
Clemson University
TigerPrints

All Theses Theses

5-2010

Practical Implementation of the Virtual
Organization Cluster Model
Michael Fenn
Clemson University, michaelfenn87@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Fenn, Michael, "Practical Implementation of the Virtual Organization Cluster Model" (2010). All Theses. 775.
https://tigerprints.clemson.edu/all_theses/775

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/775?utm_source=tigerprints.clemson.edu%2Fall_theses%2F775&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Practical Implementation of the Virtual Organization

Cluster Model

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Ful�llment

of the Requirements for the Degree

Master of Science

Computer Science

by

Michael Fenn

May 2010

Accepted by:

Dr. Sebastien Goasguen, Committee Chair

Dr. Mike Westall

Dr. Walt Ligon

Abstract

Virtualization has great potential in the realm of scienti�c computing because of its inherent

advantages with regard to environment customization and isolation. Virtualization technology is not

without it's downsides, most notably, increased computational overhead. This thesis introduces the

operating mechanisms of grid technologies in general, and the Open Science Grid in particular,

including a discussion of general organization and speci�c software implementation. A model for

utilization of virtualization resources with separate administrative domains for the virtual machines

(VMs) and the physical resources is then presented. Two well-known virtual machine monitors, Xen

and the Kernel-based Virtual Machine (KVM), are introduced and a performance analysis conducted.

The High-Performance Computing Challenge (HPCC) benchmark suite is used in conjunction with

independent High-Performance Linpack (HPL) trials in order to analyze speci�c performance issues.

Xen was found to introduce much lower performance overhead than KVM, however, KVM retains

advantages with regard to ease of deployment, both of the VMM itself and of the VM images. KVM's

snapshot mode is of special interest, as it allows multiple VMs to be instantiated from a single image

located on a network store.

With virtualization overhead shown to be acceptable for high-throughput computing tasks,

the Virtual Organization Cluster (VOC) Model was implemented as a prototype. Dynamic scaling

and multi-site scheduling extensions were also successfully implemented using this prototype. It

is also shown that traditional overlay networks have scaling issues and that a new approach to

wide-area scheduling is needed.

The use of XMPP messaging and the Google App Engine service to implement a virtual

machine monitoring system is presented. Detailed discussions of the relevant sections of the XMPP

protocol and libraries are presented. XMPP is found to be a good choice for sending status infor-

mation due to its inherent advantages in a bandwidth-limited NAT environment.

ii

Thus, it is concluded that the VOC Model is a practical way to implement virtualization of

high-throughput computing tasks. Smaller VOCs may take advantage of traditional overlay networks

whereas larger VOCs need an alternative approach to scheduling.

iii

Acknowledgments

I would like to thank Dr. Sebastien Goasguen, who recognized a little spark of potential in

one of his Distributed Systems students. He's consistently pushed me toward greater and greater

challenges, and without his guidance I would have never have participated in the Google Summer of

Code or even considered graduate school. His guidance has helped me bring out the best in myself.

I would also like to thank Mike Murphy, who was brave enough to give a lowly undergrad

root access to his cluster. Though we have had our share of technical �discussions,� I am deeply

indebted to him for passing on his truly vast knowledge of Linux.

I would like to acknowledge Jerome Lauret of Brookhaven National Laboratory for his help

in conducting tests with the STAR VO and David Wolinsky of the University of Florida for his help

in conducting IPOP scalability testing.

Many thanks are also due to the whole Cyberinfrastructure Research Group: Dru, Brandon,

Jordan, Josh, Ben, Kristen, Linton, and Lance.

iv

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

List of Listings . ix

1 Introduction . 1

2 Related Work . 6

3 Organization of the Open Science Grid . 9
3.1 Public Key Infrastructure . 9

3.1.1 Public Key Cryptography . 10
3.1.2 Certi�cate Authorities . 10
3.1.3 Certi�cate Revocation . 12

3.2 Virtual Organizations . 12
3.2.1 Engagement . 12

3.3 Open Science Grid Sites . 14
3.3.1 Compute Elements . 14
3.3.2 Storage Elements . 14

3.4 Trust Model . 15
3.4.1 VO→User Trust . 15
3.4.2 Site→VO Trust . 15
3.4.3 OSG→VO Trust . 15
3.4.4 Sample Trust Scenario . 16

4 Open Science Grid Software Stack . 17
4.1 User Mapping Software . 17

4.1.1 Grid-Map�le . 18
4.1.2 Grid User Mapping System . 19

4.2 Compute Element Software . 19
4.2.1 The Globus Toolkit . 19
4.2.2 Job Managers . 20

4.3 Storage Element Software . 20
4.4 Monitoring and Accounting Software . 21
4.5 Software Use Case . 22

v

5 Virtual Organization Cluster Model . 24
5.1 Physical Administrative Domain . 25
5.2 Virtual Administrative Domain . 27
5.3 Provisioning and Execution of Virtual Machines . 27

6 Implementation of the Virtual Organization Cluster Model 31
6.1 Virtual Cluster Construction . 31

6.1.1 Kernel-based Virtual Machine (KVM) . 32
6.1.2 Xen . 32
6.1.3 Virtual Compute Nodes . 33
6.1.4 Grid Integration . 34
6.1.5 VM Contextualization . 34

6.2 Physical Support Model . 37
6.2.1 Host Operating System Con�guration . 37
6.2.2 Physical Support Services . 38

6.3 Dynamic Provisioning . 39
6.4 Overlay Networking . 39

7 XMPP and Cloud-based Monitoring . 40
7.1 XMPP and Monitoring . 40

7.1.1 Overview of XMPP . 40
7.1.2 Example XMPP Message Stanzas . 41
7.1.3 Implementing a Monitoring Program with xmpppy 43

7.2 Google App Engine . 43
7.2.1 Overview of Google App Engine . 44
7.2.2 Using XMPP with Google App Engine . 44

8 Results . 46
8.1 High Performance Linpack (HPL) . 46
8.2 Boot Times . 47
8.3 High Performance Computing Challenge Benchmark 48
8.4 Xen Domain0 Performance . 51
8.5 Block Size (NB) Tuning . 53
8.6 Dynamic Provisioning of Virtual Organization Clusters 54
8.7 Operational VOC Testing . 55

8.7.1 Engage and NanoHUB VO Testing . 56
8.7.2 STAR VO Testing . 58

8.8 Multi-site VOC Testing . 59
8.9 Google App Engine Datastore Performance . 60

9 Conclusions . 64

Appendices . 67
A Full Benchmarking Results . 68
B Full HPCC Parameters . 72
C Self-citation Policy . 74

Bibliography . 75

vi

List of Tables

8.1 Boot Times (seconds) . 47
8.2 Physical vs. Virtualized, Single Process . 49
8.3 Physical vs. VOC, One 2-CPU VM per Physical Node (32 processes) 50
8.4 Physical vs. VOC, Two VMs per Physical Node (32 processes) 50
8.5 Xen vs. non-Xen Kernels, Single Process . 51
8.6 Xen vs. non-Xen Kernels, Two Processes per Physical Node (32 processes) 52

A.1 Physical vs. Virtualized, Single Process . 69
A.2 Physical vs. VOC, One 2-CPU VM per Physical Node (32 processes) 70
A.3 Physical vs. VOC, Two VMs per Physical Node (32 processes) 71

vii

List of Figures

1.1 Grid-Based Use Case for a VOC . 2
1.2 Architecture of the monitoring system . 5

3.1 Public Key Cryptography Example . 11
3.2 Clemson Ci-Team Activities . 13
3.3 Sample Trust Scenario . 16

4.1 Gratia � Daily Usage by VO . 22
4.2 Grid Software Use Case . 23

5.1 PAD and VAD . 25
5.2 VOC node Boot Process . 29
5.3 Ideal Cluster Provisioning Process . 30

6.1 VOC node Bridging . 33
6.2 VOC Organization . 38

8.1 NB vs. Performance . 53
8.2 Two submissions of 50 jobs, 10-second execution time, submitted locally 54
8.3 Submitted 10 jobs every 90 seconds, 10-second execution time, submitted locally . . 54
8.4 Submitted 10 jobs every 30 seconds, 10-second execution time, submitted locally . . 55
8.5 Submitted 10 jobs every 30 seconds, 1-second execution time, submitted locally . . . 55
8.6 Short operational test . 56
8.7 Long operational test, Engage VO . 57
8.8 Long operational test, NanoHUB VO . 57
8.9 Integration of the STAR VM into the prototype VOC 58
8.10 Condor reaction time as observed by STAR . 59
8.11 IPOP Scaling . 60
8.12 300 10-minute jobs submitted to a multi-site VOC 61
8.13 Datastore performance on GAE . 62
8.14 Datastore performance on local testbed . 63

viii

Listings

4.1 Excerpt from a Grid-Map�le . 18
7.1 XMPP Message stanza generated by Adium . 41
7.2 XMPP Message stanza generated by xmpppy . 42
7.3 Constructing an XMPP message with xmpppy . 43
7.4 Handling an XMPP message in GAE . 44
B.1 hpccinf.txt . 72

ix

Chapter 1

Introduction

Virtual Organizations (VOs) allow collaboration among scientists and utilization of diverse,

geographically distributed computing resources. These VOs often have dynamic changes in their

membership and requirements, especially in terms of their computing needs over time [1]. Given the

diverse nature of VOs, as well as the challenges involved in providing suitable computing environ-

ments to each VO, Virtual Machines (VMs) are a promising abstraction mechanism for providing

grid computing services [2]. Cluster computing systems, including services and middleware that can

take advantage of several available virtual machine monitors (VMMs) [3], have already been con-

structed inside VMs [4, 5, 6, 7]. A cohesive view of virtual clusters for grid-based VOs was presented

by Murphy, Fenn, and Goasguen [8], and this thesis will describe the model in some detail.

Implementing computational clusters with traditional multiprogramming systems may result

in complex systems that require di�erent software sets for di�erent users. Each user is also limited

to the software selection chosen by a single system administrative entity, which may be di�erent

from the organization sponsoring the user. Virtualization provides a mechanism by which each user

entity might be given its own computational environment. Such virtualized environments would

permit greater end-user customization at the expense of some computational overhead [2].

While traditional grid computing research has made signi�cant progress on protocols and

standards for sharing resources among VOs, individual clusters must still balance the needs of each

supported VO alongside the needs of its local user base. As a result, operating and managing cluster

computing resources has been more complex for system administrators trying to support multiple

VOs on the same cluster. Currently, users must make accommodations due to the shared nature

1

Figure 1.1: Grid-Based Use Case for a VOC

of their resources. For example, if a particular user needs a software package that con�icts with a

package needed by another user, the systems administrator must choose between the needs of the

two users or must implement a complex workaround. Virtualization can be used to provide a homo-

geneous computing environment to the users while spanning geographically dispersed, heterogeneous

resources connected via grid protocols. Therefore, it is important to focus on the setup, operation

and performance of the physical systems that support virtual clusters dedicated to individual VOs.

[9, 8]

The primary motivation for the work described here is to enable a scalable, easy-to-maintain

system on which each Virtual Organization can deploy its own customized environment. Such envi-

ronments will be scheduled to execute on the physical fabric, thereby permitting each VO to schedule

jobs on its own private cluster. Additionally, due to the ease with which VMs can be instantiated,

this environment should be able to scale dynamically as well as span multiple geographical sites.

Figure 1.1, �rst presented by Murphy, Fenn, and Goasguen [8], represents an idealized use

case of Virtual Organization Clusters (VOCs) in a manner based on the operating principles of the

Open Science Grid [10] � a grid infrastructure known to support VOs instead of individual users. In

the �gure, �VO Central� is a database run by the VO manager. It contains a list of members and

2

their associated privileges stored in the Virtual Organization Manager Service (VOMS), and a set of

computing environments (in the form of virtual machine images) stored in the �Virtual Organization

Virtual Machine (VOVM),� also known to as a VOC node. When a VO member wants to send work

to the grid, a security proxy is obtained from her VOMS server, and the work is submitted to a

VO meta-scheduler (casually depicted as a cloud in this �gure). Once work is assigned to a site,

this site downloads the proper VM either from the VOC node or from its own VM cache. These

data transfers can be done through the OSG data-transfer mechanisms (i.e. dCache [11] with SRM)

and can use the GridFTP protocol. If a site becomes full, work can be migrated to another site

using VM migration mechanisms. This use case represents an ideal form of grid operation, which

would provide a homogeneous computing environment to the users. Each VO would maintain its

own environment and update its own software packages. Each physical site could determine its own

local policies and operating system setup. For this use case to become reality, this thesis presents

the Virtual Organization Cluster (VOC) model, which expands on previous knowledge of virtual

machines, cluster setup, and grid computing.

Central to the VOC model is the Virtual Organization Cluster (VOC). A VOC is a cluster

made of virtual machines con�gured to support a single VO and deployed by a Virtualization Service

Provider (VSP). A VSP and a VOC have been developed at the Cyberinfrastructure Research

Laboratory at Clemson University [12], where they appear as a resource on the Open Science Grid.

This VOC is deployed on physical cluster with both the Kernel-based Virtual Machine (KVM) virtual

machine monitor and Xen hypervisor. The VOC is composed of CentOS 5 VOC nodes, providing

VO compute services to the Engage OSG VO. Initial benchmarking results indicate that the VOC

is suitable for High Throughput Computing (HTC) (e.g. vanilla-universe Condor [13] jobs). Severe

networking overhead is present in KVM, creating large penalties in jobs which heavily leverage the

network, including those using the Message Passing Interface (MPI), such as a subset of the High

Performance Computing Challenge (HPCC) benchmarking suite. [9]

Dynamic scaling (also known as dynamic provisioning) is the process by which a virtual

environment can be sized according to load. Given that the benchmarking results showed acceptable

overheads for HTC jobs, the prototype VOC has been extended to support dynamic scaling. This

VOC is controlled by a watchdog process which expands and shrinks the size of the VOC in response

to the size of the Condor job queue. This implementation successfully achieves the goal of providing

a dynamically scalable VOC with predictable behaviors.

3

A further extension of this line of research is presented that allows a VOC to span multi-

ple physical sites whose networking topology includes various Network Address Translation (NAT)

boundaries. This is accomplished by adding a previously developed overlay network tool, known

as Internet Protocol Over Peer-to-peer (IPOP) [14]. IPOP creates a virtual network overlay which

can span NAT boundaries and thus make various hosts appear to be on the same subnet. Concerns

about the scalability of IPOP were presented, and thus scaling tests were performed. Empirical tests

show that IPOP has a scaling limit of approximately 500 nodes. This is an obstacle to the large-

scale deployment of VOCs, but small and medium-scale deployments remain viable. One such test

is presented, with VMs from Amazon's Elastic Compute Cloud (EC2) service joining the scheduling

pool provided by the local prototype VOC.

Due to the scaling limits discovered in IPOP, an alternative strategy for scheduling HTC

jobs across NAT boundaries is presented. An implementation of a monitoring front-end has been

deployed to Google App Engine that provides user access to a deployment of OpenNEbula (ONE)

[15]. ONE is a virtual infrastructure manager that provides for the dynamic placement of virtual

machines onto virtualization resources. The VMs started by ONE have an Extensible Messaging and

Presence Protocol (XMPP) monitoring program running at regular intervals which reports status

information back to the front-end. The user may interact with the front-end via a Web browser and

HTTP or via an XMPP chat client. See Figure 1.2 for the general architecture of the implemented

system.

The remainder of this work is organized into several chapters covering background material

regarding related works (Chapter 2), the organization of the Open Science Grid (Chapter 3), the

software stack used in the Open Science Grid (Chapter 4), and the Virtual Organization Cluster

Model (Chapter 5). The e�ort of creating a prototype implementation of a VOC is described in

Chapter 6, whereas the implementation of a cloud-based monitoring solution is described in Chapter

7. Experimental results are detailed in Chapter 8 and �nal conclusions are drawn in Chapter 9.

4

Google App Engine

/_ah/xmpp/
message/chat/

/xmppm

Web User XMPP User

HTTP
XMPP

Virtual Machine

XMPP

Virtual Machine

Virtual Machine

...

XMPP

XMPP

Data Store

GQL
GQL

Figure 1.2: Architecture of the monitoring system

5

Chapter 2

Related Work

Operating system virtualization has been proposed as a mechanism for o�ering di�erent

environments to di�erent users sharing a single physical infrastructure. Figueiredo et. al. proposed

the use of virtualization systems to support multiplexing among di�erent users, where each user

entity could have administrative access to its own virtual environment. Grid computing systems

designed in this way could be site-independent, permitting virtual clusters to be executed on di�erent

physical systems owned by di�erent entities. Furthermore, users could be better isolated from each

other using virtualization systems, compared to shared multiprogramming systems. [2, 9]

Any work relating to virtual clusters must address issues regarding the provisioning and

deployment of virtual machines. Middleware designed to facilitate the deployment of clusters of vir-

tual machines exists. Several examples of these middleware-oriented projects are Globus Workspaces

[16, 17], VMPlants [5], DVC [18], virtual disk caching [19], and In-VIGO [4, 20, 6, 7].

All virtual clusters must be implemented on top of a physical cluster that provides vir-

tualization services. Several software packages with the purpose of allowing rapid deployment of

physical clusters exist: including OSCAR [21], Rocks [22, 23, 24], and Cluster-On-Demand (COD)

[25]. In particular, Rocks provides a mechanism for easy additions of software application groups

via rolls, or meta-packages of related programs and libraries [26]. The OSCAR meta-package system

also permits related groups of packages to be installed onto a physical cluster system [21]. These

packages serve as the basis of the physical support model for VOCs.

A variety of networking libraries have been developed which display promise for use with

multi-site VOCs. Both Virtual Distributed Ethernet (VDE) [27] and Virtuoso [28] provide low-

6

level virtualized networks that can be utilized for interconnecting VMs. Furthermore, wide-area

connectivity of VMs can be achieved through the use of tools such as Wide-area Overlays of virtual

Workstations (WOW) [29] and Violin [30]. OpenVPN is an open-source virtual private network

(VPN) solution that facilitates the creation of point-to-point or one-to-many tunnels between hosts.

It satis�es the requirements of the VOC model, but is lacking in the ability to autonomically adjust

to the addition or removal of clients [31]. Internet Protocol Over Peer-to-peer (IPOP) uses a peer-

to-peer architecture to create an overlay network [14]. IPOP Brunet is a software library written

in C# and Mono that allows interaction with IPOP [32]. IPOP is self-con�guring and allow nodes

behind various Network Address Translation (NAT) gateways to appear to be on the same private

subnet.

Unlike prior cluster computing and virtualization research, the cluster virtualization model

described in this thesis focuses on customizing environments for individual VOs instead of individual

physical sites. Since a priori knowledge of a particular VO's scienti�c computing requirements is

not always available, this model makes few assumptions about the operating environment desired

by each individual VO. As a result, the focus of the physical system con�guration is to support

VMs with minimal overhead and maximal ease of administration. Moreover, the system should be

capable of supporting both high-throughput and high-performance distributed computing needs on a

per-VO basis, imposing network performance requirements to support MPI and similar packages.[9]

The Extensible Messaging and Presence Protocol (XMPP) is an open protocol aimed at

providing real time push noti�cations and subscription information. The protocol was originally

known as Jabber and its purpose was to provide an open instant messaging protocol. The instant

messaging use is still XMPP's most well known application. The core XMPP protocol is de�ned in

RFC 3920 while the instant messaging and presence components are de�ned in RFC 3921. Google

App Engine (GAE) [33] is a service provided by Google that allows users to run web applications on

Google's own infrastructure. GAE provides both Python and Java runtime environments, as well as

a web application framework to assist in this task.

Saint-Andre and Meijer [34] discuss XMPP from an architectural point of view. They

describe how XMPP is a form of streaming XML with the core unit being the stanza instead of the

document as with traditional uses of XML. They also describe the use of DNS SRV records for the

look-up of XMPP servers. Stout et. al. [35] provide a discussion of the Kestrel software package.

Kestrel performs many of the monitoring functions which are also present in the implementation

7

described in this paper but lacks a cloud-based platform from which to provide its service. A user

wishing to deploy Kestrel must maintain their own machine on which to run the XMPP server.

XMPP has been used in the realm of bioinformatics as a replacement for HTTP-based web services

[36]. Christensen provides a description of a Transaction Processing Monitor implemented with

XMPP [37]. Bernstein et. al. have proposed a plan for interoperability of cloud services with

XMPP root servers as a component [38].

Google App Engine has been described in several survey papers that cover the various cloud

computing providers, but so far has not been critically studied in an academic environment [39, 40].

8

Chapter 3

Organization of the Open Science

Grid

Grid computing is a type of distributed computing that seeks to solve the �grid problem�

de�ned by Foster as ��exible, secure, coordinated resource sharing among dynamic collections of

individuals, institutions, and resources�what we refer to as virtual organizations [1].� There are

several real-world grids including (but not limited to) TeraGrid, the Open Science Grid (OSG), and

The Enabling Grids for E-sciencE (EGEE). This thesis will focus on OSG. OSG is comprised of two

main types of entities: sites which provide compute resources and Virtual Organizations (VOs) which

are composed of like-minded users. Four essential facets of OSG are its public key infrastructure

(Section 3.1), VOs (Section 3.2), sites (Section 3.3), and trust model (Section 3.4). Some material

in this chapter has been previously presented to the Calhoun Honors College of Clemson University

as part of the author's undergraduate honors thesis.[9]

3.1 Public Key Infrastructure

Every large-scale distributed system needs some method of user authentication. OSG uses a

Public Key Infrastructure (PKI) that allows sites to authenticate users in a distributed manner. Key

components of this (and any) PKI are public key cryptography (Section 3.1.1), certi�cate authorities

(Section 3.1.2), and certi�cate revocation mechanisms (Section 3.1.3). [9]

9

3.1.1 Public Key Cryptography

If a Public Key Infrastructure (PKI) is to provide con�dentiality to its users, it must provide

each entity with two types of cryptographic keys: a public key and a private key. The public

key is publicly available and is generally embedded into a certi�cate. This certi�cate contains

the cryptographic key along with some identifying information. The private key contains another

cryptographic hash and should be kept private. The encryption algorithms used in this public-

key cryptography work in such a way that any data encrypted with the a public key can only be

decrypted with the corresponding private key, and any data encrypted with the private key can

only be decrypted with the public key. Therefore, as long as each entity has both a public key and

a private key, messages can be exchanged without having previously shared a secret cipher. For

example, as illustrated in Figure 3.1, suppose Alice wishes to send a message to Bob. Alice would

�rst obtain Bob's public key by some method, either from Bob directly or through a centralized

database. Alice would then encrypt her message with Bob's public key and transmit it to him. Bob

could then decrypt Alice's message with his private key. Thus, at no time has Bob had to send his

private key across the ether. Bob can then perform the same procedure in reverse to send his reply

to Alice, again without needing to know any kind of shared secret. [9]

3.1.2 Certi�cate Authorities

Authentication in OSG uses this basic mechanism with a few added details. It is not enough

to be able to con�dentially exchanges messages. A user also needs to be con�dent of the identity

of the receiving part, i. e. he needs to be con�dent in the integrity of the communication. Integrity

can be assured by the inclusion of an entity known as a Certi�cate Authority (CA). In the above

example, while Alice can be assured that the message she sent with a given public key can only be

decrypted by a person with a given private key, she has no way of verifying Bob's identity. Bob

will receive her message, but she has no idea whether or not Bob is a legitimate user. This is

where the certi�cate authority comes into play. Bob's public key is included as a part of Bob's

certi�cate. Bob's certi�cate was created by taking Bob's public key and adding some identifying

information, including the CA's digital signature. The CA creates this signature by taking Bob's

unsigned certi�cate, encrypting it with the CA's private key, and appending this signature to the

original certi�cate. Anyone can now decrypt the signature with the CA's public key and verify that

10

Figure 3.1: Public Key Cryptography Example

11

the decrypted certi�cate matches the original, thus asserting that the certi�cate is genuine. In the

example, Alice must decide which CA's certi�cates she wishes to trust; once she does this, she can

verify the validity of any certi�cate signed by that authority. [9]

3.1.3 Certi�cate Revocation

Continuing the example described in Figure 3.1, Alice gains additional con�dence in the

integrity of her communication when she has access to her trusted CA's Certi�cate Revocation List

(CRL). From time to time, a certi�cate may be compromised by the loss or theft of a private key.

When noti�ed of this situation, the CA will revoke a certi�cate by placing it on the CRL. Since each

valid certi�cate is unique, an entity wishing to validate a certi�cate may also check it against the

publicly available CRL in order to determine if it has been revoked. A certi�cate appearing on a

certi�cate revocation list will never be accepted, even if it passes all other checks. This allows the

maintainers of the PKI to disallow certi�cates on a policy basis. [9]

3.2 Virtual Organizations

As mentioned above, one major component of OSG are the Virtual Organizations (VOs). A

VO is a group of like-minded users who have joined together in order to share compute resources. The

VO provides the public-key infrastructure, namely a set of CAs. Thus, by trusting the organization,

the members implicitly trust each other. The origins of the grid are tied to traditionally compute-

intensive disciplines such as high-energy physics who were quick to establish VOs. These VOs

have existed since the beginning of the grid and as such, their users and administrators are well

accustomed to grid software, processes, and policies. In recent years, as grid software has grown in

complexity, so have the barriers to entry. Thus the need to a VO dedicated to the task of engaging

new users has become apparent.[9]

3.2.1 Engagement

The Engagement VO (known colloquially as Engage) was created to acclimate new users

to grid technologies and processes. It is tasked with bringing new users and resources to the grid,

educating them, and allowing them to connect with like-minded individuals. The goal is for these

users to then join another VO that suits their needs or start their own VO. Engage handles all

12

Figure 3.2: Clemson Ci-Team Activities

VO-level administration, including the PKI. This allows users to get up and running quickly and

determine how to most e�ectively use grid technologies for their particular computational problems.

To further this goal, a cyberinfrastructure team or CI-Team was created at Clemson Uni-

versity. The team has assisted researchers at Duke University, the Harvard Medical School, the

Rochester Institute of Technology, the New Jersey Institute of Technology, the University of South

Carolina, the Washington University Genome Center, the University of Alabama at Birmingham,

Florida International University, and Michigan State University (Figure 3.2) with the process of

using the grid as well as the process of adding new resources to the grid. The Clemson CI-Team has

also assisted with user education and resource deployment at Clemson University itself. [9]

13

3.3 Open Science Grid Sites

A Collection of resources is known as a site. Sites are the second main main component of

the Open Science Grid and provide the actual computational and storage resources to VOs. Two

main types of resources exist: Compute Elements (CEs) and Storage Elements (SEs). Since these

resources are independent entities which users must interact with, they require their own certi�cates.

These certi�cates, known as host certi�cates, must be granted by an established VO. This does not

necessarily mean that a site trusts the users of the VO that granted its certi�cates, but this is

generally the case. [9]

3.3.1 Compute Elements

A compute element consists of a Globus gatekeeper paired with a batch scheduling system

such as PBS or Condor. Users can submit computational jobs to a compute element, and as long as

the CE trusts that user, their jobs will run and the results will be returned to the user

Compute elements also commonly have site-local users who may or may not have grid

identities and who interface directly with the back-end batch system. Since the grid software com-

municates with the batch system in the same manner as would any other user, this does not present

an integration problem. [9]

3.3.2 Storage Elements

A storage element consists of a Storage Resource Manager (SRM) interface to a �lesystem,

and provides users with remote storage of data. Users can upload data to a storage element and

then transfer this data directly to a compute element as input for a job. The user can orchestrate a

work�ow that involves transfers between CEs and SEs without ever having to use their local system

as a staging area. This bene�ts users who may not have access to large storage arrays or high

bandwidth connections in their local environment. The details of both the CE and SE software

stacks are discussed in Chapter 4. [9]

14

3.4 Trust Model

The Open Science Grid is an organization bound together by mutual trust among feder-

ated virtual organizations. The three types of trust relationships are VO→User1, Site→VO, and

OSG→VO. These are discussed in detail below. [9]

3.4.1 VO→User Trust

A user wishing to use grid resources must join a virtual organization. The virtual organi-

zation establishes criteria for membership that must maintain a certain level of rigor, but OSG as

an organization is not overly strict on this point. Essentially, each VO determines how to select its

own membership. When a member is accepted into a VO, they receive a private key and certi�cate

signed by the VO's CA(s). The user may then utilize any site which trusts their VO. [9]

3.4.2 Site→VO Trust

When new sites begin operations, the site administrators must decide from which VO's

they will accept computational jobs. They will usually accept jobs from the VO which signed

their host certi�cates, but this is not required. Factors that may in�uence this decision include

requirements that a potential VO might have regarding compute power, software stack, number of

concurrent users, and trust reciprocity. This last factor bears further examination supported by a

key observation: a site is usually created by grid users or their a�liated institutions. While it is

certainly possible for VOs not to reciprocate trust, this is not common. More commonly, a site will

trust VO who trusts that site's sponsors. [9]

3.4.3 OSG→VO Trust

The third type of trust, whereby the central OSG organization decides to trust a VO, does

not necessarily follow from the notion of a purely federated system. In fact, a VO can theoretically

exist without the blessing of the central OSG organization; however, it is much more convenient if a

central listing of VOs and their respective information is maintained. This way, the software stack

can be distributed with VO management server addresses and CA certi�cates pre-installed, making

a site administrator's job easier. [9]

1Note on notation: → is read as �trusts�

15

Figure 3.3: Sample Trust Scenario

3.4.4 Sample Trust Scenario

As an example (illustrated in Figure 3.3), suppose there exist two VOs, A and B. These

VOs were established in order to allow their membership to pool computational resources. To that

end, VO A has set up Site 1 located at Prestigious University, where many of VO A's members are

employed. However, the administration at Prestigious University has decreed that these computa-

tional resources shall be available to all faculty and students. Thus, Site 1 has some local users who

do not have grid identities as well as grid users, who may be physically co-located or remote. VO B

is in a similar situation, and has thus set up Site 2. This state of a�airs continues for a while, but

the members of VO A and VO B begin facing tighter schedules and would like to have access to a

higher throughput computing system. The two VOs decide to share resources, so Site 1 decides to

begin trusting VO B and Site 2 begins trusting VO A. Now members of both VO A and B have two

sites at their disposal and can choose which one they would like to use based on utilization patterns.

The local users at each site may still only utilize their local resources, unless they too join a VO and

obtain grid identities. [9]

16

Chapter 4

Open Science Grid Software Stack

Four distinct sets of software provide an implementation of a grid computing system for

the Open Science Grid (OSG): user mapping software (Section 4.1), the Compute Element package

(Section 4.2), the Storage Element package (Section 4.3) and monitoring and accounting software

(Section 4.4). A short software use case is presented (Section 4.5). Some material in this chapter

has been previously presented to the Calhoun Honors College of Clemson University as part of the

author's undergraduate honors thesis.[9]

4.1 User Mapping Software

Once a user has been authenticated, their grid identity must then be mapped to a local

user account with su�cient privileges to run their desired job. Two obvious ways to maintain this

mapping would be to have an individual account for each grid user or to have one account to which

all grid users are mapped. These are both unsatisfactory, but for di�ering reasons. Mapping each

grid user to an individual account may seem promising, as it is the model is generally employed for

local users, but it has its faults. Since VO membership constantly changes and user authentication

policies and mechanisms di�er among sites, developing an automated system generic enough to

handle all cases would be a daunting task. Thus, it would fall to the site administrators to keep

the mappings up to date, which is a waste of valuable systems administrator time. Likewise, the

all-to-one mapping is advantageous due to its simplicity, but violates the basic trust model. A user

process can generally inspect and manipulate all processes running as the same user. If all grid

17

Listing 4.1: Excerpt from a Grid-Map�le

1 #−−−− members o f vo : engage −−−−#
2 "/C=AU/O=APACGrid/OU=Monash Un ive r s i ty /CN=Bla i r Bethwaite " engage
3 "/C=AU/O=APACGrid/OU=Monash Un ive r s i ty /CN=Steve Androulakis " engage
4 "/C=MX/O=UNAMgrid/OU=DGSCA UNAM CU/CN=Eduardo Cesar Cabrera F lo r e s "

engage
5 "/C=UK/O=eSc i ence /OU=Sh e f f i e l d /L=CICS/CN=michael g r i f f i t h s " engage
6 "/DC=es /DC=i r i s g r i d /O=bsc−cns /CN=en r i c . t e j e do r " engage
7 "/DC=es /DC=i r i s g r i d /O=bsc−cns /CN=jo r g e . e j a rque " engage
8 "/DC=org /DC=doegr id s /OU=People /CN=Abhishek Pratap 39489" engage
9 "/DC=org /DC=doegr id s /OU=People /CN=Albert Everett 905390" engage

10 #−−−− members o f vo : nanohub −−−−#
11 "/CN=Steven M Clark/OU=Purdue TeraGrid/O=Purdue Un ive r s i ty /ST=Indiana /C=

US" nanohub
12 "/CN=nanoHUB Serv i c e00 /OU=Purdue TeraGrid/O=Purdue Un ive r s i ty /ST=Indiana

/C=US" nanohub
13 "/CN=nanoHUB Serv i c e01 /OU=Purdue TeraGrid/O=Purdue Un ive r s i ty /ST=Indiana

/C=US" nanohub
14 "/CN=nanoHUB Serv i c e02 /OU=Purdue TeraGrid/O=Purdue Un ive r s i ty /ST=Indiana

/C=US" nanohub

users were to be mapped to a single local account, any grid job could inspect or terminate any other

job, regardless of VO. A single VO has made a decision to trust its own members, but may not

necessarily trust any other VOs.

The solution to this problem lies within the basic organization of the Open Science Grid.

Since each VO member trusts all other members, and does not necessarily trust the members of

any other VO, there must be at least one local account per VO. On the other hand, since site

administrators make trust decisions at the VO level, they should not have to worry about the

individual membership of a VO. Thus local VO accounts should not make distinctions based on

individual users. Therefore, the model of having one local user account per VO is shown to be

su�cient. [9]

4.1.1 Grid-Map�le

The most basic way to actually map grid users to local accounts is by using a grid-map�le.

This �le is a simple key-value pairing of grid identities to local user accounts. This �le is updated

automatically by a component of the OSG software stack (edg-mkgridmap). For each VO that the

site trusts, a list of members will be downloaded from each VO's central server at a given interval.

These will then be paired with the con�gured local user account and written to the grid-map�le.[9]

18

Listing 4.1 contains an excerpt from a gird-map�le. Note that even though grid identities

should be issued to a particular person due to accountability requirements, many VOs will also issue

certi�cates to middleware.

4.1.2 Grid User Mapping System

The grid-map�le approach works well and has the advantage of being simple. However, it

is not the most e�cient solution when considering the case of multiple resources within the same

administrative domain. Instead of having each resource maintain its own mappings, it would be

more e�cient to have a central mapping server provide user mappings to all resources within an ad-

ministrative domain. This is exactly the functionality that the Grid User Mapping System (GUMS)

provides. When a site utilizes GUMS, only the GUMS server needs to contact each VO's server and

download the current membership roster. Individual resources can then contact the GUMS server

whenever a job submission occurs. The GUMS server can then respond with a mapping, eliminating

the need for a grid-map�le to be present at each resource. [9]

4.2 Compute Element Software

As mentioned in Chapter 3, the two main components of a Compute Element (CE) are the

Globus gatekeeper and the back-end batch system. The gatekeeper is the grid interface to the batch

system and thus only it needs to be publicly accessible and possess a grid certi�cate. The batch

system can be located solely on a private network, indeed, this is how many dedicated computational

resources are con�gured. [9]

4.2.1 The Globus Toolkit

In the OSG environment, the Globus toolkit serves two primary functions. It handles grid

user authentication and serves as the interface to the batch system. In its user authentication role,

Globus handles the public-key cryptography and certi�cate validation discussed above. The OSG

software distribution includes a mechanism to keep the Globus's local copies of the CA certi�cates

and CRLs up do date.

Once a grid identity has been successfully mapped, the Globus toolkit can then service the

request. Two main types of services are provided by Globus: GRAM and GridFTP. GRAM is a

19

mechanism for running commands non-interactively at a remote site, while GridFTP is a grid-aware

�le transfer program. Users typically use GridFTP to �stage-in� data sets, then use GRAM to fork

and execute the job directly or invoke the batch system. Finally, the users use GridFTP to retrieve

the job's output. Globus interfaces to batch systems are referred to as job managers and will be

discussed in detail below.

Also of note is WS-GRAM. Globus was originally designed around a custom session, pre-

sentation, and application protocol. WS-GRAM is a new version of GRAM which seeks to replicate

and extend the functionality of this protocol, but through a standard, web-services communication

model. [9]

4.2.2 Job Managers

The job managers provided with Globus provide an interface to several popular batch ex-

ecution systems including Condor, the Portable Batch System (PBS), and the Sun Grid Engine

(SGE). The simplest of these job managers is known as the Fork job manager. Fork is essentially

a null job manager, because it simply forks and executes the job on the current machine, i.e. the

compute element itself. Fork is ideal for short-lived jobs and simple diagnostics, but su�ers from

a critical �aw. Since Fork is stateless, a malicious user could perform a �fork bomb� attack on a

compute element, overwhelming it with processes and eventually crashing the machine. Due to this

vulnerability, site administrators are encouraged to use the Managed-Fork job manager, which uses

Condor to limit the number of running processes

The Condor job manager interfaces with the popular Condor High Throughput Computing

system. The job manager handles the creation of the Condor submission script and also retrieves

the output from Condor. It is important to note that the job manager does not posses a direct

interface to Condor, and instead interacts with the system in the same way that an end user would.

The PBS and SGE job managers perform similarly, with regard to their respective batch systems.

[9]

4.3 Storage Element Software

The second main type of resource that a site can provide is the Storage Element (SE). The

SE provides a Storage Resource Management (SRM) interface to a storage array. SRM is grid-

20

aware in the sense that it can map grid identities to a VO-speci�c storage pool. These pools are

securely partitioned among VOs, thus maintaining the trust model. The two main implementations

of the SRM interface are dCache and BeStMan. DCache provides an implementation of the SRM

interface tightly coupled to a large-scale distributed �lesystem. BeStMan can provide an SRM

interface to any �lesystem. The only requirements are that the �lesystem be mountable on the SE

node and have typical UNIX-style �le ownership and permissions. The main advantage that dCache

has over BeStMan is scalability. With BeStMan, while the underlying �lesystem may indeed be

distributed in nature, the SE head node becomes a bottleneck for network tra�c. Under dCache,

each storage node is grid-aware, and can perform network transfers independently, thus avoiding the

bottlenecking problem. DCache has a downside in that it requires a signi�cant number of dedicated

metadata nodes and thus does not scale down to small deployments very well. [9]

4.4 Monitoring and Accounting Software

Finally, OSG maintains a suite of monitoring services and information providers. These

include service advertisement, usage reporting, and diagnostic tools. These capabilities are historical

weak points of OSG, due to the federated nature of its services. However, development is in progress,

with the goal of improving upon these weak points. Two of the most useful monitoring and accounting

systems are the Resource and Service Validation (RSV) system, and the Gratia accounting system.

The primary site monitoring system for OSG is RSV. RSV operates on each site by running

a set of periodic jobs against the site. These jobs interact with the site in the same way that a user

would for the purpose of providing a complete end-to-end test. Each test, or probe, is reports its

results to the site administrator and to the central OSG organization. Commonly installed probes

include monitoring of the status of the default job manager, the list of available job managers,

the site's CA certi�cate package version, the site's CRL expiration dates, the permissions on the

local storage pool, the OSG software version, a basic ping test, the VDT version, which VOs are

supported, the status of the Globus GRAM service, the status of the GridFTP service, the status of

the site's batch scheduler, the status of the GUMS server, and the expiration dates of the site's host

certi�cates. RSV maintains a detailed history of these probes' results to both the site administrator

and OSG central organization. These results can be particularly useful when troubleshooting a new

site.

21

Figure 4.1: Gratia � Daily Usage by VO

The primary accounting system in the OSG is Gratia. Gratia can give very detailed reports

on utilization on a per-site basis, or for the grid as a whole. Gratia works by inserting probes into the

OSG software stack that report exact usage numbers back to a central Gratia web service. Gratia

does not provide a real-time view of the grid because its goals are accuracy and completeness of

records.

Gratia provides information on wall time, processor time, and job counts. This information

can be provided over any date range and interval desires. This data is visualized via engaging charts

and graphs, one of which is presented in Figure 4.1. [9]

4.5 Software Use Case

To illustrate how the OSG software stack interacts with users and functions as a distributed

system, an example use case will now be presented, illustrated with Figure 4.2.

Suppose a user wishes to run a scienti�c job on the Open Science Grid. He �rst looks at

the central RSV repository and compiles a list of sites that �t his requirements. He decides to use

Compute Element A and Compute Element B. Since his job requires a large amount of intermediate

storage, and he does not have a high-bandwidth connection in his local environment, he decides that

he would like to use Storage Element C as an intermediate storage location. CE A uses GRAM,

22

Figure 4.2: Grid Software Use Case

a grid-map�le, and the PBS batch system, while CE B uses WS-GRAM, a GUMS server, and the

Condor batch system.

To begin, the user copies his input data to SE C. He then uses GridFTP to copy the relevant

portions of the data to CEs A and B. Once his data has been staged-in to CEs A and B, he sends

his job via GRAM to CE A and via WS-GRAM to CE B.

The user's job request to CE A contains a copy of his certi�cate, which is authenticated by

Globus. His grid identity is then be mapped to the local user account for his VO by the grid-map�le.

His job is then submitted to PBS where it begins executing. Gratia monitors the job and reports

its execution time to the central Gratia repository.

Meanwhile, the user's job request to CE B has also been authenticated by Globus, and his

grid credentials are being processed by the GUMS server. GUMS returns a user mapping to the CE

which then submits his job to the Condor batch scheduler, where it begins executing. Gratia also

records this jobs elapsed time.

After the user's jobs run, he then copies the intermediate results back to SE C via GridFTP.

He can then prepare the next iteration of his job or retrieve the results from the SE. [9]

23

Chapter 5

Virtual Organization Cluster Model

The Virtual Organization Cluster (VOC) Model speci�es the high-level properties of sys-

tems that support the assignment of computational jobs to virtual clusters. This chapter has been

published by Murphy, Fenn, and Goasguen in the 17th Euromicro International Conference on Par-

allel, Distributed, and Network-Based Processing (PDP 2009) [8]. Some material in this chapter has

also been presented to the Calhoun Honors College of Clemson University as part of the author's

undergraduate honors thesis.[9]

It is important to note that each VOC is solely dedicated to an individual VO. However,

multiple virtual clusters can be present on a single physical cluster at the same time. A fundamental

division of responsibility between the administration of the physical computing resources and the

virtual machine(s) implementing each VOC is fundamental to the VOC Model. For clarity, the

responsibilities of the hardware owners are said to belong to the Physical Administrative Domain

(PAD). Responsibilities delegated to the VOC owners are part of the Virtual Administrative Domain

(VAD) of the associated VOC. Each physical cluster has exactly one PAD and zero or more associated

VADs. VADs are not necessarily unique to a particular PAD, as a virtual cluster may span multiple

physical clusters. [8, 9]

Figure 5.1 illustrates an example system designed using the VOC Model. In this example,

the PAD contains all the physical fabric needed to host VOCs and connect them to the grid. Each

physical compute host in the PAD is equipped with a virtual machine monitor for running VOC

nodes. Shared services, including storage space, a grid gatekeeper, and networking services are also

provided in the PAD. Two VOCs are illustrated in Figure 5.1, each having its own independent

24

Figure 5.1: PAD and VAD

VAD. Each VOC optionally includes a virtual head node that, if present, receives incoming grid jobs

from the shared gatekeeper in the PAD. Alternatively, each VOC node can receive jobs directly from

the shared gatekeeper, by means of a compatible scheduler interface. The PAD administrator must

make certain allowances for these VOC head nodes, in particular, he or she must provide inbound

and outbound network connectivity to nodes on an as-speci�ed basis. [8, 9]

In practice, Virtual Organization Clusters can be supplied by the same entity that owns the

physical computational resource, by the Virtual Organizations (VOs) themselves, or by a contracted

third party. Similarly, physical fabric on which to run the VOCs could be provided either by the

VO or by a third party. One possible model for third-party physical system providers is that of

a Virtualization Service Provider (VSP). A VSP o�ers clusters of hardware con�gured to support

VMs, along with networking and Internet connectivity for those VMs. VOs can contract with VSPs

to provide the necessary infrastructure for hosting VOCs, avoiding the requirement for each VO to

invest in infrastructure such as hardware, power, and cooling. This abstraction of compute resources

is a key objective of grid computing. In turn, VSPs o�er VM hosting services to multiple VOs,

perhaps employing time-based or share-based scheduling to multiplex VOCs on the same hardware.

[8, 9]

5.1 Physical Administrative Domain

The Physical Administrative Domain (PAD) contains the physical infrastructure (see Fig-

ure 5.1), which is comprised of the host computers themselves, the physical network interconnecting

those hosts, local and distributed storage for virtual machine images, power distribution systems,

25

cooling, and all other infrastructure required implement a physical cluster. Also within this do-

main are the host operating systems, virtual machine monitors, and central management systems

for physical servers. Fundamentally, the hardware cluster provides the Virtual Machine Monitors

(VMMs) needed to host the VOC system images as guests. [8, 9]

An e�cient physical cluster implementation requires some mechanism for creating multiple

compute nodes from a single disk image submitted by the VO. One solution is to employ a VMM

with the ability to spawn multiple virtual machine instances from a single image �le in a read-only

mode that does not persist any changes made at run-time to the image �le. Another solution is to

use a distributed �le copy mechanism in order to replicate local copies of each VM image to each

execution host. Without this type of mechanism, the VO would be required to submit one VM

image for each compute node, which would result in both higher levels of Wide Area Network tra�c

and greater administrative di�culty. Thus, such a mechanism is considered to be essential to the

VOC Model. [8, 9]

Various architectures may be employed to design physical systems that provide the neces-

sary virtualization resources to guests. One simple architecture would utilize commodity rack-mount

server hardware to provide raw computational power, with standard networking components pro-

viding system interconnects. A basic Linux system with a VMM can provide virtualization services,

while standard networking services, such as the Dynamic Host Con�guration Protocol (DHCP) and

Domain Name System (DNS) servers, would be provided by dedicated physical hosts. Guest virtual

machines in such an architecture would thus be indistinguishable from physical hosts: the virtual

machines would be provided with networking services as if they were physical hosts. Arbitrary guest

operating systems can be supported as long as the Instruction Set Architecture (ISA) of the guest is

compatible with the ISA of the host. Alternatively, paravirtualized guests could be supported with

a paravirtualization system, either employing direct use of physical network resources or contained

within a separate virtual networking environment. With a paravirtualization system, the guests

would have to be con�gured to make use of the paravirtualized hardware. Thus, certain operating

systems cannot be supported as paravirtualized guests. [8, 9]

Optionally, the physical resource provider may supply common interfaces to shared resources

with which the hosted virtual machines might interact. For example, a physical resource might

provide a common gatekeeper for all the hosted VOCs, which could provide a connection to a grid

26

such as the Open Science Grid. Other examples of shared resources might include shared storage

space, a common job scheduling system, or a shared virtual gateway for server connections. [8, 9]

5.2 Virtual Administrative Domain

Each Virtual Administrative Domain (VAD) consists of a set of virtual machine images for

a single Virtual Organization (VO). A VM image set contains one or more virtual machine images,

depending upon the target physical system(s) on which the VOC system will execute. In the general

case, two virtual machine images are required: one image of a head node for the VOC, and another

image that is used to spawn all the compute nodes of the VOC. When physical resources provide a

shared head node, only a compute node image with a compatible job scheduler interface is required.

[8, 9]

Perhaps the greatest challenge for the VAD administrator is the requirement a single com-

pute node VM image may be used to spawn multiple VM instances. In other words, the image must

be con�gured in such a way that it can be contextualized for each VM when instantiating multiple

VMs [41]. No assumptions about the size of the VOC, the type of networking, the hostname of

the system, or any system-speci�c con�guration settings should be stored in the image. Instead,

standard methods for obtaining network and host information (e.g. DHCP) should be used, and

any per-VM-instance con�guration should be made dynamically at boot time. [8, 9]

VMs con�gured for use in VOCs may be accessed by the broader grid in one of two ways:

If the physical fabric at a site is con�gured to support both virtual head nodes and virtual compute

nodes, then the virtual head node for the VOC may function as a gatekeeper between the VOC and

the grid, using a shared physical grid gatekeeper interface as a proxy. In the second case, the the

single virtual compute node image needs to be con�gured with a scheduler interface compatible with

the physical site. The physical fabric then provides the gatekeeper between the grid and the VOC

(Figure 5.1), and jobs are matched to the individual VOC. [8, 9]

5.3 Provisioning and Execution of Virtual Machines

Virtual Organization Clusters are con�gured and started on the physical compute fabric by

middleware installed in the Physical Administrative Domain. Such middleware can either receive a

27

pre-con�gured virtual machine image (or pair of images) or provision a Virtual Organization Cluster

on the �y using an approach such as In-VIGO [4], VMPlants [5], or installation of nodes via virtual

disk caches [19]. Middleware for creating VOCs can exist directly on the physical system, or it can

be provided by another (perhaps third-party) system. To satisfy VAD administrators who desire

complete control over their systems, VM images can also be created manually and uploaded to

the physical fabric with a grid data transfer mechanism such as the one depicted in the use case

presented in Figure 1.1. [8, 9]

Once the VM image is provided by the VO to the physical fabric provider, instances of the

image can be started to form virtual compute nodes in the VOC. Since only one VM image is used

to spawn many virtual compute nodes, the image must be read-only. Run-time changes made to

the image are stored in RAM or in temporary �les on each physical compute node and are thus

lost whenever the virtual compute node is stopped. Since changes to the image are non-persistent,

VM instances started in this way can be safely terminated without regard to the machine state,

since data corruption is not an issue. As an example, VM instances started with the KVM virtual

machine monitor are abstracted on the host system as standard Linux processes. These processes

can be safely stopped (e.g. using the SIGKILL signal) instantly, eliminating the time required for

proper operating system shutdown in the guest. Since there is no requirement to perform an orderly

shutdown, no special termination procedure needs to be added to a cluster process scheduler to

remove a VM from execution on a physical processor. [8, 9]

When booting a VM instance from a shared image, certain con�guration information must

be obtained dynamically for each instance in order to contextualize the instance. In particular, each

virtual compute node requires network connectivity to enable communications. For most purposes,

a virtual compute node can be treated as a physical node that has been shipped to the physical

fabric site by the VO: the virtual compute node can simply use existing dynamic protocols to obtain

a network address and network connectivity. However, an issue does arise with the shared read-only

image model, in that the Media Access Control (MAC) address of each VM instance needs to be

unique on the local network. A solution to this problem is to treat the MAC address as a dynamic

resource that is leased to each VM instance (Figure 5.2). Thus, MAC addresses become part of the

PAD and are a resource managed by the supporting middleware. Other resources that need direct

mapping to physical devices or low-level protocols will need to be leased to the VOCs in a similar

fashion. Such resources should be dynamically allocated by the middleware and given directly to

28

Figure 5.2: VOC node Boot Process

the virtual machine monitor, which abstracts the resource as virtual hardware. In e�ect, the guest

operating system should be unaware that a low-level resource like a MAC address is leased and not

owned. [8, 9]

Once mechanisms are in place to lease physical resources and start VMs, entire virtual

clusters can be started and stopped by the physical system (Figure 5.3). VOCs can thus be scheduled

on the hardware following a cluster model: each VOC would simply be a job to be executed by the

physical cluster system. Once a VOC is running, jobs arriving for that VOC can be dispatched

to the VOC. The size of each VOC could be dynamically expanded or reduced according to job

requirements and physical scheduling policy. Multiple VOCs could then share the same hardware

using mechanisms similar to those employed on traditional clusters. [8, 9]

29

Figure 5.3: Ideal Cluster Provisioning Process

30

Chapter 6

Implementation of the Virtual

Organization Cluster Model

The core focus of the body of research presented in this thesis is the implementation of

the Virtual Organization Cluster Model. Important considerations of this implementation include

the details of how the virtual compute nodes are created and instantiated (Section 6.1) as well as

the how the physical support services are implemented (Section 6.2). Dynamic provisioning of the

VOC is implemented via the watchdog mechanism discussed in Section 6.3. VOCs which span NAT

boundaries need some sort of overlay network. The prototype VOC was implemented with the

IPOP overlay networking solution, discussed in Section 6.4. Some material in this chapter has been

previously presented to the Calhoun Honors College of Clemson University as part of the author's

undergraduate honors thesis as well as in the 47th ACM Southeast Conference. [9, 42]

6.1 Virtual Cluster Construction

An essential component of any virtual cluster is the choice of Virtual Machine Monitor

(VMM). This choice will have far-reaching implications in terms of restricting future con�guration

options, i.e. host operating system and performance goals. Two such VMMs are compared, the

Kernel-based Virtual Machine and Xen, in Sections 6.1.1 and 6.1.2 respectively. The con�guration

of the virtual compute nodes is discussed in Section 6.1.3, and their deployment to the Open Science

31

Grid is described in Section 6.1.4. A discussion of the tools and techniques used to contextualize

VM images is presented in Section 6.1.5. [9, 42]

6.1.1 Kernel-based Virtual Machine (KVM)

KVM is an extension of the well-known QEMU emulator with support for the x86 VT ex-

tensions [43]. These extensions allow virtual machines to make system calls without unnecessarily

invoking the host kernel, thus potentially saving two context switches [44]. KVM requires a re-

cent Linux kernel with the KVM modules enabled. This virtualization system di�ers from other

virtualization technologies that require heavily modi�ed kernels, whose development is not often

concurrent with the mainline kernel. Prototype implementation began with KVM-57, but issues

with the emulated network interface card (NIC) compelled an upgrade to KVM-77.

KVM inherits all QEMU tools, thus supporting the QEMU Copy-on-write (QCOW) disk

image format. QCOW supports a snapshot mode for disk I/O in which all disk writes are directed

to a temporary �le and are not persisted to the original image. This mode allows multiple VMs to

be run from a single master disk image mounted from a network location. Such an arrangement

mitigates the storage requirements associated with running a cluster of VMs [45]. Snapshot mode

also makes destroying a running virtual cluster as simple as sending SIGKILL to the virtual machine

monitor on each physical node.

Also inherited from QEMU is the ability to use the TUN/TAP Ethernet bridge available

in the Linux kernel. The bridge essentially emulates a switch, allowing each VM to have individual

networking resources, separate from both the host and other VMs. Each TAP device acts as a

virtual Ethernet endpoint, each connected to a software bridge, along with the hardware Ethernet

endpoint as shown in Figure 6.1. [9, 42]

6.1.2 Xen

Xen is a hypervisor and is similar to KVM in the sense that it allows multiple guest operating

systems, domains in Xen parlance, to run concurrently on the same hardware [46]. Xen, however

di�ers from KVM in that it does not rely on any type of CPU instructions for virtualization support,

instead it uses a technique known as paravirtualization [47]. In this technique, the guest operating

system (OS) is modi�ed in such a way that all supervisor instructions (those that would, in KVM,

32

Figure 6.1: VOC node Bridging

be handled by the VT extensions) are replaced by hypercalls into the Xen hypervisor. This allows

for much greater performance than pure emulation (QEMU) and competitive performance with VT

solutions such as KVM. [9, 42]

6.1.3 Virtual Compute Nodes

Each VOC is composed of VMs known as VOC nodes. Every VO that wishes to use a VSP's

computational power must submit a VOC node image (or set of images) to the VSP, along with

some con�guration parameters. The VO must carefully construct the VOC node image, since each

image could be used to start multiple VMs. To this end, a VOC node image must not make any

assumptions about the network hardware, hostname, or other system-speci�c settings. Dynamic

con�guration must be used instead.

When booting a VOC node, the virtual machine monitor must �rst obtain a MAC address,

then boot the VM in snapshot mode. One the VOC node OS begins to boot, it will receive a

Dynamic Host Con�guration Protocol (DHCP) lease for its IP address and then join a scheduling

pool, such as Condor. [9, 42]

33

6.1.4 Grid Integration

The prototype VOC is built from two CentOS 5 VM images: the VOC node image and

an OSG gatekeeper image that can be shared among multiple VOCs. CentOS is a good choice

of operating system because of its extensive support for cluster and scienti�c computing software.

The virtual head node is con�gured as an OSG gatekeeper through installation of the Virtual Data

Toolkit (VDT), Condor central manager and submit daemons, the Ganglia monitoring daemon,

and the Ganglia metadata daemon. The virtual compute node is con�gured with the Condor starter

daemon, MPICH2, ATLAS, and the Ganglia monitoring daemon. The prototype VOC is compatible

with the OSG, and has been successfully deployed to OSG Integration Testbed as the Clemson-

Birdnest site. All VOC nodes are Condor execute nodes and form a pool managed by the virtual

head node running Globus GRAM. [9, 42]

6.1.5 VM Contextualization

The topic of VM contextualization merits further discussion. It is a safe assumption that

any given VM image will not successfully integrate into a VOC as implemented at any given site.

The image must be contextualized in two phases: image-level and instance-level. Image-level con-

textualization occurs once per VM disk image per site. Instance-level contextualization occurs once

per VM instance. [48]

Image-level contextualization

Important considerations for image-level contextualization are image format, image layout,

shared �lesystem support, and batch scheduler integration. Image format refers to the representation

of the disk's data within the image �le. Image layout refers to how the various partitions are placed

on the disk and to what other disk structures are present.

The simplest image format is that of the raw disk image. A raw image is simply a �le

containing the exact byte string that would appear on a physical device. This format is highly

compatible but is not space e�cient because the image �le's size must be equal to the capacity of the

virtual device being represented. Note that raw images compress very well with gzip compression,

so they are fairly easy to distribute. In order to mitigate the in-use size issue, there has been a

proliferation of virtual image formats such as VMDK, VDI, VHD, and QCOW2. These formats

34

vary in implementation and hypervisor support, but they all allow the compact representation of a

disk image. When utilizing one of these formats, the size of the image is determined by the size of

actual data present on the device, instead of by the capacity of the device. In order to contextualize

the VM image format, the image must simply be converted to a format that is compatible with

the hypervisor used at a given site. The qemu-img tool provides conversion functionality that can

convert images between many of the popular formats. Hypervisor vendors also generally provide a

tool that can convert between their format and the raw format.

The image layout issue can become much more involved. The two main image layouts are

the partition image layout and the disk image layout. A partition image contains a representation

of a single disk partition. Essentially, this layout could be referred to as a �lesystem image, since

a partition does not contain any metadata with regard to itself. This layout requires a hypervisor

that is able to present individual partitions to a guest OS. Currently, only the Xen hypervisor is

capable of this. The disk image layout contains a representation of an entire disk, including the

master boot record, boot sector, and partition table. All hypervisors, including KVM, are capable

of utilizing this type of image. Since Xen requires the guest kernel and initial ramdisk to be located

outside of the VM image, Xen may only boot from disk images when it is used in conjunction with

the pygrub utility. This utility mounts the disk image and extracts the kernel and initial ramdisk

from the image, and as such, can only be utilized with a disk in the raw disk format. There is no

set procedure for converting between partition images and disk images. Images will generally need

to be converted (at least temporarily) to the raw format in order to allow standard disk tools to

be utilized. There are, however, several useful tools and one guiding principle. The principle is: a

disk image is the same as a physical disk, and a partition image is the same as a physical partition.

Converting between image formats is a matter of getting the correct disk structures into the correct

places. Useful tools include:

• fdisk, allows the calculation of partition extents and the creation/modi�cation of partition

tables,

• dd, allows block level copying of de�ned sections of an image,

• mount, when used with the -o loop option allows a partition image to be mounted,

• kpartx, allows the exposure of the partitions of a disk image as individual devices,

35

• chroot, allows the running of the native tools present in the image if necessary.

These tools, along with the bootloader installer, should be su�cient to assemble a disk image from

a set of partition image or decompose a disk image into a set of partition images. An example of

converting a partition image to a disk image is maintained by the author [49].

As the OSG compute node speci�cation requires that various �lesystems be shared among

the compute element and its associated worker nodes, the image must also be contextualized so that

it properly mounts those �lesystems. In particular, any software libraries needed to mount the site's

shared �lesystem must be installed and the $OSG_APP, $OSG_DATA, and $OSG_GRID shares must the

mounted in the locations de�ned by the CE con�guration.

There must also be a way to get computational jobs into the VM. Either the site's batch

scheduler or a VO-level scheduling system must be installed into the VM image. If the site's batch

scheduler is installed, it is prudent to con�gure the scheduling system in such a way that the VM's

scheduling pool may be partitioned o� from the site's general scheduling pool in order to satisfy the

constraints of the VOC Model. If a VO-level scheduler is installed, some provision must be made

for crossing NAT boundaries. For further discussion of this point, see Section 6.4. [48]

Instance-level contextualization

Whereas image-level contextualization can be performed manually by a systems admin-

istrator, instance-level contextualization occurs once per VM instantiation and as such must be

automated. As described in Section 5.3, certain resources must be leased from the physical site.

These resources include network addresses, disk space, and scheduler slots.

Network addresses, including both MAC and IP addresses, should be assigned (leased) to

the VMs in such a way as to avoid con�icts. Leasing of MAC addresses must be performed by the

hypervisor. Leasing of IP addresses may be performed by the hypervisor if it is capable of passing

this information to the guest (e.g. Xen) or may be through the standard DHCP protocol. One

such method of assignment is to implement a central leasing server. Before VM instantiation, the

hypervisor node would contact a central service and made a lease request for a MAC or IP address.

The service would then maintain a lease database in order to avoid duplication. Since MAC and IP

addresses will be unique to a hypervisor node, that node may also use a function to map its address

to that of the VM. As long as this function will not cause an overlap in addresses, this method

satis�es the uniqueness constraint without the requirement of a centralized service.

36

If the VOC nodes are not spawned from a single image, some allocation of disk space must

be made to the hypervisor. This could use hypervisor's local disk, but care must be taken to avoid

exceeding the disk's capacity, especially when dynamically resizing disk image formats are used.

Another solution would be to map LUNs of a storage area network to the hypervisor node.

If the scheduling system requires the use of �xed slots for compute nodes, then these must

also be assigned [35]. Techniques described for leasing network addresses can be easily extended to

provide for such a scheduler. [48]

6.2 Physical Support Model

The physical cluster consists of seventeen Dell PowerEdge 860 1U rack-mount systems and

one Dell PowerEdge 2970 2U rack-mount server. Each PowerEdge 860 machine is con�gured with

a 2.66 GHz dual-core Intel Xeon CPU, 4 GiB of Double Data Rate 2 (DDR2) memory, and an

80 GB hard disk drive. The 2U PowerEdge 2970 server was con�gured with three 250 GB hard

disk drives in a Redundant Array of Independent Disks, level 5 (RAID-5) con�guration that hosts

installation images, user home directories, network services, and a shared VM image store exported

via a Network File System server. One of the 1U nodes is used both as a physical head node and

as a host for the shared virtual head node. The other sixteen 1U nodes host two VOC nodes each.

For an overview of the VOC layout, see Figure 6.2. [9, 42]

6.2.1 Host Operating System Con�guration

CentOS 5 is a good choice for the host Operating System (OS) for many of the same

reasons as it is for the VOC node OS. Sharing of software packages is an additional bene�t of having

a homogeneous OS environment. While CentOS does ship with KVM support, building KVM

packages from the most recent sources allows the leveraging of the rapid pace of KVM development.

All compute nodes are installed via a Red Hat-style kickstart script, with some custom

additions. Since kickstart installations can only utilize packages from a single repository, a custom

addition to the kickstart system that allows packages from multiple repositories to be installed is

utilized. [9, 42]

37

Figure 6.2: VOC Organization

6.2.2 Physical Support Services

A Lightweight Directory Access Protocol (LDAP) server is used as a central repository of

con�guration information for both the physical nodes and VOC nodes, including: hostnames, Inter-

net Protocol (IP) addresses, and Media Access Control (MAC) addresses. VOC node MAC addresses

are generated as locally-administered addresses to avoid any potential con�icts on the local subnet.

To aid in administration of the physical nodes, an LDAP-aware, batch, remote administration tool

is used[50].

The PowerEdge 2970 utility system provides a Domain Name System (DNS) server (dns-

masq) and a Dynamic Host Con�guration Protocol (DHCP) server (ISC DHCPD). To maintain a

single con�guration source, utilities that generate DNS and DHCP con�guration �les dynamically

from LDAP are employed. All VOC node images are hosted on a Network File System (NFS) export

from the utility system. [9, 42]

38

6.3 Dynamic Provisioning

Dynamic provisioning refers to the autonomic starting and stopping of VMs in response to

load. The mechanism to conduct this provisioning is known as a watchdog. The watchdog uses the

Condor queue as its data source. It observes on a per-VO basis, the number of jobs waiting to be

executed. When the number of jobs for a particular VO exceeds the size of that VO's VOC, the

watchdog attempts to start a new VM. The maximum size of any VOC is determined by the systems

administrator. Conversely, when the watchdog observes the number of jobs for a particular VO fall

below the size of that VO's VOC, the watchdog will terminate a VM. The minimum number of

VMs is max(0, x) where x is a value determined by the systems administrator. It is useful to set a

minimum VOC size above zero because short jobs may otherwise be inordinately delayed. [51]

6.4 Overlay Networking

Most current batch schedulers cannot schedule jobs across a pool of worker nodes that exist

behind separate Network Address Translation (NAT) gateways. In order to overcome this limitation,

an overlay network must be provided to allow each worker node (VMs in the case of VOCs) to appear

to be in a single subnet.

One such solution is IPOP, was discussed in Chapter 2. IPOP employs speci�c algorithms

to allow direct connections to be made across NAT boundaries. IPOP di�ers from normal Simple

Traversal of User Datagram Protocol through Network Address Translators (STUN) services in

that it is a peer-to-peer service. IPOP uses Distributed Hash Tables (DHTs) to store node-speci�c

information. DHTs can provide a key-value lookup service whose data is distributed among the

participants in a fault-tolerant way. This allows DHTs to scale to large number of nodes, and handle

continuous arrivals and departures of nodes [52].

However, as a result of testing (presented in Section 8.8) it is clear that a general-purpose

overlay network based on DHTs will not scale well when a large number of nodes are located at the

same physical site. A new model for scheduling across NAT boundaries is needed in that case.

39

Chapter 7

XMPP and Cloud-based Monitoring

In order to address the problem presented in Section 6.4, a proof-of-concept implementation

of a system capable of sending to and receiving information from a VOC is presented. This system

utilizes the Extensible Messaging and Presence Protocol (XMPP) in order to traverse NAT. XMPP

has been shown to scale to large numbers of nodes behind a single NAT [35]. This chapter discusses

XMPP's general use in monitoring applications (Section 7.1) and the utilization of a cloud platform

for such a monitoring system (Section 7.2).

7.1 XMPP and Monitoring

XMPP is a powerful way to send messages with minimal overhead. When coupled with a

free XMPP provider such as Google Talk, the protocol can be used to send status updates under

adverse networking conditions such as Network Address Translation (NAT). Section 7.1.1 gives a

brief overview of the protocol, Section 7.1.2 analyzes XMPP messages sent by two di�erent clients,

and Section 7.1.3 provides a description of how to send a useful monitoring message with XMPP.

7.1.1 Overview of XMPP

XMPP is a protocol based on the concept of XML streams. Since network communications

are generally abstracted as streams of data, viewing XML as a stream instead of a single document

is natural. Thus the XML stanza becomes the core element of the protocol. XMPP is based on

three core stanzas. The <message/> stanza is a �push� mechanism like an email or instant message.

40

Listing 7.1: XMPP Message stanza generated by Adium

<message xmlns=' j a b b e r : c l i e n t ' type=' chat ' id=' purp l e f c e9 c c26 '
to=' michaelfenn87@gmail . com '
from=' cheesy123456789@gmail . com/Macbook3D2CDB2B '>

<x xmlns=' j abb e r : x : e v en t '>
<composing/>

</x>
<ac t i v e xmlns=' h t tp : // jabber . org / p ro to co l / cha t s t a t e s ' />
<body>foo</body>
<html xmlns=' h t tp : // jabber . org / p ro to co l /xhtml−im '>

<body xmlns=' h t tp : //www.w3 . org /1999/ xhtml '>
<span s t y l e=' font−f am i l y : He lve t i ca ; font−s i z e : medium ;

background: #f f f f f f ; '>
foo

</body>

</html>
<nos :x xmlns:nos=' goog l e :no save ' va lue=' d i s ab l ed ' />
<a r c : r e c o r d xmlns :arc=' h t tp : // jabber . org / p ro to co l / a r ch ive '

o t r=' f a l s e ' />
</message>

The <presence/> stanza is a subscription mechanism similar to an RSS feed. Finally, the <iq/>

stanza is a query-response mechanism. similar to the familiar HTTP request. [34]

Many messaging protocols rely on a single well-known set of core servers in order to facilitate

user authentication and initial handshakes. XMPP is a federated system with many, potentially-

isolated, authentication domains and namespaces. In essence, anyone can run an XMPP server

and have their own set of clients. Federation between XMPP servers is possible, as well as having

multiple points-of-presence for a particular identi�er, giving rise to the three-part identi�er, known

as a JID. A typical JID takes the form of node@domain/resource. The node part of the JID is a

unique identi�er within the speci�ed domain. The resource part allows di�erent clients belonging

to the same node to be di�erentiated. The domain part of the JID can also be used to look up a

DNS SRV (service) record. The SRV record can de�ne the location and port number of the XMPP

server servicing that domain, thus freeing XMPP from the need to have a single root server.

7.1.2 Example XMPP Message Stanzas

Listings 7.1 and 7.2 show two XMPP message stanzas as generated by the Adium [53] IM

client and the xmpppy [54] Python library respectively.

41

Listing 7.2: XMPP Message stanza generated by xmpppy

<messages xmlns=' j a b b e r : c l i e n t ' to=' michaelfenn87@gmail . com ' type=' chat '
id=' 3 ' from=' t i g e r s . cloud@gmail . com/C2EB8B31 '>

<body>foo</body>
<nos :x xmlns:nos=' goog l e :no save ' va lue=' d i s ab l ed ' />
<a r c : r e c o r d xmlns :arc=' h t tp : // jabber . org / p ro to co l / a r ch ive ' o t r=' f a l s e ' />

</message>

The message tag itself is given similar attributes by both clients. There is an xmlns attribute

de�ning that this element is a part of the jabber:client namespace. Each also contains attributes

describing who the message is to and from. Notice that the from attribute describes the exact

originating resource whereas the to attribute does not. The XMPP server will decide which resources

are to receive this message. The type attribute is set to �chat� to indicate that this is a normal chat

message. The id attribute is an identi�er for this particular message from the given JID to the other

given JID. Note that this id should be unique; the Adium client does a reasonable job of ensuring

that this is the case while the xmpppy library does not. Both clients also include the body tag which

contains a plain-text message.

The Adium client adds a few additional elements which are not strictly necessary for commu-

nication but improve the user's chat experience. The (deprecated) x element contains conversation

even noti�cations such as the composing tag. This tag allows the receiver's client to display a �User

is currently typing...� type of message. The active tag supersedes is part of the chat states names-

pace and supersedes the event noti�cation scheme. In particular the active tag indicates that the

user is actively participating in the conversation. The html tag provides an HTML version of the

sender's message should the receiving client wish to display it in HTML rather than as plain text. As

UI experience tags, these are not needed for the internal communications of an XMPP monitoring

system, as there is no human to please.

The �nal two tags, nos:x and arc:record, are not actually generated by the clients, but are

instead added to the messages as they pass though the Google Talk servers. nos:x is a Boolean

value which determines whether or not the chat will be archived in the sender's and receiver's Gmail

mailboxes. The arc:record accomplishes much the same function, de�ning this message as a record

in the archive, and indicating that it is not �O�-The-Record� (OTR).

42

Listing 7.3: Constructing an XMPP message with xmpppy

import xmpp
j i d = xmpp . p ro to co l . JID (conf [' u s e r i d '])
c l i = xmpp . c l i e n t . C l i en t (j i d . getDomain () , debug =[])
c l i . connect ()
c l i . auth (j i d . getNode () , conf [' password '])
c l i . send (xmpp . p ro to co l . Message (target , msg , typ="chat "))

7.1.3 Implementing a Monitoring Program with xmpppy

As mentioned above, xmpppy is a Python library for creating XMPP messages. To imple-

ment a monitoring program, machine state information is �rst gathered using standard techniques.

Then an XMPP server must be connected and authenticated against, the message constructed, and

the message sent to its intended recipient. Listing 7.3 is a listing of example Python code to do this.

First a JID object is constructed from the given user id. The user id is given as node@domain

so the JID object contains these along with a new resource string appended. Next a Client object

that represents an abstract way to perform the various client functions is constructed. The server

to connect to is given by the domain contained in the JID. The xmpppy library defaults to always

printing debug messages, so its important to set the list of debug events to the empty list for

operational purposes. Next the Client object's connect method is called. The connect method uses

the DNS SRV record for the domain to determine the exact hostname and port of the server to

which it should connect. The auth method authenticates the client with the JID's node name and

the node's password. It is at this point that the resource identi�er is also bound to this particular

Client object. Next, a Message object is constructed giving the recipient, the message body, and the

type of the message. The message object is an abstract representation of the actual message element

described in Section 7.1.2. Finally, the Message object is sent using the client's send method.

7.2 Google App Engine

Google App Engine (GAE) is a service that opens up Google's infrastructure to anyone

who wishes to develop on its platform. GAE allows for transparent scaling of user applications in

response to load. GAE also provides a database implementation known as the GAE Datastore. Of

particular interest to those developing a monitoring program, GAE allows for a permanent XMPP

presence on the Google Talk XMPP network. Section 7.2.1 gives an overview of the GAE service,

43

Listing 7.4: Handling an XMPP message in GAE

class XMPPHandler(webapp . RequestHandler) :
def post (s e l f) :

message = xmpp . Message (s e l f . r eque s t .POST)
l ogg ing . debug ("xmpp : raw Message sender " + message . sender)
message . r ep ly ("This i s a r ep ly . ")

Section 7.2.2 gives a detailed look at how to interact with the XMPP API presented by GAE, and

Section 8.9 discusses some performance implications of GAE's datastore.

7.2.1 Overview of Google App Engine

The GAE platform allows for transparent, dynamic scaling of a web application and is

provided on a fee-for-use basis. These fees are implemented by a daily quota system. At the time

of this writing there are thirty-four (34) di�erent resource quotas, grouped into nine (9) categories.

Each of these quotas represents a resource that may be consumed without charge. Once a quota is

exceeded, the application owners are then billed for the overage at a rate determined by the type

of resources. The quota categories are: requests, datastore, mail, UrlFetch, Image Manipulation,

Memcache, XMPP, Task Queue, and Deployments. GAE also provides an abstraction and API for

handling XMPP messages which is discussed below.

The GAE datastore is the method by which GAE applications store persistent data. It is

interacted with via a SQL-like language known as GQL. The datastore di�ers from the databases

that many web developers are familiar with in that it is not relational. It is a purely �at database

more akin to a set of spreadsheets that can be accessed via a powerful query engine.

7.2.2 Using XMPP with Google App Engine

Listing 7.4 presents a GAE request handler object that interacts with the GAE XMPP

API. Since all interactions with a GAE application must adopt the Web-centric request-response

paradigm, the receipt of XMPP messages is presented to the application as an HTTP POST to

the /_ah/xmpp/message/chat URL to which the XMPPHandler class is attached (attachment not

shown). A Message object is constructed from the raw XML given in the POST. This message

object contains �elds corresponding to the sender, the intended recipient, and the body. A reply

can be sent by calling the reply method of the message object. This sends a new message back to

44

the JID given in the sender �eld. It is clear that the GAE XMPP API is much more limited than

the xmpppy version. This makes the API simpler to use, but also limits its functionality. This is

perhaps because Google App Engine applications are already tied to Google's ecosystem, and thus

communication over any other XMPP network except for Google Talk is seen as unnecessary.

45

Chapter 8

Results

Building upon previous work [55], four di�erent performance tests were executed to evaluate

the VOC: the standard HPL [56] benchmark (Section 8.1), VOC node boot time measurements

(Section 8.2), the High Performance Computing Challenge (HPCC) benchmark that complements

HPL with measures of bandwidth and additional �oating point operations (Section 8.3), Xen host

performance (Section 8.4), and HPL block size tuning where sensitivity of the overall performance is

measured with respect to various block sizes (Section 8.5). Fundamental performance tests regarding

the scalability of IPOP and the performance of the Google App Engine datastore are presented in

Sections 8.8 and 8.9, respectively. Dynamic provisioning of VOCs was also tested, with results

presented in Section 8.6. Following these tests, a long-term operational test of several VOCs was

conducted with results appearing in Section 8.7. Multi-site VOC testing is also presented in Section

8.8. Results presented in this section have been presented in various publications of the author.

These publications are cited as appropriate.

8.1 High Performance Linpack (HPL)

The prototype 16 node physical cluster has a theoretical peak of 341 GFLOPS, calculated

using 2 CPU cores per node clocked at 2.66 GHz, with 4 FLOPS per cycle per core. HPL tests are

performed to compare the actual performance to the theoretical peak. The following HPL param-

eters are optimized for the prototype cluster and remained constant throughout these tests: block

size (NB), process mapping (PMAP), threshold, panel factorization (PFACT), recursive stopping cri-

46

Table 8.1: Boot Times (seconds)
Physical Node VM

Statistic Total Boot Actual Boot VM Boot

Minimum 160 43 61.2
Median 160.5 44 65.4
Maximum 163 46 70.2
Average 160.9 44.5 65.5
Std Deviation 1.03 1.09 2.54

terium (NBMIN), panels in recursion (NDIVs), recursive panel factorizations (RFACTs), broadcast

(BCAST), lookahead depth (DEPTH), SWAP, swapping threshold, L1 form, U form, Equilibration,

and memory alignment. The problem size (N) can be derived with the formula:

N =
√
nDU (8.1)

where n is the number of nodes tested, D is the number of double-precision �oating-point

numbers that can �t into a single node's memory (bytes of node memory / 8), and U is the ratio

of memory available for user processes to total memory (U=0.8 leaves space for OS processes). All

tests are run with ATLAS 3.8.1 (tuned separately for physical nodes and VOC nodes) and MPICH2

1.0.5p4.

For the physical cluster, the optimal value of N was computed to be 83,000. With this value

of the HPL problem size, the performance of the physical hardware was measured at 190 GFLOPS,

or 56% of theoretical peak, a reasonable value for a cluster utilizing standard Gigabit Ethernet

networking. [9, 42]

8.2 Boot Times

In order to determine the practicality of scheduling VMs as processes, boot times were

measured and compared to the physical hardware. An XML-RPC boot timing server is deployed

to monitor the virtual systems. Boot times for the physical nodes are measured by hand with a

chronograph. Table 8.1 summarizes boot time test results.

The physical boot process is divided into three phases: Pre-eXecution Environment (PXE)

timeout, a GRand Uni�ed Bootloader (GRUB) timeout, and the actual kernel boot time. The

Actual Boot column does not include either the PXE or the GRUB timeouts. The VM boot time

47

measures the amount of time from KVM initiation on the host until all daemons had been started

on the guest. Approximately 10 more processes were found to be running on the VOC node than

on the physical host. On average, the VOC nodes require an extra 21 seconds to boot. [9, 42]

8.3 High Performance Computing Challenge Benchmark

The High Performance Computing Challenge (HPCC) [57] benchmark suite is a collection

of well-known HPC benchmarks, packaged together in a convenient format. The benchmark consists

of seven tests which produce nine data points. A short description of each test follows:

• HPL, measuring �oating point performance for matrix multiplication in GFLOPS and is

discussed in more detail in Section 8.1 above,

• PTRANS, measuring overall network communications in GB/s,

• RandomAccess, measuring integer memory accesses and updates in GUP/s,

• FFT, measuring double-precision �oating point performance for Discrete Fourier Transforms

in GFLOPS,

• STREAM, measuring memory bandwidth GB/s,

• DGEMM, measuring double-precision �oating point performance for matrix multiplication

in GFLOPS,

• b_e�, measuring bandwidth in GB/s and latency in µs of multiple simultaneous network

communications.

GFLOPS measures rate of execution, one GFLOPS is a billion (109) �oating point operations per

second, generally a 64-bit addition or multiplication. GB/s is a measure of throughput (rate of

transfer), one GB/s is one billion (109) bytes of data transferred per second. GUP/s is a measure of

memory update speed, that is, a read from a random address followed by a write to a random address.

One GUP/s is one billion (109) of these operations in a second. Finally, µs are microseconds, 10−6

seconds.

Tables 8.2, 8.3, and 8.4 are comparisons of the VOC to the physical cluster by means of the

HPCC benchmark. Tests were run on a single physical node (single process) versus a single VOC

48

Table 8.2: Physical vs. Virtualized, Single Process
Process Grid Xen Overhead KVM Overhead

Problem Size 0% 0%
G-HPL (GFLOPS) 6.566% 8.771%
G-PTRANS (GB/s) 19.415% 12.946%
G-Random Access (GUP/s) 35.519% 15.818%
G-FFTE (GFLOPS) 17.733% 42.370%
EP-STREAM Sys (GB/s) 12.704% 1.491%
EP-STREAM Triad (GB/s) 12.704% 1.491%
EP-DGEMM (GFLOPS) 7.892% 7.977%
RandomRing Bandwidth (GB/s) N/A N/A
RandomRing Latency (µs) N/A N/A

node. Two tests were then run on the full cluster, the �rst utilizing one dual-CPU VOC node per

physical node and the second with two single-CPU VOC node per physical node. All parameters

except problem size (N) and block size (NB) are maintained from the previous HPL tests. Problem

sizes are scaled to �t into available VOC memory (1 GiB per CPU per node, see Equation 8.2)

according to Equation 8.1

MemV OC = 1GiB ·NCPU ·NV CN (8.2)

Block sizes are increased in order to compensate for latency. The overhead due to virtualization was

calculated with the formula:

Overhead =
Physical − V OC

Physical
· 100% (8.3)

In cases when larger values indicate worse performance (i.e. latency) the result of Equation

8.3 is multiplied by -1. Otherwise, negative values indicate increased performance of the VOC

relative to the physical cluster.

Under KVM, single-node virtualization overhead ranges from under 10% to around 16% with

G-FFTE being an outlier at 42% (Table 8.2). Xen fares similarly, except its outlier is G-Random

Access at 35%. However, the full cluster overhead for MPI applications under KVM (Tables 8.3

and 8.4) is quite high at 52% for G-HPL with single-CPU VMs and 85% with dual-CPU VMs.

Xen performs much better with penalties of 23% for G-HPL with single-CPU VMs and 30% with

dual-CPU VMs. RandomRing latency is approximately three times worse with KVM than with the

physical hardware. Associated HPL performance of the VOC was thus quite poor. Also note that

Xen's RandomRing latency is about 30% lower than KVM's latency in the same benchmark. This

49

Table 8.3: Physical vs. VOC, One 2-CPU VM per Physical Node (32 processes)
Process Grid Xen Overhead KVM Overhead

Problem Size 0% 0%
G-HPL (GFLOPS) 30.470% 85.173%
G-PTRANS (GB/s) 42.818% 91.985%
G-Random Access (GUP/s) 35.910% 73.082%
G-FFTE (GFLOPS) 24.899% 82.556%
EP-STREAM Sys (GB/s) -6.151% -39.889%
EP-STREAM Triad (GB/s) -6.151% -39.889%
EP-DGEMM (GFLOPS) 7.269% 16.559%
RandomRing Bandwidth (GB/s) 23.425% 67.419%
RandomRing Latency (µs) 102.611% 290.179%

Table 8.4: Physical vs. VOC, Two VMs per Physical Node (32 processes)
Process Grid Xen Overhead KVM Overhead

Problem Size 0% 0%
G-HPL (GFLOPS) 22.935% 52.063%
G-PTRANS (GB/s) 4.302% 44.968%
G-Random Access (GUP/s) 22.941% 70.643%
G-FFTE (GFLOPS) 67.380% 23.449%
EP-STREAM Sys (GB/s) -5.650% -23.818%
EP-STREAM Triad (GB/s) -5.650% -23.818%
EP-DGEMM (GFLOPS) 6.588% 13.979%
RandomRing Bandwidth (GB/s) 68.779% -17.148%
RandomRing Latency (µs) 67.259% 206.787%

50

Table 8.5: Xen vs. non-Xen Kernels, Single Process
Process Grid 1x1 non-Xen 1x1 Xen Xen Kernel Overhead

Problem Size 10300 10300 0%
G-HPL (GFLOPS) 7.913 7.908 0.063%
G-PTRANS (GB/s) 0.729 0.747 -2.369%
G-Random Access (GUP/s) 0.002 0.001 54.354%
G-FFTE (GFLOPS) 0.799 0.657 17.806%
EP-STREAM Sys (GB/s) 3.866 3.157 18.332%
EP-STREAM Triad (GB/s) 3.866 3.157 18.332%
EP-DGEMM (GFLOPS) 8.348 8.370 0.261%
RandomRing Bandwidth (GB/s) N/A N/A N/A
RandomRing Latency (µs) N/A N/A N/A

is believed to be a contributing factor to KVM's poor HPL performance due to excessive context

switching between user and kernel mode in its network code.

The large di�erence in best-case RandomRing latencies (Table 8.4) between KVM (228µs)

and Xen (74µs) can be attributed to Xen's paravirtualization of guest network devices. Xen's net-

work device drivers can make a call directly into the Xen hypervisor, avoiding any context switches.

KVM's network device drivers must make a system call, which which is the trapped by the VT in-

structions and then passed to the user-mode KVM process. This unnecessary context switch would

cause additional latency, but it is also possible that Xen's network code is simply more mature

than KVM's code. Nevertheless, context switches must play some role in Xen's improved network

latencies, and therefore, its improved HPL performance. [9, 42]

Due to formatting constraints, the raw benchmark numbers are omitted from this section.

Please refer to Appendix A for a complete listing.

8.4 Xen Domain0 Performance

As mentioned in Section 6.1.2, the Xen hypervisor requires that the host operating system

run a modi�ed version of the Linux kernel. In order to determine whether or not the additional logic

introduced by the Xen hypervisor code introduces a performance penalty, benchmark measurements

were taken comparing the physical cluster running under the normal Linux kernel (non-Xen) and

the Xen kernel. The results in Tables 8.5 and 8.6 represent comparisons between the two physical

cluster kernels. No virtual machines are running in either case.

For the full cluster, G-Random Access and RandomRing Latency are the benchmarks most

51

Table 8.6: Xen vs. non-Xen Kernels, Two Processes per Physical Node (32 processes)
Process Grid 8x4 non-Xen 8x4 Xen Xen Kernel Overhead

Problem Size 58600 58600 0%
G-HPL (GFLOPS) 169.807 167.693 1.245%
G-PTRANS (GB/s) 0.867 0.853 1.576%
G-Random Access (GUP/s) 0.014 0.003 38.203%
G-FFTE (GFLOPS) 2.287 2.346 -2.594%
EP-STREAM Sys (GB/s) 59.046 59.404 -0.605%
EP-STREAM Triad (GB/s) 1.845 1.856 -0.605%
EP-DGEMM (GFLOPS) 8.271 8.280 -0.116%
RandomRing Bandwidth (GB/s) 0.023 0.023 -3.537%
RandomRing Latency (µs) 74.444 108.993 46.410%

a�ected by the switch to the Xen kernel, with penalties of 38% and and 46% respectively. This

is consistent with the intuitive observation that the Xen hypervisor layer introduces an additional

measure of latency. Thus it can be postulated that a Xen physical host's latency would be modeled

by Equation 8.4, while a KVM host's latency would be better represented by Equation 8.5, where

LPHY is the latency of the network's physical and datalink layers, LHY P is the latency of the Xen

hypervisor layer, and LOS is the latency of the OS's network stack implementation. Note that these

equations only apply to the host OS. Additional terms would be needed to correctly model the

latency of the guest OS.

L = LPHY + LHY P + LOS (8.4)

L = LPHY + LOS (8.5)

Thus, by merely running a Xen-enabled kernel, a system will incur a performance penalty,

even when no virtual machines are running. It is, however, important to compare Tables 8.4 and

8.6 which represent a virtualized cluster and a non-virtualized cluster, respectively. The additional

overhead imposed by Xen's virtualization is only about 20% more than the overhead of the Xen

hypervisor layer. This is also consistent with the Xen model in which the �physical� OS is simply a

more privileged VM. [9]

52

8.5 Block Size (NB) Tuning

To test the hypothesis that increased latency signi�cantly decreases performance for MPI

jobs, a test was run with varying block sizes. Figure 8.1 summarizes the results on both the physical

cluster and the VOC. HPL uses a tile-based algorithm, dividing the problem matrix into blocks which

are then distributed to each worker process. The total number of blocks that need to be distributed

is the problem size divided by the block size, so greater block sizes should reduce the total number

of transfers, thus reducing the e�ects of latency. HPL performance increased with increasing block

size, reaching an optimal point at a block size of 400. Above this threshold, performance began to

decrease as load-balancing became ine�cient.

Note that the optimum NB for the physical nodes is very close to that of the VOC, but the

maximum of the VOC's plot is much more acute than that of the physical cluster. The function of

NB to performance also appears to be more complex than that of the physical node, as indicated

by the local maximum at an NB of 250 in the VOC's plot. The implications of this observation are

not certain, although the slope of the VOC graph is certain much steeper, so this additional factor

could simply be hidden in the physical cluster's plot. [9, 42]

Figure 8.1: NB vs. Performance

53

Figure 8.2: Two submissions of 50 jobs, 10-second execution time, submitted locally

Figure 8.3: Submitted 10 jobs every 90 seconds, 10-second execution time, submitted locally

8.6 Dynamic Provisioning of Virtual Organization Clusters

Since the basic viability of virtualization for scienti�c computing is established, a prototype

Virtual Organization Cluster was implemented, and tests of the system are presented. These tests

consist of several micro-benchmarks:

• Two submissions of 50 jobs each in order to simulate the arrival of two, overlapping batches of

jobs.

• Sets of 10 jobs, each with a 10-second execution time, submitted 90 seconds apart

• Sets of 10 jobs, each with a 10-second execution time, submitted 30 seconds apart

• Sets of 10 jobs, each with a 1-second execution time, submitted 30 seconds apart

These tests allow observation of the behavior of the system under regular periodic loads. These

types of loads fairly approximate the loads encountered on the Open Science Grid, albeit compressed

temporally. [51]

Figure 8.2 shows that the VOC watchdog had started the maximum number of VMs by 20

seconds into the test. The number of VMs remained at at the maximum until the �rst batch of jobs

54

Figure 8.4: Submitted 10 jobs every 30 seconds, 10-second execution time, submitted locally

Figure 8.5: Submitted 10 jobs every 30 seconds, 1-second execution time, submitted locally

began completing, at which time the watchdog began stopping VMs. However, this �gure shows

that the watchdog exhibited over-responsive behavior, as it was attempting to stop VMs even as the

second burst of jobs began entering the queue.

Figures 8.3 through 8.5 show that the watchdog exhibits predictable behavior with regard to

the queue size. The lag between a job entering the queue and a VM being started can be attributed

the periodic nature of the watchdog as well as to VM boot times. The lag between the job completing

and the VMs being stopped can be attributed to the periodic nature of the watchdog.

8.7 Operational VOC Testing

Operational tests performed to con�rm the validity of the previously conducted synthetic

testing is presented in this section. Section 8.7.1 presents the results of testing a VSP-supplied VM

image with the Engage and NanoHUB OSG VOs while Section 8.7.2 presents the results of testing

with an VM image supplied by the STAR VO.

55

Figure 8.6: Short operational test (44 hours) with the physical cluster con�gured to support a
16-node Virtual Organization Cluster dedicated to the Engage Virtual Organization.

8.7.1 Engage and NanoHUB VO Testing

Once synthetic tests determined the viability of the VOC prototype, it was made operational

on the Open Science Grid. The maximum VOC size was set at 16 nodes, the minimum VOC size

was set at 2 nodes, and VOCs were de�ned for the Engage and NanoHUB VOs. Two operational

tests were performed, a short operational test and a long operational test. Each VOC is comprised

of 32-bit CentOS VMs.

On June 1, 2009, the short test started, with only the Engage VOC active. After approx-

imately 44 hours of testing, the VOC was removed from service. Figure 8.6 illustrates the results

of this test. Several bursts of jobs arrived, each of which caused the VOC to expand then contract.

The VOC size reached the maximum (16 nodes) on two occasions.

On June 4, 2009, a longer operational test was begun. This test used the same operational

parameters as the earlier operational test. However, the NanoHUB VOC was allowed to run concur-

rently with the Engage VOC during this test. The long operational test ended on August 17, 2009.

During the long operational test, jobs arrived in bursts from the Engage VO (Figure 8.7) during the

the �rst 1100 hours of testing. The number of jobs arriving after that time was low. Figure 8.8 shows

a similar pattern, except that the jobs only arrive before the 650th hour of testing. The lack of jobs

arriving during the later months of the tests can be partially attributed to the annual reduction of

56

Figure 8.7: Long operational test: Engage VO. A second operational VOC, dedicated to the
NanoHUB VO, was sharing the same hardware.

Figure 8.8: Operational test: NanoHUB VO. A second operational VOC, dedicated to the Engage
VO, was sharing the same hardware.

57

Figure 8.9: Integration of the STAR VM into the prototype VOC

the number of jobs on OSG during the summer months. The large-scale migration away from 32-bit

architecture jobs during this time-frame can also explain the lack of jobs as August approached.

8.7.2 STAR VO Testing

The STAR VO provided an image that was contextualized for the prototype cluster using

the procedures outlined in Section 6.1.5. Figure 8.9 depicts the STAR VM's integration with the

prototype VOC. Once the VM has image-level contextualization performed, it appeared to the

STAR VO in the same manner as any of their other resources. These results use the same watchdog

parameters as the previous Engage and NanoHUB operational testing.

STAR utilized the 16 VMs available and submitted 32 jobs. The jobs 280MB of total output

which was streamed back to the Brookhaven National Laboratory (BNL) at 6.8MB/s. The total

processing time was approximately 11 hours and 7 minutes of VOC boot latency were observed. The

boot time plus virtualization overhead combined to give total VOC overhead of approximately one

percent over a local test by BNL.

As shown in Figure 8.10, the VOC's Condor scheduler was fast for the �rst two jobs due to

the fact that the watchdog was con�gured to keep two VMs running at all times. Jobs 2 through 16

started as soon as a VM was started and joined to the Condor pool. Jobs 17-32 were forced to wait

in the queue because there were only 16 VOC nodes available. Once the �rst 16 jobs completed,

Condor was able to schedule the remaining 16 jobs to the VOC nodes without delay. [48]

58

Figure 8.10: Condor reaction time as observed by STAR

8.8 Multi-site VOC Testing

As a VOC should ideally be able to include worker nodes from multiple-sites, a test was

conducted to determine the scalability limits of IPOP. This test was run on the Clemson University

Palmetto cluster because the prototype cluster is not large enough to test the scalability limits of

IPOP. In order to e�ect this test, 200 simultaneous requests for eight VMs were made to Clemson

University's Palmetto Cluster. One large request for 1600 VMs would not be able to be serviced by

the cluster due to other load on the system. One IPOP node was instantiated on each VM.

Figure 8.11 shows the number of IPOP nodes at each point in time, as well as the cumulative

total number of unique nodes observed. IPOP is unable to scale beyond 500 nodes at any given point

in time. This is likely due to the peer-to-peer overlay becoming unbalanced because of a large in�ux

of nodes behind a small number of NAT gateways. This in�ux is problematic because it increases

the relative loads on each system not behind that set of NAT gateways, ultimately leading to a

collapse of the overlay. This is further evidenced by the fact that 18.75% of VMs were never able to

properly instantiate their IPOP instances.

Once the IPOP scaling limit was determined, a test could be conducted using the local

prototype VOC implementation. This test involved provisioning VMs running on the local cluster

alongside VMs running in Amazon's Elastic Compute Cloud (EC2). The watchdog was modi�ed to

59

Figure 8.11: IPOP Scaling

allow VMs in excess of the local site maximum (16 in this case) to be started on EC2. These VMs

used IPOP to join the same scheduling pool as the local VMs. As EC2 VMs have a higher monetary

cost than local VMs, the watchdog assigned the EC2 VMs low priority for starting and high priority

for stopping. A limit of 100 simultaneously-running EC2 VMs is also imposed.

Figure 8.12 illustrates the results of a test where 300 jobs were submitted, each with an

execution time of 10 minutes. The watchdog performs as expected, starting local VMs up to the

local maximum (16) and then starting EC2 VMs up to the EC2 maximum (100). As the size of

the queue dropped below 116, the EC2 VMs were stopped �rst, followed by the local VMs. Even

though the local VMs were behind a NAT boundary, and the EC2 VMs were geographically distant

from the local cluster, scheduling performance was not adversely a�ected.

8.9 Google App Engine Datastore Performance

When implementing the front-end of the monitoring system in GAE, it was noticed that

some pages were taking a noticeably longer time to load than others. This was traced to the

Datastore API calls and a performance investigation was begun.

The test consisted of generating random, realistic datastore records consisting of two integer

�elds, two string �elds, and a date �eld. 250 of these records were generated and then inserted into

the datastore. Then all 250 records were selected with a GQL query and a �eld from the each record

60

Figure 8.12: 300 10-minute jobs submitted to a multi-site VOC

61

Figure 8.13: Datastore performance on GAE

is displayed. Finally, the records were deleted. This test was run �ve times on GAE itself and �ve

times in the local test environment provided by the GAE SDK.

Figures 8.13 and 8.14 present the average run times of the various stages of the test on both

GAE and the local testbed. Since all records are generated before any record is inserted, the time

taken to generate the records is a good indicator of relative CPU performance. These times were

similar on both GAE and the local testbed, leading to the conclusion that Google's servers have

about the same CPU power as a 2.4GHz Core 2 Duo processor when executing a single-threaded

process. Thus, the poor performance exhibited in the other phases is probably not indicative of a

lack of CPU power.

The GAE platform is relatively fast at selecting records from the datastore. The local

datastore was only about 159% faster than GAE. This is not a bad result considering that network

communication time is essentially nil on the local testbed since all components are running on the

same machine.

The GAE platform exhibits poor insert and delete performance. It takes about 10 seconds

to insert or delete the 250 records, or 0.04 seconds per record. For comparison, the local testbed is

able to insert or delete 166 records in the same time it takes the GAE platform to insert or delete a

single record.

This result has serious performance implications for GAE applications. Care must be taken

62

Figure 8.14: Datastore performance on local testbed

to avoid inserting or deleting too many records at once, especially since a GAE request is on a hard

execution deadline of about 25 seconds.

63

Chapter 9

Conclusions

Based on the preliminary results of the study, it can be concluded that KVM is generally

e�cient when network I/O latency is not a factor, as demonstrated by the low single node overhead

in HPL. Some unusual results for the STREAM benchmark on the full cluster were encountered.

This benchmark exhibits low temporal locality and high spatial locality according to Luszczek et. al.

[57]. An investigation is ongoing with regard to why virtualization would improve performance in

these situations. [9, 42]

As shown in Tables 8.3 and 8.4, network latency is poor (there is a three-fold increase),

resulting in large virtualization overhead. Based on prior MPI studies and our own HPL testing,

the high latency of the virtual network causes the poor HPL performance [58, 57]. However, HPL

provides a good diagnostic tool because it distributes blocks of a size speci�ed by the NB parameter,

allowing the nature of its network tra�c to be controlled to some degree. As Figure 8.1 shows, HPL

performs better under high-latency conditions when the block size is increased. This performance

improvement is due to the fact that fewer, larger transfers will be less a�ected by latency than many

small transfers. HPL performance eventually drops o� due to poor load balancing with greater block

sizes. Latency reduction is a crucial need to make virtual clusters a mainstream HPC technique.

[9, 42]

While the loss in performance of inter-node communication with MPI is disappointing, these

types of jobs are not common on the Open Science Grid. Therefore, KVM does appear well-suited

to Condor jobs in the vanilla and standard universes, which OSG sites primarily utilize [59]. 8.7%

64

is believed to be an acceptable performance overhead in these situations, given the bene�ts gained

in terms of VO compute environment customization. [9, 42]

As an interesting aside, results show that Xen-enabled kernels should not be run on machines

which are not intended to be hypervisor providers. Such a con�guration creates a situation where

performance penalties, nearly 20% in some cases, are incurred for no bene�t. This �nding is in

line with the common wisdom that holds that one should not enable any unnecessary services;

unfortunately, many Linux distributions will enable a Xen kernel by default. [9, 42]

KVM is a promising virtual machine monitor for grid computing. It is easily deployed

(compared to Xen) and is simple to maintain while still providing good performance for many

Condor jobs. While there are some issues with virtual networking, the results show that KVM is a

viable VMM for Open Science Grid sites. [9]

The fundamental viability of virtualization for high-throughput computing allows further

work on the VOC Model to remain relevant. To that end, the prototype VOC was extended to

provide dynamically-provisioned and multi-site capabilities. Testing showed that these capabilities

performed as expected as long as the total number of VMs did not exceed the IPOP scaling threshold

of approximately 500 machines. Above this threshold, a di�erent approach to scheduling must be

taken.

The combination of XMPP and a cloud-based platform such as Google App Engine allows

for the robust receipt, aggregation, and retrieval of virtual machine status information. The use

of XMPP allows the VMs to be behind NAT networking and still give useful data. The use of a

stable, easily-reached cloud endpoint greatly simpli�es the overall system and allows a central hub

for information to be present. The cloud-based nature of this endpoint means that it is not subject

to the single-point-of-failure and scaling concerns that a traditional well-known endpoint (i.e. a

server) would be.

The performance of the GAE datastore is disappointing given that a monitoring application

needs to constantly update its records. Clever optimization techniques can be employed to reduce

the number of insertions and deletions that are necessary, but can never totally remove this need.

Perhaps as more data-intensive applications move to the cloud, Google will improve the performance

of this aspect of the GAE service.

A cloud-based monitoring system utilizing XMPP was shown to be viable. Current work on

65

Kestrel [35], shows that an XMPP-based scheduler can scale far beyond the limits of IPOP. Current

limitations of the Google App Engine API may preclude the implementation of Kestrel in the cloud.

Thus, this work has shown that the theoretical Virtual Organization Cluster Model is prac-

tical to implement. A working prototype was created which was able to explore the scalability

limitations of current overlay networking technologies. The VOC Model does not require an over-

lay network, only a scheduler which is capable of traversing NAT boundaries. Therefore, the VOC

Model itself is not constrained by these technologies, it simply requires a new approach to scheduling

jobs over a wide area.

66

Appendices

67

Appendix A Full Benchmarking Results

Any benchmarks results which could not �t into the results section due to formatting con-

straints appear below.

68

T
a
b
le
A
.1
:
P
h
y
si
ca
l
v
s.
V
ir
tu
a
li
ze
d
,
S
in
g
le
P
ro
ce
ss

P
ro
ce
ss
G
ri
d

1
x
1
P
h
y
si
ca
l

1
x
1
X
en

V
O
C

X
en

O
v
er
h
ea
d

1
x
1
K
V
M

V
O
C

K
V
M

O
v
er
h
ea
d

P
ro
b
le
m

S
iz
e

1
0
3
0
0

1
0
3
0
0

0
%

1
0
3
0
0

0
%

G
-H
P
L
(G

F
L
O
P
S
)

7
.9
1
3

7
.3
9
3

6
.5
6
6
%

7
.2
1
8

8
.7
7
1
%

G
-P
T
R
A
N
S
(G

B
/
s)

0
.7
2
9

0
.5
8
8

1
9
.4
1
5
%

0
.6
3
5

1
2
.9
4
6
%

G
-R
a
n
d
o
m

A
cc
es
s
(G

U
P
/
s)

0
.0
0
2

0
.0
0
1

3
5
.5
1
9
%

0
.0
0
2

1
5
.8
1
8
%

G
-F
F
T
E
(G

F
L
O
P
S
)

0
.7
9
9

0
.6
5
8

1
7
.7
3
3
%

0
.4
6
1

4
2
.3
7
0
%

E
P
-S
T
R
E
A
M

S
y
s
(G

B
/
s)

3
.8
6
6

3
.3
7
5

1
2
.7
0
4
%

3
.8
0
8

1
.4
9
1
%

E
P
-S
T
R
E
A
M

T
ri
a
d
(G

B
/
s)

3
.8
6
6

3
.3
7
5

1
2
.7
0
4
%

3
.8
0
8

1
.4
9
1
%

E
P
-D
G
E
M
M

(G
F
L
O
P
S
)

8
.3
4
8

7
.6
8
9

7
.8
9
2
%

7
.6
8
2

7
.9
7
7
%

R
a
n
d
o
m
R
in
g
B
a
n
d
w
id
th

(G
B
/s
)

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

R
a
n
d
o
m
R
in
g
L
a
te
n
cy

(µ
s)

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

69

T
a
b
le
A
.2
:
P
h
y
si
ca
l
v
s.
V
O
C
,
O
n
e
2-
C
P
U
V
M

p
er

P
h
y
si
ca
l
N
o
d
e
(3
2
p
ro
ce
ss
es
)

P
ro
ce
ss
G
ri
d

8
x
4
P
h
y
si
ca
l

8
x
4
X
en

V
O
C

X
en

O
v
er
h
ea
d

7
x
4
K
V
M

V
O
C

K
V
M

O
v
er
h
ea
d

P
ro
b
le
m

S
iz
e

5
8
6
0
0

5
8
6
0
0

0
%

5
8
6
0
0

0
%

G
-H
P
L
(G

F
L
O
P
S
)

1
6
9
.8
0
7

1
1
8
.0
6
7

3
0
.4
7
0
%

2
5
.1
7
8

8
5
.1
7
3
%

G
-P
T
R
A
N
S
(G

B
/
s)

0
.8
6
7

0
.4
9
6

4
2
.8
1
8
%

0
.0
6
9

9
1
.9
8
5
%

G
-R
a
n
d
o
m

A
cc
es
s
(G

U
P
/
s)

0
.0
1
4

0
.0
0
9

3
5
.9
1
0
%

0
.0
0
4

7
3
.0
8
2
%

G
-F
F
T
E
(G

F
L
O
P
S
)

2
.2
8
7

1
.7
1
7

2
4
.8
9
9
%

0
.3
9
9

8
2
.5
5
6
%

E
P
-S
T
R
E
A
M

S
y
s
(G

B
/
s)

5
9
.0
4
6

6
2
.6
7
8

-6
.1
5
1
%

8
2
.5
9
9

-3
9
.8
8
9
%

E
P
-S
T
R
E
A
M

T
ri
a
d
(G

B
/
s)

1
.8
4
5

1
.9
5
9

-6
.1
5
1
%

2
.5
8
1

-3
9
.8
8
9
%

E
P
-D
G
E
M
M

(G
F
L
O
P
S
)

8
.2
7
1

7
.6
6
9

7
.2
6
9
%

6
.9
0
1

1
6
.5
5
9
%

R
a
n
d
o
m
R
in
g
B
a
n
d
w
id
th

(G
B
/s
)

0
.0
2
3

0
.0
1
7

2
3
.4
2
5
%

0
.0
0
7

6
7
.4
1
9
%

R
a
n
d
o
m
R
in
g
L
a
te
n
cy

(µ
s)

7
4
.4
4
4

1
5
0
.8
3
1

1
0
2
.6
1
1
%

2
9
0
.4
6
3

2
9
0
.1
7
9
%

70

T
a
b
le
A
.3
:
P
h
y
si
ca
l
v
s.
V
O
C
,
T
w
o
V
M
s
p
er

P
h
y
si
ca
l
N
o
d
e
(3
2
p
ro
ce
ss
es
)

P
ro
ce
ss
G
ri
d

8
x
4
P
h
y
si
ca
l

8
x
4
X
en

V
O
C

X
en

O
v
er
h
ea
d

7
x
4
K
V
M

V
O
C

K
V
M

O
v
er
h
ea
d

P
ro
b
le
m

S
iz
e

5
8
6
0
0

5
8
6
0
0

0
%

5
8
6
0
0

0
%

G
-H
P
L
(G

F
L
O
P
S
)

1
6
9
.8
0
7

1
3
0
.8
6
2

2
2
.9
3
5
%

8
1
.4
0
1

5
2
.0
6
3
%

G
-P
T
R
A
N
S
(G

B
/
s)

0
.8
6
7

0
.8
3
0

4
.3
0
2
%

0
.4
4
7

4
4
.9
6
8
%

G
-R
a
n
d
o
m

A
cc
es
s
(G

U
P
/
s)

0
.0
1
4

0
.0
1
1

2
2
.9
4
1
%

0
.0
0
4

7
0
.6
4
3
%

G
-F
F
T
E
(G

F
L
O
P
S
)

2
.2
8
7

0
.7
4
6

6
7
.3
8
0
%

1
.7
5
1

2
3
.4
4
9
%

E
P
-S
T
R
E
A
M

S
y
s
(G

B
/
s)

5
9
.0
4
6

6
2
.3
8
2

-5
.6
5
0
%

7
3
.1
1
0

-2
3
.8
1
8
%

E
P
-S
T
R
E
A
M

T
ri
a
d
(G

B
/
s)

1
.8
4
5

1
.9
4
9

-5
.6
5
0
%

2
.2
8
5

-2
3
.8
1
8
%

E
P
-D
G
E
M
M

(G
F
L
O
P
S
)

8
.2
7
1

7
.7
2
6

6
.5
8
8
%

7
.1
1
4

1
3
.9
7
9
%

R
a
n
d
o
m
R
in
g
B
a
n
d
w
id
th

(G
B
/s
)

0
.0
2
3

0
.0
0
7

6
8
.7
7
9
%

0
.0
2
7

-1
7
.1
4
8
%

R
a
n
d
o
m
R
in
g
L
a
te
n
cy

(µ
s)

7
4
.4
4
4

1
2
5
.2
5
8

6
7
.2
5
9
%

2
2
8
.3
8
3

2
0
6
.7
8
7
%

71

Appendix B Full HPCC Parameters

Listing B.1: hpccinf.txt

1 HPLinpack benchmark input f i l e Innovat ive Computing Laboratory ,

Un ive r s i ty o f Tennessee

2 HPL. out output f i l e name (i f any)

3 6 dev i ce out (6=stdout ,7= stder r , f i l e)

4 1 # of problems s i z e s (N)

5 83000 Ns

6 1 # of NBs

7 400 NBs

8 0 PMAP proce s s mapping (0=Row−,1=Column−major)

9 1 # of p roce s s g r i d s (P x Q)

10 8 Ps

11 4 Qs

12 16 .0 th r e sho ld

13 1 # of panel f a c t

14 1 PFACTs (0= l e f t , 1=Crout , 2=Right)

15 1 # of r e c u r s i v e stopping c r i t e r i um

16 8 NBMINs (>= 1)

17 1 # of pane l s in r e cu r s i on

18 2 NDIVs

19 1 # of r e c u r s i v e panel f a c t .

20 2 RFACTs (0= l e f t , 1=Crout , 2=Right)

21 1 # of broadcast

22 1 BCASTs (0=1rg ,1=1rM,2=2 rg ,3=2rM,4=Lng,5=LnM)

23 1 # of lookahead depth

24 1 DEPTHs (>=0)

25 2 SWAP (0=bin−exch ,1= long ,2=mix)

26 64 swapping thr e sho ld

27 0 L1 in (0=transposed ,1=no−t ransposed) form

72

28 0 U in (0=transposed ,1=no−t ransposed) form

29 1 Equ i l i b r a t i on (0=no ,1=yes)

30 8 memory al ignment in double (> 0)

31 ##### This l i n e (no . 32) i s ignored (i t s e r v e s as a s epara to r) . ######

32 0 Number o f add i t i ona l problem s i z e s f o r PTRANS

33 1200 10000 30000 va lues o f N

34 0 number o f add i t i ona l b lock ing s i z e s f o r

PTRANS

35 40 9 8 13 13 20 16 32 64 va lues o f NB

73

Appendix C Self-citation Policy

This work contains many sections previously published by the author. The author followed

the Association for Computing Machinery's (ACM) policy [60] regarding self-citation. That policy

is reproduced below:

�Self-plagiarism is a related issue. In this document we de�ne self-plagiarism as

the verbatim or near-verbatim reuse of signi�cant portions of one's own copyrighted

work without citing the original source[2]. Note that self-plagiarism does not apply to

publications based on the author's own previously copyrighted work (e.g., appearing in

a conference proceedings) where an explicit reference is made to the prior publication[3].

Such reuse does not require quotation marks to delineate the reused text but does require

that the source be cited.

�[2] See Collberg and Kobourov, http://portal.acm.org/citation.cfm?doid=1053291.

1053293.

�[3] Manuscripts submitted to ACM Journals and Transactions based on the author's

own previously copyrighted work (e.g., appearing in a conference proceedings) must be

disclosed at the time of submission and an explicit reference to the prior publication must

be included in the submitted manuscript. The norm for ACM Journals and Transactions

is that the submitted manuscript must contain at least 25% new content material (i.e.,

material that o�ers new insights, new results, etc.). For more details see http://www.

acm.org/pubs/sim_submissions.html .�

74

http://portal.acm.org/citation.cfm?doid=1053291.1053293
http://portal.acm.org/citation.cfm?doid=1053291.1053293
http://www.acm.org/pubs/sim_submissions.html
http://www.acm.org/pubs/sim_submissions.html

Bibliography

[1] I. Foster, C. Kesselman, and S. Tuecke, �The anatomy of the Grid: Enabling scalable virtual
organizations,� International Journal of Supercomputing Applications, vol. 15, no. 3, pp. 200�
222, 2001.

[2] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, �A case for grid computing on virtual ma-
chines,� in Proceedings of the 23rd International Conference on Distributed Computing Systems,
2003.

[3] B. Quetier, V. Neri, and F. Cappello, �Selecting a virtualization system for Grid/P2P large scale
emulation,� in Proceedings of the Workshop on Experimental Grid Testbeds for the Assessment
of Large-scale Distributed Applications and Tools (EXPGRID'06), Paris, France, June 2006.

[4] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M. Tsug-
awa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu, �From virtualized resources to virtual computing
grids: the In-VIGO system,� Future Generation Computer Systems, vol. 21, no. 6, pp. 896�909,
June 2005.

[5] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo, �VMPlants: Providing
and managing virtual machine execution environments for grid computing,� in Proceedings of
the 2004 ACM/IEEE Conference on Supercomputing, 2004.

[6] A. Matsunaga, M. Tsugawa, M. Zhao, L. Zhu, V. Sanjeepan, S. Adabala, R. Figueiredo,
H. Lam, and J. A. Fortes, �On the use of virtualization and service technologies to enable
grid-computing,� in 11th International Euro-Par Conference, August 2005.

[7] A. M. Matsunaga, M. O. Tsugawa, S. Adabala, R. J. Figueiredo, H. Lam, and J. A. B. Fortes,
�Science gateways made easy: the In-VIGO approach,� Concurrency and Computation: Practice
and Experience, vol. 19, no. 6, pp. 905�919, April 2007.

[8] M. A. Murphy, M. Fenn, and S. Goasguen, �Virtual organization cluster model,� in 17th Euromi-
cro International Conference on Parallel, Distributed and Network-Based Processing, February
2009.

[9] M. Fenn, �A performance analysis of virtual machine monitors for use in the Open Science
Grid,� Honor's Thesis, December 2008, Calhoun Honors College, Clemson University.

[10] Open Science Grid. Http://www.opensciencegrid.org/.

[11] M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrtchyan, and C. Waldmann, �dcache, a distributed
storage data caching system,� in Computing in High Energy and Nuclear Physics, 2001.

[12] Cyberinfrastructure Research Group. Http://cirg.cs.clemson.edu/.

[13] D. Thain, T. Tannenbaum, and M. Livny, �Distributed computing in practice: the Condor
experience,� Concurrency - Practice and Experience, vol. 17, pp. 323�356, 2005.

75

[14] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, �IP over P2P: Enabling self-
con�guring virtual IP networks for grid computing,� in 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS 2006), 2006.

[15] Open Nebula. Http://www.opennebula.org/.

[16] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, and X. Zhang, �Virtual clusters
for grid communities,� in CCGrid 2006, Singapore, May 2006.

[17] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron, �Virtual workspaces in the Grid,�
in 11th International Euro-Par Conference, Lisbon, Portugal, September 2005.

[18] W. Emeneker and D. Stanzione, �Dynamic virtual clustering,� in IEEE Cluster 2007, Austin,
TX, September 2007.

[19] H. Nishimura, N. Maruyama, and S. Matsuoka, �Virtual clusters on the �y - fast, scalable, and
�exible installation,� in CCGRID 2007: Seventh IEEE International Symposium on Cluster
Computing and the Grid, May 2007.

[20] J. A. B. Fortes, R. J. Figueiredo, and M. S. Lundstrom, �Virtual computing infrastructures for
nanoelectronics simulation,� Proceedings of the IEEE, vol. 93, no. 10, pp. 1839�1847, October
2005.

[21] J. Mugler, T. Naughton, and S. L. Scott, �OSCAR meta-package system,� in 19th International
Symposium on High Performance Computing Systems and Applications, May 2005.

[22] M. J. Katz, P. M. Papadopoulos, and G. Bruno, �Leveraging standard core technologies to pro-
grammatically build Linux cluster appliances,� in Cluster 2002: IEEE International Conference
on Cluster Computing, April 2002.

[23] P. M. Papadopoulos, M. J. Katz, and G. Bruno, �NPACI Rocks: Tools and techniques for
easily deploying manageable Linux clusters,� in Cluster 2001: IEEE International Conference
on Cluster Computing, October 2001.

[24] P. M. Papadopoulos, C. A. Papadopoulos, M. J. Katz, W. J. Link, and G. Bruno, �Con�guring
large high-performance clusters at lightspeed: A case study,� in Clusters and Computational
Grids for Scienti�c Computing 2002, December 2002.

[25] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. E. Sprenkle, �Dynamic virtual clusters
in a grid site manager,� in HPDC '03: Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing, June 2003.

[26] G. Bruno, M. J. Katz, F. D. Sacerdoti, and P. M. Papadopoulos, �Rolls: Modifying a standard
system installer to support user-customizable cluster frontend appliances,� in IEEE Interna-
tional Conference on Cluster Computing, September 2004.

[27] R. Davoli, �VDE: Virtual Distributed Ethernet,� in First International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities (Tridentcom
2005), Trento, Italy, February 2005.

[28] A. I. Sundararaj and P. A. Dinda, �Towards virtual networks for virtual machine grid comput-
ing,� in Proceedings of the Third Virtual Machine Research and Technology Symposium, San
Jose, CA, May 2004.

76

[29] D. Wolinsky, A. Agrawal, P. O. Boykin, J. Davis, A. Ganguly, V. Paramygin, P. Sheng, and
R. Figueiredo, �On the design of virtual machine sandboxes for distributed computing in Wide-
area Overlays of virtual Workstations,� in First International Workshop on Virtualization Tech-
nology in Distributed Computing, 2006.

[30] P. Ruth, X. Jiang, D. Xu, and S. Goasguen, �Virtual distributed environments in a shared
infrastructure,� Computer, vol. 38, no. 5, pp. 63�69, 2005.

[31] J. Liu, Y. Li, N. V. Vorst, S. Mann, and K. Hellman, �A real-time network simulation infras-
tructure based on OpenVPN,� J. Syst. Softw., vol. 82, no. 3, pp. 473�485, 2009.

[32] P. O. Boykin, J. S. A. Bridgewater, J. S. Kong, K. M. Lozev, B. A. Rezaei, and V. P.
Roychowdhury. (2007, September) A symphony conducted by Brunet. Online. [Online].
Available: http://arxiv.org/abs/0709.4048

[33] Google App Engine. Http://code.google.com/appengine/.

[34] P. Saint-Andre and R. Meijer, �Streaming XML with Jabber/XMPP,� IEEE Internet
Computing, vol. 9, no. 5, pp. 82�89, 2005. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.88.6260&rep=rep1&type=pdf

[35] L. Stout, M. Murphy, and S. Goasguen, �Kestrel: An xmpp-based framework for many task
computing applications,� in 2nd Workshop on Many-Task Computing on Grids and Supercom-
puters (MTAGS 2009), Portland, OR, November 2009.

[36] J. Wagener, O. Spjuth, E. Willighagen, and J. Wikberg, �XMPP for cloud computing in
bioinformatics supporting discovery and invocation of asynchronous Web services,� BMC
bioinformatics, vol. 10, no. 1, p. 279, 2009. [Online]. Available: http://www.biomedcentral.
com/content/pdf/1471-2105-10-279.pdf

[37] J. H. Christensen, �Using RESTful web-services and cloud computing to create next generation
mobile applications,� in OOPSLA '09: Proceeding of the 24th ACM SIGPLAN conference com-
panion on Object oriented programming systems languages and applications. New York, NY,
USA: ACM, 2009, pp. 627�634.

[38] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, �Blueprint for the
Intercloud-Protocols and Formats for Cloud Computing Interoperability,� in Proceedings of the
2009 Fourth International Conference on Internet and Web Applications and Services-Volume
00. IEEE Computer Society, 2009, pp. 328�336.

[39] M. Armbrust, A. Fox, R. Gri�th, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica et al., �Above the clouds: A Berkeley view of cloud computing,� University
of California at Berkeley, Technical Report EECS-2009-28, February 2009. [Online]. Available:
http://nma.berkeley.edu/ark:/28722/bk000471b6t

[40] R. Buyya, C. Yeo, and S. Venugopal, �Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as computing utilities,� in Proceedings of the 10th
IEEE International Conference on High Performance Computing and Communications, 2008.
[Online]. Available: http://arxiv.org/pdf/0808.3558

[41] K. Keahey and T. Freeman, �Contextualization: Providing one-click virtual clusters,� in
eScience 2008, Indianapolis, IN, December 2008.

[42] M. Fenn, M. A. Murphy, and S. Goasguen, �A study of a KVM-based cluster for grid computing,�
in 47th ACM Southeast Conference (ACMSE '09), Clemson, SC, March 2009.

77

http://arxiv.org/abs/0709.4048
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.6260&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.6260&rep=rep1&type=pdf
http://www.biomedcentral.com/content/pdf/1471-2105-10-279.pdf
http://www.biomedcentral.com/content/pdf/1471-2105-10-279.pdf
http://nma.berkeley.edu/ark:/28722/bk000471b6t
http://arxiv.org/pdf/0808.3558

[43] I. Habib, �Virtualization with KVM,� Linux Journal, vol. 2008, no. 166, p. 8, February 2008.

[44] L. van Doorn, �Hardware virtualization trends,� in Second International Conference on Virtual
Execution Environments, June 2006.

[45] K. Keahey, K. Doering, and I. Foster, �From sandbox to playground: Dynamic virtual environ-
ments in the Grid,� in 5th International Workshop on Grid Computing (Grid 2004), November
2004.

[46] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. War�eld, �Xen and the art of virtualization,� in Symposium on Operating Systems Principles
(SOSP '03), 2003.

[47] A. Whitaker, M. Shaw, and S. D. Gribble, �Denali: Lightweight virtual machines for distributed
and networked applications,� University of Washington, Tech. Rep. 02-02-01, 2002.

[48] M. Fenn, J. Lauret, and S. Goasguen, �Contextualization in practice: The Clemson experience,�
in 13th International Workshop on Advanced Computing and Analysis Techniques in Physics
Research (ACAT 2010), Jaipur, India, February 2010.

[49] M. Fenn. (2009, December) Converting a partition image to a disk image.
Http://www.mfenn.com/converting_a_partition_image_to_a_disk_image.

[50] Stoker. Http://cirg.cs.clemson.edu/software/stoker/.

[51] M. A. Murphy, B. Kagey, M. Fenn, and S. Goasguen, �Dynamic provisioning of Virtual Orga-
nization Clusters,� in 9th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid '09), Shanghai, China, May 2009.

[52] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, �Looking up data in
P2P systems,� Communications of the ACM, vol. 46, no. 2, pp. 43�48, February 2003.

[53] Adium. Http://adium.im/.

[54] xmpppy. Http://xmpppy.sourceforge.net/.

[55] M. Fenn, M. A. Murphy, and S. Goasguen, �An evaluation of KVM for use in cloud computing,�
in 2nd International Conference on the Virtual Computing Initiative (ICVCI '08), May 2008.

[56] R. Bisseling and L. Loyens, �Towards peak parallel linpack performance on 400,� Supercomputer,
vol. 45, pp. 20�27, 1991.

[57] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas, R. Rabenseifner, and D. Takahashi,
�The HPC Challenge (HPCC) benchmark suite,� in Supercomputing '06, 2006.

[58] M. Matsuda, T. Kudoh, and Y. Ishikawa, �Evaluation of MPI implementations on grid-
connected clusters using an emulated WAN environment,� in IEEE International Symposium
on Cluster Computing and the Grid (CCGrid03), 2003.

[59] D. Thain, T. Tannenbaum, and M. Livny, �Condor and the Grid,� in Grid Computing: Making
the Global Infrastructure a Reality, F. Berman, G. C. Fox, and A. J. G. Hey, Eds. Wiley, 2003,
ch. 11, pp. 299�350.

[60] (2009, October) ACM policy and procedures on plagiarism. Association for Computing Ma-
chinery. Http://www.acm.org/publications/policies/plagiarism_policy.

78

	Clemson University
	TigerPrints
	5-2010

	Practical Implementation of the Virtual Organization Cluster Model
	Michael Fenn
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Related Work
	Organization of the Open Science Grid
	Public Key Infrastructure
	Public Key Cryptography
	Certificate Authorities
	Certificate Revocation

	Virtual Organizations
	Engagement

	Open Science Grid Sites
	Compute Elements
	Storage Elements

	Trust Model
	VOUser Trust
	SiteVO Trust
	OSGVO Trust
	Sample Trust Scenario

	Open Science Grid Software Stack
	User Mapping Software
	Grid-Mapfile
	Grid User Mapping System

	Compute Element Software
	The Globus Toolkit
	Job Managers

	Storage Element Software
	Monitoring and Accounting Software
	Software Use Case

	Virtual Organization Cluster Model
	Physical Administrative Domain
	Virtual Administrative Domain
	Provisioning and Execution of Virtual Machines

	Implementation of the Virtual Organization Cluster Model
	Virtual Cluster Construction
	Kernel-based Virtual Machine (KVM)
	Xen
	Virtual Compute Nodes
	Grid Integration
	VM Contextualization

	Physical Support Model
	Host Operating System Configuration
	Physical Support Services

	Dynamic Provisioning
	Overlay Networking

	XMPP and Cloud-based Monitoring
	XMPP and Monitoring
	Overview of XMPP
	Example XMPP Message Stanzas
	Implementing a Monitoring Program with xmpppy

	Google App Engine
	Overview of Google App Engine
	Using XMPP with Google App Engine

	Results
	High Performance Linpack (HPL)
	Boot Times
	High Performance Computing Challenge Benchmark
	Xen Domain0 Performance
	Block Size (NB) Tuning
	Dynamic Provisioning of Virtual Organization Clusters
	Operational VOC Testing
	Engage and NanoHUB VO Testing
	STAR VO Testing

	Multi-site VOC Testing
	Google App Engine Datastore Performance

	Conclusions
	Appendices
	Full Benchmarking Results
	Full HPCC Parameters
	Self-citation Policy

	Bibliography

