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ABSTRACT 

 
The classic board game of checkers is ideally suited for research in AI game-playing 

programs or agents. The objective behind Soar Checkers is to investigate if it is possible to 

create an agent-based game playing system that would beat novices with ease and at least 

challenge advanced novice to intermediate-level players by designing a rules-based expert 

system whose knowledge base consists of nothing more than the rules of checkers, and a set 

of guidelines for game-play based on good strategy.  Soar was chosen as the platform for 

building this agent because it came built-in with features that facilitate creating rules-based 

expert systems, has been proven to be fairly reliable in developing such systems (including 

flight simulators) for over twenty years and makes it relatively straight-forward to have 

multiple agents play each other, and to add or modify features or strategies to the agents. 

Though the problem definition makes it inherently hard to objectively quantify the results, 

the objectives were successfully achieved for the most part. It was also seen that all other 

things being equal, the player going second (White) has a built-in advantage, thereby 

confirming a widely held belief among the checkers community. 
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CHAPTER ONE 
PROBLEM DESCRIPTION 

 
1.1 Introduction 
 

The classic board game of checkers (also referred to as 8 x 8 draughts in Britain)1 is 

ideally suited for research in AI game-playing programs or agents. Its similarity to chess 

makes it possible to leverage the advances made and lessons learnt while developing chess 

playing super computers such as Deep Blue and Fritz. The reduced complexity of checkers 

allows the researcher more leeway in exploring new techniques [1]. 

The objective behind Soar Checkers is to investigate if it is possible to create a game 

playing system that would beat novices with ease and at least challenge advanced novice to 

intermediate-level players by designing a rules-based expert system whose knowledge base 

consists of nothing more than the rules of checkers, and a set of guidelines for game-play 

based on good strategy. This is in contrast to the traditional AI techniques used by programs 

such as Chinook, which largely rely on treating game-play as a problem of search. Thus, the 

main problem being approached and investigated is to develop an intelligent agent in Soar2

that 

 

• Is aware of the rules of checkers; 

• Plays at a respectable level; i.e., plays at the level of an advanced novice to 

intermediate level player; 

• Does not use the traditional AI techniques that have been used in the past to 

develop game-playing programs, as described in Section 1.2 on the next page and 
 
1 For more information on the history and rules of checkers, please refer to Appendix A
2 To learn more about Soar, please refer to Appendix B.
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• Provides a platform for exploring the effects of various strategies and tactics on 

improving game play.  

 

1.2 Games and Search 

 1.2.1 Motivation for Search 

Most games can be represented in terms of an initial state, intermediate states, and 

(possibly) a (set of) final state(s). For example, in the case of chess, the initial state would be 

the starting board position, the intermediate states would be the board positions resulting 

from various moves made by the players as the game progresses, and the final state(s) would 

be board positions in which one player has emerged as the clear victor (for instance, a 

checkmate), or the game is drawn. Therefore, these states form a state-space. Evidently, for 

any one player, some of the final states are more desirable than the others. It could then be 

seen that games could be approached as a quest to traverse this state-space, starting at the 

initial state and ending in one of the desirable final states (for instance, win or draw). State-

space search has been used quite successfully in the past to create game-playing programs. 

The following sections describe some of the commonly used techniques for building such 

systems. 

 

1.2.2 The Minimax Algorithm 

 1.2.2.1 Zero-Sum Game 

A zero-sum game is one in which the amount of resources available to the players 

involved (usually, two or more) is fixed [2]. This means that a gain for one player would 

result in an equal loss for the other players. In other words, if the gains and losses of all 
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players playing a zero-sum game are added up, the result would be zero. Examples include 

chess, go, checkers etc. 

 

1.2.2.2 Introduction to Minimax Algorithm 

Almost all “intelligent” game-playing computers generally use some variation or the 

other of the basic minimax algorithm. This is because almost all of them treat games as a 

problem of state-space search. In this case, the program tries to identify various paths 

through the state-space leading to desirable final states, and then tries to pick moves that will 

still lead to a desirable outcome, while expecting the opponent to do his or her best to 

thwart these moves. It can be seen that an algorithm that performs this state-space search 

would be at the heart of such search-based game-playing systems. The minimax algorithm 

basically recommends the best possible legal move in two-player, zero-sum games [3]. This 

algorithm was first proposed in 1928 by Jon Von Neumann. 

 

1.2.2.3 Evaluation Functions 

The algorithm requires an evaluation function that would assign a score to each game 

state (for example, board position in board games such as chess or checkers). Typically, these 

functions are referred to as position evaluation functions. A “good”' evaluation function is 

quite often the difference between various competing game-playing programs. In the case of 

checkers, an example evaluation function could assign different scores for the two kinds of 

pieces (example, 1 for an ordinary checker, and 2 for a king, various squares on the board 

could be differentiated using scores assigned to them (example, 5 for center squares 

occupied by the players' pieces, 2 for edge squares, -3 for each square near the players' king 

row that is occupied by an opponent checker, etc.). This evaluation function would therefore 
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be a weighted sum of various factors, with the weights picked to reflect both material 

strength and positional strength (example, a board position with positional score of 22 and 

having 4 checkers and 2 kings would result in a total score of 22 + (4 x 1) + (2 x 2) = 30) . 

The algorithm works roughly as follows [3, 4, 5]: 

 

1.2.2.4 Components of the Algorithm 

Consider two players, MAX and MIN playing a zero-sum game. The objective of MAX 

is to maximize the minimum possible score returned by the evaluation function used by the 

minimax algorithm, while that of MIN is to minimize the maximum possible score returned 

by the evaluation function. Suppose it is MAX's turn to make a move. The current game 

state is passed to a function that would first generate all the possible legal moves that MAX 

could make, and then return the collection (possibly zero or more) of game states that are 

the result of making those moves. The resulting game states are at what is referred to as the 

“min-level”, and the algorithm works recursively, treating each of the resulting game states as 

the current state, generating the possible legal moves and the new game states that result 

after each of those moves are made - which would now be at the “max-level”.  

 

1.2.2.5 Game-Tree 

A game-tree is thus generated, with the root being the current game state, the children 

being the game states that result from making a legal move. In the ideal case, the algorithm 

would run until one of the possible final game states is generated (for example, one of the 

players win) - however, in most cases, this would require an unacceptably long period of 

time, even with the most modern super computers. Hence, depending on the platform 

running the algorithm, the maximum search depth is limited, to say, “d”. 
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1.2.2.6 Evaluation of Game-Tree 

Once all the game states have been generated up to depth d, each of the leaf nodes is 

assigned the score returned by the evaluation function. If the leaves happen to be at the 

max-level, their immediate parents are at the min-level, and each parent would be assigned 

their children’s minimum score. On the other hand, if the leaves are at the min-level, their 

parents would be assigned their children’s maximum score. This process continues 

recursively, in a bottom-up fashion until the immediate children of the root node have been 

assigned scores. Now, assuming that it is the MAX players' turn to move, the move that 

would result in the game state with the highest score that is also an immediate child of the 

root would be returned as the “best” possible move that the player could make, by the 

algorithm. The algorithm can be described, in pseudo-code fashion as shown in Algorithm 

1.1 on the next page [4, 5]. 

 

1.2.2.7 An Example 

An example game-tree generated by the minimax algorithm is shown in Figure 1.1 on 

page 7. For the sake of clarity and brevity, we assume that the algorithm looks ahead only 3 

plys3 and that the player who is about to make the move tries to maximize the score returned 

by the evaluation function (thereby, becoming “MAX”) and his or her opponent tries to 

minimize the same (thereby, becoming “MIN”). A closer inspection of the game tree 

generated by the algorithm reveals that from the present state of the game, MAX has two 

possible choices, each of which provides MIN with two possible responses. The position 

evaluation function is applied to the game states at the leaf nodes, and their immediate 

parents are assigned the highest score among their children, since the parents are at a MAX 

 
3 In game-playing parlance, a ply is a half-move. When both players have each made a move, it is two plys. 
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level. The scores are thus backed up, until the root node is reached, and in this specific case, 

the minimax algorithm would recommend that MAX pick the move which results in a score 

of 5 over one that results in a score of 3. 

 

function minimax(node, depth)

if node is a terminal node or depth = 0

return the heuristic value of node

if the adversary is to play at node

let α := +∞

foreach child of node

α := min(α, minimax(child, depth-1))

else {we are to play at node}

let α := -∞

foreach child of node

α := max(α, minimax(child, depth-1))

return α

Algorithm 1.1: Pseudo-Code for the Minimax Algorithm 
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Figure 1.1: Example of a Minimax Game Tree 

 

1.2.3 Minimax Improved: Alpha-Beta Pruning 

 1.2.3.1 Motivation for Improving Minimax 

The major drawback with the minimax algorithm is that, though it can ostensibly predict 

the “best” possible move available to a player, given a certain state of the game (assuming 

that the position evaluation functions used are reasonably good), as the branching factor 

(number of legal moves possible from a given game state) increases, the search-depth, and 

thus the time required to perform the search for the best move increases exponentially. For 

example, suppose we are using the minimax algorithm to predict the best moves for a game 

which has an average branching factor of 10. This means that if our “intelligent” game-

player looks ahead one ply, there would be 10 leaf nodes in the minimax game tree, and the 

depth would be 1. If it looks ahead two plys (i.e. one complete move by both players), the 

game tree would have a depth of 2, and at the leaf level, there would be 100 nodes. This can 

be summarized briefly as shown in Table 1.1 on the next page. 
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The scenario shown above is quite realistic in the case of checkers, since for non-capture 

moves, the average branching factor in checkers is 8 and for capture moves, it is 

approximately 1.25 [1]. It is quite common for expert players to look ahead 20 plys or more, 

especially in the end game. The number of leaf nodes that would have to be searched for 

different plys involving non-capture moves can be seen in Table 1.2 on page 9. 

It is quite obvious that even with the fastest supercomputers, the time required to 

perform a 20 ply search would be quite unwieldy. Significant gains can be made in the time 

required to generate the best move, if the number of nodes involved in the search can be 

drastically reduced. This is where a technique called Alpha-Beta pruning [3, 6], and its 

variants come into play. It is safe to say that almost all search-based game playing programs 

rely on minimax search with alpha-beta pruning for their “intelligent” game-play. 

 

Look-Ahead Depth Number of Leaf Nodes 

1 10 

2 100 

3 1000 

4 10000 

5 100000 

6 1000000 

. .

20 100000000000000000000 

Table 1.1: An Example of Exponential Increase in Number of Leaf Nodes to be 
Searched with Increasing Depth of Search when the Branching Factor is 10 
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1.2.3.2 An Example 

Let us consider the same example that was used to explain the minimax algorithm, and 

see how alpha-beta pruning could help in reducing the number of nodes that need to be 

searched to find the “best” move. For the sake of clarity, all nodes except the leaf nodes 

have been labeled in this case (A, B1, etc). Given the game search-tree shown in Figure 1.2, 

on the next page, alpha-beta pruning works as follows: 

 

Look-Ahead Depth Number of Leaf Nodes 

1 8

2 64 

3 512 

4 4,096 

5 32,768 

6 262,144 

. .

20 1,152,921,504,606,846,976  

Table 1.2: An Example of Exponential Increase in Number of Leaf Nodes to be 
Searched with Increasing Number of Plys Searched in checkers for Non-Capture Moves 
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Figure 1.2: Example Game-Tree before Alpha-Beta Pruning 

 

Just as in the case of ordinary minimax, the algorithm begins by examining the scores 

returned by the position evaluation function for the bottom-leftmost leaf nodes, which in 

this case, are the children of node C1, which is a max node. Since it is at max-level, the 

maximum of 5 and 4 - 5 is returned to C1, which is in turn, temporarily stored in B1, which 

is at min-level. The algorithm examines the children of C2 next, and comes across the value 

6. Since C2 is at max-level, we can safely say without examining its remaining children that it 

would return a value that is greater than or equal to 6. However, B1, which is C2's parent, is 

at min-level, already has a value of 5 returned from C1 and would choose the lower value, 

which in this case is 5. Thus, it is safe to ignore the remaining children of C2, leaving the 

value of 5 intact in B1. 

Now, we examine the children of C3, and since it is at a max-level, the greater of 3 and 2 

- 3 is returned to C3, which in turn, is temporarily stored in B2. Though the nodes B1 and 

B2 are at min-level, their parent node A is at max-level, and will always choose the greater 
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value among B1 and B2. We know that B1 contains 5, and since B2 now temporarily holds 

3, even if we examine all the children of B2's other child node C4, the final value in B2 

would be a value less than or equal to 3. Since A is a max-node, it would thus choose B1, 

since its value will now be higher than that of B2, regardless of what values C4's children 

might have. Thus, the algorithm would ignore the entire branch C4, and choose the move 

B1, with score 5. This is illustrated in Figure 1.3.  

 

1.2.3.3 Effect of Move Ordering on Performance 

It should be noted that the number of leaf positions evaluated is heavily influenced by the 

ordering of the moves in the game search tree. In other words, alpha-beta pruning works 

best when the “best” moves are searched first. In the worst case scenario, with an average 

branching factor of b, and a search depth of d, the number of leaf nodes evaluated is the 

same as in the case of normal minimax – bd , but in the case of optimal move ordering (best 

moves searched first), the number of leaf nodes searched reduces to √bd . This means that 

the effective branching factor is reduced to its square root, or in other words, the search can 

be performed twice as deep with the same amount of computation [3]. In the specific 

example shown in Figure 1.3, using minimax, the number of leaf nodes searched was 11, 

while alpha-beta pruning enabled us to obtain the same result while searching only 5 leaf 

nodes - a reduction of approximately 54.55% in the amount of search conducted. 

Considering that quite often, the difference between a winning machine and a losing 

machine is in its computational power (with respect to the amount of instructions it can 

execute per second, or the depth to which it can evaluate a game search-tree), it is obvious 

that alpha-beta pruning is an invaluable tool in building an efficient search-based game 

playing machine. 
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Figure 1.3: Example Game-Tree after Alpha-Beta Pruning 

 

As a side note, “alpha” refers to the minimum value that the MAX player is assured of 

obtaining, and “beta” refers to the maximum value that the MIN player is assured. Usually, 

alpha is initialized to negative infinity, while beta, to positive infinity. When at a given node, 

beta becomes less than alpha, that node and its children are eliminated from the search, since 

they would not come about, if each player plays perfectly (which is one of the assumptions 

of the alpha-beta pruning algorithm). Pseudo-code for the algorithm is shown in Algorithm 

1.2 on the next page [6]. 

 

1.2.4 Optimizing Alpha-Beta Pruning: Iterative Deepening 

 1.2.4.1 Motivation for Iterative Deepening 

As explained in Section 1.2.3 on page 7, Alpha-Beta pruning is a great technique that can 

yield significant gains when it comes to improving the efficiency of a minimax search of a 
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game tree. However, its efficacy is highly dependent on move-ordering within the search 

tree. That is, for optimal results, the best moves should be searched first. Iterative deepening 

is a simple, yet sometimes counter-intuitive technique that aids in achieving this very result. 

Usually, search-based game playing machines have some kind of restriction as to the 

amount of time available to perform the search before returning the “best” available move. 

The basic problem here is that we are not sure how deep the search should be. On one 

extreme, we could specify that the search should be conducted up to the terminal nodes – 

but this could be too deep, resulting in the allocated time running out before huge swathes 

of the game tree have even been searched, and returning a potentially sub-optimal move. On 

the other hand, we could limit the search - depth to an arbitrary value of d plys, but once 

again, there is no way to say if d is too shallow, or too deep. This is where iterative 

deepening comes in handy. 

 

function minimax(node, depth)

return alphabeta(node, depth, -∞, +∞)

function alphabeta(node, depth, α, β)

if node is a terminal node or depth = 0

return the heuristic value of node

if the adversary is to play at node

foreach child of node

β := min(β, alphabeta(child, depth-1, α, β))

if α ≥ β

return α
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return β

else {we are to play at node}

foreach child of node

α := max(α, alphabeta(child, depth-1, α, β))

if α ≥ β

return β

return α

Algorithm 1.2: Pseudo-Code for Alpha-Beta Pruning 

 

1.2.4.2 Basic Idea 

The basic idea is that a depth first search (DFS) is done to depth 1, and if there is still 

time left, we increase the search depth by one, and so on, until the time allocated to make a 

decision on the next move (for example, roughly six minutes, in the case of checkers), runs 

out [7]. Thus, if the branching factor is b, the number of nodes searched would be b + b2 +

b3 + . . . + bd-1 +bd. Now, it might appear that the earlier searches (for instance, the search to 

depth 1, depth 2, depth 3, etc.) are wasteful in terms of time. However, the greatest utility of 

iterative deepening is that the results of each iteration can be used to re-order the nodes 

attached to the root, with the assumption being that the best moves at depth d, would 

continue to lead to the best moves at depth d + 1 (This assumption does hold, in most 

cases). This results in the best moves being searched first with every iteration, thereby 

approaching optimal results for alpha-beta pruning. 
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1.2.4.3 An Example 

An example of iterative deepening can be seen in Figure 1.4 below. Here, the root node, 

and its four children A, B, C and D are shown with the corresponding scores returned by the 

position evaluation function after a search has been conducted to a depth d. Before the next 

iteration, the child nodes are re-ordered so that the nodes with the higher scores would be 

searched first. The results of the next iteration (searching up to depth d + 1) can be seen on 

the right hand side of the figure, which in this case backs up the assumption that the “best” 

moves at depth d are very likely to help in predicting the best moves at depth d + 1 too. 

Various techniques are often used in conjunction with iterative deepening in order to 

increase the efficiency of alpha-beta pruning, and these include using transposition tables, 

keeping track of best moves from previous searches so that they can be searched 

preferentially if the same board position is encountered in a future search, using history 

heuristics [7], etc. 

 

Figure 1.4: Example of Move Re-ordering Using Iterative Deepening 
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1.2.5 Games and Moves Databases 

Another tool that is extensively used by most intelligent game playing systems consists of 

game and moves databases or books. These come in various assortments and shapes, but 

mostly fall into three categories: 

 

• Opening Game 

• End Game 

• Classics 

 

It is common practice to split up or describe chess or checkers games in terms of 

opening game, middle game and end game. Each stage is characterized by different styles of 

play that would aid in winning, and the knowledge acquired over the years has led to the 

development of extensive moves databases, especially in the case of opening and end games. 

 

1.2.5.1 Opening Book 

In the case of checkers, a seemingly harmless move at the early stages of a game could 

result in the game being lost, even with “perfect play” throughout the rest of the match. This 

is not quite the case in chess, where opportunities for recovery do exist, purely because of 

the greater freedom of movement that the pieces in a chess game have, with respect to those 

in a checkers game. Thus, there are literally thousands of so-called “standard” opening move 

combinations, whose sole purpose is to navigate the tricky waters of the opening game 

relatively unscathed, or to gain any kind of leverage (material or positional) that could then 

be used to hurt the opponent during the middle game. Since most players at the expert level 

spend copious amounts of time and effort memorizing these opening move combinations, it 
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can be easily seen why a database of such moves would be a great tool for any machine that 

has aspirations of challenging opponents of that level of expertise. 

 

1.2.5.2 Endgame Databases 

Quite similarly, once the game has reached an advanced state and more than likely the 

number of pieces on the board have been reduced to a handful for either players, the 

endgame is reached. Unlike other stages of the game (including the opening phase), any error 

made at this stage will almost certainly result in defeat, especially when playing against an 

accomplished opponent. Very often, to ensure victory, a player has to manouevre his or her 

pieces in precise order, ensuring that strategic locations on the board are occupied at the 

right time, by the right piece so that the opponent has no chance of being let off the hook. 

Such precise play is rarely accomplished accidentally, and hence the raison d'etre for truly 

encyclopedic endgame databases. 

 

1.2.5.3 Classic Game Databases 

The final class of game or moves databases would be those made up of “classic” games, 

usually played out by the true masters of the game in question - for example, Bobby Fischer 

or Garry Kasparov in chess, or Dr. Marion Tinsley in checkers. Such games are usually 

characterized by seemingly illogical moves (for the casual observer) that lead up to either an 

astounding assault on the opponent, or staving off defeat from an otherwise lost position. 

Once again, such moves rarely, if ever, occur to an ordinary player, and hence, someone who 

has spent time to study them usually has an advantage over an opponent who hasn't, all 

other things being equal. For these reasons, almost all serious game-playing programs 
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employ a fairly extensive database of classic games played in the past, to aid in their game-

play. 

 

1.3 Chinook 

Any discussion on what has been accomplished in the field of artificially intelligent 

game-playing programs, especially in the case of checkers would be incomplete without 

mentioning Chinook. A fairly brief overview of what Chinook is and how it was developed 

follows. 

 

1.3.1 History 

 1.3.1.1 Origin 

In 1952, Arthur Samuel wrote a checkers playing program, that through continuous 

refinement, actually managed to beat Robert Nealy, a blind checkers master from 

Connecticut in a famous game in the 1960s. As a result, his program acquired the reputation 

of being a Masters-level player (though it later turned out that Nealy was not nearly as good 

at checkers, as claimed), and this in turn, led to almost no work being done in the field of 

Computer checkers for the next 25 years, since it was apparently, a “solved” problem [1]. 

In June 1989, Dr. Jonathan Schaeffer at the University of Alberta, Canada, who had been 

working on computer chess, decided to write a computer program that would be good 

enough to beat the human checkers champion in the short term, and ultimately, solve the 

game of checkers - giving the world, Chinook. He worked with a team that included 

Norman Treolar as the checkers expert, Robert Lake, who was responsible for the endgame 

databases, and Martin Bryant, who supplied a very large, and very good, opening book. Many 

graduate students were also contributors to the development of Chinook. 
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1.3.1.2 Performance in Tournaments 

About a year after the project began, in August 1990, Chinook competed in its first two 

human checkers tournaments and did very well. It won the Mississippi State Open 

undefeated, and even beat three Grandmasters. While at the US National Open, it placed 

second, once again defeating three Grandmasters in the process. It should be noted that the 

US National Open is the biennial event used to determine the next challenger to play for the 

World checkers Championship, and by coming in second to the reigning World Champion 

at the time, Dr. Marion Tinsley, Chinook had earned the right to a 40-game match against 

him for the Championship. 

However, this was the first time that a computer program had earned the right to play 

for a human world championship, and perhaps, for this reason, both the American Checker 

Federation (ACF) and the English Draughts Association (EDA) did not sanction a Chinook 

versus Tinsley match. Partly because of their refusal to sanction the match, Dr. Tinsley 

resigned as World Champion in June 1991. It is worth noting that Dr. Marion Tinsley had 

been the premier checkers player in the world for the past 40 years, losing just 5 games in 

that lengthy span, over thousands of games. 

Though not officially sanctioned, Chinook played Dr. Tinsley for the “de-facto” world 

championship in 1992, in London and lost. It won two games, while losing four. They 

played a rematch in 1994, but after drawing six games, Dr. Tinsley forfeited the match, 

owing to bad health, and unfortunately, passed away shortly afterwards. In 1995, Chinook 

took on Don Lafferty, widely acknowledged as the second best human checkers player after 

Dr. Tinsley, and narrowly defeated him in a very close-fought match with one win and thirty 

one draws. In 1996, Chinook finished first at the US National Open, and was retired from 

match-play, since Dr. Schaeffer's team decided that there was nothing left to prove. 
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1.3.2 Behind the Scenes 

Chinook is written in the C programming language, and runs under the UNIX operating 

system. For the US National Open in 1990, Chinook ran on an IBM RS/6000 Model 530 

workstation, with just 32 megabytes of RAM (which was a significant amount in those days) 

[1]. There are four major components that contribute to Chinook's playing strength: 

 

• Search 

• Knowledge 

• Endgame database 

• Opening book 

 

1.3.2.1 Search 

Chinook uses all the standard techniques that were mentioned earlier in this chapter - 

minimax with alpha-beta pruning, iterative deepening, transposition tables, and a variety of 

other heuristic techniques. It goes without saying that the deeper a search can be performed 

within the allowed time frame (usually, 6 minutes), the better the program performs in 

general. Thus, it becomes important that as much of the available search time be used to 

investigate promising leads as possible, rather than wasting time on evidently inferior 

options. The developers of Chinook have spent considerable time and effort in developing 

suitable heuristics which will aid in extending or truncating a search, as needed. Since in 

checkers, a material deficit is more significant than in chess, sacrifices of a single piece are 

common, but ones involving two or more pieces are rare. A technique called forward 

pruning is used to quickly curtail lines with material deficits. Basically, if a line leads to a 

material deficit, and there is insufficient positional compensation (that is, the positional 
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evaluation for that position is below a certain threshold value), then the remaining search 

depth is reduced to half. If the result of the remaining search does not restore the material 

deficit, or results in an acceptable positional compensation, then this line is abandoned. 

Otherwise, the full search depth is restored, and the line is explored completely.  

Checkers knowledge is used to extend the search along interesting lines, such as useful 

captures, checkers running un-opposed to being crowned, some promotion of checkers to 

kings, and positions where one side is forced to repeat moves (quite common in checkers, 

unlike in chess). All potential search extensions have to pass through a variety of heuristic 

tests to ensure that time is not wasted on extensions with little chance of providing useful 

information. At the US Open, Chinook averaged 20 ply searches (plus extensions). At the 

start of the game, Chinook searched at least 15 ply; in the endgame, 25 ply searches were 

common. In contrast, the Deep Thought chess program achieves 10 or 11 ply searches 

during the middle game using special purpose VLSI hardware. Chinook performs iterative 

deepening 2 ply at a time to factor out some of the instabilities that arise when searching to 

odd and even depths. Although 20 ply searches sound impressive, they still fall short of 

human capabilities, especially during the endgame. Strategic objectives that an expert human 

opponent can perceive are well beyond the brute-force search horizon, and this is one 

problem that the Chinook team is working on overcoming. 

 

1.3.2.2 Knowledge 

In the case of Chinook, “knowledge” is mostly encoded in terms of its evaluation 

function. Apparently, at the US Open, the move that was said to be positionally “best” by 

the program after a 5-ply search (which is the minimum search depth in Chinook) turned out 

to be the recommended move even after a 20-ply search, implying that the strength of the 
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program was not based on pure search (although it does make the difference when it comes 

to competing at an expert level). Additionally, Chinook was able to correctly predict the 

opponent's move 80% of the time, which would have been ever higher, if the mistakes made 

by human opponents were factored in. In computer chess, a prediction rate of 50% would 

be really good, but the fact that the number of pieces and squares in checkers are less makes 

it easier to predict moves too, as compared to chess. 

Chinook divides the game into five phases - opening, middle game, early endgame, late 

endgame and database. The first four phases each have twenty two user-adjustable 

parameters that influence the evaluation function [1]. A position evaluation is the linear sum 

of the 22 heuristics multiplied by their user-defined weights. The last phase has perfect 

knowledge, and therefore has no parameters. The parameter settings used for the US Open 

were determined manually. A database of 800 classic Grandmaster games was created and 

used to develop and automatically tune the program's knowledge. Initial attempts revolved 

around tuning the parameters in order to maximize the number of times Chinook would 

select the same move as the Grandmaster, over all games. The very same technique 

employed by the Deep Thought chess team - which treats the problem as an over-

determined system of equations to be solved where one dimension is the number of 

positions used, and the other is the number of heuristic parameters - was used by the 

Chinook team, too. It was found, however that more often than not, Chinook selected 

alternate moves that were either as good as, or even superior to, the Grandmaster moves - 

which adds to its strength by being able to select moves without biases of human 

preconceptions, thereby allowing Chinook to continue to surprise the human opponent. 
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1.3.2.3 Endgame Database 

Endgame databases are a computer-generated collection of positions with a proven 

game-theoretic value, and were pioneered in Computer chess. At the US Open, Chinook had 

access to the entire 6-piece database, comprising roughly 2.5 x 109 positions. What this 

meant is that whenever a position with 6 pieces or less was encountered, the program could 

look it up in the database, and return an exact win, loss or draw value. In computer chess, 

endgame databases are of limited utility since most games never get far enough to utilize 

them. In checkers, however, since capture moves are forced, some positions near the start of 

the game can be analyzed right to the end of the game. For instance, a nominal 15-ply search 

at the start of the game is sufficient for Chinook to start reaching positions in the endgame 

databases. At the time of writing, the Chinook team had announced that they had succeeded 

in building the entire 10-piece database. Computing such enormous databases and efficiently 

representing them in a compact form that can be used in real-time are both challenging 

issues.  

Though the endgame databases represent perfect knowledge, that does not necessarily 

guarantee perfect play. Chess databases often store distance to win (or mate), for each 

position. Once in a winning database position, the program can win by only playing those 

moves from within the database that minimize the number of moves to win. Since the 

checkers databases are used throughout the game (even at the beginning), they have to be 

compressed enough to fit into RAM. To enable this, the Chinook team only stores the 

results of a position, not its distance to win. This means that Chinook could find itself in a 

winning 6-piece position, but will still have to search to find the winning line. A lot of 

techniques have been tried to reduce the size of the endgame database, including neural 

networks to build an evaluation function that can predict the game theoretic value of a 
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position with a high degree of reliability - which would enable the team to simply store those 

positions for which the function returns an incorrect prediction in the database. 

 

1.3.2.4 Opening Book 

The standard, but scientifically uninteresting way of generating an opening book is to 

manually type in thousands of positions from human-authored books. The consequences of 

the lack of an opening book are much more serious in checkers than in chess. In chess, a 

player using only his experience during the opening phase may play inoptimal moves, and 

end up in an inferior position. In checkers, however, many opening moves, including as early 

as move 4 in a game have been analyzed, and found to be forced losses (in other words, 

from that position, barring a blunder on the opponent's part, even perfect play would result 

in a loss). Without an opening book, a human or computer player runs the risk of falling into 

one of these traps, and obtaining a lost position very quickly. Attempts to create a machine-

generated opening book yielded less than satisfactory results, and thus, the Chinook team 

decided to create an “anti-book”, a book not of moves to play, but of positions to avoid [1]. 

Anti-book positions were collected from human opening books, books on opening traps, 

Grandmaster games, and from Chinook's own games and at the time of the US Open, there 

were roughly 2000 such positions in Chinook's opening book. 

The majority of the information about Chinook's internals is from at least ten years ago. 

Technology has advanced by leaps and bounds in the meantime, and it is known that they 

now have the entire 10-piece endgame database at their disposal. It is quite clear that the 

combination of efficient brute-force search, along with continuous refinement of the various 

heuristic parameters used in the position evaluation function, and perfect knowledge of the 
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endgame, along with a formidable opening book make Chinook one of the best, if not the 

best checkers players in the world. 

 



CHAPTER TWO 
SOAR CHECKERS 

 

2.1 Philosophy Behind Soar Checkers 

Brief Introduction to Soar - Soar is an architecture designed to aid in developing general 

intelligent systems [8]. It has been in use for over twenty years and some of its applications 

have been in building flight simulators, AI engines for interactive 3D games such as Quake, 

etc. A more detailed description of Soar can be found in Appendix B. 

Motivation for Soar Checkers - The superiority of game playing systems based on the 

minimax algorithm such as Chinook, as explained in Section 1.2 on page 2, is almost entirely 

due to treating games as a search problem and the increased availability of inexpensive 

computing power. While this approach is highly effective in building championship calibre 

AI systems, a sizable group within the AI community share the opinion that a truly 

“intelligent” system should not rely mainly on raw number-crunching in order to exhibit 

intelligent behavior. Instead of replicating the techniques used by existing AI game playing 

systems, it was decided to explore the idea of building a system that relies almost exclusively 

on tactics and strategy for game play.  

Basic Philosophy - The basic philosophy behind Soar Checkers is that it should be 

possible to create a game playing system that would beat novices with ease and at least 

challenge advanced novice to intermediate-level players by designing a rules-based expert 

system whose knowledge base consists of nothing more than the rules of checkers, and a set 

of guidelines for game-play based on good strategy. In this chapter, the user interface 

designed for Soar Checkers is described first, in Section 2.2 and then, an explanation of how 
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.

Figure 2.1: An Empty Checker Board in Soar Checkers 

 

Soar Checkers works follows in Section 2.3. The strategies used to build Soar Checkers are 

explained in fairly good depth on page 60 

 

2.2 The User Interface 

 2.2.1 The Game Board 

For its simplicity, ASCII art has been used to represent the checkers game board. 

Though the board is of size 8 x 8, only half of those squares are valid in checkers. Thus, 

valid squares are either blank, or have a piece in them, while invalid squares are filled with a 

'H'. There are only four different kinds of pieces4 in checkers, and they are represented as: 

 

• Red Checker – ‘RC’ 

 
4 There is some confusion prevailing as to whether the pieces are colored black and white, or red and white. 
Please refer to Appendix A for more details. 
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Figure 2.2: Initial State of the Game Board in Soar Checkers 

 

Figure 2.3: The Numbering Scheme Used for the Board Squares in Soar Checkers 
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• Red King – ‘RK’ 

• White Checker – ‘WC’ 

• White King – ‘WK’ 

 

Figure 2.1 shows what the game board looks like, devoid of any pieces. As explained 

above, a piece can be legally moved only to the dark squares. Figure 2.2 shows the state of 

the game board, before any moves have been made, assuming that red moves from top to 

bottom. Figure 2.3 shows the numbering scheme used in Soar Checkers, which is the same 

as the classic numbering scheme used in checkers literature to describe various board 

positions and moves. 

Modes of Operation - On starting up, Soar Checkers presents the user with three modes 

of operation: 

 

1 Soar agents versus Soar agent 

2 Soar agent versus Human 

3 Human versus Human 

 

Choices one and two are the ones of particular interest. In the first case, two Soar agents 

are created - Red and White, corresponding to the color of their pieces. As per the rules of 

checkers, the Red agent moves first. After each agent move, the new board position is 

displayed, and the game is paused until the user presses any key. Without this feature, it 

would be almost impossible to keep track of each agent's moves since an agent usually needs 

only a few seconds to make a move. 
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If the user opts for the third mode of operation, the board is automatically initialized 

with the Red piece at the top, and the White pieces at the bottom, as shown on Figure 2.2. 

The players proceed to move or jump as described in Sections 2.2.2, 2.2.3, 2.2.4 and 2.2.5. 

If the user chooses the second mode of operation, he or she would be presented with 

two more choices:  

 

• The color of his or her pieces 

• If he or she wants to move from top to bottom, or bottom to top 

 

Once these choices are made, the board is initialized accordingly, and whoever is red 

(human or agent) moves first. When it is the human players' turn, the following line is 

displayed, assuming that the human is playing as red: 

“You are Red .... Enter the number of jumps / moves (1 for single move/jump, 2 for 

double jump etc...)” 

There are four possible kinds of moves, and each of them would be explained in detail in 

the subsequent sections. 

 

2.2.2 Making a Move 

To make a normal move (that is, not a jump), the user enters “1” at the previous 

prompt. This results in the following prompt being displayed: 

“Enter source (1 - 32): “ 

As already explained, the valid squares on the game board are numbered from 1 to 32 

using the numbering scheme shown in Figure 2.3 on page 28. Thus, if the user wants to 
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move his piece located at square 12, he would enter 12 here. Now, a new prompt is 

displayed: 

“Enter middle (-1 if you're just making a move, 1 - 32 if it’s a jump): “ 

Since this is a normal move, the user should enter -1. The next prompt would be: 

“Enter destination (1 - 32): “ 

If the desired destination of the move is square 16, all the user has to do is enter 16. If 

the user decides to quit the game, he or she could enter “quit” at any of these three prompts.  

An Example - Suppose the game is in the initial state, as shown in Figure 2.2 on page 28. 

The user’s color is red, and to move from square 12 to square 16, he would have to enter: 

“Enter source (1 - 32) : 12” 

“Enter middle (-1 if you're just making a move, 1 - 32 if it’s a jump) : -1” 

“Enter destination (1 - 32) : 16” 

 

Figure 2.4: Example for Making a Normal Move: Board Position After Moving from Square 

12 to Square 16 
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Figure 2.5: Example Board Position Before a Single Jump 

 

Figure 2.6: Example Board Position After a Single Jump 
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2.2.3 Making a Single Jump 

This is very similar to making a normal move, as explained in Section 2.2.2. on page 30. 

The only difference is that at the second prompt: 

“Enter middle (-1 if you're just making a move, 1 - 32 if it’s a jump): ” 

Instead of entering “-1”, as is done in the case of a normal move, the number of the 

square which contains the opponent's piece that the user desires to jump over, should be 

entered. This will be illustrated in the following example. 

An Example - Figure 2.5 shows the board position when it is the Red players' turn to 

make a move. If the player desires to make a single jump over the white checker located at 

square 19, the source is 16, the middle is 19, and the destination is 23. These are the 

commands that the user would have to enter in order to accomplish that: 

“Enter source (1 - 32): 16” 

“Enter middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 19” 

“Enter destination (1 - 32): 23” 

The resulting board position is shown in Figure 2.6 on the previous page. 

 

2.2.4 Making a Double Jump 

When the user desires to make a double jump, as opposed to three squares in the case of 

a single jump, five squares are involved - one source square, two middle squares 

corresponding to the locations of the two opponent pieces that would get jumped, and two 

destination squares corresponding to the first and second jumps. For both a normal move 

and a single jump, the user enters “1” at the prompt: 

“You are Red .... Enter the number of jumps / moves (1 for single move/jump, 2 for 

double jump etc...)” 
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Figure 2.7: Example Board Position Before a Double Jump 

 

Figure 2.8: Example Board Position After a Double Jump 
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An Example - However, in order to make a double jump, a “2” should be entered. Let 

us consider an example of a Red player trying to make a double jump. Figure 2.7 shows the 

board position when it is the Red players' turn to move. If the user desires to jump the 

opponents' pieces located at squares 16 and 24, the corresponding source would be 12, first 

middle would be 16, first destination would be 19, second middle would be 24, and final 

destination would be 28. These are the commands necessary for the user to do that: 

“You are Red .... Enter the number of jumps / moves (1 for single move/jump, 2 for 

double jump etc...) 2”  

“Enter source (1 - 32): 12” 

“Enter 1st middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 16” 

“Enter 1st destination (1 - 32): 19”' 

“Enter 2nd middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 24” 

“Enter final destination (1 - 32): 28” 

Figure 2.8 on the previous page shows the resulting board position. 

 

2.2.5 Making a Triple Jump 

In the case of a triple jump, seven squares on the game board are involved, as opposed 

to just five in the case of a double jump, and three in the case of a normal move or a single 

jump - one source square, three middle squares corresponding to the locations of the three 

opponent pieces that would get jumped, and three destination squares corresponding to the 

first, second and third jumps. In order to make a triple jump, the user should enter “3” at the 

following prompt: 

“You are Red .... Enter the number of jumps / moves (1 for single move/jump, 2 for 

double jump etc...)” 
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Figure 2.9: Example Board Position Before a Triple Jump 

 

Figure 2.10: Example Board Position After a Triple Jump 
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An Example - Let’s consider an example of a Red player trying to make a triple jump. 

Figure 2.9 shows the board position when it is the Red player's turn. Unlike a checker, a king 

can move both forwards and backwards. Thus, the red player could use the red king at 

square 4 to jump over the white checkers at squares 8 and 15, and then jump backwards over 

the white king at square 14. In this case, the source would be 4, first middle would be 8, first 

destination would be 11, second middle would be 15, second destination would be 18, third 

middle would be 14 and the final destination would be 9. These are the commands necessary 

for the user to do that: 

“You are Red .... Enter the number of jumps / moves (1 for single move/jump, 2 for 

double jump etc...) 3” 

“Enter source (1 - 32): 4” 

“Enter 1st middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 8” 

“Enter 1st destination (1 - 32): 11” 

“Enter 2nd middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 15” 

“Enter 2nd destination (1 - 32): 18” 

“Enter 3rd middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 14” 

“Enter final destination (1 - 32): 9” 

The resulting board position is shown in Figure 2.10 on the previous page. In the 

following sections of this chapter, a detailed description of how Soar Checkers is built under 

the hood ensues. 

 

2.3 Soar Checkers Internals 

Soar Checkers is an expert system with an agent-based architecture built using Soar 8.6.2 

and the C++ programming language. The Soar Markup Language (SML) [9, 10] has been 
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used to interface between the Soar kernel and the game environment written in C++. The 

real “brains” of the system are encoded as a set of rules (known as productions in Soar 

parlance), for agents in Soar. The Soar kernel can be thought of as an environment that 

hosts the Soar agents and provides the various functionalities essential for proper operation 

of the agents. 

 

Figure 2.11: Overview of Soar Checkers Architecture 

 

The Game Environment - The game environment, written in C++, accepts user input, 

interfaces with the Soar agent(s) (in other words, acts a third-party that enables multiple 

agents in the Soar kernel to communicate), keeps track of, and updates the game state. In 

addition, some helper functions have also been written in C++ (for example, path-finding 

algorithm to determine promising attacking options towards the endgame) that provide 

suggestions to the agents with respect to “good” move options. The agents use their 
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respective ^io.input-link and ^io.output-links5 to communicate with the game environment. 

An overview of the architecture used to build Soar Checkers can be seen in Figure 2.11 on 

the previous page. The various steps involved in the operation of Soar Checkers are 

explained in subsequent sections. 

 

2.3.1 Initialization 

 2.3.1.1 Soar versus Soar 

The game board, which is part of the game environment, is initialized as shown in Figure 

2.2 on page 28. An instance of the Soar kernel is created in a new thread, and two Soar 

agents (with potentially different sets of rules) “Red” and “White” are created. Since red 

always goes first, one of the attributes on the ^io.input-link called “isTurn” is set to 1 for the 

Red agent, while the corresponding attribute for the White agent is set to 0. Certain data 

structures are created in the agents' working memories using Soar elaboration rules. These 

data structures encode information about how the various legal squares on the game board 

are connected to each other, the location of the king rows, the kinds of pieces in the game 

etc. 

 

2.3.1.2 Soar versus Human 

In this case, an instance of the Soar kernel is created in a new thread, and a Soar agent is 

created (named “Red” if the human chose to be the white player, or “White” if the human 

chose to be red). Depending on the agent's color, the “isTurn” attribute on its ^io.input-link 

is set to 1 or 0 (1 if it’s Red and 0 otherwise). The remaining initialization steps in Soar are 

very similar to those described in Subsection 2.3.1.1. Meanwhile, an instance of a class 

 
5 For more information on these, please refer to Appendix B 
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named “Human” is created in the game environment in C++ and is used to accept the 

human player's moves and make corresponding changes in the board position, among other 

things. 

 

2.3.2 Generate all Legal Moves 

The basic goal of an agent in Soar Checkers is to make moves in a given game that 

would lead to a win or a draw. In order to do that, the first thing an agent does on its turn to 

move, is to generate a list of all possible legal moves and jumps, given the current board 

position - which is sent to the agent on its ^io.input-link by the game environment. The list 

of moves thus generated might have four different kinds of moves: 

 

• A normal move 

• Single jump 

• Double jump 

• Triple jump 

 

Each move generated at this stage are added to the top state of the agent so that they are 

easily accessible at later stages of the decision making process. Since these moves are 

generated as a result of an operator application, they have o-support, and remain in working 

memory until explicitly removed [8]. A move generated at this stage is represented thus: 

(<s> ^legalMoves <aMove>

^mobileCells <pos> )

(<aMove> ^numJumps 1

^source <pos>
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^midSquare -1

^destination <movepos>

^piece <checker>

^savingSquare -1 

 ^riskBeforeMove unKnown

^riskAfterMove unknown )

The above segment of code adds a data structure called “legalMoves” to the top state in 

working memory (represented as <s>). Within this data structure are a series of attribute-

value pairs which hold information specific to each move. The ^source, ^midSquare and 

^destination attributes correspond directly to locations on the game board (midSquare will 

be -1 in the case of a normal move). ^numJumps is 1 for both a normal move and a single 

jump, 2 for a double jump and 3 for a triple jump. ^piece refers to the kind of piece involved 

in the move. ^savingSquare holds the location of the square on the game board that could 

potentially save a piece under threat (-1 if none exists). ^riskBeforeMove and 

^riskAfterMove are attributes used to identify risks associated with a move, and will be 

explained in more detail in subsequent sections. 

An Example – Let us consider an example. Given the board position shown in Figure 

2.9 on page 36, and assuming that it is the Red agent's turn, the list of all possible moves and 

jumps would consist of: 

 

• Single Jump - 4 - 8 – 11 

• Double Jump - 4 - 8 - 11 - 15 – 18 

• Triple Jump - 4 - 8 - 11 - 15 - 18 - 14 – 9 
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• Move - 28 - -1 – 32 

 

As a side note, considerable difficulty was faced while writing the rule to generate triple 

jumps for a king. For reasons that are yet to be understood by the author, the rule for the 

king, which was quite similar to the one written for triple jumps for checkers except for the 

fact that kings can jump in both directions, caused the entire program to hang, and finally 

crash as the system ran out of virtual memory (over 2 GB) - which might very well suggest 

that an infinite recursion could be the underlying cause, though all attempts to debug the 

offending rule met with failure. What was really perplexing was that a very similar rule for 

generating double jumps for kings posed no problems at all. The problem was finally 

overcome by splitting the one rule into eight separate rules corresponding to the eight 

different ways in which a king could triple jump: 

 

• Forward - Forward – Forward 

• Forward - Forward – Backward 

• Forward - Backward – Forward 

• Forward - Backward – Backward 

• Backward - Forward – Forward 

• Backward - Forward – Backward 

• Backward - Backward – Forward 

• Backward - Backward – Backward 
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2.3.3 Evaluate Risks Before Move 

The next step in the decision making process is to evaluate the risks faced, if any, for 

each piece involved in the moves that were generated, before actually making the move. In 

addition, the risks faced by those pieces which cannot move (henceforth referred to as 

immobile pieces) are also evaluated. At this stage, only the most obvious risks are 

considered. For instance, in the case of a mobile piece, the following situations put it under 

risk: 

 

• One of the opponent's pieces is in a square directly in front of it, and the square 

directly behind it in the same diagonal is empty. 

• An opponent king is in a square directly behind it, and the square directly in front of 

it in the same diagonal is empty. 

 

2.3.3.1 An Example 

An immobile piece is under risk when the situation described in the first of the two 

scenarios above exists. Consider the board position shown in Figure 2.9. If it is the red 

player's turn to move, none of his pieces are under risk. However, if it is the white player's 

turn to move, the piece located at square 8 is under threat by the red king at square 4. There 

is only one possible move for the white player that involves the piece at square 8 -> 8 - -1 - 

3. This information will be used to modify the “^legalMoves” entry corresponding to that 

move generated at the previous stage of the decision making process to reflect the fact that 

there is a risk before making that move. The “^legalMoves” data structure has an attribute 

named ^riskBeforeMove, which is set to “unKnown” by default. When a risk is discovered 

for a move at this stage, the corresponding ^legalMoves is copied to a new data structure 
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named “^beforeEvaluatedMoves”, its ^riskBeforeMove attribute is set to “yes” and the 

^savingSquare attribute is changed to reflect the value of the square that could potentially 

prevent it from being jumped. The old ^legalMoves entry is then deleted. The relevant 

portion of the resulting ^beforeEvaluatedMoves structure for the move from square 8 to 

square 3 would then be:  

 

^source 8

^midSquare -1

^destination 3

^savingSquare 11

^riskBeforeMove yes

^riskAfterMove unknown

2.3.3.2 Homogenizing 

Once all the ^legalMoves have been checked to see if any of the pieces involved have a 

risk before making that move, there would be a set of the original ^legalMoves, and possibly, 

a new set of ^beforeEvaluatedMoves (if any of the ^legalMoves had a risk before moving). 

In the next step, an operator6 called “convertLegalMovesToBeforeEvaluatedMoves” is 

proposed to copy all the remaining ^legalMoves to ^beforeEvaluatedMoves, and then to 

delete the ^legalMoves. At the end of this stage, there would remain only a set of 

^beforeEvaluatedMoves, some with their ^riskBeforeMove attribute set to “yes”, while 

others would still have it set as “unknown”. 

 

6 For more information on operators in Soar, please refer to Appendix B. 
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2.3.4 Evaluate Risks After Move 

At this stage of the decision making process, for each move generated, a one step look-

ahead is performed, its assumed that the move is made, and then the risks faced, if any, for 

each piece involved in those moves are evaluated - without actually making the move. Unlike 

in the previous stage, where the resulting data structure ^beforeEvaluatedMoves differed 

from its corresponding ^legalMoves data structure (which was originally created) only in that 

its ^riskBeforeMove attribute might have changed to a value of “yes”, instead of the default 

value of “unKnown”, in this stage, there are a variety of values that could potentially be 

assigned to the ^riskAfterMove attribute. Depending on the results of evaluating risks, these 

are the possible values for the ^riskAfterMove attribute: 

 

• “yes” - Definite risk of being at least single – jumped 

• “potentialSingleJump” - Move could potentially result in a single jump 

• “singleJump” - Risk of being single jumped 

• “doubleJump” - Risk of being double jumped 

• “unKnown” - When no known risk is found 

 

2.3.4.1 Scenarios for a Move Being Risky 

The number of scenarios corresponding to each risk listed above are too numerous to 

cover completely here, but lets consider an example each for each risk type. Let ^source be 

the source square for the move, and ^destination be the destination square for the move. In 

that case, 
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• If ^source is one of the corner squares, and there is an opponent piece in the square 

directly in front of the destination, in the same diagonal as the source, making this 

move would result in getting at least single jumped. Thus, the ^riskAfterMove 

attribute would be set to “yes”. 

• Call the square directly in front of ^destination “^frontDestination”. If 

^frontDestination is empty, and it has two squares directly in front of it, both of 

which contain opponent pieces, then making this move would allow the opponent to 

attack the piece at ^destination by moving the opponent piece that is currently in the 

square that is not in the same diagonal as ^destination and ^frontDestination, to 

^frontDestination. While this is not a certain threat (for example, the threat could be 

defused by moving the piece from ^destination to the square directly in front of 

^destination that is not ^frontDestination provided it is empty), it could potentially 

result in being single jumped, and hence, the ^riskAfterMove attribute for such a 

move is set to ^potentialSingleJump. 

• The conditions which result in the ^riskAfterMove attribute being set to 

“singleJump” are very similar to the case described above, except that ^source could 

be any square (not restricted to just corner squares), the square directly in front of 

^destination in the same diagonal as ^source has an opponent checker7 in it, and the 

square(s) directly behind ^source is, or are: 

 

o Empty 

o Have opponent piece(s) 

 
7 The fact that a king can move in two directions makes the conditions to be tested in an evaluation much more 
complicated than in the case of a checker. 
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o Corner square(s) 

o Has the player's own piece(s), but the square(s) directly behind those piece(s) 

in the same diagonal as ^source is, or are not empty (thus, preventing a 

double jump). 

 

• If there is an opponent piece in the square directly in front of ^destination, in the 

same diagonal as ^source, and there is at least one square directly behind ^source 

(call it ^behindSource) which has one of the player's pieces in it, and the square 

directly behind it is empty, and lies in the same diagonal as ^behindSource and 

^source, then making this move would result in getting double jumped. The 

^riskAfterMove attribute would therefore be set to ^doubleJump. 

 

It should be noted that there is no separate case for a move that would result in getting 

triple jumped. This is because the conditions for a triple jump to occur, though relatively 

rare, are a superset of those for a double jump, and detecting that making a certain move 

would result in getting double jumped, gives us enough information to try and avoid making 

that move, thereby eliminating the need to write separate rules for triple jumps. 
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Figure 2.12: Example Board Position Where Some of the Available Move Choices for Red 

are Risky 

 

2.3.4.2 An Example 

Consider the board position shown in Figure 2.12. Assuming that it is the Red player's 

turn, let us compute the results of evaluating risks after move. There are five red checkers on 

the board, and at the beginning of this stage, there will be the following 

^beforeEvaluatedMoves data structures (only the relevant portions are shown here, for the 

sake of brevity and clarity), all with their ^riskBeforeMove and ^riskAfterMove set to 

“unKnown”: 

 

1 ^source - 5, ^destination - 9 

2 ^source - 7, ^destination - 10 

3 ^source - 7, ^destination - 11 

4 ^source - 16, ^destination - 20 
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5 ^source - 18, ^destination - 22 

6 ^source - 18, ^destination - 23 

7 ^source - 19, ^destination - 23 

8 ^source - 19, ^destination – 24 

 

2.3.4.3 Risk Assessment 

The 1st move in the list, is from square 5, which is a corner square, and since there is an 

opponent piece (in this case, a white checker) in square 14 which is directly in front of the 

destination, and squares 5, 9 and 14 lie in the same diagonal, making this move would result 

in at least a single jump. Thus, the ^riskAfterMove for this move would be set to “`yes”. 

The 2nd move would result in getting single jumped by the white checker at square 14, 

but no worse (double or triple jump) since both of the squares behind the source square are 

empty. So, ^riskAfterMove for this move would be set to “singleJump”. The 3rd move does 

not result in any apparent loss, and hence, its ^riskAfterMove would remain “unKnown”. 

Similarly, the 4th move's ^riskAfterMove is not changed from “unKnown”. 

In the case of the 5th move, the destination is 22, and one of the two squares in front of 

it, specifically square 25 has both squares in front of it (squares 29 and 30) occupied by 

opponent pieces. Thus, if this move is made, the opponent could attack the red checker that 

would now be at square 22 by moving the white checker at square 30 to square 25. Of 

course, in this specific case, this would not result in a loss for Red since square 26 is empty, 

and the red checker can be safely moved there to avert the threat, but that need not be the 

case always. Hence, the ^riskAfterMove for this move would be set to 

“potentialSingleJump”. 
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The 6th move does not result in any immediate losses, and so, its ^riskAfterMove is 

“unKnown”. Similarly, the 7th move has a ^riskAfterMove of “unKnown” too. 

If the 8th move is made, square 28 which is directly in front of ^destination and is in the 

same diagonal as ^source, has an opponent piece in it, and square 16, which is directly 

behind source has a Red checker in it while square 12, which is directly behind square 16 and 

is in the same diagonal as ^source, is empty - a double jump would result with ^source 28 

and ^destination 12. The corresponding ^riskAfterMove is thus set to “doubleJump”. 

 

2.3.4.4. Homogenizing 

Once the risks after making a move have been evaluated, if it is found to be anything 

other than “unKnown”, the contents of the corresponding ^beforeEvaluatedMoves data 

structure are copied to a new data structure that would be added to the top-state, called 

^afterEvaluatedMoves, its ^riskAfterMove attribute is changed to reflect the newly 

computed value, and then the existing ^beforeEvaluatedMoves data structure is deleted. 

Quite similar to the previous stage, at the end of this stage, an operator called 

“convertBeforeEvaluatedMovesToAfterEvaluatedMoves” is proposed to copy any 

remaining ^beforeEvaluatedMoves with their ^riskAfterMove set to “unKnown” to 

corresponding ^afterEvaluatedMoves data structures with “unKnown” as the value for their 

^riskAfterMove, and then delete the original ^beforeEvaluatedMoves data structures. 

 

2.3.5 Saving Helpless Pieces 

At the beginning of this stage, the top-state contains a set of ^afterEvaluatedMoves data 

structures, which contain information about various moves, their risks before making the 

move, and risks after making the move. However, they do not take into account the effect of 
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certain class of moves on potentially saving an otherwise “helpless” piece, or the fact that 

while moving a certain piece may pose no risk to that specific piece, it might result in an 

otherwise protected piece being jumped. Such issues are explored at this stage, and the 

agent's working memory updated accordingly. 

 

2.3.5.1 Saving an Immobile Piece 

In Section 2.3.3 on page 43 it was briefly mentioned that in addition to pieces that are 

involved in legal moves, the obvious risks for pieces which do not have legal moves 

(immobilePieces) are also evaluated. If such a piece exists, a data structure called 

^immobilePieceUnderThreat is created, and added to the top-state of Soar. One of the 

entries in this data structure is an attribute called “^savingSquare”, which contains the 

location of the square which could be used to potentially nullify the threat faced by this 

piece. If a move (represented as an ^afterEvaluatedMoves data structure) exists such that its 

destination is the *savingSquare of an ^immobilePieceUnderThreat, then making that move 

would more likely than not, save that piece. At the same time, we should ensure that the 

piece involved in that move is not endangered as a result of that move. This condition is 

easily met when that move's ^afterEvaluatedMoves data structure has its ^riskAfterMove set 

as “unKnown”. Thus, if all these conditions are satisfied, the original ^afterEvaluatedMoves 

data structure is copied to a new one, its ^riskBeforeMove is set to “yes”, and the original 

structure is deleted. The effect of this change to the contents of the agent's working memory 

would be explained in Section 2.3.8 on page 60. 
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2.3.5.2 Detecting Unsafe Moves that Seem to be Safe 

Another class of scenarios considered at this stage involves moves which seem to be safe 

(they have a ^riskAfterMove value of "unKnown"), but actually cause the loss of those, or 

other piece(s).The number of different cases are too numerous to go over here, but let us 

consider a few example cases. 

 

2.3.5.2.1 Case One 

If there are two pieces A and B such that A is directly behind B, and the square directly 

in front of B in the same diagonal as A contains an opponent piece (which cannot be 

jumped by B), a seemingly "safe" move involving piece A would result in at least B getting 

jumped. Thus, the ^afterEvaluatedMoves data structure corresponding to such a move 

should not have a ^riskAfterMove value of "unKnown". If the conditions described here are 

met, the original ^afterEvaluatedMoves data structure is copied to a new one, its 

^riskAfterMove is set to "yes" (since we know that making this move would result in at least 

a single jump though not for this specific piece), and the original ^afterEvaluatedMoves 

structure is deleted. 

 

2.3.5.2.2 Case Two 

If there is an ^immobilePieceUnderThreat data structure with its ^savingSquare at 

square "A" on the game board, and there exists an ^afterEvaluatedMoves data structure such 

that its source is square "B", its destination is square "C", "A" happens to be the square 

directly in front of "C", and A, B and C are in the same diagonal, then making the move 

from B to C would result in a double jump involving the immobile piece and the piece now 

at C. Thus, if all these conditions are met, the original ^afterEvaluatedMoves data structure 



53

is copied to a new one, its ^riskAfterMove is set to "doubleJump", and the original structure 

is deleted. 

 

2.3.5.2.3 Case Three 

Another scenario that is considered at this stage is quite similar to the previous case, with 

a couple of differences - there is no immobile piece involved, and the opponent piece has to 

be a king. If there is a move with a ^riskBeforeMove "yes", the piece involved in that move 

is at square "A", there is an opponent king in the square directly behind A, the square D 

directly in front of A in the same diagonal as the opponent king is empty (which causes the 

piece at A to have a ^riskBeforeMove of "yes"), and there exists another move with its 

^source B, ^destination C , C and D are immediate neighbours (D is either directly in front 

of, or directly behind C), and B, C and D lie in the same diagonal, then moving the piece 

from B to C would result in a double jump involving the piece at square A, and the piece 

now at square C. Thus, if these conditions are met, the original ^afterEvaluatedMoves data 

structure is copied to a new one, its ^riskAfterMove is set to "doubleJump", and the original 

one is deleted. 

 

2.3.5.2.4 Case Four 

Finally, a potentially devastating situation is checked, where an opponent king could 

wreak havoc. If there are five squares A, B, C, D and E which are immediate neighbours to 

each other (B is directly in front of A, C is directly in front of B etc.) and lie along the same 

diagonal such that squares C and E are empty, square D contains one of the player's pieces, 

and there is an ^afterEvaluatedMoves data structure with its ^source A and ^destination B, 

then making that move could potentially result in the guaranteed loss of at least one piece 
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(either the one in square D, or the one now moved to square B), because this configuration 

allows an opponent king to be moved to the empty square C, sandwiched between the pieces 

at squares B and D, placing both of them under threat simultaneously. Thus, if these 

conditions exist, the original ^afterEvaluatedMoves structure is copied to a new one, its 

^riskAfterMove is set to "doubleJump", and the original structure is deleted. 

 

2.3.5.3 An Example 

 2.3.5.3.1 Initial Structures 

Consider the board position shown in Figure 2.13 below. Assuming that it is the Red 

player's turn, the relevant portions of the ^afterEvaluatedMoves structures that exist at the 

beginning of this stage would be: 

 

Figure 2.13: Example Board Position Where Some Pieces are "Helpless" 
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1. ^source 2, ^destination 6  

2. ^source 2, ^destination 7 

3. ^source 3, ^destination 7 

4. ^source 3, ^destination 8 

5. ^source 9, ^destination 13 

6. ^source 17, ^destination 21 

7. ^source 17, ^destination 22, ^riskAfterMove singleJump 

8. ^source 20, ^destination 24 

9. ^source 31, ^destination 26 

10. ^source 31, ^destination 27 

 

Unless otherwise noted, all these moves have both their ^riskBeforeMove and 

^riskAfterMove set to "unKnown". In the case of the 7th move, its ^riskAfterMove is 

"singleJump" because of the white king present in square 18. It should also be noted that 

there would be two ^immobilePieceUnderThreat data structures corresponding to the pieces 

at squares 10 and 16. The piece at square 10 would have its ^savingSquare attribute set to 6 

(since the white checker at square 15 would potentially "jump" it, and its destination would 

be square 6) while that at square 16 has its ^savingSquare set to 12. 

 

2.3.5.3.2 Risk Analysis 

The 1st move in the list above is from square 2 to square 6. It so happens that there 

exists an ^immobilePieceUnderThreat (the piece at square 10) with its ^savingSquare set to 

6. Thus, making this move would result in saving that piece. In order to increase the 
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likelihood of this move being selected by the agent8, the contents of this 

^afterEvaluatedMoves structure is copied to a new one, its ^riskBeforeMove is set to "yes", 

^riskAfterMove is set to "unKnown" and the original structure is deleted. 

The 4th move in the list is from square 3 to square 8. Making this move would result in a 

double jump involving the immobile piece at square 16, and the piece that was just moved to 

square 8, since the ^savingSquare of the piece at square 16 is 12, which happens to lie in the 

same diagonal as 3 and 8, and is directly in front of 8. Thus, the corresponding 

^afterEvaluatedMoves structure is copied to a new one, its ^riskBeforeMove is set to 

"unKnown", ^riskAfterMove is set to "doubleJump", and the original structure is deleted. 

The 5th move in the list, from square 9 to square 13 looks harmless at first, but results in 

another piece getting jumped – specifically the piece at square 14. If the piece at square 9 is 

moved, the white king at square 18 would jump the piece at square 14. Hence, the 

corresponding ^afterEvaluatedMoves structure is copied to a new one, its ^riskBeforeMove 

is set to "unKnown", ^riskAfterMove set to "yes" (Though in this specific case, it results in a 

single jump, in other cases, it could lead to double or even triple jumps), and the original 

structure is deleted. 

The 9th move in the list is from square 31 to square 26. While this move doesn't seem to 

have any apparent risks after move, making this move allows the opponent to move the 

white king located at square 18 to the empty square 22, placing both the checker at square 

17, and the king that has now been moved to square 26 at risk simultaneously and thereby 

ensuring that the Red player loses at least one piece. Such situations usually arise at the latter 

stages of a game, and can have devastating consequences. Hence, the corresponding 

 
8 A more detailed explanation can be found in Section 2.3.8. 
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^afterEvaluatedMoves structure is copied to a new one, its ^riskBeforeMove is set to 

"unKnown", ^riskAfterMove is set to "doubleJump", and the old structure is deleted. 

 

2.3.5.3.3 Changed Structures after Risk Analysis 

Thus, the changes to the original list of ^afterEvaluatedMoves would be: 

 

1. ^source 2, ^destination 6, ^riskBeforeMove yes, ^riskAfterMove unKnown 

2. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove doubleJump 

3. ^source 9, ^destination 13, ^riskBeforeMove unKnown, ^riskAfterMove yes 

4. ^source 31, ^destination 26, ^riskBeforeMove unKnown,  
 ^riskAfterMove doubleJump 
 

2.3.6 Trading Pieces 

This is one area of Soar Checkers that needs to be improved. There are a lot of factors 

that need to be considered before it can be said if a given trade is "good" or not, but in 

general, all trades in Soar Checkers can be classified as: 

 

2.3.6.1 Classification of Trades in Soar Checkers 

 

• Even trade 

• Good trade 

• Bad trade 

• Terrible trade 
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A trade is considered an Even trade when the same number of checkers are involved, for 

both players (for example, a red checker is traded for a white checker). A trade is called a 

Good trade when it gives the player initiating the trade some kind of advantage - this might 

be in terms of the number of pieces involved in the trade (for example, trading a red checker 

for two white checkers), the type of pieces involved in the trade (for example, trading a red 

checker for a white king), or the resulting board position (for example, a seemingly even 

trade which results in nullifying the positional advantage that the opponent might have had). 

A bad trade is one in which a king is traded for an opponent king, while a terrible trade is 

one in which a king is traded for a checker, or the number of pieces lost by the player during 

the trade is greater than the number of pieces lost by the opponent. 

 

2.3.6.2 Good Trade Heuristics 

A good checkers player usually trades pieces under the following circumstances:  

 

• He or she is ahead in terms of the number of pieces, and its either an even, or a good 

trade.  

• The trade results in either gaining a positional advantage, or weakens the opponent's 

position. 

 

2.3.6.3 Implementation Difficulties 

While these ideas seem simple, implementing them proved exceedingly difficult. For 

example, the rules that were required to encapsulate the various kinds of trades involving just 

one piece on each side numbered more than 75, and each of these rules involved checking 

the contents of a vast number of squares on the game board - all of which contributed to 
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slowing down the decision making process in Soar Checkers by an unacceptable level. 

Another stumbling block was the fact that under certain situations, the rules to evaluate 

trades resulted in changes to the working memory that went in direct conflict with the results 

of the earlier stages in the decision making process. These resulted in conditions known as 

operator-conflict impasses9, which ultimately led to extremely poor decisions being made by 

the agent. Additionally, while it is fairly straightforward to say that a move which results in 

exchanging one piece for two is a good trade, it is infinitely more difficult to evaluate trades 

which result in positional advantages, since there really is no objective way to say with 

absolute confidence how "good" a board position is – unless huge game databases are used 

(which several world-class programs do, as explained in Chapter 1). 

Due to the difficulties explained above, in this version of Soar Checkers, those moves 

that would result in pieces getting traded are avoided, given a choice. At the beginning of 

this stage, some of the ^afterEvaluatedMoves data structures at the top-state, with their 

^riskAfterMove set to "unKnown" actually represent moves that would initiate the trading 

of pieces. Such moves are identified at this stage, the corresponding ^afterEvaluatedMoves 

data structures are copied to new ones, their ^riskAfterMove is set to "yes" (since making 

this move would result in getting at least single jumped, though the opponent piece involved 

in the jump would also potentially get jumped in the player's next move), and the original 

structures are removed from the top-state of the agent.  

 

2.3.7 Picking a Move 

Up to this point, the game state, as represented through the ^io.input-link of the Soar 

agent whose turn it is to move (denoted by having its ^isTurn attribute being set to 1), has 

 
9 Please refer to Appendix B for more details. 
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been analyzed to generate a list of moves, and add information to those moves regarding 

their respective risks or merits. At this stage of the decision making process, first, an 

operator called ^pickMove is proposed for each ^afterEvaluatedMoves data structure 

attached to the agent's top-state, and the corresponding data structure is copied to a new 

data structure called ^legalMoves and attached to the newly proposed operator. Then, one 

out of all the proposed ^pickMove operators is selected based on a set of strategies which 

would be explained in depth below. Finally, the selected ^pickMove operator is applied by 

copying the relevant portions of the ^legalMoves structure attached to it to the agent's 

^io.output-link. The contents of the output-link thus represents the agent's move, are read 

by the game environment (using SML), and changes are made to the game board to reflect 

the resulting board position after making the move. 

Let us take a more in-depth look at the operator selection process. As explained in 

Appendix B, an operator in Soar can have various "preferences" such as "indifferent", 

"better", "worse", "reject" etc associated with it. The goal being tried to accomplish here is 

to select the ^pickMove operator which has the "best" possible ^legalMoves data structure 

attached to it. This is done through a combination of rules which encode various strategies 

that the agent uses throughout the game. The most important strategies [11, 12] and 

techniques used are described below in no particular order. 

 

2.3.8 Operator Selection Strategies 

 2.3.8.1 Reduce Risks - Prefer a move that reduces risk to all other moves. 

In Soar Checkers, the game play is based on the idea of minimizing losses while 

maximizing gains. One of the first things that facilitates this is to consistently ensure that no 

pieces are lost as a result of a move, given a choice. Several scenarios need to be considered 
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to make this possible, but in essence, if there are two legalMoves data structures A and B 

such that both of them have their ^riskBeforeMove set to "yes", A has its ^riskAfterMove 

set to "unKnown" but B's ^riskAfterMove is set to a value other than unKnown (for 

example, "singleJump"), always prefer A over B. Closely related to this idea is avoiding 

moves that result in losses, given a choice. For example, if A and B are ^legalMoves data 

structures such that both have their ^riskBeforeMove set to "unKnown", A has its 

^riskAfterMove set to "unKnown", but B's ^riskAfterMove is set to a value other than 

unKnown, prefer A over B since making move B would potentially result in losing a piece 

while A seems to be a safe move. Another idea that fits into the same theme is not to waste a 

move on a piece that is beyond rescuing. In other words, if all the ^legalMoves structures 

involving a given piece have their ^riskBeforeMove set to "yes", and none of them have 

their ^riskAfterMove set to "unKnown", it is best to pick a move involving a different piece 

that is safe, if it exists. 

 

Figure 2.14: Example Board Position that Demonstrates the 'Reduce Risks' Strategy 
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Example - Consider the board position shown in Figure 2.14 above. Assuming that it 

is the Red agent's turn, the relevant portions of the ^legalMoves structures associated with 

the proposed ^pickMove operators would be: 

 

1. ^source 6, ^destination 9, ^riskBeforeMove yes, ^riskAfterMove singleJump 

2. ^source 6, ^destination 10, ^riskBeforeMove yes, ^riskAfterMove singleJump 

3. ^source 16, ^destination 19, ^riskBeforeMove yes, ^riskAfterMove unKnown 

4. ^source 18, ^destination 22, ^riskBeforeMove unKnown,  
^riskAfterMove unKnown 
 

5. ^source 18, ^destination 23, ^riskBeforeMove unKnown, 
 ^riskAfterMove unKnown 

 

The 1st and 2nd moves involve the red checker located at square 6, which is under threat 

by the white king occupying square 2. However, neither of the moves can save the checker 

from being jumped. Hence, the operator selection rules written for Soar Checkers would 

look for other moves that would either save a piece, or is not risky. Moves 4 and 5 involve 

the red checker located at square 18, which does not have any risks before making the move, 

and remains safe after either of the moves are made. Move 3 is of the most interest given 

this board position because in this case, the piece located at square 16 is under threat by the 

white checker at square 20, but once the move is made, the piece is safe. Obviously, moves 1 

and 2 result in no perceivable gain, moves 4 and 5 are safe moves, but are overlooked in 

favor of move 3 because it results in saving a piece which could otherwise have been lost. 
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2.3.8.2 Thwart Opponent Crowning Moves - Given a choice, prevent the  

 opponent checkers from getting crowned. 

Motivation to Protect King Row - Not all squares on the checker board are created 

equal. The so-called "double corners" (the square closest to a player on his or her right hand 

side - square 1 if the player's pieces move from top to bottom, and square 32 if they move 

from bottom to top) are extremely useful while playing defensively. For example, given an 

endgame in which say Red has one king that occupies one of the double corners, and White 

has two kings, it takes about 40 moves in a precise sequence for White to win. However, in 

Soar Checkers, no opening game or endgame databases are used.  

One of the key goals in defensive play is to prevent the opponent from crowning any of 

his or her checkers. A seemingly obvious way to achieve this end is to make sure that all the 

four squares in the "king row" (Assuming that Red plays from top to bottom, the king row 

for Red would have the squares 29-32 and that for White would have the squares 1-4) are 

occupied. The drawback of this strategy is that it hampers the player's ability to attack the 

opponent, or effectively protect his or her own pieces that move forward from being 

attacked. However, if the squares in the king row are left empty, it greatly increases the 

chances of the opponent successfully crowning a checker. 

 Plan of Action - A workable compromise between the two alternatives explained 

above is to occupy two specific squares in the opponent's king row – the player's double 

corner and the second legal square to its left. Assuming that Red plays from top to bottom, 

this means that the Red agent would try and not move its checkers from squares 1 and 3 

while the White agent would keep its checkers in squares 30 and 32 for as long as possible. 

The benefits of this tactic are that two checkers are now free to assist the other checkers in 

either attack or defense, while the two checkers left in the king row can still prevent the 
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opponent's checkers from getting crowned, except when two of his or her checkers work in 

conjunction so that one of them can get crowned without the risk of getting jumped. 

 Example of Protecting the King Row - Let us take a look at two possible scenarios. 

Consider the board position shown in Figure 2.15. Assuming that it is the white player's 

turn, the possible moves are: 

 

Figure 2.15: Example Board Position Demonstrating How to Protect the King Row 

with Only Two Checkers 
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Figure 2.16: Example Board Position Demonstrating How to Get to the King Row with 

Two Checkers 

 

1. ^source 10, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

2. ^source 10, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

3. ^source 12, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

 

As can be seen, though only two of the four possible squares in the king row are 

occupied, none of the moves White can make can lead to either of the white checkers getting 

crowned. Thus, this strategy is highly effective in most situations. However, a slightly 

different board position shows the fallibility of this strategy.  

Example of Reaching the King Row - Consider the board position shown in Figure 

2.16 above. Assuming that it is the White player's turn, these are the possible moves: 
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1. ^source 10, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

2. ^source 10, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

3. ^source 11, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

4. ^source 11, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

 

The red checkers in squares 1 and 3 successfully thwart moves 1, 2 and 4, but move 3, in 

which the white checker is moved from square 11 to square 7 would indeed result in that 

checker getting crowned in white's next move, since it is protected from being jumped by 

the white checker on square 10. Thus, it is obvious that this strategy is not fool-proof when 

it comes to preventing an opponent checker from getting crowned. Still, it is used in Soar 

Checkers since in most situations, it is effective, and the benefits outweigh the costs. 

 

2.3.8.3 Crown Checkers - Prefer a move that crowns a checker. 

In checkers, a king is more powerful than a normal checker since it can move both 

forward and backward. Hence, it is desirable to convert checkers to kings by moving them 

forward till they reach the king row. In practice, everything else being equal, move A will be 

preferred over move B if A's destination is one of the squares in the player's king row. 
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Figure 2.17: Example Board Position for a Red checker Being Crowned 

 

Example - Consider the board position shown in Figure 2.17 above. Assuming that it 

is the Red player's turn to move, these are the relevant portions of the ^legalMoves data 

structures: 

 

1. ^source 16, ^destination 19, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

2. ^source 16, ^destination 20, ^riskBeforeMove unKnown, 
 ^riskAfterMove unKnown 
 

3. ^source 26, ^destination 30, ^riskBeforeMove unKnown, 
 ^riskAfterMove unKnown 
 

4. ^source 26, ^destination 31, ^riskBeforeMove unKnown, 
 ^riskAfterMove unKnown 
 

In this case, all of the moves seem to be equal, since all of them have their 

^riskBeforeMove and ^riskAfterMove set to "unKnown". However, moves 3 and 4 are 

considered superior to moves 1 and 2 in Soar Checkers, since both of them are risk-free and 
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result in a checker getting crowned. It should be noted that either move 3 or move 4 would 

get selected at random in this case.  

 

2.3.8.4 Protect Kings - Given a choice, sacrifice a checker instead of a king. 

During game play, certain situations arise when the opponent has gained a significant 

advantage, and leave you with no choice but to sacrifice one piece or the other in your next 

move. Since in checkers, a king is more powerful than an ordinary checker, it is usually good 

strategy to try and preserve your kings as much as possible. Thus, if there is a choice 

between sacrificing a checker, or sacrificing a king, in Soar Checkers, the agent would 

sacrifice the checker. 

 Example - Consider the board position shown in Figure 2.18. It is quite obvious that 

the Red player is in a losing position, and assuming that it is Red's turn to move, the relevant 

portions of the ^legalMoves data structures generated by the agent would be: 

 

1. ^source 5, ^destination 9, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

2. ^source 6, ^destination 9, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

3. ^source 6, ^destination 10, ^riskBeforeMove unKnown, ^riskAfterMove singleJump 

4. ^source 29, ^destination 25, ^riskBeforeMove unKnown, 
 ^riskAfterMove singleJump 
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Figure 2.18: Example Board Position for Sacrificing a Checker to Protect a King 

 

It can be seen that all four available legal moves result in a piece getting jumped. 

However, the pieces at squares 5 and 6 are red checkers while square 29 has a red king. In 

this case, Soar Checkers would pick a move that results in one of the checkers getting 

jumped. It can be seen that given the board position, the "best" move is move 1, since this 

would force the white checker at square 14 to jump the red checker that was just moved to 

square 9, thereby allowing the Red player to move the checker at square 6 to square 10 safely 

in his or her next move. All the other moves result in the game being over within the next 2 

moves for each player. 

 

2.3.8.5 Minimize Material Losses - If getting jumped is inevitable, pick the 

move that minimizes the number of pieces lost. 

Sometimes, during the course of a game, a player is confronted with choosing between 

two or more moves that result in pieces getting jumped, but the number of pieces lost as a 
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result of those moves might not be the same. In Soar Checkers, there are three values 

pertaining to the risk of getting jumped, that might be assigned to the ^riskAfterMove 

attribute of a ^legalMoves data structure: 

 

potentialSingleJump 

 singleJump 

 doubleJump 

 

Given a choice among moves with varying degrees of risk of being jumped, the order of 

preference in Soar Checkers is: 

 

doubleJump < singleJump  < potentialSingleJump 

 

Example - This will be illustrated in the following example. Consider the board 

position shown in Figure 2.19 on the next page. Assuming that it is the Red player's turn to 

move, the relevant portions of the ^legalMoves data structures generated by the agent would 

be: 

 

1. ^source 7, ^destination 10, ^riskBeforeMove unKnown, 
 ^riskAfterMove potentialSingleJump 
 

2. ^source 11, ^destination 15, ^riskBeforeMove unKnown, 
 ^riskAfterMove doubleJump 
 

3. ^source 11, ^destination 16, ^riskBeforeMove unKnown, 
 ^riskAfterMove doubleJump 
 

4. ^source 21, ^destination 25, ^riskBeforeMove unKnown, 
 ^riskAfterMove singleJump 

 



71

Figure 2.19: Example Board Position Demonstrating 'Minimize Material Losses' Strategy 

 

Move 1 has a ^riskAfterMove of "potentialSingleJump" because the White player could 

move the white checker from square 18 to square 14, thereby putting the red checker that 

had just been moved to square 10 under threat of being jumped. However, in this case, the 

red checker can avoid getting jumped by moving to square 15, which would now be a safe 

move. 

Move 2 has a ^riskAfterMove value of "doubleJump" because the white checker 

occupying square 18 would jump both the red checker that was just moved to square 15, and 

the red checker in square 7. Thus, if there is any other option, Soar Checkers would not 

make this move. 

Move 3, quite similar to move 2 results in a double jump except that this time, it is 

because of the white checker occupying square 20. Once again, this would be among the last 

choice moves for the agent. 
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Finally, move 4 results in the red checker at square 21 getting jumped by the white 

checker at square 30. After considering all options available, the agent would pick move 1, 

which is indeed the best possible move, given the board position. 

 

2.3.8.6 Occupy Center Squares - Prefer a move towards a center square over 

one towards an edge. 

It is sound checkers strategy to try and occupy the squares in the center of the board. 

The reason for this is that, if a piece is placed in a square on an edge or a corner, its mobility 

is severely limited, and that piece can be easily trapped by the opponent. On the other hand, 

a piece located in a square that is away from the edges has more options to move forward - 

either in attack, or to defend another piece that might be under threat. In most games in 

checkers, the player whose pieces control the centre squares usually also has control over the 

game, and is most likely to win. Due to these reasons, in Soar Checkers, the agent prefers 

moves that have their destination as edge, or corner squares (with the exception of moves to 

the king row, which would result in crowning a checker) less than moves with other 

destination squares. 

 Example - Consider the board position shown in Figure 2.20 on the following page. 

Assuming that it is the Red player's turn to move, the relevant portions of the ^legalMoves 

data structures generated by the agent would be: 
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Figure 2.20: Example Board Position Demonstrating Good Positional Play 

 

1. ^source 13, ^destination 17, ^riskBeforeMove unKnown, ^riskAfterMove yes 

2. ^source 14, ^destination 17, ^riskBeforeMove unKnown, 
 ^riskAfterMove unKnown, ^tradeType evenTrade 
 

3. ^source 14, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

4. ^source 15, ^destination 18, ^riskBeforeMove yes, ^riskAfterMove singleJump 

5. ^source 15, ^destination 19, ^riskBeforeMove yes, ^riskAfterMove unknown 

 

Analysis - Square 13 is on the edge of the board, and a piece occupying it can move 

in only one direction, making it relatively easy to trap it. That is indeed the case here, as can 

be seen in move 1, when the red checker in square 13 will be jumped by the white checker in 

square 22, if it is moved to the only square it can be moved to, 17. 

Squares 14 and 15 are not edge squares, and hence, automatically give pieces occupying 

them more options when it comes to moving. In move 2, the red checker in square 14 can 
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be used to attack the white checker in square 22. However, this could potentially result in a 

trade of checkers, since the white checker occupying square 31 would jump the red checker 

that would end up in square 26 as a result of jumping the piece in square 22. This is reflected 

in the ^legalMoves structure with the attribute-value pair of ^tradeType evenTrade. 

A safer option to attack the white checker in square 22 is move 3, and would get picked 

by the agent if there are no others moves with a higher preference. It can be seen that 

making that move would certainly result in the loss of the white checker at square 22. 

Moves 4 and 5 involve the red checker at square 15, and both have a ^riskBeforeMove 

value of "yes". This is because the red checker at square 24 is under threat of being jumped 

by the white checker at square 28, and since square 15 happens to be in the same diagonal 

line and the square behind it in the same diagonal - square 10 - is empty, a double jump 

would result in which the red checker at squares 15 and 24 would be lost. The 4th move 

would result in the red checker that has now been moved to square 18 getting jumped by the 

white checker at square 22, and hence, is not a good option. 

The 5th and final move involves moving the red checker from square 15 to square 19, 

and is the best move under the circumstances since it prevents a double jump and saves the 

red checker at square 24 that was under threat. As has been explained before, Soar Checkers 

gives the highest preference to a move that actually reduces risk and hence, move 5 will be 

picked by the Soar agent. 

It can be seen from this example that occupying squares that are more towards the 

center of the board, and away from the edges is usually a good idea because it gives the 

player more options to attack (moves 2 and 3) or defend (move 5), and decreases the 

likelihood of a piece getting trapped (move 1). 
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Figure 2.21: Example Board Position Showing the Wedge Formation 

 

2.3.8.7 Wedge Formation - Create a wedge formation, built up from the back 

[12]. 

 Motivation - The overall strategy to play winning checkers is quite simple – move 

your pieces forward while preserving them as much as possible, convert them to kings, and 

attack the remaining pieces of the opponent. If a piece is pushed forward, while it is closer to 

becoming a king, there is also an increased likelihood that it is vulnerable to being attacked 

by the opponent. However, if a piece is moved forward after ensuring that it has adequate 

back-up, it is much safer since the back-up pieces could thwart any potential attacks on it. 

In Soar Checkers, an agent prefers moves that create a wedge-shaped formation, built up 

from the back row, with the exception of the two pieces that are kept in the back-row for as 

long as possible, to prevent the opponent from crowning one of his or her checkers. The 

benefits of this tactic have been explained above, and would be more apparent from the 

following example. 
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Example - Consider the board position shown in Figure 2.21 on the preceding page. 

The wedge-shaped formation can be seen in two instances - the first one is formed by the 

red checkers in squares 9, 10, 14 and the second one is formed by the pieces in the squares 

10, 11 and 15. From the initial board position, the first wedge formation could have been 

obtained by first moving the checker from square 9 to square 14, then moving the checker 

from square 6 to square 9, and finally moving the checker from square 2 to square 6. It 

should be noted that another properly backed-up wedge could have been created by moving 

the checker from square 1 to square 6, but this move is not picked because the agent tries to 

keep squares 1 and 3 occupied for as long as possible, to safeguard the king row. Assuming 

that it is the Red player's turn, the relevant portions of the ^legalMoves data structures 

would be: 

 

1. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

2. ^source 4, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

3. ^source 9, ^destination 13, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

4. ^source 12, ^destination 16, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

5. ^source 14, ^destination 17, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

6. ^source 14, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

7. ^source 15, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

8. ^source 15, ^destination 19, ^riskBeforeMove unKnown, ^riskAfterMove unknown 

 

In this case, all the available moves are equivalent, in terms of risks before making the 

move, and risks after. However, move 3 will be the last choice because this involves moving 

to a square on the edge of the board, square 13. Moves 4, 5, 6, 7 and 8 will be overlooked 
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because the agent tries to build up a wedge formation, starting from behind, so that each 

piece in front is properly backed up. This leaves moves 1 and 2, both of which are from the 

back row, and succeed in building a well backed-up wedge. However, move 1 involves 

moving a checker from square 3, which the agent would not do unless there is no other safe 

move, which is not the case here. Thus, the agent would pick move 2, which involves 

moving the red checker from square 4 to square 8, to fully back up the wedge formed by the 

checkers in squares 10, 11 and 15. 

 

2.3.8.8 Attack with Kings 

This is arguably, the most complex portion of Soar Checkers and a significant amount of 

the logic involved is encoded within the game environment in C++ in the form of helper 

functions (as can be seen in Figure 2.11 on page 38). One of the attributes present on the 

Soar agent's ^io.input-link is called “^attackingMove". This attribute has two sub-attributes 

called "^attackingSource" and "^attackingDestination" that hold integer values representing 

locations of squares on the game board. Until one of the agent's checkers is crowned, both 

these attributes will be set to "-1", and are not used by the agent to make decisions at all.  

Classification of Moves - There are three kinds of moves that the game environment 

considers, and depending on various factors, one of them is chosen, and the source of that 

move is set as the value for ^attackingSource and the destination of that move is set as the 

value for ^attackingDestination. The three types of moves considered are: 

 

1. Chase Move 

2. Trap Move 

3. Attack Move 
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The game environment keeps track of the last move made by the opponent, and tries to 

determine if there exists a path on the game board that is relatively free of risks, and allows a 

king to chase the piece that was last moved by the opponent. This strategy is highly useful 

when the game is fairly advanced, and the opponent is trying to have his or her checkers 

crowned. An added advantage here is that while the king is trying to chase the piece that was 

last moved by the opponent, it might encounter other opponent pieces on the way, possibly 

placing them under threat too. The game environment uses the well known Djisktra's path-

finding algorithm to compute paths on the game board that are then used to find all three 

types of moves. The shortest path that satisfies the qualifying criteria for each type of move 

is always used, and the number of hops required is considered as the measure of distance. 

 Example for Chase Moves - Consider the board position shown in Figure 2.22. 

White's last move was to move the white checker located at square 24 to square 19. This 

information is encoded in an attribute called "^hisLastMove" on the Red agent's ^io.input-

link, which has sub-attributes called "^hisLastSource" and "^hisLastDestination" which 

would have values of 24 and 19 respectively in this case. Assuming that it is the Red agent's 

turn to move, the relevant portions of the ^legalMoves data structures would be: 

 

1. ^source 1, ^destination 5, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

2. ^source 1, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

3. ^source 3, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove unknown 
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Figure 2.22: Example Board Position Demonstrating a 'Chase Move' 

 

4. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

5. ^source 10, ^destination 15, ^riskBeforeMove unKnown, 
 ^riskAfterMove singleJump 
 

6. ^source 14, ^destination 17, ^riskBeforeMove unKnown, 
 ^riskAfterMove doubleJump 
 

7. ^source 14, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

8. ^source 32, ^destination 27, ^riskBeforeMove unKnown, ^riskAfterMove yes 

9. ^source 32, ^destination 28, ^riskBeforeMove unKnown, ^riskAfterMove unknown 

 

Analysis - Moves 1 through 4 are automatically the last choice since they involve 

moving the checkers from squares 1 or 3, thereby exposing the king row to the enemy. 

Moves 5 and 6 are automatically rejected since they actually result in losses (single jump in 

the case of move 5, and double jump in the case of move 6). Similarly, move 8 would result 

in the red king that was just moved to square 27 getting jumped by the white checker in 
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square 31 and hence, will be avoided if there is a choice. That leaves moves 7 and 9, both of 

which are equivalent in terms of their risks before and after making the move.  

Since Red has a king, the game environment would try and find a move that would help 

the king chase the piece that was last moved by the opponent safely. In this case, the closest 

squares to square 19 (the destination of White's last move) from square 32 are squares 23 

and 24. The path-finding algorithm will come up with three possible paths to these squares: 

 

1. 32 -> 27 -> 23 

2. 32 -> 27 -> 24 

3. 32 -> 28 -> 24 

 

Paths 1 and 2 are not suitable since both of them would result in the king being jumped 

by the white checker at square 31. Hence, the remaining path is chosen by the environment, 

and the first move in the path, from square 32 to square 28, is recommended to the Soar 

agent by setting the ^attackingSource and ^attackingDestination attributes on its ^io.input-

link.attackingMove to 32 and 28 respectively. The preference rules for the agent are written 

in such a way that if there exists a valid ^attackingMove (that is, the ^attackingSource and 

^attackingDestination attributes are not set to -1) that has a ^riskAfterMove of unKnown, 

that move would be preferred over almost all other alternative moves - some of the 

exceptions being moves that reduce risk (having a ^riskBeforeMove of "yes" and 

^riskAfterMove of "unKnown"), moves that result in crowning a checker etc. Thus, in this 

case, move 9 is the recommended attacking move, and will be preferred over move 7. If the 

environment cannot find a safe chase move, it will try to find a safe trap move, which will be 

explained next. 
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Trap Moves - In Soar Checkers, a move that results in restricting the mobility of an 

opponent piece is considered a trap move. In the absence of a suitable, safe chase move, the 

game environment tries to find a move that would result in trapping one or more pieces of 

the opponent. Unlike a chase move, a trap move could involve checkers as well as kings. 

While calculating trap paths, care is taken to ensure that pieces that have already trapped an 

opponent piece are considered last, so that the chances of making a trap move that would 

result in freeing an already trapped opponent piece are minimized. The safest trap path 

which is also the shortest distance away from the target square is selected, and the first move 

in the path is recommended to the agent through the ^attackingMove attribute on it’s 

^io.input-link. 

 Example - Consider the board position shown in Figure 2.23 on the next page. 

Assuming that it is the Red agent's turn to move, the relevant portions of the ^legalMoves 

data structures would be: 

 

1. ^source 1, ^destination 5, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

2. ^source 1, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

3. ^source 3, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

4. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

5. ^source 10, ^destination 14, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

6. ^source 10, ^destination 15, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

7. ^source 32, ^destination 27, ^riskBeforeMove unKnown, ^riskAfterMove unknown 
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Figure 2.23: Example Board Position Demonstrating a 'Trap Move' 

 

Analysis - Moves 1 through 4 are of the last priority for the agent, since they involve 

moving pieces from the opponent's king row square, thereby increasing the chances of an 

opponent checker getting crowned. That leaves moves 5 through 7, all of which are 

equivalent in terms of their risks before and after making the moves. In this case, the game 

environment would come up with 3 possible destination squares to trap opponent pieces - 

squares 11, 15 and 23. This is because placing a Red piece in square 11 would make the only 

move available to the white checker at square 20, which is to move to square 16, unsafe. 

Similarly, placing a Red piece in square 15 would trap the white checker at square 24, and 

placing a Red piece in square 23 would trap the white checker at square 31. Next, the game 

environment calculates the shortest paths to each of these possible destination squares, and 

in this case, they would be: 
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1. 3 -> 8 -> 11 (or 3 -> 7 -> 11) 

2. 10 -> 15 

3. 32 -> 27 -> 23 

 

The first path would automatically be rejected since it involves moving from the 

opponent's king row. Even otherwise, among the 3 candidate paths, the shortest path would 

be selected, which, in this case is path 2 which involves a single move and would trap the 

white checker at square 24. Thus, among moves 5 through 7, move 6 would be selected by 

the game environment, and recommended to the agent through its ^io.input-

link.attackingMove attribute. 

Attack Moves - If no trap move can be found because all of the opponent's pieces 

are already trapped, the game environment tries to find a safe "attack move". An attack 

move is one which basically "goes in for the kill", or places an already trapped opponent 

piece directly under threat while ensuring that making that move does not result in opening 

up an avenue for that piece to escape. Like chase and trap moves, if such a move is found, 

the game environment recommends it to the Soar agent through the ^attackingMove 

attribute on its ^io.input-link. 

 Example - Consider the board position shown in Figure 2.24 on the next page. 

Assuming that it is the Red agent's turn to move, the relevant portions of the ^legalMoves 

data structures would be: 

 

1. ^source 1, ^destination 5, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

2. ^source 1, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

3. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unknown 
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Figure 2.24: Example Board Position Demonstrating an 'Attack Move' 

 

4. ^source 7, ^destination 10, ^riskBeforeMove unKnown, 
 ^riskAfterMove yes, ^tradeType evenTrade 
 

5. ^source 7, ^destination 11, ^riskBeforeMove unKnown, 
 ^riskAfterMove yes, ^tradeType evenTrade 
 

6. ^source 22, ^destination 25, ^riskBeforeMove unKnown, 
 ^riskAfterMove singleJump 
 

7. ^source 22, ^destination 26, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

8. ^source 23, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown 

9. ^source 23, ^destination 19, ^riskBeforeMove unKnown, ^riskAfterMove unknown 

 

Analysis - Moves 1 through 3 would be considered last since they would involve 

moving pieces from the opponent's king row. Moves 4 and 5 will not be considered since 

they have a ^riskAfterMove value that is not "unKnown" - both the moves result in a single 

trade of the Red checker at square 7 for the White checker at square 15, and this is reflected 



85

in their ^tradeType value of "evenTrade". Move 6 will be rejected since it would involve an 

uncompensated loss of the Red checker at square 22. Moves 7 through 9 are equivalent in 

terms of their risks before and after making the moves. A careful analysis of the board 

position would show that the Red checker at square 7 has trapped the White checker at 

square 15 by making both its available moves (to squares 10 and 11) risky, while the Red 

checker at square 22 and the Red king at square 23 similarly have trapped the White checker 

at square 30. It should be noted that if move 7 is selected, it would give White a chance to 

prolong the game (White's position is so weak that its highly unlikely that it would avoid 

being beaten) by moving the White checker at square 30 to square 25. However, it can be 

noted that the Red king can be moved from square 23 while still having the White checker at 

square 30 trapped by the checker at square 22. Moves 8 and 9 do exactly this, and both are 

attacking moves, since they place the White checker at square 15 in immediate danger of 

being jumped while leaving all the opponent pieces that were previously trapped, still 

trapped. Thus, the environment would select one out of moves 8 and 9 randomly and 

recommend it as the ^attackingMove to the agent. 

 

2.3.8.9 Avoid Repeating Moves – Provided there is another safe choice. 

As the game was developed, it was noticed that more often than not, while using the 

king to chase or attack, one undesirable side effect was that the agent would move the king 

from square A to square B in move 1, and then, in move 2, would move the king that is now 

in square B back to square A, thereby effectively wasting two moves. To avoid this, a new 

attribute called ^myLastMove with sub-attributes called ^myLastSource and 

^myLastDestination were added to the ^io.input-link of the agent which stored the values of 

the agent's previous move's source and destination squares respectively. While deciding 
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which move to pick from the available collection of ^legalMoves data structures, one which 

has its ^source the same as ^io.input-link.myLastMove.myLastDestination and ^destination 

the same as ^io.input-link.myLastMove.myLastSource would be made the last choice unless 

it was recommended as the ^attackingMove, or there are no other safe alternatives. 

 

2.3.9 Picking a Jump 

Quite similar to how in the case of normal moves, the list of available moves are finally 

represented in terms of ^legalMoves data structures attached to the top-state, the list of 

available jumps are represented in terms of ^legalJumps data structures. Each of these data 

structures have an attribute called "^numJumps" whose value indicates how many opponent 

pieces would be jumped as a result of this particular jump (1 in the case of single jump, 2 in 

the case of double jump, etc.) and depending on its value, various operators such as 

^pickSingleJump, ^pickDoubleJump, ^pickTripleJump etc are proposed and the ^legalJumps 

data structure is copied and attached to the newly proposed operator. 

 Preference Rules for Jumps - The copied ^legalJumps data structures contain 

information about what kind of opponent pieces would be jumped over, and this is used, 

along with the number of pieces involved in a jump to pick a jump from the various possible 

jumps (if such a case exists). These preference rules can be summarized as: 

 

• A single jump is preferred over a single move. 

• A single jump over an opponent king is preferred over a single jump over an  
 opponent checker. 
 
• A double jump is preferred over a single jump. 
 
• A double jump which results in the opponent losing at least one king is preferred  
 over one which does not. 
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• A triple jump is preferred over a double jump. 
 
• A triple jump that results in gaining at least one opponent king is preferred over one  
 that does not. 
 

It should be noted that in the case of jumps, no risk analysis is performed, which is not 

the case for normal moves. This is partly because the rules of checkers require that if a jump 

can be made, it must be made. However, when there are multiple options for jumps, some 

options might be "better" than the others and some of the ideas used to pick a move can be 

modified slightly to aid in deciding which jump to pick among available jumps which seem 

to be equivalent in terms of the number of pieces gained, and the kinds of pieces of gained. 

On the other hand, such situations do not arise too often and so, it was decided that any 

gains as far as better game-play is concerned are offset by the development time and effort. 

 

2.3.10 Output and Cleaning up 

At the end of the decision making process, if a jump is available, one of the available 

jumps would be selected, and the relevant portions of the data structure that is used to 

represent it (a copy of its corresponding ^legalJumps) would be written to the ^io.output-

link, which would then be read by the game environment (using SML) to update the game 

board accordingly. Similarly, if no jumps are possible, one of the available moves is selected, 

and the relevant portions of the corresponding ^legalMoves data structure are written to the 

^io.output-link of the agent. 

The next stage before reverting to the stage where all possible moves and jumps are 

generated is to clean up all the remaining ^legalMoves and possibly, ^legalJumps data 

structures that were generated as part of the agent's decision cycle, along with resetting 

certain attributes attached to the top-state that are used by the agent to propose the correct 
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operator at the correct time. All this is done by an operator called 

^cleanUpLegalMovesAndJumps. 

Finally, the game ends when one of the agents involved cannot generate any moves or 

jumps, either because it does not have any pieces left, or all of its remaining pieces are 

completely trapped. In this case, the agent puts an attribute called ^numJumps on its 

^io.output-link with value 0 and the game environment would declare the player or agent 

with the opposite color as the winner and terminate the game. 

 



CHAPTER THREE 
RESULTS 

 

3.1 Review of Objective 

The problem being attempted to solve was to see if it is possible to build an intelligent 

agent that could play checkers at a fairly decent level without using the traditional computer 

chess or checkers methods described in Chapter One (minimax algorithm, alpha-beta 

pruning, iterative deepening etc to name a few). An attempt was made to construct a rules-

based expert system that relies almost entirely on generalizable strategies to exhibit its 

"intelligent" game-play and would be good enough to beat novices fairly consistently and at 

least challenge players at the "advanced novice" to intermediate level. Soar was chosen as the 

platform for building this agent because it came with built-in features that facilitate creating 

rules-based expert systems, has been proven to be fairly reliable in developing such systems 

(including flight simulators) for over twenty years and makes it relatively straight-forward to 

have multiple agents play each other, and to add or modify features or strategies to the 

agents. 

 

3.2 Assessment 

The problem definition makes it inherently hard to quantify the results objectively. The 

objectives stated above were met successfully for the most part though it is felt that there is 

still some way to go before Soar Checkers can be declared an unqualified success. The results 

of this experiment can be best summarized as follows: 
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The agent, after continuous refinement, was able to play at a level good enough to defeat 

or achieve draws against human opponents who were either novices, or what can be 

described as "advanced novices" (in other words, they are not novices, but don't play at a  

level high enough to be classed intermediate)  on a fairly regular basis. Some of these 

opponents played the agent directly, while other matches were played against opponents 

online who had rated themselves as being novices or advanced novices.  

Since the agent picks a random move out of the available legal moves or jumps (subject 

to certain preferences, according to strategy, of course), its game-play is fairly unpredictable, 

from game to game. This feature causes one major disadvantage - it is almost impossible to 

predict if the agent will consistently beat a certain opponent. In checkers, certain openings 

are known losses, while other seemingly harmless positions that can be reached within four 

moves of the start of the game have also been proven to be forced losses [1] - meaning even 

with perfect play from there on, the agent cannot prevent a defeat. The problem with 

random moves combined with strategy is that some of these moves, especially in the 

opening phase, are seemingly strategically sound (for example, prefer a move that does not 

result in losing a piece, over one that results in a piece being sacrificed, with no tangible 

gain), but lead to the aforementioned positions resulting in forced losses. 

 

3.2.1 Comparison with Chinook 

There is an online version of Chinook [13], which can be challenged by opponents the 

world over. It uses only a single processor and some of the search extensions used by the 

tournament version of Chinook are disabled, but has the complete and perfect six-piece 

endgame database, and the opening book from 1990. While this is certainly a weaker version 

of Chinook than the one used in tournaments, it is still a formidable opponent. It even plays 
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at different levels such as novice, intermediate and advanced, with the difference being the 

amount of time it takes to return a move (in other words, how deep it searches the minimax 

game tree using alpha-beta pruning). While a game is in progress, it uses its position 

evaluation function to analyze the state of the game, and displays comments for the reader's 

benefit, such as "Chinook has a small advantage ". 

 

3.2.1.1 Effect of the Lack of an Opening Book 

It was found that even at novice level, Chinook is far stronger than Soar Checkers. While 

this is a disappointing result, it shouldn't be a big surprise. The lack of an opening book in 

Soar Checkers severely hampers it against any opponent (human or machine) that has 

invested time in learning or storing openings. As explained before, unlike in chess, where a 

weak opening line may result in a player entering the middle game phase with a material 

disadvantage, or an inferior position, in checkers, a mistake made during the opening game is 

almost always fatal, and cannot be recovered from, even with perfect play. It is impossible to 

play correctly every time, especially during the opening game using pure strategy, since there 

are so many situations or board positions in checkers for which it has taken decades of 

human analysis to decide on the "right" move that will at least prevent an otherwise forced 

loss. For example, in what is known as the "White Doctor" opening, many decades of 

analysis has resulted in the conclusion that the correct play requires one side to sacrifice a 

piece (which runs directly against one of the basic strategies to play good checkers - to pick a 

move that is "safe" over one that results in an uncompensated loss) [1]. 

Thus, though the online version of Chinook is weaker than its tournament version, it still 

uses an opening book that is known to have approximately 2000 different positions (they 

actually use an anti-book, or a book of positions not to get into, as explained in Chapter 
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One). It can be easily seen that Soar Checkers is almost certain to make moves that would 

result in forced losses, in the absence of any opening book or database, thus making it 

susceptible to losing against Chinook, or even human opponents who are familiar with book 

play and documented opening traps. 

 

3.2.1.2 Importance of Endgame Database 

Among multiple games played against Chinook, in those instances where Soar Checkers 

did not make an inadvertent opening blunder and wind up in a losing position, it was seen 

that it played a respectable middle game. This shows that strategies can indeed contribute to 

decent game play, at least in the middle game phase of the game. However, once the number 

of pieces had decreased sufficiently to enable Chinook's endgame database to kick in, Soar 

Checkers was no match for Chinook. Once again, this demonstrates the fact that an agent 

that uses generalized strategies for its game play might be competitive against human players 

at the novice or advanced novice level, but against an opponent that has perfect information 

in the endgame (machine or human), it does not stand a realistic chance. It is worth 

mentioning that the Chinook team developed a six-piece endgame database because it was 

observed by them that the human players at the Masters level seemed to have perfect 

knowledge of the endgame involving up to five different pieces. Thus, by building the six-

piece database, they were able to make moves with absolute certainty of being perfect in the 

endgame, while the human opponent could at best, make an educated guess. 
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3.2.2 Comparison with Another Program 

 3.2.2.1 Soar versus Computer 

There is an online checkers program at http://www.nabiscoworld.com which provides a 

couple of options - the user could either play against a human opponent, or choose to play 

against the computer. While playing against the computer, it allows the user to select the 

difficulty level, ranging from one to ten, with one being the easiest and ten, the hardest. Soar 

Checkers was pitted against this program at different difficulty levels, and it was found that it 

beat the program with ease, and quite regularly, at difficulty levels ranging from one to six. 

At levels seven and eight, it was more of a challenge to beat the program, but Soar Checkers 

still emerged victorious about 50% of the time. Levels nine and ten proved much harder to 

beat, as evidently, at these levels the program would be searching the deepest to come up 

with its moves, and would also be using other techniques mentioned in Chapter One. The 

problem here though, is that once again, it is hard to quantify these results, since the strength 

of the checkers program used by this website is not known. 

 

3.2.2.2 Soar versus Humans 

Soar Checkers was also used to play against human opponents who were using the same 

website, and as expected, against opponents who were novices, it won almost all the time, 

barring cases where it made mistakes in the opening game, and ended up in positions that 

were forced losses. It was seen that against opponents who were familiar with endgames, 

Soar Checkers seemed to fritter away advantages that were gained during the opening and 

middlegame phases of the game. For example, in one game, while playing White, Soar 

Checkers went into the endgame with two kings and four checkers, while the human 

opponent had only one king and three checkers, two of which were tied up. An 
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accomplished player would certainly have gone on to win from this position with precise, 

calculated moves. Unfortunately, relying on pure strategy is not sufficient in the endgame, 

especially against opponents who are not novices, and in this specific case, the human 

opponent managed to escape with a draw. The recreated board position with Soar Checkers 

having a huge advantage while going into the endgame, playing White, can be seen in Figure 

3.1. 

 

Figure 3.1: Board Position Showing the Initial Position in an Endgame Against a Human 

Opponent 

 

The final board position of that game, where Soar Checkers allowed the human 

opponent to neutralize the significant material and positional advantage it had at the end of 

the middle game and escape with a draw, is recreated and shown in Figure 3.2 on the 

following page. 
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Figure 3.2: Board Position Showing the Final Position in an Endgame Against a Human 

Opponent 

 

3.2.3 Soar versus Soar 

One of the key ways in which checkers differs from chess, (other than in the number of 

valid squares on the board, the kinds of pieces, and the number of pieces) is that in chess, it 

is almost always advantageous to be able to move first, since this allows the player (the one 

playing with the lighter pieces, usually white) to choose an opening that he or she is very 

familiar with, and might exploit weaknesses in the opponent's preparations for the match. 

However, in checkers, the pieces can only move forward unless it is a king, and it is highly 

unlikely that a player would have a king in the opening phase of the game. This has the effect 

that sooner or later, one of the two opposing sides would run out of safe moves (that is, 

moves that do not result in uncompensated losses of pieces), and quite often, this 

misfortune falls on the player who moved first (the one playing with the dark pieces, usually 

red, but also referred to as black in the literature). The result is that it is more often than not 
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a disadvantage to play as Red, which automatically means that that player makes the first 

move. 

To see if this is indeed the case, Soar Checkers was run in agent versus agent mode. Both 

agents were identical, except in the case of the color of their pieces - one was Red, the other 

White. A total of one hundred games were played, and the results were noted. It was found 

that the agent playing as White won sixty eight games, the agent playing as Red (black) won 

twenty six games, and six games were declared as drawn. It can be seen that there is a huge 

disparity in the number of games won, depending on which color the agent plays, and the 

disparity is indeed in favor of the player going second, the White agent. 68% of all games 

were won by the White agent, while if we consider only those games that generated an 

outright winner, the winning percentage creeps up further to 72.34%. Thus, Soar Checkers 

seems to back up the generally accepted assertion among the checkers community 

that it is almost always an advantage to play as White, in checkers.

3.3 Future Directions 

 3.3.1 Enhance Strategies Used 

In this section, some ideas for extending the work done so far in creating Soar Checkers 

will be discussed. Considerable effort has been made to weed out strategies that proved to 

be not the most advantageous in real game play, and keep only the ones that consistently 

yielded good results. However, it is not beyond the realm of possibilities that there might still 

be some very good strategies that haven't yet been incorporated into Soar Checkers. The 

design of Soar Checkers makes it relatively straightforward to add new strategies to the 

agent's rule base, and immediately test it out. The best way to do this is to actually see how 

the modified agent performs in a game against the old agent. Ideally, the performance of the 
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modified agent should be evaluated over a series of games, with each agent alternating colors 

so that the inherent advantage that the agent that plays as White has, is neutralized and does 

not skew the results. 

 

3.3.2 Compare with Pure Minimax 

Another idea that looks interesting is to develop a checkers program that uses some of 

the standard techniques described in Chapter One, specifically, the minimax algorithm to aid 

in its game-play, and then compare it with Soar Checkers. Specifically, it would be interesting 

to see if and when the moves chosen by both the programs match, and if they do, at roughly 

what depth of search this occurs, and so on. 

 

3.3.3 Add an Opening Book 

It was mentioned earlier that the lack of an opening book seriously hurts the 

performance of Soar Checkers, especially against opponents (human or computer) that have 

learnt or stored opening books. It might be worth investigating how much of a difference it 

would make (there is absolutely no doubt that there would indeed, be a positive difference) 

in the quality of Soar Checkers' game-play if some sort of opening book were used to aid its 

decision making process during the opening phase of a game. The problem with 

implementing this idea, of course, is that assembling a decent-sized opening book is a 

potentially laborious process involving lots of research and manual typing of the opening 

moves that are chosen to be included in the book. 
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3.3.4 Investigate Potential Bug 

While developing Soar Checkers, a potential bug in Soar was uncovered. This had 

specifically to do with the rules that were written to implement triple jumps by kings. 

Though the logic for this rule was exactly the same as that for a triple jump by a checker, 

with the only difference being that the jumps could be in either forward or backward 

direction in the case of the king, unlike in the case of an ordinary checker, which is restricted 

to jumping in only one direction, it was found that whenever the agent was required to apply 

this rule, it caused the program to crash, with virtual memory getting eaten up completely. A 

lot of effort was put in to try and understand what was causing this mysterious behavior, but 

in the end, it required a rewrite of the rule into eight different rules for the program to run, 

without crashing. The reason for this crash, and that too for just one specific rule, is still 

unknown (though most signs point to infinite recursion, it is not known yet exactly what is 

causing it) and would be an interesting problem to look into in the future. 

 

3.3.5 Add an Endgame Database 

Another area where Soar Checkers' game play could be improved substantially is in the 

endgame. As explained before, the kind of game-play required in endgames is impossible to 

describe using just strategies, as most of the time, precise moves must be made to precise 

squares in specific orders in order to convert an advantageous position into a victory, or to 

recover from an inferior position and achieve a draw. Though a lot of effort would be 

required to achieve this, it would be highly interesting to see how a potential future version 

of Soar Checkers that has been augmented with an endgame database would perform against 

human opponents, or even Chinook.  
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3.3.6 Conclusions 

It is a fairly good guess that adding an opening book and an endgame database to the 

current version of Soar Checkers would go a really long way in leveling the playing field, 

especially against accomplished human opponents or Chinook, but in the end, relying on 

pure strategy may not be enough to win against highly efficient and deep brute force search. 

At the moment of writing, the Chinook team have announced that they have already solved 

(computed the game theoretic value of) seven different standard checkers openings. With 

the increased availability of cheap processing power, it is only a matter of time before their 

ultimate goal, which is to solve the game of checkers would be achieved. 

This experiment does raise some interesting questions about Artificial Intelligence, and 

intelligence, in general. The current version of Soar Checkers relies almost entirely on 

strategy, and though it finds it relatively simple to beat human opponents who are either 

novices or advanced novices, it was beaten easily by the online version of Chinook, playing 

at novice level (though, as explained before, even at novice level, it uses the opening book 

and the full and perfect six-piece endgame database). It is a known fact that all players who 

play, or aspire to play, at the elite level spend considerable time and effort in memorizing 

thousands of opening lines, and even more endgame positions (apparently, the best players 

have perfect knowledge of any endgame involving five or less pieces of any kind!). Someone 

who is a novice, or just plays checkers for fun, on the other hand, is more likely than not 

going to rely on what they see on the board rather than memory. The question, therefore, is 

what should the goal of an artificially intelligent program be? Should it aim to be perfect 

(which seems to be the case with Chinook, and they're well on the way to achieving that)? 

Should it aim to emulate humans? It can be safely said that most humans are nowhere near 

perfect, and in this respect, Soar Checkers does seem to succeed in emulating average human 
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behavior, at least in the case of playing a game of checkers. On the flipside, Chinook has 

emulated, and even bettered the behavior of the Grandmasters (It should also be noted that 

its stated goal was to build a program capable of beating the word champion - which, it did). 

 



APPENDICES 
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Appendix A 

Brief History and Rules of Checkers 

 

A.1 History 

Checkers is one of the oldest known games played by man, with the earliest form of the 

game found at an archaeological site in Ur, Iraq, that was dated back to approximately 3000 

B.C. [14] As far as 1400 B.C, a popular game called Alquerque was played in Egypt on a 5 x 

5 board, which was later modified by a Frenchman so that it could be played on a standard 

chess board, thus increasing the number of pieces to twelve, per side. This version of the 

game was called "Fierges" or "Ferses", which was further modified to make jumps 

mandatory, yielding "Jeu Force" - which was exported to Britain and the Americas later. The 

game came to be known as "draughts" in Britain, and "checkers" in America. A brief 

summary of the rules of modern American checkers [15, 16] follows: 

 

A.2 Rules 

Checkers is a board game played between two players who alternate turns. The player 

who cannot move, either because he or she has no pieces left, or all of his or her pieces are 

blocked, loses the game. The players are also free to resign, or agree to a draw. 

The game is played on a square board made up of 64 smaller squares arranged in an 8 x 8 

grid, with the smaller squares alternately light and dark colored (green and buff, in the case 

of tournaments). The game is played on the dark squares (though in checkers diagrams, the 

pieces are shown on the light squares, for readability). The pieces are red and white (though 

more often than not, store-bought sets have black and white pieces), and at the beginning of 

the game, each player has twelve pieces of his or her chosen color arranged on the twelve 
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dark squares closest to his or her edge of the board. The red player moves first, and the 

players alternate turns until one of them can't make a move (in which case, he or she loses), 

or one of them resigns or they agree to a draw. 

A piece that is not a king may move one square forward, diagonally. A king can move 

one square diagonally either forward, or backward. A piece can move only to a vacant 

square. A move may consist of one or more jumps. An opponent's piece can be captured by 

jumping over it, diagonally to the adjacent vacant square in the same diagonal. The jumping 

piece, the opponent's piece and the empty square must line up diagonally. While a king can 

jump diagonally, both forward and backward, a piece that is not a king can only jump 

diagonally forward. Using only one piece, a multiple jump can be made, moving from empty 

square to empty square. A jumping piece or king can change directions during a multiple 

jump - making a jump in one direction, and then jumping in another. Only one piece can be 

jumped with a given jump, but several pieces can be jumped with one move that involves 

multiple jumps. If a jump can be made, it must be made. However, if there are several 

different jumps that are possible, the player is free to choose among them, regardless of if 

some of them are multiple jumps, or not. A player cannot jump his or her own pieces. The 

same piece cannot be jumped twice, in the same move. 

When a piece reaches the last row (usually known as the king row), it gets crowned, and 

becomes a king. This is indicated by placing a second checker on top of the first piece, by 

the opponent. A piece that has just been crowned cannot continue to jump opponent pieces 

until the next move. 

A Draw is declared when neither player can force a win. When one side appears stronger 

than the other and the player with what appears to be the weaker side requests the Referee 

for a count on moves, then, if the Referee so decides, the stronger party is required to 
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complete the win or show to the satisfaction of the Referee at least an “increased” (instead 

of the old wording “decided”) advantage over his or her opponent within forty of his or her 

own moves, these to be counted from the point at which notice was given by the Referee; 

failing in which he or she must relinquish the game as a draw. 

[This forty-move draw rule requires some checkers expertise, on the part of the Referee. 

He or she must determine if a player has increased his or her advantage. There is no “triple-

repetition” rule. So, a player may repeat the position, twenty times (or a hundred times, if the 

Referee has not been called in). Normally, the players are reasonable enough to agree to a 

draw, in such a case. Technically, a player who does not have any advantage, can refuse to 

agree to a draw. The player with the stronger position cannot request a 40 move count, at 

least not according to this law. So, it is possible to have a repetitious game that lasts forever. 

Reasonable people would agree to the draw, or apply the 40 move draw rule, anyway.] 
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Appendix B 

Overview of Soar 

 

B.1 Introduction 

Soar is a general, unified cognitive architecture designed to develop systems exhibiting 

intelligent behavior. In other words, Soar provides the fixed computational structures that 

enable knowledge to be encoded and the production of actions in pursuit of goals. In many 

ways, it is similar to a programming language, albeit somewhat specialized. It differs from 

other programming languages such as C or Java in that it has embedded in it a specific 

theory of the appropriate primitives underlying reasoning, learning, planning and other 

capabilities that are necessary for intelligent behavior. Since Soar is not a general purpose 

language, some computations are awkward, or difficult to do in Soar (for example, complex 

math) but it is suited to build autonomous agents that use large bodies of knowledge to 

generate actions in pursuit of goals [17]. 

 

B.2 Overview 

The design of Soar is based on the idea that all deliberate goal-oriented behavior can be 

viewed as the selection and application of operators to a state. A state is a representation of 

the current problem-solving situation; an operator transforms the state (makes changes to 

the representation) and a goal is the desired outcome of the problem-solving activity. Thus, 

as Soar runs, it is continually trying to apply the current operator and select the next operator 

(a state can have only one operator at a time) until the goal has been achieved. There are 

separate memories in Soar for short-term memory (for example, the current state of the 

problem) and long-term knowledge. A Soar program contains the knowledge for solving a 
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specific task (or set of tasks), including information about how to select and apply operators 

to transform the states of the problem, and means to recognize if and when the goal has 

been achieved. 

 

B.2.1 Representation of States, Operators and Goals 

States are represented as objects in Soar's short-term memory (known as "working 

memory" in Soar parlance), and these objects are made up of (a possible collection of) 

attribute-value pairs and in many cases, other objects are sub-structures of the state, forming 

a hierarchical representation. For example, the state representing a human could possibly 

have the following structure: 

 

state <human> ^type state

<human> ^lastName Smith

^firstName John

^address <placeHolder>

<placeHolder> ^Street '550~Old Broken Hwy'

^City 'Utopia'

A state can have only one operator at a time, and operators are represented as 

substructures of the state. It should be noted that a state could have as a substructure a 

number of potential operators that are under consideration; however there still will only be 

one current operator. Meanwhile, goals are either represented explicitly as some substructure 

of the state with general rules that recognize when the goal is achieved, or are implicitly 
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represented in the Soar program by goal-specific rules that test the state for specific features 

and recognize when the goal is attained. 

 

B.2.2 Problem Solving in Soar 

As explained before, Soar tries to solve a problem by continuously applying the current 

operator (to the current state) and selecting the next operator, until the goal has been 

reached. The various steps involved are briefly described below. 

 

B.2.2.1 Operator Proposal 

As a first step in selecting an operator, one or more candidate operators are proposed. 

Operators are proposed by rules that test the features of the current state (for example, in a 

game of checkers, an operator to generate moves could be proposed when it is detected that 

it is that agent's turn to make a move). 

 

B.2.2.2 Operator Comparison 

The second step Soar takes in selecting an operator is to evaluate or compare the 

candidate operators. In Soar, this is done through rules that test the operators that were 

proposed during the operator proposal stage by using a mechanism known as "preferences" 

(for example, if there are two proposed operators A and B, each representing possible 

moves, if A leads to an uncompensated loss while B is safe, preference rules could be written 

that would prefer operator B over operator A). 
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B.2.2.3 Operator Selection 

Soar attempts to select a single operator based on the preferences available for the 

candidate operators (in other words, operator selection is handled by the Soar architecture, 

not the Soar program). There are four possible scenarios here: 

 

1. The available preferences unambiguously prefer a single operator. 

2. The available preferences suggest multiple operators, and prefer a subset that can be 
selected from randomly.  

 
3. The available preferences suggest multiple operators, but neither case 1 or 2 above 

hold. 
 
4. The available preferences do not suggest any operators. 

 

In the first case, the preferred operator is selected. In the second case, one of the subset 

is selected randomly. In the third and fourth cases, Soar has reached something known as an 

"impasse" in problem solving, and a new substate is created. There are four kinds of 

impasses which are explained in great detail in [8]: 

 

1. Tie-impasse 

2. Conflict-impasse 

3. Constraint-failure impasse 

4. No-change impasse 

 

B.2.2.4 Operator Application 

An operator applies by making changes to the state; the specific changes that are 

appropriate depend on the selected operator and the current state. There are two primary 
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approaches to modifying the state: indirect and direct. Indirect changes are used in Soar 

programs that interact with an external environment: The Soar program sends motor 

commands to the external environment and monitors the external environment for changes. 

The changes are reflected in an updated state description, garnered from sensors (example, 

how the agents interact with the game environment in Soar Checkers). Soar may also make 

direct changes to the state; these correspond to Soar doing problem solving "in its head". 

Soar programs that do not interact with an external environment can make only direct 

changes to the state. 

 

B.2.2.5 State Elaboration 

Making monotonic inferences about the state is the other role that Soar long-term 

knowledge may fulfill. Such elaboration knowledge can simplify the encoding of operators 

because entailments of a set of core features of a state do not have to be explicitly included 

in application of the operator. In Soar, these inferences will be automatically retracted when 

the situation changes, such as through operator applications or changes in sensory data. 

 

B.2.3 Memories in Soar 

There are three different kinds of memories in the Soar architecture, each of which has 

its own utility in the overall scheme of things, and will be described briefly in the following 

sections. 

 

B.2.3.1 Working Memory 

Soar represents the current problem-solving situation in its working memory. Thus, 

working memory holds the current state and operator (as well as any substates and operators 
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generated because of impasses) and can be thought of as being Soar's "short-term" 

knowledge, reflecting the current knowledge of the world and the status in problem solving. 

The working memory is made up of elements known as working memory elements (or 

WMEs). Each WME is an identifier-attribute-value triple (for example, J1 ^name Jack is a 

WME in which J1 is the identifier, "name " is the attribute and "Jack" is its value), and a 

collection of WMEs sharing the same identifier is said to form an object. The value of the 

attribute of a WME could be the identifier for another object, thereby creating an object 

hierarchy. Each object has to be connected to a state (which itself is represented as an object, 

as explained earlier), and any object that is disconnected from a state will be removed from 

the working memory. 

 

B.2.3.2 Production Memory 

Soar represents long-term knowledge as productions that are stored in production 

memory. Each production has a set of conditions and a set of actions. If the conditions of a 

production match working memory, the production fires, and the actions are performed. 

Thus Soar productions are very similar to "if-then" conditions. 

 

Examples of Productions - The general structure of a Soar production is: 

 

sp {rule*name

(condition)

(condition)

.

.
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-->

(action)

(action)

}

A simple Soar production that prints out 'Hello World!' and stops could look like this 

[17]: 

 

sp {hello*world

(state <s> ^type state)

-->

(write |Hello World!|)

(halt)

}

Architectural Roles - Soar productions are the mechanism used by the Soar 

architecture to fulfill four roles used in problem solving: 

 

1. Operator Proposal 

2. Operator Comparison 

3. Operator Application 

4. State Elaboration 

 

Persistence – The two main actions of a production are to create preferences for 

operator selection, and create or remove working memory elements. For operator proposal 
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and comparison, a production creates preferences for operator selection. These preferences 

should persist only as long as the production instantiation that created them continues to 

match. When the production instantiation no longer matches, the situation has changed, 

making the preference no longer relevant. Soar automatically removes the preferences in 

such cases. These preferences are said to have "I-support" (for "instantiation support"). 

Similarly state elaborations also have I-support. 

On the other hand, WMEs created as a result of an operator application rule have what 

is known as "O-support" (for operator support). This is different from I-support in that the 

results of an operator application production (usually, adding or removing elements to or 

from the working memory) should persist even when that operator is no longer the current 

operator or that operator application production instantiation no longer matches. Working 

memory elements that participate in the application of operators are maintained throughout 

the existence of the state in which the operator is applied, unless explicitly removed (or if 

they become unlinked). Working memory elements are removed by a reject action of a 

operator-application rule. 

 

B.2.3.3 Preference Memory 

The selection of the current operator is determined by the preferences in preference 

memory. Preferences are suggestions or imperatives about the current operator, or 

information about how suggested operators compare to other operators. Preferences refer to 

operators by using the identifier of a working memory element that stands for that operator. 

After preferences have been created for a state, the decision procedures evaluate them to 

select the current operator for that state. For an operator to be selected, there will be at least 

one preference for it, specifically, a preference to say that the value is a candidate for the 
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operator attribute of a state (this is done with either an "acceptable" or "require" preference). 

There may also be others, for example to say that the value is "best". The different kinds of 

preferences and the symbols used to denote them in Soar are [8]: 

 

1. Acceptable (+) 

2. Reject (-) 

3. Better (>), Worse (<) 

4. Best (>) 

5. Worst (<) 

6. Indifferent (=) 

7. Numeric - Indifferent (= number) 

8. Require (!) 

9. Prohibit (~) 

 

B.2.4 Soar Execution Cycle 

A Soar program executes through a number of cycles. Barring the case of impasses and 

the creation of substates, a Soar execution cycle consists of five phases: 

 

1. Input: New sensory data comes into working memory. This is done through the 

^io.input-link attribute of the agent.  

2. Proposal: Productions fire (and retract) to interpret new data (state elaboration), 

propose operators for the current situation (operator proposal), and compare 

proposed operators (operator comparison). All of the actions of these productions 

are I-supported. All matched productions fire in parallel (and all retractions occur in 



114

parallel), and matching and firing continues until there are no more additional 

complete matches or retractions of productions (known as "quiescence"). 

3. Decision: A new operator is selected by Soar, or an impasse is detected and a new 

state is created.  

4. Application: Productions fire to apply the operator (operator application). The 

actions of these productions will be O-supported. Because of changes from operator 

application productions, other productions with I-supported actions may also match 

or retract. Just as during proposal, productions fire and retract in parallel until 

quiescence.  

5. Output: Output commands are sent to the external environment. This is done 

through the agent's ^io.output-link attribute. The cycles continue through phases 1 

to 5 until the halt action is issued from the Soar program (as the action of a 

production) or until Soar is interrupted by the user. 

 

This concludes the fairly broad overview of Soar. For further details, the reader is 

advised to refer to [8, 9, 10, 17]. 
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