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Abstract

Advances in micromachining technology have enabled thigdesd development
of high performance microelectromechanical systems (MEMSere is a pressing need
for control techniques that can be used to improve the dynaehavior of MEMS such as
the response speed and precision. In MEMS applications-lqw control is attractive as
it computes a priori the required system input to achieveegslynamic behavior without
using feedback, thus eliminating the problems associatttdolosed-loop MEMS control.
While the input-shaping control is attractive due to its gligity, the effectiveness of this
control approach depends on the accuracy of the model thaed to compute the input
voltage. Accurate modeling of MEMS dynamics is critical retinput-shaping process.
Input-shaping MEMS control algorithms based on analytioalped models have been
proposed. It has been shown that step-shaped input voltagebe used to control the
structural vibration of MEMS. However, several questiamaain to be answered: (1) What
are the effects of the higher vibrational modes on the irgmatping control of MEMS? (2)
Can the input-shaping technique be improved to controktleffects?

In this work, a full 3-D computational code is developed foupled electrome-
chanical simulation and analysis of electrostaticallyatéd MEMS. The effect of higher
vibrational modes on the input-shaping control of ele¢ttds micromirros is investigated.
We show that, depending on the design of the micromirrosb#meling mode of the mi-

cromirror structures can have significant effect on the dyinabehavior of the system,



which is difficult to suppress by using the step-voltage elo&p control. We employ a
numerical optimization procedure to shape the input veltisgm the real time dynamic
response of the mirror structures. The optimization praoedesults in a periodic nonlin-

ear input voltage design that can effectively suppress ¢ineling mode effect.
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Chapter 1

| ntroduction

Microelectromechanical systems (MEMS) were first devetbjethe 1970-80’s
for use in integrated circuits (IC's)]. Since then MEMS have found many applica-
tions in optics, communications, microscopes, bio teabgylrobotics, transportation, and
aerospacé], 3]. Some of the commercialized MEMS include, automotive lroeneters
and gyroscopes, pressure sensors, ink-jet print headsabRF switching networks, data
storage, and disposable chemical analysis systéms\fithin the large family of MEMS,
electrostatically actuated micromirrors have been d@egldor several applications such
as optical RF switches, microscanners and video projefdhr¥iereck et. al ] set arrays
of mirrors between the two planes of glass in a window to disealight into a room. The
mirrors can be operated in a way similar to blinds, but areasatoticeable. Other exam-
ples include volumetric displays, biochips used to patteistom DNA chips, holography,
data storage, spectroscopy and ion trap based quantum togj@u8]. As the potential
applications of mircomirrors are very broad and promisitngre is a pressing need for
control techniques that can be used to improve the dynanhiaviber, such as the response
speed and precision, of micromirrors.

Broadly defined, there are two major control approachedabtaifor MEMS con-



trol: closed-loop control and open-loop control. From atoals point of view, closed-loop
control is preferred as the closed-loop control uses feddb@a monitor the state of the
system. The closed-loop control is more robust and resigtafabrication uncertainties,
design imperfections and environment disturbances. Térerea closed-loop control can
guarantee the designed performance. However, in MEMScaijans, closed-loop control
has significant disadvantaged:[ (1) unlike macro mechanical systems, the implementa-
tion of the feedback mechanism is difficult in MEMS due to thea#l size of the system
and the high speed, high frequency operation, (2) the clesgulcontrol system needs to
be integrated on the MEMS system, which could significamityeéase the size and the cost
of the system, (3) the added control system and circuits igaifisantly increase the com-
plexity and reduce the reliability of the microdevice. Imt@st, open-loop control com-
putes the required system input to achieve desired behaitibout using feedback, thus
eliminating the potential problems associated with the@tbloop control. For this reason,
open-loop control of MEMS has attracted much researchasten the past decade.
Input-shaping control is an open-loop control approachhiciva sequence of input
impulses are applied in order to generate the desired s4&0|t Singer and Singhose are
arguably responsible for some of the earlier input shapeaeyriques1l, 12]. Singhose
et. al [L3] proposed four input-shaping methods for gantry crane aijmars: ZV (Zero
Vibration), NZV (Negative Zero Vibration), ZVD (Zero Vibtin Derivative), and NZVD
(Negative Zero Vibration Derivative). In MEMS applicat®nBorovic et. al. compares
open loop control to closed loop control for MEMS @] and more specifically a MEMS
electrostatic comb drive irlfd]. Popa [L5] demonstrates the use of input shaping on thermal
bimorph MEMS. Yang 16] uses input shaping to suppress the vibration of a cantileve
beam. For electrostatic micromirror systems, an inpupstgacontrol algorithm based on
analytical lumped models has also been propod€t [While the input-shaping control

is attractive due to its simplicity, the effectiveness afktbhontrol approach depends on
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the accuracy of the model that is used to compute the inpaBkigAccurate modeling
of MEMS dynamics is critical in the input-shaping processie Bbove mentioned input-
shaping control algorithms are all based on analytical ardi-analytical models with
many simplifications of the system. As many MEMS devices ltaweplex geometries and
nonlinear behaviour, it is not clear to what extend theseetsoare accurate. In addition,
it is not clear what the effects of the higher vibrational reedire on the input-shaping
control of MEMS and if it is possible to improve the input-givag technique to control
these effects.

To address these issues, accurate modeling of MEMS dynasmeguired. Based
on the level of abstraction, MEMS modeling approaches caedbegorized into three
groups: analytical/semi-analytical approach, reducettroapproach and full numerical
approach. In the analytical/semi-analytical approack, MEMS device is discretized
into a mass, spring, damper system or by using more compléxaae involving vibra-
tions of continuous medial(,17,18. This approach requires a certain familiarity with
MEMS physics. Two difficulties associated with this apptoace (1) not having a stan-
dard method for producing these macromodels, and (2) theofamethods for verification
of the macromodels’ accurac$§]. The reduced order modeling approach can be further
divided into numerical order reduction approaches andittttased approaches. In the nu-
merical model reduction approach, the system equatiornsodved approximately in order
to reduce the order of the systet8[ 19]. However, if the system has nonlinearities it be-
comes difficult to perform nonlinear model reduction. Thisthod is not accurate enough
for use in both control optimization and design synthesike Tircuit-based approaches
breaks the MEMS device into a circuit composed of ancho@yise gaps, and plates. This
approach allows for verification, but some designs cannstipported by this method. The
third approach is the full numerical approach that diszectine system directly and solves

the governing partial differential equations direct8021]. The full numerical approach
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is general and accurate compared to other approaches. &iraecurate model is impor-
tant in MEMS open-loop controls, in this work, we adopt th# fuwmerical approach to
investigate electrostatic micromirrors.

The numerical analysis of MEMS typically involves a mecltahianalysis and an
electrostatic analysis. In this thesis, the Finite Elemdathod (FEM) is utilized in me-
chanical analysis because of its accuracy and robustnégsBdundary Element Method
is utilized to solve the boundary integral equations (Bl&he electrostatics problem. The
BEM offers an accurate solution to the electrostatic foredsch are often approximated
by means of analytical methods. We have developed a full &2l purpose FEM/BEM
solver for coupled electromechanical simulation and asialgf electrostatically actuated
MEMS. On top of the FEM/BEM solver, input-shaping open-lammtrol algorithms are
also implemented. The effect of higher vibrational modesheninput-shaping control of
electrostatic micromirros is investigated. We show thapehding on the design of the
micromirros, the bending mode of the micromirror structuzan have significant effect on
the dynamic behavior of the system, which is difficult to sigss by using the step-voltage
open-loop control. We employ a numerical optimization ghare to shape the input volt-
age from the real time dynamic response of the mirror strastulhe optimization proce-
dure results in a periodic nonlinear input voltage desigit tan effectively suppress the
bending mode effect. The coupled solver presented in testican be used for a number
of purposes. The functionalities of the solver includestdatatic analysis, modal analysis,
elastodynamic analysis, electrostatic analysis, statipled electromechanical analysis,
dynamic coupled electromechanical analysis and inpytisgaopen-loop control analy-
Sis.

In our input-shaping open-loop control analysis, we cosmsttle micromirror de-
vice shown in Figurel.1L The mirror consists of two identical microbeams of length

width w, and thickness. The beams are fixed on one side and connected to a rigid frectan
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gular plate (the mirror) on the other side. The mirror hasgtleL,,,, width « and thickness
h. Beneath the micromirror are two electrodes, each of lehgtand width(as — a4)/2.
The gap between the undeformed position of the mirror anéldetrodes is denoted ds
The whole microstucture is etched out of a silicon substreiehas a density, a Young'’s
Modulus F/, and a Poisson’s ratio of. We investigate the dynamic response of three dif-
ferent designs of the micromirror. In all three design, tize ®f the mirror plate and the
electrodes are the same. In the first design (Mirror A), thgtle of the suspension beams
is relatively short and the electrodes are positioned aligin the outer edges of the mirror
plate. The second design (Mirror B) has the same design gaeasmas those in Mirror A
except that the electrodes are placed more towards therc&tee mirror plate. In the
third design, the beam length is increased and the elec@@eplaced close the center of
the mirror plate. The material properties and dimensiorth@imirrors are listed in Table

1.1

Figure 1.1: Schematic diagram of the torsional micromirror

The mirror is activated to rotate in either direction by sSypmm a voltageV/(¢) to

5



Table 1.1: Material properties and dimensions of the toiionicromirrors.

Properties

Modulus of elasticity/ (G Pa) 170

Poisson’s ratio 0.3

Density,p (kg/m?) 2330

Dielectric contant of airg, (F/m) 8.85x107!2

Dimensions Mirror A Mirror B Mirror C
Mirror width, a (um) 100 100 100
Mirror length, L,,, (um) 100 100 100
Beam length{ (um) 45 45 65
Beam widthw (um) 1.55 1.55 2
Beam thickness) (um) 1.50 1.50 1.50
Electrode length) (um) 100 100 100
Electrode parameters, = 0.3 0.18 0.06
Electrode parametes, = <= 1.0 0.78 0.78
Gap heightgd (um) 2.75 2.75 2.75

the corresponding electrode. This results in an electiogtatential between the electrode
and the mirror, which generates electric charges on therlewdace of the mirror and
the top surface of the electrode, and hence produces a dodmetrostatic force to the
mirror plate and an electrostatic moment around the sugpepsint. Consequently, the
microbeams undergo simultaneous rotation and deflectidmen/he mirror deforms, the
electric field between the mirror plate and the electrodesghs and the electric charge
redistributes causing a change in electrostatic force.réfbee, an iterative procedure is
required to obtain an consistent solution between the nmechlaand electrostatic domains.

The rest of the thesis is organized as follows: In Chaptere&present the theory



and implementation of the Finite Element Method for mectananalysis. The theory
and implementation of the Boundary Element Method are dsed in Chapter 3. The
coupling of the FEM and BEM for the coupled electromechdracelysis of MEMS is

discuss in Chapter 4. Chapter 5 discusses the input-shapermgloop control analysis of

the micromirrors. Conclusions are given in Chapter 6.



Chapter 2

Finite Element Dynamic Structur al

Analysis

2.1 Mathematical M odel

As shown in Figurdl..1, when a voltage is applied to the electrodes an electrostati
force will act on the mirror in the form of a surface tractidime microbeams and the mirror
plate undergo simultaneous rotation and deflection. Sineedtation and deflection are
in different planes, a full 3-D simulation is necessary. Ta@ between the mirror plate
and the electrodes is small as shown in Tahle Due to the pull-in effect, the actual
rotation of the mirror is even smaller compared to the dinensf the mirror structure.
Typically the rotation angle is about. Therefore, a linear elasticity theory can be used for
the mechanical analysis.

The derivation of the discretized dynamic equations of oroin the finite element
mechanical analysis is summarized in this section. The odgthesented hereafter is stan-
dard and can be found in FEA textbook®2[23,24]. To obtain the equations of motion

for 3D FEA the mirror structure is discretized into elementfie displacement for each



element can then be written as

u(z,y, z,t)

ul® (x,y,z,t) = S = N(x,y,z)d(e)(t) (2.1)

v(z,y,2,t)

2(z,y, 2, t)

\ Vs

whereu is the displacement vectdN(z, y, z) are shape functions, is the time dependant
nodal displacements, arid) denotes an element. The shape functions are the Lagrange
interpolating polynomials that are used to approximatestilation, and are determined by
the placement of the nodes in each element. The element,stfaj and stresses;,© can

then be written as

€® = Bd® (2.2)

0@ = D@ (2.3)

whereB is the strain-displacement matrix containing first ordenvdgives of the shape

functions R3]. B can be written as

B = [B;B,..B,,] (2.4)



wheren, is the number of nodes in each element &)di = 1,2, ..., n., is given by

ON;,
0 0
ox
ON;
0 0
dy
ON;,
0 0 5
B, = z (2.5)
ON; ON; 0
oy O
0 ON; ON;
0z 0Oy
ON; 0 ON;
| 0z oxr |
D is the material tensor given b2 3]
1—v v v 0 0 0
v 1—v v 0 0 0
E v v 1—v 0 0 0
-V 1—2v
0 0 0 0 0
2
0 0 0 o 1=
2
1-2
0 0 0 0 0 5 v

whereFE is the Young’s Modulus of Elasticity andis the Poisson’s ratio. The velocity is

10



approximated by differentiatin@(2) with respect to time

1 (z,y, 2,t) = N(z,y,2)d(t) (2.7)

whered(©(t) is the nodal velocity of elemerft). The equations of motion can be found

by using Lagrange’s equation23, 25|

d (0L OL OR
whereR is the dissipation function or damping,
L=T-m, (2.9)

is the Lagrangiari’ is the kinetic energy, and, is the potential energy. The kinetic energy

for an element can be expressed as

1
e = / / / PNCLCE (2.10)
V(e

wherep is the mass density, arld® is element volume. The potential energ)(jf), for an

element can be expressed as

ro =1 / / / (O 50 g7 — / / WO hdl — / / / u®pdv. (2.11)
2 V(e r(® 148

whereI'\® is the element surfacéy and ¢ are the surface traction and the body force,

11



respectively,

4 3\ ( )
I Oz
h — h b= &, 3 (2.12)
h. o8
J \ J

In Eq. 2.1]) the only forces present are surface and body forces, ctnated point loads
are not represented in the element potential energy. Ctnated point forces are taken
into account in the global potential energy. The elemergigiion functionk©) can be

written as

RO _ % / / / L@ 5O qy (2.13)
Vv (e)

wherey is the damping coefficient. Equatiora.]) - (2.3) can be substituted int@ (10 -

(2.13 to get

T = iT i:v:[ d©” <///V() NTNdV) d<@} (2.14)

e=1
N N
o= YAt -dn=Y | (a7 ff] o)
e=1 e=1
— | a®" / / N”hdl +d©” / / / N7 ¢dV
r® V(e

N
1. :
T =% [—d@T / / / MNTNdV} d®© (2.16)
—1 2 vi(e)

whereN is the number of element® is a matrix of shape functionp,. is the concentrated

—d'p, (2.15)

oy
Il
11>

12



point loads andl is the global nodal displacement vector. To simplify the laagjian, let

M©
K©
C©

pl®

p.”

element mass matrix /// pNTNdV
Ve

element stiffness matrix /// B"DBJV
v (e)

element damping matrix /// uNTNav
Ve

vector of element surface tractien / / . N”hdl
Fhe

vector of element body forces / / NT ¢pdV
V(e

Equations 2.14) - (2.16 can be rewritten as

T, m,, andR can now be written in the global form

1. .
= —d"Md
2
1
— §dTKd . dTpL(ge) o dTpl(,e) o dTpc

1

— —d’cd
9

13

(2.17)
(2.18)
(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
(2.26)

(2.27)



where

d = assemblgd® e=1...N) (2.28)
M = assembleM® e=1...N) (2.29)
K = assembl@® e=1...N) (2.30)
C = assemblgC® e=1...N) (2.31)
P = assemble«pge) + pl(f)) e = 1...N) + Ppe (2.32)

whereM, C, K are the global mass, damping and stiffness matrices, riagggcand the
force vectorP is the summation of all the forces on the structure. Applliagrange’s

equations produces the dynamic equations of motion
Md + Cd + Kd = P. (2.33)

whered is the acceleration vector atis the velocity vectors.
In the static case, the equations of motion can be easilycestio the equations of
equilibrium by simply setting velocity and acceleratioruabto zero. The static equation

of equilibrium can be written as

Kd = P. (2.34)

2.2 Discretization and approximation

In this work, we perform the discretization of the mirrorustiure and obtain the
mesh by using commercial FEA packages such as ANSYS and ABA@ihce most of

the deformation will take place on the beams and the cornbesemthe beams connect to

14



the plate are points of stress concentration, a fine mesmergted for the beams and the
beam-plate connection regions. The mirror plate can berataly approximated with a

course mesh. A sample mesh generated in ABAQUS is shown urd=lyl Linear eight

ODB:Job-1.0db  Abaqusis raion 6.7-1  Wed May 14 19:54152 Esstern Daylioht Time 2008

Figure 2.1: Mirror meshing.

node isoparametric brick elements are employed in our nmechlaanalysis. Figure2.2
and2.3show a hexahedral eight node brick element and the masteesterespectively.
The nodal coordinates for the brick element in the local doate system are listed in
Table @.1). Using the values from Tabl& (1) the shape functions for the brick element

can be written as23, 24]

Ni(Em, Q) = S+ £ +nn)(1+GO) (235)

15



Figure 2.2: Linear hexahedral brick element.

—= /N

8
‘ 7
5 -
| | 6
e R E——
A 3
/ 2

Figure 2.3: 8-node hexahedral master element.
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Table 2.1: Nodal coordinates for the brick element in thalcoordinate system.

L& mi | G
11-1]-1/-1
211 -1]-1
3/1|1)-1
4/-111/|-1
5|-11-1|1
6|1 -1|1
71111
8|-1/1 |1

The derivatives of the shape functions with respect tpand( can be computed by

ON;
73
ON;
on
ON;
¢

SE(+ mn)(1+GO)
Sl E6)(1+GO)

%Q(l + &&)(1 + nin).

(2.36)

The derivatives of the shape functions with respect,tg and >z can be obtained from

application of the chain rule:

ON;
93
ON;

ON;
¢
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ON;
or

ON;

ON;
0z

(2.37)



wherelJ is the Jacobian. The Jacobian is the scaling factor fromrilgenal element to the

master element

| & /oN “. (0N, °\ (0N,
' z; ( an x) z; < an y) z; ( an Zi) 239

2.3 Integration

The global mass matrix is the assembly of all the elementiocestr The element

mass, damping and stiffness matrices are given in £E4.42.19 as

M© = / / / . pNTNdV (2.39)
V (S

cl = / / / uNTNaV (2.40)
Vv (e)

K© = / / / B'DBd4V (2.41)
Vv (e)

Proportional damping can be used as an alternative to th@idgmrmatrix defined in Eq.

(2.40. Proportional damping implies that the damping is a prtpoal function of the

mass and stiffness, i.e23]

C= ClM + CQK (242)
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wherec; andc, are mass and stiffness damping constants. The elementesurétion

and body force vectors are given by

pl® = / / N”hdl + / / NT ¢pdV (2.43)
Iy, V(e

The volume and surface integrations for the element matiacel vectors are performed
numerically by using Gaussian Quadrature in the local doatd system. The mass and

stiffness element matrices can now be written as

1 1 1
K© = B"DB dédnd 2.44
|| | BoBac@san (2.44)

and

1 1 1
Mo - [ 1 / 1 / N1 )N (& G et (Dddndl (2.45)

wheredet(J) is the determinate of the Jacobian Matrix &pd,, and(, are the coordinates
for the ¢* Gauss Point. Applying the Gaussian quadrature numeritagiation K¢ and

M can now be rewritten as

NG
K(E) - Z BT(§g> Ngs Cg)DB(ng Ng; Cg)det(‘](gg’ Tg> Cg))wg (2'46)
g=1
and
NG
M = Z pN(Sy» Ngs Cg)TN(gga Mg Cg)det(‘](gg’ Tg> Cg))wg (2.47)
g=1
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where NG is the number of Gauss points ands the weight of the/'* Gauss point and

N1(€g,779,Cg) 0 0

0 N1(&g: 15 Cg) 0

0 0 N1(&g: g, Cg)

N (&g, 19, Cg) = : : : (2.48)

Ns(&g: g Cg) 0 0
0 Nz (&g, 1g, Cg) 0

0 0 Ns (&g 1495 Cg)

where each shape function is evaluated atjthésauss point.
For the surface traction case, the surface traction acts area instead of a volume,
a cross product of two of the columns in the 3D Jacobian maiitiyield the area Jacobian

for the surface integration. The method for utilizing thiggiple can be written a2f]

1l
Nhdl' = / / Nh||x ¢ x x,||ddn (2.49)
-1/

1—‘h

After the element matrices and vectors are calculated thieagimatrices and vec-
tors can be assembled. The assembly for the mass and difimesices are the same,
and since the damping matrix is derived from the mass anfiet$ matrices there is no
assembly required. The first step in assembling the globalcea is determining the node
numbers. There are two node numbers, the local element nodber and the global

node number. The element node number determines where decbetongs with respect
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to the element. The global node number determines whereathe Inelongs with respect
to the model. In addition, the local node number pertainhi¢ontode’s placement within
the element matrix while the global node number pertainbi¢onbde’s placement within
the global matrix. The dimensions of the element matrices2dix24. This can also be
regarded as 8x8 blocks with each block being a 3x3 matrix.nBx8 matrix has a cor-

responding 3x3 block in the global matrix. The direct relaghip between the element

matrix and the global matrix can be expressed as

M3 % (GN#:) +k, 3% (GN#;) +1) =m O3 %i+ k3% j+1) (2.50)

Wherei and j are local node numberg, and!/ are the positions in the individual 3x3
matrices, andsN#; andGN#; are the global node numbers corresponding to the local

node numbef and;.

2.4 Newmark Schemes

The Newmark method?@] is used in the elastodynamic analysis. In the Newmark
method, the global equations of motion are combined witlekiatic equations of motion
to solve the displacement, velocity and acceleration ofnibdes. Equation2(5]) is the
global equation of motion, Eqs2.62 and .53 are kinematic equations of motion. For

any time stepy + 1

Man-i—l + Cdn-ﬁ-l + Kd, 11 = Pat1 (2.51)
. At? . At? ..

dur =+ Atd, + —-(1=20)d, + S-(20)dus (252)

dpyr = d, + AH1 —~)d, + Atyd, (2.53)
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Several schemes in the Newmark method are avail@3je The schemes and their char-

acteristics are listed in TabR2 In this thesis we implemented both the Trapezoid rule

Table 2.2: Newmark schemes.

Scheme Type | B | ~v Stability | Order of Accuracy
/(A_\r\/rzrsgzeOidAgzjlee)ration Implicit | 7 5 | Unconditional 2
Linear Acceleration | Implicit | ¢ | 3 | Conditional 2
Fox-Goodwin Implicit | &= | 2 | Conditional 2
Central Difference Explicit | 0 : Conditional 2

and the explicit central difference scheme to perform theadyic structural analysis. In

the following sections, the steps of carrying out these telemes are summarized.

2.4.1 Trapezoid rule (Implicit)

Step 1

Start from¢ = 0, d, andd, are known from the initial conditions, calculadg by using

M&O + Cdo + Kdo = Po (254)

Md, = py — Cdy — Kd, (2.55)

By solving Eq. @.59, d, can be obtained.
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Step 2
For time step = 1, substitute Eq2.%22.53 into Eq. .51). That is, substituting

) At? . At? ..
and
d; = dy + At(1 — 7)dy + Atvyd, (2.57)

into the equation of motion for time step 1
Md, + Cd, + Kd, = P, (2.58)
we obtain

Md, + C [do + A1 = )do + Am&l]

At? At?

+K [do + Atd, + —-(1- 26)d, + 7(2&)611] =P, (2.59)

Moving all the known quantities to the right-hand-side, vintain

(M + yCAt + BAPK) d; =

P, — (C+ AtK)d, — (At(l —7)C + %(1 — Qﬁ)K) dy — Kdy. (2.60)

By solving Eq. @.60), d, can be obtained.

Step 3
Substitutingdy, do, dy andd; into Egs. £.522.53, d; andd; can be calculated.
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Steps 2 and 3 complete the calculation of the displacemettg¢city and acceleration for
time step 1. The solutions for time steps 2, 3, ..., can beirddan the same fashion by

repeating the steps 2 and 3.

2.4.2 Central or Finite difference (Explicit)

Central difference method is an explicit method with= 0 and~y = 1/2. Note
that, the central difference scheme is explicit only wiMrand C are diagonal matrices.

Given thats = 0 andy = 1/2, we obtain from Eqs.2.522.53),

. At2 ..

Substituting Eqs.2.61,2.62 into Eqg. 2.51), we have

.. . At - At - . A2 ..
(2.63)
Rearrange the equation, we obtain
At . . At - : At? ..
(M + 70) d,,1 =P, 1 —C <dn + Ttdn> -K <dn + Atd,, + Ttdn)
(2.64)

If M andC are diagonald,,,; can be computed from Eq2.64 without solving a linear

system. This process is repeated until the stopping camdgifulfilled.
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2.5 Computational Process

The FEA processes for both the static and dynamic analysis@nmarized in
Algorithms 1 and 2. The flow chart for elastodynamic analisshown in Figure.4. Note

that the elastostatic FEA algorithm is only a simple subs#t@elastodynamic analysis.

Algorithm 1 The Dynamic FEA Process

1: Mesh the structure.

2. Compute and assemble the stiffness makix

3: Compute and assemble the mass mawix

4: Compute damping matrié.

5. Compute and assemble force vector.

6: Use Newmark method to solve the equations of motion for tepldcement.
7. If the force is static, repeat 6 until equilibrium is reached

8: If the force is dynamic, repeat 5 and 6 for every time step .

Algorithm 2 The Static FEA Process

1: Mesh the structure .

2. Compute and assemble the stiffness makix
3: Compute and assemble Force Vector.

4: Apple boundary conditions.

5. Solve Q.34 for steady state displacement.

2.6 Numerical Results

We have tested our code with numerous test cases and vdlidateode. In this
section, we present numerical results of several exampldscampare our results with

those obtained in ANSYS.
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Figure 2.4: Flow Chart for 3D Dynamic FEA
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2.6.1 Static Analysisof a Cantilever Plate

The first example is & x 8 cm cantilever plate with a thickness of 1 cm subjected
to a pressure of 0.1 Pa. The Young’s modulus of the materibd iMPa. The Poisson’s
ratio is 0.25. The plate is meshed with x 10 x 3 8-node brick elements in ANSYS.
This test problem is solved in ANSYS as well as in our solveiguFe 2.5 shows the
deformation of the plate obtained from our solution. Tahf@shows a comparison of the
nodal displacement solution for the first 10 nodes given bysXIS and the results obtained

from our code. The results obtained from ANSYS and our codedmntical.

Figure 2.5: A cantilever plate subjected a pressure.
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Table 2.3: ANSYS vs. FEA solver: cantilever plate subjedted uniform pressure.

FEA Solver ANSYS
Nodes# X (cm) y (cm) z (cm) X (cm) y (cm) z (cm)
1 0.000000| 0.000000| 0.000000 0.0000 0.0000 0.0000
2 -0.039906| 0.000026| -0.486716| -0.39906E-01] 0.25695E-04| -0.48672
3 -0.010336| -0.003006| -0.007782| -0.10336E-01| -0.30061E-02 -0.77816E-02
4 -0.019168| -0.002744| -0.032585| -0.19168E-01| -0.27443E-02 -0.32585E-01
5 -0.026275| -0.002862| -0.069768| -0.26275E-01| -0.28615E-02 -0.69768E-01
6 -0.031644| -0.002471| -0.117437| -0.31644E-01] -0.24713E-02 -0.11744
7 -0.035371| -0.001887| -0.172446| -0.35371E-0]] -0.18872E-02 -0.17245
8 -0.037746| -0.001304| -0.232169| -0.37746E-01] -0.13045E-02 -0.23217
9 -0.039085| -0.000785| -0.294640| -0.39085E-01} -0.78466E-03 -0.29464
10 -0.039699| -0.000364| -0.358438| -0.39699E-01} -0.36399E-03 -0.35844
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2.6.2 Static Analysisof Mirror C

In the second example, we perform a static analysis on M@rshown in Chapter
1. A point force is applied to a corner of the mirror plate asveh in Figure2.6. The
material properties of the mirror structure is listed in [Bah 1 The mirror is meshed with
3849 8-node brick elements in ANSYS. The total number of 8ade6008 resulting in
18024 degrees of freedom. This test problem is solved in ABI&¥ well as in our solver.
Figure2.6 shows the deformation of the mirror structure obtained foamsolution. Table
2.4shows a comparison of the nodal displacement solution ®fitkt 10 nodes given by
ANSYS and the results obtained from our code. The resultsiodd from ANSYS and out

code are identical.

Figure 2.6: Static analysis: Mirror C.
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Table 2.4: ANSYS vs. FEA Solver: Mirror C subjected to a pdarte.

ANSYS FEA Solver
NOUHE N ) | yum) | zem) | xum) | yem) | zum)
1 0.000812| -0.014614| 1.126587| 0.81151E-03 -0.14614E-01 1.1266
2 0.000436| -0.014472| 0.272161| 0.43586E-03 -0.14472E-01 0.27216
3 0.000800| -0.014611| 1.087989| 0.79951E-03 -0.14611E-01 1.0880
4 0.000779| -0.014605| 1.048469| 0.77934E-03 -0.14606E-01 1.0485
5 0.000762| -0.014603| 1.008009| 0.76210E-03 -0.14603E-01 1.0080
6 0.000746| -0.014602| 0.966576| 0.74640E-03 -0.14602E-01 0.96658
7 0.000730] -0.014600| 0.924146| 0.72962E-03 -0.14600E-01 0.92415
8 0.000711| -0.014595| 0.880702| 0.71125E-03 -0.14595E-01 0.88070
9 0.000692| -0.014589| 0.836225| 0.69216E-03 -0.14589E-01] 0.83622
10 0.000673| -0.014583| 0.790693| 0.67326E-03 -0.14583E-01 0.79069
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2.6.3 Modal Analysisof Mirror A/B

In the third example, we perform a modal analysis on MirrorrBdMirror A and
B have the same mirror structure). In this example, the misraneshed with 646 8-node
brick elements in ANSYS. The total number of nodes is 1304alteg in 3906 degrees of
freedom. This test problem is solved in ANSYS as well as insmlver. Table.5and
2.6 list the first 10 natural frequencies of the mirror. Once agtie results obtained by
ANSYS (not shown) and the results obtained from our codedmetical. Figure.7shows
the first 10 vibrational modes of the mirror. It is shown tHa first mode is a rotational
mode, the second mode is a bending mode and the third modwisteng mode. For the
first mode, the natural frequency is 0.0474 MHz which is csposding to a period of 21.1
us. For the second mode, the frequency is 0.125670 MHz witlmiagef 8 us. Compared

to the first frequency, the second frequency is about 2.6&gi@rger.

Table 2.5: Natural frequencies of Mirror A/B.

Mode 1 2 3 4 5

Frequency (MHz) 0.047398| 0.125670| 0.136935| 0.246021| 0.316886

Table 2.6: Natural frequencies of Mirror A/B.

Mode 6 7 8 9 10

Frequency (MHz)| 1.473245| 3.440778| 3.483548| 3.595135| 4.884864
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Figure 2.7: Vibrational modes of Mirror A/B.
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2.6.4 Dynamic Analysisof Micromirror

In the fourth example, we perform a free vibration dynamialgsis on Mirror A/B.
The first three modes are taken as the initial displacemethieastructure. Then the struc-
ture is set free for vibration. Our dynamics code computestitme history of the free
vibration. In this example, the damping is set to zero. FedlB shows the displacement
of a corner of the mirror plate as a function of time. Periagicvement of the structure
is obtained as expected. As shown in the figures, the fregeen€ the three free vibra-
tions are approximately 0.047 MHz, 0.126 MHz and 0.137 MHaeSe results match the

frequencies obtained from the modal analysis.

1 T T T T T T T 0.2

08} o1r

0.6

-0}

0.4

0.2}

Displacement (1 m)
Displacement (1 m)
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N

. . . . . . . . . . . . . .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time (U s) Time (U s)
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. . . . . . .
5 10 15 20 25 30 35 40
Time (1 s)

Figure 2.8: Dynamic peak displacement of Mirror A/B.
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Chapter 3

Boundary Element Method for

Electrostatic Analysis

3.1 Mathematical M odel

Consider two conductors as shown in Fig8r& the goal of the electrostatic analy-
sis using the boundary element method (BEM), is to deterthieeharge density of each of

the conductors based on the potential difference betweetwih. The governing equation

dr,

drl 5

-
dr dr,

Figure 3.1: Domain of boundary element method.
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for electrostatic analysis is Laplace’s Equation which bamwritten as?6]

V2u=0 in Q (3.1)
with boundary conditions
u = u on I}y (3.2)
g = —=¢ on I, (3.3)
on

where() is the domain exterior t&;, and(),, v is the voltage applied to the conductors (i.e.,
electric potential), andh is the normal of the boundary. Either the potential or thegha
density are known for each point on the boundary. In eletitizs the voltage is always
known and the surface charge density will be computed. Awiefft approach to treat
exterior electrostatic problems is to use a boundary iategguation 26,27]. A boundary

integral equation for the electrostatic problem is giverj28},

w(P) = /F G(P.Q)q(Q)dT + C (3.4)
/F ¢(Q)dr = Cy (35)

whereq is the unknown normal derivative af P is the source pointy is the field point,

G(P, Q) is the Green’s function and = dI'; U dI's. In three-dimensions,

G(P,Q) = m (3.6)

wherer(P, Q) is the distance between the source point and the field p@ints the total
charge of the system (typically set to be zero) ahs an unknown variable which needs

to be computed. Note that the variables in the boundargiatequations3.4), (3.5) are
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written with respect to the deformed positions of the coroltsc

3.2 Discretization and Approximation

The conductors are discretized into surface elements. &ocase we used the
surface elements from the FEA mesh so that the nodes for tAealRE BEM will match
and no interpolation will be needed. We use constant elesrfentBEM so that each
element will have only one node at its centroid as shown infe@3.2). The centroid of

u,
4 *q 3

1 2

Figure 3.2: Constant Boundary element.

each element is taken as the collocation point and the vdliee @otential and its normal

gradient at the collocation point represent the value optitential and its normal gradient
on the element. For the case of the micro-mirror, only the faicthe mirror plate nearest
the electrode and the face of the electrode nearest thegratgesed for the analysis. This
is due to the fact that the charges gather at the surfacess# tivo structures at the points
that are closest to the other structure. The surface changstgl is concentrated on these

surfaces. The charge density of the rest of the mirror isigikdg. The boundary integral
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equation for a source poirit can be written as

K 1
K
> /F a(@uar =y (3.8)

whereK is the number of elementk;, is the area of théth element(),. is the field point
on thekth element ang((Q);) is the unknown for thé-th element. Equation8(7-3.8) can

be rewritten in a matrix form as

Mq=u (3.9)

whereM is a(K + 1) x (K + 1) coefficient matrixu andq are the(K + 1) x 1 right hand

side and unknown vectors, respectively. The entries in dleficient matrix are given by

1
M@, j)= | —————dl i=1,... K
M(K+1,j):/dF j=1,.... K
L5
(3.10)
M@, K+1)=1 i=1,... K

MK +1,K+1)=0
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( ( )
Uy a1
U2 qz
u= .y q= . (3.11)
UK dK
Cr J ¢ J

Theu vector in Eq. 8.11) is known from the potential boundary conditions. The unkno
vector of surface normal derivative of potential in E§.1(1) can be computed by solving
the matrix problem in Eq. 3.9). Note that, the electric fiel& normal to the surface is

given by

E=—gq (3.12)

3.3 Singular Integration

A numerical integration technique needs to be employed topcde M. Before
the integration, the boundary elements are mapped to 2[iaopetric elements. For the
cases wWhere # j a regular Gaussian quadrature can be used. For the casesiwher
the integration becomes singular. Special integratiohrtegies is required. There are
three popular methods for dealing with singular integrils,weighted Gauss integration,
the transformation of variable technique, and the partial\gical Taylor series expansion
technique 30,31]. The weighted Gauss method is not recommended by manyraudhe
to its many limitations, therefore only the later two metbh@ade discussed here in detail.

The transformation technique divides the element intogyidar sub-elements then
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transforms the triangular element to a square plaGjePue to the fact that we use constant
elements, the singularity points are in the center of this.celThe element is split into
four triangular sub-cells. Each of these sub-cells is mdppen isoparametric triangular
element. The shape functions for the triangular isopamamelement are shown in Eq.

(3.13, the corresponding element is shown in FiglBs3(c)).

Mg = 50-¢)

No&m) = ()

Ny(&m) = 5(1+7) (313)

Equation 8.10 can be rewritten for each triangle as:

Lt JEn)
/_1 /_547””[3 (&n)]dﬁdn (3:14)

whereJ (¢, n) is the Jacobian of the transformation from the trianguldrslement to the
isoparametric triangular element, ari@, Q (&, )] is the distance from the source point to

the field point. The Jacobiah(¢, ) can be computed as

ONE ) ON(Em) oNa(em) | | T
J(€,m) = det 08 08 08 - (3.15)
6N1(€>77) 6N2(§a77) aN?)(gan)
L On on on
xr3 Y3

whereN;, i = 1,2, 3, are the shape functions given in EQ.X3. The following trans-

formation of variables is then used on the isoparametr@mgilar element to map it to a
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square element as shown in Figude3(d)).

u = ¢
1—-&+2n
= - > =7 3.16
! 1+¢ (3.16)
the Jacobian for this transformation is
g1t (3.17)
2
Equation 8.14) can now be written as
&)1+ u)
dudv 3.18
//_14m~P@£n] (3.18)
where, from Eq.3.16
§=u
p= IrWl+y) (3.19)

2

Substituting Eq. 3.19 into Eq. @.18 and carrying out the Gaussian quadrature on Eq.
(3.18 gives

v)(1+u) NENG J(ug,vg)(l—i-ug)w
/ / Amr P Qu U)]dUdU D) ; 477 [P, Q(ug,v,)] 7 (3.20)

whereNG is the number of Gauss points aagl is the weight.
The Taylor expansion method for evaluating weakly singuigegrals involves ex-
panding the integrand by use of Taylor Series and subtotin the singularity. Also, a

corresponding term will be added which can be integratediycally . The integration
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Figure 3.3: Transformation of Variable Technique Procedur
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technique can be written a3]]

/‘11 /—11 47”"[(]13(»577(7;77 dédn = / / <4—m~)3d§d?7
//(4m~ < ))dfdn (3.21)

whereN (&, n) is the shape functions for the elemests, ) is the Jacobian for the map-

ping to the isoparametric element, ah%)g is the third order Taylor's Expansion of the
original integrand. In this work, we adopt the transformatmethod for the singular in-
tegration wheres x 6 Gauss points are used in the square element +hv coordinate
system.

The application of boundary conditions is straightforwartie values for the volt-
age are simply applied to the collocation points, and sine&otltage is constant throughout
each structure, one voltage will be applied to all of thescrlll’; and a different voltage
will be applied to all of the cells i'y. These voltages are the values that makeupor
our case the voltage of the mirror is zero and the voltageeétactrode can vary based on

the input. Algorithm 3 and Figur8.4summarize the electrostatic analysis process.

Algorithm 3 The electrostatic analysis process.

1: Mesh the structure.

2: ComputeM.

3: Apply boundary conditions.
4: Solve Eq. 8.9 for q.
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Mesh the Structure

Y

= i=I+1, Loop over the Source Points

j =] +1, Loop over the Field Points
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Compute M (i,] )
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No Does | = number of

collocation points?

Apply Boundary Conditions

Solve for normal gradient of the potentiz

Figure 3.4: Boundary element method flow chart.
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3.4 Numerical Results

We have tested our electrostatic code with numerous tesscas this section,
we present numerical results of an examples and compareesults with known exact
solutions. The example is a two plate conductor system asrsio Figure3.5 Each
conductor has dimensions td0m x 100um and the gap between the two plates jsi.
The applied voltage is set to be 1 V for the upper plate and Or\thfe lower plate. Since
the plate is very long compared to the gap the electric fietheatenter point of the plate

is given by

E = —% = =2V /um (3.22)

whereV,, is the potential difference between the two plates énslthe gap. The BEM

100um
100um

¢2um

Figure 3.5: Setup of two parallel plates.

solution is shown in Figur8.6. The solution for the center of the plates is compared to
the analytical solution. Figur8.7 shows the convergence behavior of the BEM solution.

Figure3.8shows the electric field between two staggered paralledplat
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Chapter 4

Coupled Electromechanical Analysis of

MEMS

4.1 Static Coupled Electromechanical Analysis

In the static coupled electro-mechanical analysis, twe segoverning equations
are solved self-consistently. The equations of equiliorare solved for the structures and
the exterior electrostatic equation is solved to obtainstiace charge density. The self-
consistent analysis is performed via a relaxation itenaie shown in Figuré.1 The

governing equations of equilibrium are given by
Kd =P. (4.1)

whereP is the force vector. In the electromechanical analysisfdahee vectoP contains

the electrostatic surface pressure prescribed as a bguoatadition. P is given by

P =PN (4.2)

47



Abaqus: Mesh Domain

elements.dat
nodes.dat

Surf: Compute necessary .dat files
bcsdisp.datl bembcs.dat

key.dat | cells.dat
bempts.dat

FEA: Compute and Assemble K Matri

BEM: Compute Forces

bcstraction.dat

FEA: Apply Boundary Conditions

Y
FEA: Compute Displacement

l

Solution Converged?

Complete

Figure 4.1: Flow chart for coupled electromechanical stsiver.
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whereN is the normal vector on the surfaé¢g is the electrostatic pressure generated by

the electric charge accumulated on the surface of the steid®, is computed by
P.=— 4.3)

wheree is the permittivity of free space amds the surface charge density. The electrostatic
pressure in Eq.4(3 is applied as the boundary condition for the mechanicalyarsaby
using Eqg. 4.2). The surface charge density is obtained by the electiostaalysis. The

governing boundary integral equations for electrostasicgven by

u(P) = G(P,Q)qdl' + C (4.4)
Tq

/FQ gl =0 (4.5)

whereq is the normal gradient of the potential. Note that E4<l-4.5) are all defined in

the deformed configuration. Ongas obtained, the surface charge density is computed by
o= —€q (4.6)

Static coupled electromechanical analysis is performezbtain the pull-in curve
for the three micromirrors shown in Chapter 1. Figdr2shows the static pull-in of Mirror
A. The pull-in voltage is 18.74 V. This result compares faly with the pull-in voltage
of 18.4 V obtained in10] where the same mirror was investigated. Figdr@shows the
static pull-in of Mirror B. The pull-in voltage is 27.4 V. Wia Mirror A and Mirror B have
the same dimensions, the positions of the electrodes degatit. The electrodes of Mirror
B is closer to the center of the mirror plate. It is shown frdra tesults that the position

of the electrodes can change the pull-in voltage signifigaiigure 4.4 shows the static
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pull-in of Mirror C. The pull-in voltage is 23.5 V. In this casalthough the electrodes are
placed close to the center of the mirror plate, the suspeiams are longer than those of
Mirror A and B. As longer beams have lower bending stiffnéss pull-in voltage becomes
lower. The results of the static coupled analysis show ti@pull-in voltage is a function
of both the stiffness of the beam and the position of the eldess. Figuretl.5shows the
deformed shape of the Mirror C subjected to the electrastatce. Figuret.6 shows the

distribution of the surface charge density on the surfadeefmnirror and electrodes.

3

Peak deflection (u m)
=
ol N

B
T
1

0.5 b

0 1 1 1 ._
0 5 10 15 20

Applied voltage (V)

Figure 4.2: Static pull-in of Mirror A.
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Figure 4.4: Static pull-in of Mirror C.
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4.2 Dynamic Coupled Electromechanical Analysis

In the dynamic coupled electro-mechanical analysis, thexgons of motion are
solved for the structures and the exterior electrostatiagqgn is solved to obtain the sur-
face charge density. Within each time step, the mechanaalath and electrostatic do-
main are solved self-consistently. The flow chat of the dyisaiectromechanical analysis
is shown in Figuret.7.

Different from the static coupled analysis, for a given tistepn + 1, the following

governing equations are to be satisfied simultaneously:

M&n+1 + Cdn+1 +Kd, 1 = Py (4.7)

Pn+1 — Pen+1Nn+1 (48)

p T (4.9)
el 9e ’

o

/ n+1I'=10 (4.11)
Lo

On4+1 = —€(Gn+1 (4-12)

Within the time step, the relaxation iterations are perfedrto obtain a convergent solution
between the mechanical and electrostatic domains. Onaavamgent solution is obtained,
the solution procedure moves to the next time step by useléwmark method.
Figure4.2 shows the dynamic response of Mirror C with an applied vatafj20
V. When the beam moves down due to the electrostatic foreentimlinear electrostatic
force becomes larger and slows down the vibrational movéwfehe mirror. It is shown
in the figure that the vibration frequency of the mirror is Eawwhen it deforms close

to the electrode. When the applied voltage is increasedmin®r stays at the bottom
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Figure 4.8: Dynamic response of Mirror C for a 20 V appliedta&gé.

position becomes longer until the voltage reaches a drpiaat where the increase of the
electrostatic force becomes faster than the increase aoh#dwohanical restoring force and
the inertial force. The beam will be pulled down to the suditstbeyond this critical pull-in

voltage, as shown in Figu#&2 The dynamic pull-in voltage of Mirror C is found to be

21.76 V.
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Chapter 5

| nput-Shaping Control of

M icroelectromechanical Mirrors

5.1 Open-Loop Control of Micromirrors

With the advances of microfabrication technology, highcsien and reliable fab-
rication techniques become available for producing highliguMEMS devices. There is a
pressing need for techniques that can be used to improveyttardc behavior of MEMS,
i.e., the response, speed, and precision. As introducedhapt€r 1, the performance of
electrostatically actuated microelectromechanicalanérican be improved by introducing
control mechanisms in the operation of MEMS. For MEMS agtlans, input-shaping
open-loop control is favorable due to its simplicity.

Typically, an electrostatically actuated micromirror isiagle input (voltage) single
output (rotation angle) system. In this case, open-loogrobis even more attractive as
the voltage input is relatively easy to manipulate. As dssewl in Chapter 1, input-shaping
control is an open-loop control approach in which a sequeho®gut impulses are applied

in order to generate the desired results, as shown in Figuif&Q]. The rotation of the mir-
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ror plate is a function of the applied voltage. For a constgmit voltagel’; the mirror plate
oscillates about it's equilibrium position until the platettles at the equilibrium position
due to damping. The idea of the input-shaping is to introdusecond impulse voltage at
the point where the mirror plate reaches its peak rotatigiheari\t that point, the rotational
velocity of the mirror plate is zero. The magnitude of thess&tvoltage impulse is chosen
such that the static equilibrium rotation angle produced’bis exactly the dynamic peak
rotation angle shown in the figure. By using this approach,résidual vibration of the

system is expected to be zero after the applicatiov,ofWhile the input-shaping control

Va

Vi

response to V2

o

Mirror rotation angle

response to V3

Time

Figure 5.1: Schematic of input shaping.

is attractive due to its simplicity, the effectiveness astbontrol scheme depends on the
accuracy of the model that is used to compute the impulsagedi’; andV;. Therefore,
accurate modeling of the micromirror system is criticalhe tnput-shaping process. Fur-
thermore, the nonlinear electrostatic force imposes ewtdit difficulties in the modeling.

As discussed in Chapter 1, various approaches has beemwpgegédor input-shaping of lin-
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ear systems. For the nonlinear micromirror system, an ispaping control algorithm has
also been proposed()]. It has been shown that step-shaped input voltages caneoktois
control the structural vibration of MEMS. The input-shagpadgorithm is based on an first
order analytical lumped model. As the micromirrors have ptaxgeometries and nonlin-
ear behaviour, it is not clear to what extend these modelaararate. In addition, it is not
clear what the effects of the higher vibrational modes ar¢éhennput-shaping control of
MEMS and if it is possible to improve the input-shaping tege to control these effects.
In this work, we investigate these input-shaping issuesdiyguthe full numerical model

and the FEM/BEM solver we have developed.

5.2 Bending Mode Effect on Input Shaping

To investigate the bending mode effect, we first apply the-steaped input voltage
that can be obtained from the analytical model described @hfpr the three micromir-
rors shown in Chapter 1. In addition, with our coupled sqlvwer are able to compute the
step-shaped input voltage from the numerical simulatifiret:we do a set of dynamic sim-
ulations to find the first voltage impulse voltaggethat produces desired peak deformation
dynamically and record the time at which the mirror reaclesdesired position. Next,
we perform a set of static analysis to find the second impiddbat produces desired de-
formation statically. Figur®.2 compares the three mirrors we used. Mirror A and Mirror
B have the same dimensions. However, the electrodes of MBrare closer to the center
of the mirror plate. In Mirror C, the electrodes are placesselto the center of the mirror
plate, the suspension beams are longer than those of Miraord/B.

Figure5.3 shows the step voltage and the dynamic response of Mirror&. ré-
sponse matches the designed behavior quite well. Howdwestep-shaped voltage does

not produce the desired dynamic behavior for Mirror B. Therstill oscillation after the

59



second impulse voltage as shown in Figbré Figure5.5 shows the response of Mirror

C. The residual vibration is very large in this case.

Mirror A Mirror B Mirror C

Figure 5.2: Dimension comparison of the mirrors.

Since the electrostatic force is always pointing downwéoda given electrostatic
force, the ratio of the bending deformation to the torsialedbrmation depends on the ratio
of the bending stiffness and the torsional stiffness of thanb. In addition, the bending/-
torsional deformation ratio depends on the ratio of thd tiwavnward force and the torque

exerted on the mirror. The bending stiffness of the beam®beatetermined by

24E1
kbending = B / (51)

whereF is the Young’s modulus, = wh?/12 is the moment of inertia of the suspension
beam cross section about thexis, and is the length of the beam. The effective torsional

stiffness of the beam is given by

2GJ

ktorsion = T (5 2)
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Figure 5.3: Step-shaped input voltage control: Mirror A.

whereG is shear modulus that can be obtainedas- E£/(2 + 2v) and J is the polar

moment of inertia of the beam cross section expressed as

4

hw? [% —0.21% (1 — “’—)] forw <t

12h%

J = (5.3)
hw? [% — 0.213 (1 S )] forw>1

12w?

The bending stiffness and torsional stiffness of the threseons calculated from the above

equations are summarized in Taldel It is shown that Mirror A and B have a larger

Table 5.1: Bending stiffness and torsional stiffness ofttmsional micromirrors.

Mirror A | Mirror B | Mirror C
Bending Stiffness (N/m) 19.52 19.52 8.36
Torsional Stiffness (Nm) 2.22e-9 | 2.22e-9 | 2.47e-9

bending/torsional stiffness ratio than Mirror C. For themson, the bending mode effect
is larger in Mirror C. Although Mirror A and Mirror B have theame bending/torsional
stiffness ratio, the position of the electrodes of MirrorsAmore towards the edge of the

mirror plate, which results in a larger torque in Mirror A. & korque/pulling force ratio
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Figure 5.5: Step-shaped input voltage control: Mirror C.

is larger in Mirror A. The bending mode is barely excited inrddr A and the resultant
residual bending vibration in Mirror A is minimal. The stagput voltage is sufficient in
controlling the dominant torsional mode. However, for MirB, due to the position of
the electrodes, more electrostatic energy is distribuiddxdhd the beam, the bending mode
appears after the torsional mode is suppressed by the dtegtian voltage. In Mirror C,
the bending deformation is even larger due to the low benstiffgess of the beam. Thus,
both the bending/torsional stiffness ratio and the tonoguiéhg force ratio are important in

determining the effect of the bending mode in the input-gi@pf micromirrors.

5.3 Computational Input Shaping Optimization

It is clear that for mirror designs that have a low bendingitmal stiffness ratio
and/or low the torque/pulling force ratio, the residualraiiion due to the bending mode is
large with the step-shaped input voltage. In this work, wappse to suppress the residual
vibration by using an optimization technique in our numargimulations. In order to find
the correct shape of the input voltage, we seek to minimigeatiteleration according to

the real time dynamic response of the mirror. In this optatian problem, the objective
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function is simply the acceleration of a point on the edgehef mirror. The voltage is
the single input to the system. The following system of eiguat are involved in the
optimization process.

First, the Boundary Element Method is used to determineltare field produced

by the input voltage.
Gq(d,41) =u (5.4)
The surface charge density can be determined from theiel&etd by
o= —¢q (5.5)
The surface pressure is related to the surface pressute@ksrthe electrostatic force by
P = — (5.6)

This Newmark Method is then used to calculate the acceteratithe next time step based

on the surface pressure.

(M +yCAt + BAPK) dypyy =
2

P, — (C+ AtK)d, — (At(l —7)C + %(1 — 25)1{) d, — Kd, (5.7)

The displacement &, . ; can then be obtained
. At? .. At? ..

The equations above are coupled nonlinear equations. A fetlvads are available to find
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an input voltagen that minimizes the acceleratim+1. For example, the Newton method
and the secant method. In this thesis, for the sake of siiypliee employ a straightforward
Bisection Method.

The Bisection Method is an optimization approach used taimtsfind the kernel
of a function (i.e. f(z) = 0). For our case the acceleration is a function of the input
voltage. If the input voltage for the mirror is chosen too e mirror will deflect away
from the electrode. If the input voltage for the mirror is ska too high the mirror will
deflect toward the electrode. To start the Bisection Metkamlinitial voltages need to be
chosen such that one voltage is too low and the other is tdofbrghe intended purpose of
minimizing the acceleration for the next time step thes¢éagas are referred to 4§ and

Vyrespectively, as shown in Figuset. A new voltage is chosen at the averagé’pandV,

>

Acceleration

€

Va

Figure 5.6: The Bisection Method

and is calledV,. This bisects the distance between the voltages. The apligiin one of
the two regionsV.. is relabelled the new, or V}, depending on which region the solution is
in. This effectively cuts the distance between the previguandV, in half. Each iteration

of the bisection method will narrow the range betwégmndV, by half. The optimization
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process is listed in Algorithm.

Algorithm 4 Input Shaping Optimization

1: Pick trial voltage as determined by the Bisection Method

2: Use BEM to determine the electric field based on the inputgalt
3: Calculate the surface charge density from the electric field

4: Calculate the electrostatic pressure from the surfaceyehdensity
5. Calculate acceleration using the Newmark Method

6: Repeat until acceleration converges

Figures5.7-5.9 show the optimized shape of input voltage for the three msrtro
For Mirror A, the optimized shape is almost identical to thepsshaped input voltage.
Therefore, the optimization automatically reproducesdtiegp-shaped input voltage if the
residual vibration is small. The optimization procedurgufes in a periodic nonlinear input
voltage design for both Mirror B and Mirror C. We observedtttie frequency of the
input voltage is close to the natural frequency of the begdiode, this suggests that this
variation of the input voltage is used for compensating #eding vibration of the mirror.
It is shown that the bending mode effect is effectively segped by the optimized shape

of input voltage.
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Chapter 6

Conclusion

In this work, we have developed a full 3-D MEMS simulation edfdr input-
shaping open-loop control of electrostatic micromirronge show that the higher modes
may have a significant effect on the residual vibrations efdystem depending on the sys-
tem parameters. The significance of the bending mode dementisee bending/torsional
stiffness ratio and the torque/pulling force ratio. We eoypa numerical optimization
procedure to shape the input voltage from the real time dynaesponse of the mirror
structures. The optimization procedure results in a périodnlinear input voltage design
that can effectively suppress the bending mode effect. €ults suggest that the periodic

variation of the input voltage is for compensating the begdiibration of the mirror.
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Appendix

Code Construction

In order to model the electrostatically driven micro mirrér coupled FEA/BEM
solver was employed. The mesh for the FEA model was formadilasegng Abaqus. The
surface nodes from the FEA were then used for the BEM meshe @e&cBEM mesh for
the mirror is found the electrode will be meshed using a stnopliform meshing formula.
The electrostatic pressure will now be found by use of the BENkce the surface pressure
is known for the surface of the mirror, the force can be apipieethe mirror. The natural
and essential boundary conditions are now known for theamirfhe penalty method is
used to enforce the essential boundary conditions. Théagdisment of the mirror due to
the for applied by the electrode will be found by use of the F#ver. For each time step
the electrostatic pressure will change according to th&ipoof the mirror, thus the BEM
solver much be used for every time step. The Newmark methotilised to solve for the
displacement, velocity, and acceleration for each time. ste

Figure6.1shows the process used for the dynamic electromechanlealsdbaqus
is used to mesh the domain. The nodes and element files areexxp@m Abaqus to a
text file.The format for the nodes file, nodes.dat, can be se&able6.1 The format for

Table 6.1: File format of nodes.dat

Node #| x - coord | y - coord | z - coord
1 1.0 2.0 0.0

the elements file can be seen in Tabl2 The element and node text files are then read into
Surf. Surf determines the domain and creates the boundaditmmns for the BEM solver,
Table6.3and writes the BEM cells, Tab& 4, and nodes, Tablé.5, to a text file based on
the FEA mesh and a few boundary condition inputs. Surf alskea key, Tablé.6, that
relates the FEA nodes to the BEM nodes. The BEM solver realtett files that where
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nodes.dat
Abaqus elements.dat Surf
elements.dat des.d ‘ (t:)g”rr; Cclzgt.dat
nodes.dat odes.dat ey-dat bempts.dat
Intermediate BEM
solg.dat
bcstraction.dat _
bcsdisp.dat bempts.da
FEA Translate Nodes
solu

Figure 6.1: Class management flow chart.

Table 6.2: File format of elements.dat

Element# | node 1

node 2| node 3

node 4| node 5

node 6

node 7

node 8

1 603

394 46

47

1244

1035

687

688

Table 6.3: File format of bembcs.dat

node+#

BC Type

BC Value

1

1

10
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Table 6.4: File format of cells.dat

node 1| node 2

node 3| node 4

Cell #

333 39

38

126

Table 6.5: File format of bempts.dat

Node #

X -coord|y -

coord

z - coord

1

1.0

2.0

0.0

Table 6.6: File format of key.dat

FEA Element# | Face#

Node 1

Node 2| Node 3

Node 4

1

5 603

47

46

394
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output by Surf and computes the surface pressures exertetbtiyostatic forces. Inter-
mediate reads in the forces from the BEM solver, the key frar, &nd the nodes from
Abaqus to make the natural boundary conditions for the FEpesoTable6.7. The FEA

Table 6.7: File format of bcs1.dat

Element# | Face# | Node 1| BC Value| O
0 0 Node 2| BC Value | O

0 0 Node 3| BC Value | 0

0

0 0 Node 4| BC Value

reads in the nodes and elements from Abaqus, the essentiadéy conditions from Surf,
Table 6.8, and the natural boundary conditions from Intermediatee FERA solver then

Table 6.8: File format of bcs2.dat

node# | Displacement Rotation

X - direction 1 0 0
y - direction 1 0 0
z - direction 1 0 0

determines the displacement of the nodes based on the fasastermined by the BEM
solver. The nodal displacements are then read into Translate is no file for the nodal
displacements, they are input directly into the Translatefion. Translate will update the
BEM nodes to the deformed positions. The entire processheijin again for the next
time step starting at the BEM solver. Note that Abaqus anfi@uy have to run once. The
process for the dynamic analysis can be seen in Figiz&he “.dat” files that are listed
are produced by the classes listed above them. Each fileilalaeafor any class below it
on the flow chart and if a file is listed twice the one farthesvd@n the chart is the most
recent.
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