
Clemson University
TigerPrints

All Theses Theses

5-2007

Soar Checkers - An Intelligent Checkers Playing
Agent in Soar
Jithu Menon
Clemson University, jmenon@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Menon, Jithu, "Soar Checkers - An Intelligent Checkers Playing Agent in Soar" (2007). All Theses. 74.
https://tigerprints.clemson.edu/all_theses/74

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_theses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/74?utm_source=tigerprints.clemson.edu%2Fall_theses%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

SOAR CHECKERS - AN INTELLIGENT CHECKERS PLAYING AGENT IN SOAR

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Electrical Engineering

by
Jithu Menon

May 2007

Accepted by:
Dr. Robert Schalkoff, Committee Chair

Dr. John Gowdy
Dr. Stan Birchfield

ABSTRACT

The classic board game of checkers is ideally suited for research in AI game-playing

programs or agents. The objective behind Soar Checkers is to investigate if it is possible to

create an agent-based game playing system that would beat novices with ease and at least

challenge advanced novice to intermediate-level players by designing a rules-based expert

system whose knowledge base consists of nothing more than the rules of checkers, and a set

of guidelines for game-play based on good strategy. Soar was chosen as the platform for

building this agent because it came built-in with features that facilitate creating rules-based

expert systems, has been proven to be fairly reliable in developing such systems (including

flight simulators) for over twenty years and makes it relatively straight-forward to have

multiple agents play each other, and to add or modify features or strategies to the agents.

Though the problem definition makes it inherently hard to objectively quantify the results,

the objectives were successfully achieved for the most part. It was also seen that all other

things being equal, the player going second (White) has a built-in advantage, thereby

confirming a widely held belief among the checkers community.

iii

DEDICATION

To my parents Gopal and Jaya, and my brother Rahul.

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support and help of a bunch of

great people. First and foremost, I would like to thank my advisor Dr. Schalkoff, who came

up with the initial idea for this project and with his timely and truly helpful advice, proved

instrumental in ensuring its successful completion. I would also like to thank Dr. Birchfield

and Dr. Gowdy for serving on my committee and for taking time out of their busy schedules

to aid me in creating the final draft.

 There were numerous occasions during the course of this project when I found the

going really tough especially since I was a complete Soar newbie. I would like to express my

heartfelt gratitude to Mr. Bob Marinier and Ms. Karen Coulter at the University of Michigan,

and Mr. Doug Pearson at Three Penny Software Inc. for their infinite patience and

invaluable help whenever I had difficulties with Soar.

 Last but certainly not the least; I would like to thank my family and friends for their

constant support and encouragement. Special thanks to Rob Morefield for helping me keep

my head up, having faith in me and for being a real friend. I would like to thank Sunil

Guduru, for helping me stay on track and Dr. Bill Bauerle for his support. Thanks to

everyone who wished me well - I deeply appreciate it.

TABLE OF CONTENTS

Page

TITLE PAGE... i

ABSTRACT .. ii

DEDICATION.. iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES... ix

LIST OF FIGURES .. x

CHAPTER

1. PROBLEM DESCRIPTION ... 1

1.1 Introduction.. 1
 1.2 Games and Search.. 2
 1.2.1 Motivation for Search.. 2
 1.2.2 The Minimax Algorithm ... 2
 1.2.2.1 Zero-Sum Game... 2
 1.2.2.2 Minimax Algorithm.. 3
 1.2.2.3 Evaluation Functions... 3
 1.2.2.4 Components of the Algorithm... 4
 1.2.2.5 Game-Tree .. 4
 1.2.2.6 Evaluation of Game-Tree ... 5
 1.2.2.7 An Example .. 5
 1.2.3 Alpha-Beta Pruning ... 7
 1.2.3.1 Motivation... 7
 1.2.3.2 An Example .. 9
 1.2.3.3 Move Ordering and Performance...................................... 11
 1.2.4 Iterative Deepening ... 12
 1.2.4.1 Motivation for Iterative Deepening................................... 12
 1.2.4.2 Basic Idea .. 14
 1.2.4.3 An Example .. 15
 1.2.5 Games and Moves Databases .. 16
 1.2.5.1 Opening Book .. 16
 1.2.5.2 Endgame Databases... 17
 1.2.5.3 Classic Game Databases.. 17
 1.3 Chinook... 18
 1.3.1 History ... 18
 1.3.1.1 Origin... 18

vi

Table of Contents (Continued)

Page

1.3.1.2 Performance in Tournaments .. 19
 1.3.2 Behind the Scenes .. 20
 1.3.2.1 Search... 20
 1.3.2.2 Knowledge .. 21
 1.3.2.3 Endgame Database .. 23
 1.3.2.4 Opening Book .. 24

2. SOAR CHECKERS ... 26

2.1 Philosophy Behind Soar Checkers .. 26
 2.2 The User Interface ... 27
 2.2.1 The Game Board.. 27
 2.2.2 Making a Move... 30
 2.2.3 Making a Single Jump.. 33
 2.2.4 Making a Double Jump ... 33
 2.2.5 Making a Triple Jump.. 35
 2.3 Soar Checkers Internals... 37
 2.3.1 Initialization .. 39
 2.3.1.1 Soar versus Soar ... 39
 2.3.1.2 Soar versus Human.. 39
 2.3.2 Generate all Legal Moves.. 40
 2.3.3 Evaluate Risks Before Move .. 43
 2.3.3.1 An Example .. 43
 2.3.3.2 Homogenizing .. 44
 2.3.4 Evaluate Risks After Move ... 45
 2.3.4.1 Scenarios for a Move being Risky...................................... 45
 2.3.4.2 An Example .. 48
 2.3.4.3 Risk Assessment ... 49
 2.3.4.4 Homogenizing .. 50
 2.3.5 Saving Helpless Pieces... 50
 2.3.5.1 Saving an Immobile Piece... 51
 2.3.5.2 Detecting “Unsafe” Moves... 52
 2.3.5.2.1 Case One ... 52
 2.3.5.2.2 Case Two... 52
 2.3.5.2.3 Case Three... 53
 2.3.5.2.4 Case Four .. 53
 2.3.5.3 An Example .. 54
 2.3.5.3.1 Initial Structures ... 54
 2.3.5.3.2 Risk Analysis ... 55
 2.3.5.3.3 Changed Structures .. 57
 2.3.6 Trading Pieces... 57
 2.3.6.1 Classification of Trades in Soar Checkers 57
 2.3.6.2 Good Trade Heuristics.. 58

vii

Table of Contents (Continued)

Page

2.3.6.3 Implementation Difficulties ... 58
 2.3.7 Picking a Move ... 59
 2.3.8 Operator Selection Strategies ... 60
 2.3.8.1 Reduce Risks ... 60
 2.3.8.2 Thwart Opponent Crowning Moves................................. 63
 2.3.8.3 Crown Checkers ... 66
 2.3.8.4 Protect Kings .. 68
 2.3.8.5 Minimize Material Losses.. 69
 2.3.8.6 Occupy Center Squares ... 72
 2.3.8.7 Wedge Formation .. 75
 2.3.8.8 Attack with Kings .. 77
 2.3.8.9 Avoid Repeating Moves .. 85
 2.3.9 Picking a Jump.. 86
 2.3.10 Output and Cleaning up.. 87

3. RESULTS... 89

3.1 Review of Objective .. 89
 3.2 Assessment.. 89
 3.2.1 Comparison with Chinook ... 90
 3.2.1.1 Effect of the Lack of an Opening Book........................... 91
 3.2.1.2 Importance of Endgame Database.................................... 92
 3.2.2 Comparison with Another Program ... 93
 3.2.2.1 Soar versus Computer ... 93
 3.2.2.2 Soar versus Humans .. 93
 3.2.3 Soar versus Soar ... 95
 3.3 Future Directions ... 96
 3.3.1 Enhance Strategies Used... 96
 3.3.2 Compare with Pure Minimax ... 97
 3.3.3 Add an Opening Book .. 97
 3.3.4 Investigate Potential Bug .. 98
 3.3.5 Add an Endgame Database .. 98
 3.3.6 Conclusions... 99

APPENDICES... 101

A: Brief History and Rules of Checkers... 102
 A.1 History ... 102
 A.2 Rules... 102
 B: Overview of Soar.. 105
 B.1 Introduction .. 105
 B.2 Overview.. 105
 B.2.1 Representation of States, Operators and Goals 106
 B.2.2 Problem Solving in Soar .. 107

viii

Table of Contents (Continued)

Page

B.2.2.1 Operator Proposal .. 107
 B.2.2.2 Operator Comparison.. 107
 B.2.2.3 Operator Selection.. 108
 B.2.2.4 Operator Application ... 108
 B.2.2.5 State Elaboration .. 109
 B.2.3 Memories in Soar.. 109
 B.2.3.1 Working Memory.. 109
 B.2.3.2 Production Memory ... 110
 B.2.3.3 Preference Memory .. 112
 B.2.4 Soar Execution Cycle ... 113

BIBLIOGRAPHY ... 115

LIST OF TABLES

Table Page

1.1 An Example of Exponential Increase in Number of
 Leaf Nodes to be Searched with Increasing Depth
 of Search when the Branching Factor is 10 .. 8

1.2 An Example of Exponential Increase in the Number of
 Leaf Nodes to be Searched with Increasing Number of
 Plys Searched in checkers for Non-Capture Moves 9

LIST OF FIGURES

Figure Page

1.1 Example of a Minimax Game Tree ... 7

1.2 Example Game-Tree before Alpha-Beta Pruning ... 10

1.3 Example Game-Tree after Alpha-Beta Pruning... 12

1.4 Example of Move Re-Ordering using Iterative
 Deepening... 15

2.1 An Empty Checker Board in Soar Checkers .. 27

2.2 Initial State of the Game Board in Soar Checkers... 28

2.3 The Numbering Scheme used for the Board Squares
 in Soar Checkers .. 28

2.4 Example for Making a Normal Move: Board Position
 After Moving from Square 12 to Square 16... 31

2.5 Example Board Position Before a Single Jump ... 32

2.6 Example Board Position After a Single Jump.. 32

2.7 Example Board Position Before a Double Jump... 34

2.8 Example Board Position After a Double Jump ... 34

2.9 Example Board Position Before a Triple Jump ... 36

2.10 Example Board Position After a Triple Jump.. 36

2.11 Overview of Soar Checkers Architecture ... 38

2.12 Example Board Position Where Some of the Available
 Move Choices for Red are Risky ... 48

2.13 Example Board Position Where Some Pieces are
 “Helpless” ... 54

xi

List of Figures (Continued)

Figure Page

2.14 Example Board Position that Demonstrates the
 'Reduce Risks' Strategy.. 61

2.15 Example Board Position Demonstrating How to
 Protect the King Row with Only Two Checkers 64

2.16 Example Board Position Demonstrating How to Get
 to the King Row with Two Checkers ... 65

2.17 Example Board Position for a Red checker Being
 Crowned.. 67

2.18 Example Board Position for Sacrificing a Checker to
 Protect a King .. 69

2.19 Example Board Position Demonstrating 'Minimize
 Material Losses' Strategy ... 71

2.20 Example Board Position Demonstrating Good
 Positional Play .. 73

2.21 Example Board Position Showing the Wedge
 Formation ... 75

2.22 Example Board Position Demonstrating a 'Chase
 Move' ... 79

2.23 Example Board Position Demonstrating a 'Trap Move’ 82

2.24 Example Board Position Demonstrating an 'Attack
 Move' ... 84

3.1 Board Position Showing the Initial Position in an
 Endgame Against a Human Opponent.. 94

3.2 Board Position Showing the Final Position in an
 Endgame Against a Human Opponent.. 95

CHAPTER ONE
PROBLEM DESCRIPTION

1.1 Introduction

The classic board game of checkers (also referred to as 8 x 8 draughts in Britain)1 is

ideally suited for research in AI game-playing programs or agents. Its similarity to chess

makes it possible to leverage the advances made and lessons learnt while developing chess

playing super computers such as Deep Blue and Fritz. The reduced complexity of checkers

allows the researcher more leeway in exploring new techniques [1].

The objective behind Soar Checkers is to investigate if it is possible to create a game

playing system that would beat novices with ease and at least challenge advanced novice to

intermediate-level players by designing a rules-based expert system whose knowledge base

consists of nothing more than the rules of checkers, and a set of guidelines for game-play

based on good strategy. This is in contrast to the traditional AI techniques used by programs

such as Chinook, which largely rely on treating game-play as a problem of search. Thus, the

main problem being approached and investigated is to develop an intelligent agent in Soar2

that

• Is aware of the rules of checkers;

• Plays at a respectable level; i.e., plays at the level of an advanced novice to

intermediate level player;

• Does not use the traditional AI techniques that have been used in the past to

develop game-playing programs, as described in Section 1.2 on the next page and

1 For more information on the history and rules of checkers, please refer to Appendix A
2 To learn more about Soar, please refer to Appendix B.

2

• Provides a platform for exploring the effects of various strategies and tactics on

improving game play.

1.2 Games and Search

 1.2.1 Motivation for Search

Most games can be represented in terms of an initial state, intermediate states, and

(possibly) a (set of) final state(s). For example, in the case of chess, the initial state would be

the starting board position, the intermediate states would be the board positions resulting

from various moves made by the players as the game progresses, and the final state(s) would

be board positions in which one player has emerged as the clear victor (for instance, a

checkmate), or the game is drawn. Therefore, these states form a state-space. Evidently, for

any one player, some of the final states are more desirable than the others. It could then be

seen that games could be approached as a quest to traverse this state-space, starting at the

initial state and ending in one of the desirable final states (for instance, win or draw). State-

space search has been used quite successfully in the past to create game-playing programs.

The following sections describe some of the commonly used techniques for building such

systems.

1.2.2 The Minimax Algorithm

 1.2.2.1 Zero-Sum Game

A zero-sum game is one in which the amount of resources available to the players

involved (usually, two or more) is fixed [2]. This means that a gain for one player would

result in an equal loss for the other players. In other words, if the gains and losses of all

3

players playing a zero-sum game are added up, the result would be zero. Examples include

chess, go, checkers etc.

1.2.2.2 Introduction to Minimax Algorithm

Almost all “intelligent” game-playing computers generally use some variation or the

other of the basic minimax algorithm. This is because almost all of them treat games as a

problem of state-space search. In this case, the program tries to identify various paths

through the state-space leading to desirable final states, and then tries to pick moves that will

still lead to a desirable outcome, while expecting the opponent to do his or her best to

thwart these moves. It can be seen that an algorithm that performs this state-space search

would be at the heart of such search-based game-playing systems. The minimax algorithm

basically recommends the best possible legal move in two-player, zero-sum games [3]. This

algorithm was first proposed in 1928 by Jon Von Neumann.

1.2.2.3 Evaluation Functions

The algorithm requires an evaluation function that would assign a score to each game

state (for example, board position in board games such as chess or checkers). Typically, these

functions are referred to as position evaluation functions. A “good”' evaluation function is

quite often the difference between various competing game-playing programs. In the case of

checkers, an example evaluation function could assign different scores for the two kinds of

pieces (example, 1 for an ordinary checker, and 2 for a king, various squares on the board

could be differentiated using scores assigned to them (example, 5 for center squares

occupied by the players' pieces, 2 for edge squares, -3 for each square near the players' king

row that is occupied by an opponent checker, etc.). This evaluation function would therefore

4

be a weighted sum of various factors, with the weights picked to reflect both material

strength and positional strength (example, a board position with positional score of 22 and

having 4 checkers and 2 kings would result in a total score of 22 + (4 x 1) + (2 x 2) = 30) .

The algorithm works roughly as follows [3, 4, 5]:

1.2.2.4 Components of the Algorithm

Consider two players, MAX and MIN playing a zero-sum game. The objective of MAX

is to maximize the minimum possible score returned by the evaluation function used by the

minimax algorithm, while that of MIN is to minimize the maximum possible score returned

by the evaluation function. Suppose it is MAX's turn to make a move. The current game

state is passed to a function that would first generate all the possible legal moves that MAX

could make, and then return the collection (possibly zero or more) of game states that are

the result of making those moves. The resulting game states are at what is referred to as the

“min-level”, and the algorithm works recursively, treating each of the resulting game states as

the current state, generating the possible legal moves and the new game states that result

after each of those moves are made - which would now be at the “max-level”.

1.2.2.5 Game-Tree

A game-tree is thus generated, with the root being the current game state, the children

being the game states that result from making a legal move. In the ideal case, the algorithm

would run until one of the possible final game states is generated (for example, one of the

players win) - however, in most cases, this would require an unacceptably long period of

time, even with the most modern super computers. Hence, depending on the platform

running the algorithm, the maximum search depth is limited, to say, “d”.

5

1.2.2.6 Evaluation of Game-Tree

Once all the game states have been generated up to depth d, each of the leaf nodes is

assigned the score returned by the evaluation function. If the leaves happen to be at the

max-level, their immediate parents are at the min-level, and each parent would be assigned

their children’s minimum score. On the other hand, if the leaves are at the min-level, their

parents would be assigned their children’s maximum score. This process continues

recursively, in a bottom-up fashion until the immediate children of the root node have been

assigned scores. Now, assuming that it is the MAX players' turn to move, the move that

would result in the game state with the highest score that is also an immediate child of the

root would be returned as the “best” possible move that the player could make, by the

algorithm. The algorithm can be described, in pseudo-code fashion as shown in Algorithm

1.1 on the next page [4, 5].

1.2.2.7 An Example

An example game-tree generated by the minimax algorithm is shown in Figure 1.1 on

page 7. For the sake of clarity and brevity, we assume that the algorithm looks ahead only 3

plys3 and that the player who is about to make the move tries to maximize the score returned

by the evaluation function (thereby, becoming “MAX”) and his or her opponent tries to

minimize the same (thereby, becoming “MIN”). A closer inspection of the game tree

generated by the algorithm reveals that from the present state of the game, MAX has two

possible choices, each of which provides MIN with two possible responses. The position

evaluation function is applied to the game states at the leaf nodes, and their immediate

parents are assigned the highest score among their children, since the parents are at a MAX

3 In game-playing parlance, a ply is a half-move. When both players have each made a move, it is two plys.

6

level. The scores are thus backed up, until the root node is reached, and in this specific case,

the minimax algorithm would recommend that MAX pick the move which results in a score

of 5 over one that results in a score of 3.

function minimax(node, depth)

if node is a terminal node or depth = 0

return the heuristic value of node

if the adversary is to play at node

let α := +∞

foreach child of node

α := min(α, minimax(child, depth-1))

else {we are to play at node}

let α := -∞

foreach child of node

α := max(α, minimax(child, depth-1))

return α

Algorithm 1.1: Pseudo-Code for the Minimax Algorithm

7

Figure 1.1: Example of a Minimax Game Tree

1.2.3 Minimax Improved: Alpha-Beta Pruning

 1.2.3.1 Motivation for Improving Minimax

The major drawback with the minimax algorithm is that, though it can ostensibly predict

the “best” possible move available to a player, given a certain state of the game (assuming

that the position evaluation functions used are reasonably good), as the branching factor

(number of legal moves possible from a given game state) increases, the search-depth, and

thus the time required to perform the search for the best move increases exponentially. For

example, suppose we are using the minimax algorithm to predict the best moves for a game

which has an average branching factor of 10. This means that if our “intelligent” game-

player looks ahead one ply, there would be 10 leaf nodes in the minimax game tree, and the

depth would be 1. If it looks ahead two plys (i.e. one complete move by both players), the

game tree would have a depth of 2, and at the leaf level, there would be 100 nodes. This can

be summarized briefly as shown in Table 1.1 on the next page.

8

The scenario shown above is quite realistic in the case of checkers, since for non-capture

moves, the average branching factor in checkers is 8 and for capture moves, it is

approximately 1.25 [1]. It is quite common for expert players to look ahead 20 plys or more,

especially in the end game. The number of leaf nodes that would have to be searched for

different plys involving non-capture moves can be seen in Table 1.2 on page 9.

It is quite obvious that even with the fastest supercomputers, the time required to

perform a 20 ply search would be quite unwieldy. Significant gains can be made in the time

required to generate the best move, if the number of nodes involved in the search can be

drastically reduced. This is where a technique called Alpha-Beta pruning [3, 6], and its

variants come into play. It is safe to say that almost all search-based game playing programs

rely on minimax search with alpha-beta pruning for their “intelligent” game-play.

Look-Ahead Depth Number of Leaf Nodes

1 10

2 100

3 1000

4 10000

5 100000

6 1000000

. .

20 100000000000000000000

Table 1.1: An Example of Exponential Increase in Number of Leaf Nodes to be
Searched with Increasing Depth of Search when the Branching Factor is 10

9

1.2.3.2 An Example

Let us consider the same example that was used to explain the minimax algorithm, and

see how alpha-beta pruning could help in reducing the number of nodes that need to be

searched to find the “best” move. For the sake of clarity, all nodes except the leaf nodes

have been labeled in this case (A, B1, etc). Given the game search-tree shown in Figure 1.2,

on the next page, alpha-beta pruning works as follows:

Look-Ahead Depth Number of Leaf Nodes

1 8

2 64

3 512

4 4,096

5 32,768

6 262,144

. .

20 1,152,921,504,606,846,976

Table 1.2: An Example of Exponential Increase in Number of Leaf Nodes to be
Searched with Increasing Number of Plys Searched in checkers for Non-Capture Moves

10

Figure 1.2: Example Game-Tree before Alpha-Beta Pruning

Just as in the case of ordinary minimax, the algorithm begins by examining the scores

returned by the position evaluation function for the bottom-leftmost leaf nodes, which in

this case, are the children of node C1, which is a max node. Since it is at max-level, the

maximum of 5 and 4 - 5 is returned to C1, which is in turn, temporarily stored in B1, which

is at min-level. The algorithm examines the children of C2 next, and comes across the value

6. Since C2 is at max-level, we can safely say without examining its remaining children that it

would return a value that is greater than or equal to 6. However, B1, which is C2's parent, is

at min-level, already has a value of 5 returned from C1 and would choose the lower value,

which in this case is 5. Thus, it is safe to ignore the remaining children of C2, leaving the

value of 5 intact in B1.

Now, we examine the children of C3, and since it is at a max-level, the greater of 3 and 2

- 3 is returned to C3, which in turn, is temporarily stored in B2. Though the nodes B1 and

B2 are at min-level, their parent node A is at max-level, and will always choose the greater

11

value among B1 and B2. We know that B1 contains 5, and since B2 now temporarily holds

3, even if we examine all the children of B2's other child node C4, the final value in B2

would be a value less than or equal to 3. Since A is a max-node, it would thus choose B1,

since its value will now be higher than that of B2, regardless of what values C4's children

might have. Thus, the algorithm would ignore the entire branch C4, and choose the move

B1, with score 5. This is illustrated in Figure 1.3.

1.2.3.3 Effect of Move Ordering on Performance

It should be noted that the number of leaf positions evaluated is heavily influenced by the

ordering of the moves in the game search tree. In other words, alpha-beta pruning works

best when the “best” moves are searched first. In the worst case scenario, with an average

branching factor of b, and a search depth of d, the number of leaf nodes evaluated is the

same as in the case of normal minimax – bd , but in the case of optimal move ordering (best

moves searched first), the number of leaf nodes searched reduces to √bd . This means that

the effective branching factor is reduced to its square root, or in other words, the search can

be performed twice as deep with the same amount of computation [3]. In the specific

example shown in Figure 1.3, using minimax, the number of leaf nodes searched was 11,

while alpha-beta pruning enabled us to obtain the same result while searching only 5 leaf

nodes - a reduction of approximately 54.55% in the amount of search conducted.

Considering that quite often, the difference between a winning machine and a losing

machine is in its computational power (with respect to the amount of instructions it can

execute per second, or the depth to which it can evaluate a game search-tree), it is obvious

that alpha-beta pruning is an invaluable tool in building an efficient search-based game

playing machine.

12

Figure 1.3: Example Game-Tree after Alpha-Beta Pruning

As a side note, “alpha” refers to the minimum value that the MAX player is assured of

obtaining, and “beta” refers to the maximum value that the MIN player is assured. Usually,

alpha is initialized to negative infinity, while beta, to positive infinity. When at a given node,

beta becomes less than alpha, that node and its children are eliminated from the search, since

they would not come about, if each player plays perfectly (which is one of the assumptions

of the alpha-beta pruning algorithm). Pseudo-code for the algorithm is shown in Algorithm

1.2 on the next page [6].

1.2.4 Optimizing Alpha-Beta Pruning: Iterative Deepening

 1.2.4.1 Motivation for Iterative Deepening

As explained in Section 1.2.3 on page 7, Alpha-Beta pruning is a great technique that can

yield significant gains when it comes to improving the efficiency of a minimax search of a

13

game tree. However, its efficacy is highly dependent on move-ordering within the search

tree. That is, for optimal results, the best moves should be searched first. Iterative deepening

is a simple, yet sometimes counter-intuitive technique that aids in achieving this very result.

Usually, search-based game playing machines have some kind of restriction as to the

amount of time available to perform the search before returning the “best” available move.

The basic problem here is that we are not sure how deep the search should be. On one

extreme, we could specify that the search should be conducted up to the terminal nodes –

but this could be too deep, resulting in the allocated time running out before huge swathes

of the game tree have even been searched, and returning a potentially sub-optimal move. On

the other hand, we could limit the search - depth to an arbitrary value of d plys, but once

again, there is no way to say if d is too shallow, or too deep. This is where iterative

deepening comes in handy.

function minimax(node, depth)

return alphabeta(node, depth, -∞, +∞)

function alphabeta(node, depth, α, β)

if node is a terminal node or depth = 0

return the heuristic value of node

if the adversary is to play at node

foreach child of node

β := min(β, alphabeta(child, depth-1, α, β))

if α ≥ β

return α

14

return β

else {we are to play at node}

foreach child of node

α := max(α, alphabeta(child, depth-1, α, β))

if α ≥ β

return β

return α

Algorithm 1.2: Pseudo-Code for Alpha-Beta Pruning

1.2.4.2 Basic Idea

The basic idea is that a depth first search (DFS) is done to depth 1, and if there is still

time left, we increase the search depth by one, and so on, until the time allocated to make a

decision on the next move (for example, roughly six minutes, in the case of checkers), runs

out [7]. Thus, if the branching factor is b, the number of nodes searched would be b + b2 +

b3 + . . . + bd-1 +bd. Now, it might appear that the earlier searches (for instance, the search to

depth 1, depth 2, depth 3, etc.) are wasteful in terms of time. However, the greatest utility of

iterative deepening is that the results of each iteration can be used to re-order the nodes

attached to the root, with the assumption being that the best moves at depth d, would

continue to lead to the best moves at depth d + 1 (This assumption does hold, in most

cases). This results in the best moves being searched first with every iteration, thereby

approaching optimal results for alpha-beta pruning.

15

1.2.4.3 An Example

An example of iterative deepening can be seen in Figure 1.4 below. Here, the root node,

and its four children A, B, C and D are shown with the corresponding scores returned by the

position evaluation function after a search has been conducted to a depth d. Before the next

iteration, the child nodes are re-ordered so that the nodes with the higher scores would be

searched first. The results of the next iteration (searching up to depth d + 1) can be seen on

the right hand side of the figure, which in this case backs up the assumption that the “best”

moves at depth d are very likely to help in predicting the best moves at depth d + 1 too.

Various techniques are often used in conjunction with iterative deepening in order to

increase the efficiency of alpha-beta pruning, and these include using transposition tables,

keeping track of best moves from previous searches so that they can be searched

preferentially if the same board position is encountered in a future search, using history

heuristics [7], etc.

Figure 1.4: Example of Move Re-ordering Using Iterative Deepening

16

1.2.5 Games and Moves Databases

Another tool that is extensively used by most intelligent game playing systems consists of

game and moves databases or books. These come in various assortments and shapes, but

mostly fall into three categories:

• Opening Game

• End Game

• Classics

It is common practice to split up or describe chess or checkers games in terms of

opening game, middle game and end game. Each stage is characterized by different styles of

play that would aid in winning, and the knowledge acquired over the years has led to the

development of extensive moves databases, especially in the case of opening and end games.

1.2.5.1 Opening Book

In the case of checkers, a seemingly harmless move at the early stages of a game could

result in the game being lost, even with “perfect play” throughout the rest of the match. This

is not quite the case in chess, where opportunities for recovery do exist, purely because of

the greater freedom of movement that the pieces in a chess game have, with respect to those

in a checkers game. Thus, there are literally thousands of so-called “standard” opening move

combinations, whose sole purpose is to navigate the tricky waters of the opening game

relatively unscathed, or to gain any kind of leverage (material or positional) that could then

be used to hurt the opponent during the middle game. Since most players at the expert level

spend copious amounts of time and effort memorizing these opening move combinations, it

17

can be easily seen why a database of such moves would be a great tool for any machine that

has aspirations of challenging opponents of that level of expertise.

1.2.5.2 Endgame Databases

Quite similarly, once the game has reached an advanced state and more than likely the

number of pieces on the board have been reduced to a handful for either players, the

endgame is reached. Unlike other stages of the game (including the opening phase), any error

made at this stage will almost certainly result in defeat, especially when playing against an

accomplished opponent. Very often, to ensure victory, a player has to manouevre his or her

pieces in precise order, ensuring that strategic locations on the board are occupied at the

right time, by the right piece so that the opponent has no chance of being let off the hook.

Such precise play is rarely accomplished accidentally, and hence the raison d'etre for truly

encyclopedic endgame databases.

1.2.5.3 Classic Game Databases

The final class of game or moves databases would be those made up of “classic” games,

usually played out by the true masters of the game in question - for example, Bobby Fischer

or Garry Kasparov in chess, or Dr. Marion Tinsley in checkers. Such games are usually

characterized by seemingly illogical moves (for the casual observer) that lead up to either an

astounding assault on the opponent, or staving off defeat from an otherwise lost position.

Once again, such moves rarely, if ever, occur to an ordinary player, and hence, someone who

has spent time to study them usually has an advantage over an opponent who hasn't, all

other things being equal. For these reasons, almost all serious game-playing programs

18

employ a fairly extensive database of classic games played in the past, to aid in their game-

play.

1.3 Chinook

Any discussion on what has been accomplished in the field of artificially intelligent

game-playing programs, especially in the case of checkers would be incomplete without

mentioning Chinook. A fairly brief overview of what Chinook is and how it was developed

follows.

1.3.1 History

 1.3.1.1 Origin

In 1952, Arthur Samuel wrote a checkers playing program, that through continuous

refinement, actually managed to beat Robert Nealy, a blind checkers master from

Connecticut in a famous game in the 1960s. As a result, his program acquired the reputation

of being a Masters-level player (though it later turned out that Nealy was not nearly as good

at checkers, as claimed), and this in turn, led to almost no work being done in the field of

Computer checkers for the next 25 years, since it was apparently, a “solved” problem [1].

In June 1989, Dr. Jonathan Schaeffer at the University of Alberta, Canada, who had been

working on computer chess, decided to write a computer program that would be good

enough to beat the human checkers champion in the short term, and ultimately, solve the

game of checkers - giving the world, Chinook. He worked with a team that included

Norman Treolar as the checkers expert, Robert Lake, who was responsible for the endgame

databases, and Martin Bryant, who supplied a very large, and very good, opening book. Many

graduate students were also contributors to the development of Chinook.

19

1.3.1.2 Performance in Tournaments

About a year after the project began, in August 1990, Chinook competed in its first two

human checkers tournaments and did very well. It won the Mississippi State Open

undefeated, and even beat three Grandmasters. While at the US National Open, it placed

second, once again defeating three Grandmasters in the process. It should be noted that the

US National Open is the biennial event used to determine the next challenger to play for the

World checkers Championship, and by coming in second to the reigning World Champion

at the time, Dr. Marion Tinsley, Chinook had earned the right to a 40-game match against

him for the Championship.

However, this was the first time that a computer program had earned the right to play

for a human world championship, and perhaps, for this reason, both the American Checker

Federation (ACF) and the English Draughts Association (EDA) did not sanction a Chinook

versus Tinsley match. Partly because of their refusal to sanction the match, Dr. Tinsley

resigned as World Champion in June 1991. It is worth noting that Dr. Marion Tinsley had

been the premier checkers player in the world for the past 40 years, losing just 5 games in

that lengthy span, over thousands of games.

Though not officially sanctioned, Chinook played Dr. Tinsley for the “de-facto” world

championship in 1992, in London and lost. It won two games, while losing four. They

played a rematch in 1994, but after drawing six games, Dr. Tinsley forfeited the match,

owing to bad health, and unfortunately, passed away shortly afterwards. In 1995, Chinook

took on Don Lafferty, widely acknowledged as the second best human checkers player after

Dr. Tinsley, and narrowly defeated him in a very close-fought match with one win and thirty

one draws. In 1996, Chinook finished first at the US National Open, and was retired from

match-play, since Dr. Schaeffer's team decided that there was nothing left to prove.

20

1.3.2 Behind the Scenes

Chinook is written in the C programming language, and runs under the UNIX operating

system. For the US National Open in 1990, Chinook ran on an IBM RS/6000 Model 530

workstation, with just 32 megabytes of RAM (which was a significant amount in those days)

[1]. There are four major components that contribute to Chinook's playing strength:

• Search

• Knowledge

• Endgame database

• Opening book

1.3.2.1 Search

Chinook uses all the standard techniques that were mentioned earlier in this chapter -

minimax with alpha-beta pruning, iterative deepening, transposition tables, and a variety of

other heuristic techniques. It goes without saying that the deeper a search can be performed

within the allowed time frame (usually, 6 minutes), the better the program performs in

general. Thus, it becomes important that as much of the available search time be used to

investigate promising leads as possible, rather than wasting time on evidently inferior

options. The developers of Chinook have spent considerable time and effort in developing

suitable heuristics which will aid in extending or truncating a search, as needed. Since in

checkers, a material deficit is more significant than in chess, sacrifices of a single piece are

common, but ones involving two or more pieces are rare. A technique called forward

pruning is used to quickly curtail lines with material deficits. Basically, if a line leads to a

material deficit, and there is insufficient positional compensation (that is, the positional

21

evaluation for that position is below a certain threshold value), then the remaining search

depth is reduced to half. If the result of the remaining search does not restore the material

deficit, or results in an acceptable positional compensation, then this line is abandoned.

Otherwise, the full search depth is restored, and the line is explored completely.

Checkers knowledge is used to extend the search along interesting lines, such as useful

captures, checkers running un-opposed to being crowned, some promotion of checkers to

kings, and positions where one side is forced to repeat moves (quite common in checkers,

unlike in chess). All potential search extensions have to pass through a variety of heuristic

tests to ensure that time is not wasted on extensions with little chance of providing useful

information. At the US Open, Chinook averaged 20 ply searches (plus extensions). At the

start of the game, Chinook searched at least 15 ply; in the endgame, 25 ply searches were

common. In contrast, the Deep Thought chess program achieves 10 or 11 ply searches

during the middle game using special purpose VLSI hardware. Chinook performs iterative

deepening 2 ply at a time to factor out some of the instabilities that arise when searching to

odd and even depths. Although 20 ply searches sound impressive, they still fall short of

human capabilities, especially during the endgame. Strategic objectives that an expert human

opponent can perceive are well beyond the brute-force search horizon, and this is one

problem that the Chinook team is working on overcoming.

1.3.2.2 Knowledge

In the case of Chinook, “knowledge” is mostly encoded in terms of its evaluation

function. Apparently, at the US Open, the move that was said to be positionally “best” by

the program after a 5-ply search (which is the minimum search depth in Chinook) turned out

to be the recommended move even after a 20-ply search, implying that the strength of the

22

program was not based on pure search (although it does make the difference when it comes

to competing at an expert level). Additionally, Chinook was able to correctly predict the

opponent's move 80% of the time, which would have been ever higher, if the mistakes made

by human opponents were factored in. In computer chess, a prediction rate of 50% would

be really good, but the fact that the number of pieces and squares in checkers are less makes

it easier to predict moves too, as compared to chess.

Chinook divides the game into five phases - opening, middle game, early endgame, late

endgame and database. The first four phases each have twenty two user-adjustable

parameters that influence the evaluation function [1]. A position evaluation is the linear sum

of the 22 heuristics multiplied by their user-defined weights. The last phase has perfect

knowledge, and therefore has no parameters. The parameter settings used for the US Open

were determined manually. A database of 800 classic Grandmaster games was created and

used to develop and automatically tune the program's knowledge. Initial attempts revolved

around tuning the parameters in order to maximize the number of times Chinook would

select the same move as the Grandmaster, over all games. The very same technique

employed by the Deep Thought chess team - which treats the problem as an over-

determined system of equations to be solved where one dimension is the number of

positions used, and the other is the number of heuristic parameters - was used by the

Chinook team, too. It was found, however that more often than not, Chinook selected

alternate moves that were either as good as, or even superior to, the Grandmaster moves -

which adds to its strength by being able to select moves without biases of human

preconceptions, thereby allowing Chinook to continue to surprise the human opponent.

23

1.3.2.3 Endgame Database

Endgame databases are a computer-generated collection of positions with a proven

game-theoretic value, and were pioneered in Computer chess. At the US Open, Chinook had

access to the entire 6-piece database, comprising roughly 2.5 x 109 positions. What this

meant is that whenever a position with 6 pieces or less was encountered, the program could

look it up in the database, and return an exact win, loss or draw value. In computer chess,

endgame databases are of limited utility since most games never get far enough to utilize

them. In checkers, however, since capture moves are forced, some positions near the start of

the game can be analyzed right to the end of the game. For instance, a nominal 15-ply search

at the start of the game is sufficient for Chinook to start reaching positions in the endgame

databases. At the time of writing, the Chinook team had announced that they had succeeded

in building the entire 10-piece database. Computing such enormous databases and efficiently

representing them in a compact form that can be used in real-time are both challenging

issues.

Though the endgame databases represent perfect knowledge, that does not necessarily

guarantee perfect play. Chess databases often store distance to win (or mate), for each

position. Once in a winning database position, the program can win by only playing those

moves from within the database that minimize the number of moves to win. Since the

checkers databases are used throughout the game (even at the beginning), they have to be

compressed enough to fit into RAM. To enable this, the Chinook team only stores the

results of a position, not its distance to win. This means that Chinook could find itself in a

winning 6-piece position, but will still have to search to find the winning line. A lot of

techniques have been tried to reduce the size of the endgame database, including neural

networks to build an evaluation function that can predict the game theoretic value of a

24

position with a high degree of reliability - which would enable the team to simply store those

positions for which the function returns an incorrect prediction in the database.

1.3.2.4 Opening Book

The standard, but scientifically uninteresting way of generating an opening book is to

manually type in thousands of positions from human-authored books. The consequences of

the lack of an opening book are much more serious in checkers than in chess. In chess, a

player using only his experience during the opening phase may play inoptimal moves, and

end up in an inferior position. In checkers, however, many opening moves, including as early

as move 4 in a game have been analyzed, and found to be forced losses (in other words,

from that position, barring a blunder on the opponent's part, even perfect play would result

in a loss). Without an opening book, a human or computer player runs the risk of falling into

one of these traps, and obtaining a lost position very quickly. Attempts to create a machine-

generated opening book yielded less than satisfactory results, and thus, the Chinook team

decided to create an “anti-book”, a book not of moves to play, but of positions to avoid [1].

Anti-book positions were collected from human opening books, books on opening traps,

Grandmaster games, and from Chinook's own games and at the time of the US Open, there

were roughly 2000 such positions in Chinook's opening book.

The majority of the information about Chinook's internals is from at least ten years ago.

Technology has advanced by leaps and bounds in the meantime, and it is known that they

now have the entire 10-piece endgame database at their disposal. It is quite clear that the

combination of efficient brute-force search, along with continuous refinement of the various

heuristic parameters used in the position evaluation function, and perfect knowledge of the

25

endgame, along with a formidable opening book make Chinook one of the best, if not the

best checkers players in the world.

CHAPTER TWO
SOAR CHECKERS

2.1 Philosophy Behind Soar Checkers

Brief Introduction to Soar - Soar is an architecture designed to aid in developing general

intelligent systems [8]. It has been in use for over twenty years and some of its applications

have been in building flight simulators, AI engines for interactive 3D games such as Quake,

etc. A more detailed description of Soar can be found in Appendix B.

Motivation for Soar Checkers - The superiority of game playing systems based on the

minimax algorithm such as Chinook, as explained in Section 1.2 on page 2, is almost entirely

due to treating games as a search problem and the increased availability of inexpensive

computing power. While this approach is highly effective in building championship calibre

AI systems, a sizable group within the AI community share the opinion that a truly

“intelligent” system should not rely mainly on raw number-crunching in order to exhibit

intelligent behavior. Instead of replicating the techniques used by existing AI game playing

systems, it was decided to explore the idea of building a system that relies almost exclusively

on tactics and strategy for game play.

Basic Philosophy - The basic philosophy behind Soar Checkers is that it should be

possible to create a game playing system that would beat novices with ease and at least

challenge advanced novice to intermediate-level players by designing a rules-based expert

system whose knowledge base consists of nothing more than the rules of checkers, and a set

of guidelines for game-play based on good strategy. In this chapter, the user interface

designed for Soar Checkers is described first, in Section 2.2 and then, an explanation of how

27

.

Figure 2.1: An Empty Checker Board in Soar Checkers

Soar Checkers works follows in Section 2.3. The strategies used to build Soar Checkers are

explained in fairly good depth on page 60

2.2 The User Interface

 2.2.1 The Game Board

For its simplicity, ASCII art has been used to represent the checkers game board.

Though the board is of size 8 x 8, only half of those squares are valid in checkers. Thus,

valid squares are either blank, or have a piece in them, while invalid squares are filled with a

'H'. There are only four different kinds of pieces4 in checkers, and they are represented as:

• Red Checker – ‘RC’

4 There is some confusion prevailing as to whether the pieces are colored black and white, or red and white.
Please refer to Appendix A for more details.

28

Figure 2.2: Initial State of the Game Board in Soar Checkers

Figure 2.3: The Numbering Scheme Used for the Board Squares in Soar Checkers

29

• Red King – ‘RK’

• White Checker – ‘WC’

• White King – ‘WK’

Figure 2.1 shows what the game board looks like, devoid of any pieces. As explained

above, a piece can be legally moved only to the dark squares. Figure 2.2 shows the state of

the game board, before any moves have been made, assuming that red moves from top to

bottom. Figure 2.3 shows the numbering scheme used in Soar Checkers, which is the same

as the classic numbering scheme used in checkers literature to describe various board

positions and moves.

Modes of Operation - On starting up, Soar Checkers presents the user with three modes

of operation:

1 Soar agents versus Soar agent

2 Soar agent versus Human

3 Human versus Human

Choices one and two are the ones of particular interest. In the first case, two Soar agents

are created - Red and White, corresponding to the color of their pieces. As per the rules of

checkers, the Red agent moves first. After each agent move, the new board position is

displayed, and the game is paused until the user presses any key. Without this feature, it

would be almost impossible to keep track of each agent's moves since an agent usually needs

only a few seconds to make a move.

30

If the user opts for the third mode of operation, the board is automatically initialized

with the Red piece at the top, and the White pieces at the bottom, as shown on Figure 2.2.

The players proceed to move or jump as described in Sections 2.2.2, 2.2.3, 2.2.4 and 2.2.5.

If the user chooses the second mode of operation, he or she would be presented with

two more choices:

• The color of his or her pieces

• If he or she wants to move from top to bottom, or bottom to top

Once these choices are made, the board is initialized accordingly, and whoever is red

(human or agent) moves first. When it is the human players' turn, the following line is

displayed, assuming that the human is playing as red:

“You are Red Enter the number of jumps / moves (1 for single move/jump, 2 for

double jump etc...)”

There are four possible kinds of moves, and each of them would be explained in detail in

the subsequent sections.

2.2.2 Making a Move

To make a normal move (that is, not a jump), the user enters “1” at the previous

prompt. This results in the following prompt being displayed:

“Enter source (1 - 32): “

As already explained, the valid squares on the game board are numbered from 1 to 32

using the numbering scheme shown in Figure 2.3 on page 28. Thus, if the user wants to

31

move his piece located at square 12, he would enter 12 here. Now, a new prompt is

displayed:

“Enter middle (-1 if you're just making a move, 1 - 32 if it’s a jump): “

Since this is a normal move, the user should enter -1. The next prompt would be:

“Enter destination (1 - 32): “

If the desired destination of the move is square 16, all the user has to do is enter 16. If

the user decides to quit the game, he or she could enter “quit” at any of these three prompts.

An Example - Suppose the game is in the initial state, as shown in Figure 2.2 on page 28.

The user’s color is red, and to move from square 12 to square 16, he would have to enter:

“Enter source (1 - 32) : 12”

“Enter middle (-1 if you're just making a move, 1 - 32 if it’s a jump) : -1”

“Enter destination (1 - 32) : 16”

Figure 2.4: Example for Making a Normal Move: Board Position After Moving from Square

12 to Square 16

32

Figure 2.5: Example Board Position Before a Single Jump

Figure 2.6: Example Board Position After a Single Jump

33

2.2.3 Making a Single Jump

This is very similar to making a normal move, as explained in Section 2.2.2. on page 30.

The only difference is that at the second prompt:

“Enter middle (-1 if you're just making a move, 1 - 32 if it’s a jump): ”

Instead of entering “-1”, as is done in the case of a normal move, the number of the

square which contains the opponent's piece that the user desires to jump over, should be

entered. This will be illustrated in the following example.

An Example - Figure 2.5 shows the board position when it is the Red players' turn to

make a move. If the player desires to make a single jump over the white checker located at

square 19, the source is 16, the middle is 19, and the destination is 23. These are the

commands that the user would have to enter in order to accomplish that:

“Enter source (1 - 32): 16”

“Enter middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 19”

“Enter destination (1 - 32): 23”

The resulting board position is shown in Figure 2.6 on the previous page.

2.2.4 Making a Double Jump

When the user desires to make a double jump, as opposed to three squares in the case of

a single jump, five squares are involved - one source square, two middle squares

corresponding to the locations of the two opponent pieces that would get jumped, and two

destination squares corresponding to the first and second jumps. For both a normal move

and a single jump, the user enters “1” at the prompt:

“You are Red Enter the number of jumps / moves (1 for single move/jump, 2 for

double jump etc...)”

34

Figure 2.7: Example Board Position Before a Double Jump

Figure 2.8: Example Board Position After a Double Jump

35

An Example - However, in order to make a double jump, a “2” should be entered. Let

us consider an example of a Red player trying to make a double jump. Figure 2.7 shows the

board position when it is the Red players' turn to move. If the user desires to jump the

opponents' pieces located at squares 16 and 24, the corresponding source would be 12, first

middle would be 16, first destination would be 19, second middle would be 24, and final

destination would be 28. These are the commands necessary for the user to do that:

“You are Red Enter the number of jumps / moves (1 for single move/jump, 2 for

double jump etc...) 2”

“Enter source (1 - 32): 12”

“Enter 1st middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 16”

“Enter 1st destination (1 - 32): 19”'

“Enter 2nd middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 24”

“Enter final destination (1 - 32): 28”

Figure 2.8 on the previous page shows the resulting board position.

2.2.5 Making a Triple Jump

In the case of a triple jump, seven squares on the game board are involved, as opposed

to just five in the case of a double jump, and three in the case of a normal move or a single

jump - one source square, three middle squares corresponding to the locations of the three

opponent pieces that would get jumped, and three destination squares corresponding to the

first, second and third jumps. In order to make a triple jump, the user should enter “3” at the

following prompt:

“You are Red Enter the number of jumps / moves (1 for single move/jump, 2 for

double jump etc...)”

36

Figure 2.9: Example Board Position Before a Triple Jump

Figure 2.10: Example Board Position After a Triple Jump

37

An Example - Let’s consider an example of a Red player trying to make a triple jump.

Figure 2.9 shows the board position when it is the Red player's turn. Unlike a checker, a king

can move both forwards and backwards. Thus, the red player could use the red king at

square 4 to jump over the white checkers at squares 8 and 15, and then jump backwards over

the white king at square 14. In this case, the source would be 4, first middle would be 8, first

destination would be 11, second middle would be 15, second destination would be 18, third

middle would be 14 and the final destination would be 9. These are the commands necessary

for the user to do that:

“You are Red Enter the number of jumps / moves (1 for single move/jump, 2 for

double jump etc...) 3”

“Enter source (1 - 32): 4”

“Enter 1st middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 8”

“Enter 1st destination (1 - 32): 11”

“Enter 2nd middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 15”

“Enter 2nd destination (1 - 32): 18”

“Enter 3rd middle (-1 if you're just making a move, 1 - 32 if it’s a jump): 14”

“Enter final destination (1 - 32): 9”

The resulting board position is shown in Figure 2.10 on the previous page. In the

following sections of this chapter, a detailed description of how Soar Checkers is built under

the hood ensues.

2.3 Soar Checkers Internals

Soar Checkers is an expert system with an agent-based architecture built using Soar 8.6.2

and the C++ programming language. The Soar Markup Language (SML) [9, 10] has been

38

used to interface between the Soar kernel and the game environment written in C++. The

real “brains” of the system are encoded as a set of rules (known as productions in Soar

parlance), for agents in Soar. The Soar kernel can be thought of as an environment that

hosts the Soar agents and provides the various functionalities essential for proper operation

of the agents.

Figure 2.11: Overview of Soar Checkers Architecture

The Game Environment - The game environment, written in C++, accepts user input,

interfaces with the Soar agent(s) (in other words, acts a third-party that enables multiple

agents in the Soar kernel to communicate), keeps track of, and updates the game state. In

addition, some helper functions have also been written in C++ (for example, path-finding

algorithm to determine promising attacking options towards the endgame) that provide

suggestions to the agents with respect to “good” move options. The agents use their

39

respective ^io.input-link and ^io.output-links5 to communicate with the game environment.

An overview of the architecture used to build Soar Checkers can be seen in Figure 2.11 on

the previous page. The various steps involved in the operation of Soar Checkers are

explained in subsequent sections.

2.3.1 Initialization

 2.3.1.1 Soar versus Soar

The game board, which is part of the game environment, is initialized as shown in Figure

2.2 on page 28. An instance of the Soar kernel is created in a new thread, and two Soar

agents (with potentially different sets of rules) “Red” and “White” are created. Since red

always goes first, one of the attributes on the ^io.input-link called “isTurn” is set to 1 for the

Red agent, while the corresponding attribute for the White agent is set to 0. Certain data

structures are created in the agents' working memories using Soar elaboration rules. These

data structures encode information about how the various legal squares on the game board

are connected to each other, the location of the king rows, the kinds of pieces in the game

etc.

2.3.1.2 Soar versus Human

In this case, an instance of the Soar kernel is created in a new thread, and a Soar agent is

created (named “Red” if the human chose to be the white player, or “White” if the human

chose to be red). Depending on the agent's color, the “isTurn” attribute on its ^io.input-link

is set to 1 or 0 (1 if it’s Red and 0 otherwise). The remaining initialization steps in Soar are

very similar to those described in Subsection 2.3.1.1. Meanwhile, an instance of a class

5 For more information on these, please refer to Appendix B

40

named “Human” is created in the game environment in C++ and is used to accept the

human player's moves and make corresponding changes in the board position, among other

things.

2.3.2 Generate all Legal Moves

The basic goal of an agent in Soar Checkers is to make moves in a given game that

would lead to a win or a draw. In order to do that, the first thing an agent does on its turn to

move, is to generate a list of all possible legal moves and jumps, given the current board

position - which is sent to the agent on its ^io.input-link by the game environment. The list

of moves thus generated might have four different kinds of moves:

• A normal move

• Single jump

• Double jump

• Triple jump

Each move generated at this stage are added to the top state of the agent so that they are

easily accessible at later stages of the decision making process. Since these moves are

generated as a result of an operator application, they have o-support, and remain in working

memory until explicitly removed [8]. A move generated at this stage is represented thus:

(<s> ^legalMoves <aMove>

^mobileCells <pos>)

(<aMove> ^numJumps 1

^source <pos>

41

^midSquare -1

^destination <movepos>

^piece <checker>

^savingSquare -1

 ^riskBeforeMove unKnown

^riskAfterMove unknown)

The above segment of code adds a data structure called “legalMoves” to the top state in

working memory (represented as <s>). Within this data structure are a series of attribute-

value pairs which hold information specific to each move. The ^source, ^midSquare and

^destination attributes correspond directly to locations on the game board (midSquare will

be -1 in the case of a normal move). ^numJumps is 1 for both a normal move and a single

jump, 2 for a double jump and 3 for a triple jump. ^piece refers to the kind of piece involved

in the move. ^savingSquare holds the location of the square on the game board that could

potentially save a piece under threat (-1 if none exists). ^riskBeforeMove and

^riskAfterMove are attributes used to identify risks associated with a move, and will be

explained in more detail in subsequent sections.

An Example – Let us consider an example. Given the board position shown in Figure

2.9 on page 36, and assuming that it is the Red agent's turn, the list of all possible moves and

jumps would consist of:

• Single Jump - 4 - 8 – 11

• Double Jump - 4 - 8 - 11 - 15 – 18

• Triple Jump - 4 - 8 - 11 - 15 - 18 - 14 – 9

42

• Move - 28 - -1 – 32

As a side note, considerable difficulty was faced while writing the rule to generate triple

jumps for a king. For reasons that are yet to be understood by the author, the rule for the

king, which was quite similar to the one written for triple jumps for checkers except for the

fact that kings can jump in both directions, caused the entire program to hang, and finally

crash as the system ran out of virtual memory (over 2 GB) - which might very well suggest

that an infinite recursion could be the underlying cause, though all attempts to debug the

offending rule met with failure. What was really perplexing was that a very similar rule for

generating double jumps for kings posed no problems at all. The problem was finally

overcome by splitting the one rule into eight separate rules corresponding to the eight

different ways in which a king could triple jump:

• Forward - Forward – Forward

• Forward - Forward – Backward

• Forward - Backward – Forward

• Forward - Backward – Backward

• Backward - Forward – Forward

• Backward - Forward – Backward

• Backward - Backward – Forward

• Backward - Backward – Backward

43

2.3.3 Evaluate Risks Before Move

The next step in the decision making process is to evaluate the risks faced, if any, for

each piece involved in the moves that were generated, before actually making the move. In

addition, the risks faced by those pieces which cannot move (henceforth referred to as

immobile pieces) are also evaluated. At this stage, only the most obvious risks are

considered. For instance, in the case of a mobile piece, the following situations put it under

risk:

• One of the opponent's pieces is in a square directly in front of it, and the square

directly behind it in the same diagonal is empty.

• An opponent king is in a square directly behind it, and the square directly in front of

it in the same diagonal is empty.

2.3.3.1 An Example

An immobile piece is under risk when the situation described in the first of the two

scenarios above exists. Consider the board position shown in Figure 2.9. If it is the red

player's turn to move, none of his pieces are under risk. However, if it is the white player's

turn to move, the piece located at square 8 is under threat by the red king at square 4. There

is only one possible move for the white player that involves the piece at square 8 -> 8 - -1 -

3. This information will be used to modify the “^legalMoves” entry corresponding to that

move generated at the previous stage of the decision making process to reflect the fact that

there is a risk before making that move. The “^legalMoves” data structure has an attribute

named ^riskBeforeMove, which is set to “unKnown” by default. When a risk is discovered

for a move at this stage, the corresponding ^legalMoves is copied to a new data structure

44

named “^beforeEvaluatedMoves”, its ^riskBeforeMove attribute is set to “yes” and the

^savingSquare attribute is changed to reflect the value of the square that could potentially

prevent it from being jumped. The old ^legalMoves entry is then deleted. The relevant

portion of the resulting ^beforeEvaluatedMoves structure for the move from square 8 to

square 3 would then be:

^source 8

^midSquare -1

^destination 3

^savingSquare 11

^riskBeforeMove yes

^riskAfterMove unknown

2.3.3.2 Homogenizing

Once all the ^legalMoves have been checked to see if any of the pieces involved have a

risk before making that move, there would be a set of the original ^legalMoves, and possibly,

a new set of ^beforeEvaluatedMoves (if any of the ^legalMoves had a risk before moving).

In the next step, an operator6 called “convertLegalMovesToBeforeEvaluatedMoves” is

proposed to copy all the remaining ^legalMoves to ^beforeEvaluatedMoves, and then to

delete the ^legalMoves. At the end of this stage, there would remain only a set of

^beforeEvaluatedMoves, some with their ^riskBeforeMove attribute set to “yes”, while

others would still have it set as “unknown”.

6 For more information on operators in Soar, please refer to Appendix B.

45

2.3.4 Evaluate Risks After Move

At this stage of the decision making process, for each move generated, a one step look-

ahead is performed, its assumed that the move is made, and then the risks faced, if any, for

each piece involved in those moves are evaluated - without actually making the move. Unlike

in the previous stage, where the resulting data structure ^beforeEvaluatedMoves differed

from its corresponding ^legalMoves data structure (which was originally created) only in that

its ^riskBeforeMove attribute might have changed to a value of “yes”, instead of the default

value of “unKnown”, in this stage, there are a variety of values that could potentially be

assigned to the ^riskAfterMove attribute. Depending on the results of evaluating risks, these

are the possible values for the ^riskAfterMove attribute:

• “yes” - Definite risk of being at least single – jumped

• “potentialSingleJump” - Move could potentially result in a single jump

• “singleJump” - Risk of being single jumped

• “doubleJump” - Risk of being double jumped

• “unKnown” - When no known risk is found

2.3.4.1 Scenarios for a Move Being Risky

The number of scenarios corresponding to each risk listed above are too numerous to

cover completely here, but lets consider an example each for each risk type. Let ^source be

the source square for the move, and ^destination be the destination square for the move. In

that case,

46

• If ^source is one of the corner squares, and there is an opponent piece in the square

directly in front of the destination, in the same diagonal as the source, making this

move would result in getting at least single jumped. Thus, the ^riskAfterMove

attribute would be set to “yes”.

• Call the square directly in front of ^destination “^frontDestination”. If

^frontDestination is empty, and it has two squares directly in front of it, both of

which contain opponent pieces, then making this move would allow the opponent to

attack the piece at ^destination by moving the opponent piece that is currently in the

square that is not in the same diagonal as ^destination and ^frontDestination, to

^frontDestination. While this is not a certain threat (for example, the threat could be

defused by moving the piece from ^destination to the square directly in front of

^destination that is not ^frontDestination provided it is empty), it could potentially

result in being single jumped, and hence, the ^riskAfterMove attribute for such a

move is set to ^potentialSingleJump.

• The conditions which result in the ^riskAfterMove attribute being set to

“singleJump” are very similar to the case described above, except that ^source could

be any square (not restricted to just corner squares), the square directly in front of

^destination in the same diagonal as ^source has an opponent checker7 in it, and the

square(s) directly behind ^source is, or are:

o Empty

o Have opponent piece(s)

7 The fact that a king can move in two directions makes the conditions to be tested in an evaluation much more
complicated than in the case of a checker.

47

o Corner square(s)

o Has the player's own piece(s), but the square(s) directly behind those piece(s)

in the same diagonal as ^source is, or are not empty (thus, preventing a

double jump).

• If there is an opponent piece in the square directly in front of ^destination, in the

same diagonal as ^source, and there is at least one square directly behind ^source

(call it ^behindSource) which has one of the player's pieces in it, and the square

directly behind it is empty, and lies in the same diagonal as ^behindSource and

^source, then making this move would result in getting double jumped. The

^riskAfterMove attribute would therefore be set to ^doubleJump.

It should be noted that there is no separate case for a move that would result in getting

triple jumped. This is because the conditions for a triple jump to occur, though relatively

rare, are a superset of those for a double jump, and detecting that making a certain move

would result in getting double jumped, gives us enough information to try and avoid making

that move, thereby eliminating the need to write separate rules for triple jumps.

48

Figure 2.12: Example Board Position Where Some of the Available Move Choices for Red

are Risky

2.3.4.2 An Example

Consider the board position shown in Figure 2.12. Assuming that it is the Red player's

turn, let us compute the results of evaluating risks after move. There are five red checkers on

the board, and at the beginning of this stage, there will be the following

^beforeEvaluatedMoves data structures (only the relevant portions are shown here, for the

sake of brevity and clarity), all with their ^riskBeforeMove and ^riskAfterMove set to

“unKnown”:

1 ^source - 5, ^destination - 9

2 ^source - 7, ^destination - 10

3 ^source - 7, ^destination - 11

4 ^source - 16, ^destination - 20

49

5 ^source - 18, ^destination - 22

6 ^source - 18, ^destination - 23

7 ^source - 19, ^destination - 23

8 ^source - 19, ^destination – 24

2.3.4.3 Risk Assessment

The 1st move in the list, is from square 5, which is a corner square, and since there is an

opponent piece (in this case, a white checker) in square 14 which is directly in front of the

destination, and squares 5, 9 and 14 lie in the same diagonal, making this move would result

in at least a single jump. Thus, the ^riskAfterMove for this move would be set to “`yes”.

The 2nd move would result in getting single jumped by the white checker at square 14,

but no worse (double or triple jump) since both of the squares behind the source square are

empty. So, ^riskAfterMove for this move would be set to “singleJump”. The 3rd move does

not result in any apparent loss, and hence, its ^riskAfterMove would remain “unKnown”.

Similarly, the 4th move's ^riskAfterMove is not changed from “unKnown”.

In the case of the 5th move, the destination is 22, and one of the two squares in front of

it, specifically square 25 has both squares in front of it (squares 29 and 30) occupied by

opponent pieces. Thus, if this move is made, the opponent could attack the red checker that

would now be at square 22 by moving the white checker at square 30 to square 25. Of

course, in this specific case, this would not result in a loss for Red since square 26 is empty,

and the red checker can be safely moved there to avert the threat, but that need not be the

case always. Hence, the ^riskAfterMove for this move would be set to

“potentialSingleJump”.

50

The 6th move does not result in any immediate losses, and so, its ^riskAfterMove is

“unKnown”. Similarly, the 7th move has a ^riskAfterMove of “unKnown” too.

If the 8th move is made, square 28 which is directly in front of ^destination and is in the

same diagonal as ^source, has an opponent piece in it, and square 16, which is directly

behind source has a Red checker in it while square 12, which is directly behind square 16 and

is in the same diagonal as ^source, is empty - a double jump would result with ^source 28

and ^destination 12. The corresponding ^riskAfterMove is thus set to “doubleJump”.

2.3.4.4. Homogenizing

Once the risks after making a move have been evaluated, if it is found to be anything

other than “unKnown”, the contents of the corresponding ^beforeEvaluatedMoves data

structure are copied to a new data structure that would be added to the top-state, called

^afterEvaluatedMoves, its ^riskAfterMove attribute is changed to reflect the newly

computed value, and then the existing ^beforeEvaluatedMoves data structure is deleted.

Quite similar to the previous stage, at the end of this stage, an operator called

“convertBeforeEvaluatedMovesToAfterEvaluatedMoves” is proposed to copy any

remaining ^beforeEvaluatedMoves with their ^riskAfterMove set to “unKnown” to

corresponding ^afterEvaluatedMoves data structures with “unKnown” as the value for their

^riskAfterMove, and then delete the original ^beforeEvaluatedMoves data structures.

2.3.5 Saving Helpless Pieces

At the beginning of this stage, the top-state contains a set of ^afterEvaluatedMoves data

structures, which contain information about various moves, their risks before making the

move, and risks after making the move. However, they do not take into account the effect of

51

certain class of moves on potentially saving an otherwise “helpless” piece, or the fact that

while moving a certain piece may pose no risk to that specific piece, it might result in an

otherwise protected piece being jumped. Such issues are explored at this stage, and the

agent's working memory updated accordingly.

2.3.5.1 Saving an Immobile Piece

In Section 2.3.3 on page 43 it was briefly mentioned that in addition to pieces that are

involved in legal moves, the obvious risks for pieces which do not have legal moves

(immobilePieces) are also evaluated. If such a piece exists, a data structure called

^immobilePieceUnderThreat is created, and added to the top-state of Soar. One of the

entries in this data structure is an attribute called “^savingSquare”, which contains the

location of the square which could be used to potentially nullify the threat faced by this

piece. If a move (represented as an ^afterEvaluatedMoves data structure) exists such that its

destination is the *savingSquare of an ^immobilePieceUnderThreat, then making that move

would more likely than not, save that piece. At the same time, we should ensure that the

piece involved in that move is not endangered as a result of that move. This condition is

easily met when that move's ^afterEvaluatedMoves data structure has its ^riskAfterMove set

as “unKnown”. Thus, if all these conditions are satisfied, the original ^afterEvaluatedMoves

data structure is copied to a new one, its ^riskBeforeMove is set to “yes”, and the original

structure is deleted. The effect of this change to the contents of the agent's working memory

would be explained in Section 2.3.8 on page 60.

52

2.3.5.2 Detecting Unsafe Moves that Seem to be Safe

Another class of scenarios considered at this stage involves moves which seem to be safe

(they have a ^riskAfterMove value of "unKnown"), but actually cause the loss of those, or

other piece(s).The number of different cases are too numerous to go over here, but let us

consider a few example cases.

2.3.5.2.1 Case One

If there are two pieces A and B such that A is directly behind B, and the square directly

in front of B in the same diagonal as A contains an opponent piece (which cannot be

jumped by B), a seemingly "safe" move involving piece A would result in at least B getting

jumped. Thus, the ^afterEvaluatedMoves data structure corresponding to such a move

should not have a ^riskAfterMove value of "unKnown". If the conditions described here are

met, the original ^afterEvaluatedMoves data structure is copied to a new one, its

^riskAfterMove is set to "yes" (since we know that making this move would result in at least

a single jump though not for this specific piece), and the original ^afterEvaluatedMoves

structure is deleted.

2.3.5.2.2 Case Two

If there is an ^immobilePieceUnderThreat data structure with its ^savingSquare at

square "A" on the game board, and there exists an ^afterEvaluatedMoves data structure such

that its source is square "B", its destination is square "C", "A" happens to be the square

directly in front of "C", and A, B and C are in the same diagonal, then making the move

from B to C would result in a double jump involving the immobile piece and the piece now

at C. Thus, if all these conditions are met, the original ^afterEvaluatedMoves data structure

53

is copied to a new one, its ^riskAfterMove is set to "doubleJump", and the original structure

is deleted.

2.3.5.2.3 Case Three

Another scenario that is considered at this stage is quite similar to the previous case, with

a couple of differences - there is no immobile piece involved, and the opponent piece has to

be a king. If there is a move with a ^riskBeforeMove "yes", the piece involved in that move

is at square "A", there is an opponent king in the square directly behind A, the square D

directly in front of A in the same diagonal as the opponent king is empty (which causes the

piece at A to have a ^riskBeforeMove of "yes"), and there exists another move with its

^source B, ^destination C , C and D are immediate neighbours (D is either directly in front

of, or directly behind C), and B, C and D lie in the same diagonal, then moving the piece

from B to C would result in a double jump involving the piece at square A, and the piece

now at square C. Thus, if these conditions are met, the original ^afterEvaluatedMoves data

structure is copied to a new one, its ^riskAfterMove is set to "doubleJump", and the original

one is deleted.

2.3.5.2.4 Case Four

Finally, a potentially devastating situation is checked, where an opponent king could

wreak havoc. If there are five squares A, B, C, D and E which are immediate neighbours to

each other (B is directly in front of A, C is directly in front of B etc.) and lie along the same

diagonal such that squares C and E are empty, square D contains one of the player's pieces,

and there is an ^afterEvaluatedMoves data structure with its ^source A and ^destination B,

then making that move could potentially result in the guaranteed loss of at least one piece

54

(either the one in square D, or the one now moved to square B), because this configuration

allows an opponent king to be moved to the empty square C, sandwiched between the pieces

at squares B and D, placing both of them under threat simultaneously. Thus, if these

conditions exist, the original ^afterEvaluatedMoves structure is copied to a new one, its

^riskAfterMove is set to "doubleJump", and the original structure is deleted.

2.3.5.3 An Example

 2.3.5.3.1 Initial Structures

Consider the board position shown in Figure 2.13 below. Assuming that it is the Red

player's turn, the relevant portions of the ^afterEvaluatedMoves structures that exist at the

beginning of this stage would be:

Figure 2.13: Example Board Position Where Some Pieces are "Helpless"

55

1. ^source 2, ^destination 6

2. ^source 2, ^destination 7

3. ^source 3, ^destination 7

4. ^source 3, ^destination 8

5. ^source 9, ^destination 13

6. ^source 17, ^destination 21

7. ^source 17, ^destination 22, ^riskAfterMove singleJump

8. ^source 20, ^destination 24

9. ^source 31, ^destination 26

10. ^source 31, ^destination 27

Unless otherwise noted, all these moves have both their ^riskBeforeMove and

^riskAfterMove set to "unKnown". In the case of the 7th move, its ^riskAfterMove is

"singleJump" because of the white king present in square 18. It should also be noted that

there would be two ^immobilePieceUnderThreat data structures corresponding to the pieces

at squares 10 and 16. The piece at square 10 would have its ^savingSquare attribute set to 6

(since the white checker at square 15 would potentially "jump" it, and its destination would

be square 6) while that at square 16 has its ^savingSquare set to 12.

2.3.5.3.2 Risk Analysis

The 1st move in the list above is from square 2 to square 6. It so happens that there

exists an ^immobilePieceUnderThreat (the piece at square 10) with its ^savingSquare set to

6. Thus, making this move would result in saving that piece. In order to increase the

56

likelihood of this move being selected by the agent8, the contents of this

^afterEvaluatedMoves structure is copied to a new one, its ^riskBeforeMove is set to "yes",

^riskAfterMove is set to "unKnown" and the original structure is deleted.

The 4th move in the list is from square 3 to square 8. Making this move would result in a

double jump involving the immobile piece at square 16, and the piece that was just moved to

square 8, since the ^savingSquare of the piece at square 16 is 12, which happens to lie in the

same diagonal as 3 and 8, and is directly in front of 8. Thus, the corresponding

^afterEvaluatedMoves structure is copied to a new one, its ^riskBeforeMove is set to

"unKnown", ^riskAfterMove is set to "doubleJump", and the original structure is deleted.

The 5th move in the list, from square 9 to square 13 looks harmless at first, but results in

another piece getting jumped – specifically the piece at square 14. If the piece at square 9 is

moved, the white king at square 18 would jump the piece at square 14. Hence, the

corresponding ^afterEvaluatedMoves structure is copied to a new one, its ^riskBeforeMove

is set to "unKnown", ^riskAfterMove set to "yes" (Though in this specific case, it results in a

single jump, in other cases, it could lead to double or even triple jumps), and the original

structure is deleted.

The 9th move in the list is from square 31 to square 26. While this move doesn't seem to

have any apparent risks after move, making this move allows the opponent to move the

white king located at square 18 to the empty square 22, placing both the checker at square

17, and the king that has now been moved to square 26 at risk simultaneously and thereby

ensuring that the Red player loses at least one piece. Such situations usually arise at the latter

stages of a game, and can have devastating consequences. Hence, the corresponding

8 A more detailed explanation can be found in Section 2.3.8.

57

^afterEvaluatedMoves structure is copied to a new one, its ^riskBeforeMove is set to

"unKnown", ^riskAfterMove is set to "doubleJump", and the old structure is deleted.

2.3.5.3.3 Changed Structures after Risk Analysis

Thus, the changes to the original list of ^afterEvaluatedMoves would be:

1. ^source 2, ^destination 6, ^riskBeforeMove yes, ^riskAfterMove unKnown

2. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove doubleJump

3. ^source 9, ^destination 13, ^riskBeforeMove unKnown, ^riskAfterMove yes

4. ^source 31, ^destination 26, ^riskBeforeMove unKnown,
 ^riskAfterMove doubleJump

2.3.6 Trading Pieces

This is one area of Soar Checkers that needs to be improved. There are a lot of factors

that need to be considered before it can be said if a given trade is "good" or not, but in

general, all trades in Soar Checkers can be classified as:

2.3.6.1 Classification of Trades in Soar Checkers

• Even trade

• Good trade

• Bad trade

• Terrible trade

58

A trade is considered an Even trade when the same number of checkers are involved, for

both players (for example, a red checker is traded for a white checker). A trade is called a

Good trade when it gives the player initiating the trade some kind of advantage - this might

be in terms of the number of pieces involved in the trade (for example, trading a red checker

for two white checkers), the type of pieces involved in the trade (for example, trading a red

checker for a white king), or the resulting board position (for example, a seemingly even

trade which results in nullifying the positional advantage that the opponent might have had).

A bad trade is one in which a king is traded for an opponent king, while a terrible trade is

one in which a king is traded for a checker, or the number of pieces lost by the player during

the trade is greater than the number of pieces lost by the opponent.

2.3.6.2 Good Trade Heuristics

A good checkers player usually trades pieces under the following circumstances:

• He or she is ahead in terms of the number of pieces, and its either an even, or a good

trade.

• The trade results in either gaining a positional advantage, or weakens the opponent's

position.

2.3.6.3 Implementation Difficulties

While these ideas seem simple, implementing them proved exceedingly difficult. For

example, the rules that were required to encapsulate the various kinds of trades involving just

one piece on each side numbered more than 75, and each of these rules involved checking

the contents of a vast number of squares on the game board - all of which contributed to

59

slowing down the decision making process in Soar Checkers by an unacceptable level.

Another stumbling block was the fact that under certain situations, the rules to evaluate

trades resulted in changes to the working memory that went in direct conflict with the results

of the earlier stages in the decision making process. These resulted in conditions known as

operator-conflict impasses9, which ultimately led to extremely poor decisions being made by

the agent. Additionally, while it is fairly straightforward to say that a move which results in

exchanging one piece for two is a good trade, it is infinitely more difficult to evaluate trades

which result in positional advantages, since there really is no objective way to say with

absolute confidence how "good" a board position is – unless huge game databases are used

(which several world-class programs do, as explained in Chapter 1).

Due to the difficulties explained above, in this version of Soar Checkers, those moves

that would result in pieces getting traded are avoided, given a choice. At the beginning of

this stage, some of the ^afterEvaluatedMoves data structures at the top-state, with their

^riskAfterMove set to "unKnown" actually represent moves that would initiate the trading

of pieces. Such moves are identified at this stage, the corresponding ^afterEvaluatedMoves

data structures are copied to new ones, their ^riskAfterMove is set to "yes" (since making

this move would result in getting at least single jumped, though the opponent piece involved

in the jump would also potentially get jumped in the player's next move), and the original

structures are removed from the top-state of the agent.

2.3.7 Picking a Move

Up to this point, the game state, as represented through the ^io.input-link of the Soar

agent whose turn it is to move (denoted by having its ^isTurn attribute being set to 1), has

9 Please refer to Appendix B for more details.

60

been analyzed to generate a list of moves, and add information to those moves regarding

their respective risks or merits. At this stage of the decision making process, first, an

operator called ^pickMove is proposed for each ^afterEvaluatedMoves data structure

attached to the agent's top-state, and the corresponding data structure is copied to a new

data structure called ^legalMoves and attached to the newly proposed operator. Then, one

out of all the proposed ^pickMove operators is selected based on a set of strategies which

would be explained in depth below. Finally, the selected ^pickMove operator is applied by

copying the relevant portions of the ^legalMoves structure attached to it to the agent's

^io.output-link. The contents of the output-link thus represents the agent's move, are read

by the game environment (using SML), and changes are made to the game board to reflect

the resulting board position after making the move.

Let us take a more in-depth look at the operator selection process. As explained in

Appendix B, an operator in Soar can have various "preferences" such as "indifferent",

"better", "worse", "reject" etc associated with it. The goal being tried to accomplish here is

to select the ^pickMove operator which has the "best" possible ^legalMoves data structure

attached to it. This is done through a combination of rules which encode various strategies

that the agent uses throughout the game. The most important strategies [11, 12] and

techniques used are described below in no particular order.

2.3.8 Operator Selection Strategies

 2.3.8.1 Reduce Risks - Prefer a move that reduces risk to all other moves.

In Soar Checkers, the game play is based on the idea of minimizing losses while

maximizing gains. One of the first things that facilitates this is to consistently ensure that no

pieces are lost as a result of a move, given a choice. Several scenarios need to be considered

61

to make this possible, but in essence, if there are two legalMoves data structures A and B

such that both of them have their ^riskBeforeMove set to "yes", A has its ^riskAfterMove

set to "unKnown" but B's ^riskAfterMove is set to a value other than unKnown (for

example, "singleJump"), always prefer A over B. Closely related to this idea is avoiding

moves that result in losses, given a choice. For example, if A and B are ^legalMoves data

structures such that both have their ^riskBeforeMove set to "unKnown", A has its

^riskAfterMove set to "unKnown", but B's ^riskAfterMove is set to a value other than

unKnown, prefer A over B since making move B would potentially result in losing a piece

while A seems to be a safe move. Another idea that fits into the same theme is not to waste a

move on a piece that is beyond rescuing. In other words, if all the ^legalMoves structures

involving a given piece have their ^riskBeforeMove set to "yes", and none of them have

their ^riskAfterMove set to "unKnown", it is best to pick a move involving a different piece

that is safe, if it exists.

Figure 2.14: Example Board Position that Demonstrates the 'Reduce Risks' Strategy

62

Example - Consider the board position shown in Figure 2.14 above. Assuming that it

is the Red agent's turn, the relevant portions of the ^legalMoves structures associated with

the proposed ^pickMove operators would be:

1. ^source 6, ^destination 9, ^riskBeforeMove yes, ^riskAfterMove singleJump

2. ^source 6, ^destination 10, ^riskBeforeMove yes, ^riskAfterMove singleJump

3. ^source 16, ^destination 19, ^riskBeforeMove yes, ^riskAfterMove unKnown

4. ^source 18, ^destination 22, ^riskBeforeMove unKnown,
^riskAfterMove unKnown

5. ^source 18, ^destination 23, ^riskBeforeMove unKnown,
 ^riskAfterMove unKnown

The 1st and 2nd moves involve the red checker located at square 6, which is under threat

by the white king occupying square 2. However, neither of the moves can save the checker

from being jumped. Hence, the operator selection rules written for Soar Checkers would

look for other moves that would either save a piece, or is not risky. Moves 4 and 5 involve

the red checker located at square 18, which does not have any risks before making the move,

and remains safe after either of the moves are made. Move 3 is of the most interest given

this board position because in this case, the piece located at square 16 is under threat by the

white checker at square 20, but once the move is made, the piece is safe. Obviously, moves 1

and 2 result in no perceivable gain, moves 4 and 5 are safe moves, but are overlooked in

favor of move 3 because it results in saving a piece which could otherwise have been lost.

63

2.3.8.2 Thwart Opponent Crowning Moves - Given a choice, prevent the

 opponent checkers from getting crowned.

Motivation to Protect King Row - Not all squares on the checker board are created

equal. The so-called "double corners" (the square closest to a player on his or her right hand

side - square 1 if the player's pieces move from top to bottom, and square 32 if they move

from bottom to top) are extremely useful while playing defensively. For example, given an

endgame in which say Red has one king that occupies one of the double corners, and White

has two kings, it takes about 40 moves in a precise sequence for White to win. However, in

Soar Checkers, no opening game or endgame databases are used.

One of the key goals in defensive play is to prevent the opponent from crowning any of

his or her checkers. A seemingly obvious way to achieve this end is to make sure that all the

four squares in the "king row" (Assuming that Red plays from top to bottom, the king row

for Red would have the squares 29-32 and that for White would have the squares 1-4) are

occupied. The drawback of this strategy is that it hampers the player's ability to attack the

opponent, or effectively protect his or her own pieces that move forward from being

attacked. However, if the squares in the king row are left empty, it greatly increases the

chances of the opponent successfully crowning a checker.

 Plan of Action - A workable compromise between the two alternatives explained

above is to occupy two specific squares in the opponent's king row – the player's double

corner and the second legal square to its left. Assuming that Red plays from top to bottom,

this means that the Red agent would try and not move its checkers from squares 1 and 3

while the White agent would keep its checkers in squares 30 and 32 for as long as possible.

The benefits of this tactic are that two checkers are now free to assist the other checkers in

either attack or defense, while the two checkers left in the king row can still prevent the

64

opponent's checkers from getting crowned, except when two of his or her checkers work in

conjunction so that one of them can get crowned without the risk of getting jumped.

 Example of Protecting the King Row - Let us take a look at two possible scenarios.

Consider the board position shown in Figure 2.15. Assuming that it is the white player's

turn, the possible moves are:

Figure 2.15: Example Board Position Demonstrating How to Protect the King Row

with Only Two Checkers

65

Figure 2.16: Example Board Position Demonstrating How to Get to the King Row with

Two Checkers

1. ^source 10, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

2. ^source 10, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

3. ^source 12, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

As can be seen, though only two of the four possible squares in the king row are

occupied, none of the moves White can make can lead to either of the white checkers getting

crowned. Thus, this strategy is highly effective in most situations. However, a slightly

different board position shows the fallibility of this strategy.

Example of Reaching the King Row - Consider the board position shown in Figure

2.16 above. Assuming that it is the White player's turn, these are the possible moves:

66

1. ^source 10, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

2. ^source 10, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

3. ^source 11, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

4. ^source 11, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

The red checkers in squares 1 and 3 successfully thwart moves 1, 2 and 4, but move 3, in

which the white checker is moved from square 11 to square 7 would indeed result in that

checker getting crowned in white's next move, since it is protected from being jumped by

the white checker on square 10. Thus, it is obvious that this strategy is not fool-proof when

it comes to preventing an opponent checker from getting crowned. Still, it is used in Soar

Checkers since in most situations, it is effective, and the benefits outweigh the costs.

2.3.8.3 Crown Checkers - Prefer a move that crowns a checker.

In checkers, a king is more powerful than a normal checker since it can move both

forward and backward. Hence, it is desirable to convert checkers to kings by moving them

forward till they reach the king row. In practice, everything else being equal, move A will be

preferred over move B if A's destination is one of the squares in the player's king row.

67

Figure 2.17: Example Board Position for a Red checker Being Crowned

Example - Consider the board position shown in Figure 2.17 above. Assuming that it

is the Red player's turn to move, these are the relevant portions of the ^legalMoves data

structures:

1. ^source 16, ^destination 19, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

2. ^source 16, ^destination 20, ^riskBeforeMove unKnown,
 ^riskAfterMove unKnown

3. ^source 26, ^destination 30, ^riskBeforeMove unKnown,
 ^riskAfterMove unKnown

4. ^source 26, ^destination 31, ^riskBeforeMove unKnown,
 ^riskAfterMove unKnown

In this case, all of the moves seem to be equal, since all of them have their

^riskBeforeMove and ^riskAfterMove set to "unKnown". However, moves 3 and 4 are

considered superior to moves 1 and 2 in Soar Checkers, since both of them are risk-free and

68

result in a checker getting crowned. It should be noted that either move 3 or move 4 would

get selected at random in this case.

2.3.8.4 Protect Kings - Given a choice, sacrifice a checker instead of a king.

During game play, certain situations arise when the opponent has gained a significant

advantage, and leave you with no choice but to sacrifice one piece or the other in your next

move. Since in checkers, a king is more powerful than an ordinary checker, it is usually good

strategy to try and preserve your kings as much as possible. Thus, if there is a choice

between sacrificing a checker, or sacrificing a king, in Soar Checkers, the agent would

sacrifice the checker.

 Example - Consider the board position shown in Figure 2.18. It is quite obvious that

the Red player is in a losing position, and assuming that it is Red's turn to move, the relevant

portions of the ^legalMoves data structures generated by the agent would be:

1. ^source 5, ^destination 9, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

2. ^source 6, ^destination 9, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

3. ^source 6, ^destination 10, ^riskBeforeMove unKnown, ^riskAfterMove singleJump

4. ^source 29, ^destination 25, ^riskBeforeMove unKnown,
 ^riskAfterMove singleJump

69

Figure 2.18: Example Board Position for Sacrificing a Checker to Protect a King

It can be seen that all four available legal moves result in a piece getting jumped.

However, the pieces at squares 5 and 6 are red checkers while square 29 has a red king. In

this case, Soar Checkers would pick a move that results in one of the checkers getting

jumped. It can be seen that given the board position, the "best" move is move 1, since this

would force the white checker at square 14 to jump the red checker that was just moved to

square 9, thereby allowing the Red player to move the checker at square 6 to square 10 safely

in his or her next move. All the other moves result in the game being over within the next 2

moves for each player.

2.3.8.5 Minimize Material Losses - If getting jumped is inevitable, pick the

move that minimizes the number of pieces lost.

Sometimes, during the course of a game, a player is confronted with choosing between

two or more moves that result in pieces getting jumped, but the number of pieces lost as a

70

result of those moves might not be the same. In Soar Checkers, there are three values

pertaining to the risk of getting jumped, that might be assigned to the ^riskAfterMove

attribute of a ^legalMoves data structure:

potentialSingleJump

 singleJump

 doubleJump

Given a choice among moves with varying degrees of risk of being jumped, the order of

preference in Soar Checkers is:

doubleJump < singleJump < potentialSingleJump

Example - This will be illustrated in the following example. Consider the board

position shown in Figure 2.19 on the next page. Assuming that it is the Red player's turn to

move, the relevant portions of the ^legalMoves data structures generated by the agent would

be:

1. ^source 7, ^destination 10, ^riskBeforeMove unKnown,
 ^riskAfterMove potentialSingleJump

2. ^source 11, ^destination 15, ^riskBeforeMove unKnown,
 ^riskAfterMove doubleJump

3. ^source 11, ^destination 16, ^riskBeforeMove unKnown,
 ^riskAfterMove doubleJump

4. ^source 21, ^destination 25, ^riskBeforeMove unKnown,
 ^riskAfterMove singleJump

71

Figure 2.19: Example Board Position Demonstrating 'Minimize Material Losses' Strategy

Move 1 has a ^riskAfterMove of "potentialSingleJump" because the White player could

move the white checker from square 18 to square 14, thereby putting the red checker that

had just been moved to square 10 under threat of being jumped. However, in this case, the

red checker can avoid getting jumped by moving to square 15, which would now be a safe

move.

Move 2 has a ^riskAfterMove value of "doubleJump" because the white checker

occupying square 18 would jump both the red checker that was just moved to square 15, and

the red checker in square 7. Thus, if there is any other option, Soar Checkers would not

make this move.

Move 3, quite similar to move 2 results in a double jump except that this time, it is

because of the white checker occupying square 20. Once again, this would be among the last

choice moves for the agent.

72

Finally, move 4 results in the red checker at square 21 getting jumped by the white

checker at square 30. After considering all options available, the agent would pick move 1,

which is indeed the best possible move, given the board position.

2.3.8.6 Occupy Center Squares - Prefer a move towards a center square over

one towards an edge.

It is sound checkers strategy to try and occupy the squares in the center of the board.

The reason for this is that, if a piece is placed in a square on an edge or a corner, its mobility

is severely limited, and that piece can be easily trapped by the opponent. On the other hand,

a piece located in a square that is away from the edges has more options to move forward -

either in attack, or to defend another piece that might be under threat. In most games in

checkers, the player whose pieces control the centre squares usually also has control over the

game, and is most likely to win. Due to these reasons, in Soar Checkers, the agent prefers

moves that have their destination as edge, or corner squares (with the exception of moves to

the king row, which would result in crowning a checker) less than moves with other

destination squares.

 Example - Consider the board position shown in Figure 2.20 on the following page.

Assuming that it is the Red player's turn to move, the relevant portions of the ^legalMoves

data structures generated by the agent would be:

73

Figure 2.20: Example Board Position Demonstrating Good Positional Play

1. ^source 13, ^destination 17, ^riskBeforeMove unKnown, ^riskAfterMove yes

2. ^source 14, ^destination 17, ^riskBeforeMove unKnown,
 ^riskAfterMove unKnown, ^tradeType evenTrade

3. ^source 14, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

4. ^source 15, ^destination 18, ^riskBeforeMove yes, ^riskAfterMove singleJump

5. ^source 15, ^destination 19, ^riskBeforeMove yes, ^riskAfterMove unknown

Analysis - Square 13 is on the edge of the board, and a piece occupying it can move

in only one direction, making it relatively easy to trap it. That is indeed the case here, as can

be seen in move 1, when the red checker in square 13 will be jumped by the white checker in

square 22, if it is moved to the only square it can be moved to, 17.

Squares 14 and 15 are not edge squares, and hence, automatically give pieces occupying

them more options when it comes to moving. In move 2, the red checker in square 14 can

74

be used to attack the white checker in square 22. However, this could potentially result in a

trade of checkers, since the white checker occupying square 31 would jump the red checker

that would end up in square 26 as a result of jumping the piece in square 22. This is reflected

in the ^legalMoves structure with the attribute-value pair of ^tradeType evenTrade.

A safer option to attack the white checker in square 22 is move 3, and would get picked

by the agent if there are no others moves with a higher preference. It can be seen that

making that move would certainly result in the loss of the white checker at square 22.

Moves 4 and 5 involve the red checker at square 15, and both have a ^riskBeforeMove

value of "yes". This is because the red checker at square 24 is under threat of being jumped

by the white checker at square 28, and since square 15 happens to be in the same diagonal

line and the square behind it in the same diagonal - square 10 - is empty, a double jump

would result in which the red checker at squares 15 and 24 would be lost. The 4th move

would result in the red checker that has now been moved to square 18 getting jumped by the

white checker at square 22, and hence, is not a good option.

The 5th and final move involves moving the red checker from square 15 to square 19,

and is the best move under the circumstances since it prevents a double jump and saves the

red checker at square 24 that was under threat. As has been explained before, Soar Checkers

gives the highest preference to a move that actually reduces risk and hence, move 5 will be

picked by the Soar agent.

It can be seen from this example that occupying squares that are more towards the

center of the board, and away from the edges is usually a good idea because it gives the

player more options to attack (moves 2 and 3) or defend (move 5), and decreases the

likelihood of a piece getting trapped (move 1).

75

Figure 2.21: Example Board Position Showing the Wedge Formation

2.3.8.7 Wedge Formation - Create a wedge formation, built up from the back

[12].

 Motivation - The overall strategy to play winning checkers is quite simple – move

your pieces forward while preserving them as much as possible, convert them to kings, and

attack the remaining pieces of the opponent. If a piece is pushed forward, while it is closer to

becoming a king, there is also an increased likelihood that it is vulnerable to being attacked

by the opponent. However, if a piece is moved forward after ensuring that it has adequate

back-up, it is much safer since the back-up pieces could thwart any potential attacks on it.

In Soar Checkers, an agent prefers moves that create a wedge-shaped formation, built up

from the back row, with the exception of the two pieces that are kept in the back-row for as

long as possible, to prevent the opponent from crowning one of his or her checkers. The

benefits of this tactic have been explained above, and would be more apparent from the

following example.

76

Example - Consider the board position shown in Figure 2.21 on the preceding page.

The wedge-shaped formation can be seen in two instances - the first one is formed by the

red checkers in squares 9, 10, 14 and the second one is formed by the pieces in the squares

10, 11 and 15. From the initial board position, the first wedge formation could have been

obtained by first moving the checker from square 9 to square 14, then moving the checker

from square 6 to square 9, and finally moving the checker from square 2 to square 6. It

should be noted that another properly backed-up wedge could have been created by moving

the checker from square 1 to square 6, but this move is not picked because the agent tries to

keep squares 1 and 3 occupied for as long as possible, to safeguard the king row. Assuming

that it is the Red player's turn, the relevant portions of the ^legalMoves data structures

would be:

1. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

2. ^source 4, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

3. ^source 9, ^destination 13, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

4. ^source 12, ^destination 16, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

5. ^source 14, ^destination 17, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

6. ^source 14, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

7. ^source 15, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

8. ^source 15, ^destination 19, ^riskBeforeMove unKnown, ^riskAfterMove unknown

In this case, all the available moves are equivalent, in terms of risks before making the

move, and risks after. However, move 3 will be the last choice because this involves moving

to a square on the edge of the board, square 13. Moves 4, 5, 6, 7 and 8 will be overlooked

77

because the agent tries to build up a wedge formation, starting from behind, so that each

piece in front is properly backed up. This leaves moves 1 and 2, both of which are from the

back row, and succeed in building a well backed-up wedge. However, move 1 involves

moving a checker from square 3, which the agent would not do unless there is no other safe

move, which is not the case here. Thus, the agent would pick move 2, which involves

moving the red checker from square 4 to square 8, to fully back up the wedge formed by the

checkers in squares 10, 11 and 15.

2.3.8.8 Attack with Kings

This is arguably, the most complex portion of Soar Checkers and a significant amount of

the logic involved is encoded within the game environment in C++ in the form of helper

functions (as can be seen in Figure 2.11 on page 38). One of the attributes present on the

Soar agent's ^io.input-link is called “^attackingMove". This attribute has two sub-attributes

called "^attackingSource" and "^attackingDestination" that hold integer values representing

locations of squares on the game board. Until one of the agent's checkers is crowned, both

these attributes will be set to "-1", and are not used by the agent to make decisions at all.

Classification of Moves - There are three kinds of moves that the game environment

considers, and depending on various factors, one of them is chosen, and the source of that

move is set as the value for ^attackingSource and the destination of that move is set as the

value for ^attackingDestination. The three types of moves considered are:

1. Chase Move

2. Trap Move

3. Attack Move

78

The game environment keeps track of the last move made by the opponent, and tries to

determine if there exists a path on the game board that is relatively free of risks, and allows a

king to chase the piece that was last moved by the opponent. This strategy is highly useful

when the game is fairly advanced, and the opponent is trying to have his or her checkers

crowned. An added advantage here is that while the king is trying to chase the piece that was

last moved by the opponent, it might encounter other opponent pieces on the way, possibly

placing them under threat too. The game environment uses the well known Djisktra's path-

finding algorithm to compute paths on the game board that are then used to find all three

types of moves. The shortest path that satisfies the qualifying criteria for each type of move

is always used, and the number of hops required is considered as the measure of distance.

 Example for Chase Moves - Consider the board position shown in Figure 2.22.

White's last move was to move the white checker located at square 24 to square 19. This

information is encoded in an attribute called "^hisLastMove" on the Red agent's ^io.input-

link, which has sub-attributes called "^hisLastSource" and "^hisLastDestination" which

would have values of 24 and 19 respectively in this case. Assuming that it is the Red agent's

turn to move, the relevant portions of the ^legalMoves data structures would be:

1. ^source 1, ^destination 5, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

2. ^source 1, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

3. ^source 3, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove unknown

79

Figure 2.22: Example Board Position Demonstrating a 'Chase Move'

4. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

5. ^source 10, ^destination 15, ^riskBeforeMove unKnown,
 ^riskAfterMove singleJump

6. ^source 14, ^destination 17, ^riskBeforeMove unKnown,
 ^riskAfterMove doubleJump

7. ^source 14, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

8. ^source 32, ^destination 27, ^riskBeforeMove unKnown, ^riskAfterMove yes

9. ^source 32, ^destination 28, ^riskBeforeMove unKnown, ^riskAfterMove unknown

Analysis - Moves 1 through 4 are automatically the last choice since they involve

moving the checkers from squares 1 or 3, thereby exposing the king row to the enemy.

Moves 5 and 6 are automatically rejected since they actually result in losses (single jump in

the case of move 5, and double jump in the case of move 6). Similarly, move 8 would result

in the red king that was just moved to square 27 getting jumped by the white checker in

80

square 31 and hence, will be avoided if there is a choice. That leaves moves 7 and 9, both of

which are equivalent in terms of their risks before and after making the move.

Since Red has a king, the game environment would try and find a move that would help

the king chase the piece that was last moved by the opponent safely. In this case, the closest

squares to square 19 (the destination of White's last move) from square 32 are squares 23

and 24. The path-finding algorithm will come up with three possible paths to these squares:

1. 32 -> 27 -> 23

2. 32 -> 27 -> 24

3. 32 -> 28 -> 24

Paths 1 and 2 are not suitable since both of them would result in the king being jumped

by the white checker at square 31. Hence, the remaining path is chosen by the environment,

and the first move in the path, from square 32 to square 28, is recommended to the Soar

agent by setting the ^attackingSource and ^attackingDestination attributes on its ^io.input-

link.attackingMove to 32 and 28 respectively. The preference rules for the agent are written

in such a way that if there exists a valid ^attackingMove (that is, the ^attackingSource and

^attackingDestination attributes are not set to -1) that has a ^riskAfterMove of unKnown,

that move would be preferred over almost all other alternative moves - some of the

exceptions being moves that reduce risk (having a ^riskBeforeMove of "yes" and

^riskAfterMove of "unKnown"), moves that result in crowning a checker etc. Thus, in this

case, move 9 is the recommended attacking move, and will be preferred over move 7. If the

environment cannot find a safe chase move, it will try to find a safe trap move, which will be

explained next.

81

Trap Moves - In Soar Checkers, a move that results in restricting the mobility of an

opponent piece is considered a trap move. In the absence of a suitable, safe chase move, the

game environment tries to find a move that would result in trapping one or more pieces of

the opponent. Unlike a chase move, a trap move could involve checkers as well as kings.

While calculating trap paths, care is taken to ensure that pieces that have already trapped an

opponent piece are considered last, so that the chances of making a trap move that would

result in freeing an already trapped opponent piece are minimized. The safest trap path

which is also the shortest distance away from the target square is selected, and the first move

in the path is recommended to the agent through the ^attackingMove attribute on it’s

^io.input-link.

 Example - Consider the board position shown in Figure 2.23 on the next page.

Assuming that it is the Red agent's turn to move, the relevant portions of the ^legalMoves

data structures would be:

1. ^source 1, ^destination 5, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

2. ^source 1, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

3. ^source 3, ^destination 7, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

4. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

5. ^source 10, ^destination 14, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

6. ^source 10, ^destination 15, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

7. ^source 32, ^destination 27, ^riskBeforeMove unKnown, ^riskAfterMove unknown

82

Figure 2.23: Example Board Position Demonstrating a 'Trap Move'

Analysis - Moves 1 through 4 are of the last priority for the agent, since they involve

moving pieces from the opponent's king row square, thereby increasing the chances of an

opponent checker getting crowned. That leaves moves 5 through 7, all of which are

equivalent in terms of their risks before and after making the moves. In this case, the game

environment would come up with 3 possible destination squares to trap opponent pieces -

squares 11, 15 and 23. This is because placing a Red piece in square 11 would make the only

move available to the white checker at square 20, which is to move to square 16, unsafe.

Similarly, placing a Red piece in square 15 would trap the white checker at square 24, and

placing a Red piece in square 23 would trap the white checker at square 31. Next, the game

environment calculates the shortest paths to each of these possible destination squares, and

in this case, they would be:

83

1. 3 -> 8 -> 11 (or 3 -> 7 -> 11)

2. 10 -> 15

3. 32 -> 27 -> 23

The first path would automatically be rejected since it involves moving from the

opponent's king row. Even otherwise, among the 3 candidate paths, the shortest path would

be selected, which, in this case is path 2 which involves a single move and would trap the

white checker at square 24. Thus, among moves 5 through 7, move 6 would be selected by

the game environment, and recommended to the agent through its ^io.input-

link.attackingMove attribute.

Attack Moves - If no trap move can be found because all of the opponent's pieces

are already trapped, the game environment tries to find a safe "attack move". An attack

move is one which basically "goes in for the kill", or places an already trapped opponent

piece directly under threat while ensuring that making that move does not result in opening

up an avenue for that piece to escape. Like chase and trap moves, if such a move is found,

the game environment recommends it to the Soar agent through the ^attackingMove

attribute on its ^io.input-link.

 Example - Consider the board position shown in Figure 2.24 on the next page.

Assuming that it is the Red agent's turn to move, the relevant portions of the ^legalMoves

data structures would be:

1. ^source 1, ^destination 5, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

2. ^source 1, ^destination 6, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

3. ^source 3, ^destination 8, ^riskBeforeMove unKnown, ^riskAfterMove unknown

84

Figure 2.24: Example Board Position Demonstrating an 'Attack Move'

4. ^source 7, ^destination 10, ^riskBeforeMove unKnown,
 ^riskAfterMove yes, ^tradeType evenTrade

5. ^source 7, ^destination 11, ^riskBeforeMove unKnown,
 ^riskAfterMove yes, ^tradeType evenTrade

6. ^source 22, ^destination 25, ^riskBeforeMove unKnown,
 ^riskAfterMove singleJump

7. ^source 22, ^destination 26, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

8. ^source 23, ^destination 18, ^riskBeforeMove unKnown, ^riskAfterMove unKnown

9. ^source 23, ^destination 19, ^riskBeforeMove unKnown, ^riskAfterMove unknown

Analysis - Moves 1 through 3 would be considered last since they would involve

moving pieces from the opponent's king row. Moves 4 and 5 will not be considered since

they have a ^riskAfterMove value that is not "unKnown" - both the moves result in a single

trade of the Red checker at square 7 for the White checker at square 15, and this is reflected

85

in their ^tradeType value of "evenTrade". Move 6 will be rejected since it would involve an

uncompensated loss of the Red checker at square 22. Moves 7 through 9 are equivalent in

terms of their risks before and after making the moves. A careful analysis of the board

position would show that the Red checker at square 7 has trapped the White checker at

square 15 by making both its available moves (to squares 10 and 11) risky, while the Red

checker at square 22 and the Red king at square 23 similarly have trapped the White checker

at square 30. It should be noted that if move 7 is selected, it would give White a chance to

prolong the game (White's position is so weak that its highly unlikely that it would avoid

being beaten) by moving the White checker at square 30 to square 25. However, it can be

noted that the Red king can be moved from square 23 while still having the White checker at

square 30 trapped by the checker at square 22. Moves 8 and 9 do exactly this, and both are

attacking moves, since they place the White checker at square 15 in immediate danger of

being jumped while leaving all the opponent pieces that were previously trapped, still

trapped. Thus, the environment would select one out of moves 8 and 9 randomly and

recommend it as the ^attackingMove to the agent.

2.3.8.9 Avoid Repeating Moves – Provided there is another safe choice.

As the game was developed, it was noticed that more often than not, while using the

king to chase or attack, one undesirable side effect was that the agent would move the king

from square A to square B in move 1, and then, in move 2, would move the king that is now

in square B back to square A, thereby effectively wasting two moves. To avoid this, a new

attribute called ^myLastMove with sub-attributes called ^myLastSource and

^myLastDestination were added to the ^io.input-link of the agent which stored the values of

the agent's previous move's source and destination squares respectively. While deciding

86

which move to pick from the available collection of ^legalMoves data structures, one which

has its ^source the same as ^io.input-link.myLastMove.myLastDestination and ^destination

the same as ^io.input-link.myLastMove.myLastSource would be made the last choice unless

it was recommended as the ^attackingMove, or there are no other safe alternatives.

2.3.9 Picking a Jump

Quite similar to how in the case of normal moves, the list of available moves are finally

represented in terms of ^legalMoves data structures attached to the top-state, the list of

available jumps are represented in terms of ^legalJumps data structures. Each of these data

structures have an attribute called "^numJumps" whose value indicates how many opponent

pieces would be jumped as a result of this particular jump (1 in the case of single jump, 2 in

the case of double jump, etc.) and depending on its value, various operators such as

^pickSingleJump, ^pickDoubleJump, ^pickTripleJump etc are proposed and the ^legalJumps

data structure is copied and attached to the newly proposed operator.

 Preference Rules for Jumps - The copied ^legalJumps data structures contain

information about what kind of opponent pieces would be jumped over, and this is used,

along with the number of pieces involved in a jump to pick a jump from the various possible

jumps (if such a case exists). These preference rules can be summarized as:

• A single jump is preferred over a single move.

• A single jump over an opponent king is preferred over a single jump over an
 opponent checker.

• A double jump is preferred over a single jump.

• A double jump which results in the opponent losing at least one king is preferred
 over one which does not.

87

• A triple jump is preferred over a double jump.

• A triple jump that results in gaining at least one opponent king is preferred over one
 that does not.

It should be noted that in the case of jumps, no risk analysis is performed, which is not

the case for normal moves. This is partly because the rules of checkers require that if a jump

can be made, it must be made. However, when there are multiple options for jumps, some

options might be "better" than the others and some of the ideas used to pick a move can be

modified slightly to aid in deciding which jump to pick among available jumps which seem

to be equivalent in terms of the number of pieces gained, and the kinds of pieces of gained.

On the other hand, such situations do not arise too often and so, it was decided that any

gains as far as better game-play is concerned are offset by the development time and effort.

2.3.10 Output and Cleaning up

At the end of the decision making process, if a jump is available, one of the available

jumps would be selected, and the relevant portions of the data structure that is used to

represent it (a copy of its corresponding ^legalJumps) would be written to the ^io.output-

link, which would then be read by the game environment (using SML) to update the game

board accordingly. Similarly, if no jumps are possible, one of the available moves is selected,

and the relevant portions of the corresponding ^legalMoves data structure are written to the

^io.output-link of the agent.

The next stage before reverting to the stage where all possible moves and jumps are

generated is to clean up all the remaining ^legalMoves and possibly, ^legalJumps data

structures that were generated as part of the agent's decision cycle, along with resetting

certain attributes attached to the top-state that are used by the agent to propose the correct

88

operator at the correct time. All this is done by an operator called

^cleanUpLegalMovesAndJumps.

Finally, the game ends when one of the agents involved cannot generate any moves or

jumps, either because it does not have any pieces left, or all of its remaining pieces are

completely trapped. In this case, the agent puts an attribute called ^numJumps on its

^io.output-link with value 0 and the game environment would declare the player or agent

with the opposite color as the winner and terminate the game.

CHAPTER THREE
RESULTS

3.1 Review of Objective

The problem being attempted to solve was to see if it is possible to build an intelligent

agent that could play checkers at a fairly decent level without using the traditional computer

chess or checkers methods described in Chapter One (minimax algorithm, alpha-beta

pruning, iterative deepening etc to name a few). An attempt was made to construct a rules-

based expert system that relies almost entirely on generalizable strategies to exhibit its

"intelligent" game-play and would be good enough to beat novices fairly consistently and at

least challenge players at the "advanced novice" to intermediate level. Soar was chosen as the

platform for building this agent because it came with built-in features that facilitate creating

rules-based expert systems, has been proven to be fairly reliable in developing such systems

(including flight simulators) for over twenty years and makes it relatively straight-forward to

have multiple agents play each other, and to add or modify features or strategies to the

agents.

3.2 Assessment

The problem definition makes it inherently hard to quantify the results objectively. The

objectives stated above were met successfully for the most part though it is felt that there is

still some way to go before Soar Checkers can be declared an unqualified success. The results

of this experiment can be best summarized as follows:

90

The agent, after continuous refinement, was able to play at a level good enough to defeat

or achieve draws against human opponents who were either novices, or what can be

described as "advanced novices" (in other words, they are not novices, but don't play at a

level high enough to be classed intermediate) on a fairly regular basis. Some of these

opponents played the agent directly, while other matches were played against opponents

online who had rated themselves as being novices or advanced novices.

Since the agent picks a random move out of the available legal moves or jumps (subject

to certain preferences, according to strategy, of course), its game-play is fairly unpredictable,

from game to game. This feature causes one major disadvantage - it is almost impossible to

predict if the agent will consistently beat a certain opponent. In checkers, certain openings

are known losses, while other seemingly harmless positions that can be reached within four

moves of the start of the game have also been proven to be forced losses [1] - meaning even

with perfect play from there on, the agent cannot prevent a defeat. The problem with

random moves combined with strategy is that some of these moves, especially in the

opening phase, are seemingly strategically sound (for example, prefer a move that does not

result in losing a piece, over one that results in a piece being sacrificed, with no tangible

gain), but lead to the aforementioned positions resulting in forced losses.

3.2.1 Comparison with Chinook

There is an online version of Chinook [13], which can be challenged by opponents the

world over. It uses only a single processor and some of the search extensions used by the

tournament version of Chinook are disabled, but has the complete and perfect six-piece

endgame database, and the opening book from 1990. While this is certainly a weaker version

of Chinook than the one used in tournaments, it is still a formidable opponent. It even plays

91

at different levels such as novice, intermediate and advanced, with the difference being the

amount of time it takes to return a move (in other words, how deep it searches the minimax

game tree using alpha-beta pruning). While a game is in progress, it uses its position

evaluation function to analyze the state of the game, and displays comments for the reader's

benefit, such as "Chinook has a small advantage ".

3.2.1.1 Effect of the Lack of an Opening Book

It was found that even at novice level, Chinook is far stronger than Soar Checkers. While

this is a disappointing result, it shouldn't be a big surprise. The lack of an opening book in

Soar Checkers severely hampers it against any opponent (human or machine) that has

invested time in learning or storing openings. As explained before, unlike in chess, where a

weak opening line may result in a player entering the middle game phase with a material

disadvantage, or an inferior position, in checkers, a mistake made during the opening game is

almost always fatal, and cannot be recovered from, even with perfect play. It is impossible to

play correctly every time, especially during the opening game using pure strategy, since there

are so many situations or board positions in checkers for which it has taken decades of

human analysis to decide on the "right" move that will at least prevent an otherwise forced

loss. For example, in what is known as the "White Doctor" opening, many decades of

analysis has resulted in the conclusion that the correct play requires one side to sacrifice a

piece (which runs directly against one of the basic strategies to play good checkers - to pick a

move that is "safe" over one that results in an uncompensated loss) [1].

Thus, though the online version of Chinook is weaker than its tournament version, it still

uses an opening book that is known to have approximately 2000 different positions (they

actually use an anti-book, or a book of positions not to get into, as explained in Chapter

92

One). It can be easily seen that Soar Checkers is almost certain to make moves that would

result in forced losses, in the absence of any opening book or database, thus making it

susceptible to losing against Chinook, or even human opponents who are familiar with book

play and documented opening traps.

3.2.1.2 Importance of Endgame Database

Among multiple games played against Chinook, in those instances where Soar Checkers

did not make an inadvertent opening blunder and wind up in a losing position, it was seen

that it played a respectable middle game. This shows that strategies can indeed contribute to

decent game play, at least in the middle game phase of the game. However, once the number

of pieces had decreased sufficiently to enable Chinook's endgame database to kick in, Soar

Checkers was no match for Chinook. Once again, this demonstrates the fact that an agent

that uses generalized strategies for its game play might be competitive against human players

at the novice or advanced novice level, but against an opponent that has perfect information

in the endgame (machine or human), it does not stand a realistic chance. It is worth

mentioning that the Chinook team developed a six-piece endgame database because it was

observed by them that the human players at the Masters level seemed to have perfect

knowledge of the endgame involving up to five different pieces. Thus, by building the six-

piece database, they were able to make moves with absolute certainty of being perfect in the

endgame, while the human opponent could at best, make an educated guess.

93

3.2.2 Comparison with Another Program

 3.2.2.1 Soar versus Computer

There is an online checkers program at http://www.nabiscoworld.com which provides a

couple of options - the user could either play against a human opponent, or choose to play

against the computer. While playing against the computer, it allows the user to select the

difficulty level, ranging from one to ten, with one being the easiest and ten, the hardest. Soar

Checkers was pitted against this program at different difficulty levels, and it was found that it

beat the program with ease, and quite regularly, at difficulty levels ranging from one to six.

At levels seven and eight, it was more of a challenge to beat the program, but Soar Checkers

still emerged victorious about 50% of the time. Levels nine and ten proved much harder to

beat, as evidently, at these levels the program would be searching the deepest to come up

with its moves, and would also be using other techniques mentioned in Chapter One. The

problem here though, is that once again, it is hard to quantify these results, since the strength

of the checkers program used by this website is not known.

3.2.2.2 Soar versus Humans

Soar Checkers was also used to play against human opponents who were using the same

website, and as expected, against opponents who were novices, it won almost all the time,

barring cases where it made mistakes in the opening game, and ended up in positions that

were forced losses. It was seen that against opponents who were familiar with endgames,

Soar Checkers seemed to fritter away advantages that were gained during the opening and

middlegame phases of the game. For example, in one game, while playing White, Soar

Checkers went into the endgame with two kings and four checkers, while the human

opponent had only one king and three checkers, two of which were tied up. An

94

accomplished player would certainly have gone on to win from this position with precise,

calculated moves. Unfortunately, relying on pure strategy is not sufficient in the endgame,

especially against opponents who are not novices, and in this specific case, the human

opponent managed to escape with a draw. The recreated board position with Soar Checkers

having a huge advantage while going into the endgame, playing White, can be seen in Figure

3.1.

Figure 3.1: Board Position Showing the Initial Position in an Endgame Against a Human

Opponent

The final board position of that game, where Soar Checkers allowed the human

opponent to neutralize the significant material and positional advantage it had at the end of

the middle game and escape with a draw, is recreated and shown in Figure 3.2 on the

following page.

95

Figure 3.2: Board Position Showing the Final Position in an Endgame Against a Human

Opponent

3.2.3 Soar versus Soar

One of the key ways in which checkers differs from chess, (other than in the number of

valid squares on the board, the kinds of pieces, and the number of pieces) is that in chess, it

is almost always advantageous to be able to move first, since this allows the player (the one

playing with the lighter pieces, usually white) to choose an opening that he or she is very

familiar with, and might exploit weaknesses in the opponent's preparations for the match.

However, in checkers, the pieces can only move forward unless it is a king, and it is highly

unlikely that a player would have a king in the opening phase of the game. This has the effect

that sooner or later, one of the two opposing sides would run out of safe moves (that is,

moves that do not result in uncompensated losses of pieces), and quite often, this

misfortune falls on the player who moved first (the one playing with the dark pieces, usually

red, but also referred to as black in the literature). The result is that it is more often than not

96

a disadvantage to play as Red, which automatically means that that player makes the first

move.

To see if this is indeed the case, Soar Checkers was run in agent versus agent mode. Both

agents were identical, except in the case of the color of their pieces - one was Red, the other

White. A total of one hundred games were played, and the results were noted. It was found

that the agent playing as White won sixty eight games, the agent playing as Red (black) won

twenty six games, and six games were declared as drawn. It can be seen that there is a huge

disparity in the number of games won, depending on which color the agent plays, and the

disparity is indeed in favor of the player going second, the White agent. 68% of all games

were won by the White agent, while if we consider only those games that generated an

outright winner, the winning percentage creeps up further to 72.34%. Thus, Soar Checkers

seems to back up the generally accepted assertion among the checkers community

that it is almost always an advantage to play as White, in checkers.

3.3 Future Directions

 3.3.1 Enhance Strategies Used

In this section, some ideas for extending the work done so far in creating Soar Checkers

will be discussed. Considerable effort has been made to weed out strategies that proved to

be not the most advantageous in real game play, and keep only the ones that consistently

yielded good results. However, it is not beyond the realm of possibilities that there might still

be some very good strategies that haven't yet been incorporated into Soar Checkers. The

design of Soar Checkers makes it relatively straightforward to add new strategies to the

agent's rule base, and immediately test it out. The best way to do this is to actually see how

the modified agent performs in a game against the old agent. Ideally, the performance of the

97

modified agent should be evaluated over a series of games, with each agent alternating colors

so that the inherent advantage that the agent that plays as White has, is neutralized and does

not skew the results.

3.3.2 Compare with Pure Minimax

Another idea that looks interesting is to develop a checkers program that uses some of

the standard techniques described in Chapter One, specifically, the minimax algorithm to aid

in its game-play, and then compare it with Soar Checkers. Specifically, it would be interesting

to see if and when the moves chosen by both the programs match, and if they do, at roughly

what depth of search this occurs, and so on.

3.3.3 Add an Opening Book

It was mentioned earlier that the lack of an opening book seriously hurts the

performance of Soar Checkers, especially against opponents (human or computer) that have

learnt or stored opening books. It might be worth investigating how much of a difference it

would make (there is absolutely no doubt that there would indeed, be a positive difference)

in the quality of Soar Checkers' game-play if some sort of opening book were used to aid its

decision making process during the opening phase of a game. The problem with

implementing this idea, of course, is that assembling a decent-sized opening book is a

potentially laborious process involving lots of research and manual typing of the opening

moves that are chosen to be included in the book.

98

3.3.4 Investigate Potential Bug

While developing Soar Checkers, a potential bug in Soar was uncovered. This had

specifically to do with the rules that were written to implement triple jumps by kings.

Though the logic for this rule was exactly the same as that for a triple jump by a checker,

with the only difference being that the jumps could be in either forward or backward

direction in the case of the king, unlike in the case of an ordinary checker, which is restricted

to jumping in only one direction, it was found that whenever the agent was required to apply

this rule, it caused the program to crash, with virtual memory getting eaten up completely. A

lot of effort was put in to try and understand what was causing this mysterious behavior, but

in the end, it required a rewrite of the rule into eight different rules for the program to run,

without crashing. The reason for this crash, and that too for just one specific rule, is still

unknown (though most signs point to infinite recursion, it is not known yet exactly what is

causing it) and would be an interesting problem to look into in the future.

3.3.5 Add an Endgame Database

Another area where Soar Checkers' game play could be improved substantially is in the

endgame. As explained before, the kind of game-play required in endgames is impossible to

describe using just strategies, as most of the time, precise moves must be made to precise

squares in specific orders in order to convert an advantageous position into a victory, or to

recover from an inferior position and achieve a draw. Though a lot of effort would be

required to achieve this, it would be highly interesting to see how a potential future version

of Soar Checkers that has been augmented with an endgame database would perform against

human opponents, or even Chinook.

99

3.3.6 Conclusions

It is a fairly good guess that adding an opening book and an endgame database to the

current version of Soar Checkers would go a really long way in leveling the playing field,

especially against accomplished human opponents or Chinook, but in the end, relying on

pure strategy may not be enough to win against highly efficient and deep brute force search.

At the moment of writing, the Chinook team have announced that they have already solved

(computed the game theoretic value of) seven different standard checkers openings. With

the increased availability of cheap processing power, it is only a matter of time before their

ultimate goal, which is to solve the game of checkers would be achieved.

This experiment does raise some interesting questions about Artificial Intelligence, and

intelligence, in general. The current version of Soar Checkers relies almost entirely on

strategy, and though it finds it relatively simple to beat human opponents who are either

novices or advanced novices, it was beaten easily by the online version of Chinook, playing

at novice level (though, as explained before, even at novice level, it uses the opening book

and the full and perfect six-piece endgame database). It is a known fact that all players who

play, or aspire to play, at the elite level spend considerable time and effort in memorizing

thousands of opening lines, and even more endgame positions (apparently, the best players

have perfect knowledge of any endgame involving five or less pieces of any kind!). Someone

who is a novice, or just plays checkers for fun, on the other hand, is more likely than not

going to rely on what they see on the board rather than memory. The question, therefore, is

what should the goal of an artificially intelligent program be? Should it aim to be perfect

(which seems to be the case with Chinook, and they're well on the way to achieving that)?

Should it aim to emulate humans? It can be safely said that most humans are nowhere near

perfect, and in this respect, Soar Checkers does seem to succeed in emulating average human

100

behavior, at least in the case of playing a game of checkers. On the flipside, Chinook has

emulated, and even bettered the behavior of the Grandmasters (It should also be noted that

its stated goal was to build a program capable of beating the word champion - which, it did).

APPENDICES

102

Appendix A

Brief History and Rules of Checkers

A.1 History

Checkers is one of the oldest known games played by man, with the earliest form of the

game found at an archaeological site in Ur, Iraq, that was dated back to approximately 3000

B.C. [14] As far as 1400 B.C, a popular game called Alquerque was played in Egypt on a 5 x

5 board, which was later modified by a Frenchman so that it could be played on a standard

chess board, thus increasing the number of pieces to twelve, per side. This version of the

game was called "Fierges" or "Ferses", which was further modified to make jumps

mandatory, yielding "Jeu Force" - which was exported to Britain and the Americas later. The

game came to be known as "draughts" in Britain, and "checkers" in America. A brief

summary of the rules of modern American checkers [15, 16] follows:

A.2 Rules

Checkers is a board game played between two players who alternate turns. The player

who cannot move, either because he or she has no pieces left, or all of his or her pieces are

blocked, loses the game. The players are also free to resign, or agree to a draw.

The game is played on a square board made up of 64 smaller squares arranged in an 8 x 8

grid, with the smaller squares alternately light and dark colored (green and buff, in the case

of tournaments). The game is played on the dark squares (though in checkers diagrams, the

pieces are shown on the light squares, for readability). The pieces are red and white (though

more often than not, store-bought sets have black and white pieces), and at the beginning of

the game, each player has twelve pieces of his or her chosen color arranged on the twelve

103

dark squares closest to his or her edge of the board. The red player moves first, and the

players alternate turns until one of them can't make a move (in which case, he or she loses),

or one of them resigns or they agree to a draw.

A piece that is not a king may move one square forward, diagonally. A king can move

one square diagonally either forward, or backward. A piece can move only to a vacant

square. A move may consist of one or more jumps. An opponent's piece can be captured by

jumping over it, diagonally to the adjacent vacant square in the same diagonal. The jumping

piece, the opponent's piece and the empty square must line up diagonally. While a king can

jump diagonally, both forward and backward, a piece that is not a king can only jump

diagonally forward. Using only one piece, a multiple jump can be made, moving from empty

square to empty square. A jumping piece or king can change directions during a multiple

jump - making a jump in one direction, and then jumping in another. Only one piece can be

jumped with a given jump, but several pieces can be jumped with one move that involves

multiple jumps. If a jump can be made, it must be made. However, if there are several

different jumps that are possible, the player is free to choose among them, regardless of if

some of them are multiple jumps, or not. A player cannot jump his or her own pieces. The

same piece cannot be jumped twice, in the same move.

When a piece reaches the last row (usually known as the king row), it gets crowned, and

becomes a king. This is indicated by placing a second checker on top of the first piece, by

the opponent. A piece that has just been crowned cannot continue to jump opponent pieces

until the next move.

A Draw is declared when neither player can force a win. When one side appears stronger

than the other and the player with what appears to be the weaker side requests the Referee

for a count on moves, then, if the Referee so decides, the stronger party is required to

104

complete the win or show to the satisfaction of the Referee at least an “increased” (instead

of the old wording “decided”) advantage over his or her opponent within forty of his or her

own moves, these to be counted from the point at which notice was given by the Referee;

failing in which he or she must relinquish the game as a draw.

[This forty-move draw rule requires some checkers expertise, on the part of the Referee.

He or she must determine if a player has increased his or her advantage. There is no “triple-

repetition” rule. So, a player may repeat the position, twenty times (or a hundred times, if the

Referee has not been called in). Normally, the players are reasonable enough to agree to a

draw, in such a case. Technically, a player who does not have any advantage, can refuse to

agree to a draw. The player with the stronger position cannot request a 40 move count, at

least not according to this law. So, it is possible to have a repetitious game that lasts forever.

Reasonable people would agree to the draw, or apply the 40 move draw rule, anyway.]

105

Appendix B

Overview of Soar

B.1 Introduction

Soar is a general, unified cognitive architecture designed to develop systems exhibiting

intelligent behavior. In other words, Soar provides the fixed computational structures that

enable knowledge to be encoded and the production of actions in pursuit of goals. In many

ways, it is similar to a programming language, albeit somewhat specialized. It differs from

other programming languages such as C or Java in that it has embedded in it a specific

theory of the appropriate primitives underlying reasoning, learning, planning and other

capabilities that are necessary for intelligent behavior. Since Soar is not a general purpose

language, some computations are awkward, or difficult to do in Soar (for example, complex

math) but it is suited to build autonomous agents that use large bodies of knowledge to

generate actions in pursuit of goals [17].

B.2 Overview

The design of Soar is based on the idea that all deliberate goal-oriented behavior can be

viewed as the selection and application of operators to a state. A state is a representation of

the current problem-solving situation; an operator transforms the state (makes changes to

the representation) and a goal is the desired outcome of the problem-solving activity. Thus,

as Soar runs, it is continually trying to apply the current operator and select the next operator

(a state can have only one operator at a time) until the goal has been achieved. There are

separate memories in Soar for short-term memory (for example, the current state of the

problem) and long-term knowledge. A Soar program contains the knowledge for solving a

106

specific task (or set of tasks), including information about how to select and apply operators

to transform the states of the problem, and means to recognize if and when the goal has

been achieved.

B.2.1 Representation of States, Operators and Goals

States are represented as objects in Soar's short-term memory (known as "working

memory" in Soar parlance), and these objects are made up of (a possible collection of)

attribute-value pairs and in many cases, other objects are sub-structures of the state, forming

a hierarchical representation. For example, the state representing a human could possibly

have the following structure:

state <human> ^type state

<human> ^lastName Smith

^firstName John

^address <placeHolder>

<placeHolder> ^Street '550~Old Broken Hwy'

^City 'Utopia'

A state can have only one operator at a time, and operators are represented as

substructures of the state. It should be noted that a state could have as a substructure a

number of potential operators that are under consideration; however there still will only be

one current operator. Meanwhile, goals are either represented explicitly as some substructure

of the state with general rules that recognize when the goal is achieved, or are implicitly

107

represented in the Soar program by goal-specific rules that test the state for specific features

and recognize when the goal is attained.

B.2.2 Problem Solving in Soar

As explained before, Soar tries to solve a problem by continuously applying the current

operator (to the current state) and selecting the next operator, until the goal has been

reached. The various steps involved are briefly described below.

B.2.2.1 Operator Proposal

As a first step in selecting an operator, one or more candidate operators are proposed.

Operators are proposed by rules that test the features of the current state (for example, in a

game of checkers, an operator to generate moves could be proposed when it is detected that

it is that agent's turn to make a move).

B.2.2.2 Operator Comparison

The second step Soar takes in selecting an operator is to evaluate or compare the

candidate operators. In Soar, this is done through rules that test the operators that were

proposed during the operator proposal stage by using a mechanism known as "preferences"

(for example, if there are two proposed operators A and B, each representing possible

moves, if A leads to an uncompensated loss while B is safe, preference rules could be written

that would prefer operator B over operator A).

108

B.2.2.3 Operator Selection

Soar attempts to select a single operator based on the preferences available for the

candidate operators (in other words, operator selection is handled by the Soar architecture,

not the Soar program). There are four possible scenarios here:

1. The available preferences unambiguously prefer a single operator.

2. The available preferences suggest multiple operators, and prefer a subset that can be
selected from randomly.

3. The available preferences suggest multiple operators, but neither case 1 or 2 above

hold.

4. The available preferences do not suggest any operators.

In the first case, the preferred operator is selected. In the second case, one of the subset

is selected randomly. In the third and fourth cases, Soar has reached something known as an

"impasse" in problem solving, and a new substate is created. There are four kinds of

impasses which are explained in great detail in [8]:

1. Tie-impasse

2. Conflict-impasse

3. Constraint-failure impasse

4. No-change impasse

B.2.2.4 Operator Application

An operator applies by making changes to the state; the specific changes that are

appropriate depend on the selected operator and the current state. There are two primary

109

approaches to modifying the state: indirect and direct. Indirect changes are used in Soar

programs that interact with an external environment: The Soar program sends motor

commands to the external environment and monitors the external environment for changes.

The changes are reflected in an updated state description, garnered from sensors (example,

how the agents interact with the game environment in Soar Checkers). Soar may also make

direct changes to the state; these correspond to Soar doing problem solving "in its head".

Soar programs that do not interact with an external environment can make only direct

changes to the state.

B.2.2.5 State Elaboration

Making monotonic inferences about the state is the other role that Soar long-term

knowledge may fulfill. Such elaboration knowledge can simplify the encoding of operators

because entailments of a set of core features of a state do not have to be explicitly included

in application of the operator. In Soar, these inferences will be automatically retracted when

the situation changes, such as through operator applications or changes in sensory data.

B.2.3 Memories in Soar

There are three different kinds of memories in the Soar architecture, each of which has

its own utility in the overall scheme of things, and will be described briefly in the following

sections.

B.2.3.1 Working Memory

Soar represents the current problem-solving situation in its working memory. Thus,

working memory holds the current state and operator (as well as any substates and operators

110

generated because of impasses) and can be thought of as being Soar's "short-term"

knowledge, reflecting the current knowledge of the world and the status in problem solving.

The working memory is made up of elements known as working memory elements (or

WMEs). Each WME is an identifier-attribute-value triple (for example, J1 ^name Jack is a

WME in which J1 is the identifier, "name " is the attribute and "Jack" is its value), and a

collection of WMEs sharing the same identifier is said to form an object. The value of the

attribute of a WME could be the identifier for another object, thereby creating an object

hierarchy. Each object has to be connected to a state (which itself is represented as an object,

as explained earlier), and any object that is disconnected from a state will be removed from

the working memory.

B.2.3.2 Production Memory

Soar represents long-term knowledge as productions that are stored in production

memory. Each production has a set of conditions and a set of actions. If the conditions of a

production match working memory, the production fires, and the actions are performed.

Thus Soar productions are very similar to "if-then" conditions.

Examples of Productions - The general structure of a Soar production is:

sp {rule*name

(condition)

(condition)

.

.

111

-->

(action)

(action)

}

A simple Soar production that prints out 'Hello World!' and stops could look like this

[17]:

sp {hello*world

(state <s> ^type state)

-->

(write |Hello World!|)

(halt)

}

Architectural Roles - Soar productions are the mechanism used by the Soar

architecture to fulfill four roles used in problem solving:

1. Operator Proposal

2. Operator Comparison

3. Operator Application

4. State Elaboration

Persistence – The two main actions of a production are to create preferences for

operator selection, and create or remove working memory elements. For operator proposal

112

and comparison, a production creates preferences for operator selection. These preferences

should persist only as long as the production instantiation that created them continues to

match. When the production instantiation no longer matches, the situation has changed,

making the preference no longer relevant. Soar automatically removes the preferences in

such cases. These preferences are said to have "I-support" (for "instantiation support").

Similarly state elaborations also have I-support.

On the other hand, WMEs created as a result of an operator application rule have what

is known as "O-support" (for operator support). This is different from I-support in that the

results of an operator application production (usually, adding or removing elements to or

from the working memory) should persist even when that operator is no longer the current

operator or that operator application production instantiation no longer matches. Working

memory elements that participate in the application of operators are maintained throughout

the existence of the state in which the operator is applied, unless explicitly removed (or if

they become unlinked). Working memory elements are removed by a reject action of a

operator-application rule.

B.2.3.3 Preference Memory

The selection of the current operator is determined by the preferences in preference

memory. Preferences are suggestions or imperatives about the current operator, or

information about how suggested operators compare to other operators. Preferences refer to

operators by using the identifier of a working memory element that stands for that operator.

After preferences have been created for a state, the decision procedures evaluate them to

select the current operator for that state. For an operator to be selected, there will be at least

one preference for it, specifically, a preference to say that the value is a candidate for the

113

operator attribute of a state (this is done with either an "acceptable" or "require" preference).

There may also be others, for example to say that the value is "best". The different kinds of

preferences and the symbols used to denote them in Soar are [8]:

1. Acceptable (+)

2. Reject (-)

3. Better (>), Worse (<)

4. Best (>)

5. Worst (<)

6. Indifferent (=)

7. Numeric - Indifferent (= number)

8. Require (!)

9. Prohibit (~)

B.2.4 Soar Execution Cycle

A Soar program executes through a number of cycles. Barring the case of impasses and

the creation of substates, a Soar execution cycle consists of five phases:

1. Input: New sensory data comes into working memory. This is done through the

^io.input-link attribute of the agent.

2. Proposal: Productions fire (and retract) to interpret new data (state elaboration),

propose operators for the current situation (operator proposal), and compare

proposed operators (operator comparison). All of the actions of these productions

are I-supported. All matched productions fire in parallel (and all retractions occur in

114

parallel), and matching and firing continues until there are no more additional

complete matches or retractions of productions (known as "quiescence").

3. Decision: A new operator is selected by Soar, or an impasse is detected and a new

state is created.

4. Application: Productions fire to apply the operator (operator application). The

actions of these productions will be O-supported. Because of changes from operator

application productions, other productions with I-supported actions may also match

or retract. Just as during proposal, productions fire and retract in parallel until

quiescence.

5. Output: Output commands are sent to the external environment. This is done

through the agent's ^io.output-link attribute. The cycles continue through phases 1

to 5 until the halt action is issued from the Soar program (as the action of a

production) or until Soar is interrupted by the user.

This concludes the fairly broad overview of Soar. For further details, the reader is

advised to refer to [8, 9, 10, 17].

BIBLIOGRAPHY

[1] Jonathan Schaeffer et al. A World Championship Caliber Checkers Program. Artificial
Intelligence, vol. 53 (2 – 3): 273 – 290, 1992.

[2] Francis Heylighen. Zero Sum Games. Retrieved June 11, 2006 from the World Wide
Web: http://pespmc1.vub.ac.be/zesugam.html, 1993.

[3] S. J. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd

edition, 2003.

[4] K. M. Chandy. Explanation of Minimax. Retrieved May 14, 2006 from the World Wide
Web: http://www.cs.caltech.edu/~vhuang/cs20/c/research.archetype.html.

[5] Wikimedia Inc. Minimax. Retrieved August 10, 2006 from the World Wide Web:
http://en.wikipedia.org/wiki/minimax_theorem, 2006.

[6] Wikimedia Inc. Alpha-Beta Pruning. Retrieved October 21, 2006 from the World Wide
Web: http://en.wikipedia.org/wiki/alpha-beta_pruning, 2006.

[7] Jonathan Schaeffer. The History Heuristic and the Performance of Alpha-Beta
Enhancements. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 11 (11): 1203
– 1212, 1989.

[8] J. E. Laird and C. B. Congdon. The Soar User’s Manual Version 8.6. Electrical Engineering
and Computer Science Department, University of Michigan, 2006.

[9] Douglas Pearson. SML Quick Start Guide. Three Penny Software LLC, 2006.

[10] Douglas Pearson. Guide for Moving from SGIO to SML, 2005.

[11] Derek Oldbury. Move Over or How to Win at Draughts. Published by Nicholas Kaye, 1957.

[12] Michael J. Mefford. A Checkers Game for Your PC. PC Magazine, vol v14v9, May
1996.

[13] Department of Computer Science, University of Alberta. Chinook. Retrieved November
9, 2006 from the World Wide Web: http://www.cs.ualberta.ca/~chinook.

[14] W. J. Rayment. History of Checkers or Draughts. Retrieved November 5, 2006 from the
World Wide Web: http://www.indepthinfo.com/checkers/history.shtml, 2006.

[15] Jim Loy. The Standard Laws of Checkers. Retrieved August 3, 2005 from the World
Wide Web: http://www.jimloy.com/checkers/rules.htm, 1995.

116

[16] Jim Loy. The Basic Rules of Checkers. Retrieved August 3, 2005 from the World Wide
Web: http://www.jimloy.com/checkers/rules2.htm, 1999.

[17] J. E. Laird. The Soar 8 Tutorial. Electrical Engineering and Computer Science
Department, University of Michigan, 2006.

	Clemson University
	TigerPrints
	5-2007

	Soar Checkers - An Intelligent Checkers Playing Agent in Soar
	Jithu Menon
	Recommended Citation

	Microsoft Word - 71366-1173147165-jmenonThesis

