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Abstract

Inertial Particle Dynamics In Simple Vortex Flow Configurations

Senbagaraman Sudarsanam

Dynamics of inertial particles differ significantly from that of the underlying

fluid flow. This difference in the dynamics of Inertial particles from that of fluid tracers

can be exploited to segregate particles by size. While external forces can be used

to manipulate the dynamics of such particles, using hydrodynamic forces which are

always present in the flows of interest to manipulate inertial particle dynamics offers

several advantages. Vorticity is one such phenomenon that is frequently encountered

in natural and industrial flows. Thus, the dynamics of inertial particles have been

studied in the presence of simple vortex flow configurations in this work, with the

aim of gaining better insight into the problem of achieving size based segregation in

the presence of vortex flow fields.

In the first problem that has been investigated, the dynamics of inertial parti-

cles with varying stokes numbers have been studied in a four vortex flow configuration.

After stating criteria to ensure that the particles have non-trivial dynamics, the cri-

teria has been used to separate heavy particles from light particles using an array of

vortices.

The second problem studied is that of particle focusing in microfluidic chan-
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nels. It is well known that inertial particles in the presence of hydrodynamic forces

in microfluidic channel flows, focus into thin bands which can be used to achieve

size based separation of such particles. One such force is the force exerted by dean

vortices that form in flows through curved micro channels. In this study, we seek

to computationally demonstrate that at low Reynolds numbers, particles with higher

stokes number tend to cluster around the dean vortices, and thus leading to focused

bands in the flow, while lighter particles are dispersed in the channel.

While there exists two well established criteria to identify regions in phase

space which permit inertial particles to lose their relative velocities and settle down,

we introduce a third criteria to identify regions of the four dimensional phase space

comprising of two dimensional space and the components of relative velocity in each

of the two dimensions, within which the relative velocity of inertial particles may

decay with time.
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Chapter 1

Introduction

1.1 Background

To study advection of fluid tracer particles, one can either take the Eulerian

approach or the Lagrangian approach. In the Lagrangian approach to advection we

encounter differential equations of the form

dx

dt
= u(x, y, t);

dy

dt
= v(x, y, t)

called Lagrangian advection equations. In an important paper published in 1984

by Hassan Aref[2], he demonstrated the practical importance of chaotic trajectories

exhibited by such equations(even when the Eulerian flow field does not exhibit any

chaotic behavior) in his work on fluid mixing, and he called this chaotic behavior

of Lagrangian trajectories ”Chaotic Advection”. He demonstrated the application of

chaotic advection to fluid mixing problems using the blinking vortex system which he

introduced as a simple approximation of an agitator. The blinking vortex system is a

system of point vortices which switch on and off between a fixed value of circulation
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and zero periodically.

In this thesis however, we study the dynamics of spherical particles with finite

size and mass as opposed to fluid tracers. This is of considerable interest, because

the dynamics of such particles differ from that of the under-lying fluid flow [3]. This

departure from fluid tracer behavior because of the inertia of such particles, leads to

interesting behavior of the particles such as clustering and segregation in the presence

of vorticity in the flow field. This clustering and segregation behavior is widely seen

in both, natural flows and the flows in Industrial applications.

Over the years, many researchers have worked on studying the flow past a

rigid sphere[4, 7, 20, 9], however, a comprehensive investigation of the equation of

motion for a rigid spherical particle in a fluid was performed by Maxey and Riley

[18] which eliminated some errors that existed in the body of work in this area and

presented an updated version of the equation which is now called the Maxey-Riley

equation named after the authors.

1.2 Motivation

There exist several reasons why studying the dynamics of inertial particles

in the presence of vorticity is of great interest. Manipulating particle trajectories

and controlling the eventual fate of particles so as to obtain size based segregation

of particles finds numerous applications such as in microfluidic devices or industrial

flows where impurities often manifest themselves in the form of particulate matter.

While there exist several established methods for particle segregation, such as using

mechanical means or using external electric or magnetic fields, these approaches im-

pose limitations on the size and nature of the particles that can be controlled. For

instance, using membrane filters to separate microparticles is limited by pore size and
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the usage of external fields require the particles to be sensitive to the type of external

field employed and in addition these external forces may damage sensitive biological

cells which often are the kind of particles whose trajectory needs to be controlled [5].

These methods also depend on the scale of the process being undertaken as many of

these processes can only be performed on small scale flows. In recent years, researchers

have been focusing on purely hydrodynamic means to manipulate and control iner-

tial particle motion as a way to overcome the limitations associated with the other

methods[5, 6, 8, 17]. These methods often include modifying the flow geometry as a

means to influence the hydrodynamic forces at play, however control strategies that

can be dynamically varied and do not depend on the fixed flow geometry have obvious

advantages over such methods.

Vorticity is an extremely important characteristic of fluid flow. Vortices are

considered to be ”The sinews and muscles of fluid motions” [Küchemann(1965)] as

quoted in [21],(p.ix). Vortices are present not only in turbulent flows but are also

seen in laminar flows in micro-channels. This gives us a very strong reason to study

the interaction of inertial particles with vortices as a means to control the dynamics

of inertial particles.

We now demonstrate two sample cases of flows with inertial particles in a

vortex flow field.

1.2.1 Streaming Cell Flows

As mentioned above, many of the inertial particle manipulation techniques are

often applicable to small scale flows. One method which can be applied on a large

scale is the use of streaming flow. Streaming cells can be created by the use of a

circular cylinder executing small amplitude oscillations in a fluid [10].
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Kwitae Chong etal[10] improved upon the expression for the flow generated

by a circular cylinder in an oscillatory free stream which was obtained by Holtsmark

etal[14]. Switching the coordinates such that the cylinder is in oscillation in an oth-

erwise stationary fluid, they showed that a cylinder undergoing sinusoidal oscillations

along the horizontal axis such that, X(t) = Asin(ωt) where A, is the small amplitude

of oscillation and ω is the angular frequency of oscillation, produces four stream-

ing cells. Figure(1.1) shows an image of streaming cells produced by an oscillating

cylinder with a qualitative topology similar to that calculated by [10] and [14].
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Figure 1.1: Vibrating cylinder in stationary fluid, x(t) = Asin(ωt)

The study of inertial particles in a domain with four vortices, which is the

first of two cases investigated in this work, is motivated by the application of cellular

streaming flows to inertial particle manipulation.

1.2.2 Microfluidic Channel Flows

Microfluidics is an inter-disciplinary field of engineering where the behavior

of fluid flow at micro scale is studied. This study of micro scale flow phenomenon

with the eventual goal of its manipulation and control has gained momentum over
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the last two decades owing to numerous applications it has found, such as in lab on

chip devices, micro or nano-manufacturing and biofluid flows.

Microfluidic flow is most often studied with the intent of understanding the

flow through microfluidic channels. Microfluidic channel design varies considerably

from application to application. A range of different cross sections such as circular,

square and rectangular and different channel geometries such as spiral, serpentine

and straight channel geometries have been used in microfluidic studies[12, 8, 5, 6]

Inertial particles in microfluidic channel flows are encountered in applications

such as particle sorting, particle filtering and particle encapsulation. The dynamics of

inertial particles in such flows are manipulated using both active and passive methods.

Active methods include the use of physical filters or the use of external fields such as

electric or magnetic fields. In the case of passive methods, the hydrodynamic forces

are manipulated with the goal of achieving controlled motion of the inertial particle.

The hydrodynamic forces at play usually include lift forces and stokes drag force,

but in the case of a curved microfluidic channel, an additional type of drag force

comes into play due to the creation of dean vortices in the channel’s cross section[11].

Thus, it is the balance of all these forces which cause particles to migrate across

streamlines and settle down into focused bands whose relative position in the channel

is a function of various parameters including the fluid and particle reynolds numbers,

particle stokes number and dean number[22].

An experimental demonstration of this focusing behavior of particles in mi-

crofluidic channels was performed and it is seen that for any given Reynolds number,

particles with a larger stokes number have a greater tendency to focus into thin bands

in the channel.Figure(1.2).

The force balance on an inertial particle in the case of straight channels is quite

well known, but in the case of curved channels, the presence of the dean vortices and
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Re=1.67 Re=6.67 Re=13.33

Figure 1.2: The top row shows particles of 45µ m at various Reynolds numbers and the
lower row shows the 95µ m particles at the corresponding Reynold number, flowing
through a curved channel

asymmetry in the axial velocity profile induced by the curvature of channel makes

calculating the forces rather difficult and is not well established [22]. Thus, we seek

to gain an understanding of how inertial particles interact with dean vortices in a

confined microfluidic channel flow in the second case which is studied as part of this

thesis, where the dynamics of inertial particles within a circular boundary for fluid

flow is investigated.

1.3 Thesis Contributions

• The sensitivity of relative velocity of inertial particles to their spatial coordinates

in a vortex flow field is studied.

• A method to separate and collect inertial particles based on stokes number using

a simple four vortex flow configuration has been devised.
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• Size based segregation of inertial particles using an array of oscillating cylinders

is demonstrated.

• The mechanism of the focusing behavior of inertial particles in a curved mi-

crofluidic channel due to dean vortices generated in such channels has been

demonstrated and stokes number dependence of particle focusing has been ex-

plained.

• Finally, a previously undocumented criteria to identify regions in phase space

which enable inertial particles to lose their relative velocity has been observed

and has been reported in this thesis.

1.4 Thesis Organization

The first chapter gives a historical background of the problem of studying

chaotic trajectories of fluid tracers and Inertial particles. In particular the work

of Maxey and Riley who carefully constructed the equations of motion for a rigid,

spherical particle in a fluid is discussed. It also includes a description of the factors

that motivated our investigation of inertial particle dynamics in the presence of vortex

flow fields. Here, two examples of typical flows encountered in Industrial applications

is discussed to further emphasize the importance of the problem being investigated.

This is followed by a brief discussion of the contributions of this thesis to the existing

literature.

The second chapter conducts a review of the theoretical background of point

vortex dynamics and an expression for the velocity field generated by point vortices

is derived. In addition, the theoretical background of inertial particle dynamics are

reviewed and the governing equation of motion for a rigid, spherical particle in a fluid
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is derived.

In the third chapter, the computational scheme used for the simulation of in-

ertial particle dynamics is briefly discussed followed by a description of the simulation

domain set up for both the cases investigated in this thesis.

Finally, the results from this study are presented and discussed in the final

chapter. Some suggestions on future directions in research based on the conclusions

are also presented.

8



Chapter 2

Review of Theory

2.1 Review Of Point Vortex Dynamics

The study of point vortices originated with the seminal work published by

Helmholtz in 1858 in his paper called ”Über Integrale der hydrodynamischen Gle-

ichungen, welche den wirbelbewegungen entsprechen”[13] which was translated by

Tait in 1867 as ”On integrals of the hydrodynamical equations, which express vortex-

motion”. In this paper, Helmholtz introduces the point-vortex model where he imag-

ines the vorticity of a fluid in 2D being confined to one or several isolated points

which have an invariant amount of circulation(γ) associated with them. Now, we can

imagine a 2D flow field with finite vorticity to be an ir-rotational flow field with Dirac

delta functions of vorticity called point vortices distributed in it and the net vorticity

can be written as a sum of the point vortices[23].
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ω =
n∑
k=1

γkδ(z − zk)

δ(z − zk) = γ, if z = zk

δ(z − zk) = 0, if z 6= zk (2.1)

The 2D approximation of fluid flow is valid for cases where flow field does not

vary to an appreciable extent in the third dimension or when the third dimension is

very small compared to the first two dimensions[23].

Vorticity is defined as the curl of the fluid velocity.

ω(z, t) = ∇× v(z, t) (2.2)

where v is the velocity of the fluid

Helmholtz realized that like the velocity field, the vorticity field can often hold

very important information about the nature of the flow[23].

Starting with the Incompressible Navier-Stokes Equations for an in-viscid fluid,

also called the Euler Equations

∂u

∂t
+ u · ∇u = −∂p

∂x

∇ · u = 0 (2.3)

We obtain the vorticity transport equation in 2D by taking the curl of equation(2.3).

Working with two dimensions avoids the critical vortex-stretching and bending term
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which makes solving the vorticity transport equations analytically intractable.

∂w

∂t
+ u · ∇w = 0

∇ · w = 0 (2.4)

This can also be written using the material derivative operator D()
Dt

= ∂
∂t

+ u · ∇() as

Dw

Dt
= 0 (2.5)

Thus, for the case of Inviscid, Barotropic, 2D flows with only conservative body

forces the total vorticity is conserved along a streamline and we understand that

as the vortices move through a fluid the velocity field around them gets modified

by their presence and in turn the local velocity advects the point vortices to a new

position(provided they are free to move) but their net circulation strength is not

modified.

2.1.1 Velocity Field Due To Point Vortices

Because in-compressible fluid is being considered, (∂u
∂x

+ ∂v
∂y

= 0), the existence

of a stream function ψ is assured and it is by definition related to velocity as[15]

u =
∂ψ

∂y

v = −∂ψ
∂x

(2.6)

To obtain an expression for the velocity field due to the point vortices, we

shall first perform a procedure called Helmholtz or Hodge decomposition where the

11



velocity is decomposed into a divergence free solenoidal vector potential (ψ), which is

the same as the stream function, and a curl free vector potential (φ), see (Lamb,1932)

u = uw + uφ

(or)u = ∇× ψ +∇φ (2.7)

From the definition of vorticity ω = ∇×u and using the identity ∇×∇×~u =

∇(∇ · ~u) − ∇2~u we find that the stream-function is related to the vorticity by the

Poisson equation

−ω = ∇2ψ (2.8)

We know that the vorticity can be expressed as a sum of Dirac Delta func-

tions(2.1), thus , the solution to (2.8) can be expressed in terms of the Green’s function

G(x) [19]

ψ(z) =

∫
G(z − zk)w(z)dz, (2.9)

where,

LG(z − zk) = δ(z − zk), (2.10)

G(x) =


− 1

2π
log||X||, inR2

1
4π

1
||X|| , inR3

is the Green’s function in free space for linear operator L = ∇2 which is the

Laplace operator[19].
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From this we determine the stream function for the flow field can be expressed

as

ψ = −

n∑
k=1

γk

2π
log|z − zk| (2.11)

And thus the x and y component of the velocity can be obtained by differen-

tiating the velocity field as per the definition of the stream function.

ẋ = −

n∑
k=1

γk

2π

(y − yk)
|z − zk|2

ẏ =

n∑
k=1

γk

2π

(x− xk)
|z − zk|2

(2.12)

The velocity fields generated by simple vortex flow configurations have been

shown in Figures 2.1 and 2.2.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 2.1: Velocity field generated by a single vortex at the origin

2.2 Other Approximate Models Of Vorticity

The point vortex model is an approximation used for ease of representing

vorticity in fluid flows. It enables us to model vorticity as isolated distributions of

13
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Figure 2.2: Velocity field generated by a four vortex configuration

circulation which get advected by the underlying fluid flow. However, this model

implies the existence of singularities in the velocity field at the center of the point

vortex. To avoid this, and to make the velocity field more realistic, we could adopt

one of the following approximate models of vorticity.

2.2.1 Rankine Vortex

A Rankine vortex is a simple model of a point vortex where the vorticity is

non-zero and constant(ω0) inside a fixed core of radius ’Rc’ and for any radius R > Rc

a vorticity jump from ω0 to 0 takes place[15]. This model helps us avoid the singular

velocity field associated with the ideal point vortex. The velocity inside the vortex

core is thus governed by a modified form of equations(2.12) given by,

ẋ = −

n∑
k=1

γk

2π

(y − yk)
R2
c

ẏ =

n∑
k=1

γk

2π

(x− xk)
R2
c

(2.13)
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the velocity is governed by equations(2.12) outside the Rankine core. The

velocity profile of a Rankine vortex is as shown in Figure(2.3).

Figure 2.3: Velocity profile of a rankine vortex

2.2.2 Use Of A Regularization Parameter

The use of a regularization model ’δ’ is one way of modeling the viscosity in

a fluid with vorticity. Using a small value of ’δ’ such that ’δ2’ is very small will

ensure that the problem of infinite velocities at the vortex center in a point vortex

is avoided, and at the same time a weak viscous effect in the fluid is incorporated.

This will of course, take away some advantages of using the ideal point vortex model

such as the ability to consider the fluid inviscid and thus being able to use ideas such

as the Milne-Thomson Circle theorem(section(2.3)) to model a transport barrier to

fluid flow. The velocity field of a regularized point vortex would thus be,
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ẋ = −

n∑
k=1

γk

2π

(y − yk)
|z − zk|2 + δ2

ẏ =

n∑
k=1

γk

2π

(x− xk)
|z − zk|2 + δ2

(2.14)

2.2.3 Lamb-Oseen Vortex

The Lamb-Oseen vortex is one of the simplest examples of a viscous vortex

and it is a more realistic model of viscosity than the use of a regularization parameter.

Unlike the rankine vortex where the vorticity is constant inside its core, the vorticity

of a Lamb-Oseen vortex is a function of the distance from vortex center ’r’ and time

’t’. The effect of viscosity in this type of vortex is to slowly smudge an ideal point

vortex which is a line vortex in three dimensions into a Gaussian, asymptotically with

time [23]. Thus the velocity due a Lamb-Oseen vortices would now be governed by

the set of equations,[21]

ẋ = −

n∑
k=1

γk(1− e(−((x−xk)
2+(y−yk)2)
R2

c
))

2π

(y − yk)
|z − zk|2

ẏ =

n∑
k=1

γk(1− e(−((x−xk)
2+(y−yk)2)
R2

c
))

2π

(x− xk)
|z − zk|2

(2.15)

Where Rc is the core radius and the resulting core velocity profile is as shown in

Figure(2.4).
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Figure 2.4: Velocity profile of a Lamb-Oseen vortex

2.3 Milne Thomson Circle Theorem

The Milne-Thomson Circle theorem provides us with a useful technique when

modeling fluid flows to modify the interior boundary conditions by introducing a

circular cylinder into the domain. The statement of the proof is thus[16]:

Circle Theorem. Let there be irrotational two-dimensional flow of incompressible

inviscid fluid in the z plane. Let there be no rigid boundaries and let the complex

potential for the flow be f(z), where the singularities of f(z)are all at a distance greater

than ’a’ from the origin. If a circular cylinder, typified by its cross-section the circle

C,|z| = a, be introduced into the field of flow, the complex potential becomes

w = f(z) + f(
a2

z
) (2.16)

This has been demonstrated in Figures (2.5) and (2.6) where the first image

corresponds to the streamlines of a normal two vortex flow field and the second image

has a circular cylinder imposed upon the flow field by the introduction of two image

vortices placed such that the Milne-Thomson Circle theorem is satisfied.

This idea can be used to impose a circular transport barrier on the fluid when
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Figure 2.5: Streamlines of a 2-vortex flow
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Figure 2.6: Stream lines of a 2-vortex flow with cylinder

we model microfluidic flows in a confined channel.

2.4 Review Of Inertial Particle Flows

Tchen [9] extended the work of Basset[4], Boussinesq[7] and Oseen[20] on the

settling on particles under gravitational forces in a still fluid to the case of particle

motion in an unsteady but uniform flow field. He then tried to extend this to the

case of an unsteady and un-uniform flow. This second extension was modified and

corrected by several researchers. The form of the equation of motion for small, spher-

ical, rigid tracer in incompressible fluid which is most widely used is the one proposed

by Maxey-Riley [18] called the Maxey-Riley equation.
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ρp
dv

dt
= ρf

Du

Dt
+ (ρp − ρf )g −

9νρf
2a2

(v − u− a2∇2u

6
)

− ρf
2

(
dv

dt
− D

Dt
[u+

a2∇2u

10
])− 9ρf

2a

√
ν

π

∫ t

0

1√
t− τ

d

dτ
(v − u− a2∇2u

6
)∂τ (2.17)

Here ρp and ρf are the densities of the particle and fluid respectively. ’v’ is the

particle velocity and ’u’ is the velocity of the fluid at the location of the particle. ’g’

is the acceleration due to gravity, ν is the kinematic viscosity and ’a’ is the particle

radius.

For the Equation(2.17) to be valid, the following assumptions need to hold true:

• a
L
<< 1,

• a(v−u)
ν

<< 1,

• (a
2

ν
)(U
L

) << 1,

where L and (U/L) are the length scale and velocity gradient scale for undis-

turbed fluid flow.

That is, the particle radius and particle reyonold’ s number are small and so

are the velocity gradients around it.

The first term on the right hand side is the force exerted on the particle by

the undisturbed flow. The second term is the buoyancy force and the third is the

stokes drag. The fourth term is the added mass correction and the final term is the

Basset-Boussinesq history force.
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The Stokes drag is the dominant term in this equation and very often the

inertial particle flow reduces to a stokes flow, however there are cases where other

terms of this equation can become significant, for instance if the particle is accelerating

with time very fast, the Basset-Boussinesq history force becomes significant and the

Basset-Boussinesq history force is also significant in flows where the particle is bound

to revisit the same location several times in a short time span, such as in oscillatory

flows[18]. The buoyancy force is present if the particles are not of neutral density.

We shall now derive the simplified form of Eq(2.17) using the procedure out-

lined in [18].

The particle radius ’a’ is chosen such that it is not negligible, however the

square of ’a’ is a sufficiently small quantity compared to the characteristic length scale

of the flow (L) that the Faxen correction term a2∇2u can be neglected. The Basset

history term which includes viscous memory effects into the equation is time and

memory consuming and is usually neglected when restricting ourselves to neutrally

buoyant particles ,i.e., ρp = ρf . Thus, using these assumptions and approximations

equation (2.17) can be simplified as

ρ
dv

dt
= ρ

Du

Dt
− 9νρ

2a2
(v − u)− ρ

2
(
dv

dt
− Du

Dt
) (2.18)

The derivative

Du

Dt
=
∂u

∂t
+ (u · ∇)u (2.19)

is defined along the path of a fluid element whereas the derivative du
dt

is defined

along the trajectory of the inertial particle.

du

dt
=
∂u

∂t
+ (v · ∇)u (2.20)
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If we assume that for very small neutrally buoyant particles Du
Dt

= du
dt

is a valid

approximation, then equation (2.18) can be re-written as

dw

dt
= −2

3
St−1w (2.21)

Where St is the particle Stokes number St = 2a2U/(9νL) = (2
9
)( a
L

)2Ref , and

Ref is the fluid Reynolds number and w = (v − u).

Which upon solution yields

w = w0e
− 2

3
St−1t (2.22)

This essentially means that if the inertial particles are released with a finite

relative velocity w0, the relative velocity decays exponentially to zero with time ’t’

and we would essentially be integrating fluid tracers. However, we know that this

is not the case and that even for very small inertia, the particles exhibit dynamics

which are very different from that of fluid tracers. Thus, Du
Dt
6= du

dt
and we need to

include the expressions [2.19] and [2.20] into equations [2.18] to re-write it as

d(v − u)

dt
= −[(v − u) · ∇]u− 2

3
St−1(v − u) (2.23)

(or)

dw

dt
= −(J + µI) · w (2.24)

Where, J is the gradient of undisturbed velocity field of the fluid which for the

two dimensional flow being considered in this case is the jacobian

J =

∂xux ∂yux

∂xuy ∂yuy

 . w is (v-u) and µ is 2
3
St−1

Now, to obtain the criteria for making sure that the dynamics of inertial
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particles are sufficiently different from that of tracer particles, we diagonalize J and

in the process obtain the diagonalized version of (2.24)

dwd
dt

=

λ− 2
3
St−1 0

0 −λ− 2
3
St−1

 · wd (2.25)

Now, as it is clear from the above equation, the criteria we are looking for is

the parameter Re(λ) − 2
3
St−1. If this parameter is positive, then the initial relative

velocity w0 assigned to the particles may grow exponentially and will definitely not

go to zero very fast.

Thus, the system of equations

dr

dt
= w + u (2.26)

where r(x, y) is the particle position, and equation (2.24) form a non-linear

dynamical system with a 4 dimensional phase space ξ = (x, y, wx, wy) and can be

represented as

dξ

dt
= F (ξ) (2.27)
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Chapter 3

Computational Methodology

3.1 Runge-Kutta Fourth Order Scheme

To numerically integrate the four dimensional system defined in Eq(2.27), we

use a Runge-Kutta, fourth order, non-stiff differential equation solver which takes

in initial values of the four variables in this 4 dimensional dynamical system and

integrates over a specified time interval to return the position and relative velocities

after regular intervals in time. The time intervals to store position and relative velocity

data is given as input to the solver.

3.2 Four Vortex Configuration

For the case of a four vortex flow we consider four vortices placed at the corners

of a 4 x 4 square centered at the origin. The vortices have circulation strengths of equal

magnitude, while the direction of rotation is anti-clockwise for vortices in the first

and third quadrant and clockwise in second and fourth quadrants. The procedure

for choosing the right circulation strength has been described in section(4.1.1). A
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Figure 3.1: The four vortex configuration used to investigate particle trapping using
vibrating cylinders

schematic of this configuration of flow has been shown in Figure(3.1)

3.3 Particles In a Confined Geometry

Two dean vortices are formed in flows through curved microfluidic channels.

Hence, we consider two vortices, one above and one below the y=0 line at (0.5,0.5) and

(0.5,-0.5) on a 2D plane. To simulate the confined geometry of a microfluidic channel

with a circular cross section, we use the Milne Thomson circle theorem described

in section (2.3) and place two image vortices at (1,1) and(1,-1) of circulation that

is opposite in direction to those at (0.5,0.5) and (0.5,-0.5) respectively. This gives

us a circular boundary of radius 1 for fluid flow. As mentioned, this boundary is a

transport barrier only for fluid flow and does nothing to stop the particles from moving

out of the boundary. Particles come into contact with the channel walls in real flows

as there is no mechanism that prevents this, hence we reflect particles off the walls of

our circular boundary if they come into contact with the walls of the channel. This

is achieved by using the MATLAB event function for ODE solvers which can be used
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to detect particular events during the course of numerical integration. The specific

event of interest here is the particle coming in contact with the boundary walls which

are a fixed distance from the origin. We assume that the particles undergo perfectly

elastic collisions and we also consider the vorticity generated by particles bouncing

of the boundary walls [1] to be extremely small compared to the strength of dean

vortices and do not influence the dynamics of the particles appreciably. Thus, the

velocity vector striking the boundary wall at an angle θ to the normal is rotated such

that it is reflected back into the channel at the same angle, using the simple identity

given by w = v − 2(v · n̂)n̂. Vector w and v are sketched in Figure(3.2).

Thus, using this method, we can now make sure that particles do not escape the

circular boundary. An example of a single particle driven by dean vortices bouncing

off the walls has been shown in Figure(3.3)

Figure 3.2: Vector w is the reflected vector and v is the incident vector related by
w = v − 2(v · n̂)n̂
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Figure 3.3: Trajectory of a particle reflecting off boundary walls
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Chapter 4

Results and Discussion

Here, we present the results of our numerical investigation of the dynamics

of inertial particles in simple vortex flow configurations. The criteria to ensure that

relative velocity imparted to inertial particles initially does not die out exponentially

fast, has been outlined. The criteria is in the form of a spatial set in the vicinity

of the vortices which can be computed from the velocity gradient information of the

flow field, within which the particle velocity relative to the fluid does not go to zero.

In the first case, the Maxey-Riley equations[18] were numerically integrated

for particles in a four vortex flow configuration. This model is then further developed

to include an array of several vortices that can be used to segregate particles by size.

In the second case, the inertial particle dynamics is simulated in a confined

geometry to study the phenomenon of inertial particle focusing in curved micro-

channels in the presence of dean vortices. Stokes number dependence for focusing has

been demonstrated.

We also introduce a new mechanism by which an inertial particle can lose its

velocity relative to the ambient flow and can act as a mere fluid tracer under certain

conditions.
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4.1 Sensitivity Field Of Relative Velocity

In almost all naturally occurring flows, inertial particles have a certain velocity

relative to the ambient fluid. The source of this relative velocity could be any number

of external factors ranging from vibration of the system to the sudden start of fluid

flow, which has the effect of imparting a velocity to the particles different from that

of the fluid, because of the particle’s inertia.

If the relative velocity imparted to a certain particle decays to zero exponen-

tially in time, we would not observe any difference in the dynamics of different sized

particles, and all of them would follow the streamlines of flow. However, for every

flow field, there exist regions of the domain inside which the relative velocity of the

inertial particle does not decay to zero. The profile of this region varies with stokes

number of the particle and the circulation strength of the flow. To be able to identify

these regions of interest, we need to go back to the equations derived in section(2.4)

The gradient of velocity field at any given point in the domain is given by the

Jacobian of the velocity field in 2D J =

∂xux ∂yux

∂xuy ∂yuy

 . From equation (2.24) we

know that the rate at which the relative velocity (w) changes is described as

dw

dt
= −(J + µI) · w (4.1)

diagonalizing this equation yields the following relationship between the rate

of change of w, the stokes number and the eigen values of the velocity gradient at

that point in the domain.

dwd
dt

=

λ− 2
3
St−1 0

0 −λ− 2
3
St−1

 · wd (4.2)
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(d) St=0.2

Figure 4.1: Binary plots of regions with Re(λ)− 2
3St

> 0 in gray and Re(λ)− 2
3St

< 0
in white for various stokes numbers

Thus, if the particles with a certain relative velocity start off from or move

through a region with the parameter Re(λ)− 2
3St

> 0, this ensures that atleast one of

the two components of relative velocity in the 2D plane, grows with time. However, if

the particles enter a region with a negative value for the parameter Re(λ)− 2
3St

, the

relative velocity decays quickly and the particles start moving with the streamlines

of flow.

Binary plots of the sensitivity field for the case of a four vortex flow has been

shown in Figure(4.1). The regions with a positive value of parameter Re(λ) − 2
3St

have been shaded gray, whereas the regions with negative values for Re(λ)− 2
3St

have

been shaded white. For a larger stokes number, the value of the parameter 2
3St

is

smaller and thus the gray region is larger in plots for particles with greater stokes

numbers for any given Reynolds number of the flow.
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4.1.1 Separation Of Particles By Stokes Number

Increasing the circulation strength of the vortices and thereby increasing Reynolds

number of the flow, increases the size of the positive region for a given stokes number

of the particles. Thus, using a careful combination of the particle stokes number and

flow Reynolds number in addition to choosing the right configuration of vortices in

the plane, we can design a system which acts as a particle repeller in some regions of

flow and as an attractor for particles in other regions.

To demonstrate this, we choose a set of stokes numbers for a single particle

starting with an initial relative velocity such that its velocity is directed at the nearest

vortex in the second quadrant of the four vortex flow configuration. The value of

circulation chosen for the vortices are such that the particle starts off inside the gray

region of the binary plots for larger stokes numbers and in the white region for lower

stokes numbers. The relative velocity sensitivity field so obtained in shown below in

Figure(4.2).

Numerical integration of particle trajectory for Stokes number of 0.02 shows

us that the relative velocity imparted dies down exponentially fast before the particle

can enter the gray region, and the particle settles into a large periodic orbit along the

streamlines around the vortex. For a larger stokes number such as the case of St=0.1

or St=0.2, we see that unlike the case of small stokes number particles, their relative

velocity sensitivity field has grown larger to include the initial position of the particle

inside the gray region. This ensures that the particle’s relative velocity does not go

to zero and the particles cut across streamlines of flow until they reach the vortex

and collapse into the core of the vortex where they lose all their relative velocity.

This can now be used to design particle traps which can selectively trap par-

ticles of particular sizes by exploiting the dynamics of inertial particles, rather than
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(b) Relative velocity of a particle with St=0.02
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(c) Trajectory of a particle with St=0.1
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(d) Relative velocity of a particle with St=0.1
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(f) Relative velocity of a particle with St=0.2

Figure 4.2: Particles of different stokes numbers settling down into periodic orbits of
different radii around a vortex
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using external forces. One such mechanism is discussed next.

4.2 Size Based Segregation of Particles Using an

Array of Oscillating Cylinders

Here, we seek to separate particles by size by using the four vortex flow configu-

ration introduced in section 2 of chapter 3. The motivation for using this configuration

of vortices has been detailed in chapter 1, section 1.2.1, where the streaming cells set

up by an oscillating cylinder is identified as a vortex generation mechanism which can

be used in flows of larger scales.

A circulation strength has to be chosen for vortices such that a large number

of the larger particles are captured at vortex cores while a lesser number of the

smaller particles are captured. The appropriate circulation strength can be chosen

by looking at the binary plots of the relative velocity sensitivity field introduced in

section(4.1). For a simple four vortex configuration and a sample of approximately

thousand particles, initially spread uniformly on a 3 X 3 rectangular grid, the position

of the particles after a time ’t’ has been plotted in Figure(4.3).

As seen here, many particles cluster around the vortex cores, but in addition

to clustering inside of vortex cores, several particles do escape the cores and settle

into regions outside of the repelling region of the sensitivity field. To over come this

loss of particles that we seek to separate by size, we use not one set of four vortices

but a large number of similar four vortex cells which can be thought of as streaming

cells generated by an array of oscillating cylinders as opposed to a single oscillating

cylinder. This ensures, that particles which have escaped the vortex cores closest to

their starting positions do not easily lose their relative velocities. This is especially
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(c) Distribution of Particles of St=0.1 in a four vortex flow
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(d) Distribution of Particles of St=0.2 in a four vortex flow

Figure 4.3: Particles of different sizes trapped at the vortex cores in a four vortex
flow

true for the particles with higher stokes numbers because the particles are more likely

to always be in the vicinity of an unstable relative velocity region. Plots of a 12 X 12

or 144 vortex flow field for the same number of particles has been plotted Fig(4.4).

The results from these plots show that a far greater number of particles have now

been captured within vortex cores for the larger particles(about 25% for particles of

St=0.1 and a little more than 50% for St=0.2)and the number of particles of smaller

size ending up in the core region is comparatively very small(6.8 % for St=0.02 and

13.6% for St=0.05). Most systems in practice will not be isolated systems and have

vibrations and other disturbances associated with them. Such ambient vibrations

would serve as repeated perturbations to the particle relative velocity. This would

ensure that an increasing number of particles which have settled into periodic orbits

end up inside the vortex cores, eventually giving rise to almost 100% collection of

larger particles, while for smaller particles small perturbations are not sufficient to

cause them to fall into a sensitive relative velocity area and are consequently less

likely to fall into the vortex cores. Hence, this is an effective method of trapping and

separating large particles from smaller particles in flows.
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(b) Distribution of Particles of St=0.05 in a vortex array
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(c) Distribution of Particles of St=0.1 in a vortex array
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(d) Distribution of Particles of St=0.2 in a vortex array

Figure 4.4: Distribution of particles of a range of stokes numbers in a vortex array
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4.3 Inertial Particle Focusing In A Circular Cylin-

der

In this investigation, we seek to explain the differential focusing of inertial

particles of different sizes in a confined micro-channel. We have used the Milne-

Thomson circle theorem introduced in chapter 2 as explained in chapter 3 to impose

a circular barrier to fluid flow. The assumptions under which this simulation has

been performed, namely, Coefficient of restitution=1 for particle-wall collisions and

ignoring the vortex flow generated by particles bouncing off channel walls, have been

detailed in section 3.3. As it is observed experimentally Figure(1.2), the smallest

particles are dispersed in the channel while the larger particles have a tendency to

cluster around the vortex cores giving rise to the focused bands in microfluidic flow

experiments. The reason for this behavior can be understood looking at the binary

plots of the sensitivity field for this flow Figure(4.5(a,c,e,g)). Looking at these plots

it is apparent that for stokes number 0.02, very few particles in the channel would be

present in the repelling region, these particles alone may end up in the vortex core

or they may simply migrate to the white non-repelling region outside the repelling

zone. As these particles get larger, so do the repelling regions. This ensures that

more and more particles end up clustered around the vortex core for higher stokes

numbers because the particles can not exit the boundary imposed upon them.

A simulation was performed for particles with stokes numbers 0.02,0.05,0.1 and

0.2 to clearly demonstrate this behavior of inertial particles in a confined geometry.

The resulting simulation results are displayed in Figure(4.5(b,d,f,h)).

It is found that for particles of stokes number 0.2, 52% of the particles end up

clustered in the vortex core region of small radius 0.1, where as the number is 49%

for 0.1, 24% for 0.05 and only 5% for particles with stokes number 0.02. Vibration of
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(e) Sensitivity field for St=0.1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f) Particles of St=0.1
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(g) Sensitivity field for St=0.2
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(h) Particles of St=0.2

Figure 4.5: Relative velocity sensitivity field for particles over a range of stokes num-
bers (Left) and the corresponding distribution of a set of particles after time ’t’(Right)
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the microfluidic channel acts as perturbations of the relative velocity and increases

the number of particles in the focused band.

4.4 A New Criteria For Inertial Particles To Settle

Down Onto Streamlines

There are two well known criteria for identifying regions in which inertial

particles settle in a flow field.

• Regions where eigen values of the Jacobian of the flow field are real and negative

such as in areas outside of the gray-sensitive (Re(λ) − (2/3St) > 0) region on

the binary plots.

• Regions such as vortex cores, where the Jacobian of the flow field are purely

imaginary.

We propose a third region in the four dimensional phase space Eq(2.27), where

particles may potentially settle down. Regions with both positive and negative eigen

values can also act as attractors for particles (i.e) for some initial conditions the

particles may settle down in the regions that are neither vortex cores nor regions

with purely negative eigen values. This happens if the dynamics of the particle

ensures that the particle stay in regions where the rotation of eigen vectors of the

term −(j + µI) in the simplified maxey riley equation eq(2.24) is large. A plot of

the angle θ by which the unstable eigen vector of the quantity −(j + µI) in Eq(2.24)

rotates about the x axis at various points of the 2D plane of flow in a four vortex

cell has been plotted in Figure(4.6). If the particle’s initial conditions are such that

the trajectory of the particle traverses through high θ regions, then it ensures that
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Figure 4.6: A contour of the angle θ by which the unstable eigen vector of −(j +
µI) rotates about the x-axis with special case and normal trajectories of a particle
superimposed

the particle’s relative velocity decays in an oscillatory manner. The mechanism of

relative velocity decay is explained next.

4.4.1 Mechanism of relative velocity decay in regions of high

eigen vector rotation

Two trajectories of a particle starting from the same point but with different

relative velocities is shown in Figure(4.7). In Figure(4.7(b)), the particle behaves

as expected and ends up inside the vortex core, but in Figure(4.7(a)), the particle

settles down on a periodic orbit around the vortices inside the region with a positive

value for Re(λ) − (2/3St). This can be explained by looking at the eigen vectors of

the right hand side of eq(2.24) which have been superimposed on the trajectories in

Figure(4.7). The stable eigen vector is colored red and the unstable eigen vector is

colored green.
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(a) Special case trajectory of particles losing relative velocity inside Re(λ) − (2/3St) > 0
region
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(b) Normal trajectory of a particle inside Re(λ)− (2/3St) > 0 region

Figure 4.7: Trajectories of a particle starting from different initial conditions in the
4 dimensional phase space
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Figure 4.8: Eigen vectors of relative velocity

For the case of the special case trajectory which settles down in the positive

Re(λ)− (2/3St) region, we see that the stable eigen vector corresponding to the neg-

ative eigen value and the unstable eigen vector corresponding to the positive eigen

value rotate about the axes to a large extent unlike in the normal trajectory. Depend-

ing on the orientation of these eigen vectors, a particular component of the relative

velocity (wx or wy) may be more influenced by either the stable or unstable eigen

vector Figure(4.8).

These large rotations of the eigen vectors ensure that each of the relative

velocity components are influenced in a cyclic manner by both the stable and unstable

eigen vectors, causing the values of wx and wy to rise and fall. However, by definition,

|λ−(2/(3St))| < |−λ−(2/(3St))| and hence the influence of the stable eigen vector is

greater on both components of relative velocity which implies that the cyclic rise and

fall of wx and wy is accompanied by a decay of net relative velocity w Figure(4.9(a))

until all of the relative velocity decays Figure(4.9(b),c)) .
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Figure 4.9: Relative Velocities of a particle starting from different initial conditions
in the 4 dimensional phase space
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Chapter 5

Conclusions and Future Work

Separation of inertial particles by size is very important for several processes

in bio-engineering and chemical engineering and inertial particle dynamics is also of

interest in oceanography and atmospheric flow studies. We have studied the dynamics

of inertial particles numerically, in the presence of vorticity-a phenomenon present in

many flows of interest. A method to selectively capture large particles in a mixture

of particles of various sizes using an array of four vortex cells has been designed. The

empirical observation of size based focusing of particles in curved micro-channels has

been investigated. The effect of dean vortices on particle dynamics has been studied

and the size based focusing behavior is numerically modeled.

A new mechanism by which inertial particles can lose their ability to cut

across streamlines of flow and behave as fluid tracers instead has been introduced.

The criteria to identify initial conditions in phase space which make particles lose

their relative velocities by the new mechanism proposed has also been put forth.

As a suggestion for future work in this area, we believe that calculating the

finite time lyapunov exponents(FTLE)of a large ensemble of particles in the flow

configurations studied would enable us to identify subsets of the flow field where
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particles have either a high or a low sensitivity to random perturbations of their

relative velocity. The ridges of the sensitivity field form transport barriers(Lagrangian

Coherent Structures). This information can be useful in designing particle mixers or

separators.
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