-cycle concurrently and in general let $\sigma_{j_{1}, j_{2}, \ldots, j_{v}}$ be the number of ways of getting a $3 j_{1}$-cycle, $3 j_{2}$-cycle, \ldots, and $3 j_{v}$-cycle concurrently for all $1 \leq j_{i} \leq \min \left(\left\lfloor\frac{n}{3}\right\rfloor, m_{1} \cdot m_{2}, m_{3}\right)$.

Consider again the cycles $X_{1}, X_{2}, \ldots, X_{v}$. If we re-order these cycles by their lengths such that $X_{1}, \ldots, X_{v_{1}}$ are all the 3-cycles, $X_{v_{1}+1}, \ldots, X_{v_{2}}$ are all the 6 -cycles, \ldots, and $X_{v_{j-1}+1}, \ldots, X_{v}$ are all the $3 j$ cycles. Then,

$$
\begin{equation*}
\sum_{i=1}^{v_{1}}\left|A_{X_{i}}\right|=\sigma_{1} \cdot E\left(w-3, m_{1}-1, m_{2}-1, m_{3}-1\right) \tag{2.6}
\end{equation*}
$$

where equation (2.6) can be thought of as: Add 3 of the w edges to the independent sets in such a way that
you create a 3-cycle, which can be done in σ_{1} ways. For each of these, add the $w-3$ remaining edges to the independent sets M_{1}, M_{2} and M_{3} with current size $m_{1}-1, m_{2}-1, m_{3}-1$ respectively, which can be done in $E\left(w-3, m_{1}-1, m_{2}-1, m_{3}-1\right)$ ways.

Let $\Delta:=\min \left(\left\lfloor\frac{n}{3}\right\rfloor, m_{1} \cdot m_{2}, m_{3}\right)$, then 3Δ is the largest possible cycle length. Using the same argument as above, we get:

$$
\begin{aligned}
\sum_{i=v_{1}+1}^{v_{2}}\left|A_{X_{i}}\right| & =\sigma_{2} \cdot E\left(w-6, m_{1}-2, m_{2}-2, m_{3}-2\right) \\
\sum_{i=v_{2}+1}^{v_{3}}\left|A_{X_{i}}\right| & =\sigma_{3} \cdot E\left(w-9, m_{1}-3, m_{2}-3, m_{3}-3\right) \\
& \vdots \\
\sum_{i=v_{\Delta-1}+1}^{v}\left|A_{X_{i}}\right| & =\sigma_{j} \cdot E\left(w-3 \Delta, m_{1}-\Delta, m_{2}-\Delta, m_{3}-\Delta\right) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{i=1}^{v}\left|A_{X_{i}}\right|=\sum_{i=1}^{\Delta} \sigma_{i} \cdot E\left(w-3 i, m_{1}-i, m_{2}-i, m_{3}-i\right) . \tag{2.7}
\end{equation*}
$$

A similar argument gives

$$
\begin{aligned}
\sum_{\substack{i, j \\
1 \leq i<j \leq v}}\left|A_{X_{i}} \cap A_{X_{j}}\right| & =\sum_{1 \leq i<j \leq \Delta} \sigma_{i, j} \cdot E\left(w-3(i+j), m_{1}-(i+j) j, m_{2}-(i+j), m_{3}-(i+j)\right), \\
\sum_{\substack{i, j, k \\
1 \leq i<j<k \leq v}}\left|A_{X_{i}} \cap A_{X_{j}} \cap A_{X_{i}}\right| & =\sum_{1 \leq i<j<k \leq \Delta} \sigma_{i, j, k} \cdot E\left(w-3(i+j+k), m_{1}-(i+j+k), m_{2}-3, m_{3}-(i+j+k)\right), \\
& \vdots \\
\sum_{\substack{i_{1}, \ldots, i_{\Delta} \\
1 \leq i_{1}<i_{2}<\cdots<i_{\Delta} \leq v}}\left|A_{X_{i_{1}}} \cap \cdots \cap A_{X_{i_{\Delta}}}\right| & =\left|A_{X_{1}} \cap \cdots \cap A_{X_{\Delta}}\right| \\
& =\underbrace{\sigma_{1,1, \ldots, 1}}_{\Delta \text { times }} \cdot E\left(w-3 \Delta, m_{1}-\Delta, m_{2}-\Delta, m_{3}-\Delta\right),
\end{aligned}
$$

and the rest of the terms from the inclusion-principle are zero, i.e.,

$$
\sum_{k=\Delta+1}^{v} \sum_{\substack{i_{1}, \ldots, i_{k} \\ 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq v}}(-1)^{k-1}\left|A_{X_{i_{1}}} \cap \cdots \cap A_{X_{i_{k}}}\right|=0 .
$$

Consequently, equation (2.5) can be re-written as:

$$
\begin{aligned}
F\left(w, m_{1}, m_{2}, m_{3}\right)=E\left(w, m_{1}, m_{2}, m_{3}\right)- & \sum_{i=1}^{\Delta} \sigma_{i} \cdot E\left(w-3 i, m_{1}-i, m_{2}-i, m_{3}-i\right) \\
& +\sum_{1 \leq i<j \leq \Delta} \sigma_{i, j} \cdot E\left(w-3(i+j), m_{1}-(i+j) j, m_{2}-(i+j), m_{3}-(i+j)\right) \\
& -\sum_{1 \leq i<j<k \leq \Delta} \sigma_{i, j, k} \cdot E\left(w-3(i+j+k), m_{1}-(i+j+k), m_{2}-3, m_{3}-(i+j+k)\right) \\
& + \\
& \vdots \\
& +(-1)^{\Delta} \underbrace{\sigma_{1,1, \ldots, 1}}_{\Delta \text { times }} \cdot E\left(w-3 \Delta, m_{1}-\Delta, m_{2}-\Delta, m_{3}-\Delta\right) .
\end{aligned}
$$

We now focus on getting an expression for $\sigma_{j_{1}, \ldots, j_{k}}$, the number of ways of getting cycles of length $3 j_{1}, \ldots, 3 j_{k}$ concurrently.

Definition For any positive integer n, a partition of n, λ, is a non-increasing sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ whose sum is n . Each λ_{i} is called a part of the partition. We let the function $p(\lambda)$ denote the number of parts of λ and $\Lambda(n)$ denote the set of partitions of all positive integers less than or equal to n.

The subscripts of $\sigma_{j_{1}, \ldots, j_{k}}$ consist of all nonnegative integers such that $j_{1}+\cdots+j_{k} \leq \Delta$. These are precisely all partitions of positve integers less or equal to Δ. Thus $F\left(w, m_{1}, m_{2}, m_{3}\right)$ can be written as:

$$
\begin{equation*}
F\left(w, m_{1}, m_{2}, m_{3}\right)=E\left(w, m_{1}, m_{2}, m_{3}\right)+\sum_{\lambda \in \Lambda(\Delta)}(-1)^{p(\lambda)} \sigma_{\lambda} E\left(w-3|\lambda|, m_{1}-|\lambda|, m_{2}-|\lambda|, m_{3}-|\lambda|\right) \tag{2.8}
\end{equation*}
$$

where $|\lambda|$ is the sum of the parts in λ.

2.1.1 Computing σ_{λ}

For a partition λ let i_{3} be the number of 1 's in λ, i_{6} the number of 2 's, $\ldots, i_{3 k}$ the number of k 's in λ where $k \geq 1$. Then for any $\lambda, \sigma_{\lambda}$ can be rewritten as:

$$
\begin{equation*}
\sigma_{\lambda}=\underbrace{\sigma_{1,1}, \ldots,}_{i_{3} \text { times }} \underbrace{1,2, \ldots, 2}_{i_{6} \text { times }}, \ldots, \underbrace{\Delta, \Delta, \ldots, \Delta}_{i_{3 \Delta} \text { times }} . \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
|\lambda|:=i_{3}+2 i_{6}+3 i_{9}+\cdots+\Delta \cdot i_{3 \Delta} \leq \Delta \tag{2.10}
\end{equation*}
$$

with

$$
i_{3}, i_{6}, \ldots, i_{3 \Delta} \geq 0
$$

Inequality (2.10) represents the number of vertices that are used from each independent set. Since a 3-cycle uses 1 vertex each, a 6-cycle uses 2 vertices each and so on, the coefficients follow.

The representation (2.9) is useful to compute σ_{λ} systematically in the following way: First we count the number of ways of choosing vertices from the sets M_{1}, M_{2} and M_{3} to get $i_{3} 3$-cycles, $i_{6} 6$-cycles and so on. Then we multiply this by the number of ways the chosen vertices can be joined to form their respective cycles. We will first focus on getting an expression for counting the number of ways of choosing these vertices.

2.1.2 Choosing vertex sets to form $i_{3}, \ldots, i_{3 k}, \ldots, i_{3 \Delta}, 3 k$-cycles

As stated before, we first count the number of ways of choosing vertices from the sets M_{1}, M_{2} and M_{3} to get $i_{3} 3$-cycles, $i_{6} 6$-cycles and so on. We do this by first choosing the vertices that form the $i_{3} 3$ cycles, then from the remaining $m_{1}-i_{3}, m_{2}-i_{3}$ and $m_{3}-i_{3}$ vertices in the sets M_{1}, M_{2} and M_{3} respectively, we choose vertices for the $i_{6} 6$-cycles. We repeat the process for all $i_{3 k}$, for $1 \leq k \leq \Delta$. This argument gives the following expressions:

The number of ways of choosing vertices in M_{1}, M_{2} and M_{3} to form i_{3} 3-cycle concurrently is:

$$
\frac{1}{i_{3}!} \cdot \prod_{j=1}^{3}\binom{m_{j}}{1} \cdot\binom{m_{j}-1}{1} \cdots \cdot\binom{m_{j}-i_{3}+1}{1}
$$

i.e., choose 1 vertex from each set i_{3} times. We divide by i_{3} ! to distinguish between the chosen vertices. Expanding this expression we get:

$$
\begin{align*}
& \frac{1}{i_{3}!} \cdot \prod_{j=1}^{3} \underbrace{\frac{m_{j}!}{\left(m_{j}-1\right)!\cdot 1!} \cdot \frac{\left(m_{j}-1\right)!}{\left(m_{j}-2\right)!\cdot 1!} \cdots \cdots \cdot \frac{\left(m_{j}-i_{3}+1\right)!}{\left(m_{j}-i_{3}\right) \cdot 1!}}_{i_{3} \text { times }} \\
= & \frac{1}{i_{3}!} \cdot \prod_{j=1}^{3} \frac{1}{1!i_{3}} \cdot \frac{m_{j}!}{\left(m_{j}-i_{3}\right)!} \\
= & \frac{1}{i_{3}!} \cdot \prod_{j=1}^{3} \frac{1}{1!i_{3}} \cdot\binom{m_{j}}{i_{3}} \cdot i_{3}!. \tag{2.11}
\end{align*}
$$

Now that we have chosen the vertices for the $i_{3} 3$-cycles, from the remaining $m_{j}-i_{3}$ vertices of the sets M_{j} for $1 \leq j \leq 3$, the number of ways of choosing vertices to form $i_{6} 3$-cycle concurrently is after

$$
\frac{1}{i_{6}!} \cdot \prod_{j=1}^{3}\binom{m_{j}-i_{3}}{2} \cdot\binom{m_{j}-i_{3}-2}{2} \cdots \cdot\binom{m_{j}-i_{3}-2 i_{6}+2}{2}
$$

A similar simplification as (2.11) gives:

$$
\begin{equation*}
\frac{1}{i_{6}!} \cdot \prod_{j=1}^{3} \frac{1}{2!^{i_{6}}} \cdot\binom{m_{j}-i_{3}}{2 i_{6}} \cdot\left(2 i_{6}\right)!. \tag{2.12}
\end{equation*}
$$

We keep doing this up to i_{Δ}. Where we get,

$$
\begin{equation*}
\frac{1}{i_{\Delta}!} \cdot \prod_{j=1}^{3} \frac{1}{\Delta!!_{3 \Delta}} \cdot\binom{m_{j}-i_{3}-2 i_{6}-3 i_{9}-\cdots-\Delta i_{3 \Delta}}{\Delta i_{3 \Delta}} \cdot\left(\Delta i_{3 \Delta}\right)! \tag{2.13}
\end{equation*}
$$

We then multiply the expressions from (2.11) to (2.13), to get:

$$
\begin{align*}
& \frac{1}{i_{3}!\cdot i_{6}!\cdots \cdots i_{3 \Delta}!} \cdot \prod_{j=1}^{3} \frac{i_{3}!\cdot\left(2 i_{6}\right)!\cdots \cdots\left(\Delta i_{3 \Delta}\right)!}{1!i_{3} \cdot 2!_{6} \cdots \cdots \Delta!!_{3 \Delta}} \cdot\binom{m_{j}}{i_{3}}\binom{m_{j}-i_{3}}{2 i_{6}} \cdots\binom{m_{j}-i_{3}-2 i_{6}-3 i_{9}-\cdots-(\Delta-1) i_{3(\Delta-1)}}{\Delta i_{3 \Delta}} \\
= & \frac{1}{i_{3}!\cdot i_{6}!\cdots \cdots i_{3 \Delta}!} \cdot \prod_{j=1}^{3} \frac{1}{1!i_{3} \cdot 2!!_{6} \cdots \cdots \Delta!i_{3 \Delta}} \cdot\binom{m_{j}}{i_{3}+2 i_{6}+3 i_{9}+\cdots+\Delta \cdot i_{3 \Delta}} \cdot\left(i_{3}+2 i_{6}+3 i_{9}+\cdots+\Delta \cdot i_{3 \Delta}\right)! \\
= & \frac{1}{i_{3}!\cdot i_{6}!\cdots \cdots i_{3 \Delta}!} \cdot \prod_{j=1}^{3} \frac{1}{1!i_{3} \cdot 2!i_{6} \cdots \cdots \Delta!i_{3 \Delta}} \cdot\binom{m_{j}}{|\lambda|} \cdot|\lambda|!. \tag{2.14}
\end{align*}
$$

Expression (2.14) represents the number of ways of choosing the vertices in M_{1}, M_{2} and M_{3} to get $i_{3} 3$-cycles, $i_{6} 6$ cycles, $\ldots, i_{3 \Delta} 3 \Delta$ cycles. Next we want to know how many ways these vertices can be connected to form the required cycles.

For any $k>0$, the number of ways of connecting 3 sets of k independent vertices to form a $3 k$ cycle is:

$$
\begin{equation*}
\frac{k!^{3}}{k} \tag{2.15}
\end{equation*}
$$

For any λ, we can view the chosen vertices for each of the $i_{3} 3$-cycles as 3 disjoint vertices with $\frac{11^{3}}{1}$ ways of connecting them to form a 3-cycle. Then we can connect the chosen vertices for all of the $i_{3} 3$-cycles, in $\left(\frac{11^{3}}{1}\right)^{i_{3}}$ ways. Similarly we connect the $2,3, \ldots, \Delta$ cycles in:

$$
\begin{equation*}
\left(\frac{2!^{3}}{2}\right)^{i_{6}},\left(\frac{3!^{3}}{3}\right)^{i_{9}}, \cdots,\left(\frac{\Delta!^{3}}{\Delta}\right)^{i_{3 \Delta}} \tag{2.16}
\end{equation*}
$$

ways.
We then get a beautiful expression for σ_{λ} :

$$
\begin{align*}
\sigma_{\lambda} & =\left\{\frac{1}{i_{3}!\cdot i_{6}!\cdots i_{3 \Delta}!} \prod_{j=1}^{3} \frac{1}{1!_{3} \cdot 2!_{6}^{i_{6}} \cdots \cdots \Delta!_{3 \Delta}^{i_{3}}}\binom{m_{j}}{|\lambda|}|\lambda|!\right\} \cdot\left(\frac{1!^{3}}{1}\right)^{i_{3}}\left(\frac{2!^{3}}{2}\right)^{i_{6}} \cdots\left(\frac{\Delta!^{3}}{\Delta}\right)^{i_{3 \Delta}} \\
& =\frac{1}{i_{3}!\cdot i_{6}!\cdots \cdot i_{3 \Delta}!\cdot 1^{i_{3}} \cdot 2^{i_{6}} \cdots \cdots \Delta^{i_{3 \Delta}}} \prod_{j=1}^{3}\binom{m_{j}}{|\lambda|}|\lambda|! \\
& =\frac{1}{\prod_{j=1}^{\Delta} i_{3 j}!\cdot \prod_{i=1}^{p(\lambda)} \lambda_{i}} \cdot \prod_{j=1}^{3}\binom{m_{j}}{|\lambda|}|\lambda|!. \tag{2.17}
\end{align*}
$$

It follows that (2.8) can be rewritten as:

$$
\begin{align*}
F\left(w, m_{1}, m_{2}, m_{3}\right) & =E\left(w, m_{1}, m_{2}, m_{3}\right) \\
& +\sum_{\lambda \in \Lambda(\Delta)} \frac{(-1)^{p(\lambda)}}{\prod_{j=1}^{\Delta} i_{3 j}!\cdot \prod_{i=1}^{p(\lambda)} \lambda_{i}} \prod_{j=1}^{3}\binom{m_{j}}{|\lambda|}|\lambda|!\cdot E\left(w-3|\lambda|, m_{1}-|\lambda|, m_{2}-|\lambda|, m_{3}-|\lambda|\right) . \tag{2.18}
\end{align*}
$$

Theorem 2.1.3. Let λ be a partition of a fixed integer $n, n \geq 2$.
Then,

$$
\sum_{\lambda} \frac{(-1)^{p(\lambda)}}{\prod_{j} i_{3 j}!\cdot \prod_{i=1}^{p(\lambda)} \lambda_{i}}=0
$$

where the sum is taken over all partitions λ of n and the product on the left side of the denominator is over all possible values of j.

We present a simple example to illustrate the above theorem. Let $n=5$, then the 7 partitions of 5 and with the respective information are given in the table below.

λ	$\prod_{i=1}^{p(\lambda)} \lambda_{i}$	$\prod_{j} i_{3 j}!$	$(-1)^{p(\lambda)}$
5	5	$1!$	-1
4,1	4	$1!$	1
3,2	6	$1!$	1
$3,1,1$	3	$2!$	-1
$2,2,1$	4	$2!$	-1
$2,1,1,1$	2	$3!$	1
$1,1,1,1,1$	1	$5!$	-1

Then it follows that,

$$
-\frac{1}{5 \cdot 1!}+\frac{1}{4 \cdot 1!}+\frac{1}{6 \cdot 1!}-\frac{1}{3 \cdot 2!}-\frac{1}{4 \cdot 2!}+\frac{1}{2 \cdot 3!}-\frac{1}{5!}=0
$$

Proof. We prove the result using Faa di Bruno's formula. Faa di Bruno's formula is a generalization of the chain rule for higher derivatives. The general form of Faa di Bruno's formula is:

$$
\frac{d^{n}}{d x^{n}} f(g(x))=\sum \frac{n!}{m_{1}!1!^{m_{1}} m_{2}!2!^{m_{2}} \cdots m_{n}!n!^{m_{n}}} \cdot f^{\left(m_{1}+\cdots+m_{n}\right)}(g(x)) \cdot \prod_{j=1}^{n}\left(g^{(j)}(x)\right)^{m_{j}}
$$

where the sum is over all n -tuples of nonnegative integers $\left(m_{1}, \ldots, m_{n}\right)$ satisfying the constraint,

$$
1 \cdot m_{1}+2 \cdot m_{2}+3 \cdot m_{3}+\cdots+n \cdot m_{n}=n .
$$

In terms of the notation used in the theorem, this can be written as:

$$
\frac{d^{n}}{d x^{n}} f(g(x))=\sum_{\lambda} \frac{1}{\prod_{i=1}^{p(\lambda)} \lambda_{i} \cdot \prod_{j} i_{j}!} \cdot f^{p(\lambda)}(g(x)) \cdot g_{\lambda}(x)
$$

where,

$$
g_{\lambda}(x)=g^{\left(\lambda_{1}\right)}(x) \cdot g^{\left(\lambda_{2}\right)}(x) \cdot \cdots \cdot g^{\left(\lambda_{t}\right)}(x)
$$

We want $g^{\left(\lambda_{i}\right)}(x)$ to give $\left(\lambda_{i}-1\right)$!. Thus if $g(x)=-\log (1-x)$, then this would imply that,

$$
g^{\left(\lambda_{i}\right)}(x)=\frac{\left(\lambda_{i}-1\right)!}{(1-x)^{\lambda_{i}}}
$$

Similarly, If $f(y)=e^{-y}$, then $f^{p(\lambda)}(y)=(-1)^{p(\lambda)} f(y)$, thus $e^{(-g(x))}=e^{\log (1-x)}=1-x$.
Hence,

$$
\frac{d^{n}}{d x^{n}} f(g(x))= \begin{cases}1-x, & \text { if } n=0 \\ -1, & \text { if } n=1 \\ 0, & \text { if } n \geq 2\end{cases}
$$

From the theorem 2.1.3, it follows that the summands in equation (2.8) add up to zero except when λ is a partition of 1 . In other words,

$$
\begin{equation*}
F\left(w, m_{1}, m_{2}, m_{3}\right)=E\left(w, m_{1}, m_{2}, m_{3}\right)-\sigma_{1} \cdot E\left(w-3, m_{1}-1 m_{2}-1, m_{3}-1\right) \tag{2.19}
\end{equation*}
$$

or equivalently

$$
F\left(w, m_{1}, m_{2}, m_{3}\right)=E\left(w, m_{1}, m_{2}, m_{3}\right)-m_{1} m_{2} m_{3} \cdot E\left(w-3, m_{1}-1 m_{2}-1, m_{3}-1\right) .
$$

which concludes the proof of proposition 2.1.1 and we now formally present the algorithm to compute $H\left(T_{n}\right)$, the number of Hamiltonian cycles in T_{n}, by recursively computing the i-path covers in T_{n-1}.

```
Algorithm 1 Algorithm to count the number of \(i\)-path covers and compute number of Hamitonian cycles in
\(T_{n}\)
INPUT: List \(\mathbf{P}^{n-2}=\left[P_{1}^{n-2}, P_{2}^{n-2}, \ldots, P_{3^{n-2}}^{n-2}\right]\), where \(\mathbf{P}^{n-2}\) is a list of number of all path-covers of \(T_{n-2}\)
OUTPUT: The number of Hamiltonian cycles in \(T_{n}\), and number of \(k\)-path covers for all
k.
    Start with \(\mathbf{P}^{n-1}\) as a list of \(n-1\) zeros
    for all \(i\) in 1 to \(3^{n-2}\) do
        for all j in \(i\) to \(3^{n-2}\) do
        for all k in \(k\) to \(3^{n-2}\) do
            \(v=i+j+k\)
            if \(\mathrm{i}=\mathrm{j}\) and \(\mathrm{j}=\mathrm{k}\) then
                \(P_{v}^{n-1}=P_{v}^{n-1}+P_{i}^{n-2} \cdot P_{j}^{n-2} \cdot P_{k}^{n-2}\)
                \# path-covers before adding edges
                        for all w in 1 to \(2 i+j\) do
                            \# for all edges \(w\), to be added to the graph
                        if \(v-e \geq 0\) then
                        \(P_{v-w}^{n-1}=P_{v-w}^{n-1}+P_{i}^{n-2} \cdot P_{j}^{n-2} \cdot P_{k}^{n-2} \cdot F(w, i, j, k)\)
                            end if
                end for
            else if \(\mathrm{i}=\mathrm{j}\) or \(\mathrm{j}=\mathrm{k}\) then
                \(P_{v}^{n-1}=P_{v}^{n-1}+3 \cdot P_{i}^{n-2} \cdot P_{j}^{n-2} \cdot P_{k}^{n-2}\)
            \# path-covers before adding edges
            for all w in 1 to \(2 i+j\) do
                    \(P_{v-w}^{n-1}=P_{v-w}^{n-1}+3 \cdot P_{i}^{n-2} \cdot P_{j}^{n-2} \cdot P_{k}^{n-2} \cdot F(w, i, j, k)\)
                    \# 3 ways of symmetry
                    end for
            else
                    \(P_{v}^{n-1}=P_{v}^{n-1}+6 \cdot \omega\)
                \# path-covers before adding edges
                    for all e in 1 to \(2 i+j\) do
                    \(P_{v-w}^{n-1}=P_{v-w}^{n-1}+6 \cdot P_{i}^{n-2} \cdot P_{j}^{n-2} \cdot P_{k}^{n-2} \cdot F(w, i, j, k)\)
                    \# 6 ways of symmetry
                    end for
            end if
        end for
        end for
    end for
    \(H\left(T_{n}\right)=\sum_{i=1}^{3^{n-1}} \frac{\left(i!\cdot P_{i}^{n-1}\right)^{3}}{i}\)
```


Chapter 3

Approximation Algorithm

Definition [2] An (undirected) graph is a pair $G=(V, E)$ of sets such that $E \subset[V]^{2}$. The elements of V are the vertices (or nodes) of G, the elements of E are its edges. An acyclic graph, one not containing any cycles, is called a forest. A connected forest is called a tree. (Thus, a forest is a graph whose components are trees.) A rooted tree is a tree with a countable number of nodes, in which a particular node is distinguished from the others and called the root. The nodes of degree 1 are called the leaves of the tree, except if the node is the root.

Label the vertices of the tournament T_{n} as $1,2, \ldots, 3^{n}$. Let T_{n}^{*} be a rooted tree whose nodes represent all possible paths and Hamiltonian cycles in T_{n} starting at fixed vertex 1. T_{n}^{*} can be defined as follows: Let the root of T_{n}^{*} represent vertex 1 of T_{n}, i.e. the starting vertex. Let the children of the root represent all paths of length 1 starting at vertex 1 . One node u in T_{n}^{*} is a child of another v if it is the extension of the path represented by v by one edge to the new path or to a Hamiltonian cycle represented by u. Hence the nodes of T_{n}^{*} at depth k represent paths of length k in the tournament T_{n} and the leaves at depth 3^{n} represent the Hamiltonian cycles in T_{n}. The question of counting the number of Hamiltonian cycles in the tournament T_{n} reduces to counting the number of leaves in T_{n}^{*} at depth 3^{n}. It is easy to see that the size of T_{n}^{*} is very large even for small values of n.

Backtracking is a general algorithm for finding all (or some) solutions to some computational problem. It incrementally builds candidates to the solutions, abandoning each partial candidate c ("backtracks") as soon as it determines that c cannot possibly be completed to a valid solution, see [5]. It is a recursive method of building up a feasible solution to a combinatorial optimization problem one step at a time. A backtrack
search is an exhaustive search, that is, all feasible solutions are considered, at least implicitly, so it will always find the optimal solution. The state space of a backtracking algorithm involves a tree. Estimating the size of this tree is useful in predicting how long a large backtrack search might be expected to take. Kreher and Stinson [6] presented an algorithm to estimate the size of the state space tree T for a backtracking algorithm without actually running the entire algorithm. Informally, their algorithm is as follows: For a tree $T,|T|$ is estimated by probing a random path $P=p_{0} p_{1} \ldots p_{m}$ where $p_{i} \in V(T)$ for $i=0,1, \ldots, m$, through T, where p_{0} is the root and p_{m} is a leaf. As we follow this path, we compute the number of children c_{i} of p_{i}. Then the number of nodes in T at depth i according to the random path P is $c_{0} c_{1} \cdots c_{i-1}$. Thus the estimate of $|T|$ according to P is given by:

$$
\begin{equation*}
|T| \approx 1+c_{0}+c_{0} c_{1}+c_{0} c_{1} c_{2}+\cdots+c_{0} c_{1} c_{2} \cdots c_{m-1} \tag{3.1}
\end{equation*}
$$

In particular, we can estimate the number of nodes at depth 3^{n} of T_{n}^{*} using Kreher and Stinson's algorithm thus estimating the number of Hamiltonian cycles of T_{n}. Let $H(P)$ be the estimate of the number of nodes at depth 3^{n}, with $P=p_{0} p_{1} \cdots p_{m}$ a random path in T_{n}^{*} from root p_{0} to leaf p_{m} and c_{i} the number of children of p_{i}, then

$$
H(P)= \begin{cases}c_{0} c_{1} \cdots c_{m-1}, & \text { if } m=3^{n} \\ 0, & \text { otherwise }\end{cases}
$$

In order to increase the accuracy, several runs of $H(P)$ are computed and the average values of $H(P)$ are taken over the different runs. We implemented this using Sage and got estimates for $H\left(T_{n}\right)$ by computing $H(P)$ over a sample size of 100,000 for $n=1, \ldots, 5$ and a sample size of 10,000 for $n=6$. These results were particularly helpful in verifying the computational results we were getting while working on the exact algorithm. Note that this method can also be easily used in estimating the number of Hamiltonian cycles in general tournaments. We present the results in the next chapter and the implementation in Sage can be found in Appendix B.

Chapter 4

Computational Results

In this chapter we present the computational results giving the estimates and exact counts of the number of Hamiltonian cycles in T_{n}. We also present the number of Hamiltonian paths in T_{n} i.e., the number of 1-path covers of T_{n} since the exact algorithm computes them concurrently.

4.1 Approximate Counts for $H\left(T_{n}\right)$

We ran the approximation algorithm with sample size of 100,000 ten times and got the following results:

208.096000000000
208.250720000000
208.254240000000
205.009920000000
208.525280000000
206.546080000000
205.280800000000
204.090400000000
205.288960000000

Getting the average of the above results and rounding to the nearest integer, we can conclude that $H\left(T_{2}\right)$ is approximately 207 Hamiltonian cycles.

For T_{3} with sample size 100,000 we get:

8.38936393504178 e 18
8.29415270322695 e 18
8.41085831064413 e 18
8.20069048677160 e 18
8.23054416986776 e 18
8.38901207085574 e 18
8.22982685280299 e 18
8.42540274654137 e 18
8.27677088387733 e 18
8.27121370347297 e 18

with an average of approximately 8.311e18 Hamiltonian cycles.
For T_{4} with sample size 100,000 we get:

8.39212935331849 e 94
8.20984619093887 e 94
8.33860969614190 e 94
8.21100465493029 e 94
8.12149753319329 e 94
8.06273445583200 e 94
8.19511790498236 e 94
8.18968303414667 e 94
8.24921813852953 e 94
8.32078388331347 e 94

with an average of approximately 8.23 e 94 Hamiltonian cycles.
For T_{5} with sample size 100,000 we get:

4.77309584702392 e 400
4.68917174160924 e 400
4.74988976385854 e 400
4.77817310624222 e 400
4.75087918890168 e 400
4.48785956506462 e 400
4.47040112900951 e 400
4.90979276677279 e 400
4.69740117978661 e 400
4.81677881362070 e 400

with an average of approximately 4.71e400 Hamiltonian cycles.
Lastly for T_{6} with sample size 10,000 we get:

1.91468599948298 e 1550
2.05245624812883 e 1550
1.74356077128382 e 1550
1.95092667377627 e 1550
1.87486011438676 e 1550
1.98537038673843 e 1550
1.82301308326100 e 1550
2.00221518020148 e 1550
2.00730405281973 e 1550
2.03615287754156 e 1550

with an average of approximately 1.94 e 1550 Hamiltonian cycles.

4.2 Exact Counts for $H\left(T_{n}\right)$

The exact values of the number of Hamiltonian cycles $H\left(T_{n}\right)$ and Hamiltonian paths $P\left(T_{n}\right)$ in tournament T_{n} are given below. The numbers larger than 10^{19} are presented in scientific form rounded to 18 digits.

n	$H\left(T_{n}\right)$
1	1
2	207
3	8316362583640202859
4	8.243616097444882209 e 94
5	4.681945708027605746 e 400
6	1.95133590743535 e 1550

n	$P\left(T_{n}\right)$
1	3
2	3159
3	4.17382500592116 e 21
4	1.30121086168815 e 97
5	2.25541503737347 e 403
6	2.83662916923917 e 1553

4.2.1 Exact Vs. Approximate count

Lastly we present the table below that shows the approximate counts and exact counts of $H\left(T_{n}\right)$ side by side in scientific form rounded to the second decimal place for comparison purposes.

n	Approximate count	Exact count
1	1	1
2	207	207
3	8.311 e 18	8.312 e 18
4	8.23 e 94	8.24 e 94
5	4.71 e 400	4.68 e 400
6	1.94 e 1550	1.95 e 1550

Chapter 5

Conclusions and Discussion

Recall from chapter 1 that if m is the number of vertices in a tournament, then the expected number of Hamiltonian cycles $E(m)$, it has is $(m-1)!/ 2^{m}$ and that the known upper bound due to Kahn and Friedgut is $O\left(m^{1 / 2-\xi} m!2^{-m}\right)$ with $\xi=0.2507$. The table below shows $H\left(T_{n}\right)$, the number of Hamiltonian cycles in $T_{n}, E\left(3^{n}\right)$, the expected number of Hamiltonian cycles for a tournament on 3^{n} vertices, Kahn and Friedgut upper bound and the ratio of $H\left(T_{n}\right)$ to $E\left(3^{n}\right)$.

n	$H\left(T_{n}\right)$	$E\left(3^{n}\right)$	$O\left(3^{n \cdot\left(\frac{1}{2}-0.2507\right)} \cdot \frac{3^{n}!}{2^{3^{n}}}\right)$	$\frac{H\left(T_{n}\right)}{E\left(3^{n}\right)}$
1	1	0.25	$O(0.9862)$	4
2	207	78.75	$O(1225.7)$	2.62857
3	8.31636258364020 e 18	3.00475553517495 e 18	$O(1.84 \mathrm{e} 20)$	2.76773
4	8.24361609744488 e 94	2.96004336598080 e 94	$O(7.17 \mathrm{e} 96)$	2.78496
5	4.681945708027605746 e 400	1.67846452947232 e 400	$O(1.60 \mathrm{e} 403)$	2.78942
6	1.95133590743535 e 1550	6.99197412277854 e 1549	$O(2.63 \mathrm{e} 1553)$	2.79082

From the table above we conclude $H\left(T_{n}\right)$ is at least $2 \cdot E\left(3^{n}\right)$ and that T_{n} is a tournament with a greater number of Hamiltonian cycles than the expected number for a random tournament with the same number of vertices. More results would be useful to see, as n goes to infinity, how close this comes to $2.855958 * E\left(3^{n}\right)$ as conjectured by Wormald on the maximum number of Hamiltonian cycles.

Chapter 6

Future Work

In this thesis, the tournament T_{n} is constructed by placing three copies of T_{n-1} in a triangle and connecting them accordingly. Since our underlying area of interest is the maximum number of Hamiltonian cycles a tournament can have, it would be interesting to construct and study the tournament T_{n} by placing m copies of T_{n-1} on regular m-sided polygons and connecting them in a way we hope to maximize the number of Hamiltonian cycles in T_{n}. In particular, an area of interest would be looking at the tournaments that beat Wormald's conjecture of 2.8559... times the expected number thus giving us more insight to his conjecture.

Appendices

Appendix A $\operatorname{Sage}\left(\right.$ Python) code for building T_{n}

```
def tournament(n):
    tournament = create_cycles(n,{1:[]}, n)
    return tournament
def create_cycles(n,graph, m):
    if n == 0:
        return graph
    else:
        graph2 ={}
#this part just creates copies and increments them accordingly
        for key in graph:
        newkey = key + 3^ (m-n)
        graph2.update({newkey:[]})
        for v in graph[key]:
            newv = v + 3^(m-n)
                graph2[newkey]. append (newv)
    graph3={}
    for key in graph2:
        newkey = key + 3^}(m-n
        graph3.update({newkey:[]})
        for v in graph2[key]:
            newv = v + 3^(m-n)
            graph3[newkey].append (newv)
        #end of incrementing the disjoint graphs
        # we now have three disjoint graphs, graph, graph2 and graph3
        # all points in graph => graph2 => graph3 => graph
        for key in graph:
            for vertex in graph2:
                graph[key].append(vertex)
        for key in graph2:
```

```
    for vertex in graph3:
        graph2[key].append(vertex)
for key in graph3:
    for vertex in graph:
        graph3[key].append(vertex)
graph.update(graph2)
graph.update(graph3)
create_cycles(n-1,graph, m)
return graph
```


Appendix B Sage(Python) code for Approximation algorithm

```
def count_ham_cycles_in_T2(m, N): #N is the sample size. m is T_m
    import random
    graph = tournament(m)
    print 'This tournament has %d vertices' %(len(graph))
    print 'Sample size is %d' %N
    map = DiGraph(graph)
    nV = len(graph)
    p = []
    averages = []
    visited = {}
    for vertex in graph:
        visited[vertex] = false
    one_in = map.neighbors_in(1)
    for j in range(1,11):
        prod_of_degrees = []
        term_count = 0
        #number of times we terminate we reach a dead end
        ham_count = 0
        for i in range(1,N+1):
            #map = copy(map1)
            #visited
            #counter for remaining place to visit
            for vertex in graph:
                visited[vertex] = false
            walk =[]
            prob_list = []
            neighlist = []
            walk.append(1)
            neighbor = map.neighbors_out(1)
```

```
visited[1] = true
for neigh in neighbor:
    if visited[neigh] == false:
        neighlist.append(neigh)
if neighlist == []:
    if len(walk) != nV:
        prod_of_degrees.append(0)
        term_count += 1
        break
    else:
            break
else:
    a = random.choice(neighlist)
    visited[a]=true
    degree = len(neighlist)
#neigh =map.neighbors_out(1)
#a = random.choice(neigh)
#degree = len(neigh)
#map.delete_vertex(1)
walk.append(a)
prob_list.append(degree)
#print prob_list
for road in range(1,nV-1):
    if map.neighbors_out(a)== []:
        if len(walk) != nV:
            prod_of_degrees.append(0)
            term_count += 1
            break
        else:
            break
    else:
```

```
        neighlist = []
        neighbor =map.neighbors_out(a)
        for neigh in neighbor:
        if visited[neigh] == false:
    # the available vertices to go to.
                        neighlist.append(neigh)
        if neighlist == []:
            if len(walk) != nV:
                prod_of_degrees.append(0)
                term_count += 1
                break
            else:
                break
    b = random.choice(neighlist)
#choose at random a vertex to go
            visited[b]=true
            degree = len(neighlist)
            #map.delete_vertex(a)
            walk.append(b)
            prob_list.append(degree)
            a = b
        if len(walk) == nV:
            if walk[-1] in one_in:
            #this is a ham cycle
            ham_count += 1
            x= prod(prob_list)
            prod_of_degrees.append(x)
            else:
            term_count += 1
            prod_of_degrees.append(0)
    #print walk
```

av1 = mean (prod_of_degrees)
print 'average=', av1.n()

Appendix C Python code for Exact counting Algorithm

C. 1 code for $E(n, i, j, k)$ and $P(n, i, j, k)$

\#In the code below the function $F(n, i, j, k)=P(n, i, j, k)$
\# this is used to speed up the execution of the following function

E_cache $=\{(0,0,0,1): 1\}$ \#E(n, i, j, k)
from math import factorial
def $E(n, i, j, k):$
\#Everything. This includes all broken, proper and circular paths sum $=0$
numera= (memo_factorial[i]*memo_factorial[j]*memo_factorial[k]) **2
if $i+j>=n$:
$\mathrm{N}=0$
else:
$\mathrm{N}=\mathrm{n}-\mathrm{i}-j$
for a in range (N, i+1):
\#print $a, n-a-N, j+1$
for b in range (max $(0, n-a-i), \min (j, n-a)+1)$: \#because $n-b-a<=N$
$\mathrm{c}=\mathrm{n}-\mathrm{b}-\mathrm{a}$
denom $=$ memo_factorial[a]*memo_factorial[b]
*memo_factorial[c]*memo_factorial[i-a]*memo_factorial[j-b]*memo_
factorial[k-c]*memo_factorial[i-c]*memo_factorial[j-a]*memo_factorial[k-b]
sum $+=$ numera/denom
if $\mathrm{n}>0$ and $\mathrm{i}>0$ and k ! $=81:$
\#Should always be $!=3^{\wedge}(n-2)$ for $T _n$
E_cache[(n, i, j, k)] = sum
return sum
\# this is used to speed up the execution

```
memo_factorial = {}
for i in range(3**6 + 1):
#The max factorial to be used, i.e up to 3^{n-2}
    memo_factorial[i] = factorial(i)
def E2(n, i,j, k):
    if n <=0 or i == 0:
        if n< 0:
            return 0
        elif n == 0:
            return 1
        else:
            return binomial(j,n)*binomial(k,n)*memo_factorial[n]
        else:
        get = E_cache.pop((n, i, j, k))
            return get
def P(n, i, j, k):
# this is P(n, i, j, k) = E(n, i, j, k) + C_E(n, i, j, k)
    return E(n, i, j, k) - i*j*k *E2(n-3, i-1, j-1 ,k-1)
```


C. 2 Code for computing $H\left(T_{n}\right)$

```
def ham_cycles_in_Tn(N,prev):
    print 'This tournament has %d Vertices' %(3^N)
    c = []
    check = []
    v = 3**(N-1)
    bsize =v/3
    for i in range(v):
        c.append(0)
        #check.append([])
```

```
    for i in range(1,bsize+1):
        for j in range(i,bsize+1):
            for k in range(j,bsize+1):
    #w1 are the ways of getting max components form the given [i,j,k]
    ways = [0,0,0]
    ways[0] = prev[i-1]
    ways[1] = prev[j-1]
    ways[2] = prev[k-1]
    nv = i + k + j
    w1 = ways[0]*ways[1]*ways[2]
    if i == j == k: #e.g [i, j, k] = [1,1,1]
        #check[nv-1].append((1, w1))
        c[nv-1] += 1*w1 #if n=0
        for n in range(1,2*i + j + 1):
            if nv-n-1 >= 0:
            paths = P(n, i, j, k)
            #print 'fin'
            c[nv-n-1] += w1 * paths
    elif i == j or j == k:
    #e.g[i, j, k]= [1,1,3] = [1,3,1] = [3,1,1]..... 3 ways
            c[nv-1] += 3*w1 #if n=0
            for n in range(1,2*i + j + 1):
                    paths = P(n, i, j, k)
                    #print 'fin'
            c[nv-n-1] += 3*w1 * paths
#3 ways of symmetry
    else:
    # e.g [i, j, k]= [1,2,3] = [1,3,2] = ...6 ways
        c[nv-1] += 6*w1 #if n=0
        for n in range(1,2*i + j + 1):
```

```
paths = P(n, i, j, k)
c[nv-n-1] += 6*w1 * paths
```

\#6 ways of symmetry
\#print c
$p=c$
ham = []
for i in range (1,len(c)+1):
ham. append((memo_factorial[i]*p[i-1]) **3/i)
print sum(ham)
\#print ' $T_{-} \% d$ has \%d Hamiltonian Cyles' \%(N, sum(ham))
\#print factor(sum(ham))
return c

Appendix D Exact Values for $H\left(T_{n}\right)$

$$
\begin{gathered}
H\left(T_{1}\right)=1 \\
H\left(T_{2}\right)=207 \\
H\left(T_{3}\right)=8316362583640202859 \\
H\left(T_{4}\right)= \\
824361609744488220956059091173403716521832492963279521029129698340865489 \\
90320509982103591486399 \\
H\left(T_{5}\right)= \\
468194570802760574663076839380348587024686620578450140528708868858092875 \\
297936522597925416367575366369827353442079096840230919763147860550014067 \\
932642082996454268262335646643273894922510234381980117572894055115401548 \\
148686733583582998272458808662193249355413493573684422197996848911735562 \\
634055484706912251544635067113947448421015860016666273032207063753016120 \\
46536746191175816294508031389792390069707
\end{gathered}
$$

$$
H\left(T_{6}\right)=
$$

195133590743534532849004708713735747988827346969870858809750680568848875 249361386297636673176824176656501812898600724973543825293151024657545668 257685581818768192378545573532666296793010265126249134591428249540180961 383843225931956719759610569694316039904751631817736858805266546862832410 638068580258193066201849420755549335722821597811280572064843505868499504 783885508991857600848561349591201044719283127053149781754351535482674437 334729148130040364619907968941227826600989432176848051199470768327774744 312292093126498048631496130213700625294257351796850434264697697020952126 246192501376044986736640294520122759788860681384885594770743632445580242 413139289616853289183947939345537972661408886145732258160230509486685338 408518926720584285809969813715939362780503520001076562928144898647430604 477609502386308252110841535994428990914319523554211753497640316690172744 430532030656268734219049930922858231399486858736372305642388920500215924 230517702612041258920330389813331715539463604093890573551854931838286879 626024145682703084835713843856599499097430405355923523194654300754071840

703168931228899922133278417347033880761560200117214774566225014773181464 167475154147823586256402864899955457046142179836259573772129935550561538 604758464831819078935958860032786984722301715302420868420082732707391360 319941062883776507642808542485657824203039351711051058687647044503094658 459239395729414865131881903153543928520565225630904817828194808091028534 916742816734280431813520569287250549388127687448786406214002321441762857 122321229833212256531539490493926488703

Bibliography

[1] N. Alon. The maximum number of hamiltonian paths in tournaments. In Combinatorica, pages 319-324, 1990.
[2] R. Diestel. Graph Theory. Springer, 2010.
[3] E. Friedgut and J. Kahn. On the number of hamiltonian cycles in a tournament. manuscript.
[4] K.D. Joshi. Foundations Of Discrete Mathematics. New Age International, 2003.
[5] D. E. Knuth. The Art of Computing. Addison-Wesley, 1968.
[6] D.L. Kreher and D.R. Stinson. Combinatorial algorithms. Generetion, enumeration, and search. CRC press, 1999.
[7] T. Szele. Kombinatorikai vizsg alatok az ir anyitott teljes gr a al kapcsolatban.
[8] N. Wormald. Tournaments with many hamiltonian cycles.

