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Abstract

A Direct Numerical Simulation (DNS) database of supercritical, transitional

H2/O2 mixing and reacting shear layers is analyzed in an a priori manner to obtain

subgrid statistics relevant to Large Eddy Simulation (LES) engineering modeling.

The DNS employs a real gas state equation, detailed chemistry, accurate property

models, multicomponent, differential, and cross diffusion. The parallel simulations

were conducted using eighth order central finite differencing in conjunction with a

fourth order accurate Runge-Kutta time integration, on resolutions up to 135 million

grid points, and used up to 2,016 processing cores. All simulations are for an ambient

pressure of 100 atm and are relevant to rocket engine conditions. The particular focus

of the study is on analyzing the subgrid heat flux vector which has thus far been nearly

universally ignored in the literature. DNS provides a near “exact” description of all

of the scales of the flow. For this study the DNS database is filtered over a range

of filter widths to provide the exact LES governing equations; including those terms

requiring modeling. The filtered heat flux vector is extensively compared with the

heat flux vector calculated as a function of the filtered primitive variables (ie. the

exact LES term is compared with its form available within an actual LES). The

difference between these forms defines the subgrid heat flux vector. The subgrid

heat flux vector is found to be insignificant for pure mixing cases, however, even for

mixing cases the divergence of the subgrid heat flux vector is of the same order as
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other subgrid terms in the LES energy equation. Both the subgrid heat flux vector

and its divergence are found to be substantially larger in reacting flows due to the

associated large temperature gradients. The analysis is done both globally across the

entire flame, as well as by conditionally averaging over specific regions of the flame;

including regions of large subgrid kinetic energy, subgrid scalar dissipation, subgrid

temperature variance, flame temperature, etc. These results highlight specific regions

of the flame where modeling errors may occur in an actual LES if the subgrid heat flux

vector is neglected. The dynamic/similarity modeling approach is therefore derived

and tested for use in modeling the subgrid heat flux vector. An analysis of the

model performance indicates that although the model improves the prediction of the

filtered heat flux vector in both mixing and reacting flows, it nevertheless requires

improvement. In particular, the model performance deteriorates with increasing filter

width, and retains substantial errors when the divergence of the heat flux vector is

considered. However, the model shows improved results for the higher Reynolds

number simulation.
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Chapter 1

Introduction

Accurately estimating turbulent flow properties is the ultimate goal for ad-

vanced engineering associated with reactive flows [13, 8, 44]. In the past, engineers

had to rely on experiments [13]. However, by improving computational and numeri-

cal models, Computational Fluid Dynamics (CFD) codes can now predict turbulent

flow properties, such as temperature, velocity, [13, 8, 44, 26, 17] etc. with reasonable

levels of accuracy for relatively simple flows. There are three primary tecniques for

calculating turbulent flows: Direct Numerical Simulation (DNS), Reynolds-Averaged

Navier-Stokes (RANS), and Large-Eddy Simulation (LES) [13, 44, 26, 35, 29, 31, 49].

DNS seeks to solve the governing equations “exactly”. The errors involved

occur due to the numerical schemes used to the solve Navier-Stokes equations [31].

It aims to resolve every scale in the flow with the provided boundary and initial

conditions [36]. DNS may have the ability to solve all the scales of a flow, but only

if the mesh spacing is at most the same size as the smallest scale of the flow (i.e. the

Kolmogorov scale). High order numerical schemes are typically employed to control

numerical errors [31, 36]. Despite its capacity of giving remarkably good results,

DNS has some disadvantages which limits its capabilities [31, 36]. DNS can only be
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conducted at low, or moderate Reynolds numbers (unlike RANS, or LES), and it is

not typically suitable for complex geometries [31, 36]. Additionally, it tends to require

a massive amount of computational work which makes it costly [31, 36].

RANS is the most well-known, and commercially available method for tur-

bulent flow modeling. The Navier-Stokes equations are typically decomposed into a

time averaged mean < f > and fluctuation f
′
[31]. Time averaging produces unclosed

terms, which contain the effects of the fluctuations on the mean flow field [31]. In

order to solve the closure problem many distinct RANS models have been developed

under various levels of assumption [13].

RANS has many limitations; particularly for reacting flows. This has drawn

the attention of researchers to LES [34, 39] for obtaining more accurate predictions

of flow properties [34]. LES as a CFD method holds a place between RANS and

DNS [31, 36, 4]. In LES, the large scale eddies, which contain most of the turbulence

energy, are calculated directly by the “filtered” LES governing equations, and the

effects of only the small scales are modeled [44, 31, 4, 47, 22, 25, 9, 33, 3]. The

filtering operator is defined as: Φ = Φ + Φ′. Since, in contrast to the large scales,

the small scales are less effected by the boundary conditions, their models may have

a simpler form [22].

In turbulent flows energy is transferred from large scales to small scales (i.e.

the energy cascade). However, the energy cascade is an average flow of kinetic energy

from large scale to small scale. Locally the cascade may be in either direction [7]. As

Piomelli et. al [30] pointed out, energy transfer can be either larger or smaller than

the average value, and also can be from small scales to the large scales locally in the

flow (i.e. back scatter) [7, 30, 51, 9, 46]. Most of the models that have been proposed

in the literature only consider dissipative flow of energy from large to small scales

[32]. However, subgrid modeling should include both direct (i.e. forward scatter)
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and reverse (i.e. back scatter) energy transfer in order to make accurate turbulence

predictions [2].

Various LES models can be found in the literature and most of them are

based on “eddy-viscosity” models [46, 36], which relate the subgrid scale stresses,

τij, to the large scale (i.e. filtered) strain rate tensor, Sij =
1
2
( ∂ui

∂xj
+

∂uj

∂xi
), where the

overbar denotes the filtering operator (see below) [31]. The most common model is

the Smagorinsky model, which basically employs the eddy-viscosity concept with the

assumption of equilibrium of the small scales [9, 31, 36, 7]. Although eddy-viscosity

models are widely used in turbulence modeling, they have some primary weaknesses

which can be listed as follows: 1) the flow dependent model coefficient (i.e. the

Smagorinsky constant) is assumed to be a positive constant (no back scatter), and 2)

the model is very poorly correlated with the actual subgrid stress [51].

In response to this, Germano et. al [9] developed a new approach to obtaining

the model constant called the dynamic subgrid scale eddy-viscosity model (DSM).

It is based on the Smagorinsky model but overcomes some of the aforementioned

limitations [51]. The dynamic model is based on an algebraic identity between the

subgrid scale stresses at two varied filter widths and the large scale turbulent stresses

[9, 51]. In this way, the DSM dynamically calculates the model “constant” based on

local information and therefore inherently considers the energy transmission between

resolved and unresolved scales (i.e. back scatter) [9, 51]. However, since the DSM

coefficient fluctuates extremely over the computational domain, it is often averaged

over a homogeneous flow direction [52] or adhocly “clipped”.

In another primary LES modeling approach, Bardina et. al [1], introduced

a non-eddy-viscosity model called the scale similarity model (SSM). This approach

assumes that the smallest resolved scales are statistically similar to the largest unre-

solved scales [31, 51, 46, 36]. The SSM requires double-filtering to capture the energy
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interaction between the largest unresolved scales and the smallest resolved scales.

Under this assumption the energy spectrum has three bands: 1) the largest resolved

scales, 2) the test filter region (i.e. the smallest resolved scales) and 3) the unresolved

scales (subgrid scales) [38]. A new model for the subgrid heat flux vector is developed

in this thesis and is based on a dynamic version of the SSM.

For incompressible flows, the SSM subgrid stress is modeled as follows:

τij = Csim(uiuj−
=
ui

=
uj), (1.1)

where ui is the velocity vector, τij is the subgrid stress tensor, the overbar represents

the filtering operation, and the constant Csim is typically taken to be unity. Note

that all terms on the right hand side of Eq. (1.1) can be calculated within an actual

LES. Even though the modeled subgrid-scale stress is well correlated with the actual

stress, Eq. (1.1) is insufficiently diffusive to be used numerically [18, 23] . Therefore

a “mixed” model was proposed by Bardina et. al [1] which simply superimposes the

Smagorinsky and the scale similarity models [18, 23]. The mixed model is expressed

as follows:

τ∆,mix
ij = Csim(

−
ui

−
uj−

=
ui

=
uj)− 2(c∆s ∆)2|

−
S |

−
Sij, (1.2)

where the first two terms represent the SSM and the last term is the Smagorinsky

model [23, 31] with model constant C∆
s .

Zang et. al [51] later developed another model, the dynamic mixed model

(DMM), which basically mixes Germano’ s dynamic procedure and the mixed model

for incompressible flows. This retains the viscous qualities of the mixed model but

also retains the potential for back scatter (i.e. regions of C∆
s < 0) [51]. The new
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model was built on the mixed model proposed by Bardina et. al [1]:

τij −
δij
3
τkk = −2C∆

2|S|Sij + Lm
ij −

δij
3
Lm

kk, (1.3)

where Lm
ij is the combination of the Leonard stress, Lij = uiuj − uiuj, which is

obtained from decomposition of the SGS stress, and the Bardina scale similarity term,

β = uiuj−
=
ui

=
uj, where ∆ = (∆x1 +∆x2 +∆x3)

1/3 defines the grid spacing, and C is

the dynamic model coefficient [51]. They reported that the modified DMM produced

better results than the DSM, and unphysical fluctuations of the DSM coefficient were

reduced notably [51].

Martin et. al [22] used the SSM to model the subgrid-scale (SGS) turbulent

diffusion, viscous dissipation and viscous diffusion of a compressible turbulent flow and

found that the adopted method was superior to the eddy-viscosity and eddy-diffusivity

methods. For compresible flows a density weighted Favre filter is introduced in order

to reduce the number of unclosed terms. The Favre filter is defined as ⟨⟨f⟩⟩ =

ρf / ρ. They concluded that the FDSM provided results which better matched the

experimental data [52].

Liu et. al [19] used the dynamic subgrid scale model based on the eddy viscosity

model as proposed by Yoshizawa [50]. The model includes the turbulent stress and

heat flux models for stratified shear flow [19, 50]. They concluded that the model is

effective for LES of stratified turbulent channel flows [19]. Vreman et. al [46] proposed

subgrid-scale models for other terms that are usually neglected in the momentum

and energy equation: 1) a SSM for the pressure dilatation, 2) SSM and k-dependent

models (subgrid kinetic energy) for the turbulent dissipation rate, and 3) a DMM for

the pressure-velocity subgrid terms. LES calculations for flows at low Mach number

show that most of the subgrid terms in the energy equation are negligible. However,
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the modeled turbulent dissipation rate was found to be significant in the filtered

energy equation [46]. The study [46] concluded that the SSM was able to obtain

satisfying results proportional to the standard dynamic model. Furthermore, the

DMM was found to provide more reasonable results than either the SSM or the DSM

were able to [46].

Willamson et. al [48] tested the DMM and dynamic reconstruction methods

to identify if the model was eligible to be used to model transport of a passive scalar

in an incompressible turbulent flow. Both methods enhanced not only the prediction

the mean flow but also the turbulence statistics [48]. Jaberi et. al [15] adopted the dy-

namic/similarity method to model the filtered reaction rate of turbulent non-premixed

flames, and showed the model was capable of predicting the local SGS values. Fran-

cois et. al [45] developed a scale dependent dynamic/similarity method for modeling

the subgrid scale reactant covariance. They showed that the new developed model

provided better results than its scale-invariant counterpart [45].

Although there are many unclosed terms in the filtered LES equations, the

current work will focus on the subgrid heat flux vector that is almost universally

neglected in the literature. Typically, the heat flux vector is considered in its Fourier

form. For single species with constant properties, the filtered form of the Fourier heat

flux vector is expressed as:

Qj = −κ
∂T

∂xj

= −κ
∂

−
T

∂xj

(1.4)

where κ is the constant thermal conductivity, T is temperature and
−
T is the standard

filtered temperature. For constant density flows T is a primitive variable in LES and

Qj can be calculated “exactly” without additional closure. However, for compressible

flows, ⟨⟨T ⟩⟩ is the primitive variable that is produced in LES using the Favre filter.
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Even in this case a subgrid heat flux vector is present (and may be significant) since

−κ∂T/∂xj ̸= −κ∂⟨⟨T ⟩⟩/∂xj. Therefore, κ = κ(Ψ) is further considered:

Qj = −κ
∂T

∂xj

= −κ(Ψ)
∂⟨⟨T ⟩⟩
∂xj

+ Qsgs,j , (1.5)

where Ψ is the set of LES primitive variables. Therefore, Qsgs,j exits even for single

species compressible flows although it is nearly universally neglected without comment

nor analysis. Furthermore, for turbulent reacting mixture flows with real properties,

and real gas equations of state (EOS), under generalized diffusion including Dufour

diffusion, the subgrid heat flux vector can be expected to be significantly more com-

plex.

1.1 Objectives

Based on the above, the primary objectives of the following thesis are to: 1)

test the hypothesis that the subgrid heat flux vector may require modeling in LES

of realistic, variable density, multicomponent, turbulent flames, and 2) to test the

hypothesis that the dynamic scale similarity procedure may be suitable for modeling

the subgrid heat flux vector if it is found to be significant for LES.

This thesis begins with presenting the governing equations, chemical kinetics

and numerical approach used to create a previously generated DNS database of high

pressure mixing and reacting H2/O2 shear layers in Chapter 2. This database is then

used as an example canonical flame for an a priori analysis of the subgrid heat flux

vector and its potential significance in Chapter 3. Chapter 3 also develops and tests

a new potential model for the subgrid heat flux vector based on the dynamic scale

similarity approach. Conclusions are provided in Chapter 4.
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Chapter 2

Formulation and Numerical

Approach

2.1 Governing Equations

The following work provides a post processing analysis of a previously gener-

ated DNS database of high pressure H2/O2 mixing and reacting shear layers [4, 6].

The DNS governing equations employ a real gas state equation, real property models,

multicomponent diffusion, and detailed chemistry. The current work only gives the

summarized forms of the governing equations. For a more detailed formulation au-

thor typically refers to the following see: Palle [27], Palle and Miller [28], Vasudevan

[42] and Foster [4]. The compressible form of the Navier-Stokes, energy, and species

transport equations are:

∂ρ

∂t
+

∂

∂xj

[ρuj] = 0, (2.1)
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∂

∂t
(ρui) +

∂

∂xj

[ρuiuj + Pδij − τij] = 0, (2.2)

∂

∂t
(ρet) +

∂

∂xj

[(ρet + P )uj − uiτij +Qj +
N∑

α=1

H ′
αJ

′
j,α] = Se, (2.3)

∂

∂t
(ρYα) +

∂

∂xj

[ρYαuj + J ′
j,α] = SYα , (2.4)

P =
RT

V ′ −Bm

− Am

V ′2 + 2V ′Bm −B2
m

, (2.5)

where t is time, xj is the spatial coordinate vector, ρ is the mixture density, uj is

the mixture velocity, P is the pressure, δij is the Kronocker delta tensor, τij is the

(Newtonian) viscous stress tensor, et the total specific energy (internal plus kinetic),

Qj is the Bearman-Kirkwood form of the heat flux vector,
∑N

α=1H
′
αJ

′
j,α is the enthalpy

flux (N is the total number of species) in which the partial molar enthalpy for species

α is H ′
α = ∂H ′/∂Xα (Xα is the mole fraction of species α), and the molar mass flux

vector for species α is Jj,α. The relation J ′
j,α = MαJ

′
j,α (Mα stands for the molecular

weight of species α) converts the molar flux vector to the mass flux vector, and Se is

the chemical reaction source term for the energy equation (Se = −
∑N

α=1

•
ωα ∆H0

α),

where
•
ωα is the reaction rate for species α and ∆H0

α is the enthalpy of formation).

For Eq. (2.4), Yα represents the mass fraction of species α, and SY,α is the chemical

reaction source term for species α. Finally, for the Peng Robinson state equation [Eq.

(2.5)]. V ’ is the molar volume, T is temperature, R is the universal gas constant,

and Am and Bm are appropriately defined mixture parameters.

The effects of multicomponent, differential, and cross diffusion effects have

been included into the equations employed for the DNS calculations. Under high
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pressures, these effects have the ability to be significant [27, 12, 11, 24, 5]. Harstad

and Bellan derived the full form of the heat and mass flux vectors taking into account

the aforementioned effects by using non-equilibrium thermodynamics and fluctuation

theory (as kinetic theory is not applicable for high pressure dense fluids). The heat

flux vector may be represented as a superposition of terms proportional to tempera-

ture, pressure, and mole fraction gradients:

Qj = QT
j +QX1

j +QX2
j + ...+Q

Xα=N−1

j +QP
j , (2.6)

The superscripts indicate the variable gradient upon which the term is proportional

to. The expanded form adopted in the DNS is:

Qj = −

{
κ+

N−1∑
k=1

N∑
l>k

XkXlα
kl
BKα

kl
BK

Rρ

Mm

Dkl
m

}
∂T

∂xj

(2.7)

−
N∑
k=1

{
Xk

N∑
l ̸=k

[
Ml

M2
m

Xlα
kl
BKρD

kl
m]V,k

}
∂P

∂xj

−
N−1∑
o=1

N∑
k=1

{
RT

N∑
l ̸=k

[
Ml

M2
m

Xlα
kl
BKρD

kl
m]α

ko
D

}
∂Xo

∂xj

,

where Mm =
∑N

α=1XαMα is the mixture molecular weight. In the above, Dkl
m rep-

resents the binary mass diffusion factors, κ is the mixture thermal conductivity, and

the thermal and mass diffusion factors are represented by αkl
BK and αko

D , respectively.

The first term represents the expanded Fourier component. The remaining terms are

referred to as Dufour diffusion and represent heat flux due to both mole fraction and

pressure gradients. Conversely, the mass flux vector (not shown) contains Fickian

diffusion proportional to mole fraction gradients, and Soret diffusion proportional to

both temperature and pressure gradients. The correspponding form of the mass flux
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vector including Soret diffusion is:

J ′
j,k = −nDkl

m

N∑
l ̸=k

{
XkXl

Ml

Mm

αkl
BK

}
∂lnT

∂xj

(2.8)

−
N∑
l ̸=k

nDkl
m

R′T

{
− MkMl

MmMm

XkXlV
′
,l +

MkMk

MmMm

XkXlV
′
,k

}
∂P

∂xj

−
N−1∑
o=k

{
N∑
l ̸=k

[
MkMl

MmMm

XknD
kl
mα

lo
D +

MlML

MmMm

XlnD
lk
mα

ko
D ]

}
∂Xo

∂xj

,

Almost universally, when cross-diffusion is significant it is related to Soret

diffusion with the Dufour effect being considered negligible [12, 11, 24, 5]. However,

it is mathematically inconsistent to neglect the Dufour terms while retaining the Soret

terms as violations of the second law are possible [10]. In addition, the non-linear

nature of the Dufour terms may affect the resulting subgrid heat flux vector defined

as Qsgs,j = Qj(Ψ)− Qj(Ψ) (see below).

The DNS further employs realistic property models for all κ, Dkl
m, ν , Cp

αkl
BK and αkl

D [4, 27, 42, 37]. The thermal conductivity, κ, is calculated by the Stiel

Thodos method. The Fuller method is employed to calculate the low pressure binary

diffusion coefficient [27, 37]. The Takahashi correlation is employed to calculate the

high pressure departures [27, 37]. The Lucas method is adopted to calculate the

mixture viscosity [27, 37]. The high pressure heat capacity is calculated from the

Peng-Robinson EOS equation [27] low pressure values are provided by Reid et. al [37],

or the NIST webbook. Lastly, the model developed by Vasudevan [42] and Vasudevan

et. al [43] is employed for the thermal diffusion coefficients. Detailed information and

explanation of all property models can be found in Refs. [4, 27, 42, 37].
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2.2 Chemical Kinetics and Numerical Approach

The detailed chemistry which is the basis of the DNS calculation [4] includes a

pressure dependent 19-step and 8-species (H2, O2, H2O, OH, H, O, HO2 and H2O2)

mechanism developed by Sohn et. al [41]. The details of the mechanism are provided

in Table 2.1. The high pressure H2/O2 flame is chosen as an example flame both

due to the availability of a pre-existing DNS database, as well as for its application

to rocket engines.

The DNS data used in this work is obtained from the code developed by Palle

[27]. In the beginning, the DNS flame code was designed as 1D simulation [27], and

it was extended to 3D analysis by Foster [4]. The DNS data used in this work was

calculated by solving the governing equations for 3D, temporally developing, non-

premixed, mixing and reacting shear layers of O2/H2. Details of the computational

domain, mesh and numerical scheme used can be found in Ref. [4]. Figure 2.1 depicts

the computational domain with counter-flowing streams of fuel, H2, and oxidizer, O2.

The mixing occurs at the center of the domain. The initial vorticity thickness, δ0, is

defined as the initial transition length from one free stream to the other. The “flame

Reynolds number” is defined by ReF = U0δ0ρ0/µ0; where U0 is the velocity difference

between the two streams, ρ0 is the averaged density, and µ0 is the averaged viscosity

from each stream value. For the current work, two distinct reacting simulations are

considered for ReF numbers 850 and 2500. An additional purely mixing simulation is

also considered at Re = 2000. For all cases the initial temperature is T0 = 700K, and

the initial pressure is P0 = 100atm throughout the domain. The convective Mach

number is set to be 0.35.

Equally spaced grid points from 0 ≤ x1 ≤ L1 and 0 ≤ x3 ≤ L3 in x1 and

x3 directions are used for the computational mesh. In the x2 direction an analytical

12



No. Reaction A [cm.mole.s] β Eα [kJ/mole]
1. O2 +H ⇀↽ OH +O 2.00× 1014 0.00 70.30
1. O2 +H ⇀↽ OH +O 2.00× 1014 0.00 70.30
2. H2 +O ⇀↽ OH +H 5.06× 1014 2.67 26.30
3. H2 +OH ⇀↽ H2O +H 1.00× 108 1.60 13.80
4. OH +OH ⇀↽ H2O +O 1.50× 109 1.14 0.42
5. H +H +M ⇀↽ H2 +M 1.80× 1018 −1.00 0.00
6. H +OH = M ⇀↽ H2O +M 2.20× 1022 −2.00 0.00
7. O +O +M ⇀↽ O2 +M 2.90× 1017 −1.00 0.00
8. H +O2 +M ⇀↽ HO2 +M 2.30× 1018 −0.80 0.00

kα 4.52× 1013 0.00 0.00
9. HO2 +H ⇀↽ OH +OH 1.50× 1014 0.00 4.20
10. HO2 +H ⇀↽ H2 +O2 2.50× 1013 0.00 2.90
11. HO2 +H ⇀↽ H2O +O 3.00× 1013 0.00 7.20
12. HO2 +O ⇀↽ OH +O2 1.80× 1013 0.00 −1.70
13. HO2 +OH ⇀↽ H2O +O2 6.00× 1013 0.00 0.00
14. HO2 +HO2 ⇀↽ H2O2 +O2 2.50× 1011 0.00 −5.20
15. OH +OH +M ⇀↽ H2O2 +M 3.25× 1022 −2.00 0.00

kα 7.45× 1013 −0.37 0.00
16. H2O2 +H ⇀↽ H2 +HO2 1.70× 1012 0.00 15.70
17. H2O2 +H ⇀↽ H2O +OH 1.00× 1013 0.00 15.00
18. H2O2 +O ⇀↽ OH +HO2 2.80× 1013 0.00 26.80
19. H2O2 +OH ⇀↽ H2O +HO2 5.40× 1012 0.00 4.20

Table 2.1: Detailed chemical kinetic mechanism for H2/O2 combustion [41] and cor-
responding forward reaction constants: kr = AT βexp(−EA/RT ). Third body effi-
ciencies: H2 = 1.00, O2 = 0.35, H2O = 6.5. Reaction rate coefficients dependent on
pressure are calculated as kr = k∞k0[M ]/(k∞ + k0[M ]) where k0, and k∞ are the low
and high pressure reaction rate coefficients, respectively.
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mapping function proposed in [14] is employed to stretch the mesh in the cross-

stream direction. In the vorticity thickness region a fine grid spacing (∆x2 ≈ ∆x1)

is used, while the spacing stretches towards each of the free stream boundaries where

∆x2 ≈ 5∆x1 [4]. Assigning a coarser mesh in the free stream regions reduces the

computational time significantly. Detail of the mapping the can be found in [4].

An eight order central explicit finite difference method and a forth order

Runge-Kutta are employed to solve for the spatial and time derivatives, respectively.

At each Runge-Kutta stage tenth order filtering is also applied to control spurious

oscillations. The message passing interface (MPI) routines are used to parallize the

code in all three directions. Further information about the numerical algorithms can

be found in Ref. [16].

U0 = ∆U0

ReF = ρ0U0L0/µ0

Mc = U0/c0

δ0

-UH2 ≈ 715 m/s

Hydrogen

+UO2 ≈ 180 m/s

Oxygen

ICs : Isothermal
Isobaric

Free StreamFree Stream
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P
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c
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eriodic
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Figure 2.1: Computational domain for the reacting temporal mixing layer.

The database consists of three distinct simulations; two reacting (ReF =
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850, 2500) and one non-reacting (Re = 2000). The simulations were conducted on

the Palmetto Cluster at Clemson University with resolutions up to 560 x 720 x 336

≈ 135 million grid points and using as many as 2, 016 processing cores. Detailed

information can be found in Table 2.2.

Non-Reacting Reacting
Re = 2000 ReF = 850 ReF = 2500

Species1 O2 O2 O2

Species2 H2 H2 H2

T0(K) 700 700 700
P0(atm) 100 100 100

Mc 0.35 0.35 0.35
N1 ×N2 ×N3 3.42× 107 3.42× 107 1.35× 108

N1 384 384 560
N2 384 384 720
N3 232 232 336

Table 2.2: Simulation values for the DNS calculations.
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Chapter 3

Results

This chapter presents the unique and novel work of the present thesis. First,

the subgrid heat flux vector and its relative importance are a priori analyzed from

the DNS database in Section 3.1. Then, upon determining that the subgrid heat flux

is significant for reacting flows a dynamic scale similarity model is derived and tested

in Section 3.2.

3.1 Subgrid Analysis

The idea of LES is to directly calculate only the large eddies while modeling the

effects of the small scales. To be able to categorize the large and small scale eddies a

filtering procedure is applied to the Navier-Stokes equations. The filtering procedure

basically separates eddies into two parts, resolved eddies (which carry most of the

turbulence energy) and unresolved eddies (whose effects need to be modeled). The

LES equations include a filtered component which involves instantaneous, resolved

variables (Φ), plus a subgrid fluctuating component, Φ = Φ + Φ′. A general filtered
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variable, Φ, is defined by the convolution integral:

Φ(x) =

∫
Ω

G(xj − x′
j)Φ(x

′
j)dx

′
j, (3.1)

where G(xj) is the filter kernel defined over the domain Ω. The current work uses a

spherical top-hat filter with diameters ∆/∆x1 = 0, 6, 10, 16, 20, and 25. Here, ∆ is

the filtering sphere diameter. As compressible flow is considered for this work, em-

ploying the Favre filtering concept is necessary. The Favre filter is a density-weighted

filtering operation, and is equivalent to a standard filter for constant density flows.

Favre filtering can be related to the standard filtering by the following expression,

⟨⟨Φ⟩⟩ = ( ρΦ ) / ρ (⟨⟨.⟩⟩ indicates the Favre filtering.). Decomposition of a Favre fil-

tered instantaneous variable includes the Favre filtered component plus a fluctuating

component, Φ = ⟨⟨Φ⟩⟩+ Φ′′.

The exact (unclosed) filtered LES governing equations can be expressed as

follows:

∂ ρ

∂t
+

∂

∂xj

[ ρ ⟨⟨uj⟩⟩] = 0, (3.2)

∂

∂t
(ρ ⟨⟨ui⟩⟩) +

∂

∂xj

[ ρ ⟨⟨uiuj⟩⟩+ Pδij − τij ] = 0, (3.3)

∂

∂t
(ρ ⟨⟨et⟩⟩) +

∂

∂xj

(ρ ⟨⟨et⟩⟩+ Puj − uiτij +Qj +
N∑

α=1

H ′
αJ

′
j,α

 = Se, (3.4)
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∂

∂t
( ρ ⟨⟨Yα⟩⟩) +

∂

∂xj

[ ρ ⟨⟨Yαuj⟩⟩+ ⟨⟨J ′
j,α⟩⟩] = SYα . (3.5)

P =
RT

V ′ −Bm

− Am

V ′2 + 2V ′Bm −B2
m

, (3.6)

The set of LES primitive variables is Ψ = ρ, ⟨⟨uj⟩⟩, ⟨⟨et⟩⟩, ⟨⟨Yα⟩⟩. Any term which

cannot be directly obtained from this set of variables is unclosed and therefore re-

quires modeling. For example, the non-linear convective term in Eq. 3.3 is typically

decomposed as:

⟨⟨uiuj⟩⟩ = ⟨⟨ui⟩⟩⟨⟨uj⟩⟩+ τsgs,ij (3.7)

where τsgs,ij = [⟨⟨uiuj⟩⟩ −⟨⟨ui⟩⟩⟨⟨uj⟩⟩] and is referred to as the subgrid stress tensor.

As DNS contains all the information about any instantaneous variable, the

“exact” subgrid information may be accessed by filtering the DNS data. This is

referred to the a priori approach to LES analysis (in contrast to the a posteriori

approach in which an actual LES is performed).

Even though many unclosed terms exist in the LES filtered equations, this

work focuses on the heat flux vector, Eq. (2.7). A detailed analysis and modeling for

a canonical high pressure H2/O2 reacting shear layer is performed. The magnitude

of the exact filtered heat flux, |Qj(Ψ)|, is compared with the magnitude of heat flux

vector calculated using only filtered primitive variables, |Qj(Ψ)|. Here, Ψ represents

the set of primitive variables used in the DNS, Ψ = [ρ, uj, et, Yα]. Other variables

such as temperature and pressure are obtained from this base set; eg. T (Ψ) and

P (Ψ). Similarly, Eq. (2.7) provides the heat flux vector, Qj(Ψ). For LES, variables

other than the set Ψ can only be approximated as functions of Ψ; eg. T (Ψ), P (Ψ),
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and Qj(Ψ). Therefore, terms calculated in such a manner are not necessarily either

equal to, nor even approximately equal to, the terms in the exact LES equations.

For example, P (Ψ) appears in the exact LES momentum equation. However, only

P (Ψ) can be calculated. The difference, therefore, defines an unclosed “subgrid”, or

“subgrid scale” (SGS) pressure; P (Ψ) = P (Ψ) + Psgs. Subgird terms such as this

may, or may not, require modeling depending in part on their magnitude with respect

to both the resolved term [eg. P (Ψ)] as well as with respect to other terms in the

LES equations.

The subject of the current work is in testing whether or not the subgrid heat

flux vector defined by Qsgs,j = Qj(Ψ) − Qj(Ψ) is significant for reacting flows. A

priori testing using the DNS data is chosen as all forms of the heat flux and subgrid

heat flux vectors can be calculated “exactly”. The “exact” filtered heat flux vector,

which cannot be calculated within an actual LES, is expressed as follows:

Qj(Ψ) = −

{
κ+

N−1∑
k=1

N∑
l>k

XkXlαkl
BKα

kl
BK

Rρ

Mm

Dkl
m

}
∂T

∂xj

(3.8)

−
N∑
k=1

{
Xk

N∑
l ̸=k

[
Ml

M2
m

Xlαkl
BKρD

kl
m]V,k

}
∂P

∂xj

−
N−1∑
o=1

N∑
k=1

{
RT

N∑
l ̸=k

[
Ml

M2
m

Xlαkl
BKρD

kl
m]α

ko
D

}
∂Xo

∂xj

,

In contrast, the “resolved” heat flux vector that can be calculated within an LES is:
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Qj(Ψ) = −

{
κ(Ψ) +

N−1∑
k=1

N∑
l>k

Xk(Ψ)Xl(Ψ)αkl
BK(Ψ)αkl

BK(Ψ)
Rρ

Mm

Dkl
m(Ψ)

}
∂T (Ψ)

∂xj

(3.9)

−
N∑
k=1

{
Xk(Ψ)

N∑
l ̸=k

[
Ml

M2
m

Xl(Ψ)αkl
BK(Ψ)ρDkl

m(Ψ)]V,k(Ψ)

}
∂P (Ψ)

∂xj

−
N−1∑
o=1

N∑
k=1

{
RT (Ψ)

N∑
l ̸=k

[
Ml

M2
m

Xl(Ψ)αkl
BK(Ψ)ρDkl

m(Ψ)]αko
D (Ψ)

}
∂Xo(Ψ)

∂xj

,

where all the terms, f(Ψ) depend on the variable set Ψ and can be calculated in

LES environment. The difference between the Eqs. (3.8)-(3.9) gives the subgrid heat

flux vector which might require modeling and is the focus of the current work. The

subgrid analysis aims to analyze the possible necessity of modeling the subgrid heat

flux vector by calculating the correlation coefficients and ratio distributions of |Qj(Ψ)|

to |Qj(Ψ)|. Ratios relative to other subgrid terms in the filtered energy equation [Eq.

(3.4)] are also considered. Note that there are a number of ways in which to interpret

the proper caclulation of Qj(Ψ) within an actual LES. Equation (3.9) above can

certainly be used directly. However, for current research in our research group has

already shown that the subgrid pressure and temperature can be significant. Models

for these terms have been proposed and under further development [20, 21]. In such a

case an LES would actually have more accurate estimates of the filtered temperature

and pressure available:

⟨⟨T (Ψ)⟩⟩ ≈ T (Ψ) + Tsgs,model, (3.10)

P (Ψ) ≈ P (Ψ) + P (Ψ) + Psgs,model, (3.11)
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(⟨⟨T (Ψ)⟩⟩ is typically used in LES for compressible flows). Given such models, it

would make sense to consider them in calculating Qj(Ψ). Therefore, for the purposes

of this work, we assume “perfect” models for the SGS temperature and pressure area

available as a best case scenario (i.e. replacing T (Ψ) and P (Ψ) with T (Ψ)] and P (Ψ)

above). As such, the heat flux is calculated as:

Qj(Ψ) = −

{
κ(Ψ) +

N−1∑
k=1

N∑
l>k

Xk(Ψ)Xl(Ψ)αkl
BK(Ψ)αkl

BK(Ψ)
Rρ

Mm

Dkl
m(Ψ)

}
∂T (Ψ)

∂xj

(3.12)

−
N∑
k=1

{
Xk(Ψ)

N∑
l ̸=k

[
Ml

M2
m

Xl(Ψ)αkl
BK(Ψ)ρDkl

m(Ψ)]V,k(Ψ)

}
∂P (Ψ)

∂xj

−
N−1∑
o=1

N∑
k=1

{
RT (Ψ)

N∑
l ̸=k

[
Ml

M2
m

Xl(Ψ)αkl
BK(Ψ)ρDkl

m(Ψ)]αko
D (Ψ)

}
∂Xo(Ψ)

∂xj

,

The analysis is done in a both “global” flame manner (for the current work

conditioned on 0.01 ≤ ϕ ≤ 0.99; see below), as well as for local regions which are

defined by conditionally filtering on:

* The stoichiometric condition, 0.1 ≤ ϕ ≤ 0.2,

* Large filtered temperature variance, ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2,

* Large subgrid kinetic energy, ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2,

* Large filtered mixture fraction variance, ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2,

* High reaction rate regions, ωα/E(ωα ≥ 2),

* High filtered scalar dissipation, χϕ/E(χϕ) ≥ 2,

* Elevated temperature regions, T/T0 ≥ 2,
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where E(Φ) indicates the expected value (average) over the global flame region

(0.01 ≤ ϕ ≤ 0.99). In the above, ϕ is the mixture fraction which is defined as

follows:

ϕ =
sY H2 − Y O2 + Y O2

0

sY H2
0 + Y O2

0

, (3.13)

where 0 ≤ ϕ ≤ 1, s is the stoichiometric constant, Y H2 and Y O2 are the local mass

fraction for H2 and O2, respectively, and Y H2
0 and Y O2

0 are the corresponding free

stream values. In the pure fuel region ϕ = 1, and in the pure oxidizer region ϕ = 0.

Intermediate values indicate varying degrees of mixedness. The mixture fraction and

its dissipation are important quantities in many turbulent combustion models. The

reason for considering each of these regions seperately is that flame dynamics such

as ignition, extinction and reignition are known to be highly localized. Therefore,

if a model were deemed to perform well when only globally averaged it may not

necessarily perform well locally in important flame regions.

To be able to neglect the subgrid heat flux vector, the condition of Qj(Ψ) ≈

Qj(Ψ) should at least be satisfied. This would be indicated by the correlation coef-

ficients between these two terms near to unity for all regions above (defined below).

However, if the correlation coefficients have low values, modeling may be required for

the subgrid heat flux vector. Vector magnitudes, and possibly directions, also need

to be considered as correlation coefficients only indicate a statistical relationship, but

not necessarily an equal amplitude (e.g. sin(x) and 100sin(x) have a unity correlation

coefficient).
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3.1.1 Correlation Coefficients

In Fig. 3.2 (a), correlation coefficients are depicted for the reacting flow at

ReF = 850, C(|Qj(Ψ)|, |Qj(Ψ)|), for the actual heat flux vector magnitude and the

heat flux vector magnitude calculated using filtered primitive variables. For random

variables A and B the correlation coefficient is expressed as follows:

C(A,B) =
E[(A− E(A))((B)− E(B))]√

E[(A− E(A))]2E[((B)− E(B))]2
, (3.14)

Correlation coefficient may vary over the range:

−1 ≤ C(A,B) ≤ 1. (3.15)

Zero correlation coefficient implies no statistical relationship between A and B, 1

indicates perfect correlation, and −1 indicates perfect negative correlation.

Correlation coefficients are calculated using various filter widths (∆/∆x1 =

0, 6, 10, 16, 20), and results are conditioned on both global and the aforementioned

conditioned flow regions [i.e. the expectation operator is conditioned exclusively to

points in these particular regions Eq. (3.14)]. For the case of ∆/∆x1 = 0 all of the

correlation coefficients of Qj(Ψ) and Qj(Ψ) are unity both globally and for localized

regions of the flow as a zero filter width yields the original DNS data. It is worth

mentioning that the filter width is non-dimensionalized by the initial mixing layer

vorticity thickness, δω0, in most of what follows. Figure 3.1.1 shows relative filter

widths to scale for the ReF =2500 flame at a time of t∗= 115 [20]. Hereinafter, only

the “long time” results are analyzed for each simulation. These correspond to non-

dimensional times of t∗ =80, 115, for the ReF = 850 and 2500 cases, respectively. A

time of t∗ =80 is used for the mixing case.
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Figure 3.1: Relative filter widths. The contours are for temperature for the ReF =
2500 flame at t∗ = 115 [20].
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Figure 3.2 presents all correlation coefficients for Qj(Ψ) and Qj(Ψ) as func-

tions of the filter width for both the ReF = 850 and 2500 flames. As the filter width

is increased, the general tendency of the globally conditioned correlation coefficient

is to decline and to remain around 0.7. In Fig. 3.2 (a) (ReF = 850), the regions, III-

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, IV- ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, V- ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, cor-

relation coefficients are ≤ 0.5 which indicates that some regions are poorly correlated.

For large filtered temperature variance, ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, the correlation coef-

ficient increases from ≈ 0.3 to ≈ 0.5 with increasing filter widths. Even though the

correlation coefficient increases, the values still remains poor. Another poorly corre-

lated region is the large subgrid kinetic energy, ⟨ksgs⟩/E(⟨ksgs⟩) ≥ 2, remains below

0.4 for all the filter widths. For the region corresponding to the large filtered mixture

fraction variance, ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, however, the correlation coefficient has the

tendency to increase again, though it only reaches values ≈ 0.5.

In Fig. 3.2 (b), correlation coefficients for, C(|Qj(Ψ)|, |Qj(Ψ)|), are depicted

for ReF = 2500; again for the same filter widths and regions which are considered

in Fig. 3.2 (a). At higher Reynolds number, however, the correlation coefficients

possess better values for all the filter widths in all the regions concerned; though the

regions of elevated temperature, ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, and large reaction rate,
•
ω
OH

/E(
•
ω
OH

≥ 2), in particular are still very poor. Regions of large subgrid temperature

variance are indicative of large local temperature gradients (and therefore large local

heat flux). The detailed correlation coefficients are provided in Tables 3.1 - 3.4 at

ReF = 850 and 2500 for ∆/δω,0 ≈ 0.71 - 2.4. All of the raw data used to generate the

correlation coefficients are provided in the form of scatter plots in Figs. 3.3 and 3.4

for ReF = 850 and 2500, respectively.

Figure 3.5 shows the correlation coefficients for the pure mixing case at Re =

2000 for varying filter widths, ∆/δw0 ≈ 0.71/2.4, and detailed information can be
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seen in Tables 3.1 - 3.4 for ∆/δω,0 ≈ 0.71/2.4. The correlation coefficients show

that the subgrid heat flux vector may be important for the pure mixing case as well.

However, subgrid vector magnitudes relative to both the filtered variables and other

subgrid terms in the LES energy equation need to be examined before more definitive

conclusions can be made.

Table 3.5 includes the correlation coefficients for, C(|∂Qj(Ψ)/∂xj|, |∂Qj(Ψ)/∂xj|),

for both reacting cases at filter width, ∆/δω,0 ≈ 1.92. The values indicate that corre-

lation significantly deteriorated when considering the divergence. This is common for

LES SGS models since differentiation enhances small scale effectas, and SGS terms

are inherently small scale.
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Figure 3.2: Correlation coefficients between the actual heat flux vector magnitude,
|αj|= |Qj(Ψ)|, and the heat flux vector magnitude calculated using filtered prim-
itive variables, |βj|= |Qj(Ψ)|. (a) ReF=850, (b) ReF=2500, in regions described
by: I- 0.01 ≤ ϕ ≤ 0.99, II- 0.1 ≤ ϕ ≤ 0.2, III- ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, IV-

⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, V- ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, VI-
•
ω
OH

/E(
•
ω
OH

≥ 2), VII-

χϕ/E(χϕ) ≥ 2 and VIII- T/T0 ≥ 2.

26



|βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

(a) |βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.005 0.01 0.015
0

0.005

0.01

0.015

(b)

|βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.005 0.01 0.015
0

0.005

0.01

0.015

(c) |βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

(d)

27



|βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

(e) |βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.0025 0.005 0.0075 0.01
0

0.0025

0.005

0.0075

0.01

(f)

|βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

(g) |βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025

(h)

Figure 3.3: Scatter plots of |αj| vs. |βj|, where |αj| = |Qj(Ψ)|, and |βj|= |Qj(Ψ)|,
at ReF =850 in regions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c)
⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, (f)
•
ω
OH

/E(
•
ω
OH

≥ 2), (g) χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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3.1.2 Vector Magnitude Ratio Distributions

An analysis of the relative magnitudes of the various heat flux vector forms is

done for both high pressure reacting flows at ReF =850 and 2500 and for the non-

reacting flow at Re =2000. The probability density function (PDF) of the ratios of

|Qj(Ψ)| and |Qj(Ψ)| are calculated to more deeply examine the role of the subgrid

heat flux vector, |Qsgs,j |. Additionally, the ratios of |∂Qj(Ψ)/∂xj| and |∂Qj(Ψ)/∂xj|,

are also tested, as it is the divergences that appear in the LES energy equation.

Figures 3.6 and 3.7 include both the PDFs of the ratios of |Qj(Ψ)|, |Qj(Ψ)| and their

29



|βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.002 0.004 0.006 0.008
0

0.002

0.004

0.006

0.008

(e) |βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.002 0.004 0.006
0

0.002

0.004

0.006

(f)

|βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.002 0.004 0.006 0.008
0

0.002

0.004

0.006

0.008

(g) |βj|/ρref u3
ref

|α
j|/

ρ re
f
u3 re

f

0 0.002 0.004 0.006 0.008 0.01
0

0.002

0.004

0.006

0.008

0.01

(h)

Figure 3.4: Scatter plots of |αj| vs. |βj|, where |αj| =|Qj(Ψ)|, and |βj|= |Qj(Ψ)|,
at ReF=2500 in regions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c)
⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, (f)
•
ω
OH

/E(
•
ω
OH

≥ 2), (g) χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.5: Correlation coefficients between the actual heat flux vector magnitude,
|αj|= |Qj(Ψ)|, and the heat flux vector magnitude calculated using filtered primitive
variables, |βj|= |Qj(Ψ)|. Re=2000, in regions described by: I- 0.01 ≤ ϕ ≤ 0.99, II-
0.1 ≤ ϕ ≤ 0.2, III- ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, IV- ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, V- ⟨⟨ϕ′′2⟩⟩
/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, VI- χϕ/E(χϕ) ≥ 2.

Regions ReF Numbers
850 2500 2000

0.01 ≤ ϕ ≤ 0.99 0.78 0.91 0.85
0.1 ≤ ϕ ≤ 0.2 0.71 0.88 0.90

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.30 0.69 80
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.31 0.80 0.60
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.41 0.80 0.78

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.73 0.80 N/A

χϕ/E(χϕ) ≥ 2 0.78 0.91 0.85
T/T0 ≥ 2 0.77 0.91 N/A

Table 3.1: Correlation coefficients without model between the actual heat flux vec-
tor magnitude |Qj(Ψ)|, and the heat flux vector magnitude calculated using filtered
primitive variables, |Qj(Ψ)|, at filter width, ∆/δω0 ≈ 0.71.
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Regions ReF Numbers
850 2500 2000

0.01 ≤ ϕ ≤ 0.99 0.74 0.86 0.81
0.1 ≤ ϕ ≤ 0.2 0.73 0.85 0.85

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.36 0.59 0.68
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.36 0.81 0.53
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.57 0.82 0.77

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.79 0.77 N/A

χϕ/E(χϕ) ≥ 2 0.70 0.86 0.81
T/T0 ≥ 2 0.74 0.86 N/A

Table 3.2: Correlation coefficients without model between the actual heat flux vec-
tor magnitude |Qj(Ψ)|, and the heat flux vector magnitude calculated using filtered
primitive variables, |Qj(Ψ)|, at filter width, ∆/δω0 ≈ 1.44.

Regions ReF Numbers
850 2500 2000

0.01 ≤ ϕ ≤ 0.99 0.70 0.84 0.78
0.1 ≤ ϕ ≤ 0.2 0.73 0.83 0.77

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.40 0.52 0.52
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.36 0.81 0.58
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.55 0.81 0.74

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.80 0.75 N/A

χϕ/E(χϕ) ≥ 2 0.63 0.83 0.78
T/T0 ≥ 2 0.70 0.82 N/A

Table 3.3: Correlation coefficients without model between the actual heat flux vec-
tor magnitude |Qj(Ψ)|, and the heat flux vector magnitude calculated using filtered
primitive variables, |Qj(Ψ)|, at filter width, ∆/δω0 ≈ 1.92.

32



Regions ReF Numbers
850 2500 2000

0.01 ≤ ϕ ≤ 0.99 0.68 0.81 0.76
0.1 ≤ ϕ ≤ 0.2 0.75 0.80 0.74

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.47 0.45 0.50
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.38 0.82 0.60
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.53 0.82 0.71

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.79 0.70 N/A

χϕ/E(χϕ) ≥ 2 0.61 0.85 0.76
T/T0 ≥ 2 0.67 0.80 N/A

Table 3.4: Correlation coefficients without model between the actual heat flux vec-
tor magnitude |Qj(Ψ)|, and the heat flux vector magnitude calculated using filtered
primitive variables, |Qj(Ψ)|, at filter width, ∆/δω0 ≈ 2.4.

Regions ReF Numbers
850 2500

0.01 ≤ ϕ ≤ 0.99 0.22 0.46
0.1 ≤ ϕ ≤ 0.2 0.22 0.51

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.19 0.56
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.25 0.50
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.14 0.47

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.19 0.41

χϕ/E(χϕ) ≥ 2 0.22 0.46
T/T0 ≥ 2 0.22 0.45

Table 3.5: Correlation coefficients without model between the divergence of actual
heat flux vector magnitude, |∂Qj(Ψ)/∂xj| and the divergence of heat flux vector
magnitude calculated using filtered primitive variables, |∂Qj(Ψ)/∂xj|, at filter width,
∆/δω0 ≈ 1.92.
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divergences at ReF=850, and 2500 respectively. Figures 3.6 and 3.7 validate the

previous results for correlation coefficients. The figures present PDFs depicted for

ratios of both |Qj(Ψ)|, |Qj(Ψ)| and their divergences. If Qj(Ψ) = Qj(Ψ) exactly then

the PDFs would be delta functions centered at unity, δ(1). With this in mind, the

figures clearly show that both the vector and divergence magnitudes PDFs can be

substantially different than unity; i.e. the SGS heat flux is substantial. In Figs. 3.6

and 3.7 the PDFs of the ratios of |∂Qj(Ψ)/∂xj| and |∂Qj(Ψ)/∂xj| are more flattened

than the PDFs of the ratios of the |Qj(Ψ)| and |Qj(Ψ)|, which indicates statistically

the divergences are not similar. Once the existence of the subgrid heat flux vector

is validated, the ratio of the magnitude of the exact heat flux vector, |Qj(Ψ)| and

the ratio of the magnitude of the subgrid heat flux vector,|Qsgs,j | to the magnitude

of subgrid of other terms, |(Puj)sgs| and |(ρetuj)sgs|, in the LES energy equation is

considered. The ratio of the terms and the ratios of their gradients that are calculated

are:

* |Qj(Ψ)|/|(ρetuj)sgs|

* |Qj(Ψ)|/|(Puj)sgs|

* |Qsgs,j |/|(ρetuj)sgs|

* |Qsgs,j |/|(Puj)sgs|

* |∂Qj(Ψ)/∂xj|/|∂(ρetuj)sgs/∂xj|

* |∂Qj(Ψ)/∂xj|/|∂(Puj)sgs/∂xj|

* |∂Qsgs,j/|∂xj|/|∂(ρetuj)sgs/∂xj|

* |∂Qsgs,j/|∂xj|/|∂(Puj)sgs/∂xj|.
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Figures 3.8 - 3.11 include the PDFs of the ratios of magnitude of the subgrid

terms themselves, Figures 3.12 - 3.15 present the PDFs of ratios of the divergences.

Except the high reaction rate and elevated temperature regions, all the following

figures include both reacting and non-reacting simulations (these regions being inap-

plicable to the mixing case).

In Figs. 3.8 3.9, while the subgrid pressure work term, |(Puj)sgs|, is smaller

than the exact heat flux vector, |Qj(Ψ)|, the subgrid convective total energy term,

|(ρetuj)sgs| is larger than |Qj(Ψ)|. Additionally, |(Puj)sgs| and |(ρetuj)sgs| are bigger

than the exact heat flux vector in the flow at ReF =2500. In Fig. 3.10, it can be seen

that the subgrid convective total energy term is significantly larger than the subgrid

heat flux vector, |Qsgsj |. However, the subgrid heat flux vector seems is generally

smaller than the subgrid pressure work term. Figure 3.11 shows that |Qsgsj | is of the

same order as |Qj(Ψ)|, which indicates that the subgrid heat flux vector is as impor-

tant as the exact heat flux vector. Figures 3.12 and 3.13 indicate that the divergences

of |(Puj)sgs| and |(ρetuj)sgs| are still larger than the divergence |Qj(Ψ)|. Figure 3.14

presents the PDFs of the ratio of |∂Qsgsj/∂xj| to |∂(ρetuj)sgs/∂xj|. The ratios show

that the term |∂Qsgsj/∂xj| is larger than |∂(ρetuj)sgs/∂xj| both globally and locally.

However, the divergence of subgrid pressure work magnitude is significantly bigger

than the divergences of subgrid heat flux vector for both reacting and non-reacting

flows.

The results presented above contain a large wealth of information relevant to

LES of reacting flows. However, for the purposes odf the present thesis, the primary

conclusion is that the SGS heat flux vector can be a substantial term in the LES

energy equation and therefore, may require modeling.
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Figure 3.6: PDFs containing the ratios of |αj|/|βj|, where |αj| = |Qj(Ψ)|, |βj| =

|Qj(Ψ)|, and |∂αj/∂xj|/|∂βj/∂xj| = |∂Qj(Ψ)/∂xj|/|∂Qj(Ψ)/∂xj| at ReF =850 in re-
gions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥
2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, (f)

•
ω
OH

/E(
•
ω
OH

≥ 2), (g)

χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.7: PDFs containing the ratios of |αj|/|βj|, where |αj| = |Qj(Ψ)|, |βj| =

|Qj(Ψ)|, and |∂αj/∂xj|/|∂βj/∂xj| = |∂Qj(Ψ)/∂xj|/|∂Qj(Ψ)/∂xj| at ReF =2500,
in regions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c)
⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2,

(f)
•
ω
OH

/E(
•
ω
OH

≥ 2), (g) χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.8: PDFs containing the ratios of |αj|/|(ρetuj)sgs|, where |αj| = |Qj(Ψ)|, in re-
gions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥
2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩)≥ 2, (f)

•
ω
OH

/E(
•
ω
OH

≥ 2), (g)

χϕ/E(χϕ)≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.9: PDFs containing the ratios of |αj|/|(Puj)sgs|, where |αj| = |Qj(Ψ)|, in re-
gions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥
2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩)≥ 2, (f)

•
ω
OH

/E(
•
ω
OH

≥ 2), (g)

χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.10: PDFs containing the ratios of |Qsgs,j |/|(ρetuj)sgs|, in regions described
by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d)

⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, (f)
•
ω
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≥ 2), (g)

χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.11: PDFs containing the ratios of |Qsgs,j |/|(Puj)sgs|, in regions described
by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d)

⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, (f)
•
ω
OH

/E(
•
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OH

≥ 2), (g)

χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.12: PDFs containing the ratios of |∂αj/∂xj|/|∂(ρetuj)sgs/∂xj|, where |αj| =
|Qj(Ψ)|, in regions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c)
⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, (f)
•
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/E(
•
ω
OH

≥ 2), (g) χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.13: PDFs containing the ratios of |∂αj/∂xj|/|∂(Puj)sgs/∂xj|, where |αj| =
|Qj(Ψ)|, in regions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c)
⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, (f)
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/E(
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≥ 2), (g) χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.14: PDFs containing the ratios of |∂Qsgs,j/∂xj|/|∂(ρetuj)sgs/∂xj|, in regions
described by: (a) 0.01 ≤ ϕ≤ 0.99, (b) 0.1 ≤ ϕ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2,

(d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩)≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩)≥ 2, (f)
•
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OH

/E(
•
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≥ 2), (g)

χϕ/E(χϕ)≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.15: PDFs containing the ratios of |∂Qsgs,j/∂xj|/|∂(Puj)sgs/∂xj|, in regions
described by: (a) 0.01 ≤ ϕ≤ 0.99, (b) 0.1 ≤ ϕ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩)≥ 2,

(d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩)≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩)≥ 2, (f)
•
ω
OH

/E(
•
ω
OH

≥ 2), (g)

χϕ/E(χϕ)≥ 2 and (h) T/T0 ≥ 2.
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3.2 Subgrid Heat Flux Vector Modeling

In reacting flows, a substantial heat release occurs where the chemical reaction

takes place. Because a large amount of heat production undeniably has substantial

effects on turbulent kinetics and flame characteristics, the subgrid heat flux, Qsgs,j,

may require modeling as concluded in Section 3.1. Modeling the subgrid scale heat

flux vector has had little attention in the literature, except for simulations done by

Selle et. al [39] for supercritical binary mixing layers. Selle et. al reported that the

gradient of the SGS heat flux vector is significant even for pure mixing, and needs

to be modeled. The SGS heat flux vector is the subtraction of the heat flux vector

calculated with filtered variables, Qj(Ψ), from the actual heat flux vector Qj(Ψ),

which is unclosed in an actual LES. LES can only calculate the heat flux vector using

filtered primitive variables, Qj(Ψ). However, Qj(Ψ) is unknown in LES, but can be

calculated exactly in DNS as shown in Section 3.1. In Selle et. al ’s work only the

Irwing-Kirkwood type of heat flux vector was examined. (QIKj
= Qj +

∑N
α=0 H

′
αJ

′
α,

where J’ is the mass flux vector for each species and H’ is the molar enthalpy) A model

was proposed using multiple Taylor expansion approaches: The authors concluded

the work with two statements: 1) the method used may be inappropriate, since poor

agreement was found between DNS extracted and model results, and 2) the employed

modeling method might be extremely expensive, and a post-priori study should be

done. No prior work has examined Qsgs,j directly.

There are two primary approaches to LES modeling. Eddy-viscosity models

go all the way back to the poorly correlated Smagorinsky model [40]. The dynamic

eddy viscosity model was introduced by Germano et. al [9]. The dynamic SGS stress

model provides the ability to calculate the eddy viscosity model “constant” locally

as a function of position and time. It also has the ability to predict backscatter (i.e.
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negative model constant regions). In contrast, the scale similarity model was proposed

by Bardina et. al [1]. It assumes that the smallest scales of the resolved eddies are

statistically similar to the largest scales of the unresolved eddies. The dynamic mixed

model is the combination of the two models proposed by Zang et. al [51]. The mixed

dynamic model retains: 1) the high correlation with the actual SGS stresses of the

similarity model, 2) the sufficient diffusivity of the eddy viscosity model needed for

numerical stability, and 3) the ability to predict backscatter. However, the model

remains computationally intensive.

As a first step in attempting to model the subgrid heat flux vector, this thesis

adopts the dynamic/similarity approach. A new model is derived and tested in what

follows. The original SGS heat flux is defined as;

Qj ,sgs1
= Qj(Ψ)−Qj(Ψ). (3.16)

A second SGS heat flux is then defined for a larger filter width:

Qj ,sgs2
= Q̃j(Ψ)−Qj(Ψ̃). (3.17)

Finally, a third term is defined at even larger width:

Qj ,sgs3
= Q̂j(Ψ̃)−Qj(

ˆ̃
Ψ). (3.18)
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where the over-bar (.) denotes the original grid level filter, the tilde (̃.) represents the

intermediate filter, and finally the carat (̂.) stands for the largest filter width. Note

that both Qj ,sgs2
and Qj ,sgs3

can be calculated within an actual LES.

The scale similarity model suggests that all the filtering scales are related to

each other by a similarity model constant called Cs, therefore Qj ,sgs2
= CsQj ,sgs3

, or:

Q̃j(Ψ)−Qj(Ψ̃) = Cs[Q̂j(Ψ̃)−Qj(
ˆ̃
Ψ)], (3.19)

in which all the terms may be calculated within LES. The model constant, Cs, is con-

sidered to be a constant (typically unity) in the original similarity approach. However,

when coupled with the dynamic procedure a spatially and temporally varying value

is calculated (dynamically) by local flow conditions. No direct model constant is re-

quired. As Eq. (3.19) is a vector equation, three values of Cs are possible. Therefore,

the single local value of Cs is obtained based on the Least Mean Square Error (LMSE)

method. The error, E, is defined as:

E = Q̃j(Ψ)−Qj(Ψ̃)− Cs[Q̂j(Ψ̃)−Qj(
ˆ̃
Ψ)]. (3.20)

The square error is therefore:

E2 = [Q̃j(Ψ)−Qj(Ψ̃)− Cs[Q̂j(Ψ̃)−Qj(
ˆ̃
Ψ)]]2,

E2 = (Q̃j(Ψ)−Qj(Ψ̃))2 − 2Cs(Q̃j(Ψ)−Qj(Ψ̃))(Q̂j(Ψ̃)−
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Qj(
ˆ̃
Ψ)) + C2

s (Q̂j(Ψ̃)−Qj(
ˆ̃
Ψ))2. (3.21)

The LMSE suggests that the square error, E2, be minimized by nulling its derivative

with respect to Cs:

dE2

dCs

= 0,

−2[Q̃j(Ψ)Q̂j(Ψ̃)− Q̃j(Ψ)Qj(
ˆ̃
Ψ)−Qj(Ψ̃)Q̂j(Ψ̃) +Qj(Ψ̃)Qj(

ˆ̃
Ψ)]+

2Cs[Q̂j(Ψ̃)
2

− 2Q̂j(Ψ̃)Qj(
ˆ̃
Ψ) +Qj(

ˆ̃
Ψ)]2 = 0. (3.22)

After manipulation the final Cs is:

Cs =
[Q̂j(Ψ̃)Q̃j(Ψ)− Q̂j(Ψ̃)Qj(Ψ̃)−Qj(

ˆ̃
Ψ)Q̃j(Ψ) +Qj(

ˆ̃
Ψ)Qj(Ψ̃)]

[Q̂j(Ψ̃)
2

− 2Q̂j(Ψ̃)Qj(
ˆ̃
Ψ) +Qj(

ˆ̃
Ψ)

2

]

, (3.23)

where the repeated indices (i.e. j) indicate Einstein summation (reducing Cs to a

single constant). Finally the modeled filtered heat flux vector is expressed as:

Qjmodel
= Qj(Ψ) + Cs[Q̃j(Ψ)−Qj(Ψ̃)]. (3.24)
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3.2.1 Model Validation

Figures 3.16 and 3.17 revisit the correlation coefficients for various filter widths

and ReF =850, 2500. Figures 3.16 (a) and (b) present correlation coefficients,

C(|Qj(Ψ)|, |Qj,model
|), for the reacting case for ReF = 850, for the actual heat flux

vector magnitude and the filtered heat flux vector magnitude for various filter widths,

∆/∆x = 0, 6, 10, 16, 20. The data are conditioned both globally and on the aforemen-

tioned specific flow regions both before modeling and after modeling, respectively.

As it is observed in Fig. 3.16 (a) and (b), the dynamic/similarity model enhances

the correlation significantly, both globally and locally; especially, for the regions III-

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, IV- ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, V- ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2.

Figures 3.17 (a) and (b) show the corresponding correlation coefficients at

ReF = 2500. In Fig. 3.17 (a) the regions, III- ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 and
•
ω
OH

/E(
•
ω
OH

≥ 2), which had the poorest correlation before modeling are shown. Figure

3.17 (b) depicts the correlation coefficients after modeling, which are enhanced signif-

icantly. The detailed correlation coefficients for different filter widths may be seen in

Table 3.6 and 3.9 at ReF=850 and 2500. Again all of the raw DNS data to calculate

the correlation coefficients are shown in the Figs. 3.18 and 3.19.

Table 3.10 provides the correlation coefficients for the divergence of |Qj(Ψ)|

and |Qj(Ψ)| at ReF =850 and 2500 for ∆/δω0 ≈ 1.92. The model improves the

correlation between the divergence of two terms moderately for ReF = 850, however,

there is no such a improvement is observed for higher ReF flow (i.e. ReF =2500).

The PDFs of the ratios of |∂Qj(Ψ)/∂xj| and |∂Qj(Ψ)/∂xj|, are depicted by Figs. 3.20

and 3.21.

Again, a tremendous amount of data is continued within the above figures and

tables. However, the primary conclusions are that the model does indeed improve
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the prediction of the filtered heat flux vector. When considering only the heat flux

vector itself (as opposed to its divergence), the model performance increases with

increasing Reynolds number but decreases with increasing filter width. Unfortunately,

substantial errors remain for all cases; especially when considering the divergence of

the heat flux vector. Therefore, future improvements in modeling the SGS heat flux

vector are warranted.
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Figure 3.16: Correlation coefficients between the actual heat flux vector magnitude,
|αj| = |Qj(Ψ)|, and the heat flux vector magnitude calculated using filtered primitive
variables, |βj| = |Qj(Ψ)| and the modeled heat flux vector, |γj| = |Qjmodel

| in regions
described by: I- 0.01 ≤ ϕ ≤ 0.99, II- 0.1 ≤ ϕ ≤ 0.2, III- ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2,

IV- ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, V- ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, VI-
•
ω
OH

/E(
•
ω
OH

≥ 2), VII-

χϕ/E(χϕ) ≥ 2 and VIII- T/T0 ≥ 2, (a) No-Model, (b) With Model at ReF = 850.
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Figure 3.17: Correlation coefficients between the actual heat flux vector magnitude,
|αj| = |Qj(Ψ)|, and the heat flux vector magnitude calculated using filtered primitive
variables, |βj| = |Qj(Ψ)| and the modeled heat flux vector, |γj| = |Qjmodel

| in regions
described by: I- 0.01 ≤ ϕ ≤ 0.99, II- 0.1 ≤ ϕ ≤ 0.2, III- ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2,

IV- ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, V- ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, VI-
•
ω
OH

/E(
•
ω
OH

≥ 2), VII-

χϕ/E(χϕ) ≥ 2 and VIII- T/T0 ≥ 2, (a) No-Model, (b) With Model ReF = 2500.

Regions ReF Numbers
850 2500

0.01 ≤ ϕ ≤ 0.99 0.94 0.96
0.1 ≤ ϕ ≤ 0.2 0.90 0.94

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.97 0.97
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.88 0.97
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.98 0.98

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.95 0.96

χϕ/E(χϕ) ≥ 2 0.95 0.96
T/T0 ≥ 2 0.94 0.96

Table 3.6: Correlation Coefficients after modeling between the actual heat flux vector
magnitude |Qj(Ψ)|, and the modeled heat flux vector magnitude, |Qj,model| at filter
width, ∆/δω0 ≈ 0.71.
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Regions ReF Numbers
850 2500

0.01 ≤ ϕ ≤ 0.99 0.94 0.93
0.1 ≤ ϕ ≤ 0.2 0.94 0.91

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.98 0.94
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.81 0.95
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.96 0.96

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.94 0.94

χϕ/E(χϕ) ≥ 2 0.94 0.93
T/T0 ≥ 2 0.93 0.93

Table 3.7: Correlation Coefficients after modeling between the actual heat flux vector
magnitude |Qj(Ψ)|, and the modeled heat flux vector magnitude, |Qj,model| at filter
width, ∆/δω0 ≈ 1.44.

Regions ReF Numbers
850 2500

0.01 ≤ ϕ ≤ 0.99 0.91 0.90
0.1 ≤ ϕ ≤ 0.2 0.92 0.88

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.98 0.93
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.78 0.94
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.93 0.95

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.91 0.90

χϕ/E(χϕ) ≥ 2 0.91 0.90
T/T0 ≥ 2 0.90 0.89

Table 3.8: Correlation Coefficients after modeling between the actual heat flux vector
magnitude |Qj(Ψ)|,and the modeled heat flux vector magnitude, |Qj,model| at filter
width, ∆/δω0 ≈ 1.92.
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Regions ReF Numbers
850 2500

0.01 ≤ ϕ ≤ 0.99 0.90 0.88
0.1 ≤ ϕ ≤ 0.2 0.92 0.85

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.97 0.93
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.83 0.93
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.90 0.95

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.90 0.88

χϕ/E(χϕ) ≥ 2 0.90 0.88
T/T0 ≥ 2 0.89 0.87

Table 3.9: Correlation Coefficients after modeling between the actual heat flux vector
magnitude |Qj(Ψ)|, and the modeled heat flux vector magnitude, |Qj,model| at filter
width, ∆/δω0 ≈ 2.4.

Regions ReF Numbers
850 2500

0.01 ≤ ϕ ≤ 0.99 0.48 0.47
0.1 ≤ ϕ ≤ 0.2 0.45 0.49

⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2 0.44 0.55
⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2 0.50 0.55
⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2 0.37 0.50

•
ω
OH

/E(
•
ω
OH

≥ 2) 0.48 0.40

χϕ/E(χϕ) ≥ 2 0.48 0.47
T/T0 ≥ 2 0.47 0.45

Table 3.10: Correlation coefficients after modeling between the divergence of modeled
heat flux vector magnitude, |∂Qj,model/∂xj|, and the divergence of actual heat flux

vector magnitude, |∂Qj(Ψ)/∂xj|, at filter width, ∆/δω0 ≈ 1.92.
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Figure 3.18: Scatter plots of |αj| vs. |γj|, where |αj|= |Qj(Ψ)|, and |γj|= |Qj,model|,
at ReF = 850 in regions described by:(a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ≤ 0.2, (c)
⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩)≥ 2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩)≥ 2 (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩)≥ 2, (f)
•
ω
OH

/E(
•
ω
OH

≥ 2), (g) χϕ/E(χϕ)≥ 2 and (h) T/T0≥ 2.
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Figure 3.19: Scatter plots of |αj| vs. |γj|, where |αj| = |Qj(Ψ)|, and |γj| = |Qj,model|,
at ReF = 2500 in regions described by: (a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ ≤ 0.2, (c)
⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d) ⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩) ≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩) ≥ 2, (f)
•
ω
OH

/E(
•
ω
OH

≥ 2), (g) χϕ/E(χϕ) ≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.20: PDFs containing the ratios of |∂γj/∂xj|/|∂αj/∂xj| and

|∂βj/∂xj|/|∂αj/∂xj|= |∂Qj(Ψ)/∂xj|/|∂Qj(Ψ)/∂xj|, where |γj| = |Qj,model|,
|βj|= |Qj(Ψ)| and |αj|= |Qj(Ψ)| at ReF =850 in regions described by:
(a) 0.01 ≤ ϕ≤ 0.99, (b) 0.1 ≤ ϕ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩)≥ 2, (d)

⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩)≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩)≥ 2, (f)
•
ω
OH

/E(
•
ω
OH

≥ 2), (g)

χϕ/E(χϕ)≥ 2 and (h) T/T0 ≥ 2.
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Figure 3.21: PDFs containing the ratios of |∂γj/∂xj|/|∂αj/∂xj| and

|∂βj/∂xj|/|∂αj/∂xj| = |∂Qj(Ψ)/∂xj|/|∂Qj(Ψ)/∂xj|, where |γj|= |Qj,model|,
|βj|= |Qj(Ψ)| and |αj|= |Qj(Ψ)| at ReF =2500, in regions described by:
(a) 0.01 ≤ ϕ ≤ 0.99, (b) 0.1 ≤ ϕ≤ 0.2, (c) ⟨⟨T ′′2⟩⟩/E(⟨⟨T ′′2⟩⟩) ≥ 2, (d)

⟨⟨ksgs⟩⟩/E(⟨⟨ksgs⟩⟩)≥ 2, (e) ⟨⟨ϕ′′2⟩⟩/E(⟨⟨ϕ′′2⟩⟩)≥ 2, (f)
•
ω
OH

/E(
•
ω
OH

≥ 2), (g)

χϕ/E(χϕ)≥ 2 and (h) T/T0 ≥ 2.
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Chapter 4

Conclusions

Direct Numerical Simulations (DNS) of supercritical, H2/O2, non-premixed,

reacting shear layers containing detailed chemistry, multicomponent, differential, and

cross diffusion have been post-processed to analyze the subgrid heat flux vector. The

DNS results for the actual heat flux vector magnitude, |Qj(Ψ)|, the filtered heat

flux vector magnitude, |Qj(Ψ)|, and the magnitude of the subgrid heat flux vector,

|Qj,sgs| have been extensively examined via both correlation coefficients and PDFs

of their relative magnitude ratios to other terms in the energy equations. These

vectors have also been compared to the subgrid pressure work, |(Puj)sgs| and the

subgrid convective total energy term, |(ρetuj)sgs|. Divergences of all terms were also

analyzed. Both reacting (ReF = 850, 2500) and mixing (ReF = 2000) cases have been

considered. The analysis was done both globally and conditioned on specific regions

of the flame.

This work reveals the potential necessity of modeling the subgrid heat flux

vector in turbulent reacting flows, and derives and tests a model based on the dy-

namic/similarity method. The subgrid analysis obtained a deep insight into the char-

acteristics of the subgrid heat flux vector. It was shown to be a significant term in
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the exact LES energy equation. The derived model was shown to improve the predic-

tion of the SGS heat flux; but still retains excessively large errors. Therefore, future

work towards either improving upon the dynamic/similarity approach, or pursuing

alternative modeling strategies is warranted.
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