
Clemson University
TigerPrints

All Theses Theses

12-2011

A Comparison and Evaluation of Three Different
Pose Estimation Algorithms In Detecting Low
Texture Manufactured Objects
Robert Kriener
Clemson University, rkriene@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Kriener, Robert, "A Comparison and Evaluation of Three Different Pose Estimation Algorithms In Detecting Low Texture
Manufactured Objects" (2011). All Theses. 1290.
https://tigerprints.clemson.edu/all_theses/1290

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1290?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1290&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A Comparison and Evaluation of Three
Different Pose Estimation Algorithms In

Detecting Low Texture Manufactured Objects

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Robert Charles Kriener

Dec 2011

Accepted by:

Dr. Richard Groff, Committee Chair

Dr. Stanley Birchfield

Dr. Adam Hoover

Abstract

This thesis examines the problem of pose estimation, which is the problem

of determining the pose of an object in some coordinate system. Pose refers to

the object’s position and orientation in the coordinate system. In particular, this

thesis examines pose estimation techniques using either monocular or binocular vision

systems.

Generally, when trying to find the pose of an object the objective is to generate

a set of matching features, which may be points or lines, between a model of the object

and the current image of the object. These matches can then be used to determine

the pose of the object which was imaged. The algorithms presented in this thesis all

generate possible matches and then use these matches to generate poses.

The two monocular pose estimation techniques examined are two versions of

SoftPOSIT: the traditional approach using point features, and a more recent approach

using line features. The algorithms function in very much the same way with the only

difference being the features used by the algorithms. Both algorithms are started with

a random initial guess of the object’s pose. Using this pose a set of possible point

matches is generated, and then using these matches the pose is refined so that the

distances between matched points are reduced. Once the pose is refined, a new set of

matches is generated. The process is then repeated until convergence, i.e., minimal

or no change in the pose. The matched features depend on the initial pose, thus

ii

the algorithm’s output is dependent upon the initially guessed pose. By starting the

algorithm with a variety of different poses, the goal of the algorithm is to determine

the correct correspondences and then generate the correct pose.

The binocular pose estimation technique presented attempts to match 3-D

point data from a model of an object, to 3-D point data generated from the current

view of the object. In both cases the point data is generated using a stereo cam-

era. This algorithm attempts to match 3-D point triplets in the model to 3-D point

triplets from the current view, and then use these matched triplets to obtain the pose

parameters that describe the object’s location and orientation in space.

The results of attempting to determine the pose of three different low tex-

ture manufactured objects across a sample set of 95 images are presented using each

algorithm. The results of the two monocular methods are directly compared and

examined. The results of the binocular method are examined as well, and then all

three algorithms are compared. Out of the three methods, the best performing al-

gorithm, by a significant margin, was found to be the binocular method. The types

of objects searched for all had low feature counts, low surface texture variation, and

multiple degrees of symmetry. The results indicate that it is generally hard to ro-

bustly determine the pose of these types of objects. Finally, suggestions are made for

improvements that could be made to the algorithms which may lead to better pose

results.

iii

Table of Contents

Title Page . i

Abstract . ii

List of Tables . v

List of Figures . vi

1 Introduction . 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Outline . 7

2 Background . 9
2.1 Notation . 9
2.2 What is meant by pose? . 12
2.3 How does imaging work? . 14
2.4 Camera calibration . 17
2.5 Pose From Correspondences . 18
2.6 POSIT . 19
2.7 3D Reconstruction From Stereo Images 24

3 Methods . 31
3.1 SoftPOSIT . 31
3.2 SoftPOSIT With Line Features . 39
3.3 Pose Clustering From Stereo Data . 45

4 Experiments and Results . 52
4.1 Experiments . 52
4.2 Results . 57

5 Conclusions and Discussion . 78

Bibliography . 80

iv

List of Tables

1.1 Classification of a few of the different pose estimation techniques dis-
cussed. Each unknown correspondence algorithm depends or builds
upon the known correspondence algorithm to the left. 3

1.2 Classifications of the different types of pose estimation algorithms dis-
cussed along with their requirements 3

4.1 Summary of the properties and significance of performance classings . 59

v

List of Figures

2.1 The relationship of the model, camera, and world coordinate systems. 13
2.2 Mathematically identical camera models 14
2.3 The projection of a point onto the image plane 16
2.4 Estimating pose with known correspondences 18
2.5 Example of two cameras in space . 25
2.6 Example of two stereo rectified cameras 28
2.7 Geometry of the disparity to depth relationship 30

3.1 Point relationships in SoftPOSIT . 35
3.2 Generation of projected lines in SoftPOSITLines 40
3.3 Example form of the matrix m for SoftPOSIT with line features . . . 43
3.4 Example of two matched triplets . 46

4.1 The Objects of Interest . 53
4.2 Example poses from each class . 58
4.3 Total pose error of the three algorithms for each image in the cube

image set. The translation error is given in cm while the rotation
errors are lengths in the scaled consistent space (4.1). 61

4.4 Pose error of the three algorithms on the cube image set. For each
algorithm, results are sorted by total error and classified. The dot-
ted lines indicate class boundaries and the numbers indicate the class
labels. Table 4.1 shows the requirements of each class. 62

4.5 Breakdown of the translational error for the three algorithms for each
image in the cube set. Errors are given in cm 63

4.6 Total pose error of the three algorithms for each image in the assembly
image set. The translation error is given in cm while the rotation errors
are lengths in the scaled consistent space (4.1). 64

4.7 Pose error of the three algorithms on the assembly image set. For
each algorithm, results are sorted by total error and classified. The
dotted lines indicate class boundaries and the numbers indicate the
class labels. Table 4.1 shows the requirements of each class. 65

4.8 Breakdown of the translational error for the three algorithms for each
image in the assembly set. Errors are given in cm 66

vi

4.9 Total pose error of the three algorithms for each image in the cuboid
image set. The translation error is given in cm while the rotation errors
are lengths in the scaled consistent space (4.1). 67

4.10 Pose error of the three algorithms on the cuboid image set. For each
algorithm, results are sorted by total error and classified. The dot-
ted lines indicate class boundaries and the numbers indicate the class
labels. Table 4.1 shows the requirements of each class. 68

4.11 Breakdown of the translational error for the three algorithms for each
image in the cuboid set. Errors are given in cm 69

4.12 Total error for the three pose estimation algorithms on the assembly
set. The first row shows the results of trying to find the assembly using
the assembly as the model, while the second rows shows the results of
finding the assembly using only the cube as the model. 70

4.13 Two example results images from Class 2. Both of these poses illus-
trate instances where poses are perceptually correct and features are
matched, however the correspondences are incorrect. The white lines
indicate the final pose estimated by the algorithm. 72

4.14 Example image where the SoftPOSITLines algorithm outperforms the
triplet matching algorithm. The goal is to identify the pose of the green
cube. The white wire frames show the poses estimated by the two
algorithms. In this instance the triplet matching algorithm incorrectly
identified the red cuboid as the green cube. 75

4.15 Two Example images (one per column) where the SoftPOSIT algo-
rithms outperform the triplet matching algorithm. The goal is to
identify the pose of the red cuboid. The wire frames show the poses
estimated by the algorithms. In both instances the triplet matching
algorithm incorrectly identifies the surface of the stick as a surface of
the red cuboid. 77

vii

Chapter 1

Introduction

Pose estimation is the process of determining the pose of an object in space.

The pose of an object is the object’s translation and orientation, i.e., roll, pitch,

and yaw in some coordinate system. This thesis will examine the problem of pose

estimation using vision systems.

1.1 Motivation

Pose estimation is an important problem in autonomous systems. In the case

of an industrial robot attempting to interact with or avoid an object, the robot must

know where the object is located and how it is oriented. Typically, the problem of

locating objects for grasping is avoided by ensuring that objects are always at the

same location through some sort of tooling system. The objects with which the robot

will interact are loaded into the tooling system by humans before the robot is able

to interact with them. If the robot were capable of identifying where the objects

were via its own pose estimation system it could, in theory, load the parts into the

system itself. One reason why this technology is not prevalent in industry currently

1

is that many manufactured objects, such as solid metal/plastic components, do not

have many readily detectable features.

Pose estimation is also important in mobile robotic systems. If a robot is to

retrieve an object it must be able to locate it in space first. Pose estimation can also

be used in mobile robot localization. If the location of a known landmark can be

determined then the robot can estimate its own position in space, much like how a

human would look for a familiar building or sign to identify where they are.

1.2 Related Work

Many researchers have studied the pose estimation problem and developed

algorithms to find the pose of objects.

Table 1.1 shows the relationship of a few of the pose estimation algorithms

which will be discussed, specifically including the algorithms which will be examined

in this thesis. Table 1.2 shows some of the different types of pose estimation problems

which will be discussed and the common assumptions associated with them. The three

categories of pose estimation problems shown in the table are pose estimation, pose

tracking, and AR pose estimation techniques. The first category, pose estimation,

addresses the problem of identifying an objects pose in space w.r.t. the camera, using

a single image of the object. Pose tracking is the problem of tracking an objects pose

from frame to frame in a video sequence, which is equivalent to finding the objects

precise pose when the approximate pose is already known. The AR pose estimation

techniques presented all work only with video sequences, and are related to structure

from motion techniques. The AR techniques address the problem of finding the

cameras pose in the world. This thesis focuses on the first category of problems, pose

estimation.

2

Monocular Vision Binocular Vision
Known

Correspondences
Unknown

Correspondences
Known

Correspondences
Unknown

Correspondences

POSIT [10] SoftPOSIT [8, 9]
Absolute

Orientation [24]
Triplet

Matching [21]
PnP Meth-
ods [18, 23]

RANSAC [12]

Table 1.1: Classification of a few of the different pose estimation techniques dis-
cussed. Each unknown correspondence algorithm depends or builds upon the known
correspondence algorithm to the left.

Algorithm
Types

Pose Estimation Pose Tracking
AR Pose

Estimation

Algorithms
SoftPOSIT [8, 9]
Triplet Match-

ing [21]

RAPiD [20]
[27] and [13]

[36] and [29]

Requirements Model known
Model known

Approx pose known
Moving camera

Applied To Single image
Video or

Single Image
Video

Table 1.2: Classifications of the different types of pose estimation algorithms discussed
along with their requirements

3

Pose estimation, when the approximate pose is known, has been widely stud-

ied. These algorithms are generally used for pose tracking. In these instances the

pose from one image to the next can only vary slightly, thus the approximate pose is

known, and the problem is constrained. Some example algorithms for pose tracking

include RAPiD [20], a method proposed by Lowe [27], and yet another method by

Jurie [13].

Another common application of pose estimation is in augmented reality (AR)

systems. These systems use pose to place objects in an image, such that the inserted

object appears as if it were actually in the original scene. Often in these applications

precise pose is not necessary because there is no physical interaction between the

system and the world, and objects only need to appear as if they were actually in

a scene. Also since AR is typically applied to video many of the algorithms take

advantage of the cameras motion to help with the pose estimation problem. Some

example AR pose estimation algorithms include [36, 29]. Lepetit gives a through

survey of pose estimators for both AR and pose tracking applications in [25].

This thesis will focus on mathematical and geometrical methods of pose esti-

mation, which rely on matching a model of the object to be found to some sort of

image or sensor data. In all of these algorithms the true pose is assumed to lie within

a large search space, the approximate pose is not known a priori, and the only image

data available is a single image or a pair of stereo images.

One of the most common methods for estimating pose with a model and image

data is to extract features from the image, such as lines, corners, or even circles and

match the extracted features to the model features. If the correspondences/matches

between the features of the model and the image are known the problem becomes

nearly trivial.

One common algorithm for pose estimation with known point feature corre-

4

spondences is POSIT (Pose from Orthogonality and Scaling with ITerations) [10].

This algorithm assumes that feature correspondences are known in advance and will

fail when correspondences are incorrect. Other methods of pose estimation with

known correspondences include [18, 23, 32, 1]. All of these algorithms are capable of

generating pose estimates given a set of point, or in some cases line, correspondences

and a cameras calibration matrix.

The POSIT algorithm was later updated to become SoftPOSIT [9] which com-

bines the POSIT algorithm with a correspondence estimation algorithm softassign

[15, 38]. This algorithm requires all of the point features in both the model and cur-

rent image to be provided, along with a guess of the possible pose of the object. The

algorithm matches the model and image features and estimates the pose to minimize

the distance between all of the matched features. The pose output by the algorithm is

dependent upon the initial pose guessed, and the algorithm is not guaranteed to con-

verge. Even in cases where the algorithm does converge there is no way to know that

the pose is correct without further evaluation. SoftPOSIT was extended to work with

line features [8], but still has many of the same problems as the original SoftPOSIT.

Another well known algorithm for estimating poses with features is RANSAC

(RANdom SAmple Consensus) [12]. This algorithm matches, at random, the mini-

mum number of point features from the model to features in the image to estimate a

pose. The absolute minimum of matched features is three [18], which will provide up

to four feasible pose estimates, while four matched features will yield a single pose

estimate. By iterating through the possible sets of matches at random the actual

pose can be generated. This algorithm has the advantage that it is guaranteed to

yield the correct pose at some point; however, the correct pose must be extracted

from all of the poses returned by the algorithm. The algorithm also is exponential

(theoretically) in execution time as the number of features increases, making it a bad

5

choice for feature rich scenes.

Some of the most robust pose estimation algorithms currently available [16,

17, 6] make use of Scale Invariant Feature Transform (SIFT) [28] features. These

algorithms combine SIFT features with monocular, stereo, or Time of Flight (TOF)

cameras to give highly accurate poses for objects. Although these algorithms work

well, they are limited to use on highly textured objects. This is due to the fact that

they rely on SIFT features which are only present on surfaces with high texture.

Therefore, these algorithms are not suitable for use on many manufactured objects

which have fairly consistent surfaces such as cardboard boxes, metal components, or

plastics. These algorithms would also fail if the surfaces of the objects were changed

even when their form remains the same, e.g., if a company redesigned its packaging

art or decided to make its products in different colors.

Both SoftPOSIT and RANSAC can be applied to any set of image model

point feature correspondences regardless of how they are generated. Besides SIFT,

many other popular feature detectors exist including the Harris corner detector [19],

SURF [3], FAST [33], and many others. See [31, 35] for a comprehensive review

and comparison of common point feature detectors. However, as with SIFT other

point features require certain types of surface texture variation to function well. If

the object to be detected has few corners or reliable surface features, then there are

no reliable features to match. This is true of many manufactured objects. Another

drawback to feature based methods is that in order to match features they must

first be extracted from the image, and as the image’s content becomes increasingly

complex the number of false matches and occluded features increases.

All of the pose estimation algorithms discussed up to this point are feature

based, in that they require the matching of model and image features as a step in

estimating a pose, and thus are restricted to being applied to objects which contain

6

features. Another class of pose estimators uses only range data to estimate an object’s

pose.

All of these estimators [30],[34],[21] rely only range data, that is (x, y, z) point

locations to estimate poses rather than feature extraction. These types of algorithms

can work on objects of any shape, color, or texture provided accurate enough depth

information can be extracted. Many devices exist which can generate depth infor-

mation, including: stereo cameras, laser scanners, TOF cameras, sonar, and radar.

Thus, these algorithms are not restricted to working only with stereo range data.

1.3 Outline

This paper compares and examines the effectiveness of SoftPOSIT with point

features, SoftPOSIT with line features, and a 3-D point triplet matching algorithm

in detecting the pose of low texture manufactured objects. The first two algorithms

are directly comparable as they both are run on 2-D image data and rely on feature

extraction. The third algorithm uses a stereo camera setup to reconstruct the scene’s

3-D geometry as a point cloud and then examines this data to extract the pose of the

object within. The overall performance of these algorithms will be compared over a

sample set of images, but the reader should keep in mind the differences between the

algorithms when comparing their performance.

Chapter 2 presents some background content including: basic concepts of

imaging, 3-D reconstruction, and pose estimation with known correspondences. Chap-

ter 3 examines in detail the three pose estimation algorithms presented in this thesis.

Chapter 4 presents the experiments conducted to examine the effectiveness of the

three pose estimation algorithms studied along with the experimental results. Fi-

nally Chapter 5 presents a review of the experimental findings along with possible

7

future improvements and modifications that can be made.

8

Chapter 2

Background

2.1 Notation

All points in 3-D space will be defined by the capital letter P and a superscript

letter C, M , or W will designate the frame of reference of the point . The letter C

indicates the point is represented in the camera coordinate system, M indicates the

point is represented with respect to the model coordinate system, and W indicates

the point is represented with respect to the world coordinate system. Points will

be enumerated by subscript numbers, or in the general case a subscript i. PM
2 for

example would correspond to object point 2 in the model’s coordinate system. The

coordinates of a point P will be expressed by capital letters (X, Y, Z). Figure 2.1

gives an example of 3-D points expressed in different frames.

All image points will be designated by the lower case letter p. In the case of

two cameras with separate images, superscript Ci’s will be used to indicate the image

which the point belongs to. All image points will be enumerated with subscript num-

bers. For example pC1
3 would indicate the third image point in the image generated

by camera 1. The coordinates of a point p will be expressed as lowercase letters (x, y).

9

For both image points p and 3-D points P the homogeneous representation of

the points will often need to be used. The homogeneous form is achieved by appending

a 1 to the coordinates so that

p = λ


x

y

1

 P = λ



X

Y

Z

1


The homogeneous form allows easier expressions of rotations and translations of

points. Note the lambda term is included because homogeneous coordinates are scale

invariant. When the last coordinate of the points is 1 the coordinates are referred to

as normalized homogeneous coordinates. In any case the coordinate form (X, Y, Z)

or homogeneous form [X, Y, Z, 1]T of points may be used throughout the thesis when

referring to points.

It has been shown that points have a homogeneous form which is generated

by appending a 1 to the coordinates. However, homogeneous coordinates also allow

a alternate way to express lines. Specifically a line ` can be described in a Euclidean

sense by the equation ax + by + c = 0 or in homogeneous form by ` = [a, b, c]. The

previous equation can then be expressed in a homogeneous sense by the equation

[a, b, c][x, y, 1]T = 0.

Matrices and vectors will both be indicated by bold face text. R ∈ R3×3 will

be a rotation matrix which can be expressed as

RM
C =


r1

r2

r3

 , ri ∈ R1×3 (2.1)

10

where r1 is the unit vector of the camera frame’s X axis êC
x expressed in terms of the

unit vectors of the model frame êM
x , êM

y , and êM
z . Similarly r2 and r3 are the unit

vectors êC
y and êC

z expressed in terms of the model coordinate systems unit vectors.

This rotation matrix completely describes the rotation from the model to the camera

coordinate system and satisfies

RTR = RRT = I and det(R) = 1

Note that the superscript on RM
C indicates the source coordinate system and the

subscript the destination coordinate system. So RM
C is the rotation matrix that

converts coordinates in the model frame to coordinates in the camera coordinate

frame, assuming the origins of the two systems coincide. In the case where the

origins of the two systems do not coincide an additional translation TM
C ∈ R3 must

be applied to the points to shift them to the correct location. Where TM
C is the vector

from the origin of the camera coordinate system to the origin of the model coordinate

system in the camera’s frame of reference.

To convert a point from one coordinate system to another, the rotation and

translation transforms can be applied to the point to generate the new coordinates.

For example to convert point PM from the model frame to the camera frame the

following equation would be used

PC = RM
C PM + TM

C

This equation first rotates the point then shifts it to the proper position in the cam-

era’s frame.

Using homogeneous coordinates this transform can be expressed as a single

11

homogeneous rigid body transform of the form:

PC

1

 =

RM
C TM

C

0̃ 1


PM

1


This rigid body transform allows a set of points belonging to an object which

are expressed in a model coordinate frame to be expressed in the camera systems

coordinate frame.

2.2 What is meant by pose?

As discussed in Chapter 1, the goal of pose estimation is to generate a pose

that describes an object’s position and orientation in space with respect to some

coordinate system. Pose in this instance will be a translation TM
C and rotation RM

C

which fully describes the position and orientation of an object in the camera’s frame

of reference. If the relationship between the camera’s coordinate system and a world

coordinate system is known (RC
W ,TC

W), the overall pose of the object in the world

can be determined see (2.2). Figure 2.1 shows the relationship of three coordinate

systems.

In Figure 2.1, PM
i are the object points expressed in the model coordinate

frame, and PM
0 is the centroid of the model and the origin of the model coordinate

system. PC
i are the object points expressed in the camera coordinate frame, and PC

0

is the centroid of the object in the camera’s coordinate frame. PW
i are the object

points in the world coordinate frame. The equation relating the coordinates of the

12

Figure 2.1: The relationship of the model, camera, and world coordinate systems.

points in the model frame to the points in the world frame is given by

PW
i =

RC
W TC

W

0̃ 1


RM

C TM
C

0̃ 1

PM
i (2.2)

If it is assumed that the camera’s relationship to the world is constant, i.e., the camera

does not move or the camera and world frame move synchronously, then the transform

relating the camera coordinate system and world coordinate system (RC
W ,T

C
W) can

be calculated once and will remain constant.

Assuming the camera to world transform is known the goal of pose estimation

is to find the rotation matrix RM
C and translation vector TM

C which will locate the

object in the camera frame of reference.

13

f

(a) Camera model

f

(b) Frontal camera model

Figure 2.2: Mathematically identical camera models

2.3 How does imaging work?

2.3.1 Modeling a camera

The simplest model to examine the behavior of a camera is the pinhole model.

This model treats the camera as a single point and a plane. In an actual camera light

in the world travels through a lens which focuses the light through a point and onto

film or a CCD. The point in the model is equivalent to the center of the lens, the

optical center, and the plane is equivalent to the CCD or film in a camera.

The optical center of the camera will be defined as the origin of the camera’s

coordinate system, OC . The Z-axis will be defined by the location where the plane

normal passes through OC , and the X and Y axes will be parallel to the image plane

with the X-axis left to right and the Y-axis pointing up and down as in Figure 2.2(a).

This geometry generates an inverted image which digital cameras correct by

inverting the image data. To achieve the same result with the model, the imaging

14

plane can be moved in front of the focal point as in Figure 2.2(b). Figure 2.3 illustrates

the projection of a point onto the image plane for both models. Notice the frontal

plane model gives a non-inverted image.

The length of the perpendicular line between the camera and the optical center

is the focal length f. It is related to the length between the CCD/film and the lens of

a camera. The units used for the length will determine the correspondence between

pixel lengths and real world lengths. In this thesis all lengths will be in meters. Thus,

f has units of pixels/meters.

2.3.2 The geometry of image formation

Using this frontal model the geometry of how an image is formed can be

explained. Figure 2.3 shows the projection of a point onto the image plane for both

the “real” and frontal camera models. Notice that 2 similar triangles are formed with

lengths Y, Z and y, f . Using the relationship of similar triangles the y coordinate and

similarly the x coordinate of the projected point pP = (x, y) can be calculated. Note

that P indicates the coordinates are with respect to the projected image coordinate

system. The relationship between the two coordinate systems is as follows.

xP = f
XC

ZC
yP = f

Y C

ZC
(2.3)

At this stage the transform necessary to project points from the camera’s

coordinate system onto the image plane and into the projected image coordinate

system has been shown. Since images typically assume that the origin of the image

coordinate system is at the top left of the image an additional transform must be

applied to these projected points coordinates to shift the origin to the top left. This

transform is a simple translation in the x and y coordinates of the image. With the

15

f

Y

y
Z

f

y

Image Planes

Figure 2.3: The projection of a point onto the image plane

previous transformation equation (2.3) the change was from camera coordinates in

meters to image coordinates in pixels; however, this transform is within the same space

thus the translations units are in pixels. Specifically the translation TP
I = [uo, vo]

where uo, vo are the coordinates of the center of the image in pixels w.r.t. the image

coordinate system origin OI .

Thus, the complete transform to convert from camera coordinates to image

coordinates is given by the equation

xI = f
XC

ZC
+ uIo yI = f

Y C

ZC
+ vIo (2.4)

This equation can be simplified by using homogeneous coordinates and some

simple matrix algebra.

λ ·


x

y

1


︸ ︷︷ ︸

pI

=


f 0 uo 0

0 f vo 0

0 0 1 0


︸ ︷︷ ︸

H



X

Y

Z

1


︸ ︷︷ ︸
PC

(2.5)

The λ factor is in the equation to ensure that the result of the matrix multipli-

16

cation is indeed a normalized homogeneous coordinate i.e. its third coordinate is one.

This factor appears because any point along a ray from the optical center through a

pixel on the image plane will project down to that pixel.

The H matrix in equation (2.5) is commonly referred to as the camera ma-

trix or calibration matrix and this is its simplest form. In reality the two f terms

are slightly different because of varying pixel dimensions in the X and Y directions.

Additionally, there is a skew term which can be added to the matrix. There are also

distortion terms which can be used to correct lens distortion in the projection, but for

most simple applications all of the distortions can be ignored along with the higher

complexity terms in the camera matrix.

Without in-depth knowledge of the construction of the camera it is not possible

to know the value of f, uo, or vo. Thus methods have been developed to determine

these parameters through calibration. With proper calibration all of the parameters

in the calibration matrix along with the distortion terms can be estimated with a

high level of accuracy.

2.4 Camera calibration

There exist many different methods for performing camera calibration. In this

implementation the built-in method, cv::calibrateCamera, in the OpenCV library was

used. Camera calibration requires a series of differing views of a calibration pattern,

in this case a checkerboard, to be fed into the function along with the dimensions

of the checkers on the pattern. The checkerboard pattern makes it easy to find the

corners of the squares and if the dimensions of the squares are known a model for the

checkerboard can be easily generated. With a known model of the calibration pattern

and with the detected squares of the imaged calibration pattern, correspondences

17

OC

a

c

b

d

A
B

C
D

Figure 2.4: Estimating pose with known correspondences

between the detected image corners and the model corners can be generated. Using

these correspondences a homography matrix can be generated that represents the

transform the model goes through to create the image. Using a number of these

homographies from different images of the calibration pattern, the parameters of

the calibration matrix can be empirically determined. Thus the matrix H can be

determined. A more detailed explanation of the calibration process can be found in

[40]. A survey of calibration methods and their approaches can be found in [2].

2.5 Pose From Correspondences

It has been shown that any point in space which lies along a ray that intersects

the image plane can project down to the plane at that intersection point. If a series

of correspondences between a geometric model and an image of that model can be

determined, then a pose estimate which aligns the model points in space along the

rays passing through the image points can be generated. Figure 2.4 shows a possible

pose generated from four correspondences between an image and a model.

Normally four points is sufficient to recover the correct actual pose of the

object as long as the four points are not co-planar. In this example, Figure 2.4, the

18

four points are co-planar. For three non co-planar points or four co-planar points,

there are multiple poses for the object which will result in the same image. Using

four non-coplanar points avoids this problem.

There are many methods to solve for the pose of an object given a model and

a set of image correspondences including the P3P (Perspective 3 Point) [18] problem,

POSIT [10], and others [23][1]. In this paper the focus will be on the POSIT algorithm

as it is an integral part of the SoftPOSIT algorithm.

2.6 POSIT

2.6.1 Overview of POSIT

POSIT [10] uses known image model point correspondences and a known cam-

era calibration to reconstruct the pose of an object. The goal of POSIT is to relate a

model’s geometry, a scaled orthographic projection of the model, and an actual image

of the modeled object to recover all of the parameters which define the pose.

The algorithm initially assumes that the object is at some depth which is

relatively far away from the camera as compared to the depth of the actual object its

self, and then fits the pose as best it can at this depth by trying to align image and

model features. This is the POS (Pose from Orthogonality and Scaling) algorithm.

Based upon the error of the fit a better depth estimate is created and the process

is repeated. The repeated application of the POS algorithm is the POSIT (POS

with ITerations) algorithm. After iteratively improving the pose, the algorithm will

eventually converge and return the pose of the object.

19

2.6.2 Scaled Orthographic Projection

The Scaled Orthographic Projection (SOP) of a model is an approximation

of the perspective transform. In fact, the SOP is a special case of the perspective

transform where all of the points in the scene of an image lie in a plane parallel to

the image plane.

To generate the scaled orthographic projection all of the points in a scene are

orthogonally projected onto a plane parallel to the image plane at at distance Zo from

the camera’s origin. Then these point coordinates are scaled by Zo/f to generate the

SOP.

In POSIT the model undergoes the SOP to generate a simulated image. If

there are N number of model points PM
0 ...PM

N ∈ R3×1 where PM
0 coincides with the

origin of the model coordinate system then a perspective projection of these points

would have the form of the equation in (2.3), i.e.

xPi = f
XC

i

ZC
i

yPi = f
Y C
i

ZC
i

Assuming the plane for the orthographic projection is located at the z coor-

dinate of PM
0 in the camera coordinate system i.e. Zo = ZC

0 then the SOP image

coordinates p′i of a point PM
i are given by

x′i = f
XC

i

ZC
0

y′i = f
Y C
i

ZC
0

Combining these forms, a more desirable form of the SOP image coordinates

p′i which relates the known image coordinates and desired model coordinates in the

20

camera’s coordinate system is generated.

x′i = xP0 + s(XC
i −XC

0) y′i = yP0 + s(Y C
i − Y C

0) (2.6)

s =
f

ZC
0

2.6.3 POS

The prior definition of the rotation matrix (2.1) will be used as the unknown

rotation matrix RM
C we seek to find with the POSIT algorithm.

Using this notation the pose of the object can be fully recovered with the

parameters r1,r2,r3,and the coordinates of PC
0 .

The following two equations relate the known parameters the model and image

features to the unknown parameters r1,r2, and ZC
0 .

(PM
i − PM

0) · f

ZC
0

r1 = xPi (1 + εi)− xP0 (2.7)

(PM
i − PM

0) · f

ZC
0

r2 = yPi (1 + εi)− xP0 (2.8)

where εi is defined as

εi =
f

ZC
0

(PM
i − PM

0) · r3 (2.9)

and r3 is calculated from taking r1×r2 since RM
C is required to have orthogonal

rows.

These equations relate the image coordinates of the SOP and the actual per-

spective projection to the model, with the coordinates of the SOP expressed in terms

21

of the perspective projection. Looking with more detail it can be shown that x′0 = xP0

because the plane used in generating the SOP is located at the Z coordinate of PM
0 .

Thus, the SOP and perspective projection of PM
0 are the same point. Examining the

term xPi (1 + εi), it can be shown that this term is the image coordinate p′i of the SOP

of PM
i full proof of this fact is show in [10]. Intuitively this makes sense because εi

is the ratio of the distance between the Z coordinates of the model points, and the

distance between the camera’s origin and the orthographic projection plane. Thus,

if an object is far away εi is small and xi ≈ x′i but when an object is close εi is large

and the disparity between xi and x′i increases thus the coordinate must be shifted a

greater distance. The left hand side of equation (2.7) is the projection of a vector in

the model coordinate system onto the vector r1 which is the image X-axis expressed

in the model coordinate system, this projection is then scaled by the SOP scaling

factor. Thus, the result of the left hand side of the equation is the length between

the two model points PM
0 and PM

i along the X-axis in the SOP coordinate system,

which is equal to the distance between the points x′i = xPi (1 + εi) and x′0 = xP0 .

Since r1 , r2 , ZC
0 will be chosen to optimize the fit of all of N model points

the equations (2.7) (2.8) will need to be re-written in a form which lends it self to

developing a linear system. The equations are rewritten

(PM
i − PM

0) · I = ξi

(PM
i − PM

0) · J = ηi

with

I =
f

ZC
0

r1 J =
f

ZC
0

r2 ξi = xPi (1 + εi)− xP0 ηi = yPi (1 + εi)− yP0 (2.10)

22

These equations can be rewritten to a linear system of the form

AI = x′ AJ = y′ (2.11)

A(N−1)×3 is the matrix of model points PM
1...N in the model coordinate system which

does not change. I is the same as in equation 2.10 while x′(N−1)×1 and y′(N−1)×1 are

vectors containing ξi and ηi respectively.

The equation (2.11) can be solved in a simple least squares sense to give values

for I and J. Looking back at the definitions of I and J it can be seen that r1 and r2

can be recovered by normalizing I and J. The amount by which are r1 and r2 are

scaled is f
ZC
0

. Thus the average of the magnitude of I and J gives a good estimate of

s = f
ZC
0

. Since f is known in the algorithm ZC
0 can be readily calculated. The last

parameters to be calculated are r3 and εi. r3 can be quickly generated by taking

r1 × r2 and εi is now dependent on already calculated parameters.

2.6.4 POS with ITerations

By using the results of the first application of POS to generate new values of

εi, and then repeating the POS algorithm with the new εi values the POSIT algorithm

is developed.

Up to now the POSIT algorithm has been developed. Now the problem of

how to start the algorithm is addressed. After all, the linear system (2.11) requires

an initial value for ε0. Making the assumption that the Z dimensions of the object

are small, compared to the distance to the object from the camera, the algorithm can

be started with ε0 = 0. This initial seeding of the algorithm works well when the

assumption is true, but can cause the algorithm to diverge from the correct answer

when the assumption is false. Because of this the POSIT algorithm is only useful when

23

the assumption is indeed true, which for many real applications this assumption is

acceptable.

If the POSIT algorithm is run in a loop until
∣∣εi(n) − εi(n−1)∣∣ < δ then the

algorithm can be considered to have converged. Once the algorithm has converged

the pose parameters can be recovered from the values returned by POSIT. RM
C can

be recovered from r1 , r2, and r3 and the translation vector TM
C =

[
pP0 /s, s/f

]
, which

is the image point pP0 projected back into space at a depth ZC
0 . Now the objects pose

has been reconstructed using the model coordinates, corresponding image coordinates,

and the camera’s focal length.

2.7 3D Reconstruction From Stereo Images

One last topic to explore related to the algorithms which will be presented is

3D reconstruction from stereo images. The goal of 3-D reconstruction is to re-project

an images points back into space at the appropriate depth so that a 2-D image can be

used to recreate a 3-D point cloud which approximates the continuous surface which

was imaged. If there are two cameras in a world looking at the same object then each

camera will project the same point P in the object down to different points, pC1
i and

pC2
i , in each camera’s image coordinate systems. Using the camera models as shown

in Figure 2.5, for each camera the line of sight from the camera origin through the

image plane at the pixel corresponding to the model point P can be reconstructed. If

noise is non existent, then in theory, both of the lines of sight rays from both cameras

will intersect at the object point in space. If the distance and orientation between

the two cameras is known then the location of the object point in space w.r.t. the

cameras can be determined via triangulation.

Two major assumptions are made above which must be explored further. First

24

P

Figure 2.5: Example of two cameras in space

it was assumed that the rotation RC1
C2 and translation TC1

C2 between the two cameras

was known. In reality this is almost never the case. Thus this relationship must be

determined via some method. Thankfully due to the geometry of two cameras looking

at a point, the rotation and translation between the two cameras can be calculated

relatively easily.

2.7.1 Finding the Essential Matrix

Looking at Figure 2.5 the line drawn between the two cameras origins is called

the baseline, and it intersects each cameras image plane at eC1 and eC2 . These two

points are referred to as the epipolar points and the lines between eC1 , pC1
i and eC2 , pC2

i

are epipolar lines `C1
i ,`C2

i . The baseline is the common edge of the triangle formed

between the cameras origins and any point in space Pi. Any point lying on this

triangle in space will project onto the image plane of camera one somewhere along

the line between pC1
i and eC1 and image plane of camera two somewhere along pC2

i

and eC2 .

The essential matrix E captures the relationship of a normalized homogeneous

image point pC1
i and its epipolar line `C1

i in image one to the corresponding epipolar

25

line `C2
i in image two, specifically `C2

i = EpC1
i and `C1

i = ETpC2
i . Looking at point

Pi in Figure 2.5, PC1
i are the coordinates of Pi in camera ones coordinate system. The

coordinates of PC2
i are PC2

i = RC1
C2P

C1
i +TC1

C2. Converting to normalized homogeneous

image coordinates this relationship becomes

λ2(p
C2
i) = RC1

C2λ1(p
C1
i) + TC1

C2

Multiplying this equation by T̂ gives

T̂λ2(p
C2
i) = T̂RC1

C2λ1(p
C1
i) + 0

with

T̂ =


0 −T3 T2

T3 0 −T1

−T2 T1 0


Taking the inner product of both sides with pC2

i

(pC2
i)T T̂RC1

C2(p
C1
i) = 0 (2.12)

This equation is known as the epipolar constraint and the essential matrix E is given

by

E = T̂RC1
C2

E is a function of RC1
C2 and TC1

C2 and if E can be calculated RC1
C2 and TC1

C2 can be

recovered.

If a number of point correspondences between images from camera one and

images from camera two can be generated then by exploiting the epipolar constraint

26

and the properties of the matrix E a precise numerical approximation of E can be

calculated. A common algorithm which does this is the 8-Point algorithm [26]. In brief

the algorithm sets up a linear system of equations using the point correspondences

and E that conforms to the epipolar constraint. This system is then solved in a least

squares sense to give a best fit E. Using SVD the rank of E is forced to be two, which

is the form required for an essential matrix. The result is an accurate approximation

of E. With E known, RC1
C2 and TC1

C2 can be recovered using SVD.

It was shown that for any point in image one, the corresponding point in image

two will lie along the line defied by `C2
i = EpC1

i . A method to calculate E and find

the location of camera two in relationship to camera one has also been developed.

Using all of these knowns a point in image one can be chosen, then the corresponding

point in image two can be found along the line `C2
i , which allows the triangulation of

point P using the known correspondences, RC1
C2, and TC1

C2.

2.7.2 Stereo rectification

Up to now one of the two assumptions which was made earlier has been ad-

dressed, which is that RC1
C2 and TC1

C2 were known. The second assumption was that

there was no noise in the image. In reality noise is unavoidable in imaging due to

the fact that points in continuous space are projected into pixels which have discrete

coordinates. A second level of noise is added due to imperfections and distortions in

the lens of the camera. With noise added into the images the two rays projected out

from each cameras origin through the corresponding image points will not intersect

in space. Thus an approximate intersection must be chosen which minimizes some

sort of error metric, such as the re-projection error in both images.

Avoiding the complexities of approximating the intersection of the two lines

27

P

B

Figure 2.6: Example of two stereo rectified cameras

and continuously calculating search lines `C2
i to find correspondences, the images from

each camera can first be rectified. In a rectified stereo pair the cameras have the layout

shown in Figure 2.6. In this camera layout the baseline between the cameras does not

intersect the image plane because the image planes are parallel. Since the baseline

does not intersect the image planes the epipolar points are now at infinity. When

this happens the corresponding epipolar lines in each image are the same and are all

parallel. This simplifies the search for correspondences because now a pixel at location

pC1 = (x, y) will correspond to a pixel in image two at pC2 = (x− d, y). The value d

is known as the disparity for the pixel between the two images. Correspondences can

be easily generated by comparing the sum of the color values in a window around a

point pC1
i in image one to the sum of the color values in a window around a point pC2

i

in image two where the two points are related by a disparity d. The value of d which

minimizes the difference of these two sums is the optimum disparity for the pixel.

Looking at the geometry between the two cameras the depth of a point is

directly related to the length of the baseline, the focal length of the camera, and the

28

disparity. This relationship is given by

ZC1
i = f

B

d

Where B is the length of the baseline, d is the disparity, f is the focal length, and Z is

the distance of the world point from the cameras origin, along the Z axis. Figure 2.7

shows this relationship. Ignoring the fact that noise causes the projection rays from

each image to not intersect at an exact point, but instead choosing to re project the

point along the ray corresponding to image one, then the coordinates of point Pi can

be reconstructed.

Pi =

(
ZC1

i

f
x,
ZC1

i

f
y, ZC1

i

)
To convert the cameras geometry to the geometry of stereo rectified cameras

the image plane of the two cameras can be rotated in space so that they become

co-planar. If the two planes are only rotated then the baseline will remain the same

and the above calculations will hold. Once the rotation is found which aligns the two

image planes a transformation can be calculated which converts the pixel coordinates

in the original image plane to the proper coordinates in the new image plane. The

result is two stereo rectified images. OpenCV includes a function which can perform

this transformation which is based upon the method in [14]. If the object points

are reconstructed with respect to this rectified image plane the reconstructed points

can be transfered back to the original coordinate system by using the inverse of the

rotation used to generate the new image plane. Thus it has been shown how the

locations of 3D points of an object can be recovered from two images of the points.

29

OI1 OI2

P

p1 p2 l

f

d

Z

B

Figure 2.7: Geometry of the disparity to depth relationship

30

Chapter 3

Methods

This thesis will focus on the implementation and comparison of three pose es-

timation algorithms. The first of the three algorithms is the SoftPOSIT [9] algorithm.

The second algorithm is an extension of the SoftPOSIT algorithm designed to work

with line features [8] instead of point features. The last of the three algorithms is one

proposed by Ulrich Hillenbrand in a paper called Pose Clustering From Stereo Data

[21].

3.1 SoftPOSIT

3.1.1 The SoftPOSIT algorithm

The SoftPOSIT algorithm is an extension of POSIT which is designed to

work with unknown correspondences. The algorithm develops correspondences while

updating the estimate of the pose. The algorithm takes an initial guess of the pose and

then develops possible correspondences based upon the initial pose guessed. With the

set of guessed correspondences the pose can be refined and then new correspondences

generated. This process is repeated until a final set of correspondences and the pose

31

fitting the correspondences is generated. First the method used to update the pose

is changed slightly from the original POSIT algorithm.

3.1.1.1 Updating POSIT

The previous definition of a rotation matrix RM
C from equation (2.1) will again

be used. The vector TM
C = [Tx, Ty, Tz]

T is the translation from the origin of the

camera CO to the origin of the model PC
0 , which need not be a visible point. The

rigid body transform relating the model frame to the camera frame is then given

by the combination of RM
C and TM

C . The image coordinates of the N model points

PM
i=0...N with the model pose given by RM

C and TM
C are


wix

P
i

wiy
P
i

wi

 =


f 0 0 0

0 f 0 0

0 0 1 0


RM

C TM
C

0̄ 1


PM

i

1



Notice that the camera matrix H here assumes the image coordinates are with respect

to the principal point, not the shifted image origin as in equation (2.5). The previous

expression can be rewritten to take the form


wix

P
i

wiy
P
i

w

 =


fr1 fTx

fr2 fTy

r3 Tz


PM

i

1



32

Setting s = f/Tz and remembering that homogeneous coordinates are scale invariant,

the previous equation can be re-written

wix
P
i

wiy
P
i

 =

sr1 sTx

sr2 sTy


PM

i

1

 (3.1)

wi = r3 · PM
i /Tz + 1

Notice that w is similar to the (ε + 1) term in equations (2.7) and (2.8) from the

POSIT algorithm. Similar to the term in POSIT, w is the projection of a model line

onto the cameras Z axis plus one. That is, w is the ratio of the distance from the

camera origin to a model point over the distance from the camera origin to the SOP

plane, or simply the ratio of the Z coordinate of a model point over the distance to

the SOP plane .

The equation for the SOP of a model point takes a similar form

xi
yi

 =

sr1 sTx

sr2 sTy


PM

i

1

 (3.2)

This is identical to equation (3.1) if and only if w = 1. If w = 1 then r3 · PM
i = 0

which means that the model point lies on the SOP projection plane and the SOP is

identical to the perspective projection.

Rearranging equation (3.1) gives

[
PM
i 1

]sr1T sr2
T

sTx sTy


︸ ︷︷ ︸

p′i

=

[
wix

P
i wiy

P
i

]
︸ ︷︷ ︸

p′′i

(3.3)

33

Assuming there are at least four correspondences between model points PM
i and image

points pi and that wi for each correspondence is known, a system of equations can be

set up to solve for the unknown parameters in equation (3.3).

The left half of equation (3.3) will be defined as p′i which is the SOP of model

point PM
i for the given pose, as in Figure 3.1. This definition is straightforward as

the left half of equation (3.3) is simply the transpose of equation (3.2) which was

the equation to find the image coordinates of the SOP of a model point. The right

hand side of equation (3.3) will be defined as p′′i which is the SOP of model point

PM
i constrained to lie along the true line of sight L of PC

i , which is the line passing

through the camera origin and the actual image point pi. The point lying along the

line of sight will be referred to as PC
Li and will be constrained to have the same Z

coordinate as PC
i . Figure 3.1 illustrates the relative layout of the points. Its been

shown that p′′i = wipi which can be proven by observing the geometry of the points.

It was shown before that wi is the ratio of the Z coordinate of a model point over

the distance to the SOP plane Tz. Therefore, wiTz is the Z coordinate of a point PC
i .

Using this fact PC
Li = wiTzpi/f which is the re projection of image point pi to a depth

wiTz. This gives the camera coordinates of point PC
Li.

When the correct pose is found, the points p′i and p′′i will be identical because

PC
i will already lie along L, the line of sight of PC

i . Thus the goal of the algorithm is to

find a pose such that the difference between the actual SOP and the SOP constrained

to the lines of sight is zero.

An error function which defines the sum of the squared distances between p′i

and p′′i as the error is given by

E =
N∑
i

d2i =
N∑
i

|p′i − p′′i |
2

=
N∑
i

(Q1 ·PM
i − wix

P
i)2 + (Q2 ·PM

i − wiy
P
i)2 (3.4)

34

SOP Plane

Image Planep''

p'

T

Tz

ωiTz

L

Z+

Figure 3.1: Point relationships in SoftPOSIT

with

Q1 = s

[
r1 Tx

]

Q2 = s

[
r2 Ty

]
Iteratively minimizing this error will eventually lead to the right pose.

To minimize the error the derivative of equation (3.4) is taken, which can be

expressed as a system of equations

Q1 =

(
N∑
i

PM
i PMT

i

)−1(N∑
i

wix
P
i PM

i

)
(3.5)

Q2 =

(
N∑
i

PM
i PMT

i

)−1(N∑
i

wiy
P
i PM

i

)
(3.6)

Like POSIT, at the start of the loop it can be assumed that wi=0...N = 1

calculate new values for Q1 and Q2, then update wi=0...N using the new estimated

pose. What we have developed up to here is simply a variation on the original POSIT

algorithm, now it can be extend to work with unknown correspondences.

35

3.1.1.2 POSIT with unknown correspondences

For the case of unknown correspondences there are N model points and M

image points. Model points will be indexed with the subscript i and image points

with the subscript j, thus there are PM
i=0...N model points and pj=0...M image points.

If correspondences are unknown then any image point can correspond to any model

point and there are a total of MN possible correspondences.

With wi defined as before in (3.1). The new SOP image points are

p′′ji = wipj (3.7)

and

p′i =

Q1 ·PM
i

Q2 ·PM
i

 (3.8)

Where equation (3.7) is the SOP of model point PC
i constrained to the line of sight L

of image point pj and equation (3.8) is identical to the original p′i in (3.3) but adding

the new Q notation.

The distance between points p′′ji and p′i is given by

d2ji =
∣∣p′i − p′ji∣∣2 = (Q1 ·PM

i − wix
P
j)2 + (Q2 ·PM

i − wiy
P
j)2 (3.9)

which can be used to update the previous error equation (3.4) giving a new error

equation

E =
N∑
i

M∑
j

mij

(
d2ji − α

)
=

N∑
i

M∑
j

mij

(
(Q1 ·PM

i − wix
P
j)2 + (Q2 ·PM

i − wiy
P
j)2 − α

)
(3.10)

where mji is a weight in the range 0 ≤ mji ≤ 1 expressing the likelihood that model

36

point PM
i corresponds to image point pj. The term α is here to bump the error away

from setting all the weights to zero and to account for noise is the locations of feature

points in the images so that slightly mis-aligned model and image points can still be

matched. In the case that all correspondences are completely correct mij = 1or0 and

α = 0 this equation is identical to the previous error equation (3.4).

The matrix m is a (M + 1)× (N + 1) matrix where each entry expresses the

probability of correspondence between image points and model points. The individual

entries are populated based upon the distance between SOP points p′′ji and p′i given

by dji. As dji increases the corresponding entry in mji will decrease towards zero and

as dji decreases mji increases indicating that points likely match. At the end of the

SoftPOSIT algorithm the entries of m should all be nearly zero or one, indicating

that points either correspond or don’t. The matrix m is also repeatedly normalized

across its rows and columns to ensure that the cumulative probability of any image

point matching any model point is one and the total probability of any model point

matching any image point is one. This matrix form is referred to as doubly stochastic

and an algorithm from Sinkhorn [37] is used to achieve the form. In the case that a

given model point is not present in the image or a point in the image does not have

a matching model point the weight in the last row or column of m will be set to

one. The last row and column of m are the slack row and slack column, respectively,

and are the reason why m has plus one rows and columns. Entries in these locations

indicate no correspondence could be determined.

With the error function defined the values of Q1 and Q2 which will minimize

the error are found in the same fashion previously and are given by

Q1 =

(
N∑
i

(
M∑
j

mji

)
PM

i PMT

i

)−1(N∑
i

M∑
j

mjiwix
P
j PM

i

)
(3.11)

37

Q2 =

(
N∑
i

(
M∑
j

mji

)
PM

i PMT

i

)−1(N∑
i

M∑
j

mjiwiy
P
j PM

i

)
(3.12)

As before the algorithm is started with a wi=0...N = 1 and then m is populated

by calculating all of the values of dji. Since m must be populated before updating

Q1,2, an initial pose must be given to the algorithm which is the pose used to generate

m. With m populated Q1,2 can be updated, which is then used to generate a better

guess for wi=0...N . This process is repeated until convergence.

At the conclusion of the algorithm the pose parameters can be retrieved from

Q1,2.

s = (
∥∥[Q1

1, Q
2
1, Q

3
1

]∥∥ ∥∥[Q1
2, Q

2
2, Q

3
2

]∥∥)1/2

R1 =
[
Q1

1, Q
2
1, Q

3
1

]T
/s R2 =

[
Q1

2, Q
2
2, Q

3
2

]T
/s

R3 = R1 ×R2

T =

[
Q4

1

s
,
Q4

2

s
,
f

s

]

3.1.2 Limitations and Issues with SoftPOSIT

The need for an initial guessed pose is the major limitation of the SoftPOSIT

algorithm. Since the pose update equation is dependent upon the initial pose with

which the algorithm is started, the algorithm will only converge to the local minimum

which satisfies the error function (3.10). To converge to the true pose the algorithm

may need to be started at a variety of different poses around the actual pose. Addi-

tionally if the algorithm is started at a pose which is too far away from the correct

pose the algorithm will not converge and will terminate early with no solution.

Since the algorithm relies on matching feature points and pays no attention

to the visibility of feature points based upon pose, the algorithm will often match

38

points in the model which actually are occluded by the model its self to points in the

image. For example, when trying to match our cube model to the images most of the

corner points on the back of the cube are not visible because the front of the cube

occludes the back; however, the algorithm will often match points which correspond

to the back of the model to imaged corners belonging to the front of the cube. These

types of matches should not be allowed due to the geometry of the model occluding

its self, but there is no mechanism in the algorithm to account for this.

The other major limitation of this algorithm is accurate feature extraction.

When trying to detect corners for example a rounded corner may not be detected or

the overlap of two objects may lead to spurious corner detections which the algorithm

may converge to.

When the algorithm does finally converge to a pose there is no way of know-

ing if the algorithm generated the correct correspondences or even matched to true

features of the object instead of some of the spuriously detected ones. Thus any

pose detected by the algorithm must be evaluated to check its ’fitness’ before being

accepted as the final answer.

3.2 SoftPOSIT With Line Features

3.2.1 SoftPOSIT With Line Features Algorithm

After the initial development of SoftPOSIT an extension of the algorithm was

created to allow the algorithm to be run on line features [8]. The underlying Soft-

POSIT algorithm is identical to the one previously described. Since the SoftPOSIT

algorithm relies on point features to actually preform the pose estimation and corre-

spondence determination the line features and correspondences are converted to point

39

pj'

pj

lj

Pi'
C

Pi
C

Li
OI X+

Y+

pji
pji'

Figure 3.2: Generation of projected lines in SoftPOSITLines

features and point correspondences.

3.2.1.1 Converting line features to point features

For the current image all of the lines which are candidates for matching to the

model lines are detected. Using the previous notation the two end points of a model

line are given by Li = (PM
i , P ′Mi) and the two end points of a detected image line are

lj = (pj, p
′
j). N will now represent the number of model lines, meaning there will be

2N model points which correspond to the lines and M image lines which will have

a total of 2M points. The plane in space which contains the actual model line used

to generate image line lj can be defined using the points (CO, pj, p
′
j) as in Figure 3.2.

The normal to this plane nj is given by

nj = [pj, 1]× [p′j, 1]

If the current model pose is correct and model line Li corresponds to image line lj

then the points

SC
i = RM

C PM
i + TM

C S′Ci = RM
C P′Mi + TM

C

40

will lie on the plane defined by (CO, pj, p
′
j) and will also satisfy the constraint that

nT
j SC

i = nT
j S′Ci = 0. Using the SoftPOSIT algorithm its assumed that at first RM

C

and TM
C will not be correct and therefore Li will not lie in the plane.

Recalling the SoftPOSIT algorithm the model points given the current pose

were constrained to lie on the lines of sight of image points. In this instance it will

be required that the model lines lie on the planes of sight of the image lines. If model

line endpoints given by SC
i and S ′Ci are the model line endpoints in the cameras frame

for the current pose, then the nearest points to these line endpoints which fulfill the

planar constraint are the orthogonal projections of points SC
i and S ′Ci onto the plane

of sight. The coordinates of these projected points are given by

SC
ji = RPM

i + T
[
(RPM

i + T) · nj

]
∗ nj (3.13)

S′Cji = RP′Mi + T
[
(RP′Mi + T) · nj

]
∗ nj (3.14)

Notice these points are still in the 3D camera frame, however the image of these

points can be generated as

pji =
(Sijx , Sijy)

Sijz

p′ji =
(S ′ijx , S

′
ijy)

S ′ijz
(3.15)

The collection of point pairs given by 3.15 will be analogous to the constrained

SOP points p′′ji see equation (3.7). The collection of these points for the current guess

of RM
C and TM

C will be referred to as

Pimg(R
M
C ,T

M
C) =

{
pji, p

′
ji, 1 ≤ i ≤ N, 1 ≤ j ≤M

}
(3.16)

41

The collection of model points analogous to p′i see equation (3.8) will be referred to

as

Pmodel =
{
PM
i , P ′Mi , 1 ≤ i ≤ N

}
(3.17)

A new m matrix for expressing the probability that point pji corresponds to

PM
i and p′ji corresponds to P ′Mi must now be developed. The total dimensionality

of m will be 2MN × 2N but the matrix will only be sparsely populated. First, half

of the possible entries are 0 because pji corresponds to PM
i and p′ji corresponds to

P ′Mi but the opposite is not true i.e. pji does not correspond to to P ′Mi and p′ji does

not corresponds to PM
i . Since the image points are generated by projecting model

lines onto planes formed by image lines, image points should only be matched back

to the model lines which generated them. If for example a set of image points pj1

and p′j1 correspond to L1 projected onto all of the image line planes, pj1 should only

be matched to PM
1 and p′j1 to P ′M1 . Attempting other correspondences would be

senseless as the points pj1 and p′j1 are derived from L1. Thus m will take a block

diagonal form as in the example Figure 3.2.1.1. In Figure 3.2.1.1 l1 corresponds to

L3 and l2 corresponds to L1. As before the matrix is required to be doubly stochastic

which can still be achieved via Sinkhorn’s [37] method. When the pose is correct

every entry in the matrix will be close to one or zero indicating that the lines/points

either correspond or don’t.

Again recalling the previous algorithm the values of m prior to normalization

are related to the distance between model points SOP’s and their line of sight cor-

rected SOP’s. Since this algorithm is matching line features distances will be defined

in terms of line differences rather than point distances. Using these distances, any

points generated from model line Li and image line lj i.e. points pji, p
′
ji have distance

42

P1 P1’ P2 P ′2 P3 P ′3
p11 .3 0 0 0 0 0
p′11 0 .3 0 0 0 0
p12 0 0 .1 0 0 0
p′12 0 0 0 .1 0 0
p13 0 0 0 0 .8 0
p′13 0 0 0 0 0 .8
...

...
...

...
...

...
...

p21 .7 0 0 0 0 0
p′21 0 .7 0 0 0 0
p22 0 0 .2 0 0 0
p′22 0 0 0 .2 0 0
p23 0 0 0 0 .2 0
p′23 0 0 0 0 0 .2

Figure 3.3: Example form of the matrix m for SoftPOSIT with line features

measures

dji = ∆θ(lj, li) + ρd(lj, li) (3.18)

where

∆θ(lj, li) = 1− cos∠ljli

li is the line obtained by taking the perspective projection of Li and d(lj, li) is the sum

of the distances from the endpoints of lj to the closest point on li. Thus this distance

metric takes into account the mis orientation of two matched lines and the distance

between the two lines. The reason d(lj, li) is chosen as the sum of the endpoints of the

image line to the closest point on the imaged model line is that a partially occluded

line will still have a distance of zero indicating that a match is found. This behavior

is desirable because the algorithm should be able to match partially occluded image

lines to whole model lines. These distance measures are used to populate m prior to

the normalization by the Sinkhorn algorithm.

Using the new weighting matrix, and modified p′′ji and p′i given by equations

43

(3.16) and (3.17) respectively the originally described SoftPOSIT algorithm can be

applied to the line generated points.

The algorithm is started and terminated in the same fashion as before. The

algorithm is started with an initial pose guess and assumes wi = 1. The algorithm

then generates the points Pimg and the corresponding weights for the probability of

points matching, and updates Q1 and Q2 using the weights and current w’s. Next,

the algorithm updates the values for w’s using the current pose guess and repeats the

process until convergence.

3.2.2 Limitations and Issues with SoftPOSIT Using Line Fea-

tures

The major advantage of using line features over point features is that line

features are generally more stable and easier to detect. For example a rounded corner

probably won’t be detected by a corner detector; however, the two lines leading

into the rounded corner will still appear. The problem of occlusions generating fake

features is still present because two overlapping objects will generally form a line

when a line detector is used.

The problem of self-occlusion is also still not addressed in this algorithm, so

lines which are not visible in the current object pose can still be matched to image

lines. This is especially a problem when the object is symmetric and thus has many

lines which are parallel and can align when in certain poses.

This algorithm also returns the local pose which minimizes the error func-

tion so again the algorithm must be started using different initial poses to find the

global minimum. The poses must also be evaluated for correctness as with regular

SoftPOSIT.

44

Typically, when compared to SoftPOSIT using point features the final poses

returned by the algorithm are more accurate and the probability of converging to the

correct pose is generally higher.

3.3 Pose Clustering From Stereo Data

3.3.1 Pose Clustering From Stereo Data Algorithm

In Section 2.7 it was shown how it is possible to generate a 3D point cloud

reconstruction of a scene given two views of the scene. It will now be assumed that

a model point cloud M has been generated where the origin and orientation of the

model frame is known and the points coordinates are expressed in reference to this

frame. The origin of the model is located at the center of the model point cloud. For

every point in the model cloud the line of sight from the camera to to the original

point must also be stored, the need for this will be shown later.

If another image is captured of the same object and the coordinates of the

3D point cloud reconstruction are generated with respect to the camera coordinate

system, then this point could will be referred to as S the scene point cloud. The goal

then is to find some rigid body transform which will relate the points in M to the

points in S. This transform will be the pose of the object w.r.t the cameras coordinate

system.

It should be noted that in the full implementation of this algorithm the model

is generated by taking multiples views of an object from different angles and recon-

structing the complete 3D geometry of the object. This task is simple enough to

do if the object is placed at a location in a model based coordinate system and the

camera is moved to specific known locations in the model frame so that all of the

45

[R|T]

r1

r2

r3

r'1

r'2

r'3

a

b

c

a'

b'

c'

Figure 3.4: Example of two matched triplets

reconstructions from each view can be transformed into the frame of reference of the

object. In this implementation we will be using a model constructed from only a sin-

gle viewpoint; however, this has no bearing on the implementation so the extension

to multiple views is as simple as stitching together different viewpoints to make a

more complete model.

Assuming that both the model and scene point clouds are generated. If three

points in M which correspond to three points in S can be identified, then the trans-

form that moves the coordinates of the the points in M to the corresponding points in

S gives the pose of the object. However, full point correspondences are impossible to

generate because the only data being used in this algorithm is 3-D point data. Since

point correspondences can not be directly generated by matching features, triplet cor-

respondences are generated instead. Where triplet correspondences refers to matching

the lengths between three points in the scene to the lengths between 3 points in the

model. Figure 3.4 shows two matched triplets. If 3 triplet lengths can be matched

then three point correspondences can be generated and the pose can be reconstructed.

Since the 3D point cloud reconstruction is not exactly accurate due to noise in the

images and re projection errors it is not possible to match triplet lengths exactly. In-

stead a matching threshold is used such that if two lengths are within some tolerance

they are considered to be matched.

Due to the matching tolerance and the geometry of the objects there will be

46

many triplets in the model which can be matched to a single triplet in the scene. If all

of the the rotations and translations were computed which move all of the matched

model triplets into the scene, then only one of the transforms would be the correct

transform and all of the others would be incorrect. If the process of picking a triplet

from the scene and matching it to possible matches in the model is repeated then

eventually a number of correct guesses would be generated along with many many

more incorrect guesses. However, if the poses are stored in a 6D parameter space

a cluster of poses corresponding to the actual object pose will develop along with

other randomly distributed poses throughout the rest of the space. Dividing the 6D

parameter space into a set of hypercubes allows easy detection of when a cluster has

been generated in space. Once a cluster of points in the parameter space is detected,

the pose which best describes the cluster can be generated. This pose will then

correspond to the pose of the object in space.

Using this approach, Hillenbrand developed an algorithm [21] that is summa-

rized as follows:

1. Draw a random point triple from S the sample point cloud

2. Among all matching point triples in M pick one at random

3. Compute the rigid body transform which moves the triple from M to the triple

in S.

4. Generate the six parameters which describe the transform and place the pose

estimate into the 6D pose space.

5. If the hypercube containing this 6D point has less than Nsamples members return

to 1 otherwise continue.

6. Estimate the best pose using the 6D point cluster generated in space.

47

Now that the algorithm as a whole has been presented the details of the steps

will be presented.

To find pairs of matching triplets an efficient method for matching triplet

lengths needs to be developed. To do this a hash table containing triplets from the

model which is indexed by the lengths between the points is generated. To ensure that

points are always matched in the proper order the line lengths are always generated

by going clockwise around the points according to the the point of view of the camera.

Failure to do this would result in incorrect point correspondences even though the

lines were correctly matched. The three values used to hash three model points

r1, r2, r3 with lines of sight l1, l2, l3 are given by the equation


k1

k2

k3

 =




‖r2 − r3‖

‖r3 − r1‖

‖r1 − r2‖

 if [(r2 − r1)× (r3 − r1)]T (l1 + l2 + l3) > 0


‖r3 − r2‖

‖r2 − r1‖

‖r1 − r3‖

 else



(3.19)

where k1, k2, k3 are the lengths between the points. This hashing method guarantees

that the points are hashed in a clockwise order according to the point of view of the

camera. In addition to hashing the three points with the order k1, k2, k3 the points are

also hashed with the keys k3, k1, k2 and k2, k3, k1. The three points are hashed with

all three of these entries because when picking three points from the current scene

there is no way of knowing which order they will appear in, only that the lengths

between them are generated in a clockwise manner. Using the method presented to

generate clockwise lengths a point triple can be selected in S and the appropriate

48

lengths generated. Using those three lengths and the hash table, all of the model

triples which could possibly match the scene triple can be quickly found.

The method for finding the rigid body transform which relates the three points

is based on quaternions and is explained in [24]. This method is used because it finds

the best fit R and T in a least squares sense that relates points r1, r2, r3 in the model

to points r′1, r
′
2, r
′
3 in the scene. This method is also specifically designed to work with

three pairs of corresponding points which is the number of correspondences which

this algorithm generates.

A method of converting pose parameters to 6D points is now presented. A

rotation matrix R can be expressed as an axis of rotation and an angle of rotation.

R = exp(ŵθ)

where ŵ is the unit vector about which the rotation takes place and θ is the amount

in radians by which points are rotated. The vector ŵθ is called the canonical form

of a rotation. R will now be considered the canonical form of a rotation matrix R.

Combining the vectors [R,T] into one large vector gives a 6D vector which completely

describes the rigid body transform/pose. This 6D vector could be chosen to preform

pose clustering, but there is one major problem. If parameter clustering is to be

preformed, a consistent parameter space must be used so that clusters are not formed

due to the topology of the parameter space alone. Hillenbrand shows in his earlier

work [39] that the canonical parameter space is not consistent and therefore is not

suitable for parameter clustering. He proposes a transform

ρ =

(
‖R‖ − sin ‖R‖

π

)1/3
R

‖R‖
(3.20)

49

which is a consistent space parameterized by a vector ρ ∈ R3, where each element

ρ1, ρ2, ρ3 all satisfy −1 ≤ ρi ≤ 1 . Thankfully the Euclidean translation space is

already consistent so all of the pose estimates can be stored in a consistent 6D pa-

rameter space using vector p = [ρ,T].

Now that poses can be parameterized in a 6D space, the final part of the

algorithm is examined. This part of the algorithm determines the best pose which

represents all of the pose points in the cluster. The best pose is found by using a

mean shift procedure described in [7]. The procedure is started with p1 equal to the

mean of all the poses pi=1...Nsamples
in the bin which was filled, and is repeated until∥∥pk − pk−1

∥∥ < δ indicating the procedure has converged.

pk =

∑Nsamples

i=1 wk
i pi∑Nsamples

i=1 wk
i

(3.21)

wk
i = u

(∥∥ρk−1 − ρi∥∥ /rrot)u (∥∥Tk−1 −Ti

∥∥ /rtrans)
where

u(x) =


1 if x < 1

0 else


The radii rrot and rtrans define a maximum radius around the current mean which

points must lie in in order to contribute to the new mean. These values are dependent

upon the bin size used to generate the point cluster and can be varied accordingly.

The final result of the clustering algorithm is the pose given by pk which represents

the mean of the major cluster within the bin. This is the final pose output by the

algorithm.

50

3.3.2 Limitations and Issues with Pose Clustering

Out of the three algorithms discussed in this thesis this is the only one which

is feature independent. This is one of the most appealing parts of this algorithm

because it can be used on any type of object with any texture as long a some sort of

stereo depth information can be recovered. The drawback to this feature is that it

makes it relatively simple to confuse similar objects. For example in the experiments

section we will attempt to find cubes and cuboids where the dimensions are the same

except that the cuboid is wider. In this sort of case it is easy to place the cube inside

of the cuboid because the geometry of the shapes are relatively similar.

51

Chapter 4

Experiments and Results

4.1 Experiments

4.1.1 The sample set

For the evaluation of the algorithms a total of 95 different images were cap-

tured, and their 3D reconstructions were generated. The images include single cubes,

cuboids, and assemblies of cubes and cuboids both with and without other objects

in the frame and with and without occlusions. The sample set was captured using a

pair of Playstation Eye cameras controlled with OpenCV.

Results will be presented that show the effectiveness of each algorithm in

detecting the objects of interest see Figure 4.1, and comparing the effectiveness of

detecting assemblies using only a single component as the model as compared to the

entire assembly as the model, i.e., finding the assembly using only the cube as the

model compared to detecting the pose of the assembly using the entire assembly as

the model.

52

(a) Cube (3cm x 3cm x 3cm) (b) Assembly (c) Cuboid (3cm x 3cm x6 cm)

Figure 4.1: The Objects of Interest

4.1.1.1 Sample set pre-processing

For all of the images background subtraction was used to isolate the actual ob-

jects in the scene from the backdrop. The 3D reconstruction and line/corner detection

was then performed on the segmented objects only to remove noise sources unasso-

ciated with the objects in the scene. No color information was used to distinguish

objects from one another, determine object boundaries, or to verify poses.

4.1.1.2 Sample set divisions

The image set was divided into three parts and then all of the algorithms were

run against the sets. The first set is the collection of all images where a cube as in

Figure 4.1(a) is the object of interest. This set includes pictures of individual cubes,

cubes as a part of an assembly, and cubes with other objects and cuboids present. The

second set consists of all images where an assembly as in Figure 4.1(b) is the object

of interest. The assembly is a cube directly attached to a rectangular cuboid. The

assembly set consists of images of a single assembly and images of a single assembly

with cubes, cuboids, and other objects present. The final set consists of all images

where the rectangular cuboid shown in Figure 4.1(c) is the object of interest. This

set contains images of the cuboid by itself and images of the cuboid with cubes and

53

other objects present.

4.1.1.3 Generation of baseline true poses

All of the images in the sample set show the object of interest in a 45x30 cm

space which is roughly 30 cm from the camera. Baseline truths for the positions

of the objects were generated by placing the objects at a known location in the

world coordinate system and converting the coordinates to a location in the cameras

coordinate frame of reference. The orientation of the objects was found by fitting the

model of the object to the image of the object by manually generating correspondences

and applying a PNP (Perspective N Point) algorithm. The baseline truths were

generated in this split fashion because it is difficult to accurately determine the 3-

D location of an object when trying to generate correspondences by hand because

small changes in location of the object can lead to nearly unnoticeable changes in the

image data, and manually localizing the point where a feature is located in an image

is not necessarily an easy task even for a human. Locating the object in a world

coordinate system can easily be done by placing the object on a sheet of grid paper,

as was done in this implementation, and then converting the coordinates to camera

coordinates with a coordinate system transform. The orientation of the object on the

other hand is difficult to measure by hand and can be relatively accurately determined

by generating correspondences by hand, because PNP algorithms are less sensitive to

noise when determining orientation as apposed to position.

4.1.2 SoftPOSIT algorithm implementations

The SoftPOSITPoints algorithm was obtained directly from Daniel DeMenth-

non and was run in Matlab 2011a.

54

For the points algorithm the chosen features were the block corners. To find

the corners a corner detector was used [5]. This corner detector detects corners by

looking for line intersections and is designed to robustly detect rounded corners where

lines do not meet at a sharp point, which is often the case with the objects of interest.

The SoftPOSITLines algorithm was created by modifying DeMenthnon’s orig-

inal code and was also implemented in Matlab 2011a.

The SoftPOSITLines algorithm required line extraction and this was achieved

via the Canny edge detector [4] in combination with the Douglas-Peucker line simpli-

fication algorithm [11].

4.1.2.1 SoftPOSIT pose verification

For both of the variants of the SoftPOSIT algorithm the final step before

accepting the estimated pose is an evaluation of the ‘fitness’ of the pose. This was

done by calculating the mean distance of the model lines, projected to the image

plane given the current pose, to the nearest image lines. Once all of the distances

were calculated the pose was accepted if 5 model lines were within 4 pixels average

distance to any image lines. In addition the pose was required to project into the

foreground segmented region of the image. This check was preformed first to quickly

eliminate poses which place the object in an area occupied by the background.

4.1.3 Triplet matching algorithm implementation

The point triplet matching algorithm was coded in Visual Studio 2008 using

C++ and the OpenCV library.

In this implementation of the triplet matching algorithm two levels of pose

binning were performed. In the first level of binning the translation space is divided

55

into 4cm cubes which corresponds to dividing each translation parameter into 25 bins

and the consistent rotation sphere is divided into 64 bins with 4 bins of division for

each parameter. In the second level the 4cm cube is divided into 7mm cubes by re

binning with 6 bins per parameter. The rotation space is re binned using six bins per

parameter to give a resolution .04 units for each parameter. This binning method

was chosen because it allows a large initial search space to be somewhat refined then

re binned to give an accurate final pose. This saves time in the binning process and

memory in the implementation because the more bins which a space is divided into

the longer it will take for a bin to fill which means that more pose estimates must

be stored before a single bin fills. With the hierarchical binning method a space can

be coarsely binned until a bin fills which gives a smaller search space that can then

be binned for a more accurate pose estimate. With the hierarchical method all poses

from the higher levels of binning can be removed from memory once the refined search

space is determined. This helps with avoiding memory limitations when searching for

a pose over a large space. For the first level of binning a bin was considered full when

it had 5000 poses contained in a bin and for the second level a full bin was achieved

at 300 poses. The bigger bins require a bigger count to be considered full because

incorrectly matched triplets can accumulate in space easily when the bins are larger

and this can lead to bins which fill that do not contain the actual pose. Likewise

smaller bins can have a smaller fill count because randomly matched triplets will be

more dispersed throughout the bins.

4.1.4 The search space

The search space for all of the algorithms was identical. The search space

covered -.5m to .5m in the X and Y directions and 0m to 1m in the Z direction,

56

where the X,Y, and Z directions correspond to the camera coordinate axes in Figure

2.2(b) and the full range of rotations in the unit sphere. For the SoftPOSIT algorithms

the initial poses were selected at random with uniform probability from within the

total range.

4.2 Results

The results of the three algorithms will be discussed in three sections. First

the results of the two monocular methods of pose estimation SoftPOSITPoints and

SoftPOSITLines will be discussed and analyzed. Then the results of the Binocular

triplet matching algorithm will be examined. Finally a global comparison of the three

algorithms and their overall performance will be given.

Results from each algorithm will be presented in a fashion that allows direct

comparisons of the performance of each algorithm on specific images and in a classed

form that enables a way to quickly evaluate the performance of each algorithm in a

global sense.

Table 4.1 shows the breakdowns and significance of each class and Figure 4.2

shows example poses from each class. Class 1 corresponds to poses which are correct

within a small tolerance, and that can be used in applications where relatively high

accuracy is a concern such as accurately gripping an object for assembly. Class 2

provides poses which yield good localization but no useful sense of orientation. This

type of accuracy could be useful for simple obstacle avoidance. Class 3 provides poses

which accurately express an objects orientation but only approximate its location.

These pose results could be used for visual rotational servoing or determining which

way a rotating object is pointing. Finally the poses in Class 4 are essentially incorrect

and have no real practical use. In all cases the translational error is given in units

57

(a) Example Class 1 Pose (b) Example Class 2 Pose

(c) Example Class 3 Pose (d) Example Class 4 Pose

Figure 4.2: Example poses from each class

58

Class Translation Error (cm) Rotation Error Significance
Min Max Min Max

1 0 1.5 0 2
Essentially correct pose in
terms of both position and
orientation.

2 0 1.5 2 ∞
Pose provides correct local-
ization but no sense of ori-
entation.

3 1.5 3.5 0 2
Pose provides approximate
localization and correct ori-
entation.

4 All other cases
Pose provides no useful lo-
calization or orientation.

Table 4.1: Summary of the properties and significance of performance classings

of centimeters. The rotation error is given by a uniformly scaled distance in the

consistent rotation space (4.1) between the true pose and the algorithms guessed

pose.

er = 10 ‖ρactual − ρguess‖ (4.1)

where

ρ =

(
‖R‖ − sin ‖R‖

π

)1/3
R

‖R‖

For reference, 1 unit of error in the scaled consistent space corresponds to roughly

15◦ of rotation error along the correct axis of rotation or rotating the correct amount

around an axis which is 6◦ off from the correct axis of rotation. Plots are also provided

which show the breakdown of the translation error for each image in terms of error

along each unit axis in cm.

The plots displaying the performance of the algorithm across the different

images sets are given in Figures 4.3-4.12. Figures 4.3, 4.6, and 4.9 all show the total

pose estimation error of each algorithm on each image of the dataset. These figures

allow direct comparisons of the performance of each algorithm on individual images.

59

Figures 4.5, 4.8, and 4.11 all show the breakdown of the translation estimation error of

each algorithm on each image of the dataset. These figures allow direct comparisons

of the translational accuracy of each algorithm on individual images. Figures 4.4,

4.7, and 4.10 all show total pose estimation error for each algorithm independently

sorted by class. These figures allow global comparisons of the performance of each

algorithm on the different image sets.

4.2.1 Monocular Methods

Out of the two monocular methods presented, SoftPOSITPoints and Soft-

POSITLines, the lines method is definitely the more stable, in terms of converging to

a usable pose, and the more accurate of the two. For the case of detecting either the

cube or cuboid the lines method consistently had higher detection rates for classes

1,2, and 3 see Figures 4.4,4.10. The only image set where the points algorithm outper-

formed the lines algorithm was in detecting the assembly, see Figure 4.7. However, in

this instance, neither algorithm had any Class 1 detections and the points algorithm

only outperformed the lines algorithm by achieving two Class 3 detections.

A major limitation with the monocular pose estimation methods, is correctly

determining the Z coordinate of the object, or in other words the object’s distance

from the camera. Figures 4.5,4.8, and 4.11 all show the breakdown of the translation

error into its individual X,Y, and Z components. For both the points and lines

algorithms a disproportionately large part of the error is in the Z component. In

fact many instances can be found where the X and Y error components are within a

few millimeters while the Z component is only within a few centimeters. This error

disparity is due to poor localization of image features and pixel discretization. Due

to the properties of the perspective transform mis locating a feature in the image by

60

2 4 6 8 10
0

10

20

30

40

50

60

70

Im
a

g
e

 N
u
m

b
e

r

Posit Points Error
2 4 6 8 10

Posit Lines Error
2 4 6 8 10

Triplet Matching Error

Trans Error

Rot Error

Pose Error for the Three Algorithms on Each Image

Figure 4.3: Total pose error of the three algorithms for each image in the cube image
set. The translation error is given in cm while the rotation errors are lengths in the
scaled consistent space (4.1).

61

2 4 6 8 10

Posit Points Error

1
2

3

4

2 4 6 8 10

Posit Lines Error

1

2

3

4

2 4 6 8 10

Triplet Matching Error

1

2

3

4

Trans Error

Rot Error

Pose Error for the Three Algorithms Independently Sorted By Group

Figure 4.4: Pose error of the three algorithms on the cube image set. For each
algorithm, results are sorted by total error and classified. The dotted lines indicate
class boundaries and the numbers indicate the class labels. Table 4.1 shows the
requirements of each class.

62

2 4 6 8 10
0

10

20

30

40

50

60

70

Im
a
g
e
 N

u
m

b
e
r

Posit Points Error (cm)
2 4 6 8 10

Posit Lines Error (cm)
2 4 6 8 10

Triplet Matching Error (cm)

X Error

Y Error

Z Error

Translation Error for the Three Algorithms on Each Image

Figure 4.5: Breakdown of the translational error for the three algorithms for each
image in the cube set. Errors are given in cm

63

2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

Im
a

g
e

 N
u
m

b
e

r

Posit Points Error
2 4 6 8 10

Posit Lines Error
2 4 6 8 10

Triplet Matching Error

Trans Error

Rot Error

Pose Error for the Three Algorithms on Each Image

Figure 4.6: Total pose error of the three algorithms for each image in the assembly
image set. The translation error is given in cm while the rotation errors are lengths
in the scaled consistent space (4.1).

64

2 4 6 8 10

Posit Points Error

2

3

4

2 4 6 8 10

Posit Lines Error

2

4

2 4 6 8 10

Triplet Matching Error

1

2

4

Trans Error

Rot Error

Pose Error for the Three Algorithms Independently Sorted By Group

Figure 4.7: Pose error of the three algorithms on the assembly image set. For each
algorithm, results are sorted by total error and classified. The dotted lines indicate
class boundaries and the numbers indicate the class labels. Table 4.1 shows the
requirements of each class.

65

2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

Im
a
g
e
 N

u
m

b
e
r

Posit Points Error (cm)
2 4 6 8 10

Posit Lines Error (cm)
2 4 6 8 10

Triplet Matching Error (cm)

X Error

Y Error

Z Error

Translation Error for the Three Algorithms on Each Image

Figure 4.8: Breakdown of the translational error for the three algorithms for each
image in the assembly set. Errors are given in cm

66

2 4 6 8 10
0

5

10

15

20

25

30

Im
a

g
e

 N
u
m

b
e

r

Posit Points Error
2 4 6 8 10

Posit Lines Error
2 4 6 8 10

Triplet Matching Error

Trans Error

Rot Error

Pose Error for the Three Algorithms on Each Image

Figure 4.9: Total pose error of the three algorithms for each image in the cuboid
image set. The translation error is given in cm while the rotation errors are lengths
in the scaled consistent space (4.1).

67

2 4 6 8 10

Posit Points Error

2

3

4

2 4 6 8 10

Posit Lines Error

1

3

4

2 4 6 8 10

Triplet Matching Error

1

2

4

Trans Error

Rot Error

Pose Error for the Three Algorithms Independently Sorted By Group

Figure 4.10: Pose error of the three algorithms on the cuboid image set. For each
algorithm, results are sorted by total error and classified. The dotted lines indicate
class boundaries and the numbers indicate the class labels. Table 4.1 shows the
requirements of each class.

68

2 4 6 8 10
0

5

10

15

20

25

30

Im
a
g
e
 N

u
m

b
e
r

Posit Points Error (cm)
2 4 6 8 10

Posit Lines Error (cm)
2 4 6 8 10

Triplet Matching Error (cm)

X Error

Y Error

Z Error

Translation Error for the Three Algorithms on Each Image

Figure 4.11: Breakdown of the translational error for the three algorithms for each
image in the cuboid set. Errors are given in cm

69

0

2

4

6

8

10

12

14

16

18

D
e
te

c
ti
o
n
 W

it
h
 W

h
o
le

 A
s
s
e
m

b
ly

 M
o

d
e

l

Im
a

g
e
 N

u
m

b
e
r

2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

D
e
te

c
ti
o
n
 W

it
h
 C

u
b
e

 M
o
d
e
l

Im
a
g

e
 N

u
m

b
e
r

Posit Points Error
2 4 6 8 10

Posit Lines Error
2 4 6 8 10

Triplet Matching Error

Trans Error

Rot Error

Pose Error for the Three Algorithms in Detecting Assembly
Components and Whole Assemblies

Figure 4.12: Total error for the three pose estimation algorithms on the assembly set.
The first row shows the results of trying to find the assembly using the assembly as
the model, while the second rows shows the results of finding the assembly using only
the cube as the model.

70

a pixel or two will not have a large bearing on the objects X,Y location in space but

it does greatly affect the objects Z location in space. This relationship can be seen

in equation (2.3) which shows that an images x,y coordinates are proportional to an

objects X,Y world coordinates by a factor given by Z. Thus small changes in x or y

correspond to larger changes in Z. If better feature localization were possible many

of the Class 3 poses could be improved to Class 1 poses since this would reduce the

error in the Z direction.

The lines algorithm does not suffer from this localization issue quite as much

as the points algorithm because lines do not require localization to a single point.

For this reason the lines algorithm tends to have more Class 1 members than Class 3

members and also consistently has more Class 1 members than the points algorithm.

Another limitation to both of these algorithms is mismatching features. This is

especially a problem with highly rotation symmetric objects like the cube and cuboid

because these objects can assume many poses where model features will line up with

image features and only one of the possible poses is actually correct. These types of

poses belong to Class 2 see Figure 4.13 for examples. In both of these instances the

poses visually appear to be correct to the naked eye and indeed many of both the

line and point features appear to be correctly matched, but in actuality both poses

have a rotational error of 4 or more units in the scaled consistent space.

The ‘fitness’ test for accepting the poses returned by the algorithms is another

limiting factor in the correctness of the final pose accepted. If the requirements for

the fitness test were increased so that lines have to be closer than 4 pixels apart on

average or more than 5 model and image lines must match up then better poses may

be obtainable. However, if the acceptance criteria are made too strict then none of the

poses returned by the algorithm may ever be accepted. It is also hard to determine a

good number for the matching requirement because depending upon the view of the

71

(a) SoftPOSITPoints Class 2 pose example (b) SoftPOSITLines Class 2 pose example

Figure 4.13: Two example results images from Class 2. Both of these poses illustrate
instances where poses are perceptually correct and features are matched, however the
correspondences are incorrect. The white lines indicate the final pose estimated by
the algorithm.

object different numbers of lines are visible in the image.

4.2.2 Binocular Method

The triplet matching algorithm was the one binocular algorithm run on the

dataset. For each of the three subsets the triplet matching algorithm was able to

return a Class 1 pose on more than 50% of the images. For the assembly case Figures

4.6,4.7,4.8 the algorithm shows the best convergence results of any of the three sets.

The improved results are due to the fact that the assembly model is larger and has a

more unique shape than the other models thus there are more unique triplets which

can be generated and matched by the algorithm than with the other models. For

example any three points chosen on a single face of the cube could be matched to

three points on any other face of the cube because all of the faces are identical. With

the assembly model three points can be chosen which are spaced far enough apart so

that they can only be matched back to only one side of the assembly.

Figure 4.12 shows the results of all three algorithms in trying to find the

72

assembly using the entire assembly as the model and using only the cube as the

model. For the triplet matching algorithm the pose results are vastly improved when

using the entire assembly as the model as compared to using only the cube as the

model. In fact when trying to find the assembly using only the cube as the model none

of the results were in Class 1, whereas with the assembly model approach 66% of the

poses were in Class 1. These results indicate that the performance of the algorithm

is improved when the model has a more distinct geometry and can generate more

distinct triplets for matching.

One limitation of using the hierarchal binning approach is that if the initial

binning returns an incorrect result then the second level of binning is guaranteed

to return an incorrect pose. If the binning is done only at a single level then the

likelihood of a single bin filling from incorrectly matched triplets is reduced because

each bin covers a smaller space and the incorrect matches that accumulate in one big

bin would be dispersed throughout smaller bins. As discussed before the single level

binning approach can take longer to run and requires more memory.

Unlike with the two SoftPOSIT algorithms no pose verification step was per-

formed with this algorithm. Had the same pose verification step been included in

this algorithm then the overall performance of the algorithm could likely have been

improved. In fact the pose verification would probably work even better because this

algorithm does not attempt to match or align features when it generates poses so the

line features of the model and image are not predisposed to being aligned unless the

pose returned by the algorithm is actually correct.

73

4.2.3 Overall Effectiveness of Both Methods

Out of the three algorithms presented the triplet matching algorithm is clearly

the most effective both in terms of accuracy in overall pose and likelihood of gener-

ating the correct pose. However, there are some interesting instances in which the

SoftPOSIT algorithms actually outperform the triplet matching algorithm.

Figure 4.14 shows one instance where the SoftPOSITLines algorithm outper-

formed the triplet matching algorithm, specifically the SoftPOSITLines algorithm

returned a Class 1 pose while the triplet matching algorithm returned a Class 4 pose.

In this instance the goal was to detect the green cube, and in this particular image the

triplet matching algorithm had a hard time distinguishing between triplets belonging

to the faces of the cuboid and the cube. The lines algorithm on the other hand was

able to accurately match the lines belonging to the cube to the model lines of the

cube. Had the red block been rotated more to expose its end then it is more likely

that the lines algorithm would converge to the end of the red cuboid as there would

be more lines added to that location.

For the case of detecting the cuboid there was three different instances where

the lines algorithm was able to outperform the triplet algorithm and even a few cases

where the points algorithm was able to outperform the triplet algorithm. Figure 4.15

shows two instances where both variants of the SoftPOSIT algorithm outperform the

triplet matching algorithm. In the first image the points algorithm returned a Class 2

pose, the lines algorithm returned a Class 1 pose, and the triplet algorithm returned

a Class 4 pose. In this image there were only 4 corners and lines detected on the

strip in the image so the algorithms had an easy time in converging to the cuboids

features. However the appearance of the strip is very similar to the face of the red

cuboid so the triplet algorithm actually converged to the strips surface. In the second

74

(a) SoftPOSITLines

(b) Triplet Matching

Figure 4.14: Example image where the SoftPOSITLines algorithm outperforms the
triplet matching algorithm. The goal is to identify the pose of the green cube. The
white wire frames show the poses estimated by the two algorithms. In this instance
the triplet matching algorithm incorrectly identified the red cuboid as the green cube.

75

image both of the SoftPOSIT variants returned Class 1 poses and again the triplet

algorithm returned a Class 4 pose. The success and failures were all due to the same

factors as the other image.

In nearly all of the cases where the SoftPOSIT algorithms were able to beat

the triplet matching algorithm, there were some other objects in the scene which the

triplet matching algorithm converged to. Thus they did not provide more accurate

pose results but simply managed to converge to the correct object rather than other

objects in the scene. There were a few instances however where the SoftPOSITLines

algorithm gave more accurate pose results than the triplet matching algorithm and

both algorithms gave Class 1 results. Image number 25 in Figure 4.3 shows one in-

stance were both the lines algorithm and triplet algorithm returned Class 1 poses and

the lines pose is more accurate. In terms of rotational accuracy only the SoftPOSIT-

Lines algorithm was able to return poses with comparable and sometimes even better

accuracy than the triplet matching algorithm. This is due to the increased stability of

line feature extraction and localization as compared to point feature extraction and

localization. The SoftPOSITPoints algorithm rarely returned rotations as accurate

as the triplet algorithm which is due to the difficulty in detecting and localizing the

corners of the objects in an image.

For the images containing only the object of interest the triplet matching

algorithm generally returned a Class 1 pose. The two SoftPOSIT variants did not

display this sort of consistency. They demonstrate random convergence across the

image sets. This behavior is consistent with the way in which the algorithms were

run because the poses returned by the algorithm are depend on the initial poses and

the initial poses were chosen at random. Thus, the consistency of converging to the

correct pose is random.

76

(a) SoftPOSITPoints (b) SoftPOSITPoints

(c) SoftPOSITLines Matching (d) SoftPOSITLines

(e) Triplet Matching (f) Triplet Matching

Figure 4.15: Two Example images (one per column) where the SoftPOSIT algorithms
outperform the triplet matching algorithm. The goal is to identify the pose of the
red cuboid. The wire frames show the poses estimated by the algorithms. In both
instances the triplet matching algorithm incorrectly identifies the surface of the stick
as a surface of the red cuboid.

77

Chapter 5

Conclusions and Discussion

With the three algorithms in their given state the triplet algorithm is overall

the best performer. Out of the two monocular pose estimation methods the Soft-

POSITLines variant is the better performer.

If some of the weaknesses of the SoftPOSITLines algorithm discussed prior

were addressed, the performance could be improved. Firstly the line extraction could

be made more robust. If the lines were more accurately detected and localized then

the problem of determining the correct Z component for the pose could be mitigated

and the translation results of the lines algorithm would be able to approach those

of the triplet matching algorithm. This improvement would shift Class 3 poses back

into Class 1. Secondly the lines algorithm could be improved by taking into account

model self occlusion. This would prevent lines in the model which are not visible given

the current pose of the object from being matched to image lines. This improvement

would help reduce the number of Class 2 poses and increase the number of Class 1

poses.

A future variant to the SoftPOSITLines algorithm could be a StereoPOSIT-

Lines algorithm. This would be able to improve feature matching even more than

78

simply taking into account self occlusion as the locations of lines in space could be

determined. This would enable intelligent matching of model and image lines so that

lines on the model closest to the camera given the current pose are only matched

to lines in the images which are closest to the camera. The inclusion of stereo data

would also enable more intelligent guessing of initial translations since the locations

of point clouds in space is already known.

To improve the results of the pose clustering algorithm, Hillenbrand examines

the addition of normals at each point in the triplets to add more constraints to the

triplet matching algorithm [22]. The addition of the normals reduces the number

of incorrect triplet matches which can be generated and increases the likelihood of

generating correct poses when matching. The results could also be improved by using

models which are generated by using multiple views and thus represent the whole ob-

ject rather than its appearance from just a single viewpoint. If the SoftPOSITLines

algorithm were improved then the rotations returned by the triplet matching algo-

rithm could be refined by the SoftPOSITLines algorithm to help reduce the rotational

errors in the triplet matching algorithm.

Although these changes may help with improving the results of these algo-

rithms, the results of this experiment seem to indicate that determining the pose of

these objects is generally hard to accurately and consistently do. All of these objects

have low feature counts, minimal surface texture, and are highly rotationally sym-

metric. These aspects make it hard for any of these pose estimators to consistently

and accurately work. More research needs to be conducted to see if these sparse

feature sets can be combined to make a richer feature set, or if some of these pose

estimation algorithms can be combined to create a pose estimator that can use multi

modal data such the proposed StereoPOSITLines algorithm or even a combination of

the two SoftPOSIT algorithms.

79

Bibliography

[1] A. Ansar and K. Daniilidis. Linear pose estimation from points or lines. IEEE
Transactions on Pattern Analysis and Machine Intelligence, May 2003.

[2] X. Armangu, J. Salvi, and J. Batlle. A comparative review of camera calibrating
methods with accuracy evaluation. Pattern Recognition, 35:1617–1635, 2000.

[3] H Bay, A Ess, T Tuytelaars, and L Vangool. Speeded-up robust features (surf).
Computer Vision and Image Understanding, 110(3):346–359, 2008.

[4] J. Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 8(6):679–698, November
1986.

[5] Xiao Chen He and Nelson H C Yung. Corner detector based on global and local
curvature properties. Optical Engineering, 47(5), 2008.

[6] Alvaro Collet Romea, Dmitry Berenson, Siddhartha Srinivasa, and David Fergu-
son. Object recognition and full pose registration from a single image for robotic
manipulation. In IEEE International Conference on Robotics and Automation
(ICRA ’09), May 2009.

[7] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(5):603–619, May 2002.

[8] Philip David, Daniel DeMenthon, Ramani Duraiswami, and Hanan Samet. Si-
multaneous pose and correspondence determination using line features. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
2:424, 2003.

[9] Philip David, Daniel DeMenthon, Ramani Duraiswami, and Hanan Samet. Soft-
posit: Simultaneous pose and correspondence determination. International Jour-
nal of Computer Vision, 59:259–284, 2004.

[10] Daniel F. DeMenthon and Larry S. Davis. Model-based object pose in 25 lines
of code. International Journal of Computer Vision, 15:123–141, 1995.

80

[11] D H Douglas and T K Peucker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartograph-
ica The International Journal for Geographic Information and Geovisualization,
10(2):112–122, 1973.

[12] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[13] Frederic and Jurie. Tracking objects with a recognition algorithm. Pattern
Recognition Letters, 19(3-4):331 – 340, 1998.

[14] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact algorithm
for rectification of stereo pairs. Machine Vision and Applications, 12:16–22, 2000.

[15] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4):377
–388, Apr 1996.

[16] Iryna Gordon and David G Lowe. What and where : 3D object recognition with
accurate pose. Lecture Notes in Computer Science, 4170(1):67–82, 2004.

[17] T. Grundmann, R. Eidenberger, M. Schneider, M. Fiegert, and G. Wichert.
Robust high precision 6D pose determination in complex envi- ronments for
robotic manipulation. In Workshop Best Practice in 3D Perception and Modeling
for Mobile Manipulation at the Int. Conf. Robotics and Automation, pages 1–6,
2010.

[18] R.M. Haralick, D. Lee, K. Ottenburg, and M. Nolle. Analysis and solutions of
the three point perspective pose estimation problem. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 592–598, Jun
1991.

[19] C Harris and M Stephens. A Combined Corner and Edge Detection, volume 15,
pages 147–151. 1988.

[20] Chris Harris. Tracking with rigid models, pages 59–73. MIT Press, Cambridge,
MA, USA, 1993.

[21] Ulrich Hillenbrand. Pose clustering from stereo data. In Proceedings of VISAPP
International Workshop on Robotic Perception, pages 23–32, 2008.

[22] Ulrich Hillenbrand and Alexander Fuchs. An experimental study of four variants
of pose clustering from dense range data. Computer Vision and Image Under-
standing, 115(10):1427–1448, 2011.

81

[23] R. Horaud, B. Conio, O. Leboulleux, and B. Lacolle. An analytic solution for the
perspective 4-point problem. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 1989, pages 500 –507, Jun 1989.

[24] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America, 4(4):629–642, April
1987.

[25] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid Objects:
A Survey. Foundations and Trends in Computer Graphics and Vision, 1(1):1–89,
2005.

[26] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from
two projections. Nature, 293:133–135, September 1981.

[27] David G Lowe. Fitting parameterized three-dimensional models to images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5):441–450, 1991.

[28] D.G. Lowe. Object recognition from local scale-invariant features. In The Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision,
volume 2, pages 1150–1157, 1999.

[29] Eric Marchand and Francois Chaumette. Virtual visual servoing: a framework
for real-time augmented reality. Computer Graphics Forum, 21(3):289–297, 2002.

[30] Z. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz. General
3D modelling of novel objects from a single view. In 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3700–3705,
Oct 2010.

[31] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615
–1630, oct. 2005.

[32] T.Q. Phong, Radu P. Horaud, A. Yassine, and P.D. Tao. Object pose from 2D to
3D point and line correspondences. International Journal of Computer Vision,
15(3):225–243, July 1995.

[33] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In European Conference on Computer Vision, volume 1, pages 430–
443, May 2006.

[34] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast 3D
recognition and pose using the viewpoint feature histogram. In Proceedings of
the 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Taipei, Taiwan, Oct 2010.

82

[35] Cordelia Schmid, Roger Mohr, and Christian Bauckhage. Evaluation of interest
point detectors. International Journal of Computer Vision, 37(2):151–172, 2000.

[36] G. Simon, A.W. Fitzgibbon, and A. Zisserman. Markerless tracking using planar
structures in the scene. In Augmented Reality, 2000. (ISAR 2000). Proceedings.
IEEE and ACM International Symposium on, pages 120 –128, 2000.

[37] Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly
stochastic matrices. The Annals of Mathematical Statistics, 35(2):876–879, 1964.

[38] Chien-Ping Lu Suguna Pappu Steven Gold, Anand Rangarajan and Eric Mjol-
sness. New algorithms for 2D and 3D point matching: pose estimation and
correspondence. Pattern Recognition, 31(8):1019 – 1031, 1998.

[39] Ulrich and Hillenbrand. Consistent parameter clustering: Definition and analysis.
Pattern Recognition Letters, 28(9):1112 – 1122, 2007.

[40] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

83

	Clemson University
	TigerPrints
	12-2011

	A Comparison and Evaluation of Three Different Pose Estimation Algorithms In Detecting Low Texture Manufactured Objects
	Robert Kriener
	Recommended Citation

	Title Page
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Related Work
	Outline

	Background
	Notation
	What is meant by pose?
	How does imaging work?
	Camera calibration
	Pose From Correspondences
	POSIT
	3D Reconstruction From Stereo Images

	Methods
	SoftPOSIT
	SoftPOSIT With Line Features
	Pose Clustering From Stereo Data

	Experiments and Results
	Experiments
	Results

	Conclusions and Discussion
	Bibliography

