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ABSTRACT 

An alternative scenario to the overdependence on fossil fuels is the use of 

thermochemical cycles to split water into hydrogen and oxygen.  The Sulfur-

Iodine (SI) cycle, developed at General Atomics in the mid 1970s, is a leading 

candidate of international interest for the centralized production of hydrogen 

from nuclear and/or solar power.  For a comprehensive assessment of the SI 

cycle, thermodynamic data for I2-HI-H2O mixtures at elevated temperatures and 

pressures have been identified as a basic research need.   

The focus of this study was liquid-liquid equilibrium (LLE) measurements for 

the above system.  To carry out the measurements, a continuous-flow apparatus 

(CFA) with corrosion-resistant wetted surfaces rated for 350°C and 150 bar was 

designed and constructed.  In the course of the development of this apparatus, 

tantalum and its tungsten alloys were found to be capable of withstanding the 

aggressive chemicals and conditions.  

Using our CFA, the first observations for the LLE for the binary I2-H2O above 

225°C are presented, with measurements being made to 300°C and 70 bar.  Based 

on these results, we estimate the upper critical solution temperature for this 

binary to be 310-315°C.  For the ternary I2-HI-H2O, phase boundaries for the LLE 

in the HI-lean region of the ternary diagram were mapped at 160 and 200°C.  In 

 ii



addition, equilibrium-tie lines were determined at 160°C.  Phase compositions 

for the water-rich side were accurately determined by titration, but for the I2-rich 

side, they were estimated from the overall mass balance.  Our results indicate 

that current models are still inadequate for prediction of the LLE phase behavior 

for this highly nonideal system.   
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CHAPTER I 

INTRODUCTION 

The shortage of fossil fuels, as well as the negative impact of their burning on 

the environment, has motivated the scientific community to look for other 

technologies to satisfy the world’s increasing energy demands. Hydrogen is a 

strong candidate to become the energy carrier of a sustainable economy that will 

reduce dependence on liquid hydrocarbons.  However, before hydrogen can be 

incorporated as a fuel, several technological problems need to be resolved in the 

areas of production, storage, transportation, delivery and conversion. The 

research discussed here deals with the methods for hydrogen production. 

Hydrogen can be produced using a variety of methods, including steam 

reforming [1] [2], electrolysis [3], biological processes [4], and thermochemical 

cycles. Feed-stocks vary from traditional fuels like coal and methane to biomass 

and water. Thermochemical water-splitting is a promising technology for 

obtaining hydrogen, which is currently under research. Early work suggests 

thermochemical processes have the potential to be highly energy-efficient, and 

they produce oxygen as the only byproduct. Moreover, the hydrogen produced 

is free of trace contaminants, which are known to degrade fuel-cell performance. 
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THERMOCHEMICAL WATER-SPLITTING CYCLES 

The direct thermolysis of water occurs at temperatures exceeding 1720°C [5], 

as shown in equation 1.1: 

1
22 2H O H O→ + 2       (2220 °C)      1.1 

At 2220 °C and atmospheric pressure, the reaction will reach slightly over 4% 

completion [5]. A thermochemical water-splitting cycle will accomplish reaction 

1.1 at much lower temperatures, which leads to a more efficient process.  

Thermochemical water-splitting is the process of converting water into 

hydrogen and oxygen through a series of chemical reactions, where heat and 

water are the only overall inputs to the system as shown in Figure 1.1. 

 

Figure 1.1 Simplified representation of a thermochemical cycle 
 

Thermochemical cycles operate similar to a heat engine: Heat is input into the 

cycle via one or more endothermic reactions occurring at high temperatures 
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while low heat is rejected from the cycle via one or more low temperature 

exothermic reactions [6].  

There are many groups of reactions that could accomplish the process 

depicted in Figure 1.1. A study funded by the Department of Energy (DOE) [7] 

evaluated the feasibility of 115 cycles. Two pure thermochemical cycles were 

rated far above the others: The adiabatic UT-3 and the sulfur-iodine (SI) cycle. 

Along with them a hybrid cycle, the hybrid-sulfur (HS) [8] cycle (or 

Westinghouse cycle) was also found to be of interest. A short description of these 

three cycles is given below. 

ADIABATIC UT-3 THERMOCHEMICAL CYCLE 

The adiabatic UT-3 cycle was developed at University of Tokyo in the late 

1970s. It is based on four reaction steps [9]: 

760
2 2( ) ( ) ( ) 2 ( )CCaBr s H O g CaO s HBr g°+ ⎯⎯⎯→ +     1.2 

572 1
22 2( ) ( ) ( ) ( )CCaO s Br g CaBr s O g°+ ⎯⎯⎯→ + 2

)

     1.3 

220
3 4 2 2 2( ) 8 ( ) 3 ( ) 4 ( ) ( )CFe O s HBr g FeBr s H O g Br g°+ ⎯⎯⎯→ + +   1.4 

560
2 2 3 4 23 ( ) 4 ( ) ( ) 6 ( ) (CFeBr s H O g Fe O s HBr g H g°+ ⎯⎯⎯→ + +    1.5 

If the cycle is operated without the condensation of water, all reactants and 

products involved are solid or gases at the conditions of operation [9]. The 
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reactions take place in packed bed reactors that contains the solid species where 

the gases flow and react [6].  The efficiency of hydrogen generation for this 

process is predicted to be 35%-40%. Higher efficiencies of 45%-49% are predicted 

when operated in co-generation with electricity [6]. 

SULFUR-IODINE CYCLE 

The SI cycle was developed at General Atomics in the mid 1970s and consists 

of three reactions [10]: 

       1.6 
120º

2 2 2 2 42 CH O I SO H SO HI+ + ⎯⎯⎯→ + 2

2
320º

22 CHI H I⎯⎯⎯→ +         1.7 

830º 1
22 4 2 2

CH SO H O SO O⎯⎯⎯→ + + 2       1.8 

Although the cycle has been extensively studied and the overall process is 

generally well-defined, there is still ambiguity about the best method for 

performing reaction 1.7, because of the purification needed for the HI coming 

from reaction 1.6. The flow sheet for the process proposed in 1980 indicated that 

the production of hydrogen can be accomplished at 52% efficiency [6], which is 

the highest efficiency reported for any water-splitting process. 
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HYBRID CYCLES 

Hybrid cycles are water-splitting processes that involve one electrolytic step 

in addition to one or more thermochemical reactions.  The most extensively 

studied hybrid cycle is the hybrid-sulfur (HS) [8] cycle also known as the 

Westinghouse cycle, that consists of two reactions: 

850 1
22 4 2 2

CH SO SO H O O°⎯⎯⎯→ + + 2

2

       1.9 

77
2 2 2 42 CSO H O H SO H°+ ⎯⎯⎯→ +       1.10 

Note that equation 1.9 of the HS cycle is the same 1.8 for the SI cycle. The 

difference is that the HS process closes the cycle with the 1.10 electrolytic step 

where hydrogen is produced. The drawback of hybrid cycles is that they are 

uneconomical on a large scale. Energy-efficient electrochemical processes require 

thin membranes between the anode and cathode, which are limited to small 

electrode areas [6]. 

COMPARISON AMONG UT-3, SI AND HS PROCESSES 

A table comparing the main advantages and disadvantages of the three 

processes UT-3, SI, and HS, prepared from the comments used to score each 

cycle in the DOE study [6], is presented in Table 1.1 
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Table 1.1 Comparison the UT-3, SI and HS cycles [7] 

 Advantages Disadvantages 

UT-3 

 Solids remain in fixed beds, with only  
gases being transported 

 Fully flow-sheeted 
 Reported efficiency of 40% 
 Cycle operated on pilot-plant scale 

 Cannot be operated in steady-state       
without moving solids 
 Beds of solids must be periodically 

shifted from one temperature to another 
 High-temperature reaction has a 

positive free energy value at the 
operating conditions 
 Operated at temperatures close to the 

melting point of bromides, which could 
cause blockage of the beds 

Comments: Only cycle that has been studied on large scale. Information for some 
parts            of the cycle is not available in the open literature. CaBr2 is a liquid at 
750°C, which is the temperature of the reaction in the one it is consumed. 

SI 

 All fluid phases 
 High-temperature step can be coupled 

to a nuclear reactor 
 Minimal side reactions 
 Fully flow-sheeted 
 Cycle operated at bench scale 
 Highest reported efficiency 52% 
 H2SO4 decomposition demonstrated 

using solar energy 
 H2 generated at high pressure, so its 

compression is not needed 

 The concentration of H2SO4 and HI 
from the Bunsen reaction are both capital- 
and energy-intensive processes [11] 
 No agreement about the most efficient 

alternative for the HI decomposition or its 
energy requirements [12] 

Comments: Extensive work was and is being carried out in other countries (Germany, 
France, Japan, Korea, India, and Italy) 

HS 

 All fluid phases 
 Two reactions 
 Thermodynamic properties well-

known 
 Fully flow-sheeted 
 High-temperature step can be coupled 

to a nuclear reactor 
 Cycle operated at Bench and pilot 

plant scale 
 H2SO4 decomposition demonstrated 

using solar energy 

 Scale-up problems inherent to 
electrochemical processes 

Comments: There is probably little room for improvement
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In 2005, the Nuclear Hydrogen Initiative chose the SI cycle as the primary 

thermochemical cycle for demonstration, when coupled to an advanced, high- 

temperature nuclear reactor for the centralized production of hydrogen. In 

addition, it is the focus of this thesis. Therefore it is explained in more detail 

below. 

SI CYCLE FOR THE PRODUCTION OF HYDROGEN 

The SI cycle has been extensively studied in the past four decades. Early 

researchers rejected it because of the problems encountered with the separation 

of H2SO4 from HI in reaction 1.6, which is called the Bunsen reaction. However, 

the discovery of a fortuitous separation of the acidic products into two phases in 

the presence of excess water and iodine, as shown in Figure 1.2, spurred further 

research. This mechanical separation of the acids without the consumption of 

energy was a key factor of the original process design [10].  

Further issues were revealed by Engels et al. [11], who performed an analysis 

of the original process in 1986 and showed that capital and energy-intensive 

procedures were needed for the separation and decomposition of the HI from the 

unreacted water and iodine present in the lower liquid phase from the Bunsen 

reaction.  
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Figure 1.2 SI cycle, with true molar quantities being shown. Excess water and iodine 
in the Bunsen reaction (middle) result in the natural separation of the acidic products. 

 
The main challenges regarding the separation and decomposition steps are 

(1) the slow and incomplete reaction of decomposition from HI into hydrogen 

[13] that is limited by the chemical equilibrium and does not exceed 22.4% at 

450°C [14]; (2) the large amounts of water and iodine present in the lower liquid 

phase coming from the Bunsen reaction, which introduce a high calorific demand 

to the mixture [13]; and (3) the formation of an HI-H2O azeotrope at ~15% mol 

HI, which prevents one from obtaining high concentrations of HI [13], because 
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high hydrogen production rates could only be obtained from a mixture with 

concentrations of HI above the azeotrope [15].  

In an effort to increase the efficiency of the cycle, several options to perform 

the HI separation have been proposed, including an extractive distillation 

column using phosphoric acid [10], a reactive distillation column [16], the use of 

membrane reactors using hydrogen ceramic permselective membranes [17], and 

the use of ion-exchange membranes to increase HI molality [18]. The reactive 

distillation column is one of the leading candidates.  

Reactive distillation, which was proposed by researchers at RWTH-Aachen 

[19], is a process that separates HI from excess water and iodine while 

simultaneously decomposing the HI. Hydrogen is obtained as the overhead 

product, while iodine is separated as a bottom product. A schematic of the 

column is shown in Figure 1.3. The concentrations presented are a rough 

estimate of a possible set of operating conditions for the column, as reported in 

the Final Project report by Summers at NERI [20]. An interesting behavior 

expected in the column [13] is the change from the thermodynamic non-favored 

reaction 1.11 to the thermodynamically favored reaction 1.12, where iodine is in 

the liquid phase. 
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( ) 2 ( ) 2 ( )2 kJ
molg g gHI H I G+ Δ = 11      1. 11 

( ) 2 ( ) 2 ( )2 kJ
molg g lHI H I G+ Δ = −29      1. 12 

The flow sheet analysis for the HI decomposition was found to be challenging 

[21], and additional thermodynamic data for the I2-HI-H2O system were 

identified as a basic need for the complete assessment of the column.  

 

Figure 1.3 Schematic of the reactive distillation column. Data are estimates from 
Summers [20]. 

 

The chemical systems involved in the column exhibit highly non-ideal 

thermodynamic behavior that is poorly understood. For instance, the binary I2-

H2O is a highly immiscible system, the binary HI-H2O is strongly electrolytic and 
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forms a maximum boiling point azeotrope, and the ternary I2-HI-H2O has two 

separate regions of immiscibility [22]. Data for these systems is either limited or 

nonexistent, as shown in Table 1.2. For the liquid-liquid equilibrium (LLE) of the 

binary I2-H2O, for example, eleven points in the range of 127-225°C were 

measured by Kracek [23] in 1931, and the only other measurements since then 

were 4 points in the range of 120 to 150°C performed by Parsly [24] in 1970. For 

the vapor-liquid equilibrium (VLE) of the ternary I2-HI-H2O system, 

measurements by Engels [16] in 1985 were done in a static phase-equilibrium 

apparatus. This led to the undesired decomposition of HI into hydrogen and 

iodine, which prevented the determination of thermodynamic equilibrium. A 

recent study by Larousse et al. [25] was also carried out in a closed system at 

temperatures ranging from 120 to 270°C and pressures up to 30 bar (~435 psi), 

where the decomposition of HI was also observed.  The only liquid-liquid 

equilibrium (LLE) data for the ternary system consist of 23 composition estimates 

by O’Keefe [10] in 1984, using a nonsampling synthetic method, at temperatures 

from 24 to 152°C. 

The lack of measurements for these systems is because of the technical 

difficulties related to the corrosive nature of the chemicals involved at high 

temperatures and pressures. This added challenge also explains the choice of 
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Table 1.2 Published Experimental Data for the I2-HI-H2O System. Reprinted with 
permission from ref [12]. Copyright 2009 Elsevier. 

a Apparently inconsistent with other data in the same range of conditions. 

System 
Data Author Year Data Temperature Composition 
Type Source Points Range (°C) Range 

HI-H2O VLE Bates 1919 8a T=25 0.10 <xHI< 0.15 
  Hasse 1963 21 T=25 0.08 <xHI< 0.35 
  Wüster 1979 75 78<T<281 0.02 <xHI< 0.19 
  CRC 1976 1 T=127 xHI= 0.16 
  Sako 1981 30 100<T<127 0.01 <xHI< 0.17 
  Doizi 2007 8 25<T<113 0.16 <xHI< 0.222 
  Hodotsuka 2008 31a 102<T<183 0.04 <xHI< 0.16 
  Liberatore 2008 34 101<T<144 0.04 <xHI< 0.22 
  Engels 1986 b 120 <T< 300 0.02 <xHI< 0.08 
 VLLE Haase 1963 1 T=25 - 
 LLE O'Keefe 1984 2 24 <T< 70 - 
  Besenbruch 1982 5 70 <T< 149 - 
 CAL Vanderzee 1974 65 T=25 2E-06 <xHI< 0.25 

I2-H2Oc LLE Kracek 1931 11 127 <T< 225 7E-04 <xI2< 5E-03 
  Parsley 1970 4 120 <T< 150 1E-05 <xI2< 1E-03 
 SLE Kracek 1931 3 77 <T< 106 1E-05 <xI2< 4E-04 
  Ramette 1965 9 2 <T< 50 1E-05 <xI2< 5E-05 
  Parsley 1970 14 0 <T< 112 1E-05 <xI2< 5E-04 
  Sanemasa 1984 5 15 <T< 50 2E-05 <xI2< 5E-05 

HI-I2 VLE O'Keefe 1982 4 25 <T< 90 0.42 <xI2< 0.92 
 SLE O'Keefe 1982 4 25 <T< 90 0.42 <xI2< 0.92 

HI-I2-H2O VLE Engels 1985 281 100<T<285 
0.02 <xHI< 0.16 
0.00 <xI2< 0.86 

  Doizi 2007 9 101<T<131 0.10 <xHI< 0.13 
xI2=0.39 

  Hodotsuka 2008 29a 123<T<134 0.11<xHI< 0.16 
1E-03 <xI2< 0.42 

  Liberatore 2008 34 123<T<134 
0.04 <xHI< 0.22 

4E-04 <xI2< 0.65 

  Doizi 2009 96 26<T<135 0.03 <xHI< 0.20 
0.04 <xI2< 0.85 

  Larousse 2009 51 96<T<264 0.10 <xHI< 0.18 
0.12 <xI2< 0.39 

  Engels 1986 d 120<T<300 
0.02 <xHI< 0.16 
3E-3 <xI2< 0.86 

 LLE O'Keefe 1984 23 24<T<152 - 

b Correlation of data measured and correlated by Wüster ; some values also reported by Neumann. 
c Note that no VLE data exist for the I2–H2O binary. 
d Correlation of data measured by Neumann . 
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batch systems over flow apparatuses that are more complicated and expensive to 

build, maintain, and operate. Unfortunately, the use of a batch system results in 

decomposition of the HI, affecting the thermodynamic measurements for the 

system.  

The work presented in this thesis deals with the design, construction, and 

operation of a Continuous-Flow Apparatus (CFA) for measuring phase 

equilibria, with corrosion-resistant wetted surfaces capable of operating at the 

conditions expected for the reactive distillation column. Using this apparatus, 

liquid-liquid equilibrium (LLE) data for the I2-H2O and I2-HI-H2O systems at 

elevated temperatures and pressures, as required for the operation of the reactive 

distillation column, were obtained and are presented. These data are expected to 

be of assistance both for the validation of system models currently under 

development [12] and for the final evaluation of the SI cycle for commercial use. 
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CHAPTER II 

A CONTINUOUS-FLOW APPARATUS FOR THE MEASUREMENT OF 

THE LIQUID-LIQUID EQUILIBRIUM FOR THE I2-HI-H2O AND THE I2-H2O 

SYSTEMS 

ABSTRACT 

Vapor-liquid (VLE) and liquid-liquid (LLE) equilibrium were studied for the 

binary iodine-water system at temperatures and pressures to 300 °C and 104 bar, 

and for the ternary iodine-hydroiodic acid-water system at temperatures and 

pressures to 160 °C and 56 bar.  For iodine-water, LLE was discovered to exist at 

temperatures over 300 °C, contradicting the predictions of previous workers.  For 

iodine-hydroiodic acid-water, the first accurate measurements of the LL phase 

boundaries for this system were obtained.  A new, tantalum-alloy, continuous-

flow apparatus (CFA) incorporating a view cell has been designed and 

constructed for measuring complex phase equilibria for highly corrosive systems 

at temperatures and pressures to 350 °C and pressures to 150 bar, and is 

described herein.  A key advantage of our CFA is the elimination of the HI 

dissociation reaction because of the short residence times at elevated 

temperatures, allowing the measurement of true equilibrium data. 
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INTRODUCTION 

Combustion of fossil fuels supplies 85% of the primary energy consumed in 

the United States [1], which produces over 5900 million metric tons of carbon 

dioxide and accounts for more than 80 percent of U.S. greenhouse gas emissions 

[2]. An alternative scenario to this overdependence on fossil fuels is the use of 

thermochemical hydrogen cycles to split water into hydrogen and oxygen, with 

the required heat coming from a hydrocarbon-free energy source, such as nuclear 

and/or solar. A study evaluating over 100 cycles [3], funded by the Department 

of Energy, concluded that the Sulfur-Iodine (SI) cycle has the highest reported 

efficiency and was the most suitable for coupling to a nuclear reactor [4]. 

The SI cycle [4], originally developed by General Atomics (GA), generates 

hydrogen and oxygen from water through three main chemical reactions: 

120º
2 2 2 2 42 2CH O SO I H SO HI+ + ⎯⎯⎯→ +  

Bunsen reaction 

(Exothermic, ~120°C)             2. 1 

320º
2 22 CHI H I⎯⎯⎯→ +  

Hydriodic acid decomposition

(Endothermic, 300-450°C)     2. 2 

830º 1
22 4 2 2

CH SO H O SO O⎯⎯⎯→ + + 2  

Sulfuric acid decomposition

(Endothermic 830-900°C)       2. 3 
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The Bunsen reaction [5] is operated with an excess of water and iodine in 

order to induce the appearance of two immiscible acidic liquid phases that can be 

separated mechanically without the consumption of energy, as shown below:  

2 2 2 2 4 2 216 9 4 2 10 8
upper liquid product phase lower liquid product phase

H O SO I H SO H O HI H O I+ + → + + + + 2

    2. 4 
 

The process flowsheet for the SI cycle is divided into three sections [6], with 

each being associated with the three reactions shown above:  Section I: Recycle 

and acid generation; Section II: Sulfuric acid concentration and decomposition; 

Section III: Hydroiodic acid concentration and decomposition. 

An exergoeconomic analysis of the cycle [7] has shown that the HI separation 

step of the original GA process, using extractive distillation, was both expensive 

and energy-intensive. Since then, several alternatives have been proposed for 

improving the efficiency of the process in Section III, including an electro-

electrodialysis concentration process [8], the use of membrane reactors [9], and a 

reactive distillation (RD) column [10]. Up to now, there is no consensus on the 

most efficient process for Section III. However, reactive distillation, which allows 

for the simultaneous distillation of the I2-HI-H2O mixture and HI decomposition, 

is a strong candidate.  
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Process modeling of the RD column represents major challenges because of 

the complex chemistry of the I2-HI-H2O system, including diverse phase behavior 

(e.g., vapor-liquid (VL), liquid-liquid (LL), and liquid-liquid-vapor (LLV) 

equilibrium), and chemical reaction/ionization equilibria that are essentially 

unknown at column operating conditions. For example, the binary I2-H2O 

exhibits liquid-liquid equilibria (LLE) [11], the binary HI-H2O is an azeotropic, 

strongly electrolytic system [6], and two regions of immiscibility have been 

identified for the ternary system I2-HI-H2O [12]. Thermodynamic measurements 

for the SI cycle, and in particular Section III, have been identified by the 

international community as a basic research need for the hydrogen economy [13-

15]. Thus, there have been several studies of the I2-HI-H2O system in recent years. 

In particular, groups in France, Japan, and Italy [16-21] have investigated VLE for 

the ternary I2-HI-H2O at temperatures and pressures to 264 °C and 30 bar.  

The goal of this research project was to investigate the region of LLE that 

exists for this system. Because the I2-H2O binary exhibits LLE at elevated 

temperatures, the ternary I2-HI-H2O also exhibits LLE until the concentration of 

HI becomes high enough to induce complete liquid miscibility. An experimental 

apparatus was designed and constructed for the measurement of VLE, LLE, and 

LLVE at temperatures and pressures corresponding to the expected operating 
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conditions of the RD column in Section III. In this chapter, LLE results are 

presented for the binary I2-H2O system at temperatures to 300°C. In addition, 

phase-boundary measurements for the ternary I2-HI-H2O are presented at 

temperatures to 200°C. Kracek [11] measured LLE for the I2-H2O binary at 

temperatures to 225°C and estimated an upper critical solution temperature of 

300 °C, while Mathias and Brown [6], using Kracek data and an ASPEN model, 

estimated it to be ~280 °C. The only LLE work previously reported for the ternary 

is from an internal GA report [12], and the LLE region of interest was in the high 

HI/low iodine region, and thus are not of particular interest for the RD column. 

Furthermore, these measurements were made only at relatively low 

temperatures (i.e., up to 150 °C). Finally, the reported compositions were 

estimated by the synthetic method and were not directly obtained. 

EXPERIMENTAL SETUP 

MATERIALS 

Prilled Iodine (I2) with a stated purity of 99.8% was obtained from SQM 

North America Corp. and used without further modification.  A 55 wt/wt % 

solution of hydroiodic acid (HI) in water (Cat. NC949806), unstabilized (ACS 

reagent), was obtained from Fisher Scientific and diluted with deionized water in 
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order to obtain the desired concentration for our experiments. Deionized 

reagent-grade water (CAS 7732-18-5) was obtained from Fisher Scientific.  

EXPERIMENTAL APPARATUS AND PROCEDURE 

A continuous-flow apparatus (CFA) was designed and constructed for 

obtaining phase-equilibrium data for both binary I2-H2O and ternary I2-HI-H2O 

mixtures at temperatures and pressures to 350 °C and 150 bar, respectively. 

At elevated temperatures, the dissociation of HI into hydrogen and iodine 

can occur, making it impractical to obtain true equilibrium data for the I2-HI-H2O 

system with a static phase equilibrium apparatus [5].  With our CFA, residence 

times are on the order of minutes, so the extent of HI dissociation is negligible, 

enabling us to directly obtain the desired equilibrium data without simplifying 

assumptions.  An additional advantage of the CFA is that more than one set of 

equilibrium conditions can be investigated in a single day, as approximately one 

hour is required in order to first reach steady-state and then achieve equilibrium 

again at another set of conditions.  

Although the CFA concept has been previously used by Thies and co-workers 

[22-24] to measure phase behavior for a variety of aqueous mixtures, a new 

apparatus had to be designed and constructed for this work for withstanding the 
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highly corrosive nature of the components of interest. In addition, because iodine 

is a solid at ambient temperatures (mp = 113.5°C), a method for pumping molten 

iodine had to be devised. A schematic of the CFA is given in Figure 2.1.  Unless 

otherwise noted herein, all tubing was 97.5% Tantalum- 2.5% Tungsten alloy (Ta-

2.5W) with an o.d. of 1.59 mm (1/16 in) and an i.d. of 0.508 mm (0.020 in).  

In brief, our CFA is operated by delivering two streams, one of molten I2 and 

the other an H2O-HI solution, to an isothermal bath (oven), where the streams are 

preheated to the desired temperature and then mixed together in an 

impingement mixing tee. The resulting phases are then allowed to further 

equilibrate in a long section of tubing prior to entering the view cell, where they 

separate gravimetrically and are then collected after being reduced to ambient 

pressure. A detailed description of the experimental procedure is presented 

below. 

In preparation for an experimental run, solid iodine prills are charged to the 

iodine (I2) reservoir from the top after removing the tantalum tee (Figure 2.2). 

The reservoir is filled no more than ¾ full, as solid iodine expands by 25% upon  
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Figure 2.1 Schematic of continuous-flow apparatus for measuring LLE, VLE, and 
VLLE for highly corrosive mixtures at elevated temperatures and pressures. 
Components shown are constructed of tantalum alloy  ( ), PEEK ( ), or 
stainless steel ( ) 

 

melting (solid iodine density is 4.93 g/cc [25] liquid iodine density is 3.98 g/cc at 

386.65 K [26]).  The reservoir is then pressure-tested to 100 bar by closing valves 

V1, V2, and V3 and pumping water (the working fluid) into the reservoir with a 

syringe pump (Isco, model 500D). Finally, the rest of the system, including the 

view cell, is pressure-tested to 100 bar by closing valves V3 and V5 and feeding 
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compressed nitrogen through valve V4. Here, the pressure of the system is 

monitored with an external pressure gauge (not shown). The isothermal bath 

(See Figure 2.1) is turned on and set to the desired set point, and enough time 

(typically 6-8 hr) is allowed for the oven and its contents to come to temperature.  

 

Figure 2.2 Detailed schematic of the I2 reservoir, illustrating the Ta-2.5W tee at the top 
of the reservoir, the flange connections used to seal both ends of the reservoir, and the 
location of the heating bands. Here (──) correspond to SS, (──) to tantalum alloy. 
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To begin an experimental run, all valves shown in Figure 2.1 are initially 

closed.  V1 is then opened and water is pumped with the syringe pump at a flow 

rate of 1.0 mL/min into the I2 reservoir. The pressure of the system is maintained 

at 8 bar by relief valve RV. Thus, a constant flow rate of water passes through the 

tubing and fittings that lead to the I2 reservoir. After filling the reservoir, the 

water exits through RV and is collected as waste in a glass jar, where it is 

observed to have a light orange color, due to the presence of iodine. This 

constant flow of water has been observed to be crucial for the successful 

operation of the I2 reservoir, as it prevents the diffusion of iodine into the 

stainless steel (ss) lines that precede the reservoir. Without such a water “purge”, 

the diffusing iodine can precipitate out as a solid and plug the lines connected to 

pressures gauges P1-P3, the rupture disk (RD), and the syringe pump. An equally 

important role of the water purge is to prevent corrosion of the ss components 

described above. Before the water purge was installed, the products of such 

corrosion would end up inside the I2 reservoir and, as a result, would frequently 

plug the lines entering and exiting the view cell.  

While maintaining the water purge across the top of the I2 reservoir, I2 prills 

inside the reservoir are melted by heating to 135 °C. Such heating is carried out 

from the top to the bottom of the reservoir, in order to prevent the possibility of 
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melting, expanding iodine that is trapped between solid plugs of iodine from 

rupturing the reservoir. To accomplish this stepwise heating, six heating bands 

(Watlow, part nos. Q071205L1-H1 and STB7A1J1-C72) are distributed along the 

bottom ¾ of the reservoir, with a six-channel controller (Omega, part no. 

CN616TC1) being used to sequentially heat the reservoir up to temperature. Note 

that even at 155 °C, iodine and water form two essentially immiscible liquid 

phases, with the solubility of iodine in water being 0.13 mol% (1.83 w/w%) and 

of water in iodine being 3.91 mol% (.288 w/w %) [11]. Thus, hot compressed 

liquid water (ρ~ 1 g/mL) can be used as the working fluid to indirectly pump 

molten iodine from the reservoir into the view cell.  

Once the iodine in the reservoir has been liquefied, the Ta-2.5W line (3.05 mm 

(1/8 in) o.d. x 1.4 mm (0.055 in)) i.d. that connects the bottom of the reservoir to 

the contents of the oven, including valve V3, is also heated in a stepwise manner 

(i.e., from reservoir to oven) to 140°C for the same reason as described before. 

The Ta lines that exit the oven, including valves V4 and V5, are also heated to 

140°C.  

Once all parts of the system are heated to temperature, flow of the feed 

streams is initiated. First, the water purge flow rate from the syringe pump is 

increased from 1 ml/min to the desired I2 flow rate; then valve V1 is closed and 
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valves V2 and V3 are opened to initiate the flow of molten iodine into the system. 

An ion chromatograph (IC) pump (Dionex, model IP25) is used to deliver either 

pure water, when the binary I2-H2O system is of interest, or HI-H2O mixtures, 

when the ternary I2-HI-H2O system is of interest. For example, to deliver a 

ternary I2-HI-H2O mixture with an overall composition of 90.6 mol % H2O, 2.3 

mol % HI, and 7.1 mol % I2, the IC pump is used to deliver a 2.5 mol% (15.5 wt%) 

mixture of HI-H2O at 1.58 ml/min and the syringe pump an I2 flow rate of 0.42 

ml/min. For the syringe pump, recall that water is used as the working fluid to 

push the molten iodine out the bottom of the reservoir.  

As shown in Figure 2.1, both feed streams are preheated to temperature in 

coiled tubing before being mixed. The aqueous HI solution is preheated in a 6.4 

m- and the iodine in a 4.7-m long section of tubing. After preheating, the streams 

are mixed in an impingement mixing tee. Optimum mixing is achieved by 

connecting the feed lines at opposing sides of the tee and by reducing the 

diameter of the tubing 25 cm prior to entering the tee to an i.d. of 0.25 mm (0.001 

inches) in order to increase the momentum of the iodine and HI-H2O streams 

[27]. Furthermore, the opposing feed stream lines are brought as close as possible 

to each other inside the tee (as the line stops in the tee are bored out). After 

exiting the impingement mixer, the resultant, two-phase stream flows through an 
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additional 2.7 m-long section of tubing, in order to allow the phases to 

equilibrate and come to their final temperature. The mixture then enters through 

a port in the middle of the view cell, where the two phases are observed to 

gravimetrically separate into a lighter H2O-rich phase, and a heavier I2-rich 

phase.  

The phases are then drawn off through exit ports located at the top and 

bottom of the view cell. The I2-rich phase exits through the bottom of the view 

cell through 3.175 mm o.d. x 1.397 mm i.d. (1/8 in o.d x 0.055 in i.d.) Ta-2.5W 

tubing, while the H2O-rich phase exits through the top of the view cell through a 

1.59 mm o.d., 0.508 mm i.d. Ta-2.5W tubing. After exiting the isothermal bath, 

each phase is expanded to atmospheric pressure through micrometering (MM) 

valves, modified from their ss counterpart (Autoclave Engineers, part no. 

60VRMM4882) so that all wetted surfaces are either of Ta-2.5W or Ta-10W alloy. 

The MM valves are used to control both the system pressure and the location of 

the LL interface in the view cell. After exiting the valves, the phases are collected 

separately in 250 mL sealed glass jars (Fisher, Part No. 05719450) placed in a 

water-propylene glycol bath at 0 °C in order to  avoid the loss of volatile species.  

The I2 reservoir (See Figure 2.2) was designed and constructed by General 

Atomics (GA) in collaboration with Clemson University researchers. Although 
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there is no code for Ta alloy vessels, the reservoir was designed, fabricated, and 

inspected to the intent of ASME boiler and pressure vessel code, Section VIII, 

Division I. It consists of a 90% Ta – 10% W alloy tube with an o.d. of 4.82 cm (1.9 

in), a wall thickness of 8.9 mm (0.035 in), and a total volume of approximately 

700 mL. A 7.32 cm (2.88 in) o.d. x 4.84 cm (1.905 in) i.d. x 0.56 cm (0.22 in) thick 

Ta alloy plate serves as the tube flange and is welded to each end of the tube. 

This flange is grooved to hold a Kalrez No. 227 O-ring (DuPont AS-568A). 

Another Ta alloy plate,  7.29 cm (2.87 in) o.d. x 1.28 cm (0.502 in) i.d. x 0.56 cm 

(0.22 in) thick, serves as the top connection flange and has a 1.27 cm (0.5 in) o.d. x 

8.89 mm (0.035 in) wall x 15.24 cm (6 in) long Ta alloy tube welded to the central 

hole of the plate. This plate is also grooved for the Kalrez O-ring. An identical 

plate serves as the bottom connection flange, except that the i.d. dimension is 

0.64 cm (0.252 in), and a 0.635 cm (0.25 in) o.d. tube (same wall and length) is 

welded to the central hole of the plate. The O-ring is sealed to the end and 

connection flanges with 1 ½ “, 900#, ss pipe flanges. The pipe-flange nuts are 

torqued to 325 N-m (240 ft-lb). Finally, for additional pressure support, the 4.82 

cm o.d. Ta alloy tube is enclosed by a 5.72 cm (2.25 in) o.d. x 0.48 cm (0.188”) wall 

ss tube.  
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The reservoir was designed for routine operation at 140 °C and 104.4 bar 

(1500 psig) and was hydrostatically tested at 156.6 bar (2250 psig) after assembly. 

Overpressure protection is provided by two rupture disks, one rated for 138.9 

and the other for 207.9 bar (High Pressure Equipment, part Nos. RD 2000 and RD 

3000). The 207.9 bar rupture disk is used as an extra safety feature for protection 

of the Heise gauge.  

The view cell assembly, shown in Figure 2.3, follows the design of Roebers 

[28], but has been modified to withstand the corrosiveness of the components of 

interest. In particular, the centerpiece of 450 ss was replaced with one of Ta-2.5W. 

It has one inlet port in the center, outlet ports in the top and bottom, and 

thermocouple (T/C) ports near the outlet ports. The borosilicate windows (Power 

Plus International, part number A1 high pressure flat glass) are sealed against 

the inner chamber and cover plates using graphite gaskets (UCAR, Grafoil). The 

two cover plates, made of 450 ss, are bolted together using eight high 

temperature service 0.5 in x 7.5 in B7 studs and 2H heavy hex nuts, tightened to 

108 N-m (80 ft-lbf). The loss of the required load on the window gaskets due to 

differential thermal expansion is minimized by placing 4 Belleville washers (Key 

Bellevilles, part number AFB 1-60) on each stud, with the washers arranged as 2 

series of 2 in parallel. The overall volume of the view cell is ~14 mL. Finally, an 
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insulating jacket of boron nitride is fitted around the view cell in order to 

minimize temperature gradients in the cell block. 
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Figure 2.3 Components of the view cell. Wetted parts were designed to withstand HI 
and I2 at up to 350°C, 150 bar. 

 

Depending in the concentration of iodine and HI, both the H2O-rich and I2-

rich phases (and the interface) in the cell can be opaque to the naked eye. In their 

previous work, GA [29] found that IR could be used for phase observation. Thus, 

we used an infrared electro-viewer (Electrophysics, model 7215-SAC) to observe 

the contents of the cell. The source of IR light is a 300 W halogen lamp placed 
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opposite the IR viewer, with the cell and its windows between. Thus, the IR light 

is transmitted through one window of the view cell, passes through the contents 

of the cell chamber, and exits the through the other cell window to be received by 

the IR electro-viewer. This infrared setup has been used to observe VLE, LLE, 

and even LLVE over a wide range of temperatures, pressures, and compositions. 

As previously described, all wetted surfaces of the MM valves (See Figure 2.1) 

had to be fabricated of Ta-2.5 W or Ta-10W. However, changes to the valve 

design itself were also required in order to obtain better pressure control. 

Initially, the valve stem and tip were machined out of Ta-10W, albeit with 

dimensions identical to the original Autoclave design. However, because of the 

high density of the I2-containing solutions and the low flow rates used in our 

experiments, control of the system pressure was difficult. Therefore, as shown 

in Figure 2.4, the angle of the stem and the original i.d. of the seat were reduced 

in order to reduce the valve flow coefficient (Cv) and better pressure control was 

then obtained (the stem angle was increased to 3° so that we could use the old 

stems, even though a 1° angle would be better). 
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Figure 2.4 (a) Cross-sectional view of MM valve constructed to withstand I2 and HI at 
elevated temperatures and pressures. Unless otherwise specified, parts are made of 
Ta-2.5W alloy. (b) Re-designed stem and seat used in the MM valves. Original design 
from Autoclave Eng. has a pitch angle (θ) of approximately 1° (part no. 101B-5897), a 
tip i.d. of 1.3 mm, and a seat i.d. of 1.52 mm (part no. 101C-5405). 

 

The isothermal bath shown in Figure 2.1 consists of a forced-convention, 

high-temperature oven with a nitrogen purge in order to establish an inert 

atmosphere and prevent oxidation of the Ta components at temperatures over 

300°C [30]. The oven is capable of controlling the temperature of the view cell to 

within ± 0.1°C [31], and also provides heating for the preheating section of 

tubing, the impingement mixing tee, and the lines exiting the view cell. Key 
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safety features of the bath include (1) a polycarbonate shield mounted over the 

viewing window in case of a cell window rupture and (2) an independent, high 

temperature shutoff. 

In addition to the oven, several additional features were incorporated into the 

apparatus in order to keep iodine in the liquid state. To prevent iodine from 

solidifying inside the top and bottom cell lines as they exit the isothermal bath, 

electrical heating tape is wrapped around the tubing, which is maintained at 

temperatures between 135 and 150 °C. 3.175 mm (1/8 in) o.d. lines are heated 

using Thermo Scientific heating tapes BWH051-040 and BWH051-080, while 1.59 

mm (1/16 in) o.d. lines are heated using Glas-Col heating tapes, part no 103A 

DET0.254. The preheating lines entering the oven and the top and bottom lines 

exiting the oven were found to frequently become plugged with solid iodine in 

the region where they passed through the port hole in the insulated bath wall 

(See Figure 2.1). To solve this problem, the lines were clad with a heated copper 

block, which was maintained at ~140 °C with a 125W cartridge heater 

(McMaster-Carr, 3618K293).  Valves V3, V4, V5, and the two MM valves, were 

heated by clamping heated 0.95 cm-thick aluminum (Al) blocks to the valve 

bodies. The Al blocks themselves were heated with the 125W cartridge heaters 

described above inserted into holes drilled into the blocks.  
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EXPERIMENTAL MEASUREMENTS 

The temperature of the feed mixture (T1) and of each phase in the cell (T2 and 

T3) are measured with type K differential thermocouples referenced to an 

aluminum block located inside the isothermal bath. This differential 

thermocouple-RTD setup is described elsewhere [27]. The thermocouples T1, T2 

and T3 (Figure 2.1) are made of ss with an o.d. of 0.8 mm (Omega, part no. 

SCASS-032G-6-SHX) and are enclosed in a tantalum sheath (Omega, part no. 

EI1203104/XTA-116-4-CL). The absolute temperature of the aluminum block is 

measured with a secondary standard platinum resistance temperature detector 

(RTD) (Burns Engineering, model 200G05B035/LY360/LM99, serial no. 533184). 

The temperature-measuring capability of this setup is accurate to within 0.1 °C 

[27].  However, the temperatures reported below in our results are believed to be 

no more accurate than ± 3 °C, as some temperature variation is a normal 

consequence of operating a flow apparatus.  Both fluctuations in the bath 

temperature and adjustment of the MM valves to control pressure and liquid 

level in the view cell are responsible for this variation.  Finally, we note that 

thermocouple T1 could be used only on an intermittent basis, because of leakage 

at the feed tee just prior to entering the view cell. 
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Operating pressures are measured using two gauges: a Bourdon-tube type, 

Heise gauge (P2), (model CM, 0-206.8 bar range), and a Heise pressure transducer 

(P3), (model HPO, 0-344.7 bar range). Both gauges were calibrated against a 

Budenberg deadweight tester (model 380H) to an accuracy of ± 0.14 bar. Even 

though the pressure gauges were calibrated to a high level of accuracy, pressure 

fluctuations are inevitable when working with essentially incompressible fluids 

in a flow apparatus. Thus, the experimental pressures reported for the binary I2-

H2O system are believed to be accurate to ± 0.69 bar (± 10 psi) and for the ternary 

I2-HI-H2O to ±1.03 bar (±15 psi). The pressure gauge P2 and the pressure 

transducer P3 are connected to the top of the I2 reservoir through valve V2.  In 

addition, a third gauge P1 (Ashcroft, ss 0-206.8 bar, 1008 gauge) is used to 

monitor the pressure of the I2 reservoir while heating and cooling down the 

reservoir. 

When the CFA was first constructed, the pressure of the system was 

measured from a line connected directly to the top of the view cell. However, we 

found this line to constantly clog during experiments because of the flow of 

iodine from the view cell towards the pressure gauges, caused both by diffusion 

and by pressure fluctuations. Because the pressure gauges are located outside the 

oven at room temperature, the iodine precipitated inside the line soon after it 
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exited the oven.  To overcome this problem, the pressure gauges were re-located 

to the top of the iodine reservoir, as shown in Figure 2.1, where the diffusion of 

iodine is prevented by keeping a constant flow of pure water in the line leading 

to the I2 reservoir, as described earlier. Tests were conducted comparing the 

pressure readings obtained directly from the top of the view cell and the 

readings obtained from the top of the iodine reservoir. Results indicated a 

negligible difference (i.e., ± 0.3 bar) between the two methods.  

To assist in the collection of data, the differential thermocouples T1, T2, and T3 

and pressure transducer P3 are connected to a data acquisition unit (Agilent, 

model 34970A). The software BenchLink Data Logger, provided by Agilent, 

enables the computer to interface with the data acquisition unit (DAU) and 

record system data at set time intervals, normally 5 s, during an experimental 

run. Readings from the secondary RTD located inside the isothermal bath are 

obtained using a digital multimeter (HP, model 34401A) and are also recorded 

every 5 s into an Excel spreadsheet using Agilent software (BenchLink Data 

Logger).  
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CORROSION FEATURES 

Prior to constructing the CFA, special attention was given to the selection of 

materials that could withstand the highly corrosive HI and iodine. Several 

versions of the CFA incorporating different materials, including polymers such 

as Teflon and PEEK, and alloys such as Hastelloy C and tantalum-tungsten (Ta-

W), were made.  Of these, only Ta-W, graphite (Grafoil) and borosilicate were 

found to successfully withstand the highly corrosive environment at the 

temperatures and pressures of interest. However, PEEK and Teflon were found 

to be suitable for applications at ambient temperatures. For example, the IC 

pump that is used to pump HI-H2O mixtures uses sapphire pistons, and all other 

wetted parts are made out of PEEK. Also made of PEEK is the 1/16 in tubing that 

connects the IC pump to the Ta-2.5W 1/16 tubing that enters the oven (See Figure 

2.1). All other components, such as valves, fittings, and the equilibrium view cell, 

were made from Ta-W alloys and were fabricated by Machine and Technical 

Services at Clemson University. Ta-10W was used for the stems and seats 

because of the higher mechanical strength compared to pure tantalum, Ta-2.5W 

was used for parts that were too expensive to buy in Ta-10W, and pure tantalum 

was only used for parts that needed to be built in a short period of time (delivery 
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times for pure tantalum could be as little as one week, compared to 5-6 for Ta-W 

alloys). 

RESULTS AND DISCUSSION 

BINARY I2-H2O 

For the binary I2-H2O system, an experimental run at a given temperature is 

initiated by filling the view cell with water at a rate of 2 mL/min (using the IC 

pump). At this point, both top- and bottom-phase 3-way valves (V4 and V5) are 

kept closed in order to allow liquid water to accumulate inside the view cell. 

Once the view cell becomes filled with water and the pressure starts to build up, 

V4 is opened and the top-phase MM valve is used to control the system pressure. 

At this point, the flow of water into the system is reduced to approximately 1.0 

mL/min, while the flow of molten iodine is initiated at 1.0 mL/min, resulting in a 

total feed flow rate of 2.0 mL/min. Once the I2-rich phase is seen to accumulate in 

the bottom of the view cell, V5 is opened and the system pressure, as well as the 

liquid level of the I2-rich phase, is maintained by controlling both the top- and 

bottom-phase MM valves. 

Bubble-point pressures are obtained by slowly raising the pressure (at 

constant temperature), from the three-phase VLLE region until the last trace of 
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vapor phase disappears in the view cell. The pressure is then slowly lowered 

until the vapor phase reappears. The process is repeated.  Table 2.1 summarizes 

the bubble-point pressures obtained at temperatures ranging from 150 to 300°C, 

as well as observations of the system behavior at each temperature. 

Table 2.1 LLE for the I2–water system at temperatures from 150-300 °C 
Temperature, 

°C 
VLLE Press. 

psig 
Comments re Experimental Runs 

150  < 100 LLE interface observable with visible light 

200 300 
LLE interface opaque with visible light, and for all 
higher temperature runs, but easily detectable with IR 

246  600 
LLE interface easily detectable with IR detector/light 
source 

276 1000 
LLE interface easily detectable with IR detector/light 
source 

277 1020 
LLE interface easily detectable with IR detector/light 
source 

300 1500 
LLE interface still easily detectable, but light 
transmission significantly decreased 

 
Photographs of selected events during these measurements are shown 

in Figure 2.5. Figure 2.5a shows the startup of an experiment, when the view cell 

is initially filled with pure water and the flow of iodine has just started. The 

brown-colored stream coming into the middle left port of the view cell at 200°C 

and 19.7 bar (300 psig) is the H2O-rich liquid phase (containing a small amount of 

iodine) and is seen to flow downwards, as it is denser than the pure water 

initially contained in the cell. The I2-rich liquid phase is also entering the cell 

from the middle left port with the H2O-rich phase, but it cannot be easily seen 
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because it is flowing straight down the inner wall of the view cell because of its 

high density. 

 

Figure 2.5 Contents of the view cell, as seen through its windows, at (a) 200, (b) 276, 
and (c) 300 °C.  The feed port is in the middle left of the cell; entering phases include 
the two-phase LLE mixture and for (b) a vapor-phase bubble. Photograph (a) was 
taken with the naked eye, and (b) and (c) with the IR viewer. 

 

As more water and iodine flow into the view cell, two phases become 

apparent to the naked eye: a dark and opaque liquid phase that steadily 

accumulates in the bottom of the view cell and a clear vapor phase that steadily 

decreases in volume as it is removed out the top of the view cell through MM 

valve V4. (Recall that during startup V4 is kept open, while V5 is closed).  At this 
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point, the IR viewer is turned on, and the dark liquid phase becomes clearer and 

is actually seen to consist of two distinct liquid phases: a lighter and a darker 

one.  The darker liquid phase is the I2-rich phase and is seen to accumulate in the 

bottom of the view cell as it is much denser. The lighter liquid phase is the H2O-

rich phase. As noted in Table 2.1, for the binary I2-H2O system the IR viewer is 

required to detect the LLE interface only at temperatures higher than 200°C. At 

lower temperatures, the amount of iodine present in the H2O-rich phase is not 

enough to turn that phase opaque.  

Photographs illustrating VLLE and LLE for the I2-H2O binary system are 

shown in Figures 2.5b and 2.5c, respectively. The VLLE shown in Figure 2.5b was 

obtained at 276 °C and the bubble-point pressure recorded at approximately 70 

bar (1000 psig). The LLE shown in Figure 2.5c was obtained at 300°C and 102.4 

bar (1500 psig). These results are the first reported observation of LLE for this 

system at temperatures above 225 °C [11]. Thus, we have shown that, in contrast 

to literature estimates [6,11] that place the upper critical solution temperature for 

this system at 280-300 °C, the I2–H2O system exhibits LLE at temperatures above 

300 °C.  Based on our observations and experience observing LLE critical points 

for other systems {22,28], we estimate an UCST for this system of 310-315 °C. 
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TERNARY I2-HI-H2O 

For the ternary I2-HI-H2O system, a typical experimental run is initiated 

exactly as for the binary I2-H2O as previously described. However, for the ternary 

system, instead of pure water an aqueous solution of HI of specified 

concentration is pumped into the view cell until it is full and the pressure starts 

to build. At this point, V4 is opened and the top-phase MM valve is used to 

control the system pressure. The flow rate of aqueous HI solution is reduced to 

approximately 1.0 mL/min as the flow of iodine is initiated at 1.0 mL/min, 

resulting in a total feed flow rate of 2.0 mL/min. Once the I2-rich phase is seen to 

accumulate in the bottom of the view cell, V5 is opened and the system pressure, 

as well as the liquid level of the I2-rich phase, is maintained by controlling both 

the top- and bottom-phase MM valves. 

Our goal for the ternary system of interest was to locate the phase boundaries 

for the water rich-side of the region of LLE that exists at low HI concentrations. 

For a given feed flow rate of molten I2 and aqueous HI solution, the overall 

system composition is fixed. To determine whether LLE exists for this specified 

overall composition at a given temperature and pressure, the bottom valve V5 is 

closed, and the system pressure is controlled with only the top-phase MM valve. 

The I2-rich phase is then allowed to accumulate until the entire view cell is filled 
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with it. At this point, V4 is closed, V5 is opened, and the pressure of the system is 

controlled using only the bottom-phase MM valve. The level of I2-rich liquid 

phase inside the view cell is then seen to slowly decrease as it is drained out, 

while the level of the H2O-rich liquid phase increases. Once the I2-rich liquid 

phase is drained, the bottom valve V5 is closed once again. The I2-rich phase is 

then allowed to accumulate once again up to ¾ of the total volume of the view 

cell.  At this point, the bottom phase is drained one more time.  If, after this 

second drainage, an I2-rich phase was seen to accumulate, then it was concluded 

that at the given overall feed composition, temperature, and pressure, the ternary 

I2-HI-H2O system exhibits LLE.  If, on the other hand, no accumulation of an I2-

rich liquid phase occurred, then it was concluded that only one phase exists. 

Clearly, the most desirable situation was to operate at a composition such that 

the accumulation of the bottom I2-rich liquid phase was very low, thus 

establishing a two-phase point close to the desired phase boundary.  

Note that with a CFA, these experimental observations are carried out most 

conveniently within a single experiment by changing the feed flow rate of the 

aqueous HI-H2O mixture, the concentration of the aqueous HI mixture, and/or 

the I2 flow rate. Changes to the temperature of the isothermal bath generally 
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require a day to complete, and the effect of pressure on the phase behavior of this 

LLE system is negligible within the pressure range of interest. 

Figure 2.6 and Table 2.2 show our experimental observations for the ternary 

I2-HI-H2O system at 160 and 200 °C. Also plotted are the LLE predictions for this 

system from a model recently developed by Murphy and O’Connell [32].  For all 

of these observations, the system pressure was kept ~14 bar (200 psi) above the 

bubble point of the mixture so that only LLE would be observed.  Thus, for the 

compositions shown in Fig. 2.6, the operating pressure ranged from 35.5 to 49.3 

bar (500-700 psig), with the pressure variation being ±1 bar (15 psia) for a given 

experimental run.  

 
b) 

The predictions of the model are in reasonable agreement with our work. For 

example, at 160 °C the model correctly predicts the increase in I2 content in the 

H2O-rich liquid as the amount of HI in aqueous the feed increases from 2.5 to 5 

mol%. Also, for an aqueous feed composition of 2.5 mol% HI, the model agrees 

with our experimentally observed observation that a change in temperature from 

160 to 200 °C results in an increase in iodine in the H2O-rich phase. Note, 

however that our phase-boundary measurements do not give us any tie-line 

information, so we are not able to evaluate the slopes, and thus the predicted 

component selectivities, in the Murphy-O’Connell model.  
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Figure 2.6 Ternary diagram at (a) 160 and (b) 200˚C for I2-HI-H2O. The continuous 
lines represent the phase envelope and equilibrium tie-lines predicted by the model 
of Murphy and O’Connell [32]. The open squares (□) denote an overall feed 
composition where two phases were observed in the view cell; solid squares (■) 
where one phase was observed.  The dotted lines represents the feed line for  (a) 5.0 
and (b) 2.5 mol% HI in water with molten iodine. 
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Table 2.2 Flow rates and compositions for experiments of the ternary I2-HI-H2O 

system, conducted at 160 and 200 °C 
Temperature 160 Cº  

HI Feed 

Flows (mL/min) Feed Molar Composition Observed 

HI-H2O I2 H2O HI I2 Liquid Phases 

0.025 mol fraction HI 

0.65 1.355 0.50 0.01 0.48 2 
1.0 1.0 0.67 0.02 0.31 2 

1.1 0.9 0.71 0.02 0.27 2 
1.19 0.813 0.75 0.02 0.24 2 
1.37 0.633 0.81 0.02 0.17 2 
1.78 0.224 0.92 0.02 0.05 1 

1.58 0.416 0.87 0.02 0.11 2 

0.05 mol fraction HI 

1.254 0.746 0.72 0.04 0.25 1 
1.16 0.835 0.68 0.04 0.28 1 
0.93 1.066 0.58 0.03 0.39 2 

0.52 1.476 0.37 0.02 0.61 2 

Temperature 200 Cº 

HI Feed 

Flows (mL/min) Feed Molar Composition Observed 

HI-H2O I2 H2O HI I2 Liquid Phases 

0.025 mol fraction HI 

1.10 0.9 0.71 0.02 0.27 2 

1.19 0.81 0.75 0.02 0.24 2 

1.37 0.63 0.81 0.02 0.17 2 

1.58 0.42 0.87 0.02 0.11 1 
 

Selected photographs of the contents of the view cell, illustrating both one 

and two-phase equilibrium via the IR viewer, are shown in Figure 2.7.  

Finally, to confirm that the preheating section, impingement mixing tee, and 

mixing equilibrium sections were working properly such that the resulting 
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phases in the view cell were in equilibrium, feed flow rates were varied by ±50%, 

in order to determine whether any mass transfer limitations were present. 

 

 

Figure 2.7 Contents of the view cell as seen through its windows at 160°C and 35.5 bar, 
showing (a) one phase at 0.923 mol fraction water, 0.024 mol fraction HI and 0.054 I2 
and (b) two phases at 0.872 mol fraction water, 0.023 mol fraction HI and 0.106 I2. 
Photographs taken with the IR viewer. 

 

Thus, as shown in Table 2.3, two feed compositions close to the LL phase 

boundary were evaluated: one where one phase was originally observed and 

another where two phases existed. For both situations, no deviation from the 

original phase behavior was observed.  
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Table 2.3 Test for equilibrium. Large changes in feed flow rates had no impact on the 
observed phase boundaries 

 

Overall feed 
compositions 
(mol fraction) 

Original flows 
(mL/min) 

Original 
flows 
 – 50% 

(mL/min) 

Original flows  
+ 50% 

(mL/min) 

Observed 
liquid 
phases 

H2O HI I2 HI-H2O I2 HI-H2O I2 HI-H2O I2 
0.923 0.024 0.054 1.78 0.224 0.89 0.112 2.67 0.336 1 
0.872 0.023 0.106 1.58 0.416 0.79 0.208 2.37 0.624 2 

CONCLUSIONS AND RECOMMENDATIONS 

We have constructed a new, unique, continuous-flow apparatus, designed for 

the measurement of complex phase-behavior data for highly corrosive systems at 

elevated temperatures and pressures.  In the course of the development of this 

apparatus, Ta and its W alloys were found to be capable of withstanding the 

aggressive chemicals and conditions that exist for the I2-HI-H2O reactive 

distillation process.  For low-temperature, high-pressure applications with these 

chemical species, PEEK polymers were found to work well.  Ta valves and 

fittings fabricated at Clemson University were found to perform as well as their 

analogous ss counterparts.  We have also demonstrated the reliable indirect 

pumping of molten I2 via a custom-built syringe pump, using water as the 

working fluid.  Using our apparatus, we have observed two-phase behavior for 
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mixtures of the binary I2-H2O system at temperatures to 300°C, in contradiction 

to the predictions of previous workers.  For the ternary system, we have located 

the LLE region for mixtures of I2, HI, and water, and have shown that it 

decreases with increasing temperature. 
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CHAPTER III 

DIRECT PHASE COMPOSITION MEASUREMENTS FOR THE 

TERNARY I2-HI-H2O SYSTEM 

Although locating phase boundaries, as described in Chapter II, provides 

useful information for the development of thermodynamic models, equilibrium 

tie-lines are still required for accurate model development and, as a result, for 

process simulation. Thus, this chapter deals with the development of methods 

for analyzing the samples of the phases collected from our equilibrium view cell 

using the CFA. 

MATERIALS 

Prilled Iodine (I2) with a purity of 99.8% was obtained from SQM North 

America Corp. and used without modification.  A 55% wt/wt solution of 

hydroiodic acid (HI) and water, unstabilized (ACS reagent), was obtained from 

Fisher Scientific and diluted with deionized water to the feed concentrations 

used in our experiments.  Deionized reagent-grade water, CAS 7732-18-5, was 

obtained from Fisher Scientific. A 0.2N volumetric standard solution of sodium 

hydroxide (cat. no. SS274-4), titrated at 25°C to pH 8.6 (phenolphthalein 

endpoint) against NIST potassium acid phthalate was obtained from Fisher 
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Scientific. A 0.025N sodium thiosulphate solutions, standardized at 25°C against 

NIST potassium dichromate was also obtained from Fisher Scientific (cat. no. 

SS370-1). The starch indicator was prepared from soluble starch ACS reagent 

obtained from Aldrich Chemical Company (Cat No 9005-84-9). The granular 

potassium iodide (KI) was manufactured by JT Baker (CAS 7681-11-0). 

EXPERIMENTAL APPARATUS AND PROCEDURE 

A continuous-flow apparatus (CFA), shown in Figure 3.1, was used to obtain 

liquid-liquid equilibrium (LLE) data for the ternary I2-HI-H2O system. The 

apparatus is rated to 350°C and 150 bar, and has been designed to withstand the 

highly corrosive nature of the system of interest. Details of the design and 

construction of the apparatus, as well as a thorough description of most aspects 

of the experimental procedure, are given in Chapter 2. Thus, only a brief a 

description of the CFA is given here.  However, there were a few changes that 

had to be made in order to incorporate sample collection, and these are described 

in detail below. 

In brief, our CFA is operated by delivering two streams, one of molten iodine 

and the other an H2O-HI solution, to an isothermal bath (oven), where the 

 56



streams are preheated to the desired temperature and then mixed together in 

order to achieve phase equilibrium. 

 

 

Figure 3.1  Schematic of continuous-flow apparatus for measuring LLE and VLE for 
highly corrosive mixtures of I2, HI, and water at elevated temperatures and pressures. 

 

The combined flow rates of the two streams are 2.00 mL/min. The resulting 

phases are then allowed to equilibrate in a 2.7-m section of tubing prior to 

entering the view cell, where the two phases are seen to separate gravimetrically. 

The heavier I2-rich phase accumulates in the lower part of the view cell and the 
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lighter H2O-rich phase in the upper part. The separated top and bottom phases 

then exit through ports located in the top and bottom of the view cell and are 

reduced to ambient pressure after passing through micrometering (MM) valves. 

The phases are then collected for further analysis in septa-sealed jars partially 

immersed in a cold bath of 0 to -5 °C. After collection, both top- and bottom-

phase samples are kept in a refrigerator to prevent the loss of any volatiles and 

minimize any possible decomposition reactions.  

Each phase then enters a sealed sample collection jar that creates a slight 

positive pressure buildup in the jar when a proper seal around the sampling 

tubing is obtained.  The jar is cooled using a recirculating cold bath with a 

propylene glycol-water mixture to prevent the loss of volatile species, in 

particular HI.  To create the seal between the Ta tubing exiting the 3-way on/off 

valves V4 and V5 (they were 2-way valves in Chapter 2) and the septum caps, a 

short segment (1/2-inch long) of PFA tubing (McMaster Carr Cat. No 5773K12, 

od: 3/16" (4.763mm), id: 1/8: (3.175 mm) is tightly placed on the tip of the Ta 

tubing. To do this, a hot Phillips screwdriver is carefully inserted into the tubing 

to slightly increase its i.d.  Immediately afterwards, the PFA tubing is placed 

around the Ta tubing. When it cools down, the PFA is tight onto the metal so that 

the seal is between the PFA tubing and the septa. 
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Photographs of the top- and bottom-phase sample collection jars are shown 

in Figure 3.2. As shown in Figure 3.2a, the top phase consists of a dark-colored 

brown liquid and some I2 crystals accumulated on the inner walls of the jar.  

 

Figure 3.2 Photographs of typical samples collected during a CFA run.  a) shows the 
top phase before its homogenization; the sample is a liquid with some solid iodine 
crystals on the walls of the glass jar.  b) is a top sample after homogenization with KI; 
it is a dark liquid and care must be taken to assure the total dissolution of the solid 
iodine.  c) and d) are pictures of the bottom phase; the sample is mostly a solid phase 
(the liquid is not noticeable from these pictures). 

 
 

Figure 3.2b shows a sample of the top phase after being homogenized with a 

10 w/w % solution of KI. On the other hand, as shown in Figs. 3.2c and d, 
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samples of the bottom phase consist primarily of solid I2 and a barely noticeable 

liquid phase that can be seen only when the jar is tilted.  

Typically, triplicate samples of the top and bottom phases are collected for 30-

40 minutes each, resulting in top- and bottom-phase samples weighing 40 to 150 

g each, respectively.  In previous work in Thies’s lab, Crosthwaite [1] showed 

how relatively large samples of each phase need to be collected to ensure that a 

representative sample is obtained, as the samples become inhomogeneous and 

split into two or more phases as they cool upon exiting the isothermal bath.  Note 

that samples of both top and bottom phases are continuously collected in our 

CFA by interchanging the collection jars using the 3-way valves V4 and V5.  

SAMPLE ANALYSIS 

Top-phase, water-rich samples obtained from the CFA were first weighed, 

homogenized with a KI solution, re-weighed, and then titrated for HI and I2 

content. In this phase, water was estimated by difference because it was the 

major component. Bottom-phase samples, on the other hand, have not been 

successfully analyzed thus far; however, two methods have been tested and are 

presented later in this chapter.  
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SAMPLE  HOMOGENIZATION 

A range of solvents, including ethanol, hydrochloric acid (HCl), water, and 

aqueous solutions of potassium iodide (KI), were tested for the homogenization 

of the top- and bottom-phase samples obtained from the CFA for the ternary I2-

HI-H2O system. Ethanol is an excellent solvent for iodine, but was found to react 

with HI. For this same reason, other common organic solvents (e.g., toluene) 

cannot be used with HI-containing systems. Water and HCl solutions are also 

inappropriate because they are poor solvents for iodine. However, solutions of 

potassium iodide (KI) were found to readily dissolve the solid iodine because of 

the formation of triiodide ions (I3-)[2]. KI also has the advantage that it does not 

react with HI or iodine.   

Consequently, from the solvents tested, a solution of 10 w/w % KI in water 

was prepared to homogenize the top-phase samples. For each top sample 

weighing 40 g, approximately 160 g of 10 w/w % KI solution was added until all 

solid I2 had been dissolved. As discussed below, homogenization of the bottom-

phase samples with KI solution is also possible, but requires a much greater 

amount of KI, as these samples are mainly composed of I2. 
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TOP-PHASE COMPOSITIONS 

From each homogenized top-phase sample, three subsamples of 

approximately 5 grams each are taken for titration with NaOH in order to 

determine the HI content, following reaction 3.1: 

2HI NaOH NaI H O+ → +        3.1 

The pH of the solution is monitored using a pH meter (Accumet basic AB15, 

with electrode Accumet cat. no. 13-620-285), while a 0.2 N standardized NaOH 

solution is added to the sample using a burette. As shown in Figure 3.3, the first 

point after the steep rise in pH is taken as the point at which all HI has reacted.  

0
1
2
3
4
5
6
7
8
9

10
11

0 1 2 3 4
mL

pH

z

 

Figure 3.3 Titration of a ternary sample containing I2-HI-H2O. The value Z represents 
the mL needed for the reaction of all the HI in the sample with NaOH (for this 
particular titration NaOH=0.5M).  
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Three other subsamples of approximately 0.2 grams each are also taken from 

each homogenized top-phase sample for analyzing its iodine content by titration 

with sodium thiosulfate, per reaction 3.2:  

2 2 3 2 2 4 62 2Na S O I NaI Na S O+ → +       3.2 

The standardized solution of sodium thiosulfate (0.025N) is added to the 

subsamples by means of a burette up to the point where the solution turns from 

dark purple into a light yellow color. The addition of approximately 0.5 mL of a 

starch indicator solution (0.01 g/mL) turns the solution from light yellow into a 

dark blue color characteristic of complex known as amylase iodine (or starch-

iodine) that is formed when I2 is present. Titration with sodium thiosulfate 

continues until all iodine has reacted and the solution becomes transparent.  

Recent studies [2] indicate that the iodide ions, formed after the addition of the 

KI in the aqueous solution, are not consumed in the amylase-iodine complex 

formation and hence do not interfere with the iodine titration. 

To validate our methodology, standard samples containing known amounts 

of I2, HI, and H2O were prepared and titrated as described above.  To prepare 

these samples, known amounts of the analytes were weighed using an analytical 

balance (Denver Instruments, M-310) and then homogenized with a 10 wt% KI 

solution. Table 3.1 shows the results from the titrations of HI and I2 for the four  
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Table 3.1 Percent deviation error in titration methods for the analysis of the top phase. 
All compositions are in mol fraction. Note that water is found by difference. 

 
Standard 1 (mol fraction) 

Prepared 
Compound Compositions

Titrated 
compositions

% deviation 
error 

I2 0.019 0.019 0.60 
H2O 0.969 0.969 0.00 
HI 0.012 0.012 0.98 

 
Standard 2 (mol fraction) 

Prepared 
Compound Compositions

Titrated 
compositions

% deviation 
error 

I2 0.038 0.037 0.47 
H2O 0.945 0.946 0.06 
HI 0.017 0.017 2.14 

 
Standard 3 (mol fraction) 

Prepared 
Compound Compositions

Titrated 
compositions

% deviation 
error 

I2 0.008 0.008 0.49 
H2O 0.986 0.987 0.05 
HI 0.006 0.006 6.98 

 
Standard 4 (mol fraction) 

Prepared 
Compound 

Composition
s 

Titrated 
compositions

% deviation 
error 

I2 0.058 0.059 1.55 
H2O 0.922 0.921 0.14 
HI 0.020 0.020 2.10 

*where % deviation error is defined as ( )  100
composition titrated composition

composition
−

×
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standards prepared. Note that the compositions of the prepared standards are 

intended to simulate the compositions of the top-phase samples obtained from 

the CFA at typical operating conditions. Overall, the titration results presented in 

Table 3.1 indicate that I2 can be estimated with an average error of less than 1.5 % 

deviation when present in concentrations ranging from 3.8 to 0.8 mol% (10 to 44 

wt%).  For HI, the results indicate an average error of approximately 2% 

deviation for solutions containing between 1.2 to 2 mol% (6 to 8 wt%) HI. 

However, for solutions with lower HI content, the error is seen to increase up to 

7 % deviation. In this case, a less concentrated NaOH solution could be used to 

increase the accuracy of the titration. 

BOTTOM-PHASE COMPOSITIONS 

 Bottom-phase samples obtained from the CFA for the I2-HI-H2O system 

contain approximately 90 to 95 wt% iodine (see also Figure 3.2 (c) and (d)). 

Therefore, iodine in the bottom-phase samples can be readily estimated from a 

component mass balance, as both feed and top-phase compositions are 

accurately known. However, because water and HI are minor components in the 

bottom phase, they cannot be accurately estimated simply by mass balance, but 
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must be quantified by an analytical method in order to validate our results.  Thus 

such methods that were evaluated for this purpose are discussed below.  

Homogenization with KI 

Just as is done for the top-phase samples, the bottom-phase samples can also 

be homogenized with KI solution, and the HI content determined by titration 

with NaOH. For example, a bottom-phase sample obtained from experiment 

CFA 22 and weighing 108 grams required 2014 g (~ 2L) of 10 w/w% KI for 

homogenization. Sub-samples were then taken and titrated with a standard 

solution of NaOH. The results are shown in Table 3.2. Note that for each sub-

sample, less than 1 mL of NaOH solution was used for the complete titration of 

the HI content.   

Table 3.2 Titration of the Bottom phase (Bottom 1, CFA 22) 
Bottom-phase sample (g) 108.92 

10 wt% KI (g) 2014.29 
NaOH (M) 0.2164 

Sub-sample Weight (g) 
Added NaOH 

(mL) 
w/w fraction 

HI 
S1 4.7146 0.14 0.016 
S2 5.0574 0.10 0.011 
S3 4.1751 0.05 0.006 

Average w/w fraction HI 0.0111 
Std deviation 0.0048 
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 As shown in Table 3.2, the HI content in the bottom-phase sample was 

calculated to be approximately 1.1 ± 0.5 wt%. Such a large deviation is not 

surprising if one takes into account that approximately 2 L were required to 

homogenize the 109 g of bottom-phase sample. To improve the accuracy of this 

method, a more concentrated solution of KI could be used, as well as a less 

concentrated solution of NaOH to perform the titration.   

Gas Chromatography 

Both HI and water content in homogenized bottom-phase samples can be 

estimated using gas chromatography (GC) coupled with a thermal conductivity 

detector (TCD). Preliminary results indicate that GC-TCD can used to separate 

mixtures of I2-HI-H2O using a GasPro Column (Agilent, PLOT column, 30m, part 

no. 113-4332). However, the ternary mixtures tested thus far have had a low I2 

content, limited by the I2 solubility in HI-H2O solutions. To obtain accurate 

results for HI and H2O content, aqueous solutions cannot be used as a solvent to 

homogenize the bottom-phase samples, as water is a minor component present 

in the analyte. Thus, KI solutions cannot be used. Organic solvents are also 

inappropriate because, as discussed previously, they react with HI. With that in 

mind, a distillation method was employed to separate HI and water from the 
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solid iodine present in a bottom-phase sample so that the distillate could be 

directly analyzed by GC-TCD.  

Distillation 

As shown in Figure 3.4, the distillation setup consisted of a heated reaction 

kettle (Corning, part no. 6947-500) fitted with a total condenser and a distillate 

collection flask. A sample jar containing approximately 93 g of iodine and 7 g of a 

1 wt% HI-H2O solution (expected calculated composition for a bottom-phase 

sample) was then prepared and placed inside the reaction kettle. Note that in 

Figure 3.4, for clarity, only a small section of the actual heating tape is shown. 

(During a distillation experiment, the tape is wrapped all around the exterior of 

the kettle.) lso, note that all wetted parts are glass and the reaction kettle O-ring 

is made out of Teflon, materials known to withstand the corrosiveness of HI and 

I2. The cap of the kettle is held to the kettle using a spring-loaded clamp (not 

shown in Figure 3.4) that allows for the cap to open in case of pressure buildup. 

Air was the contact fluid between the sample and the vessel; a better conductor 

was not used to avoid reaction with the evaporated HI.  

Before the distillation started, the weight of the round distillate collection 

flask was accurately measured and recorded. The basic idea was to separate the 

HI-H2O phase (the boiling point of this azeotrope is 127°C [3]) from the iodine 
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crystals (boiling point 184.3°C [3]) and to conduct a titration of the liquid 

obtained. After 2 hours of distillation at 180°C, a few drops of liquid were 

observed on the inner walls of the condenser, but unfortunately, not enough had 

condensed to be collected in the distillate flask. After this preliminary test, it was 

concluded that the HI-H2O content in a typical bottom-phase sample was too 

small to be completely distilled without losing some of the distillate in the setup, 

which would significantly affect the accuracy of subsequent GC analyses.  

 

 

Figure 3.4 Schematic of the distillation equipment tested for the analysis of the 
bottom phase.  
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RESULTS AND DISCUSSION 

PHASE EQUILIBRIUM MEASUREMENTS AT 160°C 

Using the CFA, measurements for the ternary I2-HI-H2O system were carried 

out at 160 °C at three different feed compositions. As shown in Table 3.3, the 

concentrations of HI-H2O solutions used were 0.9, 2.4, and 4.9 mol% HI, labeled 

CFA 21 to 23, respectively. Also shown are the flow rates of molten iodine and 

HI-H2O solutions delivered to the impingement mixing tee shown in Figure 3.1, 

and the resulting overall feed compositions being delivered to the view cell.  

 

Table 3.3 Summary of conditions for experimental runs CFA 21-23 at 160 °C  
 CFA 21 CFA 22 CFA 23 

System Pressure (psig) 700 500 600 
HI-H2O (mol fraction2 HI) 0.024 0.009 0.049 
HI-H2O flow rate (mL/min) 1.00 1.00 0.70 

I2 flow rate (mL/min) 1.00 1.00 1.30 
Overall Feed compositions (mol%) 

HI 1.84 0.71 3.17 
H2O 75.94 77.31 61.73 

I2 22.22 21.98 35.10 
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Table 3.4 Top-phase sample titration results for I2 and HI content. Samples obtained 
from run CFA 21 at 160 °C.  Good reproducibility between samples (Top 1 to 3) and 

subsamples 1 to 3 was obtained. 

 
Iodine mol fraction 

Top 1 Top 2 Top 3 
Subsample 1 0.027 0.026 0.028 
Subsample 2 0.027 0.027 0.027 
Subsample 3 0.026 0.026 0.027 

Average 0.027 0.026 0.027 
    
    

 
HI mol fraction 

Top 1 Top 2 Top 3 
Subsample 1 0.017 0.016 0.016 
Subsample 2 0.016 0.017 0.016 
Subsample 3 0.016 0.016 0.016 

Average 0.017 0.016 0.016 
 

For each experiment (CFA 21 to 23), three samples each were collected for the 

top (water-rich) and bottom (iodine-rich) phases. Top-phase samples were 

titrated for I2 and HI content. The titration results for CFA 21 are shown in Table 

3.4. As can be seen, good reproducibility is obtained between the samples and 

subsamples. Average titration results for experimental runs CFA 21 to 23 are 

summarized in Table 3.5.  

Table 3.5 Top-phase compositions for runs CFA 21 to 23 at 160 °C. 
Compositions and standard deviations are given in mol fraction. 

Run Average compositions of the top samples 
I2 HI H2O 

CFA 21 0.027±0.001 0.017±0.0002 0.957 
CFA 22 0.011±0.001 0.008±0.0002 0.981 
CFA 23 0.049±0.001 0.025±0.0008 0.926 
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To obtain the composition of the bottom-phase samples, an overall mass 

balance was performed on the system.  That is, because the HI, H2O, and I2 

content are all known for the feed and top phase, component mass balances can 

be carried out in order to estimate the compositions of the bottom phase. The 

results are presented in Table 3.6 and the details of the overall mass-balance 

calculations are given in Appendix F.  As expected, there is a higher degree of 

scatter in the bottom-phase compositions, showing the importance of developing 

an analytical technique for the bottom-phase samples.  

 
Table 3.6 Compositions of the bottom phase for run CFA 21-23 at 160 °C, as obtained 

by overall mass balance. All compositions are given in mol fraction. 
 CFA 21 
Compound mol fraction 

Sample 1 Sample 2 Sample 3 Average 
HI 0.023 0.022 0.022 0.022±0.001 

H2O 0.293 0.388 0.462 0.381±0.085 
I2 0.684 0.590 0.516 0.597±0.084 

  CFA 22 
Compound mol fraction 

Sample 1* Sample 2 Sample 3* Average 
HI  0.006  0.006 

H2O  0.137  0.137 
I2  0.857  0.857 

 CFA 23 
Compound mol fraction 

Sample 1 Sample 2 Sample 3 Average 
HI 0.036 0.038 0.039 0.038±0.002 

H2O 0.424 0.344 0.304 0.357±0.061 
I2 0.541 0.618 0.657 0.605±0.059 

*Mass balances for this samples did not close. 
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Table 3.7 Comparison between measured and pump setting flow rates  
Run Sample 

No 
Sample weight 

measured by sample 
collection 

Sample weights from 
ISCO and IC pump 

settings 

%Error* 
 

CFA 21 1 188.13 191.178 1.62 
CFA 21 2 211.24 211.302 0.03 
CFA 22 2 163.58 148.77 -9.05 
CFA 22 3 143.67 148.77 3.55 
CFA 23 1 166.43 166.86 0.26 
CFA 23 2 212.42 208.58 -1.81 
*where % error is defined as ( ) 100

estimated measured
estimated

−
×  

Table 3.7 shows the difference between the weights of a total sample collected 

(sum of top, water-rich and bottom, iodine-rich phases) and the weight of the 

combined streams delivered as feed by both the ISCO and the IC pumps during 

the sample collection time (usually 30 min). 

The water-rich top-phase and the iodine-rich bottom-phase compositions 

obtained from CFA Runs 21-23 are plotted below as equilibrium tie lines 

in Figure 3.5.  To our knowledge, these are the first LLE phase compositions ever 

obtained for the ternary I2-HI-H2O system.   
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Figure 3.5 Ternary diagram for the system I2-HI-H2O at 160°C. Pink, solid (──) lines 
are the model predictions [4]; (---) is the tie line for run CFA 22 (0.9% HI in feed) (ˉ˙ˉ˙ˉ) 
is for run CFA 21 (2.4% HI in feed) and (····) is for run CFA 23 (4.9% HI in feed).  
Squares (■) denote the titrated compositions for the top phase while circles (•) denote 
the calculated compositions for the bottom phase. Solid diamonds (♦) represent 
overall feed compositions for when one phase was observed in the view cell. Open 
diamonds (◊) represent overall feed compositions for when two phases were 
observed. 

 
  
 
Also shown on Figure 3.5 are the modeling predictions by Murphy and 

O’Connell [4].  Clearly, there is a discrepancy between the modeling predictions 

and our LLE measurements for the ternary I2-HI-H2O system.  At this time we do 

not have a good explanation for the differences observed. 
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The top-phase compositions used to generate the tie lines presented in Figure 

3.5 are the average of the titrations for the three subsamples collected during 

each experiment; the bottom-phase compositions are the average of the mass 

balances performed for each subsample (See Appendix F). The variation among 

each subsample is shown in Figure 3.6.  

 

Figure 3.6 Ternary diagram for the system I2-HI-H2O at 160°C. Pink solid (──) lines 
are the model prediction by Murphy and O’Connell [4]; Outlined squares (□) denote 
CFA 21 subsamples for both the top-phase (right side of the diagram) and the bottom-
phase (left side of the diagram), while solid squares (■) denote their average value. 
Outlined circles ( ) denote CFA 22 subsamples and solid circles (●) their average 
value. Outlined diamonds ( ) denote CFA 23 subsamples and solid diamonds (♦) 
their average. 
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PHASE EQUILIBRIUM MEASUREMENTS AT OTHER TEMPERATURES 

In addition to the runs at 160°C, other temperatures were also evaluated. A 

table summarizing all the experiments conducted in the CFA is shown in 

Appendix G. The lowest operating temperature was 120°C and it was found to 

be too low for an optimum operation of the system. Because 120°C it is too close 

to the melting temperature of iodine (113°C), solid plugs of iodine were 

experienced.  

At 140°C, a 10% w/w HI feed was tested. During this experiment a single 

dark phase was observed in the view cell using the IR camera. Overall feed 

compositions tested at this temperature are shown in Figure 3.7. From the 

envelope predicted by the model by Murphy and O’Connell [4] we were 

expecting to observe two-phase LLE behavior for the feeds with H2O content 

lower than 0.3 mol fraction.  We now believe that because the iodine-rich and 

water-rich phases have a tendency to look similar to each other when higher HI 

content is present, we were unable to identify the separate phases. These 

experiments should be performed again, keeping the top three-way valve (V4) 

closed and observing whether a lighter phase accumulates in the top of the view 

cell. From our experience, when working with aqueous HI-H2O feed solutions 
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with HI contents higher than 5% mol, it is easier to identify a lighter phase 

accumulating on top of the heavy phase.  

0.1
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Figure 3.7 HI-I2-H2O ternary Diagram at 140°C. All data are in mol fraction. Pink solid 
(──) lines are the model prediction [4]. Circles (•) denote total feed compositions for 
when one phase was observed in the view cell. 

 

Experiments at 225°C, with 2.5 mol % HI in the aqueous feed, were also 

carried out but were inconclusive.  Although the runs themselves proceeded 

smoothly and the apparatus performed well, we were unable to clearly establish 

how many phases were present in the view cell.  Different overall flow rates 

were tried in order to locate the two-phase region, but without success.  The 

contents of the view cell were dark and unstable, making observation of the LLE 

interface difficult. The instability could have been caused by an inadequate 
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heating or mixing of the components. At this higher temperature, our 

calculations indicate that additional preheating line length for the aqueous phase 

would need to be installed. 

INFLUENCE OF TIME AFTER THE COLLECTION OF THE SAMPLES 

To check if there was some decomposition of the samples with time, iodine 

was re-titrated from the same sample at two different time intervals: 11 days 

after collection and around five months after collection (samples had been 

homogenized and stored in a refrigerator).  Results are shown in Table 3.8. 

Table 3.8 Iodine titration over time of the Top 1 sample collected on CFA 21  

Top 1 May-12-09 
Collection Date May-12-09 

w/w fraction iodine 
Sub-Sample May-14-2009 May-25-2009 Oct-27-2009 

S1 0.265 0.259 0.262 
S2 0.260 0.261 0.276 
S3 0.259 0.255 0.269 

 

Even after five months in storage, samples do not seem to decompose in a 

noticeable way.  

HI ONLY RUN 

In order to test both the IC pump and the quality of our sample collection 

scheme, a test run (CFA 25) was performed using the CFA. During the run, only 

HI solutions were pumped, with all other conditions being maintained as for a 
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regular run (i.e., temperature of the oven, heating of the lines and valves outside 

the oven, and temperature of the cold bath to collect the samples). An HI solution 

with a concentration of 2.9 w/w % HI (5.5 mol% HI) was fed to the system at a 

flow rate of 1 mL/min. The weights of the samples obtained are presented 

in Table 3.9. 

Table 3.9 Samples collected on CFA 25 (HI only) run 
Collection time 30 min each 

Expected total weight of each sample 
from IC pump setting 38.1 g 

 Sample 1 Sample 2 Sample 3 
Top phase sample weight (g) 7.65 20.14 9.82 

Bottom phase sample weight (g) 29.08 16.62 30.62 
Total weight (g) 36.73 36.76 40.44 

Difference from estimate (g) 1.37 1.34 -2.34 
% Error 3.59 3.51 -6.14 

*where % error is defined as ( )  exp
100

exp
ected measured

ected
−

×

 

For 30 minutes of sample collection, taking the density of the HI-H2O solution 

to be 1.27 g/mL, the total mass of sample collected should be 38.1 g. The 

difference between this value and the total weight is shown in the last row 

of Table 3.9 and represents around 3-5% of the total weight. The HI concentration 

of the feed and each top and bottom sample, obtained by titration, is presented 

in Table 3.10. 
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Table 3.10 Concentration of samples for CFA 25  
mol fraction HI content 

Feed 0.055 

Phase  
Sample 1 Sample 2 Sample 3 

XHI %error XHI %error XHI %error 
Top 0.0436 20.21 0.0507 7.23 0.0473 13.47 

Bottom 0.0519 5.14 0.0507 7.19 0.0516 5.58 
*where % error is defined as ( ) 100

feed sample
feed
−

×  

 

The reduction of HI content in all collected samples could be the result of loss 

of sample, the reaction of HI during the experiment, and/or experimental error.  
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CHAPTER IV 

CONCLUSIONS 

We have constructed a new, unique, continuous-flow apparatus, designed for 

obtaining data for highly corrosive systems. The apparatus is fully functioning 

and has been used to measure liquid-liquid equilibria (LLE) for aqueous 

mixtures of HI with iodine, which is a solid at room temperature. For the water-

rich, top-phase samples obtained, the iodine and HI compositions were obtained 

via titrations using sodium thiosulfate and sodium hydroxide, respectively. For 

the iodine-rich bottom phase, phase compositions were deduced from an overall 

mass balance. This chapter presents conclusions drawn from this study. 

CONTINUOUS-FLOW APPARATUS 

The continuous-flow apparatus (CFA) designed and constructed for this work 

is rated for temperatures of 350°C and pressures of 150 bar. In the course of the 

development of this apparatus, tantalum (Ta) and its tungsten (W) alloys were 

found to be capable of withstanding the aggressive chemicals and conditions that 

exist for the I2-HI-H2O system. For this reason, Ta valves and fittings were 

fabricated at Clemson University and found to perform as well as their 

analogous stainless steel (ss) counterparts. Graphite and borosilicate were also 
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found to work well at high temperatures. For low-temperature applications with 

these chemical species, PEEK and PFA polymers were found to work well.   

We have successfully demonstrated the indirect pumping of molten I2 with a 

~700 mL Ta-10W alloy reservoir, using water being delivered from an Isco 

syringe pump as the working fluid.  

The mixing equilibrium section currently used in the CFA was proven to be 

adequate, as large changes in flow rates have no impact on the observed phase 

boundaries (See Table 2.3).  

Deterioration of the original aluminosilicate windows (Hoya Optics, Almax 

II) for the view cell was observed at temperatures of 270°C in the presence of the 

binary I2-H2O. On the other hand, borosilicate windows have worked flawlessly 

with ternary mixtures of I2-HI-H2O at temperatures as high as 225°C. Even after 

17 runs, no signs of wear are noticeable. 

For this work, the infrared setup with the electro-viewer was successfully 

used to observe VLE, LLE and VLLE of the systems studied at a maximum 

concentration of 2.5% mol fraction HI in the aqueous feed solution at 

temperatures up to 200°C, and at a maximum concentration of 5% mol fraction 

HI in the aqueous feed at temperatures up to 160°C. Application of IR at higher 

temperatures and concentrations might be possible, but has not yet been tested.  
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ANALYSIS TECHNIQUES 

Good reproducibility was observed for the HI and I2 concentrations of the 

samples obtained for the ternary I2-HI-H2O experiment, as seen in Table 3.4. 

Iodine concentrations, taking into account all sources of error, are estimated to be 

accurate to better than 5% deviation error.  HI concentrations are estimated to be 

accurate to within 5% deviation error for solutions containing at least 0.02 mol 

fraction HI and to within 9% error for lower HI concentrations. 

Solutions of 10% KI in water were found to be suitable as a solvent for the top 

phase samples of the ternary I2-HI-H2O system. Homogenized samples appear to 

be stable for long periods of time (See Table 3.8). 

In the early stages of this work, difficulties in obtaining reproducible phase 

compositions in the collected samples were encountered.  The reason for this 

problem was that, upon exiting the view cell, the streams cool and subsequently 

phase-separate to form two liquid phases.  Because this mixture is not 

homogeneous, the two phases travel through the tubing at different 

instantaneous rates, or in slugs.  For a particular segment of time, more of one 

phase than of the other may be collected because of holdup of one of the phases.  

In order to minimize deviations in phase compositions due to these two-phase 

flow effects, relatively large sample sizes (at least 30 minutes collection time) 
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were collected in order to average out the fluctuations in flow of the two phases.  

Long periods of sample collection resulted in good reproducibility between the 

samples for each experiment (See Table 3.4). 

PHASE BEHAVIOR  

The first observations for LLE for the binary I2-H2O above 225°C are 

presented. LLE was clearly observed at temperatures up to and including 300°C, 

contradicting previous expectations in this area [1, 2].  Based on our 

observations, we estimate that the upper critical solution temperature will occur 

at 315 ± 5°C.  

LLE phase boundaries for the ternary I2-HI-H2O were mapped for the water-

rich region at temperatures of 160 and 200°C. From the results at these two 

temperatures, we observed that the region of immiscibility decreases with 

increasing temperature.  

Existing models for the ternary I2-HI-H2O, which are based on VLE data, are 

inadequate for the prediction of LLE. Analysis of the top-phase, water-rich 

samples, combined with an overall mass balance on the system, indicates that HI 

concentrations in the bottom, iodine-rich phase are significantly higher than 

what predicted by the best current models. 
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CHAPTER V 

RECOMMENDATIONS 

Recommendations for improvement of the current CFA and for future work 

with the ternary I2-HI-H2O system are presented in this chapter.  

CONTINUOUS-FLOW APPARATUS 

During the course of our experiments, overall mass balances were conducted 

on the I2-HI-H2O system. Although the weights of the samples collected during 

these experiments agreed, within experimental error, with the expected weight 

of the combined flow rates delivered by both the ISCO and the IC pumps (Table 

3.7), we recommend that experiments be conducted such that only iodine is 

delivered into the system, in order to corroborate the accuracy of the indirect 

method of pumping iodine. 

The cause of the reduced HI content in the samples collected during run CFA 

25 (See Table 3.9) need to be determined, as it could be having a significant 

impact on our reported experimental compositions.  We recommend performing 

similar “HI solution only” experiments, but at lower oven and heat-tracing 

temperatures. This action will help to isolate the problem as being related to the 

reaction/volatility issues.  
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 Even though the mixing/equilibrium section has proven to perform 

adequately, we recommend improving the current configuration by installing 

two more mixer/splitters, as shown in Appendix H. This will help for studies of 

the low water content side of the ternary diagram, where the feed flow rates 

coming from the iodine and HI solution are highly dissimilar and mixing 

problems are more likely to occur, as the momenta of the phases are no longer 

similar [3]. To validate the performance of the mixing/equilibrium section, 

samples from one-phase experiments can be collected and analyzed. If good 

mixing is attained, then variation from top- and bottom-phase samples should be 

minimal. 

We recommend that the length of the heating section of the iodine tubing be 

increased to 24 ft before conducting experiments at temperatures higher than 

200°C. The current length (15 ft) is adequate to preheat the iodine to within 1°C 

of an oven temperature of 200°C at a flow rate of 1.5mL/min (90mL/hr). Here we 

note that the heating section for the HI-H2O solution is already of adequate 

length (i.e., 20 ft) and can preheat the same flow rate (1.5 mL/min) to within 0.1 

°C of oven temperatures up to 350°C. 
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 We recommend calibrating the RTD currently in the system against our 

Rosemount primary standard, as such a calibration has not been done for the 

actual RTD. 

During the operation of our CFA, significant deviations in the system 

pressure (e.g., caused by too large a change in a micrometering (MM) valve 

setting) will cause iodine from the reservoir to flow into the view cell at a faster 

rate than the one set by the pump. Thus, such changes should be minimized and 

kept below ± 15 psi. 

The modifications performed on the stem of the tantalum MM valve greatly 

improved pressure control in the system. We therefore recommend that for any 

future valve-stem fabrication, the angle for the tip of the stems to be set at 1°. 

(Refer to Figure 2.4)  

Even at room temperature, HI will decompose into iodine and hydrogen after 

long periods of time. Therefore, it is crucial that after every run all the lines in 

contact with HI should be cleaned with water. Hydrogen will cause the tantalum 

to become brittle over time.  This represents a safety issue, as embrittled Ta lines 

could eventually rupture during system operation. 

The 1/8” tantalum tubing connecting the bottom of the iodine reservoir to the 

oven goes through a tee. One of the sides of this tee is connected to a Hastelloy 
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C-276 valve that has never been used. The tantalum tee was found very likely to 

have leaks, so we recommend replacing it by a 1/-1/8 tantalum union, eliminating 

the connection to the Hastelloy C-276 valve.  

SAMPLE ANALYSIS 

To increase the accuracy of titrations for the determination of HI content, a 

less concentrated solution of NaOH (less than 0.2 M) should be used (i.e., NaOH , 

0.0100 N).   

The analysis of the bottom phase is crucial for the construction of accurate 

equilibrium tie-lines for the ternary I2-HI-H2O. For the homogenization of the 

bottom phase, we recommend testing a more concentrated solution of KI. This 

might lower the quantity of solvent needed for homogenization and could make 

the analysis of the HI feasible with the titration method.  

To enhance the performance of the current sample-collection setup, the 

samples can be collected in jars containing solutions of NaOH with a known 

concentration. The NaOH solution should be added in excess to the glass jars 

prior to the collection of the samples. After collection, the excess NaOH solution 

could be titrated using a primary standard (i.e., Oxalic acid solutions) and the 

amount of HI back calculated from the reacted NaOH.  
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PHASE BEHAVIOR  

For CFA experiments at temperatures above 160° or with HI feed 

compositions above 5 mol %, the appearance of the water-rich phase under the 

IR viewer will be more similar to the iodine-rich phase than for lower HI 

concentrations. If difficulty in establishing LL the interface is encountered, we 

recommend installing a stronger light source for our IR viewer so that cell 

contents are more easily visible. 

The pressure is not a variable that should affect the LLE behavior of the 

system, because our two liquid phases are essentially incompressible. 

Nevertheless, we recommend testing the same feed at two different pressures in 

order to verify this expectation.  
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APPENDIX A. EXPERIMENTAL PROCEDURE FOR THE CFA 

A detail schematic of the apparatus is given as Figure A.1, and it is assumed 

that the reader is referring to it unless otherwise noted.  

PREPARATION 

Iodine reservoir refill 

Approximately every two runs the iodine reservoir must be refilled. To check 

if there is enough iodine in the reservoir, disconnect the thermocouple from the 

tantalum cross on top of the iodine reservoir (see Figure A.2) and insert a piece of 

1/16” o.d. tantalum tubing through the tantalum cross, observing the length of 

tubing necessary to touch the level of solid iodine. For a regular run (only one 

point tested) it is recommended that the solid iodine level be at least above the 

fourth heating band in the reservoir, which means that the length of tantalum 

tubing until it touches the solid iodine level should be around 22 inches, as 

measured from the NPT fitting  (see Figure A.2) 
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Figure A.2 Heating zones in the iodine reservoir 
 
To refill the iodine reservoir, disconnect the tantalum cross on top of the 

iodine reservoir at the NPT threads (refer to Figure A.3).  Next, remove the water 

sitting on top of the solid iodine using ¼ “ o.d. PFA tubing by means of Pascal’s 

principle:  insert one end of the PFA tubing full of water on top of the reservoir 

while placing the other end at a lower height inside a glass jar to collect the water 

(1L jar). Allow the water to drain into the glass jar. 

Then, weigh approximately 900 grams of prilled solid iodine into a glass jar 

and slowly transfer them to the open end of the reservoir using a plastic funnel. 

The level of the iodine in the reservoir must carefully monitored, using the 1/16” 
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tubing, to prevent it from going above the middle of the second heating band 

(iodine will expand ~30% while melting); this is approximately 15 inches, as 

measured from the tantalum cross. Once the desired level of solid iodine is 

achieved, the tantalum cross is connected again after putting new Teflon tape on 

the NPT threads.  

 

Figure A.3 Detailed schematic of the iodine reservoir 
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PRESSURE TESTING 

At this point the reservoir must be hydrostatically pressure-tested with water 

at pressures 50% above the expected operating pressure of the run, keeping in 

mind that the maximum operating pressure of the reservoir is 1500 psig.(so the 

maximum hydrostatic pressure is 2250 psig). To do this the initial state of all 

valves is closed. Set the maximum pressure limit for the ISCO pump to 1500 psig. 

Next, open valves V-7, V-8, V-10 and V-17 and pump water using the ISCO 

pump at a flow rate of 10 mL/min to build the pressure needed. Typically, 

pressure-testing is at 1500 psig and pressures above 2000 psig should be avoided 

(In case a pressure between 1500 and 2000 psig is needed, the maximum pressure 

limit for the ISCO pump should be set to 2000 psi.) Once the pressure reading of 

gauge P3 is at 1500 psig (or the desired pressure), stop the ISCO pump and 

monitor the pressure drop. When the iodine reservoir has just been filled with 

the solid I2 prills, a considerable pressure drop normally occurs even if no leaks 

are present , as the prills become more closely packed. If leaks are observed, fix 

them and increase the pressure again by pumping more water using the ISCO 

pump. Note that water leaks are harder to observe, and sometimes an hour must 

pass before a drop is noticeable, so allow enough time for this test. If desired, 

valve V-8 can be close to isolate the Isco pump. The tantalum cross on top of the 
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iodine reservoir is likely to present leaks. (Don’t over-tight the tantalum fittings. 

Tantalum is a soft material, and if over-tighten the parts will deform.) After 

pressure testing, V-14 is opened to release the pressure. Close all valves. 

The rest of the system should also be pressure-tested at this point. For this 

purpose a nitrogen gas cylinder tank is connected to valve V-1. Caution: Before 

connecting the nitrogen tank to valve V-1, make sure the gas regulator exit 

pressure is set to zero psig. Then close the tank valve again before proceeding. 

Then open valves V-2, V-4 and V-5, with all other valves being closed. Open the 

nitrogen tank valve and set the regulator to a pressure of 500 psi. Then open V-1 

and observe that the pressure of the Heise gauge agrees with the pressure in the 

tank. Warning: care must be taken not to over-pressurized the system (iodine 

reservoir pressure rating= 2250 psig; view cell pressure rating=3000 psi); as a 

precaution for the operator, a curved-shaped piece of polycarbonate is placed on 

the studs of the view cell prior to pressure testing, held with nuts, to protect the 

operator from glass pieces should a window break.  

With the system at 500 psi, check all fittings, inside and outside of the oven, --

including the valves fittings- using Snoop. If no leaks are found, increase the 

pressure from the nitrogen tank to 1000 psi and monitor the pressure drop in 
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time. 30 psi lost in 2-3 hours is considered typical. If the pressure drops faster, 

check for leaks at 1000 psi. After pressure testing, close all valves. 

THE DAY BEFORE A RUN 

Oven heating 

After pressure testing, the heating of the oven can start. Before turning the 

oven on, the view cell must be confirmed to be empty. If there is liquid, it should 

not be filled to more than 1/4 or 1/3 of its content to avoid overpressurization 

during liquid expansion heating. If more liquid is present, it has to be purged by 

heating the copper block (not shown) and valves V-19, V-20, MM-1 and MM-2, 

and lines exiting the oven to a temperature of at least 130°C (temperatures above 

150°C should be avoided in order to not damage the heating tapes; for more 

details about heating, refer to the section of “heating of lines, valves and copper 

block” later in this same appendix). Nitrogen gas can be used to help push the 

liquid from the view cell into the lines after all lines and valves have been heated 

to temperature. Warning: Note that if the view cell is full of liquid and the oven 

is turned on, a huge pressure increase will be generated while heating, which 

will cause the view cell to rupture.   
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Before turning on the oven, all valves should be in the closed position. Next, 

valves V-20, V-19, MM-1 and MM-2 are opened, and the procedure to turn on the 

oven found in Appendix B can be followed. The oven needs approximately 6 

hours to stabilize, so it is recommended to turn it on the day before an 

experiment and let it reach the desired temperature overnight.  

Preparing pumps 

The water reservoir that feeds the secondary ISCO pump should be refilled 

following the instructions given in Appendix C. The ISCO pump used to deliver 

the working fluid has two separate cylinders. The procedure to refill the ISCO 

pumps is described in Appendix D.  

Checking heating tapes 

Check that all the heating tapes located in the lines outside the oven are 

working. For this, turn them on and check if they are heating (this test is really 

quick, just to check if they are turning on. It should not be longer than 1 minute 

for each line. Heating of the solid iodine inside the tubing should be avoided, as 

it can expand and burst the lines). Replace all heating tapes that are not working. 
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RUNNING THE CFA 

Heating of the iodine reservoir 

Proper heating of the iodine reservoir is key to avoid plugs inside it that 

could cause an overpressure and subsequent rupture of this unique and 

expensive unit. First, proper operation of the relief valve RV-1 is checked. For 

this, with all other valves closed (except 3 way-valves V-19 and V-20 and MM 

valves MM-1 and MM-2), valves V-7, V-8, V-10, V-17, and V-14 are opened, and 

the ISCO pump is set to a flow rate of 2 cc/min and to a pressure limit of 150 psi. 

RV-1 should open at a pressure of ~100 psi (if the relief valve is opening to a 

higher or lower pressure, the spring setting of the valve must be adjusted).  The 

purge coming from this valve is collected in a glass jar and should be checked 

regularly to prevent overflow. The jar is located on the bottom shelf of the black 

frame, next to the IC pump and it is labeled “From the iodine reservoir”. 

As an extra safety feature, in case RV-1 fails, open valve V-13. Valve V-13 

opens to a second relief valve, RV-2, that is set to open at a higher pressure than 

RV-1 (usually, 120 psi). Reduce the flow of water from the ISCO pump, exiting 

RV-1, to 1 mL/min and maintain it through the entire heating procedure for the 

iodine reservoir.  
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The heating of the reservoir is conducted using 6 independent heating bands 

controlled by an OMEGA CN616 series controller. The heating is carried out 

stepwise from top to bottom, allowing each zone to reach a uniform temperature 

before starting to heat the next one (allow about 20 min for zone 1, 25 minutes for 

zones 2 through 4, and  30 min for zones 5 and 6). This procedure is carried out 

to avoid the possibility of a solid plug of iodine in the top of the iodine reservoir 

that would inadvertently pressurize a melting, expanding plug of iodine in the 

bottom, causing the reservoir to burst. For instructions on how to operate the 

OMEGA controller see Appendix E.  

Pressure transducer (P5) 

The power source for the pressure transducer (P5) needs to be on at least one 

hour before the measurements start. So turn on the power source and set it to 18 

V (Calibrations were made at this voltage). The manual for the pressure 

transducer can be found at www.heise.com. 

Coolant 

Turn on the Neslab chiller bath for the coolant of the samples, located to the 

right of the oven. For this check that the drain valve of the bath is closed. This 

valve is located to the left of the bath. Then pour a propylene glycol mixture with 

water (~ 50% water) until the level shown in the inside of the bath is reached.  
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Turn on the bath using the switch located to the left side of the bath. As the 

pump starts to fill the plastic containers where the jars for the sample containers 

will be, the level in the bath will go down. Pour in more propylene glycol/water 

mixture until proper level is maintained. Set the temperature of the bath to -5°C. 

Allow enough time (one hour) for the propylene glycol/water mixture to cool 

down. 

Heating of lines, valves and copper block 

Heating of the lines outside the isothermal bath is conducted using electrical 

tapes of two types: silicone coated (Glas-col, part No 103A DET0.254), used 

mainly for 1/16” OD tubing, and fiber glass (part No BWH051-040 and BWH051-

080). The main difference is that the silicone coated tapes have a lower 

temperature rating (they should not be used above 160ºC). The tapes are 

connected to Minitrol controllers, with the setting depending on the length of 

each tape.Table A.1 shows some guidelines for Minitrol controllers. These values 

should not be taken as absolutes; every tape should be monitored so as to be set 

to the desired temperature.  
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Table A.1 Guideline settings for silicone tape connected to Minitrol. These settings should not 
be taken as absolute. The desired setting should be reached slowly, for example, by increasing 
the dial by one unit every 10-15 minutes 

Length of the tape 
(ft) 

Minitrol setting

8 7.5-8 
4-6 3-5.5 
2 Low-1.5 

 

The heating of the lines outside the oven should be done stepwise after the 

heating of the iodine reservoir is completed (30 minutes after turning on zone 6, 

see Figure A.2), starting from the tape on the tubing on the bottom of the iodine 

reservoir to the tape placed in the tubing that goes through the copper block. 

Each tape must be allowed to reach its final temperature before starting the next 

one. For the heating tapes connected to Minitrols, the desired setting should be 

reached slowly, for example, increasing the dial by one unit every 10-15 minutes.  

The valves and copper block are heated using cartridge heaters connected to 

variacs. Table A.2 show the setting for variacs used in the actual setup of the 

experiment.   

Table A.2 Current settings for the variac used in the CFA 
Location of the cartridge heater Current variac setting 

Copper block 56 
Reservoir on/off 58 

3-way valves 46 

Micrometering valves 50 
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For the lines exiting the oven, the tapes on the tubing that connect to the glass 

sampling jars should be heated first, along with the 3-way valves V-19 and V-20, 

followed by the tape on the lines coming from the oven and the MM lines (if only 

one heating tape is used from the exit of the oven to the top of the sample 

collection jars the tape, the MM valve and the 3-way valve should be heated at 

the same time). It is important to check that the micrometering valves and 3-way 

valves are open.  

After checking that the iodine reservoir, the tubing outside the oven, the 

copper block, and the valves are at a temperature of at least 130°C, the 

experimental run can start.  

EXPERIMENTAL RUN 

Set up the IR viewer, placing it in front of the view cell window.   

Close 3-way valves V-19 and V-20. Open the side of the 3-way valve V-18 

(located in the last shelf of the frame) that is connected to the HI/ H2O solution jar 

(this jar has a rubber stopper with two lines: the PEEk line, connected to the IC 

pump, and a 1/16” Teflon line, that has a constant flow of nitrogen to create a 

small pressure in the jar, that will allow correct operation of the IC pump). Prime 

the IC pump (see Manual) and set the IC pump to the desired flow rate (see 
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Appendix D) and to a maximum operating pressure of 1500 psi. Start pumping 

the HI aqueous solutions (or the water for the binary experiments) into the view 

cell. Once the accumulation of HI is observed in the view cell, the flow of iodine 

can start. For this matter, set the ISCO pump to the desired flow rate for the 

experiment and to a maximum pressure limit of 1500 psi. Close both V-13 and V-

14, which are the valves connected to the relief valves (RV-1 and RV-2) to build 

pressure in the iodine reservoir and help the start of the flow into the oven. 

Beware that the pressure will rise quickly. Once the pressure is around 500-600 

psi, open valve V-12 (use thermal protection as the handle might be hot) to allow 

the flow of iodine into the oven.  Immediately after, build pressure into the Heise 

gauge by pumping water using the secondary ISCO pump. For this open valves 

V-2 and V-4. Once the pressure is at 1000 psi, turn off the secondary ISCO pump, 

close valve V-2 and open valve V-16, which connects Heise gauge P4 and 

pressure transducer P5 to the line with the iodine reservoir. A higher pressure is 

initially required in P4 and P5 to avoid backflushing of contents from the iodine 

reservoir into the stainless steel (ss) lines. 

Allow the iodine and aqueous HI solutions to fill the view cell. Once the 

pressure in the view cell, reading from the Heise gauge P4, is approximately 100- 

200 psi above the water vapor pressure at the operating temperature, partially 
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close (¼ of a turn open) MM valves MM-1 and MM-2 and slowly open one side 

of the 3-way valves V-19 and V-20. The flow out of the top and bottom 3-way 

valves should be manipulated in such a way that the interface is maintained at a 

level that is not changing with time, preferably near the middle.  Allow the 

system to remain in steady state (interface is not moving) for at least 20 minutes 

before starting the collection of the samples.  

For the sample collection, using a screwdriver (i.e. P1 Phillips screw driver, 

Craftsman) puncture the septum seal of the cap of a 250-mL glass jar (Fisher, Part 

No. 05719450). Weight the jar along with its cap and record the weight in the cap 

using a marker. Connect it to the exit tubing coming from the 3-way valves. 

When system reaches steady-state, close the side of the 3-way valve V-20 that 

was opened while system was reaching steady-state and open the other side. 

Repeat for 3-way valve V-19. A stream of dark purple sample will start flowing 

into the glass jar immediately after the 3-way valves are opened. Iodine will start 

to condensate in the jar walls. Record the time the sample collection starts and 

collect sample for 30-45 minutes.  

In the mean time, place new weighed glass jars on the closed side of the 3-

way valves V-19 and V-20.  
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After 30-45 minutes of collecting sample, change the side of the 3-way valves. 

That is, let the sample that has just been collected rest in the chiller bath for at 

least 20 minutes to allow the contents (especially the HI, b.p. -35.5°C) to 

completely cool down. Afterwards, disconnect from the tubing exiting the 3-way 

valve and immediately seal the septa opening with tape, to avoid loss of any any 

sample material. Weigh and store in the refrigerator.  

Collect triplicate samples of the top and bottom phases for each experiment. 

At the end of the run, homogenize all top samples with KI solution. Be sure to 

clean the lid of the glass jar of all solidified iodine with the KI solution. 

Approximately 170 grams of KI are needed to homogenize a top-phase sample 

weighing around 50 grams (This means that by adding about 170 mL of KI, the 

glass jar will be almost completely full).  

SHUT-DOWN PROCEDURE 

After the samples required have been collected, the shut-down procedure is 

performed as described below.  

Connect new jars for purging purposes to 3-way valves V-19 and V-20. 

Close valve V-12 and slowly open valve V-14 (Check that the jar collecting 

this purge is not full). Turn off the 6 heating bands for the reservoir by turning 
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off the two black switches located on the gray box of the OMEGA CN616 series 

controller. Also turn off the heating tapes heating the tubing connecting the 

bottom of the reservoir to the copper block, and the cartridge heater for V-12. Set 

the flow rate of the ISCO pump pumping the working fluid to 1 mL/min and set 

the maximum pressure in the pump to be 150 psi. 

Stop the flow rate of the HI aqueous solutions. Close the side of the 3-way 

valve V-18 (located in the last shelf of the frame, close to the IC pump) connected 

to the HI/H2O jar and open the one connected to the H2O jar (as with the HI/H2O 

jar, the water jar is closed with a rubber stopper that has a Teflon line delivering 

a flow of nitrogen on top of it). Prime the pump. Start pumping water at a flow of 

7 mL/min. Open both MM valves and both sides of V-19 and V-20, so that the 

water being pumped cleans all the tubing. 

Run the secondary ISCO pump water at a flow rate of 5 mL/min into the view 

cell and out of the 3-way valves. After 5 minutes, close V-16 and open V-5.  This 

will allow water to clean the Heise gauge and the lines connected to the top of 

the view cell. 

Once the view cell is full of clean water (20-30 minutes), shut down the 

secondary ISCO pump and the IC pump. Empty the contents of the view cell by 
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opening fully MM-2 and valve-19. Turn off the rest of the heating tapes and 

cartridge heaters. Close valve V-5.  

Turn off and store the IR viewer.  

Turn off the chiller bath for sample collection turning off the switch located to 

its left. Open the purging valve to remove the propylene glycol/water mixture to 

store in a separate container. The purging valve is located to the left of the cold 

bath. 

Turn off the oven, pushing down the red main power switch to the right. 

Unplug the oven from the main chord. 

Turn off the ISCO pump and close valve V-17. Open valve V-13. 

Leave the nitrogen for the oven flowing until the oven is at room temperature 

(i.e. next day). 
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APPENDIX B. TURNING ON THE OVEN 

1. Make sure the items inside the oven are clear from the fan blade (i.e. if 

pressure tested, take out the polycarbonate protection of the view cell). Close the 

door and clamp shut.  

2. Make sure the view cell is empty or no more than quarter full with liquid. If 

there is liquid inside it must be taken out before turning on the oven to avoid 

over pressurizing the view cell during heat-up. 

3. Turn on the nitrogen flow into the oven at a minimum flow rate of 10L/min to 

displace the oxygen inside and prevent the oxidation of the tantalum. Be sure to 

confirm that the nitrogen is actually entering the oven by checking the line 

delivering the nitrogen ahead of time.  

4. Plug in the electrical cord for the oven. 

5. Set RTD decade resistance box on the oven front panel to the desired 

temperature. A table of temperature vs. resistance is pasted on the oven, but is 

off several degrees from the actual temperature, so it should be taken as a guide 

of the desired temperature only. It can also be found in the Omega Temperature 

catalog. 
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6. Set the oven over-temperature controller (blue box on front of the reservoir) 

100ºC above the operating set point to prevent temperature overrun in case the 

main controller fails. 

7. Turn oven ON switch at control box located to the right of the oven. 

NOTE: “Main Power”, “Fan”, “Nitrogen”, and “Lost Power” lights will come on 

immediately, and heaters will turn on approximately ten seconds after oven has 

been turned on (you will hear a click when they engage).  However, on a few 

occasions, an error with the controller unit for the oven has occurred, preventing 

the oven heaters from turning on. When the main power switch (fuse box) is 

moved to the “on” position, the oven fan will not turn on and the “Halt”, 

“Memory”, and “Force” lights on the oven controller are on (red color). In this 

case, the computer controller needs to be rest. This problem has been eliminated 

by turning the key on the controller to the “Disable Outputs” position and 

waiting 10-30 minutes (note that main power is “on”). After that time, the “Halt”, 

“Memory”, and “Force” lights should be off and the “Run” light should be on 

(green color). When the key is turned back to the “Run” position, the fan should 

turn on, followed by the heaters after about 10 seconds. 

8. Allow oven to heat up to the desired temperature (6 to 8 hours). 
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9. Hutchenson’s PhD dissertation has a detailed schematic of the oven, and 

there is also a notebook on the electronics in Dr. Thies’s office. 
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APPENDIX C. REFILLING WATER RESERVOIRS 

Water reservoir 1 is labeled “water for Isco pump”, and water reservoir 2 is 

labeled “water for IC pump”. The valves used to do this are located on the left 

side of the frame that holds the pumps. The filling should be done separately, 

meaning, first for one of the reservoirs and then for the other one. 

1. Open the vacuum valve to the fill the desired reservoir. 

2. Turn on the vacuum pump by turning on the black switch located in its 

power chord. The vacuum pump is in the countertop across from the ISCO 

pumps. 

3. When the reservoir is full, turn off the pump. Close the vacuum valve, 

close the nitrogen valve, and open the vacuum vent, located behind the PC 

monitor. The vacuum pressure can be read at the gauge located on top of the PC 

monitor. 
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APPENDIX D. PUMPS 

TURNING ON THE ISCO PUMP AND ITS CONTROLLER 

There are dual Isco pumps for the water into the iodine reservoir, located in 

the last level of the frame. They work using the same controller that is in the 

second level, from top to bottom, in the frame. 

1. To set a flow rate you have to choose which pump you want to run (A or B) 

This option will appear on the bottom of the controller. Once you choose the 

pump, you can set the flow rate by pressing the “flow rate” button and then 

keying in the flow rate. 

2. Set the pressure by selecting the “Limits” option in the controller. Press 1 two 

times, and introduce the limit using the numbers. Be sure that the shut down 

option is ON (This will make the pump to turn off once it has reach the pressure 

limit). You may choose to turn on the alarm if you want. While heating the 

reservoir set a limit of 150 psi. When operating the CFA set a limit of 1500 psi 

max. 

o CAUTION 

You have to set the limits for BOTH pumps, they are independent.  

When you set the limit for one of them the other one does NOT change! 
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TURNING OFF 

1. Turn off the pump and its controller using the red switch on both units. 

 

REFILLING  ISCO PUMPS 

1. Open the nitrogen valve labeled “Ethanol & Water Res. 1) to allow a flow of 

nitrogen to the top of the water reservoir (Ethanol is no longer used in our 

experiments, but the previous labels are still there). 

2. Open the “refill ISCO pump” (V-7) valve 

3. Push the refill button on the controller. Chose the pump you want to refill. 

You may refill one pump while the other one is running. Typical refilling flow 

rate is 20 mL/min, but you may change it in the same way you change the flow 

rate while running.  

  

At any point you can see the conditions for each pump in the controller by 

choosing the pump you are interested in. The manual for the dual Isco pumps is 

located on top of the pump controllers. 
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IC PUMP 

1. Turn on the pump with the button to the left of the pump. 

2. The pump should be in direct control 

3. To set the flow rate put the cursor over the flow rate value on the screen and 

key in the new value using the numbers to the left. 

4. In the same way set a limit pressure of 1500 psi (The view cell is rated to 

~3000 psi). Beware that the pressure transducer in the IC pump does not display 

an accurate reading of the system pressure while the pump is running. 

Nevertheless, after the stopping the pump, the reading of the pressure is 

displayed. Also, even though the reading of the system is not shown while 

running, the alarm for over-pressure works. This is the only safety feature in the 

HI line connecting to the view cell. 

5. Turn on the flow by pushing the “on/off” button so that the light is on the 

“on” side. 

6. The manual for the IC pump is located on top of the computer (CPU). 
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APPENDIX E. CONTROLLER FOR THE HEATING BANDS ON THE IODINE RESERVOIR 

TEMPERATURE SETTING 

 (see page 24 in the Temperature Controller manual, which is located on top 

of the controllers box) 

• Hold to the  ►  and ● buttons until the function number appears  

• Select function 72 

• Confirm function 72 

• Select 36 for set point 

• Use the ● button to change zones (1, 2, 3, 4, 5, 6) 

• Using the ► and the ▲and ▼ buttons, set the desired temperature for 

each zone. When a particular zone is desired to stay cold, set the 

temperature to 25°C. 

• When the zones are set to the desired temperature, hold the ►  and ● 

until zero. 

• Turn “ON” both switches for the heating band. 
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ALARMS  

(Alarm 1 is set as the  High limit and Alarm 2 is set as the Low limit) 

• Hold the “SET” button until zero 

• Push the “SET” button again to go to the list of parameters 

• Set: SP, A1 and A2  

• Use the up and down buttons to obtain the desired temperature or 

delta of temperatures (for the set points and alarms respectively). 

• Push the “SET” button again to select the temperature. 

• Hold the “SET” and down button to go back to the Start menu. 
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APPENDIX F. SAMPLE CALCULATION OF MASS BALANCE FOR TERNARY 

EXPERIMENTS 

 

For the conversion from weight fraction to mol fraction the following 

molecular weights were used: 

 
Molecular weights

HI 127.908 
H2O 18.016 

I2 253.809 
 
 

Table F.1 Conditions for  run CFA 21 
CFA 21  
Date: May-12-2009  

 

Feed

HI-H2O feed concentration 0.147 weight fraction HI 
HI-H2O flow rate 1 mL/min 

HI-H2O density 1.114 g/mL 
I2 flow rate 1 mL/min 

I2 density (135ºC) 3.917 g/mL 
 

The grams of each compound delivered to the system can be found by 

Equation F.1 

grams compound = ρ •C•F      Equation F.1 
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Where ρ is the density (g/mL) of the solution being pumped, C is the 

concentration of the compound in the solution (weight fraction), F is the flow 

rate of the pump (mL/min), and t is the time (min) the compound was delivered. 

For one minute of operation using the conditions in Table F.1 the grams of each 

compound delivered and their concentrations are shown in Table F.2 

 

Table F.2 Composition of the feed delivered for CFA 21 

For one minute grams w/w fraction mol fraction 
HI 0.164 0.033 0.018 

H2O 0.950 0.189 0.759 
I2 3.917 0.779 0.222 

 

The weight of Sample 1 from CFA 21 is shown in Table F.3 
 
 

Table F.3 Weights of the top and bottom samples for Sample 1 in CFA 21 
Sample 1

Top weight 47.6 g 
Bottom weight 140.53 g 
Total weight 188.13 g 

Collection time 38 min 
 
 

An overall mass balance gives the total grams of each compound that were 

delivered to the system, using Equation F.2 

mass compoundfeed = total weight•concentration of compoundfeed Equation F.2 

 119



 

Where the total weight is the sum of the top and the bottom samples and the 

concentration of compound in feed is taken from Table F.4 for each compound. 

Using Equation F.2, Table F.4 is generated 

 
Table F.4 Overall mass balance for CFA 21 

HI (grams) 6.121 
H2O (grams) 35.536 

I2 (grams) 146.473 
 
 

From the titrations performed to the top water-rich phase, the concentration 

of the top phase is known and presented in Table F.5.  

 
Table F.5 Compositions for the top phase-Sample 1 for CFA 21 

 

Top composition 
(from titrations) 

w/w fraction 

Mass of each 
compound in sample 

(grams) 
HI 0.081 3.852 

H2O 0.661 31.456 
I2 0.258 12.292 

 
Recall that the water composition was calculated by difference. 

The mass of each compound present in the sample was calculated using 

Equation F.3: 

mass of compoundtop phase = C•top weight    Equation F.3 
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Where C is the composition for each compound taken from the second 

column of Table F.5 and the top weight is the mass of the top sample taken 

from Table F.3. 

From the total mass of each compound delivered to the system and the mass 

of each compound that exited in the top phase, we can calculate the mass of each 

compound that exited in the bottom phase, following Equation F.4 

mass compoundbottom phase = mass compoundfeed – mass compoundtop phase 

             EquationF.4 

With the mass of each compound in the bottom phase being calculated from 

Equation F.4 , Table F.6 is generated.  

 
Table F.6 Calculated concentration for the bottom phase 

Bottom composition

Compound 
Mass 

(grams) w/w fraction mol fraction 
HI 2.269 0.016 0.023 

H2O 4.080 0.029 0.293 
I2 134.18 0.955 0.684 
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APPENDIX G. CFA EXPERIMENTS 

 

Run Date T (ºC) 
Mol fraction of HI 

in the feed Comments 
CFA1 Aug-08-08 160 0.025 First attempt with HI. No significant results 
CFA2 Aug-12-08 160 0.025 Bursting of 1/8 Ta line while heating 

CFA3 Aug-13-08 160 0.025 
First observations of two phases. Had to stop 

due a plug in bottom line 
CFA4 Aug-15-08 160 0.025 Located the interface for 0.025 HI 

CFA5 Sep-15-08 160 0.025/0.05 
Confirmation of interface for 0.025 HI and first

attempts with 0.05 
CFA6 Oct-03-08 160 0.05 Located the interface for 0.05 HI 
CFA7 Oct-10-08 160 0.1 Ran out of iodine 
CFA8 Oct-15-08 160 0.1 Tried 4 points for the ternary, all one phase 
CFA9 Oct-17-08 160 0.1 Tried 4 points for the ternary, all one phase 

CFA10 Oct-22-08 160 0.1 
Tried 2 points for the ternary. Then I ran out of 

iodine 
CFA11 Oct-24-08 120-140 0.1 No significant results. Some issues 
CFA12 Nov-03-08 140 0.1 IC pump leaked. 
CFA13 Nov-05-08 140 0.1 Tried 7 points for the ternary, all one phase 
CFA14 Nov-06-08 180 0.025 Ran out of iodine 
CFA15 Nov-12-08 200 0.025 Located the interface for 0.025 HI 

CFA16 Dec-04-08 160 0.025/0.05/0.075
Collected samples of the two phases for 0.025 
and 0.05. Two-phases not observed for 0.075

CFA17 Dec-12-08 200 0.025 
IC pump is not working. Check valves are not 

good. 
CFA18 Apr-03-09 225 0.025 Problems with coolant pump and heating tapes.

CFA19 Apr-08-09 225 0.025 
Content of view cell really dark. Unable to 

determine if one or two phases were present. 

CFA20 Apr-10-09 200 0.025 
Content of view cell really opaque. Unable to 
determine if one or two phases were present. 

CFA21 May-12-09 160 0.025 Collected samples of the two phases. 
CFA22 May-15-09 160 0.01 Collected samples of the two phases. 
CFA23 May-29-09 160 0.05 Collected samples of the two phases. 
CFA24 Jun-17-09 160 0.035 Problems with heating tapes 

CFA25 Jul-09-09 160 0.035 and ~0.05
Run with only HI. Then collected samples of one 

phase for the 0.035 HI. 

CFA 26 Oct-20-09 160 0.1 
2 phases observed. Big leak coming from feed 
thermocouple avoid the collection of samples 

CFA 27 Oct-25-09 160 0.035 Collected samples of the two phases. 
 

 122



 

APPENDIX H. PROPOSED MIXING EQUILIBRIUM SECTION 

 
The mixing equilibrium section currently in the system and that was used for 

the experiments described in this thesis is shown in Figure H.1 

 

Figure H.1 Mixing-equilibrium section used in the experiments presented in this 
thesis 

 
 
An improvement to this set up is shown in Figure H.2 

 123



 

Figure H.2 Proposed mixing-equilibrium section 
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