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Abstract

Advances in micromachining technology have enabled the design and development

of high performance microelectromechanical systems (MEMS). There is a pressing need

for control techniques that can be used to improve the dynamic behavior of MEMS such as

the response speed and precision. In MEMS applications, open-loop control is attractive as

it computes a priori the required system input to achieve desired dynamic behavior without

using feedback, thus eliminating the problems associated with closed-loop MEMS control.

While the input-shaping control is attractive due to its simplicity, the effectiveness of this

control approach depends on the accuracy of the model that isused to compute the input

voltage. Accurate modeling of MEMS dynamics is critical in the input-shaping process.

Input-shaping MEMS control algorithms based on analyticallumped models have been

proposed. It has been shown that step-shaped input voltagescan be used to control the

structural vibration of MEMS. However, several questions remain to be answered: (1) What

are the effects of the higher vibrational modes on the input-shaping control of MEMS? (2)

Can the input-shaping technique be improved to control these effects?

In this work, a full 3-D computational code is developed for coupled electrome-

chanical simulation and analysis of electrostatically actuated MEMS. The effect of higher

vibrational modes on the input-shaping control of electrostatic micromirros is investigated.

We show that, depending on the design of the micromirros, thebending mode of the mi-

cromirror structures can have significant effect on the dynamic behavior of the system,
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which is difficult to suppress by using the step-voltage open-loop control. We employ a

numerical optimization procedure to shape the input voltage from the real time dynamic

response of the mirror structures. The optimization procedure results in a periodic nonlin-

ear input voltage design that can effectively suppress the bending mode effect.
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Chapter 1

Introduction

Microelectromechanical systems (MEMS) were first developed in the 1970-80’s

for use in integrated circuits (IC’s)[1]. Since then MEMS have found many applica-

tions in optics, communications, microscopes, bio technology, robotics, transportation, and

aerospace[2, 3]. Some of the commercialized MEMS include, automotive accelerometers

and gyroscopes, pressure sensors, ink-jet print heads, optical RF switching networks, data

storage, and disposable chemical analysis systems [4]. Within the large family of MEMS,

electrostatically actuated micromirrors have been developed for several applications such

as optical RF switches, microscanners and video projectors[5]. Viereck et. al [6] set arrays

of mirrors between the two planes of glass in a window to direct sunlight into a room. The

mirrors can be operated in a way similar to blinds, but are notas noticeable. Other exam-

ples include volumetric displays, biochips used to patterncustom DNA chips, holography,

data storage, spectroscopy and ion trap based quantum computing[7, 8]. As the potential

applications of mircomirrors are very broad and promising,there is a pressing need for

control techniques that can be used to improve the dynamic behavior, such as the response

speed and precision, of micromirrors.

Broadly defined, there are two major control approaches available for MEMS con-
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trol: closed-loop control and open-loop control. From a controls point of view, closed-loop

control is preferred as the closed-loop control uses feedback to monitor the state of the

system. The closed-loop control is more robust and resistant to fabrication uncertainties,

design imperfections and environment disturbances. Therefore, a closed-loop control can

guarantee the designed performance. However, in MEMS applications, closed-loop control

has significant disadvantages [9]: (1) unlike macro mechanical systems, the implementa-

tion of the feedback mechanism is difficult in MEMS due to the small size of the system

and the high speed, high frequency operation, (2) the closed-loop control system needs to

be integrated on the MEMS system, which could significantly increase the size and the cost

of the system, (3) the added control system and circuits can significantly increase the com-

plexity and reduce the reliability of the microdevice. In contrast, open-loop control com-

putes the required system input to achieve desired behaviorwithout using feedback, thus

eliminating the potential problems associated with the closed-loop control. For this reason,

open-loop control of MEMS has attracted much research interest in the past decade.

Input-shaping control is an open-loop control approach in which a sequence of input

impulses are applied in order to generate the desired results [10]. Singer and Singhose are

arguably responsible for some of the earlier input shaping techniques [11, 12]. Singhose

et. al [13] proposed four input-shaping methods for gantry crane operations: ZV (Zero

Vibration), NZV (Negative Zero Vibration), ZVD (Zero Vibration Derivative), and NZVD

(Negative Zero Vibration Derivative). In MEMS applications, Borovic et. al. compares

open loop control to closed loop control for MEMS in [9] and more specifically a MEMS

electrostatic comb drive in [14]. Popa [15] demonstrates the use of input shaping on thermal

bimorph MEMS. Yang [16] uses input shaping to suppress the vibration of a cantilever

beam. For electrostatic micromirror systems, an input-shaping control algorithm based on

analytical lumped models has also been proposed [10]. While the input-shaping control

is attractive due to its simplicity, the effectiveness of this control approach depends on
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the accuracy of the model that is used to compute the input signal. Accurate modeling

of MEMS dynamics is critical in the input-shaping process. The above mentioned input-

shaping control algorithms are all based on analytical and semi-analytical models with

many simplifications of the system. As many MEMS devices havecomplex geometries and

nonlinear behaviour, it is not clear to what extend these models are accurate. In addition,

it is not clear what the effects of the higher vibrational modes are on the input-shaping

control of MEMS and if it is possible to improve the input-shaping technique to control

these effects.

To address these issues, accurate modeling of MEMS dynamicsis required. Based

on the level of abstraction, MEMS modeling approaches can becategorized into three

groups: analytical/semi-analytical approach, reduced order approach and full numerical

approach. In the analytical/semi-analytical approach, the MEMS device is discretized

into a mass, spring, damper system or by using more complex methods involving vibra-

tions of continuous media [10,17,18]. This approach requires a certain familiarity with

MEMS physics. Two difficulties associated with this approach are (1) not having a stan-

dard method for producing these macromodels, and (2) the lack of methods for verification

of the macromodels’ accuracy [18]. The reduced order modeling approach can be further

divided into numerical order reduction approaches and circuit-based approaches. In the nu-

merical model reduction approach, the system equations aresolved approximately in order

to reduce the order of the system [18, 19]. However, if the system has nonlinearities it be-

comes difficult to perform nonlinear model reduction. This method is not accurate enough

for use in both control optimization and design synthesis. The circuit-based approaches

breaks the MEMS device into a circuit composed of anchors, beams, gaps, and plates. This

approach allows for verification, but some designs cannot besupported by this method. The

third approach is the full numerical approach that discretize the system directly and solves

the governing partial differential equations directly [20,21]. The full numerical approach
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is general and accurate compared to other approaches. Sincean accurate model is impor-

tant in MEMS open-loop controls, in this work, we adopt the full numerical approach to

investigate electrostatic micromirrors.

The numerical analysis of MEMS typically involves a mechanical analysis and an

electrostatic analysis. In this thesis, the Finite ElementMethod (FEM) is utilized in me-

chanical analysis because of its accuracy and robustness. The Boundary Element Method

is utilized to solve the boundary integral equations (BIE) of the electrostatics problem. The

BEM offers an accurate solution to the electrostatic forces, which are often approximated

by means of analytical methods. We have developed a full 3-D general purpose FEM/BEM

solver for coupled electromechanical simulation and analysis of electrostatically actuated

MEMS. On top of the FEM/BEM solver, input-shaping open-loopcontrol algorithms are

also implemented. The effect of higher vibrational modes onthe input-shaping control of

electrostatic micromirros is investigated. We show that, depending on the design of the

micromirros, the bending mode of the micromirror structures can have significant effect on

the dynamic behavior of the system, which is difficult to suppress by using the step-voltage

open-loop control. We employ a numerical optimization procedure to shape the input volt-

age from the real time dynamic response of the mirror structures. The optimization proce-

dure results in a periodic nonlinear input voltage design that can effectively suppress the

bending mode effect. The coupled solver presented in this thesis can be used for a number

of purposes. The functionalities of the solver include: elastostatic analysis, modal analysis,

elastodynamic analysis, electrostatic analysis, static coupled electromechanical analysis,

dynamic coupled electromechanical analysis and input-shaping open-loop control analy-

sis.

In our input-shaping open-loop control analysis, we consider the micromirror de-

vice shown in Figure1.1. The mirror consists of two identical microbeams of lengthl,

width w, and thicknessh. The beams are fixed on one side and connected to a rigid rectan-
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gular plate (the mirror) on the other side. The mirror has a lengthLm, widtha and thickness

h. Beneath the micromirror are two electrodes, each of lengthLm and width(a2 − a1)/2.

The gap between the undeformed position of the mirror and theelectrodes is denoted asd.

The whole microstucture is etched out of a silicon substratethat has a densityρ, a Young’s

ModulusE, and a Poisson’s ratio ofν. We investigate the dynamic response of three dif-

ferent designs of the micromirror. In all three design, the size of the mirror plate and the

electrodes are the same. In the first design (Mirror A), the length of the suspension beams

is relatively short and the electrodes are positioned alignwith the outer edges of the mirror

plate. The second design (Mirror B) has the same design parameters as those in Mirror A

except that the electrodes are placed more towards the center of the mirror plate. In the

third design, the beam length is increased and the electrodes are placed close the center of

the mirror plate. The material properties and dimensions ofthe mirrors are listed in Table

1.1.

x

z

y

Suspension beam

Micromirror

ElectrodeSubstrate

l

l

a

w

h

d

Figure 1.1: Schematic diagram of the torsional micromirror

The mirror is activated to rotate in either direction by supplying a voltageV (t) to
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Table 1.1: Material properties and dimensions of the torsional micromirrors.

Properties

Modulus of elasticity,E (GPa) 170

Poisson’s ratio 0.3

Density,ρ (kg/m3) 2330

Dielectric contant of air,ǫ0 (F/m) 8.85×10−12

Dimensions Mirror A Mirror B Mirror C

Mirror width, a (µm) 100 100 100

Mirror length,Lm (µm) 100 100 100

Beam length,l (µm) 45 45 65

Beam width,w (µm) 1.55 1.55 2

Beam thickness,h (µm) 1.50 1.50 1.50

Electrode length,b (µm) 100 100 100

Electrode parameter,α = a1

a
0.3 0.18 0.06

Electrode parameter,β = a2

a
1.0 0.78 0.78

Gap height,d (µm) 2.75 2.75 2.75

the corresponding electrode. This results in an electrostatic potential between the electrode

and the mirror, which generates electric charges on the lower surface of the mirror and

the top surface of the electrode, and hence produces a downward electrostatic force to the

mirror plate and an electrostatic moment around the suspension point. Consequently, the

microbeams undergo simultaneous rotation and deflection. When the mirror deforms, the

electric field between the mirror plate and the electrodes changes and the electric charge

redistributes causing a change in electrostatic force. Therefore, an iterative procedure is

required to obtain an consistent solution between the mechanical and electrostatic domains.

The rest of the thesis is organized as follows: In Chapter 2, we present the theory

6



and implementation of the Finite Element Method for mechanical analysis. The theory

and implementation of the Boundary Element Method are discussed in Chapter 3. The

coupling of the FEM and BEM for the coupled electromechanical analysis of MEMS is

discuss in Chapter 4. Chapter 5 discusses the input-shapingopen-loop control analysis of

the micromirrors. Conclusions are given in Chapter 6.
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Chapter 2

Finite Element Dynamic Structural

Analysis

2.1 Mathematical Model

As shown in Figure1.1, when a voltage is applied to the electrodes an electrostatic

force will act on the mirror in the form of a surface traction,the microbeams and the mirror

plate undergo simultaneous rotation and deflection. Since the rotation and deflection are

in different planes, a full 3-D simulation is necessary. Thegap between the mirror plate

and the electrodes is small as shown in Table1.1. Due to the pull-in effect, the actual

rotation of the mirror is even smaller compared to the dimension of the mirror structure.

Typically the rotation angle is about1o. Therefore, a linear elasticity theory can be used for

the mechanical analysis.

The derivation of the discretized dynamic equations of motion in the finite element

mechanical analysis is summarized in this section. The method presented hereafter is stan-

dard and can be found in FEA textbooks [22,23,24]. To obtain the equations of motion

for 3D FEA the mirror structure is discretized into elements. The displacement for each
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element can then be written as

u(e)(x, y, z, t) =










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z(x, y, z, t)
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


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
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





= N(x, y, z)d(e)(t) (2.1)

whereu is the displacement vector,N(x, y, z) are shape functions,d is the time dependant

nodal displacements, and(e) denotes an element. The shape functions are the Lagrange

interpolating polynomials that are used to approximate thesolution, and are determined by

the placement of the nodes in each element. The element strain, ǫ(e), and stresses,σ(e) can

then be written as

ǫ(e) = Bd(e) (2.2)

σ(e) = Dǫ(e) (2.3)

whereB is the strain-displacement matrix containing first order derivatives of the shape

functions [23]. B can be written as

B = [B1B2...Bne
] (2.4)
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wherene is the number of nodes in each element andBi, i = 1, 2, ..., ne, is given by

Bi =


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0 0
∂Ni

∂z

∂Ni

∂y

∂Ni

∂x
0

0
∂Ni

∂z

∂Ni

∂y

∂Ni

∂z
0

∂Ni

∂x





















































(2.5)

D is the material tensor given by [23]

D =
E

1 − ν2





















































1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν

2
0 0

0 0 0 0
1 − 2ν

2
0

0 0 0 0 0
1 − 2ν

2





















































(2.6)

whereE is the Young’s Modulus of Elasticity andν is the Poisson’s ratio. The velocity is
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approximated by differentiating (2.1) with respect to time

u̇(e)(x, y, z, t) = N(x, y, z)ḋ(e)(t) (2.7)

whereḋ(e)(t) is the nodal velocity of element(e). The equations of motion can be found

by using Lagrange’s equations [23,25]

d

dt

(

∂L

∂u̇

)

−
∂L

∂u
+

∂R

∂u̇
= 0 (2.8)

whereR is the dissipation function or damping,

L = T − πp (2.9)

is the Lagrangian,T is the kinetic energy, andπp is the potential energy. The kinetic energy

for an element can be expressed as

T (e) =
1

2

∫∫∫

V (e)

ρu̇(e)T

u̇(e)dV. (2.10)

whereρ is the mass density, andV (e) is element volume. The potential energy,π
(e)
p , for an

element can be expressed as

π(e)
p =

1

2

∫∫∫

V (e)

ǫ(e)T

σ(e)dV −

∫∫

Γ
(e)
h

u(e)T

hdΓ −

∫∫∫

V (e)

u(e)φdV. (2.11)

whereΓ
(e)
h is the element surface,h andφ are the surface traction and the body force,
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respectively,

h =











































hx

hy

hz











































φ =











































φx

φy

φz











































(2.12)

In Eq. (2.11) the only forces present are surface and body forces, concentrated point loads

are not represented in the element potential energy. Concentrated point forces are taken

into account in the global potential energy. The element dissipation functionR(e) can be

written as

R(e) =
1

2

∫∫∫

V (e)

µu̇(e)T

u̇(e)dV (2.13)

whereµ is the damping coefficient. Equations (2.1) - (2.3) can be substituted into (2.10) -

(2.13) to get

T =

N
∑

e=1

T (e) =

N
∑

e=1

[

1

2
ḋ(e)T

(
∫∫∫

V (e)

ρNTNdV

)

ḋ(e)

]

(2.14)

πp =

N
∑

e=1

π(e)
p − d

T

pc =

N
∑

e=1

[

(

1

2
d(e)T

∫∫∫

V (e)

BTDBdV

)

d(e)

−

(

d(e)T

∫∫

Γ
(e)
h

NThdΓ + d(e)T

∫∫∫

V (e)

NT φdV

)]

− d
T

pc (2.15)

R =
N
∑

e=1

T (e) =
N
∑

e=1

[

1

2
ḋ(e)T

∫∫∫

V (e)

µNTNdV

]

ḋ(e) (2.16)

whereN is the number of elements,N is a matrix of shape functions,pc is the concentrated
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point loads andd is the global nodal displacement vector. To simplify the Lagrangian, let

M(e) = element mass matrix=
∫∫∫

V (e)

ρNTNdV (2.17)

K(e) = element stiffness matrix=
∫∫∫

V (e)

BTDBdV (2.18)

C(e) = element damping matrix=
∫∫∫

V (e)

µNTNdV (2.19)

p(e)
s = vector of element surface traction=

∫∫

Γ
(e)
h

NThdΓ (2.20)

p
(e)
b = vector of element body forces=

∫∫∫

V (e)

NT φdV (2.21)

Equations (2.14) - (2.16) can be rewritten as

T =
N
∑

e=1

(

1

2
ḋ(e)T

M(e)ḋ(e)

)

(2.22)

πp =

N
∑

e=1

[

1

2
d(e)T

K(e)d(e) −
(

d(e)T

p(e)
s + d(e)T

p
(e)
b

)

]

− d
T

pc (2.23)

R =
N
∑

e=1

[

1

2
ḋ(e)T

C(e)ḋ(e)

]

(2.24)

T , πp, andR can now be written in the global form

T =
1

2
ḋTMḋ (2.25)

πp =
1

2
dTKd− dTp(e)

s − dT p
(e)
b − dT pc (2.26)

R =
1

2
ḋTCḋ (2.27)
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where

d = assemble(d(e), e = 1 . . .N) (2.28)

M = assemble(M(e), e = 1 . . . N) (2.29)

K = assemble(K(e), e = 1 . . . N) (2.30)

C = assemble(C(e), e = 1 . . .N) (2.31)

P = assemble
((

p(e)
s + p

(e)
b

)

, e = 1 . . .N
)

+ pc (2.32)

whereM, C, K are the global mass, damping and stiffness matrices, respectively, and the

force vectorP is the summation of all the forces on the structure. ApplyingLagrange’s

equations produces the dynamic equations of motion

Md̈ + Cḋ + Kd = P. (2.33)

whered̈ is the acceleration vector andḋ is the velocity vectors.

In the static case, the equations of motion can be easily reduced to the equations of

equilibrium by simply setting velocity and acceleration equal to zero. The static equation

of equilibrium can be written as

Kd = P. (2.34)

2.2 Discretization and approximation

In this work, we perform the discretization of the mirror structure and obtain the

mesh by using commercial FEA packages such as ANSYS and ABAQUS. Since most of

the deformation will take place on the beams and the corners where the beams connect to

14



the plate are points of stress concentration, a fine mesh is generated for the beams and the

beam-plate connection regions. The mirror plate can be accurately approximated with a

course mesh. A sample mesh generated in ABAQUS is shown in Figure2.1. Linear eight

Figure 2.1: Mirror meshing.

node isoparametric brick elements are employed in our mechanical analysis. Figures2.2

and2.3show a hexahedral eight node brick element and the master element, respectively.

The nodal coordinates for the brick element in the local coordinate system are listed in

Table (2.1). Using the values from Table (2.1) the shape functions for the brick element

can be written as [23 , 24]

Ni(ξ, η, ζ) =
1

8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ) (2.35)
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Figure 2.2: Linear hexahedral brick element.
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ξ
Figure 2.3: 8-node hexahedral master element.
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Table 2.1: Nodal coordinates for the brick element in the local coordinate system.

i ξi ηi ζi

1 -1 -1 -1

2 1 -1 -1

3 1 1 -1

4 -1 1 -1

5 -1 -1 1

6 1 -1 1

7 1 1 1

8 -1 1 1

The derivatives of the shape functions with respect toξ, η andζ can be computed by

∂Ni

∂ξ
=

1

8
ξi(1 + ηiη)(1 + ζiζ)

∂Ni

∂η
=

1

8
ηi(1 + ξiξ)(1 + ζiζ)

∂Ni

∂ζ
=

1

8
ζi(1 + ξiξ)(1 + ηiη). (2.36)

The derivatives of the shape functions with respect tox, y and z can be obtained from

application of the chain rule:











































∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ











































= J











































∂Ni

∂x

∂Ni

∂y

∂Ni

∂z











































(2.37)
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whereJ is the Jacobian. The Jacobian is the scaling factor from the original element to the

master element

J =



























8
∑

i=1

(

∂Ni

∂ξ
xi

) 8
∑

i=1

(

∂Ni

∂ξ
yi

) 8
∑

i=1

(

∂Ni

∂ξ
zi

)

8
∑

i=1

(

∂Ni

∂η
xi

) 8
∑

i=1

(

∂Ni

∂η
yi

) 8
∑

i=1

(

∂Ni

∂η
zi

)

8
∑

i=1

(

∂Ni

∂ζ
xi

) 8
∑

i=1

(

∂Ni

∂ζ
yi

) 8
∑

i=1

(

∂Ni

∂ζ
zi

)



























(2.38)

2.3 Integration

The global mass matrix is the assembly of all the element matrices. The element

mass, damping and stiffness matrices are given in Eq. (2.17-2.19) as

M(e) =

∫∫∫

V (e)

ρNTNdV (2.39)

C(e) =

∫∫∫

V (e)

µNTNdV (2.40)

K(e) =

∫∫∫

V (e)

BTDBdV (2.41)

Proportional damping can be used as an alternative to the damping matrix defined in Eq.

(2.40). Proportional damping implies that the damping is a proportional function of the

mass and stiffness, i.e.,[23]

C = c1M + c2K (2.42)

18



wherec1 andc2 are mass and stiffness damping constants. The element surface traction

and body force vectors are given by

p(e) =

∫∫

Γh

NThdΓ +

∫∫∫

V (e)

NTφdV (2.43)

The volume and surface integrations for the element matrices and vectors are performed

numerically by using Gaussian Quadrature in the local coordinate system. The mass and

stiffness element matrices can now be written as

K(e) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BTDBdet(J)dξdηdζ (2.44)

and

M(e) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

ρN(ξg, ηg, ζg)
TN(ξg, ηg, ζg)det(J)dξdηdζ (2.45)

wheredet(J) is the determinate of the Jacobian Matrix andξg, ηg, andζg are the coordinates

for thegth Gauss Point. Applying the Gaussian quadrature numerical integration,K(e) and

M(e) can now be rewritten as

K(e) =
NG
∑

g=1

BT (ξg, ηg, ζg)DB(ξg, ηg, ζg)det(J(ξg, ηg, ζg))wg (2.46)

and

M(e) =

NG
∑

g=1

ρN(ξg, ηg, ζg)
TN(ξg, ηg, ζg)det(J(ξg, ηg, ζg))wg (2.47)
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where NG is the number of Gauss points andwg is the weight of thegth Gauss point and

N(ξg, ηg, ζg) =































































N1(ξg, ηg, ζg) 0 0

0 N1(ξg, ηg, ζg) 0

0 0 N1(ξg, ηg, ζg)

...
...

...

N8(ξg, ηg, ζg) 0 0

0 N8(ξg, ηg, ζg) 0

0 0 N8(ξg, ηg, ζg)































































(2.48)

where each shape function is evaluated at thegth Gauss point.

For the surface traction case, the surface traction acts on an area instead of a volume,

a cross product of two of the columns in the 3D Jacobian matrixwill yield the area Jacobian

for the surface integration. The method for utilizing this principle can be written as [24]

∫

Γh

NhdΓ =

∫ 1

−1

∫ 1

−1

Nh‖x,ξ × x,η‖dξdη (2.49)

After the element matrices and vectors are calculated the global matrices and vec-

tors can be assembled. The assembly for the mass and stiffness matrices are the same,

and since the damping matrix is derived from the mass and stiffness matrices there is no

assembly required. The first step in assembling the global matrices is determining the node

numbers. There are two node numbers, the local element node number and the global

node number. The element node number determines where the node belongs with respect
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to the element. The global node number determines where the node belongs with respect

to the model. In addition, the local node number pertains to the node’s placement within

the element matrix while the global node number pertains to the node’s placement within

the global matrix. The dimensions of the element matrices are 24x24. This can also be

regarded as 8x8 blocks with each block being a 3x3 matrix. Each 3x3 matrix has a cor-

responding 3x3 block in the global matrix. The direct relationship between the element

matrix and the global matrix can be expressed as

M(3 ∗ (GN#i) + k, 3 ∗ (GN#j) + l) = m(e)(3 ∗ i + k, 3 ∗ j + l) (2.50)

Where i and j are local node numbers,k and l are the positions in the individual 3x3

matrices, andGN#i andGN#j are the global node numbers corresponding to the local

node numberi andj.

2.4 Newmark Schemes

The Newmark method [23] is used in the elastodynamic analysis. In the Newmark

method, the global equations of motion are combined with kinematic equations of motion

to solve the displacement, velocity and acceleration of thenodes. Equation (2.51) is the

global equation of motion, Eqs. (2.52) and (2.53) are kinematic equations of motion. For

any time stepn + 1

Md̈n+1 + Cḋn+1 + Kdn+1 = pn+1 (2.51)

dn+1 = dn + ∆tḋn +
∆t2

2
(1 − 2β)d̈n +

∆t2

2
(2β)d̈n+1 (2.52)

ḋn+1 = ḋn + ∆t(1 − γ)d̈n + ∆tγ ¨dn+1 (2.53)
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Several schemes in the Newmark method are available [23]. The schemes and their char-

acteristics are listed in Table2.2. In this thesis we implemented both the Trapezoid rule

Table 2.2: Newmark schemes.

Scheme Type β γ Stability Order of Accuracy

Average Acceleration
(Trapezoid Rule)

Implicit 1
4

1
2

Unconditional 2

Linear Acceleration Implicit 1
6

1
2

Conditional 2

Fox-Goodwin Implicit 1
12

1
2

Conditional 2

Central Difference Explicit 0 1
2

Conditional 2

and the explicit central difference scheme to perform the dynamic structural analysis. In

the following sections, the steps of carrying out these two schemes are summarized.

2.4.1 Trapezoid rule (Implicit)

Step 1

Start fromt = 0, ḋ0 andd0 are known from the initial conditions, calculated̈0 by using

Md̈0 + Cḋ0 + Kd0 = p0 (2.54)

i.e.

Md̈0 = p0 −Cḋ0 − Kd0 (2.55)

By solving Eq. (2.55), d̈0 can be obtained.
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Step 2

For time step = 1, substitute Eqs. (2.52,2.53) into Eq. (2.51). That is, substituting

d1 = d0 + ∆tḋ0 +
∆t2

2
(1 − 2β)d̈0 +

∆t2

2
(2β)d̈1 (2.56)

and

ḋ1 = ḋ0 + ∆t(1 − γ)d̈0 + ∆tγd̈1 (2.57)

into the equation of motion for time step 1

Md̈1 + Cḋ1 + Kd1 = P1, (2.58)

we obtain

Md̈1 + C
[

ḋ0 + ∆t(1 − γ)d̈0 + ∆tγd̈1

]

+K

[

d0 + ∆tḋ0 +
∆t2

2
(1 − 2β)d̈0 +

∆t2

2
(2β)d̈1

]

= P1. (2.59)

Moving all the known quantities to the right-hand-side, we obtain

(

M + γC∆t + β∆t2K
)

d̈1 =

P1 − (C + ∆tK) ḋ0 −

(

∆t(1 − γ)C +
∆t2

2
(1 − 2β)K

)

d̈0 −Kd0. (2.60)

By solving Eq. (2.60), d̈1 can be obtained.

Step 3

Substitutingd0, ḋ0, d̈0 andd̈1 into Eqs. (2.52,2.53), d1 andḋ1 can be calculated.
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Steps 2 and 3 complete the calculation of the displacement, velocity and acceleration for

time step 1. The solutions for time steps 2, 3, ..., can be obtained in the same fashion by

repeating the steps 2 and 3.

2.4.2 Central or Finite difference (Explicit)

Central difference method is an explicit method withβ = 0 andγ = 1/2. Note

that, the central difference scheme is explicit only whenM andC are diagonal matrices.

Given thatβ = 0 andγ = 1/2, we obtain from Eqs. (2.52,2.53),

dn+1 = dn + ∆tḋn +
∆t2

2
d̈n (2.61)

ḋn+1 = ḋn +
∆t

2
d̈n +

∆t

2
d̈n+1 (2.62)

Substituting Eqs. (2.61,2.62) into Eq. (2.51), we have

Md̈n+1 + C

(

ḋn +
∆t

2
d̈n +

∆t

2
d̈n+1

)

+ K

(

dn + ∆tḋn +
∆t2

2
d̈n

)

= Pn+1

(2.63)

Rearrange the equation, we obtain

(

M +
∆t

2
C

)

d̈n+1 = Pn+1 − C

(

ḋn +
∆t

2
d̈n

)

−K

(

dn + ∆tḋn +
∆t2

2
d̈n

)

(2.64)

If M andC are diagonal,̈dn+1 can be computed from Eq. (2.64) without solving a linear

system. This process is repeated until the stopping condition is fulfilled.
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2.5 Computational Process

The FEA processes for both the static and dynamic analysis are summarized in

Algorithms 1 and 2. The flow chart for elastodynamic analysisis shown in Figure2.4. Note

that the elastostatic FEA algorithm is only a simple subset of the elastodynamic analysis.

Algorithm 1 The Dynamic FEA Process

1: Mesh the structure.

2: Compute and assemble the stiffness matrixK.

3: Compute and assemble the mass matrixM.

4: Compute damping matrixC.

5: Compute and assemble force vector.

6: Use Newmark method to solve the equations of motion for the displacement.

7: If the force is static, repeat 6 until equilibrium is reached.

8: If the force is dynamic, repeat 5 and 6 for every time step .

Algorithm 2 The Static FEA Process

1: Mesh the structure .

2: Compute and assemble the stiffness matrixK.

3: Compute and assemble Force Vector.

4: Apple boundary conditions.

5: Solve (2.34) for steady state displacement.

2.6 Numerical Results

We have tested our code with numerous test cases and validated our code. In this

section, we present numerical results of several examples and compare our results with

those obtained in ANSYS.
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Compute Initial Conditions

Set Time Step t = 0

Set Time Step t = t + 1

Compute Accel,Disp, Vel
using Newmark Method

Solution Converged?No

Yes

Complete

Mesh Domain

Compute and Assemble M,C,K Matrices

Compute and Assemble Force Vector

Figure 2.4: Flow Chart for 3D Dynamic FEA
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2.6.1 Static Analysis of a Cantilever Plate

The first example is a8 × 8 cm cantilever plate with a thickness of 1 cm subjected

to a pressure of 0.1 Pa. The Young’s modulus of the material is10 MPa. The Poisson’s

ratio is 0.25. The plate is meshed with10 × 10 × 3 8-node brick elements in ANSYS.

This test problem is solved in ANSYS as well as in our solver. Figure 2.5 shows the

deformation of the plate obtained from our solution. Table2.3shows a comparison of the

nodal displacement solution for the first 10 nodes given by ANSYS and the results obtained

from our code. The results obtained from ANSYS and our code are identical.

Figure 2.5: A cantilever plate subjected a pressure.
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Table 2.3: ANSYS vs. FEA solver: cantilever plate subjectedto a uniform pressure.

Node#

FEA Solver ANSYS

x (cm) y (cm) z (cm) x (cm) y (cm) z (cm)

1 0.000000 0.000000 0.000000 0.0000 0.0000 0.0000

2 -0.039906 0.000026 -0.486716 -0.39906E-01 0.25695E-04 -0.48672

3 -0.010336 -0.003006 -0.007782 -0.10336E-01 -0.30061E-02 -0.77816E-02

4 -0.019168 -0.002744 -0.032585 -0.19168E-01 -0.27443E-02 -0.32585E-01

5 -0.026275 -0.002862 -0.069768 -0.26275E-01 -0.28615E-02 -0.69768E-01

6 -0.031644 -0.002471 -0.117437 -0.31644E-01 -0.24713E-02 -0.11744

7 -0.035371 -0.001887 -0.172446 -0.35371E-01 -0.18872E-02 -0.17245

8 -0.037746 -0.001304 -0.232169 -0.37746E-01 -0.13045E-02 -0.23217

9 -0.039085 -0.000785 -0.294640 -0.39085E-01 -0.78466E-03 -0.29464

10 -0.039699 -0.000364 -0.358438 -0.39699E-01 -0.36399E-03 -0.35844
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2.6.2 Static Analysis of Mirror C

In the second example, we perform a static analysis on MirrorC shown in Chapter

1. A point force is applied to a corner of the mirror plate as shown in Figure2.6. The

material properties of the mirror structure is listed in Table 1.1. The mirror is meshed with

3849 8-node brick elements in ANSYS. The total number of nodes is 6008 resulting in

18024 degrees of freedom. This test problem is solved in ANSYS as well as in our solver.

Figure2.6shows the deformation of the mirror structure obtained fromour solution. Table

2.4shows a comparison of the nodal displacement solution for the first 10 nodes given by

ANSYS and the results obtained from our code. The results obtained from ANSYS and out

code are identical.

Figure 2.6: Static analysis: Mirror C.
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Table 2.4: ANSYS vs. FEA Solver: Mirror C subjected to a pointforce.

Node#

ANSYS FEA Solver

x(µm) y(µm) z(µm) x(µm) y(µm) z(µm)

1 0.000812 -0.014614 1.126587 0.81151E-03 -0.14614E-01 1.1266

2 0.000436 -0.014472 0.272161 0.43586E-03 -0.14472E-01 0.27216

3 0.000800 -0.014611 1.087989 0.79951E-03 -0.14611E-01 1.0880

4 0.000779 -0.014605 1.048469 0.77934E-03 -0.14606E-01 1.0485

5 0.000762 -0.014603 1.008009 0.76210E-03 -0.14603E-01 1.0080

6 0.000746 -0.014602 0.966576 0.74640E-03 -0.14602E-01 0.96658

7 0.000730 -0.014600 0.924146 0.72962E-03 -0.14600E-01 0.92415

8 0.000711 -0.014595 0.880702 0.71125E-03 -0.14595E-01 0.88070

9 0.000692 -0.014589 0.836225 0.69216E-03 -0.14589E-01 0.83622

10 0.000673 -0.014583 0.790693 0.67326E-03 -0.14583E-01 0.79069

30



2.6.3 Modal Analysis of Mirror A/B

In the third example, we perform a modal analysis on Mirror A or B (Mirror A and

B have the same mirror structure). In this example, the mirror is meshed with 646 8-node

brick elements in ANSYS. The total number of nodes is 1302 resulting in 3906 degrees of

freedom. This test problem is solved in ANSYS as well as in oursolver. Tables2.5 and

2.6 list the first 10 natural frequencies of the mirror. Once again, the results obtained by

ANSYS (not shown) and the results obtained from our code are identical. Figure2.7shows

the first 10 vibrational modes of the mirror. It is shown that the first mode is a rotational

mode, the second mode is a bending mode and the third mode is a twisting mode. For the

first mode, the natural frequency is 0.0474 MHz which is corresponding to a period of 21.1

µs. For the second mode, the frequency is 0.125670 MHz with a period of 8µs. Compared

to the first frequency, the second frequency is about 2.65 times larger.

Table 2.5: Natural frequencies of Mirror A/B.

Mode 1 2 3 4 5

Frequency (MHz) 0.047398 0.125670 0.136935 0.246021 0.316886

Table 2.6: Natural frequencies of Mirror A/B.

Mode 6 7 8 9 10

Frequency (MHz) 1.473245 3.440778 3.483548 3.595135 4.884864
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Figure 2.7: Vibrational modes of Mirror A/B.
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2.6.4 Dynamic Analysis of Micromirror

In the fourth example, we perform a free vibration dynamic analysis on Mirror A/B.

The first three modes are taken as the initial displacement ofthe structure. Then the struc-

ture is set free for vibration. Our dynamics code computes the time history of the free

vibration. In this example, the damping is set to zero. Figure 2.8 shows the displacement

of a corner of the mirror plate as a function of time. Periodicmovement of the structure

is obtained as expected. As shown in the figures, the frequencies of the three free vibra-

tions are approximately 0.047 MHz, 0.126 MHz and 0.137 MHz. These results match the

frequencies obtained from the modal analysis.
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Figure 2.8: Dynamic peak displacement of Mirror A/B.
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Chapter 3

Boundary Element Method for

Electrostatic Analysis

3.1 Mathematical Model

Consider two conductors as shown in Figure3.1, the goal of the electrostatic analy-

sis using the boundary element method (BEM), is to determinethe charge density of each of

the conductors based on the potential difference between the two. The governing equation

1Ω
Ω 2

d
d 1Γ

Γ

dΓ2 Γd 2

1

Ω

Figure 3.1: Domain of boundary element method.
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for electrostatic analysis is Laplace’s Equation which canbe written as[26]

∇2u = 0 in Ω̄ (3.1)

with boundary conditions

u = ū on Γ1 (3.2)

q =
∂u

∂n
= q̄ on Γ2 (3.3)

whereΩ̄ is the domain exterior toΩ1 andΩ2, u is the voltage applied to the conductors (i.e.,

electric potential), andn is the normal of the boundary. Either the potential or the charge

density are known for each point on the boundary. In electrostatics the voltage is always

known and the surface charge density will be computed. An efficient approach to treat

exterior electrostatic problems is to use a boundary integral equation [26,27]. A boundary

integral equation for the electrostatic problem is given by[28],

u(P ) =

∫

Γ

G(P, Q)q(Q)dΓ + C (3.4)
∫

Γ

q(Q)dΓ = CT (3.5)

whereq is the unknown normal derivative ofu, P is the source point,Q is the field point,

G(P, Q) is the Green’s function andΓ = dΓ1 ∪ dΓ2. In three-dimensions,

G(P, Q) =
1

4πr(P, Q)
(3.6)

wherer(P, Q) is the distance between the source point and the field point,CT is the total

charge of the system (typically set to be zero) andC is an unknown variable which needs

to be computed. Note that the variables in the boundary-integral equations (3.4), (3.5) are
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written with respect to the deformed positions of the conductors.

3.2 Discretization and Approximation

The conductors are discretized into surface elements. For our case we used the

surface elements from the FEA mesh so that the nodes for the FEA and BEM will match

and no interpolation will be needed. We use constant elements for BEM so that each

element will have only one node at its centroid as shown in Figure (3.2). The centroid of

1 2

34 u,q

Figure 3.2: Constant Boundary element.

each element is taken as the collocation point and the value of the potential and its normal

gradient at the collocation point represent the value of thepotential and its normal gradient

on the element. For the case of the micro-mirror, only the face of the mirror plate nearest

the electrode and the face of the electrode nearest the plateare used for the analysis. This

is due to the fact that the charges gather at the surfaces of these two structures at the points

that are closest to the other structure. The surface charge density is concentrated on these

surfaces. The charge density of the rest of the mirror is negligible. The boundary integral
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equation for a source pointP can be written as

u(P ) =
K
∑

k=1

∫

Γk

1

4πr(P, Qk)
q(Qk)dΓ + C (3.7)

K
∑

k=1

∫

Γk

q(Qk)dΓ = CT (3.8)

whereK is the number of elements,Γk is the area of thekth element,Qk is the field point

on thekth element andq(Qk) is the unknown for thek-th element. Equations (3.7-3.8) can

be rewritten in a matrix form as

Mq = u (3.9)

whereM is a(K +1)× (K +1) coefficient matrix,u andq are the(K +1)×1 right hand

side and unknown vectors, respectively. The entries in the coefficient matrix are given by
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4πr(Pi, Qj)
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dΓ j = 1, . . . , K

M(i, K + 1) = 1 i = 1, . . . , K

M(K + 1, K + 1) = 0

(3.10)
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Theu vector in Eq. (3.11) is known from the potential boundary conditions. The unknown

vector of surface normal derivative of potential in Eq. (3.11) can be computed by solving

the matrix problem in Eq. (3.9). Note that, the electric fieldE normal to the surface is

given by

E = −q (3.12)

3.3 Singular Integration

A numerical integration technique needs to be employed to computeM. Before

the integration, the boundary elements are mapped to 2D isoparametric elements. For the

cases wherei 6= j a regular Gaussian quadrature can be used. For the cases where i = j

the integration becomes singular. Special integration techniques is required. There are

three popular methods for dealing with singular integrals,the weighted Gauss integration,

the transformation of variable technique, and the partial analytical Taylor series expansion

technique [30,31]. The weighted Gauss method is not recommended by many authors due

to its many limitations, therefore only the later two methods are discussed here in detail.

The transformation technique divides the element into triangular sub-elements then
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transforms the triangular element to a square plane[30]. Due to the fact that we use constant

elements, the singularity points are in the center of the cells. The element is split into

four triangular sub-cells. Each of these sub-cells is mapped to an isoparametric triangular

element. The shape functions for the triangular isoparametric element are shown in Eq.

(3.13), the corresponding element is shown in Figure (3.3(c)).

N1(ξ, η) =
1

2
(1 − ξ)

N2(ξ, η) =
1

2
(ξ − η)

N3(ξ, η) =
1

2
(1 + η) (3.13)

Equation (3.10) can be rewritten for each triangle as:

∫ 1

−1

∫ 1

−ξ

J(ξ, η)

4πr[P, Q(ξ, η)]
dξdη (3.14)

whereJ(ξ, η) is the Jacobian of the transformation from the triangular sub-element to the

isoparametric triangular element, andr[P, Q(ξ, η)] is the distance from the source point to

the field point. The JacobianJ(ξ, η) can be computed as

J(ξ, η) = det
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whereNi, i = 1, 2, 3, are the shape functions given in Eq. (3.13). The following trans-

formation of variables is then used on the isoparametric triangular element to map it to a
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square element as shown in Figure (3.3(d)).

u = ξ

v =
1 − ξ + 2η

1 + ξ
(3.16)

the Jacobian for this transformation is

Js =
1 + u

2
. (3.17)

Equation (3.14) can now be written as

1

2

∫ 1

−1

∫ 1

−1

J(ξ, η)(1 + u)

4πr[P, Q(ξ, η)]
dudv (3.18)

where, from Eq. (3.16)

ξ = u

η =
(1 + u)(1 + v)

2
− 1 (3.19)

Substituting Eq. (3.19) into Eq. (3.18) and carrying out the Gaussian quadrature on Eq.

(3.18) gives

1

2

∫ 1

−1

∫ 1

−1

J(u, v)(1 + u)

4πr[P, Q(u, v)]
dudv ≈

1

2

NG
∑

g=1

J(ug, vg)(1 + ug)

4πr[P, Q(ug, vg)]
wg (3.20)

whereNG is the number of Gauss points andwg is the weight.

The Taylor expansion method for evaluating weakly singularintegrals involves ex-

panding the integrand by use of Taylor Series and subtracting out the singularity. Also, a

corresponding term will be added which can be integrated analytically . The integration
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Figure 3.3: Transformation of Variable Technique Procedure
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technique can be written as [31]

∫ 1

−1

∫ 1

−1

J(ξ, η)

4πr[P, Q(ξ, η)]
dξdη =

∫ 1

−1

∫ 1

−1

(

J

4πr

)

3

dξdη

+

∫ 1

−1

∫ 1

−1

(

J

4πr
−

(

J

4πr

)

3

)

dξdη (3.21)

whereN(ξ, η) is the shape functions for the element,J(ξ, η) is the Jacobian for the map-

ping to the isoparametric element, and
(

MJ
R

)

3
is the third order Taylor’s Expansion of the

original integrand. In this work, we adopt the transformation method for the singular in-

tegration where6 × 6 Gauss points are used in the square element inu − v coordinate

system.

The application of boundary conditions is straightforward. The values for the volt-

age are simply applied to the collocation points, and since the voltage is constant throughout

each structure, one voltage will be applied to all of the cells in Γ1 and a different voltage

will be applied to all of the cells inΓ2. These voltages are the values that make upu. For

our case the voltage of the mirror is zero and the voltage of the electrode can vary based on

the input. Algorithm 3 and Figure3.4summarize the electrostatic analysis process.

Algorithm 3 The electrostatic analysis process.

1: Mesh the structure.

2: ComputeM.

3: Apply boundary conditions.

4: Solve Eq. (3.9) for q.
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Figure 3.4: Boundary element method flow chart.
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3.4 Numerical Results

We have tested our electrostatic code with numerous test cases. In this section,

we present numerical results of an examples and compare our results with known exact

solutions. The example is a two plate conductor system as shown in Figure3.5. Each

conductor has dimensions of100µm×100µm and the gap between the two plates is 2µm.

The applied voltage is set to be 1 V for the upper plate and 0 V for the lower plate. Since

the plate is very long compared to the gap the electric field atthe center point of the plate

is given by

E = −
Vab

d
= −2V/µm (3.22)

whereVab is the potential difference between the two plates andd is the gap. The BEM

2

mµ
µ m

µ m

100
100

2V

Figure 3.5: Setup of two parallel plates.

solution is shown in Figure3.6. The solution for the center of the plates is compared to

the analytical solution. Figure3.7 shows the convergence behavior of the BEM solution.

Figure3.8shows the electric field between two staggered parallel plates.
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Figure 3.6: Electric field between two parallel plates.
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Figure 3.7: Convergence of the BEM solution.
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Figure 3.8: Electric field between two staggered parallel plates.
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Chapter 4

Coupled Electromechanical Analysis of

MEMS

4.1 Static Coupled Electromechanical Analysis

In the static coupled electro-mechanical analysis, two sets of governing equations

are solved self-consistently. The equations of equilibrium are solved for the structures and

the exterior electrostatic equation is solved to obtain thesurface charge density. The self-

consistent analysis is performed via a relaxation iteration as shown in Figure6.1. The

governing equations of equilibrium are given by

Kd = P. (4.1)

whereP is the force vector. In the electromechanical analysis, theforce vectorP contains

the electrostatic surface pressure prescribed as a boundary condition.P is given by

P = PeN (4.2)
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Figure 4.1: Flow chart for coupled electromechanical static solver.
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whereN is the normal vector on the surfacePe is the electrostatic pressure generated by

the electric charge accumulated on the surface of the structure.Pe is computed by

Pe =
σ2

2ǫ
(4.3)

whereǫ is the permittivity of free space andσ is the surface charge density. The electrostatic

pressure in Eq. (4.3) is applied as the boundary condition for the mechanical analysis by

using Eq. (4.2). The surface charge density is obtained by the electrostatic analysis. The

governing boundary integral equations for electrostaticsis given by

u(P ) =

∫

ΓQ

G(P, Q)qdΓ + C (4.4)

∫

ΓQ

qΓ = 0 (4.5)

whereq is the normal gradient of the potential. Note that Eqs (4.4-4.5) are all defined in

the deformed configuration. Onceq is obtained, the surface charge density is computed by

σ = −ǫq (4.6)

Static coupled electromechanical analysis is performed toobtain the pull-in curve

for the three micromirrors shown in Chapter 1. Figure4.2shows the static pull-in of Mirror

A. The pull-in voltage is 18.74 V. This result compares favorably with the pull-in voltage

of 18.4 V obtained in [10] where the same mirror was investigated. Figure4.3 shows the

static pull-in of Mirror B. The pull-in voltage is 27.4 V. While Mirror A and Mirror B have

the same dimensions, the positions of the electrodes are different. The electrodes of Mirror

B is closer to the center of the mirror plate. It is shown from the results that the position

of the electrodes can change the pull-in voltage significantly. Figure4.4 shows the static
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pull-in of Mirror C. The pull-in voltage is 23.5 V. In this case, although the electrodes are

placed close to the center of the mirror plate, the suspension beams are longer than those of

Mirror A and B. As longer beams have lower bending stiffness,the pull-in voltage becomes

lower. The results of the static coupled analysis show that the pull-in voltage is a function

of both the stiffness of the beam and the position of the electrodes. Figure4.5 shows the

deformed shape of the Mirror C subjected to the electrostatic force. Figure4.6 shows the

distribution of the surface charge density on the surface ofthe mirror and electrodes.
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Figure 4.2: Static pull-in of Mirror A.
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Figure 4.3: Static pull-in of Mirror B.
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Figure 4.4: Static pull-in of Mirror C.
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Figure 4.5: Deformation of Mirror C due to electrostatic pressure.

Figure 4.6: Surface charge density distribution on the mirror plate and the
electrode.
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4.2 Dynamic Coupled Electromechanical Analysis

In the dynamic coupled electro-mechanical analysis, the equations of motion are

solved for the structures and the exterior electrostatic equation is solved to obtain the sur-

face charge density. Within each time step, the mechanical domain and electrostatic do-

main are solved self-consistently. The flow chat of the dynamic electromechanical analysis

is shown in Figure4.7.

Different from the static coupled analysis, for a given timestepn+1, the following

governing equations are to be satisfied simultaneously:

Md̈n+1 + Cḋn+1 + Kdn+1 = Pn+1. (4.7)

Pn+1 = Pen+1Nn+1 (4.8)

Pen+1 =
σ2

n+1

2ǫ
(4.9)

un+1(P ) =

∫

ΓQ

G(P, Q)qn+1dΓ + C (4.10)

∫

ΓQ

qn+1Γ = 0 (4.11)

σn+1 = −ǫqn+1 (4.12)

Within the time step, the relaxation iterations are performed to obtain a convergent solution

between the mechanical and electrostatic domains. Once a convergent solution is obtained,

the solution procedure moves to the next time step by using the Newmark method.

Figure4.2 shows the dynamic response of Mirror C with an applied voltage of 20

V. When the beam moves down due to the electrostatic force, the nonlinear electrostatic

force becomes larger and slows down the vibrational movement of the mirror. It is shown

in the figure that the vibration frequency of the mirror is lower when it deforms close

to the electrode. When the applied voltage is increased, themirror stays at the bottom
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Figure 4.7: Flow chart for dynamic coupled electromechanical analysis.
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Figure 4.8: Dynamic response of Mirror C for a 20 V applied voltage.

position becomes longer until the voltage reaches a critical point where the increase of the

electrostatic force becomes faster than the increase of themechanical restoring force and

the inertial force. The beam will be pulled down to the substrate beyond this critical pull-in

voltage, as shown in Figure4.2. The dynamic pull-in voltage of Mirror C is found to be

21.76 V.
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Figure 4.9: Dynamic pull-in of Mirror C.
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Chapter 5

Input-Shaping Control of

Microelectromechanical Mirrors

5.1 Open-Loop Control of Micromirrors

With the advances of microfabrication technology, high precision and reliable fab-

rication techniques become available for producing high quality MEMS devices. There is a

pressing need for techniques that can be used to improve the dynamic behavior of MEMS,

i.e., the response, speed, and precision. As introduced in Chapter 1, the performance of

electrostatically actuated microelectromechanical mirrors can be improved by introducing

control mechanisms in the operation of MEMS. For MEMS applications, input-shaping

open-loop control is favorable due to its simplicity.

Typically, an electrostatically actuated micromirror is asingle input (voltage) single

output (rotation angle) system. In this case, open-loop control is even more attractive as

the voltage input is relatively easy to manipulate. As discussed in Chapter 1, input-shaping

control is an open-loop control approach in which a sequenceof input impulses are applied

in order to generate the desired results, as shown in Figure5.1[10]. The rotation of the mir-
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ror plate is a function of the applied voltage. For a constantinput voltageV1 the mirror plate

oscillates about it’s equilibrium position until the platesettles at the equilibrium position

due to damping. The idea of the input-shaping is to introducea second impulse voltage at

the point where the mirror plate reaches its peak rotation angle. At that point, the rotational

velocity of the mirror plate is zero. The magnitude of the second voltage impulse is chosen

such that the static equilibrium rotation angle produced byV1 is exactly the dynamic peak

rotation angle shown in the figure. By using this approach, the residual vibration of the

system is expected to be zero after the application ofV2. While the input-shaping control

Time

M
ir

ro
r 

ro
ta

ti
o
n

 a
n

g
le

response to 

response to 

Figure 5.1: Schematic of input shaping.

is attractive due to its simplicity, the effectiveness of this control scheme depends on the

accuracy of the model that is used to compute the impulse voltagesV1 andV2. Therefore,

accurate modeling of the micromirror system is critical in the input-shaping process. Fur-

thermore, the nonlinear electrostatic force imposes additional difficulties in the modeling.

As discussed in Chapter 1, various approaches has been developed for input-shaping of lin-
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ear systems. For the nonlinear micromirror system, an input-shaping control algorithm has

also been proposed [10]. It has been shown that step-shaped input voltages can be used to

control the structural vibration of MEMS. The input-shaping algorithm is based on an first

order analytical lumped model. As the micromirrors have complex geometries and nonlin-

ear behaviour, it is not clear to what extend these models areaccurate. In addition, it is not

clear what the effects of the higher vibrational modes are onthe input-shaping control of

MEMS and if it is possible to improve the input-shaping technique to control these effects.

In this work, we investigate these input-shaping issues by using the full numerical model

and the FEM/BEM solver we have developed.

5.2 Bending Mode Effect on Input Shaping

To investigate the bending mode effect, we first apply the step-shaped input voltage

that can be obtained from the analytical model described in [10] for the three micromir-

rors shown in Chapter 1. In addition, with our coupled solver, we are able to compute the

step-shaped input voltage from the numerical simulations:first we do a set of dynamic sim-

ulations to find the first voltage impulse voltageV1 that produces desired peak deformation

dynamically and record the time at which the mirror reaches the desired position. Next,

we perform a set of static analysis to find the second impulseV2 that produces desired de-

formation statically. Figure5.2compares the three mirrors we used. Mirror A and Mirror

B have the same dimensions. However, the electrodes of Mirror B are closer to the center

of the mirror plate. In Mirror C, the electrodes are placed close to the center of the mirror

plate, the suspension beams are longer than those of Mirror Aand B.

Figure5.3 shows the step voltage and the dynamic response of Mirror A. The re-

sponse matches the designed behavior quite well. However, the step-shaped voltage does

not produce the desired dynamic behavior for Mirror B. Thereis still oscillation after the
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second impulse voltage as shown in Figure5.4. Figure5.5 shows the response of Mirror

C. The residual vibration is very large in this case.

Figure 5.2: Dimension comparison of the mirrors.

Since the electrostatic force is always pointing downward,for a given electrostatic

force, the ratio of the bending deformation to the torsionaldeformation depends on the ratio

of the bending stiffness and the torsional stiffness of the beam. In addition, the bending/-

torsional deformation ratio depends on the ratio of the total downward force and the torque

exerted on the mirror. The bending stiffness of the beams canbe determined by

kbending =
24EIy

l3
(5.1)

whereE is the Young’s modulus,Iy = wh3/12 is the moment of inertia of the suspension

beam cross section about they-axis, andl is the length of the beam. The effective torsional

stiffness of the beam is given by

ktorsion =
2GJ

l
(5.2)
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Figure 5.3: Step-shaped input voltage control: Mirror A.

whereG is shear modulus that can be obtained asG = E/(2 + 2ν) andJ is the polar

moment of inertia of the beam cross section expressed as

J =



















hw3
[

1
3
− 0.21w

h

(

1 − w4

12h4

)]

for w ≤ t

hw3
[

1
3
− 0.21 h

w

(

1 − h4

12w4

)]

for w ≥ t

(5.3)

The bending stiffness and torsional stiffness of the three mirrors calculated from the above

equations are summarized in Table5.1. It is shown that Mirror A and B have a larger

Table 5.1: Bending stiffness and torsional stiffness of thetorsional micromirrors.

Mirror A Mirror B Mirror C
Bending Stiffness (N/m) 19.52 19.52 8.36
Torsional Stiffness (Nm) 2.22e-9 2.22e-9 2.47e-9

bending/torsional stiffness ratio than Mirror C. For this reason, the bending mode effect

is larger in Mirror C. Although Mirror A and Mirror B have the same bending/torsional

stiffness ratio, the position of the electrodes of Mirror A is more towards the edge of the

mirror plate, which results in a larger torque in Mirror A. The torque/pulling force ratio
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Figure 5.4: Step-shaped input voltage control: Mirror B.
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Figure 5.5: Step-shaped input voltage control: Mirror C.

is larger in Mirror A. The bending mode is barely excited in Mirror A and the resultant

residual bending vibration in Mirror A is minimal. The step input voltage is sufficient in

controlling the dominant torsional mode. However, for Mirror B, due to the position of

the electrodes, more electrostatic energy is distributed to bend the beam, the bending mode

appears after the torsional mode is suppressed by the step actuation voltage. In Mirror C,

the bending deformation is even larger due to the low bendingstiffness of the beam. Thus,

both the bending/torsional stiffness ratio and the torque/pulling force ratio are important in

determining the effect of the bending mode in the input-shaping of micromirrors.

5.3 Computational Input Shaping Optimization

It is clear that for mirror designs that have a low bending/torsional stiffness ratio

and/or low the torque/pulling force ratio, the residual vibration due to the bending mode is

large with the step-shaped input voltage. In this work, we propose to suppress the residual

vibration by using an optimization technique in our numerical simulations. In order to find

the correct shape of the input voltage, we seek to minimize the acceleration according to

the real time dynamic response of the mirror. In this optimization problem, the objective
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function is simply the acceleration of a point on the edge of the mirror. The voltage is

the single input to the system. The following system of equations are involved in the

optimization process.

First, the Boundary Element Method is used to determine the electric field produced

by the input voltage.

Gq(dn+1) = u (5.4)

The surface charge density can be determined from the electric field by

σ = −ǫq (5.5)

The surface pressure is related to the surface pressure exerted by the electrostatic force by

P =
σ2

2ǫ
(5.6)

This Newmark Method is then used to calculate the acceleration of the next time step based

on the surface pressure.

(

M + γC∆t + β∆t2K
)

d̈n+1 =

Pn+1 − (C + ∆tK) ḋn −

(

∆t(1 − γ)C +
∆t2

2
(1 − 2β)K

)

d̈n − Kdn (5.7)

The displacement attn+1 can then be obtained

dn+1 = dn + ∆tḋn +
∆t2

2
(1 − 2β)d̈n +

∆t2

2
(2β)d̈n+1 (5.8)

The equations above are coupled nonlinear equations. A few methods are available to find
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an input voltageu that minimizes the acceleration̈dn+1. For example, the Newton method

and the secant method. In this thesis, for the sake of simplicity, we employ a straightforward

Bisection Method.

The Bisection Method is an optimization approach used to mostly to find the kernel

of a function (i.e. f(x) = 0). For our case the acceleration is a function of the input

voltage. If the input voltage for the mirror is chosen too lowthe mirror will deflect away

from the electrode. If the input voltage for the mirror is chosen too high the mirror will

deflect toward the electrode. To start the Bisection Method two initial voltages need to be

chosen such that one voltage is too low and the other is too high for the intended purpose of

minimizing the acceleration for the next time step these voltages are referred to asVa and

Vbrespectively, as shown in Figure5.6. A new voltage is chosen at the average ofVa andVb

Figure 5.6: The Bisection Method

and is calledVc. This bisects the distance between the voltages. The solution is in one of

the two regions.Vc is relabelled the newVa or Vb depending on which region the solution is

in. This effectively cuts the distance between the previousVa andVb in half. Each iteration

of the bisection method will narrow the range betweenVa andVb by half. The optimization
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process is listed in Algorithm4.

Algorithm 4 Input Shaping Optimization

1: Pick trial voltage as determined by the Bisection Method

2: Use BEM to determine the electric field based on the input voltage

3: Calculate the surface charge density from the electric field

4: Calculate the electrostatic pressure from the surface charge density

5: Calculate acceleration using the Newmark Method

6: Repeat until acceleration converges

Figures5.7-5.9 show the optimized shape of input voltage for the three mirrors.

For Mirror A, the optimized shape is almost identical to the step-shaped input voltage.

Therefore, the optimization automatically reproduces thestep-shaped input voltage if the

residual vibration is small. The optimization procedure results in a periodic nonlinear input

voltage design for both Mirror B and Mirror C. We observed that the frequency of the

input voltage is close to the natural frequency of the bending mode, this suggests that this

variation of the input voltage is used for compensating the bending vibration of the mirror.

It is shown that the bending mode effect is effectively suppressed by the optimized shape

of input voltage.
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Figure 5.7: Optimized shape of input voltage: Mirror A.
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Figure 5.8: Optimized shape of input voltage: Mirror B
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Figure 5.9: Optimized shape of input voltage: Mirror C
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Chapter 6

Conclusion

In this work, we have developed a full 3-D MEMS simulation code for input-

shaping open-loop control of electrostatic micromirrors.we show that the higher modes

may have a significant effect on the residual vibrations of the system depending on the sys-

tem parameters. The significance of the bending mode dependson the bending/torsional

stiffness ratio and the torque/pulling force ratio. We employ a numerical optimization

procedure to shape the input voltage from the real time dynamic response of the mirror

structures. The optimization procedure results in a periodic nonlinear input voltage design

that can effectively suppress the bending mode effect. Our results suggest that the periodic

variation of the input voltage is for compensating the bending vibration of the mirror.
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Appendix

Code Construction

In order to model the electrostatically driven micro mirror. A coupled FEA/BEM
solver was employed. The mesh for the FEA model was formulated using Abaqus. The
surface nodes from the FEA were then used for the BEM mesh. Once the BEM mesh for
the mirror is found the electrode will be meshed using a simple uniform meshing formula.
The electrostatic pressure will now be found by use of the BEM. Once the surface pressure
is known for the surface of the mirror, the force can be applied to the mirror. The natural
and essential boundary conditions are now known for the mirror. The penalty method is
used to enforce the essential boundary conditions. The displacement of the mirror due to
the for applied by the electrode will be found by use of the FEAsolver. For each time step
the electrostatic pressure will change according to the position of the mirror, thus the BEM
solver much be used for every time step. The Newmark method isutilized to solve for the
displacement, velocity, and acceleration for each time step.

Figure6.1shows the process used for the dynamic electromechanical solver. Abaqus
is used to mesh the domain. The nodes and element files are exported from Abaqus to a
text file.The format for the nodes file, nodes.dat, can be seenin Table6.1 The format for

Table 6.1: File format of nodes.dat

Node # x - coord y - coord z - coord
1 1.0 2.0 0.0
...

...
...

...

the elements file can be seen in Table6.2The element and node text files are then read into
Surf. Surf determines the domain and creates the boundary conditions for the BEM solver,
Table6.3and writes the BEM cells, Table6.4 , and nodes,Table6.5, to a text file based on
the FEA mesh and a few boundary condition inputs. Surf also makes a key,Table6.6, that
relates the FEA nodes to the BEM nodes. The BEM solver reads the text files that where
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Abaqus Surf

BEMIntermediate

FEA Translate Nodes

bempts.dat

key.dat
bembcs.dat
cells.dat
bempts.dat

nodes.dat

nodes.dat
elements.dat

elements.dat
nodes.dat

solu

bcstraction.dat

solq.dat

bcsdisp.dat

Figure 6.1: Class management flow chart.

Table 6.2: File format of elements.dat

Element# node 1 node 2 node 3 node 4 node 5 node 6 node 7 node 8
1 603 394 46 47 1244 1035 687 688
...

...
...

...
...

...
...

...
...

Table 6.3: File format of bembcs.dat

node# BC Type BC Value
1 1 10
...

...
...
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Table 6.4: File format of cells.dat

node 1 node 2 node 3 node 4
Cell # 333 39 38 126

...
...

...
...

...

Table 6.5: File format of bempts.dat

Node # x - coord y - coord z - coord
1 1.0 2.0 0.0
...

...
...

...

Table 6.6: File format of key.dat

FEA Element# Face# Node 1 Node 2 Node 3 Node 4
1 5 603 47 46 394
...

...
...

...
...

...
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output by Surf and computes the surface pressures exerted byelectrostatic forces. Inter-
mediate reads in the forces from the BEM solver, the key from Surf, and the nodes from
Abaqus to make the natural boundary conditions for the FEA solver, Table6.7 . The FEA

Table 6.7: File format of bcs1.dat

Element# Face# Node 1 BC Value 0
0 0 Node 2 BC Value 0
0 0 Node 3 BC Value 0
0 0 Node 4 BC Value 0
...

...
...

...
...

reads in the nodes and elements from Abaqus, the essential boundary conditions from Surf,
Table6.8 , and the natural boundary conditions from Intermediate. The FEA solver then

Table 6.8: File format of bcs2.dat

node# Displacement Rotation
x - direction 1 0 0
y - direction 1 0 0
z - direction 1 0 0

...
...

...
...

determines the displacement of the nodes based on the forcesas determined by the BEM
solver. The nodal displacements are then read into Translate there is no file for the nodal
displacements, they are input directly into the Translate function. Translate will update the
BEM nodes to the deformed positions. The entire process willbegin again for the next
time step starting at the BEM solver. Note that Abaqus and Surf only have to run once. The
process for the dynamic analysis can be seen in Figure4.2.The “.dat” files that are listed
are produced by the classes listed above them. Each file is available for any class below it
on the flow chart and if a file is listed twice the one farthest down on the chart is the most
recent.
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