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ABSTRACT 

 

 

A reliable estimate of the physically sustainable discharge of a well is a 

fundamental aspect affecting management of water resources, but there are surprisingly 

few analyses describing on how to make such an estimate. Current available methods 

include either an empirical or a quantitative approach. The empirical method is based on 

holding the head or flow rate constant in order to maintain a target drawdown for as long 

as possible. The second method involves conducting a constant rate test to calculate the 

properties of the aquifer, T and S, and extrapolate the drawdown using a type curve (i.e. 

Theis analysis). 

To improve well performance prediction, we have been using the effects of 

streams on short-term hydraulic well tests to predict long-term performance during 

pumping. An analysis was developed to calculate the long-term steady state specific 

capacity of a well using early-time information from a constant-rate test.  The analysis 

first considers a homogeneous confined aquifer with a well fully penetrating the aquifer. 

A more detailed analysis considers a variable strength of interaction between a stream 

and a well extends the versatility of this method to a wide range of conditions.  

The analysis is evaluated numerically to explore effects from typical Piedmont 

geometries not included in the analysis.  Evaluating the analytical solution with 

numerical models allowed the characterization of different Piedmont geometries to 

determine the effectiveness of the analysis.  Numerical models were allowed to reach 

steady state conditions, and the analysis was compared to the numerical results.   
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The analysis was then evaluated with two field examples from well tests in the 

Piedmont of South Carolina.  The results show that the analysis successfully predicts the 

long term performance of wells within a few percent of the actual observed steady state 

specific capacities. 
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INTRODUCTION 

Effective management of water supplies requires a reliable assessment of well 

performance.  The maximum sustainable volumetric discharge is a primary measure of 

well performance, and several methods are used to estimate this value.  One approach is 

strictly empirical.  A well is pumped at constant rate until the drawdown stabilizes at a 

constant level.  The observed volumetric rate during this test might be an acceptable 

estimate of well performance if the stabilized drawdown is roughly equal to the 

maximum drawdown, which commonly is limited by the location of the pump in the well 

(Driscoll, 1986).  In many cases, the stabilized drawdown may be considerably less than 

the maximum value, so the well could produce at a larger rate than that observed during 

the test.  In this situation, the common procedure is to extrapolate the observed rate using 

the observed steady state specific capacity (ratio of volumetric rate to drawdown; Todd, 

1959; Walton, 1968).  The maximum volumetric rate is then determined as the product of 

the steady state specific capacity and the maximum allowable drawdown based on the 

configuration of the pump or other design aspects of the well (Rosco Moss 1990).  

The merit of the empirical approach is that it is straightforward to conduct and 

analyze.  A common problem is that the duration of pumping that is practical to use in the 

field is too short for the well to reach steady state conditions.  As a result, well tests are 

typically terminated during the transient response, and the observed specific capacity 

exceeds the steady state specific capacity because the drawdown will continue to 

increase.  The volumetric discharge determined in this scenario will over-estimate the 

actual discharge under steady conditions.   
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The empirical approach may cause problems if the well is put into service and its 

performance falls short of expectations.  The use of this technique is widespread and 

many large databases of well performance are populated with estimates obtained in this 

manner.  A potential result is that the performance of entire regional aquifer systems may 

be over-estimated.     

Hydrologists have recognized the shortcomings of the empirical approach and 

they have moved to replaced it with more quantitative methods involving well tests that 

analyze transient behavior.  Pumping the well until steady state is achieved is not 

required in this case.  A typical strategy is to conduct a constant-rate pumping test, 

measure drawdown, and then use parameter estimation methods with an appropriate well 

function to estimate aquifer properties (Kruseman and de Ridder, 1991).  Those 

properties are then used with theoretical models of the aquifer to anticipate the long-term 

performance of the well.  This general strategy is the mainstay of guidelines developed 

by the USEPA (Osborne 1993) and adopted by many states in the form of regulations to 

characterize well performance.   

One shortcoming of this approach is that little guidance is available on how to 

develop a theoretical model for projecting well performance forward in time.  In the 

absence of such guidance, many practioners probably predict well performance with the 

same well functions used to analyze short-term well test.  The most common of these are 

the Theis or Jacob solutions to the drawdown in the vicinity of a well in an infinite 

aquifer (Theis, 1941; Hantush and Jacob, 1955), which are able to fit data from many 

short-term constant-rate tests remarkably well.  These solutions predict that drawdown 
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increases as a function of the natural log of time, so the specific capacity decreases as the 

inverse of log time.   

Many wells are known to reach steady state, and indeed, this is required if the 

empirical approach to characterizing well performance is to provide meaningful results.  

Projecting the transient behavior of the well by extrapolating an inverse semi-log straight 

line will underestimate performance if the well goes to steady state.  The importance of 

this effect will depend on local hydrogeologic conditions because aquifers that are 

unconfined, relatively shallow, and overlain by abundant surface water will host wells 

that go to steady state more quickly than aquifers that are buried deeply beneath 

confining layers.        

The two readily available methods (empirical and semi-log linear extrapolation) 

have basic faults that may cause them to either over- or under-estimate well performance.  

This means that performance estimates derived from well tests may have errors that result 

from flaws in how the test was analyzed.  This suggests that the information used to 

anticipate the role of individual wells in water supplies may be unreliable.  Many other 

analytical well functions have been published and wells can also be analyzed using 

numerical models, so there are myriad alternatives to simply extrapolating an inverse 

semi-log straight line.  Calibrating a numerical model, however, is beyond the scope of 

many projects where estimates of well performance are needed.  And, although analytical 

well functions are available to represent many aquifer scenarios, little information exists 

in how to use them for estimating well performance—their purpose in the scientific 

literature has been almost exclusively to estimate aquifer parameters.   
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Estimating the sustainable discharge of a well is a common need wherever 

aquifers are tapped as water supplies, so it is ironic that 75 years after Theis published his 

landmark paper about analyzing transient well tests there remains limited scientific 

guidance on how to make this estimate.  One complicating factor is that establishing 

―sustainability‖ requires addressing a long list of processes.  Physical attributes of the 

well and aquifer will result in a maximum volumetric discharge that the well can produce 

over a long period of pumping (Theis, 1935, 1940).  This rate may not be sustainable, 

however, because it could deplete surface water flow and damage aquatic ecosystems, 

result in subsidence that damages surface structures, cause seawater intrusion that 

degrades water quality, diminish the performance of neighboring wells, or cause other 

problems.  Moreover, changes in recharge accompanying alterations in land use, 

precipitation patterns, or other factors could also impact sustainable discharge of a well 

(Alley et al 1999; Kalf et al 2005).  .   

Even though the list of factors affecting well sustainability is a long one, they all 

build on the performance defined by the basic physical attributes of the well and aquifer.  

The physically sustainable discharge is what is sought by the empirical and semi-log 

straight line extrapolation approaches (Brown et al. 1963), and it is the starting point for 

more comprehensive evaluations.  Despite the importance of the physically sustainable 

discharge, the currently available methods for estimating this quantity are biased toward 

either over- or under-estimation, so improvements in these methods would be useful 

contributions to the management of ground water supplies.  .   
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OBJECTIVE 

The objective of this research is to develop and evaluate short-term, transient well 

tests as methods to predict the long-term performance of wells.  In particular, the 

objective is to predict the physically sustainable discharge of wells in a hydrogeologic 

setting typical of the Piedmont providence in the eastern U.S.   

APPROACH  

The approach used for this investigation is to first develop a conceptual model 

that represents the essential details of a well completed an aquifer system typical of the 

Piedmont province.  The conceptual model will be used to derive the boundary conditions 

for analytical expressions describing well performance in an idealized setting resembling 

the Piedmont.  That analysis will be the basis for a proposed method for estimating long-

term well performance.  The proposed method will be evaluated and refined by 

comparing it first to the results of numerical simulations of well tests, and then later to 

results of field experiments.  

   THESIS ORGANIZATION 

 Chapter One starts with an overview describing the evolution of the ―safe yield‖ 

concept with respect to aquifer development with insights into development of the 

sustainable yield concept applied to ground water wells. Current guidelines for 

conducting aquifer tests in states within the Piedmont providence will be reviewed. 

Typical hydrogeologic features, aquifer properties, important boundary conditions and 
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geometries typical found in the Piedmont terrain will be used to create a hydrogeologic 

conceptual model at the close of Chapter One. 

Chapter Two describes the theoretical analyses used to predict the long-term 

performance of a well.  Two approaches are given to represent a stream as 1) a single 

layer with a fully penetrating constant-head boundary, and 2) a three layer system with a 

partially penetrating stream separated from the aquifer by a saprolite layer.  

A numerical evaluation of the method for estimating long-term well performance 

is presented in Chapter Three to evaluate typical Piedmont aquifer properties. A baseline 

example is developed for the Piedmont, and simulated pumping tests are conducted. The 

results from the numerical tests are compared to the theoretical for evaluation the 

analyses.   

Chapter Four concerns field application of the method for predicting well 

performance. An approach for estimating well performance is presented. The approach is 

then tested using synthetic drawdown data as an example. The method is then applied to 

two field examples to evaluate long-term performance from short-term well tests 

The results are summarized in Chapter Five. 
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CHAPTER 1 

BACKGROUND 

 

A reliable estimate of well yield is critical for the long-term operation of a well. Over- 

estimating the yield of a well will increase the probability of decreased performance, 

aquifer damage around the vicinity of the wellbore, well equipment failure, loss of water 

supply, and a risk exists of depleting the water resource itself (Driscoll, 1986). Well 

performance is often described as a specific capacity (Rorabaugh, 1953; Bennett and 

Patten, 1960, Walton, 1968, Summers, 1972). 

 c

Q
S

s
  (1.1) 

 where Q is volumetric discharge and s is the drawdown.  Well performance will 

increase with discharge and decrease with drawdown, so Sc is often calculated to monitor 

performance  (Figure 1.1). 

Time 

S
c

 

Figure 1.1. Schematic of specific capacity as a function of time  
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  Under steady state conditions, the drawdown and the discharge are constant, so 

the specific capacity will also be constant.  The volumetric discharge under these 

conditions is often referred to as a ―safe yield‖, (Rosco Moss Co., 1990). The ―safe yield‖ 

concept has been debated for nearly a century (Lee, 1915; Meizer, 1923; Theis, 1940; 

Todd, 1959; Walton; 1970; Bouwer, 1978; Bredehoeft, 1982; and Sophocleous, 2000) as 

the development of ground water has continued to increase.  

 Demand for irrigation and the availability of groundwater increased in the late 

19
th
 century as improvements of irrigation methods and decreasing pumping costs were 

developed, resulting in a need to characterize the rate of water moving into and out of 

underground water reservoirs.  

Lee (1915) first described the term ―safe yield‖ as a rate of water that can be 

removed annually and permanently without dangerous depletion of the aquifer storage 

reserve.  Although Lee is unclear how ―dangerous‖ depletion should be determined, his 

definition became the starting point for considering safe yield at the basin scale. 

Determination of the annual safe yield of an aquifer was first characterized as the average 

rate of recharge to a basin, excluding the rate of water returned to the basin from 

infiltration (i.e. from irrigation) (Lee, 1915). The term ―basin‖ is used to mean an area 

filled with alluvial material, commonly in valleys  (Lee, 1915; Conkling, 1945; and Todd, 

1950), although I will use the term basin interchangeable with ground water reservoir. 

This insight from Lee lead to empirical studies focused on defining both groundwater 

inflows and outflows from basins. 
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Lee recognized that over pumping would drain water from surface water bodies, 

and correlated discharge to surface water bodies to the natural recharge into the basin. 

Safe yield became the rate of recharge required to maintain discharge rates to surface 

water bodies (Lee, 1915). 

Observations made by Lee (1915) and Meinzer (1920, 1923) lead to the 

development of a water balance to characterize water entering and leaving a basin 

(Meinzer, 1920; Todd, 1950).  

Theis (1940) first incorporated the water balance approach by modifying safe 

yield to a perennial safe yield based on induced recharge into the system and discharge 

out of the system as the rate of water that could be utilized. Ultimately, pumping rates or 

perennial safe yield must equal a fraction of the discharge rate to streams to minimize 

―undesirable‖ effects on the basin aquifer. This implies that abstraction may be localized 

within a larger system (Kalf and Woolley 2005), thus suggesting that basin-wide recharge 

may over-estimate a safe yield.  

Conkling (1946) defines safe yield as a rate of water averaged over a period of 1 

year, which is less than the annual rate of recharge and does not excessively lower the 

water table.    Safe yield would be affected when the water table dropped beyond 

pumping capabilities, or when excessive drawdown degraded water quality. This 

approach is based on the rate of recharge to the system, which suggests over pumping can 

change water quality by intrusion; such as salt water entering the aquifer. If the annual 

extraction rate from an aquifer did not exceed the average recharge rate, lower the water 

table beyond current pumping costs, or create changes in water quality from the intrusion 
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of undesirable water into the aquifer then a well was operating under safe yield 

conditions (Conkling 1946). Therefore, a well is operating at a safe yield annually if no 

undesired effects are created (Todd 1959).  

Groundwater pumping stresses the balance between inflows and outflows within 

the aquifer. For a groundwater system to be balanced during pumping adjustments to 

either recharge into or discharge out of the aquifer must occur, or the amount of water 

released from storage will increase (Theis, 1935, Conkling, 1945, Freeze, 1971, 

Sophocleous, 2000). As groundwater storage levels decrease due to pumping, a new 

balance between inflows and outflows must be determined at lower storage levels 

(Sophocleous, 2000).  

Bredehoeft et al. (1982, 1997) described an example of the equilibrium of an 

island under natural conditions and showed how changes to the system changed with time 

based on the volume of water removed. Under predevelopment conditions, precipitation 

first falls onto the island and a water table forms. After the water table is developed, 

recharge to the aquifer is balanced by discharge to ocean, lake or pond body.  

Sustainable development occurs when the volume of water that is captured from a 

pumping well equals the volume of water discharging out of the system (Bredehoeft 

2002). Bredehoeft’s description of an island, suggests that however important recharge is 

to sustainability of a system, that value is not constant, and only the amount of discharge 

occurring can be removed by pumping before changes to storage start occurring. These 

insights are indicative of the change from considering ―safe‖ to ―sustainable‖ yield within 

the groundwater community. 
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Sophocleous (1998, 2000) expands on Bredehoeft groundwater discharge being the 

key for sustainable development by including surface water depletion or induced 

recharge with changes in groundwater storage cased by over-pumping. Comparison of 

stream systems in Kansas were used to show affects of natural recharge compared to 

stream depletion. As natural recharge changes, stream depletion may increase. Therefore, 

sustainable yield should be less than a safe yield based on natural recharge to the system 

(Kalf 2005; Alley and Leake 2004).  The ability to measure and observe these 

undesirable effects became the focus to determine if a withdrawal rate was safe.  

The safe yield of an aquifer has been described as the amount of recharge into the 

aquifer (Lee, 1915; Meinzer, 1915, 1920; and Todd, 1950). The belief that if only the rate 

of water entering the system as recharge is removed then the system has no changed to 

the volume of water in storage. Once the volume of water in storage changes as a result 

of pumping, the sustainable development value of the system must all so change.  

Alley and Leake (2004) expanded the effects of stream depletion by investigating 

yield with respect to the well capture zone. As pumping rates increase, so too must the 

capture zone which can lead to unsustainable capture zones. A well with an unsustainable 

capture zone over long-term development may result in the depletion of surface water 

bodies.  

WELL PERFORMANCE 

Determination of a well’s performance, both for short and long-term use, is a 

common problem for water supply managers. Current methods for predicting a well 

performance include combinations of empirical, analytical, and numerical analysis. The 
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method often used varies depending on the circumstances and use of a well. This section 

will describe commonly used well testing methods used for determining the properties of 

an aquifer. Following the description of well tests, a review of state regulations will be 

discussed to illustrate the methods required by state agencies for determining well 

performance.   

Constant-rate (constant-discharge) pumping tests is the preferred method for 

determining the performance of a well as it provides small to large-scale estimates of 

hydraulic parameters, and responses that can be analyzed using diagnostic methods 

(Kruseman and de Ridder, 1990). A constant-rate test consists of pumping a well for a 

period of time, commonly 24 to 72 hours, while the volume of water removed from the 

aquifer is held constant throughout the entire test (Driscoll 1986). Water levels are 

measured in the pumping well during the test to determine the amount of drawdown, the 

change in head from pre-pumping conditions, caused by the pumping rate. The objective 

of a constant rate is to pump a well to obtain hydraulic properties of the aquifer as the 

well reaches or behaves under near-equilibrium conditions, i.e. negligible changes in 

water levels with time (Roscoe Moss 1990). These tests normally show semi- or quasi 

steady-state conditions, as true equilibrium may never be obtain during the test duration 

(Kruseman and de Ridder 2000). 

 

Government Regulations 

 Regulations describing field and analytical methods for estimating well 

performance have been established by most states. This section reviews the methods for 
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determining the performance of a well required by states located within the Piedmont 

terrain in the eastern U.S. There are industry-wide standards used for conducting 

constant-rate tests, however, the methods required for analyzing test data vary between 

states.  

Selected EPA Suggested Guidelines for Conducting an Aquifer Test  

The USEPA developed guidelines (Osborne, 1993) for well pumping tests that 

have become a standard reference for well testing design, operation, and data analysis. 

Many state agencies have adopted and refined the methods in this report for their aquifer 

testing regulations. 

Pretest Procedure 

 Prior to starting a well test, it is necessary to establish a baseline trend in water 

levels in all wells for at least a week Baseline trends will indicate increasing or 

decreasing water levels, and drawdown during the test must be corrected to account for 

the pre-pumping trends (Osborne 1993).  

Although not required, it is recommended to record barometric pressure changes along 

with the baseline water levels and continue through the testing period. This data can be 

used to correct for effects of barometric changes during the test (Osborne 1993). 

Rate Control 

The pumping rate should be controlled and not allowed to vary more than 5 

percent. The EPA suggests that a 10 percent variation in discharge can result in a 100 

percent variation in the estimation of aquifer transmissivity based on previous sensitivity 
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analysis of pumping test data (Osborne 1993). Discharge rates should be confirmed as 

often as possible or at least 4 times per day. 

Duration of Test 

There is not a set duration an aquifer should be pumped since the objective of the 

test, aquifer type, location of boundaries, and data collection needs may vary from site to 

site. The test should continue long enough for the data collected to adequately define the 

shape of a type curve for reliable calculation of aquifer parameters. Some tests may 

require pumping until drawdown stabilizes (the rate of change in water levels becomes 

small), especially when local boundaries are of interest (Osborne 1993). It is 

recommended that pumping be continued for as long as possible and at least for 24 hours. 

Analysis of Test Results 

The method of analysis used will depend on local aquifer conditions and the 

parameters to be estimated. Data should be plotted on a semi-log or log-log plot and fit 

with a type curve to determine T and S, and perhaps other properties.  

State Agency Regulations 

Unglaciated fractured rock aquifers occur in South Carolina, North Carolina, 

Georgia, Alabama, Virginia, and Maryland, and these states have developed regulations 

for testing wells in this hydrogeologic setting. Aquifer test and analysis guidelines for 

each state are based on the suggested EPA guidelines describe in the previous section 

(Table 1.1). 
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Georgia  The Georgia Environmental Protection Division (GEPD) sets the guidelines for 

conducting an aquifer test. A constant-rate pumping test must be conducted for at least 24 

hours.  Once the drawdown has stabilized, the test must be continued for 4 hours. 

(GEPD., 2000). Georgia EPD has no description on how the performance of a well is 

determined, only that a well must be pumped at the specified production rate for at least 

24 hours.  Analysis of the test data must then follow standard methods employed by the 

United States Geological Survey, or any other method accepted by the hydrogeology 

community. (GEPD., 2000). 

South Carolina  The South Carolina Department of Health and Environmental Control 

(SC DHEC) requires that a pumping test being performed for a public water supply well 

for at least 24 hours (SC DHEC, 2006).  The rate used during the test is recorded as the 

maximum capacity of the well. SC DHEC stipulates that the drawdown and well yield at 

the end of the test be used to calculate specific capacity. The recommended analysis is the 

same as EPA guidelines. SC DHEC does not require stabilization of drawdown. 

North Carolina   North Carolina Department of Environmental Protection (NCDEP) 

requires that a pumping test be conducted and analyzed based on a recognized and 

appropriate method that is valid for site conditions.  For example, field data from boring 

logs, geologic mapping, and location of streams or other surface water should be 

consistent with the analysis used to analyze the well test. NCDEP will not accept an 

analysis based on a best fit result and conclusions made on a best fit alone, they suggest 

using information on methods of pumping tests found in references such as Kruseman 

and deRitter (1990) (NCDEP, 2007). 
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Virginia   Virginia Department of Environmental Quality (V DEQ) guidelines follow the 

EPA guidelines with a minor change in flow rate documentation and stabilization. A well 

should be tested for at least 24 hours at the expected operational rate. DEQ does not 

require additional pumping after stabilization. Flow rate documentation during aquifer 

testing is required. Flow rates need to be recorded every hour for the duration of the test 

period. If the rate varies by more than 5 percent or insufficient flow rate recordings are 

submitted the test results could be rejected (DEQ 2007). V DEQ recommends that the 

evaluation of aquifer test data use the Theis or Hantush type curves. Detailed instructions 

are offered for different assumptions on each curve by V DEQ. 

Alabama   Alabama Department of Environmental Management A(DEM) follows EPA 

quidelines for aquifer testings; however they have expanded the language to include 

capacity of well. The duration of the test should be sufficient for water levels to stabilize 

(+/- 0.1 feet) at the design capacity or production rate, for at least 12 hours. 

Under the capacity test guidelines, ADEM requires a well to be pumped for an additional 

24 hrs after the drawdown has stabilized.  Following the 24 hr period, the rate needs to be 

increased by 150% and pumped for another 6 hours after stabilization of drawdown at the 

new rate. Following the 6 hour period, the pumping can be terminated. If stabilization 

fails at 150% of the designed capacity, a written request for approval must be submitted 

(ADEM Admin. Code r. 335-7-5-.09). 

Maryland  Maryland Department of the Environment (MDE) uses the EPA guidelines 

for aquifer testing. Test durations vary based on hydrologic setting but usually 24 hours is 

the minimum. In fractured rock settings, testing is usually 72 hours (personal 
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communication with MDE). MDE utilizes an internal watershed model to approve 

pumping rates after aquifer properties are submitted from aquifer testing (personal 

communication with MDE). 

Out of the 6 states reviewed, Alabama has the strictest procedures for determining 

the yield of a well. The requirement for a well to stabilize at 150% of the designed 

production rate is intended to prevent the aquifer from be over stressed. South Carolina 

and Maryland allow more leeway during testing as long as the designed flow rates are 

used during the aquifer test. All states require a minimum of 24 hours of pumping in 

order to determine aquifer properties. The terms ―safe yield‖ or ―sustainable pumping 

rate‖ is not used in any state aquifer testing or analysis guidelines. The capacity test 

requirement within ADEM is the closest to defining a sustained rate. 

State Agency
Minimum 

Pumping 

Duration

Stabilization 

of   

drawdown

Suggested 

Analysis Other Notes/ Requirements

Maryland MDE 24 hrs none Theis or other State Model

Virginia DEQ 24 hrs none Theis/Hantush Flow rate variability +/- 5%

North Carolina NCDEP 24 hrs none Theis or other Analysis must be based on site conditions

South Carolina DHEC 24 hrs none Theis or other Q = proposed production rate

Georgia GEPD 24 hrs 4 hrs Theis or other Q = proposed production rate

Alabama DEM 12 hrs 24 hrs Theis or other after 24 stabilization, increase Q by 150%, and 

restabilize for 6 hrs

Note: Stabilization refers to a change in water lever of 0.1 ft/12 hrs

 

Table 1.1.      Aquifer Test and Analysis regulations for six states from the Piedmont 

Province. 
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Piedmont Hydrogeology 

This section describes the development and current hydrogeological features 

important to Piedmont terrain in the southeastern United States.  Understanding the 

spatial variability in hydrogeological features used in current conceptual models is 

important during the interpretation of hydraulic well tests.  

Location 

The Piedmont Physiographic Province extends from Alabama to Pennsylvania 

and into New Jersey (Figure 1.2), and is bounded to the southeast by the Atlantic Coastal 

Plain and to the northwest by the Blue Ridge Mountains. The Piedmont Province is often 

classified in conjunction with the Blue Ridge Region as the Blue Ridge and Piedmont 

Aquifer System (BRPAS); one of the largest igneous and metamorphic aquifer systems in 

the United states. BRPAS contains hundreds of local aquifers composed of fractured 

igneous and metamorphic rock units (Swain et al., 2004). 
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Geology 

The Piedmont terrain is the result of at least three major tectonic events from the 

Proterozoic to Mesozoic. The North American and African plates separated and diverged 

during the Grenville Orogeny, one billion years ago, setting the stage for the formation of 

the Piedmont and Armorica Island Arc systems during the late PreCambrian (Stern and 

others, 1979).  Plate motion changed and the North American and African plates 

converged in the late Proterozoic.  The Piedmont Island Arc system first made contact 

with the North American continent in the early Cambrain (550 to 570 million years ago).  

It was thrust onto the North American Craton during the Taconic Orogeny (Hatcher, 

1974). A convergent margin persisted and the Avalonian Arc was sutured onto the North 
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Figure 1.2.     Location of Piedmont Terrain in the Southeastern United States (modified 

from Swain et al. 2004) 
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American plate during the Acadian Orogeny in the Devonian (350 – 400 m.y.a).  Thrust 

faults and folds, and high grade metamorphism occurred during the Taconic and Acadian 

Orogenies (Stern and others, 1979).  

The Piedmont Province is divided into two regions; western and eastern, which 

are separated by the central Piedmont suture (Hatcher, 1991).The Inner Piedmont Terrane 

represents the western section. The Inner Piedmont is bounded to the west by the Brevard 

Fault Zone and to the east by the Central Suture, within the Carolinas. Rock types are 

contained in numerous blocks of thrust sheets comprised mainly of schist, gneiss, and 

amphibolites. Some ultra-mafics and intrusive granitoids (Horton and McConnell, 1991) 

are also present. The Avalon Terrane, the eastern section, is bounded to the west by the 

Central Suture and to the east by the Atlantic Costal Plain, which are divided into groups 

of differing metamorphic belts. 

Hydrogeologic Conceptual Model 

The currently recognized hydrogeologic conceptual model consider the Piedmont 

Province to be underlain by a two-layer system composed of regolith and underlying 

fractured bedrock (Heath, 1989; LeGrand, 1988) (Figure 1.3). The regolith consists of 

bioturbated soil and saprolite.  The contact between the regolith and fractured rock 

commonly is gradational, and in some cases a transition zone of weathered rock is 

recognized between these two units.   

Saprolite, the dominant feature of the regolith, is a clay-rich material resulting 

from in-place weathering of bedrock. Textual features from the original bedrock, such as 

fractures and bedding planes, are preserved in the (Heath , 1989; Daniels, 2002). The 
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transition zone represents the grading of unconsolidated material into bedrock. Porosity 

values decrease with depth in the transition zone (LeGrand, 1967; Rutledge, 1996; Heath, 

1989; Daniels, 2002). Higher permeability values are found in the transition zone. 

Particle sizes range from clays to large boulders of un-weathered bedrock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Porosity  ranges from 35 to 55 percent throughout the regolith, which is 

considered to be a storage reservoir for the underlying bedrock (Heath, 1990; Daniels, 

2002; LeGrand, 2004; Williams, 2001). Groundwater flow moves through the regolith 

and into fractures in the underlying bedrock, while another component of flow moves 

 

Figure 1.3.  Conceptual hydrogeology model of the Piedmont         

Province (Heath, 1989) 
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through the regolith and parallel to the bedrock surface towards discharge areas such as 

streams and springs (Figure 1.4).   

Crystalline rock and saprolite systems are characterized as unconfined aquifers. 

Water enters as recharge and flows through the unsaturated zone until reaching the water 

table of the saturated zone of the regolith. Groundwater then flows to areas of discharge 

such as streams, lakes, seeps, and springs. Igneous and metamorphic rocks comprise the 

bedrock and have low porosity and permeability values. Vertical and horizontal fracture 

systems are the secondary sources of permeability in the bedrock (LeGrand, 1967). 

Piedmont Well Yield 

Several studies (Stafford, 1983; Snipes, 1984, Daniel, 1992, Swain et al., 2004) 

have described typical yields Piedmont wells.  Daniel (1992) found average flow rates 

ranged from 50 to 110 m
3
/day (9 to 20 gpm) by reviewing 3787 wells throughout the 

Piedmont terrain, with an average yield of 80 m
3
/day (Daniels, 1992). Well depth and 

diameter was defined as a controlling factor for a wells yield, as deeper and larger 

diameter wells tend to have increased wellbore storage, allowing for increased drawdown 

during pumping.  

Snipes (1983) and Stafford et al (1984) related well yields in the Piedmont to the 

presences of fracture zones.  Wells with greater yields were most often associated near 

fracture traces, or linements. Snipes (1894) presented well distance to fracture traces 

correlated to increased yield. 

Swain et al (2004) related the available well yield data from wells in the Piedmont 

terrain to the rock formation each well was completed within. On average, the largest 
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yields were found with wells drilled in Gneiss – Schist, which ranged upwards of 300 

m
3
/day. Wells drilled in phyllite and gabbro produced the lower yields ranging from 20 to 

50 m
3
/day (Table 1.2).  
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190 - 120032.5Shale Sandstone

55 - 32710.2Gneiss-Schist

27 - 553.7Phyllite-Gabbro

Well Yield 

m3/d

Average 

Transmissivity 

m2/d

Rock Type

190 - 120032.5Shale Sandstone

55 - 32710.2Gneiss-Schist

27 - 553.7Phyllite-Gabbro

Well Yield 

m3/d

Average 

Transmissivity 

m2/d

Rock Type

 

Table 1.2.      Well yields and transmissivity values from 

wells in the Piedmont, modified from Swain 

and others 2004. 

 

Statistical analyses by Swain et al (2004) show yields of wells completed in 

metamorphic rocks are higher than yields of wells completed in igneous formations.  

Revised Conceptual Model 

Wells in the Piedmont are known to go to steady state because they are pumped 

for long periods without systematic increases in drawdown.  The two-layer hydrogeologic 

conceptual model (Heath, 1989) attributes well performance in the Piedmont to the 

removal of water stored in the saprolite.  While this process is certainly important, it 

precludes the possibility that wells go to steady state.    

It appears that the hydrogeologic conceptual model for wells in the Piedmont 

should be modified to allow for conditions that include both transient removal of water 

from storage and steady state conditions.  In general, steady state conditions will only 

occur when water can be derived from a source other than removal from storage.  Surface 
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water is the only viable option for such a source in the Piedmont.  Stream spacing in the 

Piedmont is roughly 1 km (Bott 2006), so wells will typically be within 500 m of a 

stream.   

The revised conceptual hydrogeologic model for the Piedmont considers fractured 

rock overlain by saprolite with a stream along the top of the saprolite (Fig. 1.5).  The 

fractured rock is characterized by moderate K and small S, whereas the saprolite is 

characterized by moderate K and moderate to high S (Table 1.3). The resistance to flow 

between the fractured aquifer and the overlying saprolite ranges from high to low, 

depending on the depth of the transmissive fractures in the rock and the hydraulic 

properties of the rock between the saprolite and the transmissive fractures.     

L
(m)

w
(m)

b'
(m)

T
(m2/d)

Ssap Srx

Minimum 1 1 1 1 1.E-04 1.E-06

Maximum 500 30 30 30 0.3 1.E-03
 

Table 1.3.      Typical Piedmont property ranges (Heath, 1990; Daniels, 2002; LeGrand, 

2004; Williams, 2001). 

 

Pumping a well in this hydrogeologic setting will initially remove water from 

storage in the fractured rock.  This will be followed by a period of removal of water from 

storage in the saprolite.  Eventually, drawdown caused by the well will interact with the 

stream and this will cause the system to go to steady state.   
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The stream-well interaction is what causes steady conditions.  In an idealized case 

where recharge is negligible, steady state occurs when the flow out of the stream matches 

the pumping rate.  However, recharge in most natural systems will cause mounding of the 

initial water level, with the ambient ground water system characterized by a divide 

between two streams (Fig. 1.6).  Pumping produces drawdown that is superimposed on 

this system, creating two divides in cross section (Fig. 1.6).  Water between the divides is 

captured by the well, whereas water outside of the divides continues to flow to the 

streams.  It is important to recognize that steady recharge will influence the location of 

the capture zone, but it has no effect on the hydraulic transient caused by the well.  As a 

result, recharge has no influence on when the well goes to steady state, nor does it affect 

the magnitude and distribution of drawdown that occurs at that time.  We propose that 

this behavior is typical of wells operating in the Piedmont. 

 

 
Figure 1.5.     Conceptual model of the Piedmont including a stream atop the 

saprolite layer. 
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Figure 1.6.     Hydraulic head profiles at different times in a aquifer with a well pumping 

between a stream and recharge zone. Black arrow represents a ground water 

divide between a pumping well and stream. 
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CHAPTER 2 

DESCRIPTION OF THE ANALYSIS 

 

There appear to be two methods currently in use for estimating the physically sustainable 

yield, or the specific capacity of a well.  One is an empirical method that simply observes 

the well performance during a short test and assumes it will remain unchanged in the long 

term.  The other method uses a short-term test to determine aquifer parameters, and then 

applies these parameters to analyses that predict long-term performance.  The second 

method provides a scientifically tenable approach to estimating well performance, but 

there are few publications describing or evaluating this technique.   

The purpose of the following chapter is to outline analyses that are intended to 

estimate well performance in hydrogeologic conditions typical of the Piedmont.  There 

are myriad factors that could affect well performance and a few of them include: 

1. Interference from nearby wells 

2. Interaction with surface water 

3. Interaction with saprolite 

4. Well skin  

5. Transient recharge 

6. Large drawdown changes saturated thickness, dewaters fractures 

7. Unknown heterogeneities 

8. Aquifer terminates or is compartmentalized 
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A complete analysis of well performance would include all of these, and perhaps 

other, factors.   It would be possible to include many factors affecting well performance 

in a numerical analysis, which would certainly have the potential to provide an accurate 

prediction.  A detailed numerical simulation could require considerable skill to set up and 

considerable effort to calibrate, and while this level of effort would be warranted for 

some applications, it would likely be too costly for many cases.   

An alternative is to consider the factors that are most important and use an 

analytical solution to develop a closed form solution.  Some factors must be ignored in 

this approach, so it is important to identify and include those that are have the most 

control on performance.  It is also important to verify that the factors that have been 

omitted either have a limited effect on the results, and that it is possible to recognize and 

account for their effect. 

We will assume that the well that is being used is relatively isolated and 

unaffected by drawdown from neighboring wells.  Of course, there are many cases where 

the performance of wells in close proximity is important to understand, but this problem 

will be deferred for later after the problem involving a single well has been evaluated. 

We will be interested in evaluating cases where wells go to steady state because this 

behavior is observed in the Piedmont.  In order for steady state to occur, there must be a 

source of water other than removal from storage.  Streams are common in the Piedmont, 

with the stream density (average spacing between streams) roughly 1 km.  This implies 

that most wells will be within 500m of a stream.  We propose that wells in the Piedmont 

that go to steady state do so by interacting with streams.  In some cases, the wells may 
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recover water from the streams, but the more likely scenario is that the well captures 

water that has recharged the aquifer and is destined to discharge to the stream 

(Bredehoeft 1997, 2002). 

It will be important to include a stream in the analysis, but steady recharge will be 

ignored because it has no effect on the magnitude and distribution of drawdown.  Steady 

recharge will affect flow paths and the well capture zone, but the focus of this analysis 

will be drawdown.  Recharge can be included to the analysis developed here using 

superposition.    

Well skin plays an important role in well performance (Earlougher 1977) and it is 

fairly straightforward to characterize in the field.  It is also fairly straightforward to 

include in theoretical analyses, so it will included in the theoretical approach used here.   

Saprolite is recognized as a key component affecting well performance in the Piedmont 

(LeGrand, 1967, 1988, 2004; Heath, 1989; Rutledge, 1996; Daniel, 1992, 2002; Swain, 

2004), and we will include it in our evaluation.  The approach we will use it to avoid 

explicitly recognizing saprolite in the analysis (although it can be included in the form of 

effective parameters).  However, several analyses will be presented that evaluate the roles 

of contrasts in both K and S between the rock aquifer and the overlying saprolite.   

Some wells used for water supply may be highly stressed by large drawdowns, 

particularly in times of drought.  Large drawdowns can dewater fractures in open 

boreholes, and this will introduce non-linear responses that are difficult to anticipate.  We 

recognize that this effect does occur and can be important, and that direct extrapolation of 

results of the linear problem assuming small drawdown may be provide inadequate 
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estimates of performance when large drawdowns occur.  This effect probably will be 

included in later work, but here we will assume that drawdowns are small. 

Heterogeneities can certainly play a big role in well performance, and the 

magnitude of their effect will depend on their size and relative distribution of properties.  

Heterogenieties with characteristic dimensions that are small compared to the region 

affected by drawdown probably can be represented for problems involving pressures 

using effective average properties of K and S (in contrast to problems involving transport 

where small scale heterogeneities may be important).  As a result, the properties used in 

the analysis will be assumed to be average values. 

Large-scale heterogeneities may have significant effects on well performance that 

cannot be represented by averaging.  An excellent example of this is a rock aquifer that 

consists of finite regions of interconnected fractures bounded by regions where fracture 

connectivity is low.  This effectively partitions the aquifer into compartments.  Well 

performance can abruptly decrease when drawdown interacts with compartmental 

boundaries.  This important effect will be addressed briefly, but a thorough treatment will 

be deferred.         

CONFIGURATION       

The analysis will assume that the well fully penetrates a homogeneous aquifer of infinite 

extent, which is overlain by a sink representing a stream (Fig. 2.1).  The stream is 

separated from the well by a distance L, and from the aquifer by a thickness, b’.   The 

thickness of the aquifer is b.       
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Figure 2.1.   Cross-section of geometry used in the analysis.   

 

THEORETICAL ANALYSIS 

The problem will be analyzed by assuming the well fully penetrates the aquifer and the 

saturated thickness is large compared to the drawdown.  Vertical flow is ignored.  This 

allows the use of the linearized form of the differential equation describing head in an 

aquifer    

 2 h
T h S R

t


  


 (2.1) 

where derivatives in the vertical, z, direction are zero, T is transmissivity, S is storativity, 

and R is flux due to fluid sources. The origin of coordinates is at the stream and a well is 

at x = L, y = 0.  The pumping rate of the well is Qw.  The stream overlies the aquifer and 

the flux from the stream to the aquifer is 
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where Ksap and b’ are respectively the hydraulic conductivity and thickness of the 

material between the top of the aquifer and the stream (Fig. 2.1).  ho is the head in the 

stream.  The source term is (Hunt 1999) 

 ( ) ( ) ( ) ( )
'

sap

o w

K
R h h x Q x L y

b
       (2.3) 

where  is the Dirac delta function.  The initial condition is  

 ( , ,0) 0h x y   (2.4) 

The far-field boundary condition is 

 2 2( )
lim ( , , ) 0

x y
h x y t

 
  (2.5) 

For convenience, the analysis will be presented in terms of drawdown 

 ( , , ) ( , ,0) ( , , )s x y t h x y h x y t   (2.7) 

The solution to this boundary value problem can be obtained using Laplace and Fourier 

transforms (Hunt, 1999).   
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The function g(x, y, t, ) accounts for the effects of the stream, where  is streambed 

leakage.   

The dimensionless drawdown is 
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where   
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accounts for the effects of the stream, and   
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Figure 2.2.     Dimensionless drawdown as a function of dimensionless time 

for different values of β. 

   

The parameter characterizes the interaction between the stream and the aquifer.  

When  is large, G is equivalent to an image well function (Hunt 1999; Butler 2001) at xd 

= -1, which causes the stream to behave as a constant head boundary of the aquifer (Fig. 

2.2).  Decreasing the value of  implies a decrease in the influence of the stream on the 

drawdown, and it increases the drawdown and the time required to reach steady state.  It 

is noteworthy, however, that the presence of the stream always causes to well to go to 

steady state regardless of the value of .     

STEADY STATE BEHAVIOR 

The long-term behavior of the well will approach steady state conditions.  Using the 

natural log approximation for E1 (Jefferys 2004) gives 
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which gives 
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So the steady state drawdown profile perpendicular to the stream and intersecting the 

well is 
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 The drawdown at the well can be obtained using xdw = 1 + rd.  Assuming the distance to 

the stream is much larger than the well radius, 1dwx  .  It follows that the dimensionless 

steady state drawdown at the well is  
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where rdw = rw/L in keeping with the scaling in 2.9.  The skin factor, sk, is introduced to 

account for head losses in the vicinity of the well, and it is assumed (Earlougher, 1977) 

    
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 (2.13b) 

where sa and se are the actual and expected drawdowns, respectively.  Following (1.1), 

the specific capacity of the well at steady state is 
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where sss is the steady state drawdown, so from 2.9d 
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which can be expressed alternatively as 
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where the second term is a correction that accounts for contributions from  and sk as 
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INTERPRETING SHORT-TERM TESTS 

The long-term behavior of a well in an idealized aquifer depends on T, S, L, and sk.  

There are several ways that this analysis (2.15) can be applied, depending on the 

available data and assumptions that are appropriate.  All of the methods assume that T, S, 

and sk can be determined from the short-term well test using standard methods.  The most 

ideal application occurs when at least one monitoring well is available to facilitate 

estimating S, and sk.   

Using the full analysis (eq. 2.15) requires estimates of L and .  L can be 

measured by surveying, or from reliable maps.  The data required to determine  (eq. 

2.9f) can be obtained from drilling and localized in-situ measurements.  It may be 

possible to estimate  with sufficient accuracy for some applications when direct 

measurements are unavailable.     

In some cases it may be appropriate to assume the stream cuts through the aquifer 

and is large.  Perhaps the stream is known to cut the aquifer, or perhaps no information 

is available for calculating  so 2.9f cannot be solved.  The term involving in  

probably can be safely ignored when > 10In this case, the stream behaves as a 

constant head boundary and the image well solution (Muskat, 1935; Hantush and Jacob, 

1955; Hantush,1965; Ferris, 1959) can be used to approximate well performance.  The 



40 

 

drawdown for this case will approach a semi-log straight line soon after the start of 

pumping, and then the slope of the curve will decrease when the effects of drawdown 

reach the boundary.  Eventually the curve will flatten completely and the drawdown will 

remain constant (Fig. 2.3).   

When  is large, the steady state specific capacity (eq. 2.15) becomes  
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 (2.16) 

There are at least 3 methods that can be used for implementing the simplification in eq. 

2.16.   

Simplification Method 1 

Measure L using surveying techniques or from a map, and substitute into 2.16.   

Simplification Method 2 

The distance between the well and a stream may be unknown, or there may be several 

streams or lakes of different sizes in the vicinity of the well that make direct 

measurement of L ambiguous.  In this case, it may be feasible to use the drawdown curve 

to estimate an effective value of L.   

The slope of the drawdown curve decreases from a constant value when the 

drawdown interacts with the stream.  The slope changes gradually at first and the initial 

change can be subtle and difficult to locate precisely.  In most plots, it is quite clear that 

the slope has changed when it is 0.8 of the maximum slope.  This time, t0.8, can be 
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identified approximately by manually fitting a straight line and selecting the time when 

the slope deviates from the line.  Alternatively, this time can be identified unambiguously 

by plotting the normalized first derivative. 

The time when the semi-log slope changes to 0.8 of the maximum slope can be 

determined using (2.9) for large  as
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which is the image well solution (Muskat, 1935; Hantush and Jacob, 1955; 

Hantush,1965; Ferris, 1959).  The slope on a semi-log plot is 
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Setting yd = 0, xd = 1 + rd in 2.17 to get the drawdown at the well, and substituting 2.17 

into 2.18 gives the response at the well 
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where rd =  rw/L.  Assuming the well radius is small compared to the distance between the 

stream and the well gives rw<<L, or rwd0, so the semi-log slope of the drawdown at the 

well is 
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The semi-log slope is equal to 0.8 at td0.8, so from 2.20   

 
0.8 2.48dt   (2.21) 

It follows from 2.9c that the time when the semi-log slope has changed by 0.8 is 
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Solving 2.22 for the distance to the stream 
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and substituting into 2.16 
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Note that an alternate use for the analysis outlined above is to compare t0.8 

determined from field data to the results from 2.22 where L is measured in the field.  

Where t0.8  measured from a plot of field data is significantly less than the results from 
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2.22, then it may be that the change in slope in the field data is due to something other 

than interaction with a stream.   

 

Simplification Method 3 

In cases where L is unknown and only a single well is available, it will be difficult to 

obtain a reliable value of S from the well test so Method 2 (eq. 2.24) may be unsuitable.  

 
Figure 2.3.     Drawdown as a function of time (thick black line), and semi-log slope of 

drawdown (dashed) .  t0.8 is identified using a line fit to the semi-log linear 

portion of the drawdown curve (green dashed and dotted line). t0.8 also 

identified using the derivative plot (pink arrows) . 
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An alternative approach that also uses data at the time when the semi-log slope changes 

seems feasible.  The drawdown prior to interaction with the stream is given by    
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so at td = 2.48, the dimensionless time when boundary interaction becomes detectable,  

the drawdown is 
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The dimensionless drawdown at the well at steady state is eq. 2.13a 
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where  is large and sk is ignored. 

   

the difference between the drawdown at steady state and at t0.8 is 
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Using the definitions of dimensionless drawdown (eq. 2.9d) and specific capacity (eq. 

2.14), and rearranging  
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0.80.157
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S T
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
 (2.29) 

where Sc0.8 is the specific capacity at the break in slope (t = t0.8). 
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CHAPTER 3.0 

NUMERICAL EVALUTION  

 

Several methods are available for estimating long-term well performance, and in the 

previous chapter I presented one that is theoretically based and should be straightforward 

to apply.  The method will be evaluated by comparing data describing the actual 

performance of wells under different conditions to the performance predicted by the 

proposed method.  This will be done first by using numerical models to represent wells 

operating in hydrogeologic scenarios similar in the Piedmont.  The parameters and 

geometries of the scenarios used to set up the models will then be used in the method for 

estimating well performance.  The difference between the observed and predicted 

performances will be used to provide a quantitative assessment of the error resulting from 

the proposed method.   

NUMERICAL ANALYSIS 

The numerical simulations were conducted using MODFLOW (McDonald and 

Harbaugh, 1988) with the Groundwater Vista 4.0 version 4.19 interface (Rumbaugh, 

1998). MODFLOW is a finite-difference groundwater flow model that solves the partial 

differential equation describing the three-dimensional movement of groundwater of 

constant density through porous material given as (McDonald and Harbaugh 1988): 
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where Kxx, Kyy, Kzz are hydraulic conductivity values (LT
-1

) along the x, y, and z 

coordinates, h is the potentiometric head (L), qw is a volumetric flux per unit volume 

representing sources and/or sinks of water (T
-1

), Ss is the specific storage (L
-1

), and t is 

time (T). 

Geometry 

The model consists of a rectangular region containing a vertical well and a stream 

represented as a region of constant-head. The region is divided into two zones of different 

properties representing saprolite of thickness, b’, and the underlying fractured rock of 

thickness, b. The well is screened across the bottom zone. A stream is represented as a 

long, straight strip of constant head cells at a distance, L, from the pumping well along 

the top of the upper zone (Figure 3.1). The lateral dimensions of the rectangular region 

are large, and the region is assumed to be of infinite extent. 
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Figure 3.1.     Conceptual geometry a.) plan view b.) side view of well screened in a layer 

separated from a partially penetrating stream by a layer representing a 

saprolite aquifer.  

 

Boundary Conditions 

The model is bounded on the sides and bottom by no-flow conditions.  The top is no-flow 

except a single row of cells in the top layer is held at constant head to represent a stream. 

The width and location of the row representing the stream were varied to account for 

different geometries (Table 3.1).  The distance between the well and the stream ranged 

from 10m <  L < 500m . (Table 3.1). 

The well is represented as a fully penetrating, vertical analytic element in the 

center of lower zone.  The well is pumped at a constant rate of 0.03 m
3
/min for all the 

simulations.  The analytic element distributes the total volumetric rate evenly over all the 
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cells representing the well.  Screen elevations are set to the top and bottom layers of the 

bottom zone.  

Distance 

(m)

Column 

Number
Actual Model Distance 

(m)

L=10 80-85 8.64

L=30 81 31.79

L=50 78 55.93

L=100 73 105.91

L=250 58 255.98

L=500 33 505.91
 

Table 3.1.      Location in column numbers and model distances from 

the pumping well to constant head strips used in the 

numerical simulations. 

Parameters 

Parameters consist of hydraulic conductivity of the rock and saprolite, Krx and Ksap, and 

specific storages of Srx and Ssap.   which were set to S = 0.0001, and was held constant in 

the bottom aquifer, Srx, and varied in the upper aquifer from Ssap = 0.0001 to 0.3.  

Hydraulic conductivity was assumed to be isotropic and both K and S were assumed to be 

uniform within each layer. 

Grid Design 

A grid was designed to solve the discretized form of eq. (3.1) with acceptable numerical 

performance using the geometry and boundary conditions of the problem. There were 

three objectives for designing a grid; (1) the size is large enough to prevent far-field 

boundary effects during pumping, (2) the mass balance error is less than 1%. (3) a stream  

can be represented at different distances from a pumping well; (3) the  run time is modest 

(less than 10 minutes) to allow for multiple runs to be conducted in a reasonable time.  
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The grid contained 200 rows by 200 columns with 8 layers for a total of 320,000 

cells. The well was located in row 100, column 100. The well is at the center of 10 x 10 

square cells that are 0.5 m on a side (Fig.  3.2). The spacing of the column and rows was 

increased geometrically outward from the central region of uniform cells (Fig.  3.2). A 

1.2 multiplier was used to increment the grid size (Anderson and Woessner, 1992), and 

this resulted in a total model domain 1.66 x 10
7
 m on a side.  Local adjustments in the 

grid were made by changing the spacing of the columns to match a particular stream 

location and width.  

Solver 

The Strongly Implicit Package was used to solve the partial differential equation. This 

solver was chosen because it was able to successfully converge for most cases in less 

than 5 minutes. The stress period duration was set to 10,000,000 minutes with 100 time 

steps and a time step multiplier of 1.2. This allowed each model case to reach steady state 

conditions, with a convergence criteria of 0.001. Mass balance percent error ranged from 

6.7 x 10
-6

% to 1.3 x 10
-6

. 

 



51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8085909510010511011512012011511010510095908580
N

 
Figure 3.2.     Map view of model grid showing location of the 

constant head boundary representing stream (blue) 

relative to the pumping well (red). 
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Geometry Cases 

Idealized cases were developed in which dimensions were determined for conditions 

typical of the Piedmont (Figure 3.3). Stream width, w, ranges from 1 m to 10 m, 

representing first to second-order stream channels in the Piedmont (Sweeney 1992; Bott 

et al. 2006). The distance to the stream, L, ranges from 10 m to 500 m. The spacing of 

first-order streams in the Piedmont is approximately 1 km (Harman 1989; Bott 2006), so 

I assumed the greatest distance to a stream as 500m.  Saprolite thickness, b’, ranges from 

5 to 30 m  based on thicknesses summarized by (LeGrand 1967; Kasper 1989; Seaton 

2000). The rock aquifer thickness, b, was assumed to range from 5 to 70 m (LeGrand 

1969; Heath 1989; Cressler 1996 and 2000).  

A baseline case was formulated to represent average values, and high and low 

cases represented end members of the ranges (Table 3.2). The baseline case was further 

refined into include four sub-cases to provide additional resolution on the dimensions of 

the saprolite (Table 3.2). 
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Figure 3.3.     a.) Conceptual cross-section of the hydrogeology of the Piedmont and b.) 

Conceptual model represented as three zones in a numerical model with 

dimensions w, L, b’, b. 
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Table 3.2.  Dimensions of cases used to characterize range of geometries.  

  
Low  Baseline  High Low   

Case 1 

Low  

Case 2 

Low  

Case 3 

Low  

Case 4 

w (m) 1 10 30 1 10 1 10 

b'(m) 5 10 30 10 5 10 5 

b (m) 5 30 70 30 5 5 30 
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Evaluation  

The evaluation was conducted by running transient simulations until steady conditions 

were achieved, and then using the input values from the numerical model to estimate well 

performance using the method described in Chapter Two.  Changes in drawdown 

diminished gradually in the numerical models and I assumed that steady state conditions 

were reached when the maximum change in head between time steps was equal to the 

convergence criteria (0.001m) for three consecutive time steps.  In most cases, this 

occurred during simulation times of less than 10 years.  Most simulations were run to 200 

years to ensure that steady conditions were reached.  Specific capacity at steady state, 

Scss, was determined by dividing the pumping rate by the drawdown at the end of the 

simulation.      

Specific capacities estimated using the methods described in Chapter Two (eqs.  

2.15 and 2.16) were based on the parameters and dimensions used in the numerical 

model.  T and S were obtained from values assigned to the zone representing the rock 

aquifer.  The stream strength term, β, was determined using the model inputs for Ksap, Trx, 

b’, L, and w.    

 The accuracy of the predicted Scss will be assessed using the percent relative error 

 

 
ssc ssc

ssc

Predicted  - Actual 
*100

Actual 
Sc

S S
E

S
  (3.1) 
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The numerical model was used as a surrogate for field tests, so the results from the 

numerical model will be taken as ―actual‖ values, whereas the results from eqs.  2.15 and 

2.16 will be used as ―predicted.‖     

2D HOMOGENEOUS VALIDATION 

A geometry mimicking the  2D solution was set up using w =10 m, b = 30m, L = 275 m, 

T = 28 m
2
/d and Ss = 0.0001 m

-1
 (Figure 3.4).  Cells in the upper layer were set to 

constant head where the stream occurs, and they were set to no-flow elsewhere.  The 

saprolite thickness was set ’=0 to ensure the model was 2-D.  The simulation was run for 

10 x 10
6
 minutes (~19 years). 

The observed specific capacity is Scss = 0.1106 m
2
/min (Figure 3.5). The predicted 

value using eq. 2.16  is Scss = 0.1145 m
2
/min, giving ESc. = -0.279 %.  This small error is 

probably due to truncation when eq. 3.1 is discretized.   

This result demonstrates that eq. 2.16 can predict results nearly exactly when the 

geometries, parameters and boundary conditions used in the numerical model are the 

same as those used to derive the analytical expressions in Chapter Two.  The following 

sections present results where geometries and parameters are used to represent field 

conditions that differ from conditions assumed in Chapter Two.   
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Figure 3.4. Model geometry for validation of numerical model.  
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Figure 3.5.     Drawdown (solid line) and semi-log slope (dash line) as functions of time 

for the 2D homogeneous baseline model.   
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BASELINE EVALUATION 

The aquifer will now be represented in 3-D by expanding the vertical dimension and 

using the geometry in Figure 3.3a.  The baseline model characterizing average Piedmont 

geometries (Table 3.1) will be used with rock properties of T = 26 m
2
/d and S = 0.0001 

m
-1

.    These data give β=0.4 using eq. 2.9f.  

The drawdown slope stabilized and met the head change convergence criteria per time 

step at approximately 80 days. The observed specific capacity at the end of pumping is 

Sssc = 0.002739 m
2
/min (Figure 3.6). The result predicted by eq. (2.22) is Sssc =0.002864 

m
2
/min. The error in the baseline numerical model is 4.55% (Figure 3.6).  

This result shows that the full analysis slightly over-predicts Scss for the baseline case.  

This error occurs because the flow converges on the stream through relatively low K 

material in the 3-D numerical model, whereas the flow paths are straight and go through 

uniform material where they intersect the stream in the 2-D model.  The convergence of 

flow lines in 3-D causes head loss that is not considered in 2-D, and the low K of the 

saprolite increases this effect.  These effects cause the Scss in the 3-D model to be less 

than that predicted by the full analysis.   
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Effect of Contrasts in Hydraulic Conductivity  

The proposed method for analyzing Scss (eq. 2.15 or 2.16) considers a 

homogeneous aquifer, but the hydraulic conductivity of the saprolite may differ from the 

underlying rock and this is expected to affect specific capacity.  To evaluate this effect, 

the hydraulic conductivity of the saprolite, Ksap, was varied from 10
-4

 to 10
-7

 m/min while 

Krx was held constant.  The baseline geometry (Table 3.1) was used for the dimensions.   

Variations in Ksap result in a relative error, ESc, ranging from -11.3 to 5.7 %.  The 

relative error resembles a negative parabola with positive values for 0.005 < Ksap/Krx < 0 
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Figure 3.6.     Drawdown (solid line) and Specific Capacity (dash line) as functions of 

time for the baseline model evaluation.  
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and negative values outside this range.  The maximum error is 6.03 % when Ksap / Krx  = 

0.081 and ESc ≈ 0 for  Ksap /Krx  ≈ 0.0053 and 0.59.  

The results show that the error inferred to be caused by converging flow in the 3-

D case (open circle in Figure 3.7) is reduced when the Ksap either increases or decreases 

from the value used in the example above (shown in Figure 3.6).  There are several 

interacting effects that influence the error.  Increasing the hydraulic conductivtiy of the 

saprolite increases the effective T of the overall aquifer, but this increase is omitted from 

the eq. 2.16, which is based on the properties of the rock aquifer.  This causes the 

predicted Scss to exceed the actual one when Ksap /Krx>0.6.  Other effects also contribute, 

but they all appear to be relatively small because the error is less than 6% for a 

reasonable range of Ksap.   

 

Effect of Partial Penetration of Stream  

The effect of distance to the stream was evaluated by scaling L to rw and 

evaluating cases in the range 10 < L/rw < 2000 for the different scenarios in Table 3.1 . 

The error in the predicted Scss ranges from 10
-4

 to 0.08 for the baseline case, and the 

errors in the other cases are somewhat greater or less than this range (Figure 3.8). The 

error in all six examples is insensitive to L/rw where L/rw > 200, but it becomes 

increasingly positive for L/rw< 200.  In general, the change in the error over the range 10 

< L/rw < 200 is less than 0.1.  
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Figure 3.7.     Relative error in specific capacity estimate as a function of the ratio Ksap / 

Krx.  Simulation from baseline case in Figure 3.6 shown as open symbol.    
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Figure 3.8.     Relative error in specific capacity estimate as a function of L/rw for 

different geometric configurations. 
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The increase in error with deceasing L/rw appears to result from differences in the 

geometry of the flow lines between the 2-D and 3-D models.  Convergence of flow lines 

causes head losses near the stream in the 3-D model to be greater than in the 2-D model.  

This effect increases with decreasing L, when L is less than several times the aquifer 

thickness.  This effect occurs because changing L only affects the flow paths in the 

vicinity of the stream when the well is relatively close to the well (L~<3b).   

Error caused by proximity to a stream appears to be limited to distances that are within a 

few aquifer thicknesses.  Even in these cases, however, the error caused by proximity to 

the stream appears to be less than 10%.   

Baseline Low Case 4 had the greatest error, ~15%, close to the stream. The 

geometry consists of a wide stream, w=10 m, with a thin saprolite layer, b’=1 m.   

Both the Baseline Low and Baseline Low Case 2 geometries have equal thickness 

of  saprolite and rock aquifers, b’= b = 5 m, representing a low end ofaquifer thicknesses 

in the Piedmont. At large, L/rw > 300, the stream strength term, β, due to a thin saprolite 

thickness, b’, dominates flow and may  behave similar to a fully penetrating constant 

head boundary. As L/rw < 300, the error decreases and approaches 0 as L/rw approaches 

zero. An aquifer overlain by a thin saprolite will increase the error in predicted Sscc as L/rw 

> 300.The magnitude of the error due to this effect appears to be less than 0.1.      

Effect of stream strength term β on analysis 

The different numerical examples were evaluated using both the full analysis (eq. 

2.15) and the approximation (eq. 2.16).  The error caused by the full analysis is always 



64 

 

less than that caused by the approximation (Fig 3.9).  However, the differences in errors 

are small when  > 1.  For example, the relative error is 0.05 using eq. 2.15 and it is 0.08 

using eq 2.16 for the numerical case when  =1, and the errors are less than this for cases 

when  > 1  (Fig. 3.9).      
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Figure 3.9.    Calculated Scss and relative errors for full analysis (eq. 2.15) (black circle) 

and method 1 (eq. 2.16) (white circle) using data from numerical examples.  

EFFECT OF SAPROLITE STORAGE  

Water released from storage in the saprolite overlying the fractured rock aquifer 

in the Piedmont is not included in the analytical solution, but it will likely affect the type 

curve and well performance.  Indeed, release of water from storage in the saprolite has 

been interpreted as a dominant factor affecting well performance in the Piedmont 

(LeGrand 1967).  Storativity of the saprolite in the baseline model was varied from 10
-4
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to 0.3 to evaluate this effect.  This range spans the transition from compressibility to 

pore-drainage processes in the release of water from storage.  Confined conditions were 

assumed to provide a simple transition from the baseline case.  

Increasing the storativity of the saprolite has a major affect on the drawdown 

curve.  The type of effect caused by storage in saprolite is illustrated by an example that 

includes the baseline case as outlined above, and the baseline case with Ssap=0.3.  The two 

curves representing drawdown at the pumping well are nearly identical at early times, and 

both follow a semi-log straight line whose slope is inversely proportional to T of the rock 

aquifer.  The curves diverge at roughly t = 100 min when the slope of the curve 

representing Ssap= 0.3 decreases, while the baseline curve maintains roughly constant 

slope on the semi-log plot (Fig. 3.10).  The drawdown stabilizes with nearly a flat slope 

from approximately t = 800 to 8000 mins resulting in a quasi-steady state condition for 

Ssap= 0.3.  The well could easily be interpreted as reaching steady state at this time, but 

the condition is only temporary.  The drawdown slope steepens after t = 8000 and 

approaches a new semi-log straight line.  Eventually, after approximately 2x10
6
 minutes 

(3.9 years) in Figure 3.9, the slope flattens and the two curves merge.  Ultimately, both 

systems analyzed in Figure 3.9 go to steady state at the same drawdown, so their Scss 

values are identical and independent of the storage properties of the saprolite..  

The analysis shown in Figure 3.9 was extended using additional values for of Ssap.  

The slope of the drawdown curve flattens at the same time in all three cases, but the 

length of time the slope remains stabilized decreases as Ssap decreases and approaches Ssap 

= Srx (Figure 3.11).  
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Saprolite storage appears to temporarily flatten the drawdown curve in a style 

resembling a dual porosity response (Streltsova, 1988).  The effect of saprolite has little 

influence on the ultimate Scss, but it could cause a significant temporary improvement in 

well performance, or it could be misinterpreted as a true steady state that causes the well 

performance to be over-estimated.  This warrants a more detailed evaluation of the effect 

of saprolite on well performance.      
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Figure 3.10.    Drawdown as a function time for different saprolite storage values. 

Solid line S = 0.0001, Dash line S= 0.3 
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Figure 3.11.  Drawdown with time in a partially penetrating well in an aquifer with 

overlying saprolite of varying specific yield. Model geometry from baseline 

case. 
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Effect of Distance to Stream 

To evaluate the effect of L on the saprolite effect, the baseline configuration was 

run with Ssap ranging from 0.001 to 0.3 at different distances from the stream. The 

objective was to determine how changes in L affect the drawdown curve. 

Drawdown in the fractured rock aquifer increases as L increases. For example, the 

steady-state drawdown, sss, increases from 10.36 m for L=10 m to sss = 13.5 m for L = 

500. This seems to be a reasonable response because increasing L causes the extent of the 

cone of depression to increase prior to stream interaction (Figure 3.12).  

Regardless of L, the time and duration of the perturbation caused by varying 

saprolite properties remained the same for each numerical configuration. It appears (Fig. 

3.12) that the drawdown response caused by the saprolite is independent of L.  
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Figure 3.12.   Drawdown as function of L and Ssap = 0.001 to 0.3 for the baseline case 

model at varying distances to stream. 
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Model Ksap Krx T rock Ssap S b' b L rw

(m/min) (m/min) (m2/min) (1/m) (1/m) (m) (m) (m) (m)

10_500 5.90E-05 1.00E-04 3.00E-03 0.001 1.00E-03 10 30 500 0.25

10_500 5.90E-05 1.00E-04 3.00E-03 0.01 1.00E-03 10 30 500 0.25

10_500 5.90E-05 1.00E-04 3.00E-03 0.1 1.00E-03 10 30 500 0.25

10_500 5.90E-05 1.00E-04 3.00E-03 0.3 1.00E-03 10 30 500 0.25

10_250 5.90E-05 1.00E-04 3.00E-03 0.001 1.00E-03 10 30 500 0.25

10_250 5.90E-05 1.00E-04 3.00E-03 0.01 1.00E-03 10 30 500 0.25

10_250 5.90E-05 1.00E-04 3.00E-03 0.1 1.00E-03 10 30 500 0.25

10_250 5.90E-05 1.00E-04 3.00E-03 0.3 1.00E-03 10 30 500 0.25

10_100 5.90E-05 1.00E-04 3.00E-03 0.001 1.00E-03 10 30 500 0.25

10_100 5.90E-05 1.00E-04 3.00E-03 0.01 1.00E-03 10 30 500 0.25

10_100 5.90E-05 1.00E-04 3.00E-03 0.1 1.00E-03 10 30 500 0.25

10_100 5.90E-05 1.00E-04 3.00E-03 0.3 1.00E-03 10 30 500 0.25

10_50 5.90E-05 1.00E-04 3.00E-03 0.001 1.00E-03 10 30 500 0.25

10_50 5.90E-05 1.00E-04 3.00E-03 0.01 1.00E-03 10 30 500 0.25

10_50 5.90E-05 1.00E-04 3.00E-03 0.1 1.00E-03 10 30 500 0.25

10_50 5.90E-05 1.00E-04 3.00E-03 0.3 1.00E-03 10 30 500 0.25

10_30 5.90E-05 1.00E-04 3.00E-03 0.001 1.00E-03 10 30 500 0.25

10_30 5.90E-05 1.00E-04 3.00E-03 0.01 1.00E-03 10 30 500 0.25

10_30 5.90E-05 1.00E-04 3.00E-03 0.1 1.00E-03 10 30 500 0.25

10_30 5.90E-05 1.00E-04 3.00E-03 0.3 1.00E-03 10 30 500 0.25

10_10 5.90E-05 1.00E-04 3.00E-03 0.001 1.00E-03 10 30 500 0.25

10_10 5.90E-05 1.00E-04 3.00E-03 0.01 1.00E-03 10 30 500 0.25

10_10 5.90E-05 1.00E-04 3.00E-03 0.1 1.00E-03 10 30 500 0.25

10_10 5.90E-05 1.00E-04 3.00E-03 0.3 1.00E-03 10 30 500 0.25

 
Table 3.3.  Baseline simulation parameters. 
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Model L/rw Lreal w L/rw real b'/rw b/rw
β

(unitless) (m) (m) (unitless) (unitless) (unitless) (unitless)

10_500 2000 506 10 2024 40 120 9.95

10_500 2000 506 10 2024 40 120 9.95

10_500 2000 506 10 2024 40 120 9.95

10_500 2000 506 10 2024 40 120 9.95

10_250 2000 256 10 1024 40 120 5.03

10_250 2000 256 10 1024 40 120 5.03

10_250 2000 256 10 1024 40 120 5.03

10_250 2000 256 10 1024 40 120 5.03

10_100 2000 106 10 424 40 120 2.08

10_100 2000 106 10 424 40 120 2.08

10_100 2000 106 10 424 40 120 2.08

10_100 2000 106 10 424 40 120 2.08

10_50 2000 56 10 224 40 120 1.10

10_50 2000 56 10 224 40 120 1.10

10_50 2000 56 10 224 40 120 1.10

10_50 2000 56 10 224 40 120 1.10

10_30 2000 32 6.44 127 40 120 0.40

10_30 2000 32 6.44 127 40 120 0.40

10_30 2000 32 6.44 127 40 120 0.40

10_30 2000 32 6.44 127 40 120 0.40

10_10 2000 9 9.63 35 40 120 0.16

10_10 2000 9 9.63 35 40 120 0.16

10_10 2000 9 9.63 35 40 120 0.16

10_10 2000 9 9.63 35 40 120 0.16

 
Table 3.4.  Baseline simulation parameters. 
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Duration of Saprolite Effect 

 The saprolite effect could be misinterpreted as steady-state conditions during all 

test, resulting in an over-estimation of specific capacity (Figure 3.11). The saprolite effect 

can be evaluated by making use of an analysis of a well producing from a two-layer 

system, where one layer is a productive aquifer containing the well and the other is a 

semi-permeable bed that releases water from storage.    This analysis was described by 

Streltsova (1988), who assumes that drawdown in the aquifer is affected by release of 

water from storage in the semi-permeable bed, but the lateral flow in the semi-permeable 

bed is negligible.  This allowed Streltsova (1988) to derive an analytical expression to the 

drawdown resulting from a well pumping in a system resembling Figure  3.12 where the 

stream has been omitted.   

According to Streltsova (1988), drawdown in the aquifer at early time causes 

water to be released from storage in the saprolite, which remains at near ambient heads 

(the term ―saprolite‖ is used to put the Steltsova’s analysis in the context of this thesis 

because she used different terms to describe this layer).  This is the beginning of the 

saprolite effect.  However, the head in the saprolite drops as water is released from 

storage, and eventually the heads in the two layers equilibrate and they behave as one 

large layer with effective properties.  The saprolite effect ends when the heads in the two 

layers equilibrate.  This causes an increase in the rate of drawdown.  According to 

Streltsova (1988), heads in the saprolite and aquifer equilibrate to within 1% of each 

other, and the saprolite effect ends at:  
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 This time occurs in the transition period after the slope has decreased to its flattest point 

and before it steepens to the new semi-log slope (Fig.  3.14)  

The time when the drawdown at the well is affected by an aquifer boundary 

begins to be affected by the stream for the system consisting of an aquifer overlain by 

saprolite can be determined from (2.22) as 
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where the T and S values are summed to create effective properties for the combination of 

rock and saprolite.    

Streltsova (1988) presents a time when drawdown interacts with a boundary 

between aquifer materials of different K as    

 

2( )
1.78

s sap

b

L S S
t

T


  (3.3b) 

where the T is taken as an effective value.  The two equations are identical except for 

their coefficient, which result from a difference in the method used to define t0.8 and tb.  

We define t0.8 as the time when the semi-log slope decreases to 0.8 of the maximum 

value.  Streltsova was interested in a problem involving a vertical boundary defining 

materials of two different aquifer properties, and in this case the drawdown curve forms a 

semi-log straight line at early times and after the drawdown interacts with the boundary 
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the curve changes and becomes log-linear with a different slope at later times.  Straight 

lines fit through the two semi-log straight portions of the curve intersect at tb, according 

to Streltsova.  This definition causes tb > t0.8, and explains the different between 

coefficients in 3.3a and 3.3b.       

  We will use eq. (3.3a) to estimate the time when effects of interaction between a 

well and a stream could first be detected (Fig. 3.18).  It is noteworthy that eq. 3.3 is 

independent of the saprolite effect.    In some cases these two effects may be 

superimposed, and comparing tsap and tb can provide a means for recognizing this 

combination.    

It follows from eq. 3.2 and 3.3a that the tsap and t0.8 occur at the same time when 

 '
sap sap rx

s

sap rx sap

S T T
L b

S S T





 (3.4) 

which indicates that t0.8 will occur before than tsap when L < Ls, and t0.8 will occur after 

than tsap when L > Ls.   In general the term under the square root sign in 3.4 will be greater 

than 1 and less than 10, so Ls is approximately equal to the thickness of the saprolite.    

  Typical tsap values 

The duration of the saprolite effect depends on the dimensions and properties of 

the saprolite and aquifer.  Ranges of expected tsap times were evaluated using values of b’ 

= 1, 5, 10, 20, and 30 m, T’= 1, 5, 10, 20, and 30 m
2
/d, and Ssap ranging from 10

-4
 to 0.3 

(eq. 3.2).  Values of tsap were determined by randomly selecting a parameter value from 

each of the typical Piedmont parameter ranges to create a data set containing 1 million 

random samples.  tsap times were calculated from the random parameter data sets 
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  The results show that tsap is strongly influenced by Ssap.  A probability of 83% for 

the random combinations of parameters indicate tsap will occur in less than 1 week 

(Figure 3.15) and a probability of 70% for values of tsap less than 3 days (Figure 3.16), 

even considering the largest value of Ssap (Figure 3.13).   These findings suggest that 

many pumping tests of standard duration (24 to 72 hours) will be influenced by the 

saprolite effect and some of them may be long enough to see the end of the saprolite 

effect (Figure 3.16).  The implication is that the appearance of an apparent steady state 

during many pumping tests is only a temporary effect resulting from the saprolite.   

Typical tb values 

The time to stream interaction depends on the dimensions and properties of the 

saprolite and aquifer.  Ranges of expected tb times were evaluated using values of b’ = 1, 

5, 10, 20, and 30 m, T’= 1, 5, 10, 20, and 30 m
2
/d, and Ssap ranging from 10

-4
 to 0.3 (eq. 

3.3)   Values of tb were determined by randomly selecting a parameter value from each of 

the typical Piedmont parameter ranges to create a data set containing 1 million random 

samples.  tb times were calculated from the random parameter data sets 

The results indicate that tb has a probability of less than 10 for stream interaction 

to occur within a week of pumping (Figure 3.17).  These results indicate Ssap and T are 

the controlling factors for a well to interact with a stream boundary. For tb > several 

months, a large distance to the steam, Ssap > 0.1, and a T < 20 m
2
/day are the ranges 

required for a large tb.  Another combination of parameters that gives large values of tb is 

L and S.  For example, a large distance to the stream, L > 200 m and a large storativity 

Ssap > 0.01, results in tb  > 100 days (Figure 3.14). The probability that stream interaction 
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will occur during a typical pumping tests is less than 5%, this further suggests that the 

appearent steady-state conditions observed during pumping may be caused by saprolite. 

To improve the identification of stream interaction during a pumping test, t0.8 can be 

determined using eq. 3.3b   
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Figure 3.13.   Surface plot of expected tsap times using typical Piedmont saprolite and 

aquifer values as a function of saprolite storativity, Ssap, and saprolite 

thickness, b’. 
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Figure 3.14   Surface plot of expected tb times occuring as a function of S and L based 

on Ssap values. 
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Figure 3.15. Probability of tsap times based on random distribution of typical Piedmont 

values 
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Figure 3.16.  Probability of tsap occurring within a typical 72 hour pumping test based 

on random distribution of typical Piedmont values. 
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Figure 3.17.  Probability of tb times based on random distribution of typical Piedmont 

values. 
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GRAPHICAL ANAYLSIS   

Times for tsap and t0.8 can be determined using eqs (3.2 and 3.3b) with known or 

estimated aquifer properties; although there may be instances during a pumping test when 

calculation of boundary times is not possible due to a lack of site information.   

tsap and t0.8 appear to identify distinctive portions of drawdown curves from the 

numerical experiments (Figure 3.18), suggesting times for tsap and t0.8 may also be 

evaluated graphically in the field. 

A graphical approach can be used to evaluate both the saprolite effect and stream 

interaction times using the derivative of drawdown with respect to the natural log of time. 

The semi-log slope of drawdown is commonly a semi-log straight line, so the derivative 

of drawdown will decrease when interaction with the saprolite occurs. (Figure 3.19)The 

longer early-time drawdown stabilizes as a result of the saprolite effect, over-estimation 

of Sssc can occur. However, plotting the derivative of drawdown shows the slope 

approaching zero followed by an increase in slope as the saprolite effect ends (Figure 

3.19)  

Similarly, as the drawdown increases after the saprolite period ends, the 

interaction with a stream can be picked from this new semi-log slope (Figure 3.18). The 

new slope will begin to flatten prior to interaction with a stream boundary. When 

interaction with a stream begins, the slope will begin to decrease for a second time 

(Figure 3.18) and approach a slope of zero at steady state conditions 
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Figure 3.18.   s  as a function of  td for tsap (solid arrow) and tb (dash arrow) using dual 

porosity approach. 
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Figure 3.19.   Top graph: drawdown showing calculated tb times. Bottom graph: 

Derivative of drawdown with respect to the natural log of time showing 

calculated tsap times. 
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DISCUSSION 

The numerical evaluation is able to predict the analytical solution reasonable well for 

most cases.. The error from the analytical solution depends on the distance between the 

well and the stream (L/rw) and the ratio of hydraulic conductivities between the aquifer 

and the saprolite (Ksap / Krx). Generally the error is less then +/- 5%. The error increases 

to as much as 15% as the well approaches the stream due to a geometry effect. 

Water released from storage in saprolite overlying the fracture rock aquifer is not 

included in the analytical solution. The saprolite and fractured rock behave similar to a 

dual porosity system. Saprolite storage effects can delay the time to stream interaction; 

however saprolite does not affect the long-term steady-state specific capacity. Water 

released from storage in saprolite only occurs temporarily, however this process may last 

many months or longer.  This causes two important considerations.  In one case, the 

saprolite effect can increase the well performance compared to an assessment that 

considers only the fractured rock aquifer.  In this sense, the traditional conceptual model 

(LeGrand, 1988 and 2004; Heath, 1989; Daniel, 1992 and 2002; Rutledge, 1996; Swain 

et al 2004) indicating that saprolite releases water from storage during pumping is 

correct.  However, the saprolite effect is only temporarily and in most cases it will end on 

time scales that are short compared to the life of a water supply well.  This means that the 

performance of the well will diminish when t > tsap, and an assessment of the well based 

on empirical short-term observations will certainly be overly optimistic.   
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CHAPTER 4 

EXAMPLE APPLICATIONS 

 

The chapter outlines several examples of the method to predict long-term well 

performance.  The first examples use data from synthetic pumping tests simulated in 

Chapter Three, and they are followed by two examples from field tests conducted in the 

Piedmont Province.  

SUGGESTED APPROACH FOR ESTIMATING WELL PERFORMANCE 

The analysis outlined in Chapter Two and evaluated in Chapter Three is intended 

to be applied to the evaluation of drawdown data during pumping tests.  The general 

approach is to determine Scss and then use the allowable drawdown to estimate a 

physically sustainable volumetric discharge.  The procedure for applying the analysis is 

to try to use the full analysis first, and then apply one of the simplified methods as 

required based on available data (Figure 4.1).   

A 5-step approach is outlined below to facilitate the application of the analyses 

described in Chapter Two:   

Step 1.  Determine basic properties of the aquifer and well    

a.)  Analyze drawdown data using conventional methods to determine T.   

b.) Estimate S and sk using data from a monitoring well.     

c.)  Determine rw from drilling records or field measurements 

Step 2.  Determine dimensions and other properties.   

a.) L, and w from surveying. 
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b.) b and b’ from borings 

c.) Ksap, Ssap by  testing wells completed in saprolite 

Step 3.  Try full analysis   Calculate  and Scss using the full analysis (eq. 2.15) and field 

data obtained from 1 and 2.    

Step 4.  If cannot be determined from field data, use simplification.  Is the semi-log 

slope constant?  If Step 3 is infeasible because  cannot be determined then use 

one of the simplified methods.  If the drawdown data follows a semi-log straight 

line with minimal slope change (change is less than 20%), then use Simplification 

Method 1:  Measure L by surveying and apply eq. 2.16. 

a.) It may be possible to refine the estimate from eq. 2.16 by either estimating 

missing data needed to calculate , or using a typical value for Figure A-2), 

and then using eq. 2.15. Typical values for  in the Piedmont are  0.1 <  < 50 

(Figure A-1).    

Step 5.  Semi-log slope decreases If the semi-log slope is constant and then decreases, 

then you may be able to use this change to estimate performance.  First decide 

whether the slope change is in response to interaction with a stream, with 

saprolite, or some other effect.   

a.)  calculate t0.8 using eq. 2.22 to determine the expected time to interact with the 

stream (call this t0.8calc), and tsap using eq. 3.2 to determine the expected time 

for saprolite interaction to end.  Determine t0.8 from plot of data observed in 

the field (or from plot of semi-log derivative), call this observed value t0.8obs.   
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b.)  If t0.8obs ≈ t0.8calc, and t0.8obs > tsap, then the change in slope could be due to 

interaction with the boundary.   

 If S is known then use Simplification Method 2:  Substitute t0.8obs in eq. 

2.24 to calculate Scss. 

 If S is unknown then use Simplification Method 3:  Determine the 

Sc0.8, the specific capacity at t0.8, from the field data, and substitute into 

eq. 2.29 

c.)  If t0.8obs << t0.8calc then the break in slope may be due to an effect other than 

interaction with a boundary.  If t0.8obs < tsap then the change in slope could be 

due to interaction with saprolite.  Use Simplification Method 1: Measure L by 

surveying and apply eq. 2.16.   

Well performance could be greater than expected from eq. 2.16 while t < 

tsap.  This occurs because the release of water from storage in the saprolite 

could significantly reduce drawdown while t < tsap.  It is possible that the 

duration of this period could be long enough to provide a meaningful increase 

in the overall productivity of the well.  It is important to keep in mind, 

however, that Sc will decrease and approach Scss when t >tsap.  

d.)  If t0.8obs >> t0.8calc, then the change in slope may be due to boundary 

interaction, but there is significant resistance to flow between the stream and 

the aquifer.  Estimate values for  in eq. 2.9f and use the full method (eq. 

2.15) to calculate Scss. 



29 

 

Conduct Constant-Rate Test

Determine Aquifer and Well Properties
T, S, sk, rw

Determine Aquifer Dimensions
L, w, b, b’, ksap, Ssap

Calculate Stream Strength Term

'

sapLwk

Tb
 

Apply Full AnalysisCalculate Simple Method
2

2
ln

css

k

w

T
S

L
s

r




 
 

 

   1

2

2
ln

css

k

w

T
S

L
e E s

r








 

  
 

Calculate Stream Interaction Time

 

2

0.8

( )sap

sap

L S S
t

T T






YESNO

 
 

 

Figure 4.1.  Flow chart of the Approach for Estimating Well Performance 
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APPLICATION TO AVERAGE WELL PERFORMANCE DATA 

An initial evaluation of the proposed method can be derived from the range of 

discharge values and transmissivities summarized by Swain et al. 2004 for major rock 

types in the Piedmont (Table 4.1 ).  Eqs 2.14 and 2.16 were rearranged to give s = C1Q/T 

, where C1 depends on rw and L.  Assuming rw = 0.076m (6-inch diameter) and 50m < L < 

500m gives 1.15 < C1 < 1.52.  The full range of C1 and Q and the average T was used to 

estimate the range of drawdown for each rock type.   

The analysis indicates that the minimum average drawdown spans a narrow range 

from 6m to 8m for the three rock types, whereas the maximum drawdown ranges from 

22m to 55m.   

Drawdown data are not given by Swain et al. 2004, and average drawdown is 

difficult to determine from operating wells.  However, ambient water levels are 10 m to 

15 m above the top of rock in many wells in the Piedmont, so the minimum drawdown in 

Table 4.1 is expected to be within the casing of most wells.  This conforms to guidelines 

for well operation (Rosco Moss, 1990).  Many wells in the Piedmont are 100m to 200m 

deep, so it seems reasonable that the high end of drawdown would be in the range of 

50m.  These wells would probably be completed in formations where one or two 

fractures occurred at significant depth.  Daniels (1967) points out that wells with the 

greatest flow rates are 130m to 160m deep and are operated with significant drawdown.  

As a result, we conclude that the range of drawdown predicted by eq. 2.16 is consistent 

with available data on aquifer properties and well operation.      
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APPLICATION TO SYNTHETIC PUMPING TEST DATA 

A drawdown curve from the numerical baseline evaluation will be used to 

illustrate the approach for predicting well performance from a short-term pumping test.  

The conditions of this problem are described in Table 3.2, and results shown in Figure 

3.11.  Each simulation was run long enough so the heads reached steady state.   I will use 

data from the first 48 hours to represent a typical constant-rate test and apply the steps 

described above to calculate Scss (Figure 4.2).  Drawdown curves from pumping wells 

were simulated for two data sets, A and B (Table 4.2), which are identical except for the 

saprolite storage values.  

The actual steady state specific capacity from the simulations is Scss = 2.69 x 10
-3

 

m
2
/min.  This value will be used to evaluate the effectiveness of the proposed method.   

Analysis  

1. Determine basic properties of the aquifer and well. 

The semi-log straight portion of the curve was analyzed to determine the effective values 

of T using the Cooper-Jacob method (Cooper and Jacob, 1946).  The semi-log straight 

line portion of the results for Datasets A and B were identical, giving T = 2.92 x 10
-3

 

Table 4.1.  Aquifer properties and well discharge from 

Swain et al 2004 and expect drawdown, s,  determined 

using eqs. 2.14 and 2.16. 
 

 T Q s 

 m
2
/d m

3
/d m 

Phyllite-Gabbro 3.7 27-55 8-22 

Gneiss-Schist 10.2 55-327 6-48 

Shale-Sandstone 32.5 190-1200 7-55 
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m
2
/min (Figure 4.3).  A monitoring well is unavailable for this case, so S cannot be 

determined from the simulated drawdown data.  I will assume 10
-4

 < S<10
-3

 based on 

typical properties of fractured rock in the Piedmont. .  A well radius of 0.25m was 

assumed because the grid block containing the well was 0.5m (Table 4.2).  

 

 

L

(m)

w

(m)

b

(m)

b'

(m)

Ksap

(m/min)

Krx

(m/min)

T 

(m
2
/min)

Ssap Srx β

Data A 50 10 30 10 5.9 x 10-5 1.0 x 10-4 2.9 x 10-3 1.0 x 10-4 1.0 x 10-4 0.98

Date B 50 10 30 10 5.9 x 10-5 1.0 x 10-4 2.9 x 10-3 0.3 1.0 x 10-4 0.98
 

Table 4.2. Properties for numerical baseline evaluation for the well and the aquifer 
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Figure 4.2.     Drawdown in a well as functions of time from numerical baseline analysis, 

L =50 m. a) Ssap = 0.0001. b) Ssap = 0.3. 

 

 

Step 2. Determine dimensions and other properties 

The distance to the steam is L = 50 m and the stream w = 10m.  These data are easily 

measured in the field, so it will be assumed that they are known. There is no well skin in 

either case, so sk = 0. 
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Step 3. Full Analysis 

The properties of the saprolite are unknown, preventing a definitive 

calculation of the stream strength term, β.  In this case we will assume the full 

analysis (eq. 2.15) cannot be used.   

Step 4.  If  cannot be determined, use simplification.  Semi-log slope constant 

 Both Datasets follow a semi-log straight line with a minimal slope change, so 

Simplification Method 1 (eq. 2.16) can be used for both of them 

The parameters used for Simplification Method 1 are T, L, and rw. Substituting into eq. 

2.16 results in Scss = 2.63 x 10
-3

 m
2
/ min. The actual Scss from simulations is Scss = 2.69 x 

10
-3

 m
2
/ min, which gives a relative error of less than one percent.  This method seems to 

work well for both examples.  

Step 5.  Semi-log slope decreases 

Both Datasets can be analyzed using Simplification Method 1 because L is 

assumed to be known.  However, if we now assume that L is unknown, then Dataset A 

cannot be analyzed at all using the proposed method.  The semi-log slope from Dataset B 

begins to flatten around t = 200 minutes, so we can used Step 5 to evaluate the Scss.   

5a. Calculate t0.8 and tsap 

Values needed are S, T. We know T and L. Calculating S from the pumping well 

may result in overestimating the S of the formation. . 

  We get the range 5 min < t0.8 < 53 min using the assumed range for Ssap given 

above.  The break in slope in Dataset B could occur at within the range of times, 
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according to a plot of the data (Fig. 4.3).  Plotting the semi-log slope using eq. 2.18. 

allows t0.8 to be identified more precisely as 42 min (Fig. 4.4).  The result shows that the 

observed t0.8 is within the range of expected values for t0.8 based on an assumed range of 

Ssap.     
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Figure 4.3.     T and t0.8calc times for data sets A (solid line) and B (dash line). t0.8 calc = 5 

mins uses S=0.001, t0.8 calc = 53 mins uses S=0.0001. 
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The saprolite time, tsap, depends on b’,T’, and Ssap.  These values are unknown in 

this example, so the only course is to use typical values.  I will assume 10m <  b’ < 20 m, 

T’ = T, and Ssap =0.2.  This gives a range of 3.5 days< Ssap 13.5 days.  

The results indicate that t0.8obs ≈ t0.8calc, and t0.8obs < tsap.  In this case,  t0.8obs  appears 

to be a result of release of water from storage in saprolite rather than interaction with a 

stream (because t0.8obs < tsap) (Fig. 4.5).  This means that the break in slope is the 

temporary effect of saprolite and it cannot be used to estimate the long term performance 

using, for example, eq.  2.24 or 2.29.  This means that only Simplification Method 1, eq. 

2.16, can be used for this example.  The results of this calculation are given above.  . 
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Figure 4.4.     Drawdown and semi-log slope as function of time for both data sets. Break 

in slope t0.8obs = 42 min, the sbs= 7.9 m, Scbs = 3.84x10
-3

 m
2
/min. 
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Figure 4.5.     Drawdown and semi-log slope as function of time for both data sets. t0.8calc 

for S = 10 x 10
-5

, 10 x 10
-4

, and 10 x 10
-3

. 

 

Comparision to empirical estimate 

Most state regulations involving well testing mandate that well performance be 

determined empirically as the discharge rate maintained after one to several days of 

pumping.  The observed Sc at the end of pumping would have been 4.3 to 4.9 m2/d.  The 

actual value of Scss in the simulations is 2.7 x 10
-3

m
2
/ min.  This indicates that the 

empirical assessment would have over-estimated the actual value of Scss by 60 to 80 

percent.  The method proposed here predicted the actual value of Scss within 1 percent.   



98 

 

CLEMSON WELL FIELD EVALUATION 

This evaluation was conducted by pumping a well for 5-days and using the results 

to calibrate a numerical model, which was used predict the drawdown at steady state.  

This drawdown was used to calculate the Scss, which was assumed to describe the true 

well performance.  The field data were then truncated to 1 day of pumping, and these data 

were analyzed to determine aquifer parameters that were then used in the proposed 

method to estimate Scss.  The results were compared to the value that was assumed to 

represent the true performance.    

Setting of the Clemson Well Field 

The test was conducted at the Clemson Well Field, which is located next to the 

Bob Campbell Geology Museum on the campus of Clemson University.  The well field is 

within the Six-Mile thrust sheet (Nelson et al., 1990 and Horton and McCornnell, 1991), 

which consists of high-grade metamorphic rocks (Miller 1990). 

The dominant rock type at the well field site is medium-grained biotite gneiss 

with moderate to well-developed foliation that strikes northeast and dips to the southeast 

(Svenson 2007; Nelson et al., 1990).  The bedrock is overlain by approximately 20 m of 

saprolite.  

The well field consists of four wells (designated LAR-1 through LAR-4) drilled to 

total depths of 60 to 120 m, and one well (LAS-1) drilled to 17 m and completed with a 

screen and gravel pack in saprolite (Figure 4.6).  The rock wells are cased through 

saprolite to depths of approximately 20m, and continue as open holes, 15 cm in diameter, 
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in the rock.  The screen on the well in the saprolite is 5 cm in diameter and between 6 and 

7.6m depth.  The water table at the site is at approximately 7.5 m depth. 

The wells are spaced within a region approximately 10 m by 5 m on the edge of a paved 

parking lot.  A first-order stream is located roughly 50 m to the south, so L = 50m. 

The wells in rock were surveyed with a video camera, borehole flow meter, and 

characterized with pumping and slug tests between packers (Svenson 2007).  This work 

identified fractures with significant transmissivity that connected the wells between 

depths of 25 m and 50 m. 
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Figure 4.6. Schematic of Clemson well field site 
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Clemson Wellfield Constant-Rate Test 

A 5-day-long well test was performed at the site using well LAR-1 as the 

pumping well and the other wells were used to monitor drawdown.  

Flow Control System 

The test was conducted using a submersible centrifugal pump attached to a device 

that controlled the flow rate.  The submersible pump is a 4-inch diameter, ½ HP 

Sandhandler made by Franklin Pumps.  The flow controlling device is a valve made by 

Plastomatic Valves, Inc., and designed to allow flow at 0.03 m
3
/min when a minimum of 

103 kPa inlet pressure is maintained.  Installing the flow control valve allowed the pump 

to produce at a constant rate as long as the pressure produced by the pump exceeded 103 

kPa.   

Aquifer Test Data 

LAR-1 was pumped for 124.1 hours at 0.03 m
3
/min with a final drawdown of 

9.4m. The specific capacity, Sc, decreased throughout the test.  Scobs = 2.7 m
2
/day at the 

end of pumping, however, drawdown was increasing at the end of the tests so the system 

had not reached steady state. The largest drawdown in a monitoring well was 0.96 m 

observed in LAR-2, and the smallest response was 0.31 m in LAR-4 (Figure 4.7and 

Table 4.4).  

During the test, the generator used to power the pump shut down unexpectedly a 

few times. The first time this happened was 2134 minutes into pumping and the pump 

stopped for 22 minutes before the generator was restarted. The pump stopped 2 other 
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times during pumping, but in those cases it was restarted within a few minutes.  The 

effects temporary interruptions in pumping can be seen in the late time data as small 

intervals of rising and falling heads (Fig.  4.7). 
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Figure 4.7.     Drawdown response at the Clemson Well Field from constant-rate 

test.  a.) data from wells completed in rock; b.) data from saprolite 

well 
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Estimating Steady State conditions 

The well test was terminated before steady state conditions were reached, so the 

actual Sc is unknown.  I set up a 3-D numerical model to the geometry of the site and 

calibrated it using the available pumping test data.  This was done using MODFLOW by 

adjusting the baseline 10_50 model from Chapter 3 (Table 3.2) to fit the site conceptual 

model and aquifer dimensions (Figure 4.10).  The initial model objective was to fit the 

response of LAR-1 during the early time drawdown to characterize the transmissivity of 

the aquifer from the pumping well response.   The calibrated model was run forward in 

time until steady state conditions were reached.  Steady state conditions, as defined by a 

criteria of 0.01 m of head change per 3 months, were reached after approximately 10.4 

days of pumping in the simulation (Figure 4.11).  The final drawdown is 9.83 m, which 

gives a final Scss of 0.0033 m
2
/min.  I will assume that this is the correct value for Scss.  

 

Analysis of Well Performance 

The full analysis (eq. 2.15) will be applied to the LAR-1 pumping test to estimate 

well performance. Site information is available to calculate a stream strength term, 

Aquifer properties and dimensions will first be determined and applied to eq. 2.15 

1. Determine basic properties of the aquifer and the well 

The drawdown at LAR-1fits a semi-log straight line from 20 to 120 minutes 

(Figure 4.9) and T = 6.9 x10
-4

 m
2
/min was calculated from this curve (Cooper and Jacob, 

1946).  Drawdown from the monitoring wells also formed a semi-log straight line and 
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using the same analysis as the pumping well gives a significantly larger value of T = 9.0 

x10
-3

 m
2
/min using data from LAR-2 and LAR-3, which are 5.8 m from the pumping 

well.  Storativity calculated from the monitoring wells using the Cooper-Jacob method is 

S = 0.005.   
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Figure 4.8.     Drawdown at LAS-1during constant rate pumping test (points), 

and results from  Neuman (1974) solution using Sy=0.28 (black 

line). 
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Figure 4.9.     a.) Drawdown at LAR-1 as function of time showing best fit 

straight-line. b.)  Semi-log slope as function of time (thin line) with 

the drawdown (thick line).  
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Step 2 Determine dimensions and other properties 

The properties of the saprolite were determined by analyzing data from the 

monitoring well in the saprolite (LAS-1) using the Neuman (1974) analysis.  This 

gives Ksap = 0.01 m/min, Ssap = 0.28  (Figure 4.8). The radius of LAR-1 is rw = 0.076 

m and the thickness of the aquifer is assumed to be b = 25 m based on the depths to 

and distances between fracture zones.  The saturated thickness of the saprolite from 

drilling records is b’ = 14 m.   

 A first order stream is located 50 m to the south of the Clemson well field, so L = 

50 m. The width of the stream at the time of the aquifer test was approximately w = 1m. . 

Determine sK 

 The skin factors is  (Earlougher, 1977)  

 

2 ( )a e
k

T s s
s

Q

 


 (4.1a) 

where sa and se are the actual and expected drawdowns, respectively.  The expected 

drawdown without skin was determined as (Cooper and Jacob,1946): 

 
2

9.00.183
log w

e

w

TtQ
s

T Sd

 
  

 
 (4.1b) 

where tw is the time when the actual drawdown is observed, and dw is the diameter of the 

well. This approach is only valid while the data follow a semi-log straight line, so using 

tw=100 min with sa = 6.2 m, the skin factor is determined as is  sk= 5.6.   
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Figure 4.10.    Conceptual model of the Clemson Well Field showing one well.  

 

 

Well Name
Rw

(m)

T 

(m2/day)
S (1/m)

b

(m) 

b'

(m)

w 

(m)

L 

(m)

LAR-2 5.91 12.93 3.5E-03 35 - - -

LAR-3 5.70 12.93 4.4E-03 41 - - -

LAR-4 10.98 31.03 4.2E-03 41 - - -

LAR-1 0.08 1.09 - 25 - 1 50

LAS-1 5.7 291 0.28 - 20 - -
 

Table 4.3. Aquifer properties and dimensions for analysis 
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Step 3 Full Analysis 

The full analysis (eq. 2.15) requires estimates of β and sk along with T, L, and rw 

(Table 4.3)  The estimates of parameters are T = 0.009 m
2
/ min, sk = 5.6, and =6.5.  

These data give Scss = 4.42x10
-3

 m
2
/min using eq. 2.15.  
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Figure 4.11.   Numerical fit of LAR-1 drawdown as a function of time for LAR-1 field 

data (dots) and numerical fit (solid line).   

Step 4.  If  cannot be determined, use simplification.  Semi-log slope constant 

It is possible to estimate  from data available at the Clemson well field, but it is 

instructive to evaluate the analysis where is omitted.  In this case, we can omit data for t 

> 200min, leaving only the semi-log straight portion of the data.  Using T = 0.009 m
2
/ 
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min, sk = 5.6,, the approximate method 1 (eq. 2.16) gives Scss = 4.52x10
-3

 m
2
/min, which 

is only slightly greater than the result from the full method.  This occurs because sk is 

much larger than the term in 2.15 that includes .      

Time to Stream Interaction, t0.8calc 

The time when the drawdown should interact with the stream can be estimated 

using 3.3a.  The effective parameters are: T = 0.009 m
2
/min based on the semi-log slopes 

of both the monitoring wells and the second slope of the pumping well; 0.005 <  S  < 

0.28, with the low end derived from the analysis of the pumping test for 20 to 120 min, 

and the high end from the analysis of the monitoring well in the saprolite.  This gives a 

range of t0.8 using eq. 3.3a of 1 day <  t0.8 < 1 month.   

The break in slope in the field data occurs at t0.8obs = 170 minutes.  These results 

indicate that the observed break in slope occurs too early to be considered an interaction 

with the stream.   

The drawdown curve at the well follows a semi-log straight line from 1 day < t < 

6 days, suggesting that water was removed from storage and no interaction with the 

stream took place.  It appears that more than 6 days of pumping is required for the well to 

interact with the stream.     

Duration of Saprolite Effect 

The time to the end of the saprolite effect (eq. 3.2) depends on b’ = 14m, Ksap = 

0.01 m/min, and  Ssap=0.28, which gives tsap = 286 min.  This gives the time when heads 

in the saprolite equilibrate with the heads in the underlying rock aquifer.   
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The time calculated using eq. 3.2 is roughly 1.7x greater than the observed t0.8 (Fig. 4.12).  

As a result, it seems likely that the break in slope is a result of interaction with the 

saprolite.   
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Figure 4.12.   Drawdown and normalized slope as a function of time. t0.8obs = 170 min 

suggests beginning of saprolite effect; tsap = 268 minutes, the end of the 

saprolite effect; 1500 min <  t0.8calc < 47000 min, suggesting interaction with 

the stream would have occurred after the test was terminated. 
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GEGT PLANT AQUIFER TEST EVALUATION 

The test from the Clemson well field was not long enough to identify the actual specific 

capacity, but another example is available where steady state was achieved.  This 

example is from a site near Greenville, SC, where well performance data are available for 

six years.  The operation of this well was preceded by a brief pumping test, lasting two 

hours where water levels were recorded with a hand tape.  This example will use the 

results of that pumping test to estimate the performance of the well during the subsequent 

6 years.     

 

GEGT Site 

The GEGT site near Greenville, Sc (Figure 4.14) has several contaminant plumes as 

product of past manufacturing practices and a well was installed in 1998 to capture one of 

the plumes. The conceptual model of the site is typical of the Piedmont (Fig. 1.9), with 

saprolite overlying a fractured bedrock aquifer located near a small stream approximately 

100 m southwest of the pumping well (Figure 1.9).  A 2-hour-long pumping test was 

conducted shortly after the well was installed. The well was brought online in 1999 and 

pumping rates and water levels have been measured every 3 months for 6 years. 
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Figure 4.14. Location map of GEGT site (Red and black star). 
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AQUIFER TEST 

The test well, P-07B, was pumped at 0.05m
3
/min (13 gpm) for 2 hours. Hydraulic 

head was measured manually at the pumping well and 4 observation wells. The 

maximum drawdown in P-07 at the end of pumping was 2.74m (9.01 ft) (Figure 4.15).  
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Figure 4.15.   Drawdown as a function of time  when well P-07B was pumped at 

constant-rate test. 

 

Aquifer Parameters  

T and S were calculated using the Jacob straight-line method.  Data from P-07B 

give T = 1.3x10
-3

  m
2
/day, whereas data from the monitoring wells give 1.5x10

-3
 m

2
/min 

<  T  <  6.1 x 10
-3

 m
2
/day.  The mean value for T = 3.0 x 10

-3
 m

2
/day, and the mean value 

of  S = 6 x 10
-4

.   Slug tests in wells in the vicinity give Ksap = 3.85 x 10
-4

 m/min (personal 

conversation with Greg Kinsman). 
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The distance to the stream, L, was determine from the site location map (Figure 

4.14) as L = 100 m.  

FULL ANALYSIS 

To apply the Full Analysis, the real Sssc has to be determined for comparison. 

Water levels and flow rates for a 6 year period are available to calculate the long-term 

specific capacity of P-07B (Figure 4.16). The average specific capacity over 6 years is Sc 

= 0.2 gpm/ft.  This value will be considered as the long-term performance of P-07B for 

the analysis, Sssc=0.2 gpm/ft.  
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Figure 4.16.   Sc values for well P-07B for a 6 year period. Dash line represents the 

average Sc for the monitoring period. 

  

Before calculating Scss, the strength of the stream term, β, needs to be determined 

(eq 2.9f). Parameters used to determine β are Ksap = 3.85 x 10
-4

 m/min, Trx = 3.0 x 10
-3 

m
2
/min, b’ = 7.6 m, L = 100 m, and w = 1 m. β was calculated as 1.6 with the previous 

parameters.  
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The predicted Scss from the Full analysis is 2.51 x 10
-3

 m
2
/min.  The assumed 

long-term Sc from the six year of data, Scssreal = 2.49 x 10
-3

 m
2
/min.  The Full Analysis 

predicts the average Sc essentially exactly when using the mean values of T and S.  This 

is an encouraging result, although some consideration should be given to the uncertainty 

in T and S.   

Extrapolating out the 2 hour test data, the long-term Scss = 0.7 gpm/ft. This is 

almost a factor 2.5 greater than the observed operational Sc at late time. Appling the 

Jacob analysis to the short-term test extrapolated to six year results in a Scss = 0.27 gpm/ft 

(Figure 4.18). The Jacob prediction results fall within one standard deviation of the 

operational data over the last six years, an acceptable result.  Extrapolating the test data 

overestimated the long-term well performance by a factor of 2.5, this suggests care must 

be taken when apply this method into the long-term operational span of a well. The Jacob 

analysis prediction was closer than the field data extrapolation by almost a factor of 2.  

The Full Analysis Scss was able to represent the long-term well performance with a Esc < 

7% with estimated stream strength, β, values.  
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Figure 4.18.   Sc as a function of time for well P-07B showing 2-hr test and Jacob result 

extrapolations from the short-term well test. 
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Duration of Saprolite Effect 

tsap was calculated to predict the length of time  for saprolite to equilibrate with the 

underlying aquifer. No data is available for saprolite storativity on site. I will assume the 

storativity ranges from a low of S =0.1 to a high value of S = 0.28 because these value 

occur in a similar setting near Clemson. 

Parameters used for tsap (3.2) are Ksap = 3.85 x 10
-4

 m/min, b’ = 7.6 m, and S ranges of 

0.1, 0.2, and 0.28.  The results indicate that tsap = 1 day when  considering the lower end 

of S and tsap = 2.81 days using an S = 0.28.  The duration of the saprolite effect would 

have been short compared to the operation of the well.   

Boundary Interaction 

tb was calculated using L = 100 m, SFRM = 5.96 x 10
-4

, Trx = 3.02 x 10
-3 

m
2
/min, and Ssap 

ranging from 0.1 to 0.28. Using the high range of Ssap =0.28, tb = 1.6 years, and tb = 0.57 

years when Ssap = 0.1.These results suggest that P-07B has been interacting with the 

stream for most of the 6-year-long data set.  
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DISCUSSION  

A method to estimate the long-term performance of a well was presented in Chapter 2, 

numerically evaluated in Chapter 3, and applied to field tests in the current chapter. A 

suggested approach to calculate well performance was outlined (Figure 4.1*) based on 

available site and aquifer data and confirmed using a synthetic data set. 

Basic assumptions made for unavailable aquifer properties using an sythentic example 

resulted in a Esc = -0.89 % between the known numerical results and predicted well 

performance. This suggests the approach for predicting well performance may be applied 

to pumping test data when some of the aquifer properties and dimensions are unknown. 

The minimum requirement to calculate Scss requires a T value from a pumping test, along 

with the distance to a stream, L. If the distance to the stream is unknown, an effective 

distance can be determined using eq. (2.23) and substituted for L. 

Clemson Site 

The approach was then applied to a well test performed on LAR-1 from the Clemson 

Well Field. The site information available allowed the full analysis to be applied to the 

field data. During pumping, LAR-1 had not reached steady state conditions, so numerical 

evaluations were used to fit field data to calculate steady state conditions under steady 

state conditions. The Scss determined from the numerical model may differ based on 

geometries and aquifer properties used. The predicted value of Scss over estimated the 

anticipated true value by approximately 35%.  This is a significant error, and one that is 

larger than expected.  Indeed, the empirical method of estimating well performance as the 
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observed performance at the end of pumping would have given approximately 3.3x10
-3

 

m
2
/min, which is much closer to the expected actual value.   

A suggestion to the reason for this large error is given in the shape of the drawdown 

curve (Fig. 4.12).  The drawdown increases and approaches a semi-log straight line at 

relatively early time, and then the slope flattens and once again becomes a semi-log 

straight line.  This curve differs from the idealized behavior, where the curve 

continuously flattens until it reaches a slope of zero (Fig. 2.2).  That is, the second, semi-

log straight line portion of the plot in (Fig. 4.12) is absent from the idealized plot.   

Drawdown curves with two segments that form straight lines on semi-log plots were 

described by Passinos (2001).  She recognized that this behavior can be caused by a well 

completed in a region composed of two domains separated by a vertical boundary.  The 

slope of the first segment is inversely proportional to the transmissivity of the domain in 

which the well is completed, whereas the slope of the second segment is inversely 

proportional to the arithmetic mean of T of the two domains.   

I suspect that well LAR-1 is completed in a domain with a smaller T than the adjacent 

material.  This is why the apparent T calculated using the drawdown in the well is one 

tenth that of T calculated using data from the monitoring wells. 

The proposed analysis does not consider an aquifer consisting of two domains separated 

by a steep boundary.  This effect is currently lumped into the skin factor, and indeed, the 

analysis indicated there was a significant skin around LAR-1 (sk = 5.6).  However, a skin 

factor will offset a drawdown curve, but it will not change the slope on a semi-log plot.  

Clearly, the slope in Figure 4.12 changes at roughly 170 minutes, so it appears that this 
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effect may to due to two domains.  It is worth noting that the semi-log slope of the second 

segment in  Figure 4.12 is only slightly steeper than the semi-log slopes of the monitoring 

wells, which further suggests that LAR-1 is embedded in a low T region.    

I suspect that the relatively large error given by eq. 2.15 is because of the effect of two 

domains, which are not considered in the analysis.  Additional work will be required to 

further evaluate this issue.           

GEGT Site 

The analysis performed well at the GEGT data set, essentially predicting the average 

long-term specific capacity to within a few percent.  The long-term data exhibit 

considerable variability, likely because short-term variations in pumping rate could have 

caused short term variations in drawdown, which were recorded as 3-month averages.  

Another factor that could have caused variability is seasonal fluctuations in recharge.  

The analysis assumes that recharge is constant, but clearly fluctuations in recharge will 

alter drawdowns and change the specific capacity.  It is possible to include effects of 

rainfall in the analysis, and this is recommended for future investigations.   
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CHAPTER FIVE 

CONCLUSION 

 

  

A new method was developed to predict the long-term performance of a well from short-

term pumping tests in an idealized hydrogeologic setting resembling the Piedmont 

province in the eastern U.S. (Fig. 1.9).  The method is based on a theoretical analysis of a 

well and a stream represented as a Cauchy-type boundary of variable conductance (Hunt, 

1999; Butler, 2001).  Interaction between the well and the stream is the key to 

understanding steady state conditions. The stream-aquifer interaction is characterized 

using a dimensionless term (eq. 2.9f), which includes the conductance of material 

between the stream and the aquifer, and other geometries and properties that can be 

determined with straightforward field measurements.  When > 10, the stream behaves 

like a constant head boundary and the well begins to approach steady conditions (Fig. 2.2 

and 2.3) when 
2

0.62
SL

t
T

  (eq. 2.22).  In this ideal case, the steady state specific 

capacity is given by  2 / ln 2 /css wS T L r  (eq. 2.16).  The effect of the stream on the 

performance of the well diminishes as  is reduced (Fig. 2.2).  The effect of a variable 

interaction between stream and well is included by adjusting  and using eq. 2.15 to 

calculate Scss.    
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The analysis for estimating Scss includes the effect of interaction between a well 

and a stream, which seems to be of fundamental importance, but the analysis omits many 

other hydrogeologic factors that occur in the Piedmont.  Numerical simulations of wells 

in various configurations that included some of these factors were conducted and then the 

proposed analysis was used to predict well performance in the simulations.  Aquifers in 

the Piedmont consist of fractured rock overlain by saprolite (Fig. 1.9), and the numerical 

configurations included aquifers and saprolite of different thicknesses and hydraulic 

conductivities (Table 3.1).  The results indicate that contrasts in the hydraulic 

conductivities of these two units caused errors ranging from -11% to 6% (Fig. 3.7).   

The saprolite is unconfined and highly porous, and release of water from storage 

in saprolite is recognized as an important factor affecting performance of wells in the 

Piedmont (LeGrand, 1967; Swain et al., 2004, Daniels, 2002, Williams, 2001).  

Increasing the storativity of the saprolite in the simulations had a significant effect on the 

drawdown curve, causing it to flatten at lower levels and sooner than predicted by the 

proposed method (Fig. 3.9), which assumes a homogeneous aquifer.  The flattening of the 

drawdown curve in the simulations was only temporary, and eventually the drawdown 

increased and approached a much larger value (Fig. 3.10).  This is a potential concern 

because the premature flattening of the drawdown curve caused by release of water from 

saprolite can occur after a few hours and could be interpreted as the well approaching 

steady state.  This temporary effect would lead to overestimation of the true steady state 

performance of the well. 
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The proposed method was capable of predicting the ultimate steady state specific 

capacity with errors of -11 to 6%.  The effect of saprolite will increase the well 

performance compared to that predicted by the proposed method (eq. 2.15), and the 

duration of this increased performance can be anticipated (eq.3.11).    

 Changing the separation distance between the well and the stream also affected 

errors, and in general, the proposed method (eq. 21.5) over-predicted well performance as 

the separation decreased.  This effect results from the convergence of flow paths on the 

stream, which occurs in the numerical model, and in the field, but is omitted from the 2-D 

analysis.  This geometric effect is only important when the ratio of the separation 

distance to the thickness of the aquifer is less than approximately 10.   In most of the 

configurations, the maximum error caused by this effect is 5% to 10%, but it was 10% to 

15% for configurations where the saprolite was particularly thin (Fig. 3.8).    

The general finding of the numerical simulations is that a variety of 

hydrogeologic effects that are common in the Piedmont but omitted from the proposed 

analysis will result in errors in Scss of less than roughly 15%.  This is probably an 

acceptable uncertainty for most applications. Some effects, like the influence of saprolite 

on the drawdown curve, can be recognized and taken into consideration in the analysis.  

These findings are encouraging because they suggest that the proposed method (eq. 2.15) 

could be robust in field applications.       This assertion was tested by using the proposed 

method to evaluate both synthetic type curves and the results from field tests at two sites 

in the Piedmont.  An approach for implementing the proposed analysis was developed 

with suggested steps to guide a user through several options for determining Scss from a 
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well test.  The parameters required by the full analysis may be unknown in some cases, so 

simplifications are given to account for these situations.  This results in a.) a full analysis 

to use when all parameters are available; b.) a simplification to use when the drawdown 

curve is semi-log straight and parameters in the vicinity of the stream are unknown; c.) 

two simplications to use when the semi-log slope of the drawdown curve decreases with 

time.   

Application of the implementation approach to synthetic pumping tests shows that 

with as little information as T, L, and rw, from the pumping well, the Simplification 

Method 1 is able to predict the long-term well performance quite well, with errors of a 

few percent. The full analysis was also successful estimating Scss even when the 

parameters for were estimated β. Using typical Piedmont values for Ssap, Ksap, and w 

appears to be a satisfactory starting point when parameters are unavailable because  is 

generally large enough to have only a minor effect.  

The evaluation of the Clemson Well Test provided a field example with a 

saprolite transmissivity 10 times greater compared to fracture rock aquifer. The Ksap/Krx -

>> 1.  The analysis over-predicts the expected actual specific capacity by approximately 

30%.  THis appears to occur because there appear to be two domains with different T 

values.  The pumping well is embedded in the lower T domain, whereas the monitoring 

wells are in a domain with a higher T.  This effect is crudely approximated by a well skin, 

but a revised analysis appears to be needed to fully explain this test.   

The GEGT example included an data set of well performance over a 6 year 

period. A 2-hour-long pumping test conducted prior to the well going into service was 
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used to test the approach. The analysis was used with average values for T from the well 

test, along with L, and rw from the site.  The results predict Scss within a few percent of 

the long-term average Scss observed at the site.  This estimate appears to be considerably 

better than those derived from alternative methods. 
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Appendix A 

Typical Piedmont Values 

 

 

Figure A-1: Distribution of b based on random sampling of typical Piedmont parameter 

ranges. . 
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L
(m)

w
(m)

b'
(m)

T
(m2/d)

Ssap Srx 

Minimum 1 1 1 1 1.E-04 1.E-06 1

Maximum 500 30 30 30 0.3 1.E-03 50
 

Figure A-2: Typical Piedmont parameter ranges. 
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