
Clemson University
TigerPrints

All Theses Theses

8-2012

A set of tournaments with many Hamiltonian
cycles
Hayato Ushijima-mwesigwa
Clemson University, hushiji@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Applied Mathematics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Ushijima-mwesigwa, Hayato, "A set of tournaments with many Hamiltonian cycles" (2012). All Theses. 1422.
https://tigerprints.clemson.edu/all_theses/1422

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268636227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1422?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A SET OF TOURNAMENTS WITH MANY HAMILTONIAN CYCLES

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Mathematics

by
Hayato Ushijima-Mwesigwa

August 2012

Accepted by:
Dr. Neil Calkin, Committee Chair

Dr. Beth Novick
Dr. Daniel Warner

Abstract

For a random tournament on 3n vertices, the expected number of Hamiltonian cycles is known to be

(3n− 1)!/23n
. Let T1 denote a tournament of three vertices v1,v2,v3. Let the orientation be such that there

are directed edges from v1to v2 , from v2 to v3 and from v3 to v1. Construct a tournament Ti by making three

copies of Ti−1, T ′i−1, T ′′i−1 and T ′′′i−1. Let each vertex in T ′i−1 have directed edges to all vertices in T ′′i−1, similarly

place directed edges from each vertex in T ′′i−1 to all vertices in T ′′′i−1 and from T ′′′i−1 to T ′i−1.

In this thesis, we shall study this family of highly symmetric tournaments. In particular we shall

present two different algorithms to calculate the number of Hamiltonian cycles in these tournaments and

compare them with the expected number and with known bounds for random tournaments. This thesis is

motivated by the question of the maximum number of Hamiltonian cycles a tournament can have.

ii

Acknowledgments

I would like to acknowledge my committee chair Dr. Calkin for his advice and guidance throughout

this project. I would also like to give a special thanks to my committee members Dr. Novick and Dr. Warner

for much needed guidance. Lastly, I would like to acknowledge fellow graduate students, Nate Black and

Thilo Strauss for their useful questions and comments along the way.

iii

Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

1 Introduction . 1
1.1 Basic definitions . 1
1.2 Previous work . 2
1.3 Tn . 3

2 Exact counting Algorithm . 5
2.1 Computing F(w,m1,m2,m3) . 7

3 Approximation Algorithm . 17

4 Computational Results . 19
4.1 Approximate Counts for H(Tn) . 19
4.2 Exact Counts for H(Tn) . 21

5 Conclusions and Discussion . 23

6 Future Work . 24

Appendices . 25
A Sage(Python) code for building Tn . 26
B Sage(Python) code for Approximation algorithm . 28
C Python code for Exact counting Algorithm . 32
D Exact Values for H(Tn) . 36

Bibliography . 38

iv

Chapter 1

Introduction

1.1 Basic definitions

We first present some basic definitions. We mostly follow the treatment in [2].

Definition A directed graph (digraph) is a pair (V,E) where V is the set of vertices (or nodes, or points) and

E ⊂V ×V is a set of edges, which we regard as ordered pairs of vertices. In the edge (u,v), we refer to u as

the initial vertex and v as the terminal vertex. We call (u,v) an edge from u to v (see figure 1). Sometimes we

denote (u,v) simply by uv. If u = v, then the corresponding edge is called a loop. In this thesis, none of the

digraphs we present contain loops.

vu

Figure 1

A (directed) path is a non-empty directed graph P = (V,E) of the form

V = {x0,x1, . . . ,xk} E = {x0x1,x1x2, . . . ,xk−1xk},

where the xi are all distinct. The vertices x0 and xk are called its end vertices. We often refer to a path

by the natural sequence of its vertices, writing, say, P = x0x1 . . .xk and calling P a path from x0 to xk. If

P = x0x1 . . .xk−1 is a path and k ≥ 3, then the graph C := P+ xk−1x0 is called a cycle.

A Hamiltonian path of a directed graph G is a path containing every vertex in G. Similarly, a

Hamiltonian cycle is a cycle containing every vertex in G.

1

A tournament T is a directed graph in which for every u 6= v exactly one of the edges (u,v) and (v,u)

is in E. We can think of T as the outcomes of a sports event in which pairs of teams play once and there are

no ties, only wins and losses. The name tournament derives from a round-robin tournament.

1.2 Previous work

If we construct a tournament T by independently choosing the edge between vertices u and v to be

(u,v) and (v,u) with equal probability, then we can use the linearity of expectation to compute the expected

number of Hamiltonian cycles (similarly Hamiltonian paths) in a random tournament. Since the number of

cycles is non-negative, there must exists a tournament with at least these many cycles (paths). Szele [7] in

1943 was the first to use this observation and showed that

P(n)≥ n!/2n−1, (1.1)

where P(n) denotes the maximum possible number of Hamiltonian paths in a tournament on n vertices and

the right-hand side of the inequality is the expected number.

Szele’s proof is considered to be the first application of the probabilistic method in combinatorics.

The same argument shows

C(n)≥ (n−1)!/2n, (1.2)

where C(n) denotes the maximum possible number of Hamiltonian cycles in a tournament on n vertices and

the right-hand side of the inequality is the expected number of Hamiltonian cycles.

In the same paper Szele established an upper bound on P(n) by showing that

P(n)≤ c1 ·n!/2
3
4 n, (1.3)

where c1 is a positive constant independent of n, and conjectured that

lim
n→∞

(P(n)
n!

) 1
n
=

1
2
.

Later, Alon [1] proved this conjecture and improved the upper bound to

P(n)≤ c2 ·n
3
2 n!/2n−1,

2

where c2 > 0 is independent of n.

Kahn and Friedgut [3] later improved this upper bound further by showing that for any

ξ < 2(1− exp[
√

3/4−1])≈ 0.2507 . . . ,

C(n)< O(n1/2−ξ n!2−n), (1.4)

and (consequently)

P(n)< O(n3/2−ξ n!2−n). (1.5)

These are the best known upper bounds of C(n) and P(n) and we note that these bounds beat the

expected number by a factor that is dependent on n. Wormald [8] conjectured that in fact C(n)≈ 2.855958 ·

(n−1)!/2n.

In this thesis, we will restrict our attention to a particular tournament, Tn on 3n vertices constructed

in a manner which we might hope to give a large number of Hamiltonian cycles. We will give an approximate

algorithm and an exact algorithm to count the number of Hamiltonian cycles in this tournament, and compute

the approximate and exact counts for n≤ 6.

1.3 Tn

We consider a sequence of tournaments T0,T1,T2, We’ll construct the tournament Tn recursively

as follows:

T0 is:

T1 is:

0

1

2

and Tn is a tournament on 3n vertices consisting of three copies of Tn−1, placed in a triangle, with edges

between the Tn−1’s oriented in a counterclockwise fashion as in figure 2, where T ′n−1, T ′′n−1 and T ′′′n−1 represent

3

T ′′′n−1 T ′n−1

T ′′n−1

Figure 2. T ′n−1, T ′′n−1 and T ′′′n−1 are 3 copies of Tn−1

the three copies of Tn−1 and the =⇒′ s represent the directions of the edges between the copies.

More formally, and for purposes of computation, Tn will have the vertex set 0,1, . . . ,3n−1 in base

3; to construct it, we take 3 copies of Tn−1, replace each vertex v in Tn−1 by 3v, 3v+ 1 and 3v+ 2 in the

three copies respectively. Then the direction of an edge uv, where u and v are from different copies of Tn−1 is

determined by their final ternary digits in such a way that the direction is from 0 to 1, 1 to 2 and 2 to 0.

4

Chapter 2

Exact counting Algorithm

Let H(Tn) denote the number of Hamiltonian cycles in Tn. In this section we present some theorems

and propositions leading to an exact counting algorithm to compute H(Tn).

Definition A path cover of a directed graph G is a set of disjoint directed paths in G which together contain

all the vertices of G. An m-path cover is a path cover of cardinality m.

By definition, the 1-path covers are the Hamiltonian paths. We will first reduce the problem of

computing H(Tn) to the problem of counting the number of m-path covers for 1≤m≤ 3n−1 in Tn−1. We make

this reduction by making the following observation:For n≥ 1, let T ′n−1, T ′′n−1 and T ′′′n−1 be the three copies of

Tn−1 from which Tn was constructed. Take any Hamiltonian cycle C, of Tn, and consider C restricted to T ′n−1,

T ′′n−1 and T ′′′n−1. Since a Hamiltonian cycle on Tn contains every vertex in T ′n−1, T ′′n−1 and T ′′′n−1 exactly once,

C restricted to T ′n−1 would form a k-path cover of T ′n−1 for some 1≤ k ≤ 3n−1. Similarly for T ′′n−1 and T ′′′n−1.

Now if C restricted to T ′n−1 induces a k-path cover for a fixed k, then it must be the case that C also induces a

k-path cover in T ′′n−1 and T ′′′n−1. It is easy to show that the number of ways of joining the k-path covers to form

a Hamiltonian cycle is k!3/k. Thus if Pn−1
k denotes the number of k-path covers of Tn−1, then the number of

Hamiltonian cycles of Tn that induce k-path covers in T ′n−1, T ′′n−1 and T ′′′n−1 is (k! ·Pn−1
k)3/k.

Thus, if Pn−1
i is the number of i-path covers of Tn−1, for 1≤ i≤ 3n−1, then

H(Tn) =
3n−1

∑
i=1

(i! ·Pn−1
i)3

i
, (2.1)

5

where the ith term in the sum counts the number of choices for i-path covers for T ′n−1, T ′′n−1 and T ′′′n−1, and the

number of ways of joining them to create a Hamiltonian cycle.

We now focus on calculating Pn−1
i for 1 ≤ i ≤ 3n−1. For T1, we can easily count P1

i for 1 ≤ i ≤ 3

and get P1
1 = 3 (Hamiltonian paths in T1), P1

2 = 3 and P1
3 = 1 (trivial paths). We will compute Pn−1

i for

1≤ i≤ 3n−1 recursively, so for now we will assume Pn−2
i is known for 1≤ i≤ 3n−2.

For each i, j and k- path cover of T ′n−2, T ′′n−2 and T ′′′n−2 respectively, we wish to know how many

ways they can be joined to give a path cover of Tn−1. If we add a directed edge from an end vertex of a path

in the path cover of T ′n−2, to an end vertex in a path in the path cover of T ′′n−2 to obtain a new path, we form a

(i+ j+ k−1)-path cover of Tn−1. Thus our problem for counting H(Tn) reduces to the following problem:

Problem 2.0.1. For each i, j and k- path cover of T ′n−2, T ′′n−2 and T ′′′n−2, how many ways can we connect them

with m edges to form a (i+ j+ k−m)-path cover of Tn−1?

Notice that trivially, these i, j and k-path covers together form an (i+ j + k)-path cover of Tn−1.

Thus if we consider all ways of creating disjoint paths by adding m edges between the i, j and k-path covers

without creating cycles for all 1≤ i, j,k≤ 3n−2 and 0≤m≤ 3n−1, we would have in fact constructed all path

covers of Tn−1

For simplicity, we can view the i disjoint paths in an i-path cover as a set of i independent vertices,

as shown in the figure below.

P1

P2
P3

P4

P5

P6

V2

V1
V3

V4 V5
V6

(a) (b)

Disjoint paths in (a) correspond to independent vertices in (b)

This can can also be viewed as contracting each disjoint path in T ′n−2, T ′′n−2 and T ′′′n−2 to a singleton. Then

problem 2.0.1 is equivalent to the following problem. Here m1, m2 and m3 replace i, j and k respectively:

Let M1, M2 and M3 be three sets of vertices with |M1| = m1, |M2| = m2 and |M3| = m3 and let G be a

digraph with vertex set V (G) = M1∪M2∪M3, and let the edges in G be such that each vertex in M1 can only

6

have a directed edge to any vertex in M2, any vertex in M2 can only have a directed edge to any in M3 and

any in M3 can only have a directed edge to any in M1.

Problem 2.0.2. How many ways can we add w edges to G such that G

1. contains no cycles, and

2. for every vertex v in G, |d+(v)| ≤ 1 and |d−(v)| ≤ 1, where |d+(v)| is the out degree of v and |d−(v)|

is the in degree of v.

Let Fw,m1,m2,m3 be the set of all digraphs satisfying (1) and (2) formed by adding exactly w edges to

G and let F(w,m1,m2,m3) := |Fw,m1,m2,m3 |. Then Pn−1
i is given by:

Pn−1
i = ∑

m1 ,m2 ,m3
1 ≤m1 ,m2 ,m3≤ 3n−2 , m1+m2+m3 ≥ i

Pn−2
m1

Pn−2
m2

Pn−2
m3
·F(m1 +m2 +m3− i, m1,m2,m3). (2.2)

2.1 Computing F(w,m1,m2,m3)

In this section we answer problem 2.0.2 to get an expression for F(w,m1,m2,m3). Consider a "re-

laxation" of this problem without the first restriction, i.e., we allow cycles. Call the resulting set of graphs

formed by adding w edges in all possible ways Ew,m1,m2,m3and let E(w,m1,m2,m3) := |Ew,m1,m2,m3 |, then

E(w,m1,m2,m3) = ∑
a+b+c=w

(
m1

a

)(
m2

a

)(
m2

b

)(
m3

b

)(
m3

c

)(
m1

c

)
·a!b!c!. (2.3)

The above expression for E(w,m1,m2,m3) is derived as follows: In order to satisfy the indegree and out

degree constraint (2), choose a vertices from M1 and M2 and a bijection between them, b vertices from M2

and b from M3 and a bijection between them and lastly c vetices from M3 and M1 and a bijection between

them subject to a+b+ c = w.

Clearly Fw,m1,m2,m3 ⊆ Ew,m1,m2,m3 and Ew,m1,m2,m3 \Fw,m1,m2,m3 is the set of all graphs in Ew,m1,m2,m3

that contain at least one cycle, thus,

F(w,m1,m2,m3) = E(w,m1,m2,m3)−|Ew,m1,m2,m3 \Fw,m1,m2,m3 |. (2.4)

Proposition 2.1.1.

F(w,m1,m2,m3) = E(w,m1,m2,m3)−m1m2m3 ·E(w−3,m1−1,m2−1,m3−1)

7

For the remainder of this section, we present a detailed proof for proposition 2.1.1. We prove this

by applying the "inclusion-exclusion principle" and state and prove a theorem about integer partitions which

we use to simplify the expression we get from the inclusion-exclusion principle.

Theorem 2.1.2. (Inclusion-Exclusion principle)

For finite sets A0,A1,. . . ,Am. The following identity holds;

∣∣∣∣ m⋃
i=0

Ai

∣∣∣∣= m

∑
i=0
|Ai|− ∑

i, j
1≤i< j≤m

∣∣Ai∩A j
∣∣+ ∑

i, j,k
1≤i< j<k≤m

∣∣Ai∩A j ∩Ak
∣∣− ·· · +(−1)m−1 |A1∩·· ·∩Am| .

The above theorem can be proved by induction. The details of the proof can be found in [4].

If we add w edges to the independent sets, cycles of different lengths can be formed. We call a cycle

of length k an k-cycle. Since we have 3 independent sets, the cycles formed will have lengths a multiple

of 3. Let X1,X2, . . . ,Xν be all the possible individual cycles that can be formed by adding w edges, and let

AX1 ,AX2 , . . . ,AXm be the set of graphs in Ew,m1,m2,m3 which contain X1,X2, . . . ,Xν respectively. Then we are

interested in calculating |
⋃

ν
i=1 AXi |, the number of graphs with at least one cycle. Thus F(w,m1,m2,m3) is

now expressed as:

F(w,m1,m2,m3) = E(w,m1,m2,m3) − |
ν⋃

i=1

AXi |, (2.5)

where |
⋃

ν
i=1 AXi | is obtained by directly applying the inclusion-exclusion principle, i.e.

∣∣∣∣ ν⋃
i=1

AXi

∣∣∣∣= ν

∑
i=1
|AXi |− ∑

i, j
1≤i< j≤ν

∣∣AXi ∩AX j

∣∣+ ∑
i, j,k

1≤i< j<k≤ν

∣∣AXi ∩AX j ∩AXi

∣∣− ·· · +(−1)ν−1 |AXi ∩·· ·∩AXν
| .

Note that the degree constraints imply that all cycles formed are disjoint. Thus if two cycle Xi,X j are not

disjoint then AXi ∩AX j = /0.

Let σ j be the number of ways of getting a 3 j-cycle, σ j1, j2 be the number of ways of getting a 3 j1-

cycle and 3 j2-cycle concurrently and in general let σ j1, j2,..., jv be the number of ways of getting a 3 j1-cycle,

3 j2-cycle, . . . , and 3 jv-cycle concurrently for all 1≤ ji ≤min(b n
3c,m1.m2,m3).

Consider again the cycles X1,X2, . . . ,Xν . If we re-order these cycles by their lengths such that

X1, . . . ,Xν1 are all the 3-cycles, Xν1+1, . . . ,Xν2 are all the 6-cycles, . . . , and Xν j−1+1, . . . ,Xν are all the 3 j-

cycles. Then,
ν1

∑
i=1
|AXi |= σ1 ·E(w−3,m1−1,m2−1,m3−1), (2.6)

where equation (2.6) can be thought of as: Add 3 of the w edges to the independent sets in such a way that

8

you create a 3-cycle, which can be done in σ1 ways. For each of these, add the w−3 remaining edges to the

independent sets M1,M2 and M3 with current size m1−1,m2−1,m3−1 respectively, which can be done in

E(w−3,m1−1,m2−1,m3−1) ways.

Let ∆ := min(b n
3c,m1.m2,m3), then 3∆ is the largest possible cycle length. Using the same argument

as above, we get:

ν2

∑
i=ν1+1

|AXi | = σ2 ·E(w−6,m1−2,m2−2,m3−2),

ν3

∑
i=ν2+1

|AXi | = σ3 ·E(w−9,m1−3,m2−3,m3−3),

...
ν

∑
i=ν∆−1+1

|AXi | = σ j ·E(w−3∆,m1−∆,m2−∆,m3−∆).

Thus,
ν

∑
i=1
|AXi |=

∆

∑
i=1

σi ·E(w−3i,m1− i,m2− i,m3− i). (2.7)

A similar argument gives

∑
i, j

1≤i< j≤ν

∣∣AXi ∩AX j

∣∣ = ∑
1≤i< j≤∆

σi, j ·E(w−3(i+ j),m1− (i+ j) j,m2− (i+ j),m3− (i+ j)),

∑
i, j,k

1≤i< j<k≤ν

∣∣AXi ∩AX j ∩AXi

∣∣ = ∑
1≤i< j<k≤∆

σi, j,k ·E(w−3(i+ j+ k),m1− (i+ j+ k),m2−3,m3− (i+ j+ k)),

...

∑
i1 ,...,i∆

1≤i1<i2<···<i∆≤ν

∣∣∣AXi1
∩·· ·∩AXi∆

∣∣∣ = |AX1 ∩·· ·∩AX∆
|

= σ1,1, . . . ,1︸ ︷︷ ︸
∆ times

·E(w−3∆,m1−∆,m2−∆,m3−∆),

and the rest of the terms from the inclusion-principle are zero, i.e.,

ν

∑
k=∆+1

∑
i1 ,...,ik

1≤i1<i2<···<ik≤ν

(−1)k−1
∣∣∣AXi1

∩·· ·∩AXik

∣∣∣ = 0.

Consequently, equation (2.5) can be re-written as:

9

F(w,m1,m2,m3) = E(w,m1,m2,m3) −
∆

∑
i=1

σi ·E(w−3i,m1− i,m2− i,m3− i)

+ ∑
1≤i< j≤∆

σi, j ·E(w−3(i+ j),m1− (i+ j) j,m2− (i+ j),m3− (i+ j))

− ∑
1≤i< j<k≤∆

σi, j,k ·E(w−3(i+ j+ k),m1− (i+ j+ k),m2−3,m3− (i+ j+ k))

+

...

+ (−1)∆
σ1,1, . . . ,1︸ ︷︷ ︸

∆ times

·E(w−3∆,m1−∆,m2−∆,m3−∆).

We now focus on getting an expression for σ j1,..., jk , the number of ways of getting cycles of length

3 j1, . . . ,3 jk concurrently.

Definition For any positive integer n, a partition of n, λ , is a non-increasing sequence of positive integers

λ1,λ2, . . . ,λk whose sum is n. Each λi is called a part of the partition. We let the function p(λ) denote the

number of parts of λ and Λ(n) denote the set of partitions of all positive integers less than or equal to n.

The subscripts of σ j1,..., jk consist of all nonnegative integers such that j1 + · · ·+ jk ≤ ∆. These are

precisely all partitions of positve integers less or equal to ∆. Thus F(w,m1,m2,m3) can be written as:

F(w,m1,m2,m3) = E(w,m1,m2,m3)+ ∑
λ∈Λ(∆)

(−1)p(λ)
σλ E(w−3|λ |,m1−|λ |,m2−|λ |,m3−|λ |) (2.8)

where |λ | is the sum of the parts in λ .

2.1.1 Computing σλ

For a partition λ let i3 be the number of 1’s in λ , i6 the number of 2’s, . . . , i3k the number of k’s in

λ where k ≥ 1. Then for any λ , σλ can be rewritten as:

σλ = σ1,1, . . . ,1︸ ︷︷ ︸
i3 times

,2,2, . . . ,2︸ ︷︷ ︸
i6 times

, ..., ∆,∆, . . . ,∆︸ ︷︷ ︸
i3∆ times

. (2.9)

10

where

|λ | := i3 +2i6 +3i9 + · · ·+∆ · i3∆ ≤ ∆, (2.10)

with

i3, i6, . . . , i3∆ ≥ 0.

Inequality (2.10) represents the number of vertices that are used from each independent set. Since a 3-cycle

uses 1 vertex each, a 6-cycle uses 2 vertices each and so on, the coefficients follow.

The representation (2.9) is useful to compute σλ systematically in the following way: First we count

the number of ways of choosing vertices from the sets M1, M2 and M3 to get i3 3-cycles, i6 6-cycles and so on.

Then we multiply this by the number of ways the chosen vertices can be joined to form their respective cycles.

We will first focus on getting an expression for counting the number of ways of choosing these vertices.

2.1.2 Choosing vertex sets to form i3, . . . , i3k, . . . , i3∆, 3k-cycles

As stated before, we first count the number of ways of choosing vertices from the sets M1, M2 and

M3 to get i3 3-cycles, i6 6-cycles and so on. We do this by first choosing the vertices that form the i3 3 cycles,

then from the remaining m1− i3, m2− i3 and m3− i3 vertices in the sets M1, M2 and M3 respectively, we

choose vertices for the i6 6-cycles. We repeat the process for all i3k, for 1 ≤ k ≤ ∆. This argument gives the

following expressions:

The number of ways of choosing vertices in M1, M2 and M3 to form i3 3-cycle concurrently is:

1
i3!
·

3

∏
j=1

(
m j

1

)
·
(

m j−1
1

)
· · · · ·

(
m j− i3 +1

1

)
,

i.e., choose 1 vertex from each set i3 times. We divide by i3! to distinguish between the chosen vertices.

Expanding this expression we get:

1
i3!
·

3

∏
j=1

m j!
XXXX(m j−1)! ·1!

·
XXXX(m j−1)!

XXXX(m j−2)! ·1!
· · · · ·

hhhhhh(m j− i3 +1)!
(m j− i3) ·1!︸ ︷︷ ︸

i3 times

=
1

i3!
·

3

∏
j=1

1
1!i3
·

m j!
(m j− i3)!

=
1

i3!
·

3

∏
j=1

1
1!i3
·
(

m j

i3

)
· i3!. (2.11)

11

Now that we have chosen the vertices for the i3 3-cycles, from the remaining m j− i3 vertices of the sets M j

for 1≤ j ≤ 3, the number of ways of choosing vertices to form i6 3-cycle concurrently is after

1
i6!
·

3

∏
j=1

(
m j− i3

2

)
·
(

m j− i3−2
2

)
· · · · ·

(
m j− i3−2i6 +2

2

)
.

A similar simplification as (2.11) gives:

1
i6!
·

3

∏
j=1

1
2!i6
·
(

m j− i3
2i6

)
· (2i6)!. (2.12)

We keep doing this up to i∆. Where we get,

1
i∆!
·

3

∏
j=1

1
∆!i3∆

·
(

m j− i3−2i6−3i9−·· ·−∆i3∆

∆i3∆

)
· (∆i3∆)!. (2.13)

We then multiply the expressions from (2.11) to (2.13), to get:

1
i3! · i6! · · · · · i3∆!

·
3

∏
j=1

i3! · (2i6)! · · · · · (∆i3∆)!
1!i3 ·2!i6 · · · · ·∆!i3∆

·
(

m j

i3

)(
m j− i3

2i6

)
· · ·
(

m j− i3−2i6−3i9−·· ·− (∆−1)i3(∆−1)

∆i3∆

)

=
1

i3! · i6! · · · · · i3∆!
·

3

∏
j=1

1
1!i3 ·2!i6 · · · · ·∆!i3∆

·
(

m j

i3 +2i6 +3i9 + · · ·+∆ · i3∆

)
· (i3 +2i6 +3i9 + · · ·+∆ · i3∆)!

=
1

i3! · i6! · · · · · i3∆!
·

3

∏
j=1

1
1!i3 ·2!i6 · · · · ·∆!i3∆

·
(

m j

|λ |

)
· |λ |!. (2.14)

Expression (2.14) represents the number of ways of choosing the vertices in M1, M2 and M3 to get

i3 3-cycles, i6 6 cycles, . . . , i3∆ 3∆ cycles. Next we want to know how many ways these vertices can be

connected to form the required cycles.

For any k > 0, the number of ways of connecting 3 sets of k independent vertices to form a 3k cycle

is:
k!3

k
. (2.15)

For any λ , we can view the chosen vertices for each of the i3 3-cycles as 3 disjoint vertices with 1!3

1 ways

of connecting them to form a 3-cycle. Then we can connect the chosen vertices for all of the i3 3-cycles, in(
1!3

1

)i3
ways. Similarly we connect the 2,3, . . . ,∆ cycles in:

(2!3

2

)i6
,
(3!3

3

)i9
, · · · ,

(
∆!3

∆

)i3∆

(2.16)

12

ways.

We then get a beautiful expression for σλ :

σλ =

{
1

i3! · i6! · · · · i3∆!

3

∏
j=1

1
1!i3 ·2!i6 · · · · ·∆!i3∆

(
m j

|λ |

)
|λ |!

}
·
(1!3

1

)i3(2!3

2

)i6
· · ·
(

∆!3

∆

)i3∆

=
1

i3! · i6! · · · · i3∆! ·1i3 ·2i6 · · · · ·∆i3∆

3

∏
j=1

(
m j

|λ |

)
|λ |!

=
1

∆

∏
j=1

i3 j! ·
p(λ)

∏
i=1

λi

·
3

∏
j=1

(
m j

|λ |

)
|λ |!. (2.17)

It follows that (2.8) can be rewritten as:

F(w,m1,m2,m3) = E(w,m1,m2,m3)

+ ∑
λ∈Λ(∆)

(−1)p(λ)

∆

∏
j=1

i3 j! ·
p(λ)

∏
i=1

λi

3

∏
j=1

(
m j

|λ |

)
|λ |! ·E(w−3|λ |,m1−|λ |,m2−|λ |,m3−|λ |).

(2.18)

Theorem 2.1.3. Let λ be a partition of a fixed integer n , n ≥ 2.

Then,

∑
λ

(−1)p(λ)

∏
j

i3 j! ·
p(λ)

∏
i=1

λi

= 0,

where the sum is taken over all partitions λ of n and the product on the left side of the denominator is over

all possible values of j.

We present a simple example to illustrate the above theorem. Let n = 5, then the 7 partitions of 5

and with the respective information are given in the table below.

13

λ ∏
p(λ)
i=1 λi ∏ j i3 j! (−1)p(λ)

5 5 1! -1

4,1 4 1! 1

3,2 6 1! 1

3,1,1 3 2! -1

2,2,1 4 2! -1

2,1,1,1 2 3! 1

1,1,1,1,1 1 5! -1

Then it follows that,

− 1
5 ·1!

+
1

4 ·1!
+

1
6 ·1!

− 1
3 ·2!

− 1
4 ·2!

+
1

2 ·3!
− 1

5!
= 0.

Proof. We prove the result using Faa di Bruno’s formula. Faa di Bruno’s formula is a generalization of the

chain rule for higher derivatives. The general form of Faa di Bruno’s formula is:

dn

dxn f (g(x)) = ∑
n!

m1!1!m1 m2!2!m2 · · · mn!n!mn
· f (m1+···+mn)(g(x)) ·

n

∏
j=1

(
g(j)(x)

)m j

where the sum is over all n-tuples of nonnegative integers (m1, . . . ,mn) satisfying the constraint,

1 ·m1 +2 ·m2 +3 ·m3 + · · ·+n ·mn = n.

In terms of the notation used in the theorem, this can be written as:

dn

dxn f (g(x)) = ∑
λ

1
p(λ)

∏
i=1

λi ·∏
j

i j!

· f p(λ)(g(x)) ·gλ (x)

where,

gλ (x) = g(λ1)(x) ·g(λ2)(x) · · · · ·g(λt)(x)

We want g(λi)(x) to give (λi−1)!. Thus if g(x) = − log(1− x), then this would imply that,

g(λi)(x) =
(λi−1)!
(1− x)λi

.

14

Similarly, If f (y) = e−y, then f p(λ)(y) = (−1)p(λ) f (y), thus e(−g(x)) = elog(1−x) = 1− x.

Hence,

dn

dxn f (g(x)) =

1− x, if n = 0,

−1, if n =1,

0, if n ≥ 2,

From the theorem 2.1.3, it follows that the summands in equation (2.8) add up to zero except when

λ is a partition of 1. In other words,

F(w,m1,m2,m3) = E(w,m1,m2,m3)−σ1 ·E(w−3,m1−1m2−1,m3−1) (2.19)

or equivalently

F(w,m1,m2,m3) = E(w,m1,m2,m3)−m1m2m3 ·E(w−3,m1−1m2−1,m3−1).

which concludes the proof of proposition 2.1.1 and we now formally present the algorithm to compute H(Tn),

the number of Hamiltonian cycles in Tn, by recursively computing the i-path covers in Tn−1.

15

Algorithm 1 Algorithm to count the number of i-path covers and compute number of Hamitonian cycles in
Tn

INPUT: List Pn−2 = [Pn−2
1 ,Pn−2

2 , . . . ,Pn−2
3n−2], where Pn−2 is a list of number of all path-covers of Tn−2

OUTPUT: The number of Hamiltonian cycles in Tn, and number of k-path covers for all
k.

Start with Pn−1 as a list of n−1 zeros
for all i in 1 to 3n−2 do

for all j in i to 3n−2 do
for all k in k to 3n−2 do

v = i+ j+ k
if i = j and j = k then

Pn−1
v =Pn−1

v + Pn−2
i ·Pn−2

j ·Pn−2
k

path-covers before adding edges
for all w in 1 to 2i+ j do

for all edges w, to be added to the graph
if v− e ≥ 0 then

Pn−1
v−w = Pn−1

v−w +Pn−2
i ·Pn−2

j ·Pn−2
k ·F(w, i, j,k)

end if
end for

else if i = j or j = k then
Pn−1

v = Pn−1
v +3 ·Pn−2

i ·Pn−2
j ·Pn−2

k
path-covers before adding edges
for all w in 1 to 2i+ j do

Pn−1
v−w = Pn−1

v−w +3 ·Pn−2
i ·Pn−2

j ·Pn−2
k ·F(w, i, j,k)

3 ways of symmetry
end for

else
Pn−1

v = Pn−1
v +6 ·ω

path-covers before adding edges
for all e in 1 to 2i+ j do

Pn−1
v−w = Pn−1

v−w +6 ·Pn−2
i ·Pn−2

j ·Pn−2
k ·F(w, i, j,k)

6 ways of symmetry
end for

end if
end for

end for
end for

H(Tn) =
3n−1

∑
i=1

(i!·Pn−1
i)3

i

16

Chapter 3

Approximation Algorithm

Definition [2] An (undirected) graph is a pair G = (V,E) of sets such that E ⊂ [V]2. The elements of V are

the vertices (or nodes) of G, the elements of E are its edges. An acyclic graph, one not containing any cycles,

is called a forest. A connected forest is called a tree. (Thus, a forest is a graph whose components are trees.)

A rooted tree is a tree with a countable number of nodes, in which a particular node is distinguished from the

others and called the root. The nodes of degree 1 are called the leaves of the tree, except if the node is the

root.

Label the vertices of the tournament Tn as 1,2, . . . ,3n. Let T ∗n be a rooted tree whose nodes represent

all possible paths and Hamiltonian cycles in Tn starting at fixed vertex 1. T ∗n can be defined as follows: Let

the root of T ∗n represent vertex 1 of Tn, i.e. the starting vertex. Let the children of the root represent all paths

of length 1 starting at vertex 1. One node u in T ∗n is a child of another v if it is the extension of the path

represented by v by one edge to the new path or to a Hamiltonian cycle represented by u. Hence the nodes

of T ∗n at depth k represent paths of length k in the tournament Tn and the leaves at depth 3n represent the

Hamiltonian cycles in Tn. The question of counting the number of Hamiltonian cycles in the tournament Tn

reduces to counting the number of leaves in T ∗n at depth 3n. It is easy to see that the size of T ∗n is very large

even for small values of n.

Backtracking is a general algorithm for finding all (or some) solutions to some computational prob-

lem. It incrementally builds candidates to the solutions, abandoning each partial candidate c ("backtracks") as

soon as it determines that c cannot possibly be completed to a valid solution, see [5]. It is a recursive method

of building up a feasible solution to a combinatorial optimization problem one step at a time. A backtrack

17

search is an exhaustive search, that is, all feasible solutions are considered, at least implicitly, so it will always

find the optimal solution. The state space of a backtracking algorithm involves a tree. Estimating the size

of this tree is useful in predicting how long a large backtrack search might be expected to take. Kreher and

Stinson [6] presented an algorithm to estimate the size of the state space tree T for a backtracking algorithm

without actually running the entire algorithm. Informally, their algorithm is as follows: For a tree T , |T | is

estimated by probing a random path P = p0 p1 . . . pm where pi ∈ V (T) for i = 0,1, . . . ,m, through T , where

p0 is the root and pm is a leaf. As we follow this path, we compute the number of children ci of pi. Then

the number of nodes in T at depth i according to the random path P is c0c1 · · ·ci−1. Thus the estimate of |T |

according to P is given by:

|T | ≈ 1+ c0 + c0c1 + c0c1c2 + · · ·+ c0c1c2 · · ·cm−1 (3.1)

In particular, we can estimate the number of nodes at depth 3n of T ∗n using Kreher and Stinson’s

algorithm thus estimating the number of Hamiltonian cycles of Tn . Let H(P) be the estimate of the number

of nodes at depth 3n, with P = p0 p1 · · · pm a random path in T ∗n from root p0 to leaf pm and ci the number of

children of pi, then

H(P) =

c0c1 · · ·cm−1, if m = 3n

0, otherwise.

In order to increase the accuracy, several runs of H(P) are computed and the average values of H(P)

are taken over the different runs. We implemented this using Sage and got estimates for H(Tn) by computing

H(P) over a sample size of 100,000 for n = 1, . . . ,5 and a sample size of 10,000 for n = 6. These results

were particularly helpful in verifying the computational results we were getting while working on the exact

algorithm. Note that this method can also be easily used in estimating the number of Hamiltonian cycles in

general tournaments. We present the results in the next chapter and the implementation in Sage can be found

in Appendix B.

18

Chapter 4

Computational Results

In this chapter we present the computational results giving the estimates and exact counts of the

number of Hamiltonian cycles in Tn. We also present the number of Hamiltonian paths in Tn i.e., the number

of 1-path covers of Tn since the exact algorithm computes them concurrently.

4.1 Approximate Counts for H(Tn)

We ran the approximation algorithm with sample size of 100,000 ten times and got the following

results:

208.096000000000

208.250720000000

208.254240000000

205.009920000000

208.525280000000

206.546080000000

205.280800000000

204.090400000000

205.288960000000

Getting the average of the above results and rounding to the nearest integer,we can conclude that H(T2) is

approximately 207 Hamiltonian cycles.

For T3 with sample size 100,000 we get:

19

8.38936393504178e18

8.29415270322695e18

8.41085831064413e18

8.20069048677160e18

8.23054416986776e18

8.38901207085574e18

8.22982685280299e18

8.42540274654137e18

8.27677088387733e18

8.27121370347297e18

with an average of approximately 8.311e18 Hamiltonian cycles.

For T4 with sample size 100,000 we get:

8.39212935331849e94

8.20984619093887e94

8.33860969614190e94

8.21100465493029e94

8.12149753319329e94

8.06273445583200e94

8.19511790498236e94

8.18968303414667e94

8.24921813852953e94

8.32078388331347e94

with an average of approximately 8.23e94 Hamiltonian cycles.

For T5 with sample size 100,000 we get:

20

4.77309584702392e400

4.68917174160924e400

4.74988976385854e400

4.77817310624222e400

4.75087918890168e400

4.48785956506462e400

4.47040112900951e400

4.90979276677279e400

4.69740117978661e400

4.81677881362070e400

with an average of approximately 4.71e400 Hamiltonian cycles.

Lastly for T6 with sample size 10,000 we get:

1.91468599948298e1550

2.05245624812883e1550

1.74356077128382e1550

1.95092667377627e1550

1.87486011438676e1550

1.98537038673843e1550

1.82301308326100e1550

2.00221518020148e1550

2.00730405281973e1550

2.03615287754156e1550

with an average of approximately 1.94e1550 Hamiltonian cycles.

4.2 Exact Counts for H(Tn)

The exact values of the number of Hamiltonian cycles H(Tn) and Hamiltonian paths P(Tn) in tour-

nament Tn are given below. The numbers larger than 1019 are presented in scientific form rounded to 18

digits.

21

n H(Tn)

1 1

2 207

3 8316362583640202859

4 8.243616097444882209e94

5 4.681945708027605746e400

6 1.95133590743535e1550

n P(Tn)

1 3

2 3159

3 4.17382500592116e21

4 1.30121086168815e97

5 2.25541503737347e403

6 2.83662916923917e1553

4.2.1 Exact Vs. Approximate count

Lastly we present the table below that shows the approximate counts and exact counts of H(Tn) side

by side in scientific form rounded to the second decimal place for comparison purposes.

n Approximate count Exact count

1 1 1

2 207 207

3 8.311e18 8.312e18

4 8.23e94 8.24e94

5 4.71e400 4.68e400

6 1.94e1550 1.95e1550

22

Chapter 5

Conclusions and Discussion

Recall from chapter 1 that if m is the number of vertices in a tournament, then the expected number

of Hamiltonian cycles E(m), it has is (m−1)!/2m and that the known upper bound due to Kahn and Friedgut

is O(m1/2−ξ m!2−m) with ξ = 0.2507. The table below shows H(Tn), the number of Hamiltonian cycles in

Tn, E(3n), the expected number of Hamiltonian cycles for a tournament on 3n vertices, Kahn and Friedgut

upper bound and the ratio of H(Tn) to E(3n).

n H(Tn) E(3n) O(3n·(1
2−0.2507) · 3n!

23n)
H(Tn)
E(3n)

1 1 0.25 O(0.9862) 4

2 207 78.75 O(1225.7) 2.62857

3 8.31636258364020e18 3.00475553517495e18 O(1.84e20) 2.76773

4 8.24361609744488e94 2.96004336598080e94 O(7.17e96) 2.78496

5 4.681945708027605746e400 1.67846452947232e400 O(1.60e403) 2.78942

6 1.95133590743535e1550 6.99197412277854e1549 O(2.63e1553) 2.79082

From the table above we conclude H(Tn) is at least 2 ·E(3n) and that Tn is a tournament with a greater

number of Hamiltonian cycles than the expected number for a random tournament with the same number of

vertices. More results would be useful to see, as n goes to infinity, how close this comes to 2.855958∗E(3n)

as conjectured by Wormald on the maximum number of Hamiltonian cycles.

23

Chapter 6

Future Work

In this thesis, the tournament Tn is constructed by placing three copies of Tn−1 in a triangle and

connecting them accordingly. Since our underlying area of interest is the maximum number of Hamiltonian

cycles a tournament can have, it would be interesting to construct and study the tournament Tn by placing m

copies of Tn−1 on regular m-sided polygons and connecting them in a way we hope to maximize the number

of Hamiltonian cycles in Tn. In particular, an area of interest would be looking at the tournaments that beat

Wormald’s conjecture of 2.8559... times the expected number thus giving us more insight to his conjecture.

24

Appendices

25

Appendix A Sage(Python) code for building Tn

def tournament(n):

tournament = create_cycles(n,{1:[]}, n)

return tournament

def create_cycles(n,graph, m):

if n == 0:

return graph

else:

graph2 ={}

#this part just creates copies and increments them accordingly

for key in graph:

newkey = key + 3^(m-n)

graph2.update({newkey:[]})

for v in graph[key]:

newv = v + 3^(m-n)

graph2[newkey].append(newv)

graph3={}

for key in graph2:

newkey = key + 3^(m-n)

graph3.update({newkey:[]})

for v in graph2[key]:

newv = v + 3^(m-n)

graph3[newkey].append(newv)

#end of incrementing the disjoint graphs

we now have three disjoint graphs, graph, graph2 and graph3

all points in graph => graph2 => graph3 => graph

for key in graph:

for vertex in graph2:

graph[key].append(vertex)

for key in graph2:

26

for vertex in graph3:

graph2[key].append(vertex)

for key in graph3:

for vertex in graph:

graph3[key].append(vertex)

graph.update(graph2)

graph.update(graph3)

create_cycles(n-1,graph, m)

return graph

27

Appendix B Sage(Python) code for Approximation algorithm

def count_ham_cycles_in_T2(m, N): #N is the sample size. m is T_m

import random

graph = tournament(m)

print ’This tournament has %d vertices’ %(len(graph))

print ’Sample size is %d’ %N

map = DiGraph(graph)

nV = len(graph)

p =[]

averages = []

visited = {}

for vertex in graph:

visited[vertex] = false

one_in = map.neighbors_in(1)

for j in range(1,11):

prod_of_degrees = []

term_count = 0

#number of times we terminate we reach a dead end

ham_count = 0

for i in range(1,N+1):

#map = copy(map1)

#visited

#counter for remaining place to visit

for vertex in graph:

visited[vertex] = false

walk =[]

prob_list =[]

neighlist = []

walk.append(1)

neighbor = map.neighbors_out(1)

28

visited[1] = true

for neigh in neighbor:

if visited[neigh] == false:

neighlist.append(neigh)

if neighlist == []:

if len(walk) != nV:

prod_of_degrees.append(0)

term_count += 1

break

else:

break

else:

a = random.choice(neighlist)

visited[a]=true

degree = len(neighlist)

#neigh =map.neighbors_out(1)

#a = random.choice(neigh)

#degree = len(neigh)

#map.delete_vertex(1)

walk.append(a)

prob_list.append(degree)

#print prob_list

for road in range(1,nV-1):

if map.neighbors_out(a)== []:

if len(walk) != nV:

prod_of_degrees.append(0)

term_count += 1

break

else:

break

else:

29

neighlist = []

neighbor =map.neighbors_out(a)

for neigh in neighbor:

if visited[neigh] == false:

the available vertices to go to.

neighlist.append(neigh)

if neighlist == []:

if len(walk) != nV:

prod_of_degrees.append(0)

term_count += 1

break

else:

break

b = random.choice(neighlist)

#choose at random a vertex to go

visited[b]=true

degree = len(neighlist)

#map.delete_vertex(a)

walk.append(b)

prob_list.append(degree)

a = b

if len(walk) == nV:

if walk[-1] in one_in:

#this is a ham cycle

ham_count += 1

x= prod(prob_list)

prod_of_degrees.append(x)

else:

term_count += 1

prod_of_degrees.append(0)

#print walk

30

av1 = mean(prod_of_degrees)

print ’average=’, av1.n()

31

Appendix C Python code for Exact counting Algorithm

C.1 code for E(n,i,j,k) and P(n,i,j,k)

#In the code below the function F(n,i,j,k) = P(n,i,j,k)

this is used to speed up the execution of the following function

E_cache = {(0, 0, 0,1): 1} #E(n, i, j, k)

from math import factorial

def E(n, i, j, k):

#Everything. This includes all broken, proper and circular paths

sum = 0

numera= (memo_factorial[i]*memo_factorial[j]*memo_factorial[k])**2

if i+j >= n:

N = 0

else:

N = n - i - j

for a in range(N, i+1):

#print a, n-a-N, j+1

for b in range(max(0, n-a-i), min(j, n-a)+1): #because n-b-a <= N

c = n- b -a

denom = memo_factorial[a]*memo_factorial[b]

*memo_factorial[c]*memo_factorial[i-a]*memo_factorial[j-b]*memo_

factorial[k-c]*memo_factorial[i-c]*memo_factorial[j-a]*memo_factorial[k-b]

sum += numera/denom

if n > 0 and i > 0 and k != 81:

#Should always be != 3^(n-2) for T_n

E_cache[(n, i, j, k)] = sum

return sum

this is used to speed up the execution

32

memo_factorial = {}

for i in range(3**6 + 1):

#The max factorial to be used, i.e up to 3^{n-2}

memo_factorial[i] = factorial(i)

def E2(n, i,j, k):

if n <=0 or i == 0:

if n < 0:

return 0

elif n == 0:

return 1

else:

return binomial(j,n)*binomial(k,n)*memo_factorial[n]

else:

get = E_cache.pop((n, i, j, k))

return get

def P(n, i, j, k):

this is P(n, i, j, k) = E(n, i, j, k) + C_E(n, i, j, k)

return E(n, i, j, k) - i*j*k *E2(n-3, i-1, j-1 ,k-1)

C.2 Code for computing H(Tn)

def ham_cycles_in_Tn(N,prev):

print ’This tournament has %d Vertices’ %(3^N)

c = []

check = []

v = 3**(N-1)

bsize =v/3

for i in range(v):

c.append(0)

#check.append([])

33

for i in range(1,bsize+1):

for j in range(i,bsize+1):

for k in range(j,bsize+1):

#w1 are the ways of getting max components form the given [i,j,k]

ways = [0,0,0]

ways[0] = prev[i-1]

ways[1] = prev[j-1]

ways[2] = prev[k-1]

nv = i + k + j

w1 = ways[0]*ways[1]*ways[2]

if i == j == k: #e.g [i, j, k] = [1,1,1]

#check[nv-1].append((1, w1))

c[nv-1] += 1*w1 #if n=0

for n in range(1,2*i + j + 1):

if nv-n-1 >= 0:

paths = P(n, i, j, k)

#print ’fin’

c[nv-n-1] += w1 * paths

elif i == j or j == k:

#e.g[i, j, k]= [1,1,3] = [1,3,1] = [3,1,1]..... 3 ways

c[nv-1] += 3*w1 #if n=0

for n in range(1,2*i + j + 1):

paths = P(n, i, j, k)

#print ’fin’

c[nv-n-1] += 3*w1 * paths

#3 ways of symmetry

else:

e.g [i, j, k]= [1,2,3] = [1,3,2] = ...6 ways

c[nv-1] += 6*w1 #if n=0

for n in range(1,2*i + j + 1):

34

paths = P(n, i, j, k)

c[nv-n-1] += 6*w1 * paths

#6 ways of symmetry

#print c

p = c

ham = []

for i in range(1,len(c)+1):

ham.append((memo_factorial[i]*p[i-1])**3/i)

print sum(ham)

#print ’T_ %d has %d Hamiltonian Cyles’ %(N, sum(ham))

#print factor(sum(ham))

return c

35

Appendix D Exact Values for H(Tn)

H(T1) = 1

H(T2) = 207

H(T3) = 8316362583640202859

H(T4) =

824361609744488220956059091173403716521832492963279521029129698340865489

90320509982103591486399

H(T5) =

468194570802760574663076839380348587024686620578450140528708868858092875

297936522597925416367575366369827353442079096840230919763147860550014067

932642082996454268262335646643273894922510234381980117572894055115401548

148686733583582998272458808662193249355413493573684422197996848911735562

634055484706912251544635067113947448421015860016666273032207063753016120

46536746191175816294508031389792390069707

H(T6) =

195133590743534532849004708713735747988827346969870858809750680568848875

249361386297636673176824176656501812898600724973543825293151024657545668

257685581818768192378545573532666296793010265126249134591428249540180961

383843225931956719759610569694316039904751631817736858805266546862832410

638068580258193066201849420755549335722821597811280572064843505868499504

783885508991857600848561349591201044719283127053149781754351535482674437

334729148130040364619907968941227826600989432176848051199470768327774744

312292093126498048631496130213700625294257351796850434264697697020952126

246192501376044986736640294520122759788860681384885594770743632445580242

413139289616853289183947939345537972661408886145732258160230509486685338

408518926720584285809969813715939362780503520001076562928144898647430604

477609502386308252110841535994428990914319523554211753497640316690172744

430532030656268734219049930922858231399486858736372305642388920500215924

230517702612041258920330389813331715539463604093890573551854931838286879

626024145682703084835713843856599499097430405355923523194654300754071840

36

703168931228899922133278417347033880761560200117214774566225014773181464

167475154147823586256402864899955457046142179836259573772129935550561538

604758464831819078935958860032786984722301715302420868420082732707391360

319941062883776507642808542485657824203039351711051058687647044503094658

459239395729414865131881903153543928520565225630904817828194808091028534

916742816734280431813520569287250549388127687448786406214002321441762857

122321229833212256531539490493926488703

37

Bibliography

[1] N. Alon. The maximum number of hamiltonian paths in tournaments. In Combinatorica, pages 319–324,
1990.

[2] R. Diestel. Graph Theory. Springer, 2010.

[3] E. Friedgut and J. Kahn. On the number of hamiltonian cycles in a tournament. manuscript.

[4] K.D. Joshi. Foundations Of Discrete Mathematics. New Age International, 2003.

[5] D. E. Knuth. The Art of Computing. Addison-Wesley, 1968.

[6] D.L. Kreher and D.R. Stinson. Combinatorial algorithms. Generetion, enumeration, and search. CRC
press, 1999.

[7] T. Szele. Kombinatorikai vizsg alatok az ir anyitott teljes gr a al kapcsolatban.

[8] N. Wormald. Tournaments with many hamiltonian cycles.

38

	Clemson University
	TigerPrints
	8-2012

	A set of tournaments with many Hamiltonian cycles
	Hayato Ushijima-mwesigwa
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Introduction
	Basic definitions
	Previous work
	Tn

	Exact counting Algorithm
	Computing F(w,m1,m2,m3)

	Approximation Algorithm
	Computational Results
	Approximate Counts for H(Tn)
	Exact Counts for H(Tn)

	Conclusions and Discussion
	Future Work
	Appendices
	Sage(Python) code for building Tn
	Sage(Python) code for Approximation algorithm
	Python code for Exact counting Algorithm
	Exact Values for H(Tn)

	Bibliography

