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ABSTRACT 
 
 

The Human Factors Analysis and Classification System (HFACS) is a framework 

based on Reason’s “Swiss Cheese Theory” and is used to help identify causal factors that 

lead to human error. The framework has been used in a variety of industries to identify 

leading contributing factors of unsafe events, such as accidents, incidents and near 

misses. While traditional application of the HFACS framework to safety outcomes has 

allowed evaluators to identify leading causal issues based on frequency, little has been 

done to gain a more comprehensive view of the system’s total risk. This work utilizes the 

concept of event severity along with the HFACS framework to help better identify target 

areas for intervention among unsafe events in wind turbine maintenance.  

The objective of this work was to determine if there are any relationships between 

the certain HFACS causal factors and an incident’s severity. The analysis was based on 

405 cases which were coded for contributing factors using HFACS and were rated for 

actual and potential severity using a 10-point severity scale. Models for predicting 

potential and actual severity were generated using logistic regression. These models were 

then validated using actual data. Although the findings were not significant, it was 

determined that decision errors and preconditions to unsafe acts: technological 

environment were major contributors to events with high potential severity.  

One limitation of this work was the limited availability of complete data on which 

to conduct the analysis. So, while the analysis produced non-significance, it is anticipated 

that as more data becomes available, the models will yield more concrete findings. 

Regardless, understanding the relationships among incident causal factors and outcomes 
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may shed light on those causal factors which have the potential to lead to catastrophic 

events and those which may lead to less severe events.   
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CHAPTER ONE 

INTRODUCTION 

Whether determining which stock to sell to achieve the greatest financial reward 

or deciding where to focus this year’s budget for the purchase of safety equipment for 

your workforce, Risk Management (RM) is a practice adopted by many both formally 

and informally. With regards to industrial safety, RM is a refined discipline and generally 

considers the identification, assessment and prioritization of hazards and their 

consequences in an effort to strategically and effectively minimize the risk through the 

introduction of certain interventions. As such, effective RM does not just address the 

resulting outcome, like number of lacerations among a given population, but rather aims 

to address the “root cause(s)” which ultimately contributed to the outcome.  

One way of helping to identify the “root causes” or contributing causal factors of 

an unsafe event is by using the Human Factors Analysis and Classification System 

(HFACS). This framework has been used successfully by a number of industries to 

identify common latent causal factors in the organizations’ safety performance. Most 

often, incident and accident cases are reviewed and classified using the HFACS 

framework only to generate an overall list of the most frequently occurring causal factors 

(both active and latent). While targeting interventions toward these high-frequency causal 

factors may prove effective, using this method there is no way to distinguish between the 

magnitude of each event. For instance, the highest occurring causal factor may be a skill-

based error in the form of slips, trips, or falls. As a result, resources may be diverted and 

allocated to addressing this single issue. However, further analysis reveals that the 
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severity or consequences of these slips, trips, or falls are minimal and are only resulting 

in minor scrapes and bruises. Meanwhile, other less frequent but more catastrophic events 

go un-noticed simply due to the low frequency of occurrence. This example highlights 

the need to incorporate another parameter, incident severity, into the evaluation process 

which will 1) provide a more detailed picture of safety performance in an organization 

and 2) enable managers to better identify target areas for intervention.  

It is anticipated that certain levels of incident severity are generally influenced by 

a common set of similar active and latent causal factors (according to the HFACS 

framework). The question becomes, what causal factors are common to high-severity 

incidents, medium-severity incidents, and low-severity incidents? And, can we predict 

the severity of an incident given an existing set of causal factors?  

   

1.1 Objective 

The objective of this thesis is to develop a predictive model for determining the 

actual and potential severity of a future incident as a function of existing HFACS causal 

factors.   

 

1.2 Motivation 

This model should be developed for the following reasons: 

1) Future high severity accidents can be prevented by identifying and fixing root causes.  
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2) A standard methodology can be developed which fully utilizes the potential of HFACS in 

order to develop probabilistic models. In the literature so far, this approach has not been 

taken. 

3) Management decisions can be aided by determining the causal categories which attribute 

to an increase in probability of high severity. Efforts can thus be directed towards fixing 

causes which result in higher severity incidents.  Having statistically significant causal 

factors makes decision makers trust the means to fix them. 

4) The overlooked near accident cases can be fully utilized. Most incident reports have 

higher proportion of near accident cases than actual accidents. Authors so far have only 

considered actual severity for developing prediction models, which is based on accidents. 

Also, there have not been any established procedures that help rate potential severity. A 

basic framework for rating potential severity will be established. 

 

1.3 Thesis Layout 

The first chapter will begin with some basic definitions and terminologies. This 

will be followed by a discussion on the topic of risk and risk assessment. The theory of 

human error will be discussed briefly. There will be discussions on the topic of severity. 

Then, the Human Factors Analysis and Classification System (HFACS) will be reviewed. 

These will be the human factors components used in this study. Mathematical tools have 

been used for determining the relationship between causal factors and incident severity in 

this study. Hence, logistic regression techniques and the various terminologies associated 

with them will be discussed in chapter three.  
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The methodology that will be used for this study will be discussed in detail in the 

next chapter. The methodology section will include all the stages in which this study was 

conducted, with details of each. The last chapter is results and conclusion, where the 

results of this study will be presented. Also, limitations of this study and future research 

will be discussed. 
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CHAPTER TWO 

BACKGROUND 

In this chapter, some basic definitions and terminologies related to accident 

investigation and safety engineering will be discussed.  

 

2.1 Basic Definitions 

In his work for measuring accident severity, Davidson (2004) has compiled the 

following definitions of important terms in safety: 

Accident: “An undesired event that results in harm to people, damage to property 

or loss to process. It is usually the result of a contact with a substance or a source of 

energy above the threshold limit of the body or structure.”(Bird & Germain, 1989, p.36) 

Near accident: “An event which, under slightly different circumstances would 

have resulted in harm to people, damage to property, or loss to process.” (Bird & 

Germain, 1989, p.36) 

Incident: An incident comprises of an accident or a near accident. “In a broader 

loss control definition, it refers to an event which could or does result in a loss.” (Bird & 

Germain, 1989, p.36) 

 

2.2 What is a risk? 

 The classical definition is that risk (for example, of an accident) is the product of 

the probability of that event and (a unified measure of) the (assumed negative) 

consequences that necessarily accompany that event (Sheridan, 2008). Other definitions 
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of risk state that, risk is the probability or likelihood of an injury or death (Christensen, 

1987). The notion of risk involves both uncertainty and some kind of loss or damage that 

might be received (Kaplan & Garrick, 1981). All these definitions formulate risk as 

product of probability and consequence or severity. Sheridan (2008) argues that, risk R 

with the following formula:  

� � �� � ∑ �	 �	|� �  �	. 

In this case, PE is the event probability and the remaining term explains the 

consequences of all events that could occur, given that the initial event occurs. Here, Ci is 

the consequence. 

 For an incident E to occur, three other probabilities are taken into account. The 

first is the probability of opportunity or exposure to a hazard. The second is attributed to 

human error, and takes into account the probability of this error to occur when presented 

with the opportunity or exposure. Lastly there is the probability that there is no recovery 

to favorable conditions, given the error occurs. Hence, the probability of this unfavorable 

outcome is the product of the three probabilities (Sheridan, 2008):              

�������������
� ������������� �  �������|�����������
�  ���� �������� �� ����|����� 

The term ������������� is the term �� used earlier in the definition of risk. 

This equation explains the importance of the opportunity or exposure, for an unfavorable 

outcome to occur.  
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 In the equation for risk R, the term Ci is consequence or severity.  There is a 

difference between the terms risk, hazard, and uncertainty. As already stated, uncertainty 

and damage constitute risk, and uncertainty is just the probability that the desired event 

may not occur as planned. Hazard is a source of danger, while risk is the possibility of 

loss or injury. Kaplan and Garrick (1981) further theorized a relationship between a risk 

and a hazard: 

���� � ����� ! "�#�$��� �. 
This equation states that risk is a ratio of hazards and safeguards. There is always 

a small chance of a desired event or activity to have an unfavorable outcome. Thus, risk 

can be reduced to an infinitesimal value by increasing safeguards, but never brought 

down to zero, because a hazard always exists.  

Risk analysis answers the following questions: What can happen? How likely is it 

to happen? If it occurs, what are the consequences (Bedford & Cooke, 2001)? The basic 

method of risk analysis is the identification and quantification of scenarios, occurrence 

probabilities and consequences. Risk, from the context of industrial safety, can be viewed 

as a set of scenarios, each with a specific probability of occurrence and quantifiable 

impact of consequences (Kaplan & Garrick, 1981). The emphasis here is to model a 

specific system (wind turbine maintenance) and construct a mathematical model that 

links the accident causation factors and the accident severity. In order to achieve this, it is 

important to quantify accident severity. 

 

2.3 Techniques for risk assessment 
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  The method to measure risk and categorize risk involves the use of certain 

‘first-order’ approaches (Glendon, Clarke, & McKenna, 2006). These are technical, 

economic, cultural and psychometric approaches. The technical approach considers risk 

as being primarily about seeking safety benefits in such a way that, the acceptable risk 

decisions are a matter of correct engineering.  In this approach, science is given prime 

importance in investigating, analyzing and implementing safety and risk issues. Examples 

of this approach include Management Oversight and Risk Tree (MORT) and Failure 

Modes and Effects Analysis (FMEA). MORT is fundamentally similar to an event tree. 

On the other hand, the economic approach considers the expected benefit, rather than the 

harm caused, as the main factor for managing risk. The economic approach considers 

hazards as market externalities requiring intervention and social, cultural, political and 

anthropological notions are ignored (Viscusi, 1983). Cost-Benefit Analysis (CBA) is an 

example of the economic approach.  

 Cultural theory approach utilizes an anthropological framework for determining 

how groups in society interpret hazards and embed trust or distrust in institutions that 

create or regulate risk (Douglas, 1992). This is not a quantifiable approach, since it does 

not help predict how individuals will behave in their group, which might lead to hazards. 

The psychometric approach is based on Risk Perception (RP). RP is considered as a 

subjective phenomenon. This approach explains why people perceive hazards differently. 

This approach is considered to be the most influential model in the field of risk analysis 

by Siegrist, Keller and Kiers (2005). In this study, 26 potential hazards were asked to be 

rated not only in terms of severity, also personal factors  such as scientific knowledge of 
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the hazard, dread potential, newness and perceived immediacy of effect. This study 

aimed to establish that individual perception of a hazard is also an important criterion in 

categorizing risk, along with severity and frequency. However, it is difficult to obtain 

data regarding the perception that an employee might have about a hazard before an 

incident occurs. The data used in our study is compiled from an incident report, and each 

and every employee involved in the incident will have to fill in a questionnaire regarding 

their perception of the hazard on the basis of the factors described in the study discussed 

above. There are various approaches to measure and assess risk. Now, some techniques 

for applying these approaches into practice will be discussed. 

A risk matrix is a table where columns are represented by probability of an event, 

frequency or its likelihood of occurrence, and rows represent an event’s severity, impact 

or consequences. Risk is then determined as the product of probability and severity. Risk 

is not a measured attribute, but is derived from frequency and severity inputs through a 

priori  specified formulas such as ���� �  &�������� ' "�������  (Cox, 2008). Risk 

matrices provide a clear framework for analyzing risks. They are easy to construct and 

understand. Also, they can easily accommodate for changes to the grid based on specific 

applications. On the other hand, it has been argued that, the construction and use of risk 

matrices does not need special expertise in the field of risk assessment.   

Failure Modes and Effects Analysis (FMEA) is a technique which considers all 

the ways by which a system could fail and the consequences that could occur with each 

case. Root-cause analysis is used to identify the most responsible cause of the incident 

under question. State transition diagrams describe a system as it moves from one state to 
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another, and limits the system to only one state at a time. An event tree describes the 

transition of the system from an initiating event to subsequent events. There is a 

probability associated with each subsequent event occurring after this initiating event. 

According to first order classification by Glendon, Clarke, and McKenna (2006), these 

techniques fall into the technical approach. The focus in this study is not only to review 

the concept of risk, but also to explore and experiment with the concept of severity. This 

study will utilize the technical and the risk perception approaches for developing a 

mathematical relationship between causal factors and incident severity.  

 

2.4 Severity and the technical approach 

 Every occupational accident has a severity associated with it. The severity may be 

rated according to damage to an employee’s health, or by cost incurred to the 

organization. The severity ratings developed so far take into consideration both these 

perspectives.   

 There are risk matrices which categorize risk according to frequency of an event 

and the impact of the event, as argued earlier. Such matrices indicate event probability on 

one axis and impact or severity on the other, their product categorizing an event of having 

higher risk based on higher impact and probability (Federal Aviation Administration, 

2007). Some authors argue that these matrices have poor resolution; typical risk matrices 

can correctly and unambiguously compare only less than 10% of randomly selected pairs 

of hazards (Cox, 2008). The accuracy in quantifying actual risk is low for risk matrices, 

and should be used as an alternative to purely making random decisions. In the risk 
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matrix technique discussed above, the probability of a particular event can be determined 

quantitatively based on frequency of the event. Consequence or severity, for example, has 

been ‘given’ values between 0 and 1 in the study by Cox (2008). This largely depends on 

the analyst’s perception of the impact of the incident. This is where the risk perception 

theory comes into play. 

Earlier, we discussed FMEA as a technique to analyze risk. FMEA considers the 

system in a binary state: pass or fail. It does not consider intermediate degrees by which a 

system is damaged, but rather the series of events that lead the system to failure. FMEA 

helps investigate all the events leading to a failure, but does not consider how each event 

leading to failure is affecting the system in terms of severity. FMEA hence does not 

register severity on a continuous basis, but rather on a binary basis.  

A state transition probability diagram consists of a large possibility of conditions 

that the state of a system can be over time. A state transition diagram also does not 

incorporate severity of an incident.  Hence, to include severity into these diagrams, one 

will have to imagine large number of states emerging from the current, each having a 

different severity rating. For example, a system can transition from state A to B with 

probability PAB. This new state has a severity s. S can take on a large set of values, and 

hence there are a large number of states B with varying values of severity s. Hence, 

arguably, state transition probability diagrams can more accurately identify the risk of 

potential incidences than the FMEA technique. The same argument can be made for 

event trees. Event trees are used primarily, to determine the root cause of an incident, 

rather than help determine scenarios with varying severity. In the work by Ross (1981), a 
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serious injury fault tree has been constructed to trace the path of events that lead to a 

serious injury. This is like an event tree, but focusing on only serious injuries. Ross 

retraces the path of a serious injury from the time of occurrence backwards. He concludes 

that a designated activity occurs with inadequate operator actions and unfavorable energy 

flow. The above technical approaches help analyze and classify the causes of incidents 

and their severity.  

Currently, researchers have developed several probabilistic models to predict 

severity, given the potential causal factors. This approach for predicting the severity is 

based on the variables involved and a probabilistic model is developed.  Li and Bai 

(2008) have developed a severity predicting model for motorcycle accidents. They 

propose a Crash Severity Index (CSI), which is the likelihood that a fatality will occur 

given a severe crash occurs. This index can take values between 0 and 1, and is 

determined statistically from the work zone variables. The closer the number is to 1, the 

higher the possible severity of injury. In a similar study by Dissanayake and Lu (2002) 

probabilistic models have been used to predict severity. Automobile crash severity in this 

study, has been categorized into five levels: No injury, possible Injury, non-incapacitating 

injury, incapacitating injury and fatal injury. The models developed calculate the 

probability of occurrence of an injury with a particular level of severity. This can be 

better formulated as: Probability [An incident that occurs has a particular severity level]. 

For example, a model has been developed in this study to calculate the probability of an 

incapacitating injury to occur. These models calculate the probability that a higher 

severity incident occurs, given that a lesser severity incident has occurred. For example, 
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if a motorcyclist suffers a serious injury, what is the probability that the injury will be 

fatal? 

 

2.5 Severity Scales 

 Lin, Hwang, and Kuo (2008) have reviewed various medical severity scales. The 

Injury Severity Scale (ISS) and the Abbreviated Injury Scale (AIS) are used by healthcare 

professionals to categorize the trauma faced by their patients (Copes, Sacco, Champion, 

& Bain, 1989). The most common scale is the ISS. AIS uses nine body regions to better 

summarize injury severity caused by multiple injuries. The ISS uses only six body 

regions, instead of nine (Baker, O’Neill, Haddon, & Long, 1974). The ISS scores are 

based on the sum of squares of the highest AIS scores for the top three most severely hurt 

body parts. The ISS scores range from 1 to 75. New Injury Severity Score (NISS) uses 

three most severe injuries independent of whether all three occur in the same region, to 

compute the sum of squares (Osler, Baker, & Long, 1997). These scales, however, lack 

the sensitivity to accurately classify less severe injuries (Lin, Hwang, & Kuo, 2008). 

Based on the part of the body injured and type of injury, physicians can accurately 

quantify trauma. Trauma for physicians is analogous to severity for safety engineers. 

When considering a severity scale, management is interested in determining how 

the severity of the injury will impact the company financially. This may be a combination 

of production time lost, worker compensation claims, and equipment damaged.  This is 

the reason why scales which classify only worker injury trauma; such as an AIS or ISS 

cannot be directly used to reflect cost to management.  
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 A major power generation company has a severity scale which considers injuries 

based on workdays lost. This is 10 point scale with severity increasing from 1 to 10. The 

number of workdays lost has been estimated for each serious severity rating. Critical 

severity ratings 8, 9 and 10 represent permanent disability, fatality and multiple fatalities, 

respectively. Further, two types of severities have been used: potential and actual.  

  Based on the seriousness of the injury, the incident may result in significant 

financial loss to an organization. Many examples of the magnitude of financial loss have 

been reviewed by Asfahl (2005). In one example, the average total cost per worker 

fatality has been estimated as $790,000 (National Safety Council, 1996). The cost to the 

U.S.A.F. for a worker fatality has been estimated as $1,100,000 (U.S. Air Force, 1995). 

The costs mentioned above include the compensation, equipment and investigation costs. 

The U.S. Department of Energy estimates a loss of $1 million per employee fatality 

(Briscoe, 1982). Reportable injuries cost, on an average, $2000 per incident, while a cost 

of $1000 per day lost also has been estimated (Crites, 1995). The estimation of these 

costs comes from the legal and financial paradigm of safety based on the severity of the 

incident (Asfahl, 2005). Hence, the degree by which severity increases according to 

financial loss depends on the injury sustained. Severity scales should show the types of 

injuries, equipment damaged and the corresponding financial loss. 

 Sensitivity of a severity scale depends upon the application for which it is to be 

used. A mining environment, for example, will employ a ten-point scale for the variety of 

medium and serious injuries such as bruises, amputations and electrical shocks. On the 

other hand, a severity scale used for assessing injury to computer programmers may use a 
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less sensitive scale targeted for specific injuries. Hence, a severity scale is environment 

and work specific, and also has the subjective input of the severity rater. Severity has so 

far been quantified by experts and analysts based on their experience and the 

environmental inputs. The Accident Frequency-Severity Chart (AFSC) developed by 

Priest (1996) enables severity to be rated according to the type of injuries, financial loss 

based on injuries and damaged equipment, on the same scale. This scale has been 

developed for high risk outdoor activities. Higher numbers on the scale indicate higher 

degrees of loss. Priest (1996) suggests that the acceptability of these ratings should be 

decided by a committee of experienced personnel in this field; however, these may be 

done individually.  

 

2.6 Potential Severity 

The discussed severity scales measure the severity of accidents. Injuries need to 

occur before cases are rated for severity. There are near accident cases where individuals 

could have sustained serious injuries, but were spared from injury by a very small 

margin. There will be a severity associated with near accidents if they become accidents. 

The situation in which a near accident occurs could result in a major accident in the 

future. Potential severity is the subjective severity rating given to potential losses caused 

by near accidents. The potential losses can be in the form of physical injury, cost of 

damaged equipment or similar degrees of loss. Hence, these situations must be analyzed 

in order to determine the causal factors of near accidents. 
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The concerns that needed to be addressed while rating potential severity included: 

How can we assign a particular type of injury to a particular situation? For example, how 

can we know what type of injury could occur if an object strikes an employee in the head 

with considerable force and velocity? Currently, there is no established procedure for 

rating potential severity. The ratings are given according to the rater’s subjective view 

(Davidson, 2004). A physician can imagine the types of injuries that could occur if near 

accidents become accidents. A safety expert can judge the environmental and mental 

conditions that most likely result in an accident.  A manager can estimate the cost 

incurred if the incident occurs. An employee can be trained to describe the situation as 

accurately as possible. Each near accident should then be reviewed by all four individuals 

and a consensus reached on a potential severity rating. This should be the approach for 

rating incidences for potential severity. 

 

2.7 Human Error 

 Human error has been defined as an inappropriate or undesirable human decision 

or behavior that reduces, or has the potential of reducing, effectiveness, safety or system 

performance (Sanders & McCormick, 1992). Some actions that can be attributed to 

human error would be viewed as appropriate in some systems, until they cause an 

incident and the mistake is discovered (Rasmussen, 1979). Another thought is that, an 

action might become an error only because the action is performed in an unkind 

environment that does not permit detection and reversal of the behavior before an 

unacceptable consequence occurs (Rasmussen, 1982). Human Error can then be defined 
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as an action that fails to meet some implicit or explicit criterion (Sheridan, 2008).  70 to 

80 percent of all accidents in aviation occur, at least partly, due to human error.  

(Shappell & Wiegmann, 1996).  

Human error has been classified according to type, such as errors of commission, 

omission, sensing, remembering, deciding and responding (Sheridan, 1992). Errors of 

commission are caused by incorrectly performing an act. Errors of omission are caused 

when there is a failure to do something. A sequence error is caused when a task is 

performed out of sequence. A timing error is caused when there is failure to perform a 

task within an allotted time period. Further, some authors have classified error based on 

how information is processed (Rouse & Rouse, 1983). In this system, errors are identified 

as they occur at different stages of information processing. Information processing occurs 

in the following stages: Observation of the state of a system, formulating a hypothesis, 

testing a hypothesis, choosing a goal, selecting an appropriate procedure and lastly, 

execution of the procedure to achieve the goal. When a system is being observed, for 

example, there could be incorrect readings of appropriate state variables, or there could 

be a failure to observe any state variables at all. Further in the process, there may be 

similar errors in hypothesis testing, choice of a goal, choice of a procedure and the 

execution of the procedure. The various types of human error have been classified as 

causal factors to unfavorable incidences in the HFACS. 

 

2.8 Human Factors Analysis and Classification System (HFACS) 
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The Human Factors Analysis and Classification System (HFACS) has been 

developed by Shappell and Wiegmann (2000) in order to methodologically categorize 

causes of incidents. A similar approach to HFACS has been to classify errors based on 

the type or the level of behavior involved (Rasmussen, 1982).  These behaviors have been 

classified as skill-based, knowledge-based and rule-based behaviors. Errors in skill-based 

behavior are errors in executing an action. Errors in rule-based behavior are errors in 

correctly applying preset rules to a situation. Errors in knowledge-based behavior are due 

to improper assessment of potential hazards in an unusual situation. An unfavorable 

incident occurs when an employee performs an act that is undesirable in that situation, 

which leads to injury. However, the reason for this failure to act correctly is more than on 

an active level (Reason, 1990). The physical environment, supervision and leadership, 

and the organization as a whole, may also be responsible for the employee to perform an 

undesired action. For example, the work environment may be too dark for an employee to 

perform a given task correctly, which may lead to an accident. Investigating further, one 

could find that the supervisor had not updated the employee on the conditions of the work 

environment. Further, this investigation could find questionable management policies 

responsible.  

In light of the different organizational levels of causality, Reason (1990) proposed 

that there are active and latent failures. Active failures are apparent, and can be quickly 

attributed to have caused the accident. For example, an employee may not be wearing a 

mandatory hard-hat, and a head injury occurs. This is the lowest level in the accident 

causation structure. On the other hand, latent failures are failures which occur at higher 
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organizational levels, such as the ones in supervision and organizational management. 

Latent failures are not apparent at the time of the incident, but come into the spotlight 

once an investigation occurs. Reason compared each level to a swiss-cheese slice, with 

the holes in the slice corresponding to the failure at each level. The accountability for 

each incident can be traced back through the holes in each slice. The failure 

accountability goes higher up the organizational hierarchy as holes in higher level swiss-

cheese slices align.  

Using this as a reference, HFACS was developed to elaborate on both the active 

and latent failures. There are four levels of failure, according to the hierarchy in an 

organization. Failure on the lowermost level is attributed to unsafe acts (refer to Fig.1). 

Unsafe acts include errors and violations. Decision based errors are errors that an 

employee commits due to a consciously thought of action going wrong. For example, an 

employee may use improvised tools or equipment in an unusual situation and an injury 

occur from this action.  

Skill-based errors are caused when an employee performs a task or action with 

inadequate skill. For example, an employee may lift an object with improper technique, 

causing an injury to the back. Perceptual errors are caused when the auditory or visual 

senses do not function correctly due to external influences. For example, an employee 

may misjudge the passing clearance under a wire between two electrical poles and cause 

an electrical arcing incident. Violations are willful and blatant acts against mandatory 

regulations, and may lead to high severity accidents.  
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Fig.1 Unsafe Acts (Shappell & Wiegmann, 2000) 

Preconditions to unsafe acts is the causal category which explains the creation of 

a hazardous environment which causes an incident (refer to Fig.2). These preconditions 

include slippery work surface, temperature and weather conditions. Faulty and non-

functional equipment also constitute a precondition if they are a part of the technological 

environment before an incident occurs.  

Unsafe leadership is another level of failure further up the organizational 

hierarchy (refer to Fig.3). This includes inadequate supervision, planned inappropriate 

actions, failure to correct known problem and supervisory violations. All these deal with 

substandard supervision practices at the work environment.  
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Fig.2 Preconditions to Unsafe Acts (Shappell & Wiegmann, 2000) 
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Fig.3 Supervison (Shappell & Wiegmann, 2000) 

The highest organizational failure is at the senior management level (refer to 

Fig.4). The failures at this level are related to poor safety culture as a whole. Failures at 

this stage stem from lack of funding, human resources problems such as poor background 

checks on employees and other current company policies. Violations at latent levels 

result in serious consequences on the management.  

 

Fig.4 Organizational Influences (Shappell & Wiegmann, 2000) 
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The HFACS system hence provides the analyst with a set of all possible causal 

factors that can help identify the causes of the incident. The HFACS causal codes will be 

used in order to accurately identify causal factors of incidences in the selected work 

environment in this study. Organizational influences, precondition to unsafe acts, unsafe 

supervision and unsafe acts are called the four levels of failure (Shappell & Wiegmann, 

2000). There are three causal categories, resource management, organizational climate 

and organizational process. These causal categories have been further divided into 

specific causal factors called nanocodes. The specific causes of incidents can be 

identified accurately by referring to a list of nanocodes (refer to Appendix B). 
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CHAPTER THREE 

LOGISTIC REGRESSION 

As discussed earlier, we require specific mathematical tools for developing a model 

which relates incident severity and incident causal factors. Hence, logistic regression 

techniques and terminologies associated with them will be presented in this chapter. 

 

3.1 What is logistic regression? 

 Logistic regression is a regression technique employed to fit accident systems. 

Logistic regression techniques have been used to model probabilistic systems to predict 

future events. These models are direct probability models that have no requirements on 

the distributions of the explanatory variables or predictors (Harrell, 2001).  

 If p is the probability that a binary response variable Y = 1 when input variable X 

= x, then the logistic response function is modeled as:  

� � ��( � 1|' � * �  �+,-+./1 0 �+,-+./ 

This function represents an s-shaped curve and is non-linear. Here, β is the 

coefficient of the predictor or input variable x used in a regression equation. A simplified 

version of this function can accommodate for multiple input variables and is linear. This 

function is called the logistic regression function and is superior to the logistic response 

function (Chatterjee & Hadi, 2006): 

� � �1( � 12' � *3, … , '6 � *67 �  �+.-+,/,-+8/8-9-+:/:1 0 �+.-+,/,-+8/8-9-+:/: 
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This equation calculates the probability of the response variable to be 1, given 

multiple predictor variables. This model is still non-linear, and is transformed into 

linearity by using the logit response function. The equation for logistic response function 

then becomes: 

�1 ; � �  �+.-+,/,-+8/8-9-+:/: 

The term 
63<6 in the above equation is called as the odds ratio of the event. Taking 

the natural logarithm on both sides,  

=�$ > �1 ; � ? �  @A 0 @3*3 0 @B*B 0 9 0 @6*6 

Since, L.H.S. is a function of x1,…,xp: 

$�*1, … , *�  �  @A 0 @3*3 0 @B*B 0 9 0 @6*6 

The above equation is linear and can be used to determine relationships between 

variables of interest.  

Some studies have used logistic regression modeling to determine the relationship 

between crash severity and factors which cause crashes. Dissanayake and Lu (2002) 

determined that presence of certain input variables such as influence of alcohol, point of 

impact and lack of judgment increase the probability of a crash occurring with higher 

severity. A variable contributing to a crash was coded 1, else 0. Severity was rated as a 

non-incapacitating or an incapacitating injury and coded 0 or 1 respectively. P(Y=1) was 

the probability that a crash occurs which results in an incapacitating injury.  

As discussed earlier, Li and Bai (2008) used Crash Severity Index (CSI) as a 

measure of incident severity. They have used logistic regression as a basis of modeling 
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their system. Their approach is similar to that used by Dissanayake and Lu (2002). This 

technique has been used to estimate the influences of driver, highway, and environmental 

factors on run-off-road crashes (McGinnis, Wissinger, Kelly, & Acuna, 1999). It has 

been used to determine the personal and behavioral predictors of automobile crash and 

injury severity (Kim, Nitz, Richardson, & Li, 2000).  Chang and Yeh (2006) used this 

technique to identify the most contributing risk factors for motorcyclist fatalities. In these 

studies, the authors have used the environmental and behavioral causes of the incidences 

as predictors.  

 

3.2 Linear regression versus logistic regression 

In linear regression, the relationship between two variables is in the form of: 

( � � 0 @' 

In the above equation, �  is known as the intercept, or the value of  (  when 

' � 0.  @ is known as the slope or the change in ( when ' increases by one unit. The 

method used for estimating the values of  � and @ is known as ordinary least-squares 

regression (OLS). This method produces the estimates of all the above terms as well as an 

error term ej. The error term is the difference between the estimate of ( and ( for case j. 

The predicted values of the dependent variable ( are well within the range of possible 

values of ( (Menard, 2001). When the dependent variable is dichotomous, it can carry 

only two values, 0 or 1. Since the variable is coded in a binary manner, the mean of the 

predicted values of the dichotomous variable lies between 0 and 1. Hence, the mean of 

this variable can be interpreted as a function of the probability that a selected case will 
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fall into the higher of the two categories for this variable (Menard, 2001). When the 

dependent variable is dichotomous and OLS regression is used to estimate the terms, the 

predicted values of this dependent variable can exceed 1 or can be less than 0. The values 

of probability always lie between 0 and 1, and OLS regression predicts values of the 

dependent variable that do not fall in this range.   

In logistic regression analysis, the interest is not to directly predict the intrinsic 

value of the dependent variable Y but to determine the probability that an event will 

occur. Y = 1 indicates that the event has occurred, and P(Y=1) indicates the probability 

that it will occur. The problem of having predicted values exceed 1 or be less than zero 

can be avoided utilizing the concept of odds ratio discussed earlier. An odds ratio is the 

ratio of ( = 1 to ( ≠ 1. For example, if the odds ratio is 1.59, then it indicates that an 

observation is 1.59 times more likely to fall in a category Y = 1 than Y = 0. Odds ratios 

cannot have values less than zero, but can have values more than one.  

Hence, OLS cannot be used to determine the probability that an accident will 

occur with a particular level of severity.  

 

3.3 Ordinal logistic regression 

            The response variable can have more than two ordered levels. The interest may be 

to determine the probability that the response will be one of these levels. When there are 

three or more ordered categories of the response variable, ordinal logistic regression 

(OLR) method is used for modeling (Chatterjee & Hadi, 2006). The dichotomous 

dependent variable in binary logistic regression has two levels, 0 and 1. The ordinal 
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response variable has three or more distinct levels increasing in magnitude. An ordered 

logit model has the form: 

=�$ > �3 1 ;  �3 ? �  DE 0  @F' 

=�$ > �3 0  �B1 ;  �3 ;  �B ? �  DE 0  @F' 

. 

. 

. 
 =�$ > �3 0  �B 0  … 0 �E 1 ; �3 ;  �B ;  … ;  �E ? �  DE 0  @F' 

OLR is a logistic regression technique that fits two or more regression curves 

simultaneously. The equation series above, for example, indicates the odds of belonging 

to the group represented by ( = 1 against belonging to the groups represented by ( = 2 to 

k. The numbers of equations modeled in this series are the number of ordered categories 

minus one. If ( has 3 ordered levels, the number of equations modeled are 2. Each such 

equation represents its own logit model, and hence the individual equations are called 

logits. The sum of the probabilities from �3 to �E is 1. Hence, OLR models cumulative 

probability. One important assumption in modeling with OLR is that, the relation 

between independent variables and logits is the same for in all the equations in the series 

(Norusis, 2008). The assumption implies that the coefficients of the independent 

variables will not vary significantly. Hence, the variable coefficients @F in all the 

equations in the series are the same. However, each equation has a different constant term 

DE.  
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3.4 Measures of a good fit 

3.4.1 Log-likelihood: 

Let the log-likelihood of the model with only the constant term be denoted by L0 

and the one with the independent variables and the constant term be L1. For binary 

logistic regression, the -2 log-likelihood (-2LL) is given by (Menard, 2001): 

GA � H��IJ3=�K��( � 1L 0 ��IJA=� K��( � 0LM 

The -2LL will then be -2 (GA. Here, N are the total number of cases, nY=1 

indicates the total number of cases where Y=1. Also, P(Y=1) is nY=1/N. L1 is represented 

by the same equation, but the values of the terms will be different due to the inclusion of 

independent variables. If the model is fit with the constant term only, it is a subset of the 

model with variables. Hence the former model is said to be nested within the latter. The 

difference in L0 and L1 when multiplied by -2 is interpreted as a chi-square statistic. 

Hence, the difference between the -2LL values of L0 and L1 is interpreted as a chi-square 

statistic. However, the models must be nested for the difference to be a chi-square 

statistic. This statistic if, if denoted by χ2, is given by:  

NB � ;2�GA ; G3 

χ
2 tests the null hypothesis that the coefficients of the variables in the model are 

zero. Hence, if χ2 is statistically significant (p < 0.05), the null hypothesis is rejected. 

Rejecting the null hypothesis means that the variables enable the model to make better 

predictions than the model without variables.  For an ordinal response variable, the same 

equations are used, but the difference is the type of event probability. In binary logistic 
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regression, it is P(Y=1), whereas in ordinal the value of 1 is replaced by an ordered 

category (Menard, 2001). The values of -2LL should be as small as possible in order for 

the model to be a good predictor. 

 

3.4.2 Cox and Snell R2 and Nagelkerke R2 

For dichotomous variables, the Cox and Snell R2 and Nagelkerke R2 statistics 

provide the geometric mean squared improvement per observation (Menard, 2001).  

��* ��  "��== �B  � 1 ; �PAP3BQ  
RSTUVWUXWU YZ � [\ ; >]^]\?ZR_ /K\ ; �]^ZRL 

Here, N are the total number of cases. If the model fits the data perfectly, the 

value should be 1, but Cox-Snell R2 statistic does not take this value. The Nagelkerke R2 

statistic adjusts the Cox-Snell R2 statistic to take the value of 1. Both statistics are used 

for measuring the strength of association between dependent and independent variables.  

 
3.4.3 Pearson’s χ2 and Deviance 

For ordinal regression, Pearson’s statistic is used along with Deviance as an 

indication of goodness-of-fit. Both values should be small and the significance values 

large. The large significance value (p > 0.05) indicates that the null hypothesis is rejected 

and the model is a good fit (Norusis, 2008).  

All possible dependent variables are cross-tabulated with the independent 

variable. A row or column is dedicated for each level of every variable. The frequency of 
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cases belonging to i th row and j th column is placed in the observed cell Oij and the 

expected values predicted by the model are placed in the cell Eij (Kanji, 1994). The 

Pearson Chi-square statistic and Deviance is given by the equations (Kanji, 1994; 

Norusis, 2008): 

NB �  a a �b	c ; �	cB�	c
d
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There are p rows and q columns to the table, and the degrees of freedom are 

reduced to (p-1(q-1). 

 
3.4.4 Test for parallel lines: 

For ordinal regression, the regression coefficients are assumed to be the same for all 

logits. The test for parallelism checks this assumption. The null hypothesis here is that the 

coefficients of the variables are the same across all response categories. A high 

significance value (p > 0.05) indicates that the null hypothesis cannot be rejected. These 

tests have been used in SPSS PLUM and SPSS LOGISTIC REGRESSION procedures 

for checking model goodness of fit and validating model assumptions.  

 
3.4.5 Wald’s statistic 

Wald’s statistic is given by the equation (Menard, 2001): 

mEB � K nE". �. �# nE LB 
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Here, bk is the variable coefficient value and S.E. is the standard error in 

estimating the coefficient. This statistic can be distributed asymptotically as a χ2 

distribution. Also, it follows standard normal distribution when it is just Wk. This formula 

parallels the t-ratio for variable coefficients in OLS. This statistic checks how well each 

predictor contributes to the model individually. Hence, a statistically significant Wald’s 

statistic for a variable indicates that it should be retained in the model.  

Hosmer and Lemeshow (1989) suggest that these significance values should be 

set higher than the conventional levels of 0.05 or 0.1 to values such as 0.2 or 0.25. Many 

authors (Mickey & Greenland, 1989; Bendel & Afifi, 1977) have used this criterion for 

screening variables, since they believe that stricter levels such as p < 0.05 fail to identify 

all the important variables. In a study by Dales and Ury (1978), it was determined that 

setting significance levels well above the conventional values such as 0.05 or 0.1 reduces 

the possibility of a type II error in variable selection.  
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CHAPTER FOUR 

METHODOLOGY 

The initial chapters laid a foundation for the development of the mathematical 

model to relate incident severity and incident causal factors. This chapter will include the 

step by step procedure which was used for developing this model. Each sub-procedure 

will be discussed before presenting its execution with the given data.  

 

4.1 Selecting cases 

The incident report from a power generation company was used as the source of 

data. This report has more than five hundred cases. Only incidences related to 

maintenance and service activities of the wind turbine generator were considered for 

further analysis. Incidences involving a vehicle or occurring off premises were not 

considered for further analysis.  For the whole data set, 275 of the incidences were 

chosen at random using MINITAB software. The remaining 130 the cases were used for 

validating the model.  

 

4.2 Rating severity 

Each selected case was rated for potential and actual severity. As discussed 

earlier, the involved employee, the physician, the engineer and the manager should reach 

a consensus while rating potential severity. However, it was not possible to assemble a 

team which included the employee involved, the site physician and an on-site safety 
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expert. Hence, for future studies, the suggested methodology can be used. Also, there is 

no established procedure for rating severity in the literature so far.   

An interesting perspective on assigning severity has been highlighted by 

Davidson (2004). Firstly, potential severity ratings were given according to the author’s 

subjective view of what could have materialized out of the perceived hazards at that time. 

Accident Frequency Severity Chart (AFSC) (Priest, 1996) was used to rate actual 

severity. This chart was used as a guiding tool in order to assign a potential severity 

rating.  

This effective technique was used for rating potential severity in this study. The 

AFSC was also used for rating actual severity according to the injuries sustained as 

described in the incident report. The increasing magnitude of severity according to injury 

type has been shown in the adapted AFSC (refer to table-1). This order was followed 

while rating incidences for potential severity. The potential severity was rated for each 

case by the author. Potential severity was also rated for the cases where employees had 

sustained actual injuries. This was done by increasing the actual severity by one or more 

depending on the perceived hazards of the situation as described in the incident report.  

The severity was rated based purely on the possible injury sustained by the involved 

employee.  
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Table 1- Accident Severity Scale (Priest, 1996; Davidson, 2004): 

Severity  

Ranking 

Injury Impact on 

Participation 

1 Splinters, insect bites, stings Minor 

2 Sunburn, scrapes, bruises, minor cuts 

3 Blisters, minor sprain, minor dislocation Cold/heat 

stress 

4 Lacerations, frostbit, minor burns, mild concussion,  

mild hypo/ hyperthermia 

Medium 

5 Sprains & hyper-extensions, minor fracture 

6 Hospital stay  < 12 hours fractures, dislocations, 

frostbite,  

major burn, concussion, surgery, breathing 

difficulties, 

 moderate hypo/ hyperthermia 

Major 

7 Hospital stay  > 12 hours e.g., arterial bleeding,  

severe hypo/ hyperthermia, loss of consciousness 

8 Major injury requiring hospitalization e.g., 

 Spinal damage, head injury 

Catastrophic 

9 Single death 

10 Multiple fatality 
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The incident report included descriptions of the condition in which the incidences 

occurred. These included near accidents as well as accidents involving actual injuries. 

Many cases in the incident report were already rated for severity. The injury ratings given 

for these cases were used to rate for the other cases. For near accidents, the potential 

severity was rated by considering the situation where the employee would have been 

injured rather than just spared from injury. For example, an employee could be on top of 

a three hundred foot high wind turbine tower with inadequate fall protection equipment. 

In such a case, potential severity was given according to the worst possible outcome. For 

this example, the employee could fall from a height which could prove fatal.  

Consistency was maintained while rating cases of similar nature. For example, a 

possible fatal fall from 300 feet was always rated as 9, whereas a possible fall of 20 feet 

was rated as 6 (Please refer table 1). Cases involving other types of injuries were also 

rated in the same manner (refer to tables 2, 3, 4, 5 and 6). The environmental parameters 

such as falling height, type of object, electric current voltage were given in the incident 

report. However, some cases did not report these important data. For such cases, the 

worst possible outcome was assumed. 

 

 

 

 

 

 
 



 37

Table 2- Potential severity assigned to falling objects 

List of falling objects: Potential Severity: 
(Falling height one deck 
20 feet) 

Potential Severity: 
(Falling height 300 
feet) 

Wrench 6 9 
Phone 4 6 
Radio 6 9 
Hydraulic torque wrench 6 9 
Hammer 6 9 
Oil filter and bucket 6 9 
Space plate 6 9 
Hard case 6 9 
Winch nut snap ring 2 4 
Unopened soda can 4 6 
Crane hook 6 9 
Voltmeter 6 9 
Latch handle 6 9 
Piece of crane boom 6 9 
Battery 3 5 
Bolt 2 4 
Nut 2 4 
Slip ring 2 4 
Grease gun 6 9 

 
 

Table 3- Potential severity assigned to slips and falls 
 
Description Potential Severity 

Fall is from height of 300 feet. 
 

9 

Fall is from 20 feet 6 

Employee slips and falls on a hard 
metal surface 

6 
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Table 4- Potential severity for electrical cases: 
 

Voltage Potential severity in case of 
contact with live wire 

Potential severity in case of 
burns sustained from arc 
flashing 

575 9 8 
480 9 6 
400 9 6 
220 9 6 
100 8 6 
24 4 2 

 
 

Table 5- Potential severity assigned to impact cases: 
 

Object(s) Part of body Potential Severity 
Torque wrench Fingers 

Brow 
6 
6 

Wrench Toes 6 
Hatch, Opening Fingers between 7 
Heavy metal parts Fingers between 7 
Stepladder, Own weight Fingers between 7 
Hydraulic wrench 
reaction arm, nut, bolt 

Fingers between 7 

Rotor lock, wrench Fingers between 7 
Heavy cable (suspended), 
ladder rung 

Fingers between 7 

Mast, nacelle Fingers between 7 
Axis cabinet support and 
rotating gear 

Foot 7 

Ladder rung Elbow 
Wrist 

7 
7 

Gearbox Ribs 7 
Buss bar Elbow 7 
Sledge Hammer Single finger 8 
Chisel Knee 7 
Hammer Knee 

Little finger tip 
7 
8 

Torque multiplier Forearm 7 
Hatch Forehead 8 
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Table 6- Potential severity assigned to Real Injuries: 
 

Diagnosed cases: Actual Severity Potential Severity 
Bursitis in the elbow 6 7 
Sprain in the right ring 
finger 

4 5 

Laceration to right thumb 5 6 
15 mm laceration on his 
brow 

7 8 

Contusion to hand and 
foot 
Left hand 

6 7 

Heavy sudden lifting 
damage to the back 

5 6 

Laceration to the back of 
the head 

7 8 

Laceration wound left leg 
(grinding wheel) 

6 8 

Contusion on left maxilla 6 7 
Laceration to the head 
requiring 10 staples 

7 8 

Laceration requiring 
three sutures mid cranial 
back of head 

7 8 

Laceration to the finger 5 6 
Contusion to left ankle 6 7 
3 inch laceration on the 
forehead req. 2 internal 
and 4 external stitches. 

7 8 

Fractured Finger, some 
cuts on the others 

7 8 

Finger crushed, 
thumbnail removed 

8 8 
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Lastly, the incident report also did not include the financial loss incurred for these 

cases. Hence, it was not possible to develop an actual severity scale which incorporated 

both physical injury and the cost to the organization. Hence, both the potential and actual 

severities were rated based solely on physical injuries. 

 

4.3 Arranging data 

MS EXCEL worksheets were used to arrange the preliminary data and assign 

causal categories to each case. The original incident report had each case assigned a 

causal category according to HFACS methodology. Each selected case had a case ID 

assigned in the original incident report. The selected cases with their ID were arranged in 

one column. Individual columns were assigned to the 18 causal categories. Columns were 

also assigned to potential and actual severity.  A 1 was registered in the cell with the row 

representing the case ID and column representing the causal category identified for the 

case. If two causal factors (nanocodes) of the same causal category were assigned to a 

single case, it was only counted once in the corresponding cell. 275 of the cases were 

chosen at random using MINITAB. Data from these cases was used for model 

construction.  

 

4.4 Constructing the model 

There are ten levels by which the actual and potential severities were rated. 

Hence, there were two or more ordered levels by which both types of severities could be 

rated. There were dichotomous variables representing the causal categories and ordinal 
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variables with more than two levels representing actual and potential severity. Ordinal 

logistic regression models determine the probability of an observation to fall into a 

specific group, when there are two or more ordered levels of the dependent variable. 

Binary logistic regression models calculate the probability of an observation to fall into 

one of two groups, when there are two levels of the dependent variable. Hence, it was 

suitable to construct the models using ordinal logistic regression. The initial approach 

was to construct two ordinal regression models, one with actual severity as the dependent 

variable and the other with potential severity. The dependent variables had ten ordered 

levels of severity. The initial models included all the contributing variables (refer to 

tables 7 and 8). However, none of the models passed the test of parallel lines, which 

determines if the variable coefficients are the same for all logits in the ordinal logistic 

regression model (refer to tables 9 and 10).   
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Table 7- Initial Potential Severity Model Parameters 

 

Estimate 
Std. 
Error Wald df Sig. 

95% Confidence Interval 
Lower 
Bound Upper Bound 

[psev = 
.00] 

-5.141 1.703 9.112 1 .003 -8.479 -1.803 

[psev = 
3.00] 

-1.966 1.400 1.972 1 .160 -4.709 .778 

[psev = 
4.00] 

-.554 1.396 .157 1 .692 -3.291 2.183 

[psev = 
5.00] 

.014 1.398 .000 1 .992 -2.726 2.754 

[psev = 
6.00] 

.654 1.400 .218 1 .641 -2.091 3.398 

[psev = 
7.00] 

1.175 1.402 .703 1 .402 -1.572 3.922 

[psev = 
8.00] 

1.595 1.402 1.294 1 .255 -1.153 4.342 

[psev = 
9.00] 

6.564 1.689 15.09
8 

1 .000 3.253 9.874 

[de=.00] .684 .312 4.787 1 .029 .071 1.296 
[de=1.00] 0a . . 0 . . . 
[se=.00] .504 .294 2.939 1 .086 -.072 1.080 
[se=1.00] 0a . . 0 . . . 
[v=.00] -1.823 .590 9.533 1 .002 -2.981 -.666 
[v=1.00] 0a . . 0 . . . 
[pte=.00] .371 .271 1.876 1 .171 -.160 .901 
[pte=1.00] 0a . . 0 . . . 
[f=.00] 1.310 1.039 1.592 1 .207 -.725 3.346 
[f=1.00] 0a . . 0 . . . 

a. This parameter is set to zero because it is redundant. 
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Table 8- Initial Actual Severity Model Parameters 

 

Estimate 
Std. 
Error Wald df Sig. 

95% Confidence Interval 
Lower 
Bound Upper Bound 

[asev = 
.00] 

-3.846 2.367 2.639 1 .104 -8.486 .794 

[asev = 
1.00] 

-2.772 2.359 1.381 1 .240 -7.396 1.851 

[asev = 
3.00] 

-2.000 2.354 .722 1 .395 -6.613 2.612 

[asev = 
4.00] 

-.550 2.356 .054 1 .815 -5.167 4.067 

[asev = 
5.00] 

2.039 2.533 .648 1 .421 -2.925 7.004 

[de=.00] -1.248 .335 13.847 1 .000 -1.906 -.591 
[de=1.00] 0a . . 0 . . . 
[se=.00] -.994 .322 9.508 1 .002 -1.626 -.362 
[se=1.00] 0a . . 0 . . . 
[pte=.00] -.529 .293 3.267 1 .071 -1.103 .045 
[pte=1.00] 0a . . 0 . . . 
[f=.00] -1.964 1.050 3.497 1 .061 -4.022 .095 
[f=1.00] 0a . . 0 . . . 
[pe=.00] -2.454 .836 8.620 1 .003 -4.092 -.816 
[pe=1.00] 0a . . 0 . . . 
[ams=.00] 2.109 1.021 4.262 1 .039 .107 4.111 
[ams=1.00
] 

0a . . 0 . . . 

[cc=.00] -2.596 .547 22.485 1 .000 -3.669 -1.523 
[cc=1.00] 0a . . 0 . . . 
[is=.00] 2.512 1.443 3.030 1 .082 -.316 5.341 
[is=1.00] 0a . . 0 . . . 

a. This parameter is set to zero because it is redundant. 
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Table 9- Initial Potential Severity Model Test of Parallel Lines 

Model 
-2 Log 

Likelihood 
Chi-

Square df Sig. 
Null 
Hypothesis 

195.373 
   

General .000a 195.373 35 .000 
The null hypothesis states that the location parameters (slope 

coefficients) are the same across response categories. 
a. The log-likelihood value is practically zero. There may be a 

complete separation in the data. The maximum likelihood 
estimates do not exist. 

 

Table 10- Initial Actual Severity Model Test of Parallel Lines 

Model 
-2 Log 

Likelihood 
Chi-

Square df Sig. 
Null 
Hypothesis 

171.583 
   

General .000a 171.583 32 .000 
The null hypothesis states that the location parameters (slope 

coefficients) are the same across response categories. 
a. The log-likelihood value is practically zero. There may be a 

complete separation in the data. The maximum likelihood 
estimates do not exist. 

 

Murad, Fleischmann, Sadetzki, Geyer and Freedman (2003) have suggested 

collapsing categories in order to improve the number of observations in individual 

categories and hence improve model parameter approximations in ordinal logistic 

regression models.  

For potential severity ratings, ten ordered levels were hence collapsed into three 

ordered levels. The values were divided in these three levels. Ratings from 0 to 4 were 
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collapsed into the lowermost level. Hence, the ratings from 0 to 4 were coded as 0. 

Severity ratings from 5 to 7 were collapsed into the middle level and 8 to 10 in the 

highest level. These ratings were coded as 1 and 2 respectively.  

There are 18 distinct causal categories. Each category represents an independent 

variable used in the model. The variables which did not contribute towards the 

occurrence of any incident at all were eliminated from further analysis. These variables 

were pml, sv, oc, fcp and pis (refer to Appendix A.). 

The remaining variables were selected for fitting in further models. The initial 

model for potential severity included all the contributing variables (refer to table-11). 

Variables which had their Wald’s statistic significant at a p-value < 0.25 were selected 

for fitting in the next model (refer to tables-12 and 13). The procedure continued till all 

variables and constants had a significant Wald’s statistic (refer to table- 14).  The final 

model for potential severity included four causal categories (refer to table- 15). The 

models were constructed on SPSS v.17.0. SPSS PLUM ordinal logistic regression 

procedure was utilized for fitting the models. For the variables in the final model, two-

way, three-way and four-way interactions were investigated for their contribution to the 

model.  These interactions were added in the model. There were no cases where five or 

more causal categories were identified at once, and hence higher level interaction terms 

were not included in the models.  
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Table 11- Model 1 Parameter Estimates 

 

 

Estimate 
Std. 
Error Wald df Sig. 

95% Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

[ordinal1 = 
.00] 

1.121 2.867 .153 1 .696 -4.499 6.741 

[ordinal1 = 
1.00] 

2.847 2.874 .982 1 .322 -2.785 8.480 

[de=.00] .834 .353 5.587 1 .018 .142 1.525 
[de=1.00] 0a . . 0 . . . 
[se=.00] .474 .325 2.131 1 .144 -.163 1.111 
[se=1.00] 0a . . 0 . . . 
[pe=.00] .605 .862 .492 1 .483 -1.086 2.295 
[pe=1.00] 0a . . 0 . . . 
[v=.00] -1.690 .668 6.395 1 .011 -3.000 -.380 
[v=1.00] 0a . . 0 . . . 
[ppe=.00] .401 .334 1.442 1 .230 -.253 1.054 
[ppe=1.00] 0a . . 0 . . . 
[pte=.00] .552 .299 3.402 1 .065 -.035 1.138 
[pte=1.00] 0a . . 0 . . . 
[ams=.00] .238 .596 .160 1 .689 -.930 1.407 
[ams=1.00] 0a . . 0 . . . 
[aps=.00] 1.052 1.369 .591 1 .442 -1.631 3.736 
[aps=1.00] 0a . . 0 . . . 
[cc=.00] .479 .551 .756 1 .385 -.600 1.558 
[cc=1.00] 0a . . 0 . .  
[f=.00] 1.198 1.106 1.174 1 .279 -.969 3.366 
[f=1.00] 0a . . 0 . . . 
[is=.00] -1.459 1.035 1.987 1 .159 -3.488 .570 
[is=1.00] 0a . . 0 . .  
[rm=.00] .393 .735 .286 1 .593 -1.048 1.835 
[rm=1.00] 0a . . 0 . . . 
[op=.00] -.171 1.097 .024 1 .876 -2.321 1.978 
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[op=1.00] 0a . . 0 . . . 

a. This parameter is set to zero because it is redundant. 

 

Table 12- Model 2 Parameter Estimates 

 

 

Estimate 
Std. 
Error Wald df Sig. 

95% Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

[ordinal1 = 
.00] 

-1.344 1.820 .545 1 .460 -4.910 2.223 

[ordinal1 = 
1.00] 

.372 1.821 .042 1 .838 -3.197 3.942 

[de=.00] .806 .339 5.653 1 .017 .142 1.471 
[de=1.00] 0a . . 0 . . . 
[se=.00] .372 .312 1.424 1 .233 -.239 .983 
[se=1.00] 0a . . 0 . . . 
[v=.00] -1.587 .632 6.309 1 .012 -2.826 -.349 
[v=1.00] 0a . . 0 . . . 
[ppe=.00] .365 .329 1.235 1 .266 -.279 1.009 
[ppe=1.00] 0a . . 0 . . . 
[pte=.00] .486 .291 2.779 1 .096 -.085 1.057 
[pte=1.00] 0a . . 0 . . . 
[f=.00] 1.113 1.103 1.019 1 .313 -1.048 3.275 
[f=1.00] 0a . . 0 . . . 
[is=.00] -1.267 1.003 1.596 1 .207 -3.233 .699 
[is=1.00] 0a . . 0 . . . 

a. This parameter is set to zero because it is redundant. 
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Table 13- Model 3 Parameter Estimates 

 

 

Estimate 
Std. 
Error Wald df Sig. 

95% Confidence 

Interval 
Lower 
Bound 

Upper 
Bound 

[ordinal1 = 
.00] 

-2.559 1.362 3.528 1 .060 -5.229 .111 

[ordinal1 = 
1.00] 

-.849 1.358 .391 1 .532 -3.512 1.813 

[de=.00] .756 .335 5.075 1 .024 .098 1.413 
[de=1.00] 0a . . 0 . . . 
[se=.00] .337 .309 1.185 1 .276 -.270 .943 
[se=1.00] 0a . . 0 . . . 
[v=.00] -1.629 .631 6.671 1 .010 -2.864 -.393 
[v=1.00] 0a . . 0 . . . 
[ppe=.00] .340 .328 1.076 1 .300 -.302 .982 
[ppe=1.00] 0a . . 0 . . . 
[pte=.00] .472 .291 2.637 1 .104 -.098 1.041 
[pte=1.00] 0a . . 0 . . . 
[is=.00] -1.263 1.002 1.589 1 .207 -3.228 .701 
[is=1.00] 0a . . 0 . . . 

a. This parameter is set to zero because it is redundant. 
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Table 14- Variable Selection 

Variable Model 1 Model 2 Model 3 Final Model 

de Included Included Included Included 

se Included Included Not-Included Not-Included 

pe Included Not-Included Not-Included Not-Included 

v Included Included Included Included 

ppe Included Included Included Not-Included 

pte Included Included Included Included 

ams Included Not-Included Not-Included Not-Included 

aps Included Not-Included Not-Included Not-Included 

pml Not-Included Not-Included Not-Included Not-Included 

cc Included Not-Included Not-Included Not-Included 

f Included Not-Included Not-Included Not-Included 

is Included Included Included Included 

pis Not-Included Not-Included Not-Included Not-Included 

sv Not-Included Not-Included Not-Included Not-Included 

rm Included Not-Included Not-Included Not-Included 

oc Not-Included Not-Included Not-Included Not-Included 

op Included Not-Included Not-Included Not-Included 

fcp Not-Included Not-Included Not-Included Not-Included 
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Table 15- Final Model Parameter Estimates 
 

 

Estimate 
Std. 
Error Wald df Sig. 

95% Confidence Interval 
Lower 
Bound Upper Bound 

[ordinal1 
= .00] 

-3.466 1.187 8.529 1 .003 -5.792 -1.140 

[ordinal1 
= 1.00] 

-1.765 1.177 2.249 1 .134 -4.072 .542 

[de=.00] .475 .256 3.433 1 .064 -.027 .977 
[de=1.00] 0a . . 0 . . . 
[v=.00] -1.845 .596 9.580 1 .002 -3.013 -.677 
[v=1.00] 0a . . 0 . . . 
[pte=.00] .298 .254 1.384 1 .239 -.199 .795 
[pte=1.00
] 

0a . . 0 . . . 

[is=.00] -1.186 .996 1.417 1 .234 -3.139 .767 
[is=1.00] 0a . . 0 . . . 

a. This parameter is set to zero because it is redundant. 

 

There were no high severity accidents that resulted in injuries which could be 

rated between 8 and 10. Hence, the actual severity levels could be collapsed into two 

categories. Actual severity ratings between 0 and 4 were collapsed into the 0 category. 

Actual severity ratings between 4 and 7 were collapsed into the 1 category. The variable 

representing actual severity now consisted of two ordered levels. Hence, a binary logistic 

regression model with the binary levels of actual severity was fit with the causal 

categories as independent variables (refer to table- 16). Only the variables which had 

their Wald’s statistic significant at p < 0.25 were selected in the final model. The final 

model for actual severity consisted of only three significant variables (refer to table- 17). 
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The interaction effects between these variables were also added to this model. SPSS 

LOGISTIC REGRESSION procedure was used for testing interactions. 

Table 16- Pilot Model for Actual Severity 

 

Variable β S.E. Wald df Sig. 
de .503 .566 .790 1 .374 
se .407 .540 .570 1 .450 
pe 1.977 1.006 3.865 1 .049 
v .252 .854 .087 1 .768 
ppe .486 .501 .941 1 .332 
pte .078 .486 .026 1 .873 
ams -.717 1.136 .398 1 .528 
aps 1.906 1.490 1.637 1 .201 
cc 2.235 .643 12.074 1 .001 
f -18.859 23152.665 .000 1 .999 
is -18.857 17912.582 .000 1 .999 
rm -18.778 14292.210 .000 1 .999 
op -19.362 23152.665 .000 1 .999 
Constant -2.518 .581 18.781 1 .000 

 

Table 17- Final model for actual severity 

 

Variable β S.E. Wald df Sig. 
pe 1.724 .935 3.396 1 .065 
aps 2.129 1.429 2.221 1 .136 
cc 2.129 .572 13.856 1 .000 
Constant -2.129 .204 109.384 1 .000 

 

4.5 Validating the model 

The cases used for validation were the remaining 130 not used earlier for 

constructing the model. Each case had been rated for potential and actual severity. The 



 52

probability that a case with given input variables has a particular potential severity rating 

was determined using the formulae in table 18 (Norusis, 2008): 

Each case where one or more of the variables from the group de, is, pte and v 

were identified as causal categories could provide the inputs 0 or 1 for the equations. 

Cases where these variables were not identified as causal categories were not selected for 

validation, since this meant that the coefficients of all the variables in the equations 

would be zero. The eliminated variables have coefficients which are not significant 

statistically, and hence do not contribute to the model. Cases were categorized as being 

correctly predicted if the calculated probability was above 0.85. For example, (refer to 

table- 19) for a particular case, v was identified as a causal category and the severity 

rating given belonged in the middle level (potential severity between 5 and 7). The low 

probability calculated (0.35, <0.85) classified this case as not correctly predicted.  
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Table 18- Probability Formulae(1) 
 
Probability Formula 
P(severity 
of an 
incident 
will be in 
a specific 
category j)  

 
 � >�������� �# �o� ���� ��� p�== n� �� ����$����� =��� �o�� ��  ����= �� q ?;  ���������� �# �o� ���� ��� p�== n� �� ����$����� =��� �o�� q 

P(severity 
of an 
incident 
will be in 
categories 
less than 
and equal 
to j) 

 11 0 �<�rs<+/      t 

 
                                                                                                                             

P (severity 
of incident 
will be 
between 0-
4) 

 11 0 �<K�<u.vww<A.vxyz{-3.|vy}<A.B~|6�{-3.3|w	�L 

P (severity 
of incident 
will be 
between 5-
7) 

 K 11 0 �<K�<3.xwy<A.vxyz{-3.|vy}<A.B~|6�{-3.3|w	�L
;  11 0 �<K�<u.vww<A.vxyz{-3.|vy}<A.B~|6�{-3.3|w	�LL 

P (severity 
of incident 
will be 
between 8-
10) 

 
 1 ; 11 0 �<K�<3.xwy<A.vxyz{-3.|vy}<A.B~|6�{-3.3|w	�L 

 
* 
αj : Constant value in for the categories j @ : Variable coefficient 
x : Variable value (Either 1 or 0). Variables were de, v, pte and is. 
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Table 19- Model validation examples: 

Case Given  

potential 

Severity 

 rating 

Collapsed 

potential 

Severity  

group  

Given 

Ordinal 

category 

Predicted probability that 

severity will  

be between 

 
Correctly 

Predicted? 

0-4 5-7 8-10 

1 4 0-4 0 0.165 0.355 0.480 No 

2 8  8-10 2 0.02 0.077 0.903 Yes 

 

In another case, the causal category de and severity rating belonging highest level 

(severity between 8 and 10) was given.  The high calculated probability value (0.903, > 

0.85) classified this case as being correctly predicted for potential severity.  

For the actual severity model the probability of belonging to the highest group 

(probability of severity between 4 and 7) was calculated using the equation in table- 20 

(Menard, 2001). The procedure used for the validation of the potential severity model 

was also applied for validating the actual severity model.  
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Table 20- Probability Formulae (2) 

 

General Formula 

                                                  

��( � 1 �  �r- +,�,-+,�,-9- +��� 1 0  �r- +,�,-+,�,-9- +���  
P(severity of 

incident will be 

between 4 and 7) 

 

��( � 1 �  �<B.3B~- 3.xBv6{-B.3B~�6� - B.3B~�� 1 0  �<B.3B~- 3.xBv6{-B.3B~�6� - B.3B~��  

P(severity of an 

incident will be 

between 0 and 3) 

 

��( � 0 � 1 ;  �<B.3B~- 3.xBv6{-B.3B~�6� - B.3B~�� 1 0  �<B.3B~- 3.xBv6{-B.3B~�6� - B.3B~��  

 
* 
α : Constant value  @ : Variable coefficient 
x : Variable value (Either 1 or 0). Variables were pe, aps and cc. 
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CHAPTER FIVE 
 

RESULTS AND CONCLUSION 
 

In this section, the results of this study will be presented along with its limitations. 

Future works will be discussed based on the lessons learnt from this study. 

 
5.1 Results 

 
The various measures of model fitting discussed earlier were used as indicators of 

how well a model fits the data. The final potential severity model had four variables 

(refer to table- 14). Each variable had statistically significant Wald’s statistics. The test 

for common slopes was statistically insignificant (p>0.05). Hence, the null hypothesis 

that the coefficients of the variables are the same across all the logits could not be 

rejected (refer to table- 23). The intercept (constant) values for both the logits showed 

statistically significant Wald’s statistics at a p-value of 0.25. Also, the Pearson Chi-

square and Deviance Chi-square values are statistically insignificant at a p-value of 0.05 

(refer to table- 22). The null hypothesis that the model does not fit is rejected, and model 

is a good fit with the chosen variables (refer to table- 21). In the validation stage, it was 

determined that the potential severity model could predict 35% of the validation cases 

correctly. However, the model correctly predicted 87% of the cases whose severity was 

between 8 and 10. Hence, this model can be utilized to determine the probability of high 

potential severity for incidents. 

The variables included in the final model for potential severity were decision 

error, violation, preconditions to unsafe acts: technological environment and inadequate 

supervision. Decision Error and preconditions to unsafe acts: technological environment 
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need to be investigated and safety interventions targeted in order to prevent high potential 

severity incidents in the future. These variable coefficients are positive, and hence the 

presence of these two causal categories increases the probability of an incident occurring 

with higher potential severity (refer to table- 15). 

For the final actual severity model, all three selected variables had Wald’s 

statistics statistically significant at a p-value of 0.25 (refer to table- 17). The likelihood 

ratio chi-square statistic has a p-value < 0.05. Hence, the hypothesis that model variable 

coefficients are zero can be rejected, and the model with the variables fits significantly 

better than the model without the variables (refer to table- 25). The high -2LL value 

indicates that the model fits the data poorly and the low Cox and Snell and Nagelkerke R2 

statistic values indicate a small improvement per observation from the null model (refer 

to table- 24). The actual severity model could not correctly predict the probability of 

belonging to the higher group (probability of severity between 4 and 7) or the lower 

group (probability of severity between 0 and 3) for any of the validation cases. The cutoff 

here was also 0.85, as assumed in the case of potential severity models. Hence, the actual 

severity model cannot be used for predicting the actual severity of incidents. More 

incidences need to be reported and the model re-fitted. 

There were no interaction terms whose Wald’s statistics were found to be 

statistically significant at a p < 0.25 level, for both the actual and potential severity 

models. Hence these models only included the main effects.  
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Table 21- Model Fitting Information (Final Model) 

Model 
-2 Log 
Likelihood 

Chi-
Square df Sig. 

Intercept 
Only 

69.429 
   

Final 48.088 21.341 4 .000 
 

Table 22- Goodness-of-fit (Final Model) 
 

 Chi-Square df Sig. 

Pearson 9.869 12 .627 

Deviance 11.461 12 .490 

 
Table 23- Test of Parallel Lines (Final Model) 

 

Model 
-2 Log 
Likelihood 

Chi-
Square df Sig. 

Null 
Hypothesis 

48.088 
   

General 44.233 3.855 4 .426 
 

Table 24- Final Model Summary: 
 

-2 Log likelihood 
Cox & Snell R 
Square 

Nagelkerke R 
Square 

200.974a .057 .105 
 

Table 25- Omnibus tests of final model parameters: 

 Chi-square df Sig. 
Step 16.241 3 .001 
Block 16.241 3 .001 
Model 16.241 3 .001 
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5.2 Conclusion 

In this study, a relation between the HFACS causal categories and incident 

severity has been modeled using logistic regression. Causal factors that result in high 

severity incidents have been identified.  

The potential severity model can be used as a tool to calculate the probability of 

high severity incidences. In addition, causal factors which contributed significantly 

towards incidences with high potential severity were found to be decision error and 

preconditions to unsafe acts: technological environment. The coefficients of the variables 

decision error and preconditions to unsafe acts: technological environment were found to 

be positive. Having these causal categories increases the probability of potential severity. 

Having a negative coefficient for one of the variables reduces calculated probability of 

response (Norusis, 2008). Some authors have concluded that having a negative variable 

coefficient tends to reduce the calculated probability in logistic regression (Dissanayake 

& Lu, 2002).  

Violation and Inadequate supervision were found to have negative variable 

coefficients. Also, having these variables in the potential severity model reduced the 

probability of potential severity. For example, having a decision error increases the 

calculated probability of potential severity between 8 and 10 by 0.049, while a violation 

reduces the probability by 0.378. The amount change in probability per variable is 

reflected by the value of the coefficients. For example, decision error changes the 

calculated probability more than precondition to unsafe acts: technological environment 

and their coefficient values are 0.475 and 0.298 respectively.  
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One of the core assumptions in HFACS is that when a causal category is 

attributed towards an incident, it is responsible partially or fully for that incident to occur. 

Though the variables attribute towards causing the incident, they may impact the severity 

differently. The negative variable coefficients for violation and inadequate supervision 

indicate that these causal categories reduce the calculated probability of potential severity 

between 8 and 10. Hence, the presence of these variables actually reduces the probability 

that an incident may occur with a high severity. When there are several causal categories 

for an incident, some may impact the outcome more significantly than others. As it has 

been found earlier, a violation tends to reduce the probability of potential severity by 

0.378 while a decision error increases it by 0.049. Hence, the presence of some causal 

categories changes incident severity more than others and some increase the probability 

of severity while others reduce it. 

The actual severity model was not a good fit with the data, and none of the 

severity levels correctly calculated the probability for the validation cases. Hence, this 

model cannot be used for calculating the probability of severity.  

By identifying such critical causal factors, management will be boosted in the 

decision making process. Managers can give higher priority for fixing the important 

causal factors. The developed procedure can be used for predicting severity of future 

incidents for any work environment. HFACS is a universal classification system which 

can be applied to multiple work environments. Logistic regression techniques have been 

successfully applied for predicting actual vehicle crash severity (Dissanayake & Lu, 
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2002; Li & Bai, 2008) and also in determining causal factors that lead to high severity 

incidents in coal mines (Maiti & Bhattacherjee, 1999). The work done in this thesis also 

extends this application to wind turbine generator maintenance activities. In addition, the 

HFACS system has been used successfully in conjunction with the concept of potential 

severity.  

One of the drawbacks in using logistic regression is that, data from previous cases 

is required for modeling. Hence, a large number of incidences need to occur in the 

environment of interest in order to construct the model. Also, probability of severity 

cannot be determined for incidences with causal categories are not represented by the 

variables in the final models.  Further, the criterion used in variable selection of p < 0.25, 

though supported by previous work in this field (Mickey & Greenland, 1989), will be 

doubted by researchers who utilize the traditional value of 0.05. 

  When new incidents are added to the report, the data changes and hence, new 

models need to be fit for the new data. Hence, the next step is to develop an application 

which works on a dynamic level by fitting new models automatically and immediately 

when the incident report changes. Secondly, the severity rated by a physician in 

conjunction with a safety engineer and the involved employee would be more accurate in 

terms of damage sustained to the human body and the potential environmental hazards. 

Hence, in future studies, both types of severities need to be rated for each case with the 

consent of all involved personnel. There has not been an established procedure to rate 

potential severity. These drawbacks can be eliminated by developing new techniques 

which can be used for similar studies in the future. 
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5.3 Future research 

5.3.1 Dynamic model 

Once the model is validated using the methodology presented in this paper, it can 

be used for making future predictions. However, if new incidences occur, the data in the 

incident report changes and hence new models need to be fit. A constant revision of data 

should also trigger a constant revision of the model fitting process. This process is shown 

in the flowchart below (refer to Fig. 5):            

 

                                     Fig. 5 Dynamic Model 
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When the database is modified, a trigger starts the methodology for fitting the 

model as discussed in this study. A change in the incident report triggers the statistical 

software to follow the model fitting methodology. If the models are a good fit, the 

validation program is triggered. Otherwise, random samples are chosen till the model fits 

satisfactorily. The output can then be interpreted by the user. Hence, the next step is the 

development of a dynamic model where new changes in the incident report trigger a 

series of programs which fit new models.  

Also, once the model had been validated, an interface can be developed which 

returns the severity probability once the user inputs causal categories. This can be 

performed in the following manner: 

At stage 1 in the figure, the incident report database is modified by simply adding 

a 1 in the cells with the column representing the identified causal category and the row 

representing the newly added case ID. Also, potential and actual severity ratings are 

added in their respective columns for the new case. Once, this occurs an internal program 

triggers the external statistical software to commence stage 2. 

The methodology discussed in this study can be programmed into the statistical 

software, and all the steps can be executed in the correct fashion. Stage 3 commences 

once all statistical criteria are verified and the model is a good fit. Otherwise, the model 

repeats stage 2 till a good fit is found. A custom application can be programmed or a 

current statistical package customized. 

The validation process discussed in this study can be customized with a statistical 

package or a separate customized software developed. This process will be triggered at 
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the end of stage 2. The output can then be interpreted by the user. An interface can be 

developed for the output. The user checks the causal factors using the checkboxes. The 

generate button runs the dynamic model. The output severity levels change as new data is 

fit, and the interface will reflect these changes. This process is shown in the flowchart 

below (refer to Fig. 6). 

 

Fig. 6 Interface model 

5.3.2 Potential severity rating procedure 

There has not been an established procedure for rating potential severity in the 

literature so far. In previous literature, the potential severity has been rated according to 
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an author’s subjective opinion based on the conditions of the incident at that time. In this 

thesis, potential severity was rated based on the incident description, an actual severity 

scale and the author’s subjective analysis. These subjective ratings may be questioned by 

decision makers for their validity. This makes the ratings less trusted and their use 

questioned for further analysis.  This is a drawback that needs to be eliminated. Hence, a 

basic framework needs to be established for rating potential severity. The following step-

by-step procedure is proposed (refer to Fig. 7): 

 

Fig. 7 Potential severity rating procedure 

The incident is reported to the safety engineer by the employee involved. The site 

physician, safety engineer and employee hold an on-site meeting where the incident 

occurred. The employee now describes the event in detail, according to best recollection. 



 66

The employee describes the objects involved, and the energy flows. Also, the position of 

the employee at the time of the incident is determined.  

Next, the safety engineer and the physician discuss the gathered information. The 

safety engineer determines how the environment would have affected the employee in 

terms of energy transferred. Energy flow and type have been given importance in 

analyzing risk by Ross (1981). For example, it could be thermal in the form of hot 

apparatus, electric in the form of live equipment, in the form of direct impact with an 

object or a combination of the three. The most probable areas of the body where energy 

of that magnitude would have transferred are determined. 

Further, the site physician determines the possible injuries suffered if the involved 

employee was contacted in the probable body regions by the energies of that magnitude. 

Out of the possible injury-body part combination, the physician selects the one that 

results in most severe injury. The physician rates severity on a ten point scale based 

solely on physical injury to the employee. The safety engineer and physician have 

another discussion to ensure they agree on the rating. 

The possible workdays lost from the injury are reported by the physician and the 

possible equipment damaged is reported by the safety engineer to the site or plant 

manager. Manager calculates the cost to the organization in the event of the incident, 

based on cost of lost production time and repairs or installation of new equipment. The 

manager rates the severity of the incident based on possible financial loss. The two 

ratings are multiplied to combine the effects of both types of severities. This new 

potential severity rating can be written in the form of: 
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New potential severity rating              
�  Potential severity Rating based on physical injury 
� Potential severity rating based on �inancial loss 

This new potential severity rating can truly combine severity associated with 

physical and financial loss. These methodologies can be applied in future studies which 

use logistic regression techniques for calculating severity probability. 
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A. Variable Information 

Variable Variable 
Abbreviation 

Unsafe Act: Decision Error de 
Unsafe Act: Skill-based Error se 
Unsafe Act: Perceptual Error pe 
Unsafe Act: Violation v 
Precondition: Physical Environment ppe 
Precondition: Technical Environment pte 
Precondition: Adverse Mental State ams 
Precondition: Adverse Physiological State aps 
Precondition: Physical/Mental Limitation pml 
Precondition: Communication and Co-ordination cc 
Precondition: Fatigue f 
Supervision: Inadequate Supervision is 
Supervision: Planned Inadequate Operation pis 
Supervision: Supervisory Violation sv 
Organizational Influences: Resource Management rm 
Organizational Influences: Organizational Climate oc 
Organizational Influences: Organizational Process op 
Supervision: Failure to Correct Known Problem fcp 
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B. List of Nanocodes 

 
Failure Level Unsafe act 
Causal Category Decision error 
 
 
 
Nanocode 

Improper use of PPE 
Incorrect or absence of PPE 
Improper use of tool/equipment 
Incorrect tool/equipment 
Inappropriate procedure 
Inadequate knowledge/information 
Exceeded ability 

 
Failure Level Unsafe act 
Causal Category Skill-based error 
 
 
 
 
Nanocode 

Omission of step 
Incorrect operation/handling of tool/equipment 
Equipment drop 
Bad habit/practice 
Attention failure 
Slip, trip, or fall 
Improper use of winch/hoist 
Lifting, lowering, absence of bag, tearing of bag 

 
Failure Level Unsafe act 
Causal Category Perceptual error 
 
Nanocode 

Loss of balance 
Misjudged distance, altitude, clearance, size 
Due to visual illusion 

 
Failure Level Unsafe act 
Causal Category Violation 
Nanocode Failure to use PPE 

Violation of orders, regulations, SOPs 
 
Failure Level Preconditions to unsafe acts 
Causal Category Physical environment 
 
 
 
 
 

Weather; Extreme heatWeather; extreme cold 
Weather; Ice 
Weather; Rain 
Weather; Snow 
Weather; Windy 
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Nanocode 
 

Weather; Fog 
Slippery surface 
Poor housekeeping/cleanliness/congestion 
Inadequate lighting 
Presence of hazardous/toxic substances 
Inadequate ventilation 
Altitude 
Terrain 
Unsafe environment created 

 
Failure Level Preconditions to unsafe acts 
Causal Category Technological environment 
 
 
 
 
Nanocode 
 

Danger zone 
Congested/tight space 
Inappropriate equipment/tool 
Equipment/tool/space design 
Lifting 
Repetitive motion 
Improper posture 
Inappropriate procedure 
Improperly maintained tool/equipment 
3RD party equipment/procedure failure 

 
Failure Level Preconditions to unsafe acts 
Causal Category Adverse mental states 
 
 
 
 
 
Nanocode 
 

Mental fatigue 
Circadian dysrythmia 
Complacency/boredom 
Distraction 
Overconfidence/arrogance 
Stress 
Get-home-it is 
Apathy 
Sense of entitlement 
Task saturation 
Rushing 

 
Failure Level Preconditions to unsafe acts 
Causal Category Adverse physiological states  
 
 
Nanocode 

Physical fatigue 
Illness/sickness 
Intoxication/under an influence 
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Effects of medications 
Failure to meet rest requirements while on duty 

 
Failure Level Preconditions to unsafe acts 
Causal Category Physical/Mental States 
 
 
Nanocode 

Physical limitation 
Visual limitation 
Hearing limitation 
Insufficient reaction time 
Inadequate experience for complexity of situation 

 
Failure Level Preconditions to unsafe acts 
Causal Category Coordination, communication and planning 
 
 
Nanocode 
 

Lack of/poor communication or feedback 
Lack of planning/preparation 
Lack of leadership 
Lack of decision-making 
Lack of/poor assertiveness 
Workload management 

 
Failure Level Preconditions to Unsafe Acts 
Causal Category Fitness for duty 
 
 
 
Nanocode 

Failure to meet rest requirements 
Self-medicating 
Overexertion while off duty 
Poor dietary practices 
Pattern of poor risk judgment 
Inadequate preparation, skill, or knowledge 
Off duty injury 

 
Failure Level Supervision 
Causal Category Inadequate Supervision 
 
 
 
 
 
 
Nanocode 
 

Failed to provide guidance/oversight 
Failed to track qualifications 
Failed to track performance 
Perceived lack of authority 
Failed to provide adequate rest period 
Lack of accountability 
Failed to provide information/data/ instructions 
Over-tasked/untrained supervisor 
Failed to provide adequate training/on-the-job experience 
Inadequate delegation/prioritization of tasks 
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Inadequate provision of PPE 
Excessive tasking/workload 
Inappropriate employee scheduling 
Failed to plan for adequate employee rest 
Failed to provide adequate briefing time /supervision 

 
Failure Level Supervision 
Causal Category Failed to correct problem 
 
Nanocode 

Failed to initiate immediate corrective action 
Failed to report a hazard/problem 
Failed to correct a hazard/problem 

 
Failure Level Supervision 
Causal Category Supervisory Violation 
 
 
Nanocode 
 

Knowingly provided inadequate information/ data/instructions 
Authorized unqualified employee for work 
Knowingly failed to enforce rules and regulations 
Knowingly violated procedures 
Willful disregard of authority 
Falsifying documentation/records 

 
Failure Level Organizational Influences  
Causal Category Resource Management 
 
 
 
 
Nanocode 
 

Insufficient manpower for task 
Inadequate training/qualification system 
Employee selection process 
Lack of funding/excessive cost-cutting 
Failure to correct known design flaws 
Material resource unavailable 
Material resource inappropriate 
Conflicting or too much information/data 
Inadequate prioritization 
3rd party non-compliance 

 
Failure Level Organizational Influences 
Causal Category Organizational Climate 
 
 
 
 
 
Nanocode 

Policies 
Norms versus rules / policies 
Values, beliefs, attitudes, morale 
Peer pressure 
Communication 
Accessibility / Visibility of supervisor / lead 
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 Delegation of authority 
Formal accountability for actions 
Promotion 
Unstable workforce (hiring, firing, retention) 
Drugs and alcohol 
Time / quota pressure 
Organizational Structure 

 
Failure Level Organizational Influences 
Causal Category Operational Process 
 
 
 
Nanocode 
 

Instruction inadequate or unclear 
Instruction not documented / available 
Information / data inadequate or unclear 
Information / data not available 
Revision process long / complicated 
Communication of change inadequate 
Reward / recognition / incentives 
Monitoring and checking of resources, climate, and processes 
inadequate 
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