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Abstract

Nonparametric regression has been particularly well developed. Base on the asymptotic

equivalence theory, there are some procedures that can turn more complicated nonparametric esti-

mation problems into a standard nonparametric regression, especially in natural exponential fam-

ilies. This procedure is described in detail with a wavelet thresholding estimator for Gaussian

nonparametric regression and simulation study shed light on the behavior of this method under

di↵erent sample sizes and parameterizations of exponential distribution. The resulting estimators

have a high degree of adaptivity in [6].
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Chapter 1

Introduction

The idea we use for the procedure of nonparametric regression is asymptotic equivalence

theory, by which we can turn some more complicated nonparametric estimation problems into a

standard Gaussian nonparametric regression problem. Meanwhile, this method is appealing because

it can also eliminate the transformation bias.

In statistical decision theory, the asymptotic equivalence theory has an important position,

it describes limiting behavior and the functions eventually becoming essentially equal.

In recent years, there are a lot of e↵orts to construct practical procedures to turn com-

plicated nonparametric estimation problems into a standard regression base on the asymptotic

equivalence theory. Which turn the research object to a relatively simple and already well studied

model. For example, in [1] and [5],the methods base on binning and taking the median have been

well developed for nonparametric regression with general additive noise. Especially in [2], it intro-

duced the nonparametric regression in exponential families with a quadratic variance function, such

as binomial regression, gamma regression and Poisson regression. Also in [4], the procedure is base

on a root-unroot transformation for density estimation.

The bias reduction is a crucial problem. Some methods have been proposed and well

studied , such as the mean matching variance stabilizing transformation [2] reduces the bias from

the transformation while still stabling the variance.
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The procedure we are going to talk begins by [2] grouping the data into bins with size of

order (logn)1+v for some v > 0, where n is the sample size, and we test v to choose some appropriate

value and explore the influence of sample size and the value of v to the regression problem. After

that, the Gaussian regression procedure can applied to the new group of data from transformation.

We construct the inverse VST of the estimator obtained in the Gaussian regression to get the final

estimator of the original regression function.

In this report, we applied the new procedure for simulation in exponential distribution and

Poisson distribution, use the log transformation as the variance stabilized transformation to get

the new group of data of exponential distribution, and square root function as VST for Poisson

distribution. We get the performance of regression base on the di↵erent sample sizes and the

di↵erent binning sizes. A much smaller sample size and a larger v value will have less mean square

error for the predicted value and the true value.

The report is organized as follows. Chapter 2 and Chapter 3 introduced of using the VST to

convert nonparametric regression in exponential families into a Gaussian nonparametric regression

problem. Chapter 4 introduced the wavelet procedure. Simulation study design and result are

shown in Chapter 5 and Chapter 6. Theoretical proof for the related properties are presented in

Appendix A.

There are still some more future work for this report. First, the VST we used in this report

is the log transformation for exponential distribution random error data and square root function

for Poisson distribution random error data. We tested for di↵erent group pf sample sizes and v

value, we may have some technique to find the best combination which could have the least mean

square error. Second, the data set we used in this report is randomly generated , the future work

may apply this new procedure to the large real data set.
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Chapter 2

Related Work

The noise is not additive and non-Gaussian for nonparametric regression problem in natural

exponential families. Thus we can not get desirable results by applying standard nonparametric

regression methods to the data directly. In order to solve this problem, we need to use a variance

stabilizing transformation(VST) to turn this problem to a standard Gaussian regression problem.

2.1 Binning

In [6] Divided {Y
i

} into T equal length intervals between 0 and 1. Let Q1, Q2, · · · , QT

be

the sum of the observations in each of the intervals. The choice of T satisfying T = n/log1+vn. We

begin by dividing the interval into T qui-length subintervals with m = n/T observations in each

subintervals. Let Q
j

be the sum of observations on the jth subinterval I
j

= ( j�1
T

, j

T

], j = 1, 2, · · · , T

Q
j

=
jmX

i=(j�1)m+1

Y
i

(2.1)

The sum {Q
j

}can be treated as a group of new observations for a Gaussian regression directly, but

this will lead to a heteroscedastic problem. Instead, we apply the VST and then treat G(Qj

m

) as

3



new observations in a homoscedastic Gaussian regression problem. Let

Y ⇤
j

= G(
Q

j

m
), j = 1, · · · , T. (2.2)

The transformed data Y ⇤ = (Y ⇤
1 , · · · , Y ⇤

T

) is then treated as the new qui-spaced sample for a Gaus-

sian nonparametric regression problem.

2.2 VST

The VST for natural exponential families has been widely used . For example, in [4] for

an extensive review. Here we focused on exponential distribution and the VST for exponential

distribution is log function, and the situations likely to occur with certain kinds of reaction times,

waiting times, and financial data.

In [6] the VST for natural exponential families has beed widely used in many contexts. Note

that the probability density/mass function of a distribution in a natural one-parameter exponential

families can be written as

q(x|⌘) = e⌘x� (⌘)h(x), (2.3)

where ⌘ is the natural parameter. The mean and variance are respectively

µ(⌘) =  
0
(⌘), and�2(⌘) =  

00
(⌘). (2.4)

We shall denote the distribution by NEF (µ). Let X1, · · · , Xm

⇠ NEF (µ) be a random sample and

set X =
P

m

i=1 Xi

. The Central Limit Theorem yields that

p
{(X/m)� (µ(⌘))} �! N(0, V (µ(⌘))), asm!1 (2.5)
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A variance stabilizing transformation(VST) is a function G: R! Rsuch that

G0(µ) = V � 1
2 (µ). (2.6)

The standard delta method then yields

p
(m){G(X/m)�G(µ(⌘))}! N(0, 1) (2.7)

Since the natural exponential can be mean parameterized, we define

H
m

(µ) = EG(X/m),

where H
m

depends on m. For notational simplicity, we shall drop the subscript m hereafter.

2.3 Nonparametric Regression

The general nonparametric regression model is written as

y
i

= f(x0
i

) + ✏
i

(2.8)

with the function f left unspecified. Where x
0

i

is a vector of predictors for the ith of n

observations; the errors ✏
i

are assumed to be normally and independently distributed with mean 0

and variance �2.

In [6] , now consider nonparametric regression in natural exponential families. Suppose we

observe

Y
i

⇠ NEF (f(t
i

)), i = 1, · · · , n, t
i

=
i

n
(2.9)

and wish to estimate the mean function f(t). As mentioned earlier, applying standard nonparametric

regression methods directly to the data {Y
i

} in general do not yield desirable results. We shall turn

this problem to a standard Gaussian regression problem based on a sample {fY
j

: j = 1, · · · , T}

5



where

fY
j

⇠ N(H(f(t
j

)),m�1), t
j

= j/T, j = 1, 2, · · · , T. (2.10)

Here T is defined as before, T is the number of bins, and m is the number of observations in each

bin.
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Chapter 3

E↵ects of binning and VST

The transformed data {Y ⇤
j

} can be treated as if they were data from a homoscedastic

Gaussian nonparametric regression problem after binning and VST. We need to introduced some

background to explain why binning and VST can work here, quantile coupling provides an important

technical tool to shed insights on the procedure in [6].

The following result, which is a direct consequence of the quantile coupling inequality devel-

oped in [9], shows that the binned and transformed data can be well approximated by independent

normal variables. See also in [14].

Lemma 1. In [6] let X
i

⇠ NEF (µ) with variance V for i = 1, · · · ,m and let X =
P

m

i=1 Xi

. There exists a standard normal random variable Z ⇠ N(0, 1) and positive constants

c
i

, i = 1, 2, 3, 4, 5, not depending on m such that whenever the event A = {|X�mµ|  c1m} occurs,

|X �mµ�
p
mV Z| > c2Z

2 + c3 (3.1)

P(|X �mµ�
p
mV Z| > a)  c4exp(�c5a), (3.2)

uniformly over µ in a compact set in the interior of the natural parameter space.

Hence, for large m, X can be treated as a normal random variable with mean mµ and

variance mV . Let Y = G(X/m), and Z be a standard normal variable satisfying (2). Then Y can

7



be written as

Y = H(µ) +m� 1
2Z + ⇠, (3.3)

where

⇠ = G(
X

m
)�H(µ)�m� 1

2Z, (3.4)

is a zero mean and ”stochastically small” random variable. The following result is proved in section

6.1.

Lemma 2. [6] Let X
i

⇠ NEF (µ) with variance V for i = 1, · · · ,m and let X =
P

m

i=1 Xi

.

Let Z be the standard normal variable given as in Lemma 1 and let ⇠ be given in (8). Then for any

integer k � 1 there exist positive constants c
k

> 0 such that for all a > 0,

P (m|⇠| > a)  c1exp(�c2a) + c3exp(�c4m), (3.5)

So far the discussion has focused on the e↵ects of the VST for i.i.d. observations. However,

observations in each bin are independent not identically distributed since the mean function f is

smooth. Let X
i

⇠ NEF (µ
i

), i = 1. · · · ,m, be independent. Here the means f are ”close” but they

are not equal. Let µ be a value close to the µ0
i

s. The analysis given in [6] shows that X
i

in each bin

can in fact be coupled with i.i.d random variables X
i,c

with X
i,c

⇠iid NEF (µ⇤
c

), for some µ⇤
c

> 0 .

See Lemma 4 in proof section for a precise statement. Lemma 1,2 and 4 together yield the following

result which shows how far away are the transformed data {Y ⇤
j

}from the ideal Gaussian model.

Theorem 1. [6] Let {Y ⇤
j

} = G(Qj

m

) be given as in (2.2). Assume that f is continuous,

and for all x 2 [0, 1], f(x) 2 [", �], a compact set in the interior of the mean parameter space of the

natural exponential family. Then {Y ⇤
j

} can be written as

Y ⇤
j

= H(f(
j⇤
T
)) +m� 1

2Z
j

+ ⇠
j

, j = 1, 2, · · · , T, (3.6)

where jm + 1  j⇤(j + 1)m, Z
j

⇠i.i.d. N(0, 1), and ⇠
j

are independent and ”stochastically small”

8



random variables satisfying that for any integer k > 0 and any constant a > 0

P (m|⇠
j

| > a)  c1exp(�c2a) + c3exp(�c4m), (3.7)

where c
k

> 0.

Theorem 1 provides explicit bounds for both the deterministic and stochastic errors.
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Chapter 4

A Wavelet procedure for

generalized regression

[13]Wavelets are special basis functions with two appealing features. First, it can be com-

puted quickly. Second, the resulting estimators are spatially adaptive, this means we can accom-

modate local features in the data.

We start with the simplest wavelet, the Haar wavelet. The Haar father wavelet or Harr

calling function is defined by

�(x) =

8
><

>:

1 if 0  x < 1

0 otherwise .
(4.1)

The mother Haar wavelet is defined by

 (x) =

8
><

>:

�1 if 0  x < 1
2

1 if 1
2  x < 1

(4.2)

Let �
jk

(x)=2
j
2 (2jx� k).

Father �

Level 1  
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Level 2  10  11

Level 3  20  21  22  23

Level 4  30  31  32  33  34  35  36  37.

The set of functions {{�}, { 00}, { 10, 11}, { 20, 21, 22, 23}, · · ·} is an orthonormal basis

for L2(0, 1). So, as J !1,

f(x) ⇡ ↵�(x) +
JX

j=0

2j�1X

k=0

�
jk

 
jk

(x) (4.3)

where ↵ =
R 1
0 f(x)�(x)dx, �

jk

=
R 1
0 f(x) 

jk

(x)dx.

Many functions f hace sparse expansions in a wavelet basis. Smooth functions are sparse.

(Smooth + jumps) is also sparse. So, we expect that for many functions we can write f(x) =

↵�(x) +
P

j

P
j

�
jk

 
jk

(x), where most �
jk

⇡ 0. The idea is to estimate the �
0

jk

s then set all

�̂
jk

= 0 except or a few large coe�cients.Father � and mother  . Smooth wavelets cannot be

written in closed form but they can be computed quickly. Still have:

f(x) =
X

k

↵0k�0k(x) +
1X

j=0

X

k

�
jk

 
jk

(x), (4.4)

where ↵0k =
R
f(x)�0k(x)dx and �

jk

=
R
f(x) 

jk

(x)dx.

Let Y
i

= f(x
i

)+�✏
i

, where x
i

= i/n.(Adjustments are needed for non-equally spaced data),

the procedures are:

• Form the preliminary estimate:

�̃
jk

=
1

n

X

i

Y
i

 
jk

(x
i

) ⇡
Z

f(x) 
jk

(x)dx = �
jk

, (4.5)

• Shrink: �̂
jk

 � shrink(�̃
jk

)

11



• Reconstruct function:

f̂(x) =
X

k

↵̂0k�0k(x) +
1X

j=0

X

k

�̂
jk

 
jk

(x), (4.6)

In practice, the preliminary estimates are computed using the discrete wavelet transform(DWT).

Two types of shrinkage are used: hard thresholding and soft thresholding.

The hard threshold estimator is

�̂
jk

8
><

>:

0 if |�̃
jk

| < �

�̃
jk

if |�̃
jk

| � �
(4.7)

The soft threshold estimator is

�̂
jk

= sign(�̃
jk

)(|�̃
jk

|� �)+, (4.8)

We still need to choose the threshold �. There are several methods for choosing �. The

simplest rule is the universal threshold defined by

� = �̂

r
2 log n

n
. (4.9)

[11]The following list describes some of the di↵erent methods that can be used to choose

the list. Such as exact minimax method, SURE , cross-validation, false-discovery rate, Bayesian

methods, and Ogden’s methods.
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Chapter 5

Simulation Study Design

The above method for nonparametric regression developed by [6]. To do so, we choose the

exponential distribution with parameter 1, and then tested the value v to determine the length for

each bin and the number T . We also need to make sure the length is between 0 and 1.

However , there are some tips we need consider when we decide the length T . First, the we

need to make sure that there are enough bins, so the length has to be close to 0 as possible. After

transforming the data, a wavelet regression procedure then applied to the new group of data.

We want to explore the influence of binning and sample size, so we chose three group pf

sample sizes, 50,100,500, and three group of v value, 3,3.1,3.2, to compare the mean square error.

First we generate the data base on the nonparametric model y = f(x
i

) + ✏, define a simple

function f = ex as the smooth mean function, use exponential distribution with parameter 1 as

random error function first, then use Poisson distribution with parameter 1. Since the data are

added with error, we assume the error are iid distribution. Then we need to calculate the set of

value of length. After this, we start binning data, and get the summation of each variables in

subintervals. Then we apply the VST to binned data, here we use log function for exponential

distribution and square root function for Poisson distribution, in order to get a good performance,

we use log(s + 10) where s is the binned data, same as Poisson distribution. After we binned and

transformed the data, we need to apply the wavelet procedure to the new group pf data. Another

13



important thing is the wavelet regression function in r require the data length is power of 2, so we

need first pads with zeros of the data in order to apply wavelet procedure.

In [10] for the wavelet procedure, we can perform the interpolation of the old data values to

the new regularly spaced grid, also we can apply wd function directly to the data set. The next step

is to threshold the coe�cients. And after this thresholding we obtain the estimate. The estimate is

not extremely bad but could no doubt be improved by a judicious choice of threshold method and

parameters.The results are listed in conclusion part.

14



Chapter 6

Simulation Results, Conclusions

and Discussion

6.1 Simulation Results

The results for three di↵erent sample sizes are listed below. The di↵erence between v

value have been shown in three sample sizes. For each combination of sample size and v value, we

calculate the mean square error five times, then find the average value of them to compare and

analyze the result. First we will give the result of exponential distribution random error , followed

with comparison of di↵erent group. Then we give the result of Poisson distribution random error

along with the comparison table.

6.2 Conclusions and future work

For the exponential distribution random error data, when the v remain the same, it is clear

that larger sample sizes can increase mean square error, possible because there are more points of

both the predicted and original value, so the number of term in MSE is greater than smaller sample

size . Meanwhile, larger sample sizes could result larger interval length.

15



Sample Size v Interval MSE Avg MSE

50 3 0.2135 0.5729 0.2529 0.4448 1.5418 0.7746 0.7174
50 3.1 0.1863 0.3218 0.2107 0.4702 0.7566 0.2722 0.4063
50 3.2 0.1625 0.1423 0.1054 0.1769 0.9382 0.1377 0.3001

100 3 0.2223 1.0443 0.6990 1.9724 0.9688 0.5133 1.0396
100 3.1 0.1908 1.7805 0.6594 1.2239 0.6482 0.9767 0.9767
100 3.2 0.1638 0.5923 0.5839 0.6692 0.422 0.5573 0.5651
500 3 0.3352 1.3374 1.7787 1.8583 0.8376 3.0475 1.7719
500 3.1 0.2792 1.5275 0.5796 2.1313 0.3475 1.6001 1.2372
500 3.2 0.2326 1.2180 2.0142 0.3152 0.8519 1.6132 1.2025

Table 6.1: Exponential distribution

Sample Size v Interval Avg MSE

50 3 0.2135 0.7174
50 3.1 0.1863 0.4063
50 3.2 0.1625 0.3001

Table 6.2: n=50

Sample Size v Interval Avg MSE

100 3 0.2223 1.0396
100 3.1 0.1908 0.9767
100 3.2 0.1638 0.5651

Table 6.3: n=100

Sample Size v Interval Avg MSE

500 3 0.3352 1.7719
500 3.1 0.2792 1.2372
500 3.2 0.2326 1.2025

Table 6.4: n=500

v Sample Size Interval Avg MSE

3 50 0.2135 0.7174
3 100 0.2223 1.0396
3 500 0.3352 1.7719

Table 6.5: v=3

16



v Sample Size Interval Avg MSE

3.1 50 0.1863 0.4063
3.1 100 0.1908 0.9767
3.1 500 0.2792 1.2372

Table 6.6: v=3.1

v Sample Size Interval Avg MSE

3.2 50 0.1625 0.3001
3.2 100 0.1638 0.5651
3.2 500 0.2326 1.2025

Table 6.7: v=3.2

Sample Size v Interval MSE Avg MSE

50 3 0.2135 1.5816 1.7895 1.5211 0.9742 2.3175 1.6368
50 3.1 0.1863 0.5594 2.0433 2.2403 1.6387 1.6491 1.6262
50 3.2 0.1625 0.4153 2.0963 0.5242 0.2798 0.6360 0.7903

100 3 0.2223 1.7023 2.4350 2.4728 1.3189 0.7753 1.7609
100 3.1 0.1908 2.0818 1.0402 2.4050 0.8007 1.8478 1.6351
100 3.2 0.1638 1.0951 0.5225 1.2749 0.4384 0.9415 0.8545
500 3 0.3352 3.0987 3.8024 2.7733 3.6794 3.6620 3.4032
500 3.1 0.2792 3.8911 2.4412 1.9825 3.1100 3.5684 2.9986
500 3.2 0.2326 3.5383 2.5069 1.4557 2.2087 1.7535 2.2926

Table 6.8: Poisson distribution

Sample Size v Interval Avg MSE

50 3 0.2135 1.6368
50 3.1 0.1863 1.6262
50 3.2 0.1625 0.7903

Table 6.9: n=50

Sample Size v Interval Avg MSE

100 3 0.2223 1.7609
100 3.1 0.1908 1.6351
100 3.2 0.1638 0.8545

Table 6.10: n=100
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Sample Size v Interval Avg MSE

500 3 0.3352 3.4032
500 3.1 0.2792 2.9986
500 3.2 0.2326 2.2926

Table 6.11: n=500

v Sample Size Interval Avg MSE

3 50 0.2135 1.6368
3 100 0.2223 1.7609
3 500 0.3352 3.4032

Table 6.12: v=3

v Sample Size Interval Avg MSE

3.1 50 0.1863 1.6262
3.1 100 0.1908 1.6351
3.1 500 0.2792 2.9986

Table 6.13: v=3.1

v Sample Size Interval Avg MSE

3.2 50 0.1625 0.7903
3.2 100 0.1638 0.8545
3.2 500 0.2326 2.2926

Table 6.14: v=3.2
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When the sample size remains the same, it is clear that larger v can reduce the mean square

error. Combined with the above, the larger v value and smaller sample size always along with a

smaller mean square error. So the smallest mean square error in all the results corresponding to the

largest v value , and the smallest sample size.

For the Poisson distribution random error data, the conclusions are the same.

The tables will give a straightforward comparison. It is clear that the subtable of v = 3.2

and the smallest sample size 50 perform well. There are still some more future work for this report.

First, the technique of how to choose the value of v and the appropriate sample size. The value used

in this report was tested by hand in order to make sure the length of the subinterval lies between 0

and 1. However, may be in the future, we could set the ideal range of mean square error that we

what, then return back to get the satisfied v value which will make the binning and transformation

procedure work.

Moreover, the data set we used in this report is generated by r, maybe in the future when

we explore enough technique about how to choose v , control and sample size and control the ideal

mean square error, we could apply this new procedure to the large real data set.
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Appendix A Proofs

Lemma 1, Lemma 2, and Lemma 3 are used to prove Theorem 3.1 . Thus they are stated

first and proven first. They are followed by eh proof of Theorem 3.1. All results proven by [6].

Proof of Lemma 2. Write

G(
X

m
)�G

m

(µ)� 1p
m
Z (1)

[G(
X

m
)�G(µ+

r
V

m
)Z] + [G(

X

m
)�G(µ)� 1p

m
Z] + [G(µ)�G

m

(µ)] (2)

Taylor expansion yields

G(
X

m
)�G

m

(µ)� 1p
m
Z = G0(µ⇤

1)(
X

m
� µ�

r
V

m
Z) +G00(µ⇤

2)
V

m
Z2 +G(µ)�G

m

(µ) (3)

From Lemma 1 we have

P (m|X
m
� µ�

r
V

m
Z| > a)  c1 exp(�c2a), (4)

Since Z is standard normal, Z2 has an exponential tail

P (m|V
m
Z2| > a)  c3 exp(�c4a). (5)

It is easy to see that

|G(µ)�G
m

(µ)| = O(
1

m
). (6)

Lemma 3 LetX
i

⇠ NEF (µ
i

), i = 1, · · · ,m, be independent with µ
i

2 [✏, v] a compact

subset in the interior of the mean parameter space of the natural exponential family. Assume

that |min
i

µ
i

�max
i

µ
i

|  C�. Then there are i.i.d random variables X
i,c

where X
i,c

⇠ NEF (µ⇤
c

)
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with µ⇤
c

2 [min
i

µ
i

,max
i

µ
i

] such that ED = 0 and

P ({X
i

6= X
i,c

})  C�, (7)

and for any fixed integer k � 1 there exists a constant C
k

> 0 such that for all a > 0,

P (|D| > a)  c1exp(�c2a2m) + c3exp(�c4m). (8)

Proof of Lemma 3 There is a classical coupling identity for the Total variation distance.

Let P and Q be distribution of two random variablesX and Y on the same sample space respectively,

then there is a random variable Y
c

with distribution Q such that P (X 6= Y
c

) = |P � Q|
TV

. See,

for example, page 256 in [?, 10] The proof for the first identity follows from that identity and the

inequalty that |NEF (µ
i

�NEF (µ⇤
c

))|
TV

 C|mnu
i

� µ⇤
c

| for some C > 0 which only depends on

the family of the distribution of X
i

and [✏, v].

Using Taylor expansion we can rewrite D as D = G0(⇣)
Pm

i=1 Xi�Xi,c

m

for some ⇣ between
Pm

i=1 Xi

m

and
Pm

i=1 Xi,c

m

. Write
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Since the distributions X
i

and X
i,c

are in exponential family, we have

P (|
P

m

i=1 Xi

� EX
i

m
| � a)  c1exp(�c2a2m), (10)

P (|
P

m

i=1 Xi,c

� EX
i,c

m
| � a)  c3exp(�c4a2m), (11)

Note that |
P

m

i=1 EX
i,c

� EX
i,c

m|  c5�. Thus we have

P (|
mX

i=1

X
i

�X
i,c

m| > a)  c6exp(�c7a2m) (12)
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where a > 2c5�. The equation is apparently true when a  2C�. Since X
i

�X
i,c

are independent,

it can be shown that the second inequality in this Lemma follows immediately by observing that

G0(⇣) is bounded with a probability approaching to 1 exponentially fast, since for any ✏ > 0,

P (|⇣| > µ+ ✏)  c8exp(�c9"2m). (13)

Proof of Theorem 1 From Lemma 3, there exist Y ⇤
j,c

where X
i,c

⇠ NEF (f⇤
j

) with

f⇤
j,c

2 [ min
jm+1i(j+1)m

f(
i

n
), max

jm+1i(j+1)m
f(

i

n
)] (14)

such that

E[Y ⇤
j

� Y ⇤
j,c

] = 0 (15)

P (|Y ⇤
j

� Y ⇤
j,c

| > a)  c1exp(�c2a2m) + c3exp(�c4m) (16)

Let f⇤
j,c

= f(j⇤/T ), where jm+ 1  j⇤  (j + 1)m, by the intermediate value theorem. Lemmas 1

and 2 together yield

Y ⇤
j

= H(f(
j⇤
T
)) +m� 1

2Z
j

+ ⇠
j

, j = 1, 2, · · · , T. (17)

P (|⇠
j

| > a)  c1exp(�c2a2m) + c3exp(�c4m). (18)

Theorem 1 then follows immediately by combining equations (15)-(18).
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