
Clemson University
TigerPrints

All Theses Theses

8-2007

NONLINEAR MODELING OF THE
ADSORPTION-INDUCED SURFACE STRESS
IN PIEZOELECTRICALLY-DRIVEN
MICROCANTILEVER BIOSENSORS
Mana Afshari
Clemson University, mafshar@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Engineering Mechanics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Afshari, Mana, "NONLINEAR MODELING OF THE ADSORPTION-INDUCED SURFACE STRESS IN
PIEZOELECTRICALLY-DRIVEN MICROCANTILEVER BIOSENSORS" (2007). All Theses. 154.
https://tigerprints.clemson.edu/all_theses/154

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/280?utm_source=tigerprints.clemson.edu%2Fall_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/154?utm_source=tigerprints.clemson.edu%2Fall_theses%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

NONLINEAR MODELING OF THE ADSORPTION-INDUCED SURFACE 
STRESS IN PIEZOELECTRICALLY-DRIVEN MICROCANTILEVER 

BIOSENSORS 
_____________________________________ 

A Thesis 
Presented to 

the Graduate School of 
Clemson University 

_____________________________________ 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
Mechanical Engineering 

_____________________________________ 

by 
Mana Afshari 
August 2007 

_____________________________________ 

Accepted by: 
Nader Jalili, Committee Chair 

Darren M. Dawson 
Mohammed F. Daqaq 

 



 

 

ABSTRACT 

 

 Microcantilever-based biosensors are rapidly becoming an enabling 

sensing technology for a variety of label-free biological applications due to their 

extreme applicability, versatility and low cost. These sensors operate through the 

adsorption of species on the functionalized surface of microcantilevers. The 

adsorption of biological species induces surface stress which originates from the 

molecular interactions such as adhesion forces of attraction/repulsion, 

electrostatic forces or the surface charge redistribution of the underlying substrate. 

This surface stress, consequently, alters the resonance frequency of the 

microcantilever beam. 

 This study presents a general framework towards modeling resonance 

frequency changes induced due to the surface stress arising from the adsorption of 

biological species on the surface of the microcantilever. Very few works have 

dealt with the effect of surface stress on the resonance frequency shifts of 

microcantilevers and mainly assume a simple model for the vibrating 

microcantilever beam. In the proposed modeling framework, the nonlinear terms 

due to beam's flexural rigidity from macro- to micro-scale as well as varying 

nature of the adsorption induced surface stress are considered. 

 



 

 iv 

 It is first shown that the nonlinearity of the system originates from two 

different sources; namely, microcantilever flexural rigidity and adsorption 

induced surface stress. All these nonlinearities are formulated into the general 

equation of motion of the vibrating microcantilever. It is then shown that the 

dynamic mode of biosensing formulated in the paper is much more sensitive than 

the static mode to the change in the properties of the adsorbed biological species. 
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CHAPTER 1 
 

INTRODUCTION 

Research Motivation 

Microcantilever-based biosensors are rapidly becoming an enabling 

sensing technology for a variety of label-free biological applications due to their 

extreme applicability, versatility and low cost. These sensors operate through the 

adsorption of species on the functionalized surface of microcantilevers.  

Very few works have dealt with modeling the effect of surface stress on 

the resonance frequency shifts of microcantilevers and mainly assume a simple 

model for the vibrating microcantilever beam. Studying “macro-scale” cantilever 

beams, these simple models provide relatively good representation of the physical 

systems. For the case of microcantilevers, however, the molecular forces are no 

longer negligible and must be taken into account in modeling the surface stress. 

 

Thesis Overview 

This thesis presents a general framework towards modeling resonance 

frequency changes induced due to the surface stress arising from the adsorption of 

biological species on the surface of the piezoelectrically-driven microcantilever. 



 

 2 

The molecular interactions of the adsorbed biological species which 

induce the surface stress are explained in Chapter 4 and the attraction/repulsion 

forces are considered in the potential energy formulation.  

Utilizing the Hamilton’s principle, the general equation of motion of the 

resonating microcantilever is also formulated in Chapter 4. In the proposed 

modeling framework derived in Chapter 4, the nonlinear terms due to beam’s 

flexural rigidity from macro- to micro-scale as well as varying nature of the 

adsorption induced surface stress are considered. It is first shown that the 

nonlinearity of the system originates from two different sources; namely, 

microcantilever flexural rigidity and adsorption induced surface stress.  

Through numerical simulation given in Chapter 5, it is demonstrated that 

the nonlinearity due to the surface stress does not have a considerable effect on 

the resonance frequency change of the microcantilever. However, nonlinearity 

due to flexural rigidity (which is directly attributed to beam’s dimensions) plays 

an important role in the resonance frequency shift, and hence, in the resultant 

molecular recognition capability. 

A new method of formulating the adsorption induced surface stress as a 

function of the static deflection of the microcantilever is given in Chapter 6.  Most 

of the previous works in this area are based on the Stoney’s simple equation.  In 

the proposed method, the molecular interactions of the adsorbed biological 

species are modeled based on the Lennard-Jones attraction/repulsion potential.  

As a result, the sensitivity of the static detection mode (based on the proposed 
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method) is compared to that of the dynamic mode.  It is shown that the dynamic 

mode of biosensing is much more sensitive to the change in the properties of the 

adsorbed biological species, when compared to conventional static mode 

detection mechanism.  
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CHAPTER 2 
 

MICROCANTILEVER-BASED SENSING 

Recently, microfabricated silicon cantilevers for atomic force microscopy 

(AFM) have been used to measure changes in the surface stress of solids or the 

added mass to their surface. These experiments lead to the idea of making 

extremely sensitive sensor platform for chemical and biological detections, as 

schematically depicted in Figure 2.1.  

 

 

Figure 2.1: Schematic behaviour of the adsorbed biological species on the surface 

of a microcantilever and their molecular interactions
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Background and Literature Review 

The idea of applying macroscopic cantilevers goes back to about a century 

ago, when Stoney utilized cantilevers’ deflection for measuring the deposition 

induced surface stress of beams in an electrochemical environment  [59] and 

Galileo performed cantilevers as platforms for investigating the strength of 

materials  [44]. In late 70’s, Taylor et al. utilized cantilevered beam sensors for the 

detection of gasses  [62]. 

Microcantilevers were first used in Scanning Force Microscopy (SFM). 

These microcantilevers deflect due to the interaction forces between their tip and 

the sample. It was observed that temperature variations and adsorption of vapors 

cause parasitic cantilever deflection in SFM  [66]. Although this parasitic 

deflection was undesirable for the SFM, it triggered the idea of applying 

microcantilevers as chemical and temperature sensors. Thundat et al. showed that 

the resonance frequency variation of SFM cantilevers can be used for measuring 

the amount of loaded mass of the adsorbed water and mercury vapors  [66].  

Simultaneously, Gimzewski et al. used micromachined cantilevers as 

temperature and heat flow sensors and as calorimeters for measuring the heat 

generated by chemical reactions [4, 5, 22]. It is important to note that in 1993 

(prior to Thundat et al. and Gimzewski et al.’s investigations) Cleveland et al. 

utilized microcantilevers’ sensing potential for precisely calculating the spring 

constant of the SFM microcantilevers. Their nondestructive method included the 

addition of small masses at the end of the microcantilevers and measuring the 
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resulting shift in resonance frequency of the beam  [14]. Although they established 

a unique calibration method for SFM microcantilevers, they did not pay attention 

to the unrevealed sensing potential of microcantilevers and missed the opportunity 

of being the pioneers in the field of microcantilever sensing. Cleveland et al.’s 

method was later modified due to its low accuracy resulting from the practical 

difficulties and errors of placing the added mass at a specific position on the 

microcantilevers  [52]. 

From the observations of Thundat et al. in Oak Ridge National Laboratory 

and Gimzewski et al. in IBM Zurich Research Laboratory and Cambridge 

University, a new era was established in sensor technology. Microcantilever 

sensors attracted a lot of attention due to their simplicity, extremely small size and 

potential for extremely high sensitivity.  

 

Microcantilever-based Sensing Applications 

In the beginning, microcantilevers were mainly utilized as chemical [36, 

49, 63, 65, 68], thermal [10, 13, 17, 36, 46, 48] and physical [44, 45, 69] sensors. 

These sensors were generally considered to perform in air or in vacuum, resulting 

in the ignorance of environmental damping effect on the resonance frequency of 

microcantilevers. Utilizing microcantilever sensors for studying biological 

systems under native conditions and investigating processes at liquid-solid 

interface brought the idea of considering the damping effect of the surrounding 
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media on the resonance frequency of microcantilevers  [70]. It was not until 1996, 

when the applicability and potential of microcantilevers as biosensors attracted 

attention [6, 7, 9]. 

 

Surface Stress Sensing 

What makes microcantilevers the useful platform for chemical and 

biological sensing is the functionalization of one or both sides of these 

microcantilevers. This means that for biosensing, for example, if only one surface 

shows high affinity to the targeted species and the other surface is relatively 

passivated, these targeted species will be adsorbed to one side of the 

microcantilever, and as a result, the adsorption induced surface stress bends the 

microcantilever, as schematically depicted in Figure 2.2.  

 

 

Figure 2.2: Schematic of the DNA hybridization experiment. Each cantilever is 

functionalized on one side with a different oligonucleotide base sequence, (a) 

before the injection and adsorption of the biological species, (b) after the injection 

of the first complementary oligonucleotide, where the hybridization occurs on the 

cantilever and deflects it a distance of ∆x  [20] 

Oligonucleotid

e 
Hybridization 

(a) (b) 
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If only one side of the microcantilever is functionalized, as depicted in 

Figure 2.3 (a), the adsorption induced surface stress may be formulated by either 

measuring the deflection or the shift in the resonance frequency of the 

microcantilever. However, if both sides of the microcantilever are functionalized, 

as depicted in Figure 2.3 (b), the static deflection measurement will not be a 

practical method for surface stress measurement. Hence, the measurements of the 

shift in the resonance frequency of the microcantilevers should be utilized for the 

adsorption-induced surface stress measurements. 

 

      

Figure 2.3: Schematic of a microcantilever biosensor, (a) having only one 

functionalized surface and studied via the static detection mode, (b) having both 

surfaces functionalized hence studied via the dynamic detection mode  [31] 

 

There exist two different types of surface stress sensors: 

1) Those sensors measuring the adsorption-induced surface stress; target 

molecules are being adsorbed on to the functionalized surface of the sensor. This 

type of sensors will be extensively studied in the following chapters. 

            (a)                  (b) 
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2) Those sensors measuring the absorption-induced surface stress; target 

molecules will penetrate into the sensing layer which has been deposited on the 

surface of the sensor, which will result in the swelling of the sensing layer. A 

schematic of this type of sensing is depicted in Figure 2.4. 

 

                   

Figure 2.4: Schematic of the absorption-induced surface stress sensing  [37] 

 

Surface Stress Definition 

Surface stress is a macroscopic quantity that is governed by microscopic 

processes. The surface stress may be defined in various ways, depending on the 

particular framework being investigated  [49].  

In general, changes in the surface stress is mainly due to the changes in 

Gibbs free energy associated with the adsorption process, as all binding reactions 

are driven by the reduction of free energy  [36]. Surfaces usually tend to expand as 

a result of the adsorptive processes, as schematically depicted in Figure 2.5.  

Target molecules 

Sensing layer 



 

 11 

 

Figure 2.5: Schematic of the spontaneous adsorption of straight-chain thiol 

molecules on a gold coated cantilever  [63] 

 

Using the first law of thermodynamic and differential calculus, 

Shuttleworth formulated an equation relating the surface stress σ  and surface free 

energy γ  as follows  [13], 

A
A
∂
∂

+=
γ

γσ                                           (2.1) 

where A is the surface area and the ratio of 
A

dA
 is the surface strain ( ε∂ ). In many 

cases, the contribution from the surface strain term can be neglected and the free 

energy change is approximately equal to the change in the surface stress  [63].  

 A more general formulation of the Shuttleworth is the one with the stress 

defined as a tensor, as follows  [13], 

, , 1,2,3ij ij

ij

i j
∂

= + =
∂
γ

σ γδ
ε

            (2.2) 

where ijδ  is the Kronecker delta and ijε  is the elastic strain tensor.  

Au Au Au Au Au 
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Ultra-small Mass Sensing 

The natural frequency of free vibration of a mechanical flexible system 

depends on the system parameters; typically its mass, spring constant, modulus of 

elasticity, dimensions, etc. Variations in system parameters change the natural 

frequency. When the target molecules are adsorbed on to the functionalized 

surface of the microcantilever sensor, its mass changes, therefore, the natural 

frequency is altered by a small but detectable amount. This forms the basis of the 

dynamic mode of operation for the microcantilever sensor. The matter particle can 

be a biological or chemical agent.  

 

Temperature Sensing 

AFM cantilevers can be used as precise thermometers or calorimeters by 

exploiting the bimetallic effect [10, 36]. If the cantilever beam is coated by a 

material having a different coefficient of thermal expansion than that of the 

material making up the cantilever itself, it will undergo a deflection as a result of 

temperature changes.  

 

 



 

 

CHAPTER 3 
 

MICROCANTILEVER-BASED BIOSENSING 

In recent years, micro and nano-mechanical oscillators have been used as a 

new class of biological sensors. Such cantilever sensors are successfully applied 

in the fields of genomics and proteomics. The main advantage of these types of 

biosensors compared to other biosensing methods is the ability to detect different 

types of biological species by only altering the functionalized surface of the 

microcantilever sensors, as schematically depicted in Figure 3.1. 

 

Figure 3.1: Schematic of a cantilever chemical sensor with optical lever readout. 

Microcantilever surfaces modified with (a) nanobeads, (b) cavitand receptors, and 

(c) thin polymeric film to improve cantilever response or selectivity. (d) Depiction 

of a bioaffinity interaction microcantilever  [55]

(a) 

(b) 

(c) 

(d) 
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Different Methods of Biosensing 

Before microcantilevers were found to be useful biosensing platforms, the 

most common bio-detection method was achieved through adding fluorescent tags 

to the targeted molecules  [1]. However, microcantilever biosensors turned out to 

be better bio-detection tools as the molecular recognition is directly and 

specifically transduced into nanomechanical responses in a cantilever array. 

Hence, there is no need for labeling targeted molecules with fluorescence or 

radioactive tags. Moreover, by utilizing microcantilevers as biosensors, various 

application fields differ only in the functional layer on the cantilever interface. 

 Quartz crystal microbalance (QCM) is another biosensor which works 

under similar working principles as the microcantilever biosensors. An overview 

of this type of bio-detection system and its disadvantages are explained in the 

following subsection. 

 

Quartz Crystal Microbalance (QCM) 

The microgravimetric QCM is a promising candidate for biosensor 

applications, and its potential for the detection of DNA hybridization has been 

demonstrated recently. Although the QCM has a high inherent sensitivity (capable 

of measuring sub-nanogram levels of mass changes), methods for improving the 

detection limit of this device are being sought to enable wide application of the 

technique for DNA hybridization detection  [75]. 
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QCM has been used for a long time to monitor thin film deposition in 

vacuum or gas. It consists of a thin quartz disc sandwiched between a pair of 

electrodes, as depicted in Figure 3.2. Utilizing the piezoelectric properties of 

quartz, the crystal is excited to oscillation by applying an AC voltage across its 

electrodes  [77].  

 

Figure 3.2: Schematic of the quarts crystal which is the main part of a QCM  [76] 

 

The resonance frequency (f) of the crystal depends on the total adsorbed 

oscillating mass. When a thin film is attached to the crystal surface, the resonance 

frequency of the oscillating crystal decreases. If the film is thin and rigid the 

decrease in frequency is proportional to the mass of the film. In this way, the 

QCM operates as a very sensitive platform  [77]. Schematic of a commercially 

available QCM is depicted in Figure 3.3. 

Quartz 

Gold Electrode 

(air side) 

Gold Electrode 

(measuring side) 
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Figure 3.3: Schematic of a commercially available quartz crystal microbalance 

 [78] 

 

Microcantilever resonance-based DNA detection method is analogous to 

QCM in the vibration-working mode. However, there are several major 

differences between the two, as explained below.  

1) QCM sensor element is more than 100 times bigger than the 

microcantilever sensors and requires large amount of target molecules to 

give out a detectable signal. 

2) The microcantilever enables the construction of high-density sensor array 

to detect multiple species simultaneously at high efficiency. QCM is 

difficult to be integrated for its relative complex structure and means of 

detection. 

3) Most importantly, parallel detection of multiple species at the same time 

can be made possible by depositing different functionalization layer on the 

microcantilever surfaces. 
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Microcantilever Biosensors Modes of Detection 

A microcantilever biosensor can be operated in the following two different 

modes: 

Static mode: In this mode, the deflection of the microcantilever beam is 

measured. Having the deflection of the beam after the adsorption of biological 

species, adsorption induced surface stress can be accordingly calculated. 

Dynamic mode: In this mode, the shift in resonance frequency of the beam 

is measured. Knowing the shift of resonance frequency after the adsorption, the 

adsorption induced surface stress and/or the added mass can be calculated. 

Various mathematical models have been developed to explain the two 

modes of microcantilever operation. Some of them are described in the following 

subsections. 

 

Static Mode 

Long before the first microfabricated cantilevers were created, changes in 

surface stresses of these systems had been studied by measuring minute 

deformations of relatively thin (up to 1 mm) plates, referred to as the “beam-

bending” technique. Koch and Abermann demonstrated that the bending of a 

cantilever can be measured with sufficient sensitivity that the change in the stress 

due to the deposition of a single monolayer on one side can be detected  [34].  
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 This technique was first proposed by Stoney in 1909 to measure the 

residual stresses in metallic thin films deposited by electrolysis  [59]. In this 

method, the surface stress is calculated from the observed deformation of the 

rectangular plate using the following simple equation, which is commonly 

referred to as Stoney’s formula: 

( )
σ

υ
Et

L
z

2

213 −
=                                              (3.1) 

where z is the displacement of the cantilever, υ , L, t and E are the Poisson’s ratio, 

length,  thickness and modulus of elasticity of the cantilever, respectively, and σ  

is the adsorption-induced differential surface stress. 

The Stoney’s formula is applicable to thin plates with uniform thickness 

exhibiting small deflections, where the effect of in-plane loading on the transverse 

(out-of-plane) deflections is negligible.  

 

Corrections to the Stoney’s Formula 

 In the ‘‘thin-film approximation’’ considered in Stoney’s formula,  that is, 

in the case of a thin film (coating) on a thick substrate, the average stress or 

macrostress acting in the coating ( cσ ) can be expressed in a very simple manner 

as  [32] 

0

' εσ ∆≅ cc E                                          (3.2) 
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where '

cE  is the biaxial modulus of the coating (
υ−

=
1

' E
E ) and 0ε∆ characterizes 

the strain mismatch between coating and the substrate ( 0,0,0 sc εεε −=∆ ). 

However, in order to extend the Stoney’s formula to the case of “thick” films, the 

general theory of elastic interactions in multilayer laminates  [67] must be used 

instead of Eq. (3.2), which can be best expressed as  [33]  
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where z is measured from the bottom surface of the substrate, K is the curvature, 

st and ct are the thickness of substrate and coating, respectively, and the parameter 

θ  is defined as follows 

( )
( )ccss

cscs

tEtE

EEtt
''

''

2 +

−
=θ       (3.4) 

By defining parameters 
'

'

1

s

c

E

E
=γ  and 

s

c

t

t
=δ , the ratio of the corrected 

average stress intensity in the coating ( cσ ) to that calculated by Stoney’s formula 

( stσ ) is simply found to be  [32] 

δ
δγ

σ
σ

+

+
=

1

1 3

1

st

c                                                (3.5) 

which emphasizes that, in fact, it is a straightforward matter to extend Stoney’s 

equation to situations involving thick coatings. 
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Based on Eq. (3.5), it is shown that Stoney’s original formula does not 

cause serious errors for thickness ratios of 1.0≤δ , but fails to properly describe 

the variation of stress with thickness and cannot be relied upon for thickness 

ratios of 1.0>δ   [32]. In the absence of information on the biaxial modulus of the 

coating, Atkinson’s approximation can be applied  [3]. It considers a correction 

factor equal to 
δ+1

1
 for the Stoney’s formula, resulting in 

δ
σ

σ
+

=
1

st
At . 

Atkinson’s approximation yields much better results (compared to Stoney’s 

formula) and can be used for thickness ratios up to about 40%. 

 

Uniform Curvature Assumption and Modeling the Surface Stress 

 The original Stoney’s equation assumes that surface stress is uniformly 

changed during the deflection and relates the surface stress to the radius of 

curvature of the cantilever, R, as  [64] 

( )
σ

υ
2

161

EtR

−
=                                           (3.6) 

This formula assumes a uniform curvature for the whole deflected 

structure which is quite extreme for the nonlinear analysis of film large deflection 

and its limitation is illustrated in  [32] and  [19].  

The uniform curvature assumption is identical to modeling the cantilever 

under the surface stress as an unrestrained (free) plate, which violates the clamp 
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boundary condition of the “cantilever” at x=0. In other words, the Stoney’s 

equation describes the surface stress-induced deformation of a cantilever plate 

only if; 1) the length of the plate greatly exceeds its width, and 2) the point under 

consideration is far from the clamp. Another characteristic of the Stoney’s 

formula in the modeling of the problem is to replace the adsorption-induced 

surface stress as a moment applied at the structure’s free end. Considering both 

these assumptions and their shortcomings, Sader has improved the plate’s 

modeling by replacing the differential surface stress σ∆  applied to the faces of 

the plate by moments per unit length of magnitude 2/tσ∆  loaded at the free 

edges of the plate, as depicted in Figure 3.4, where t is the thickness of the plate 

 [51]. The clamped end boundary condition is also considered in Sader’s 

formulation. Since an exact analytical solution for a cantilever plate is extremely 

difficult, if not impossible to obtain, finite element method is utilized to obtain a 

qualitative overview of the cantilever plate’s behavior. An approximate analytical 

formula is also derived to replace the Stoney’s formula in situations where it is 

found to be inaccurate. 
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Figure 3.4: Schematic diagram showing loading of free edges of cantilever plate 

by moments per unit length 2/tM app σ∆=   [51] 

 

In order to improve the modeling of the cantilever, the adsorption-induced 

surface stress can be replaced by a moment (similar to Stoney’s and Sader’s 

formulation) together with a concentrated transverse load applied at the free end 

of the cantilever  [43] 

None of these analyses that model the surface stress as a moment (or 

moment together with force) applied at the structure’s free edge or free end, take 

the influence of the surface stress on structure stiffness into account. This may be 

improved by modeling the applied surface stress as an area stress which is 

uniformly distributed on the upper surface of the beam, as depicted in Figure 3.5 

[13, 74]. Applying the principle of virtual work, the equation of motion of the 

beam and the boundary conditions can then be derived. Utilizing this modeling, it 

is demonstrated how the stiffening effect of tensile stress becomes important 

when the magnitude of the surface stress becomes relatively large  [74]. 
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Figure 3.5: Schematic of the uniformly distributed surface stress model  [74] 

 

Static Deflection based on Energy Dissipation 

It is well established that molecular adsorption changes the surface free 

energy of a substrate surface due to the fact that all binding reactions are driven 

by the reduction of free energy, as mentioned in Chapter 2. The Shuttleworth 

equation was also given in Eq. (2.1) relating the surface stress and the surface free 

energy, as rewritten below, 

A
A
∂
∂

+=
γ

γσ                                          (3.7) 

However, the Shuttleworth equation is somewhat difficult to apply to 

Stoney’s formula (or any of its modified versions) since the second term in Eq. 

(3.7) (i.e.
A∂
∂γ

) depends on beam curvature, which is an unknown. Hence, both the 

Stoney and Shuttleworth equations must be solved simultaneously to obtain σ  

and z (the deflection of the microcantilever beam). Ibach has carefully studied the 

surface stress on crystalline cantilevers induced by adsorption of single atoms 

 [27]. However, when dealing with complex molecules like proteins, as it is often 
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the case in biochemical sensing, there are several other possible sources of stress 

rather than simple ion adsorption onto a clean crystal surface.  

Electrostatic interaction between neighboring adsorbed species, changes in 

surface hydro-phobicity, and conformational changes of the adsorbed molecules 

can all induce stresses which may contrast with each other and make the change 

in stress not directly related to the receptor-ligand binding energy or the rupture 

force. As an example, it has been recently observed how adsorption of 

complementary single-stranded DNA onto the cantilever surface can induce either 

compressive or tensile stress depending on the ionic strength of the buffer in 

which the hybridization takes place  [75]. This behavior is interpreted as the 

interplay between two opposite driving forces; reduction of the configurational 

entropy of the adsorbed DNA after hybridization which tends to lower the 

compressive stress, and intermolecular electrostatic repulsion between adsorbed 

DNA which tends to increase the compressive stress. 

 

Static Deflection based on the Molecular Interactions 

In modeling the surface stress, there exists a method which is based on the 

energy potential in the first layer of atoms attached to one surface of a 

microcantilever and the elastic potential energy in the microcantilever itself  [16]. 

The energy potential in the adsorbed layer is formulated based on the molecular 

interactions of the adsorbed species. The assumption that the first atomic layer on 



 

 25 

the beams surface plays a dominate role in microcantilever deflections is 

supported by the experimental works of Martinez et al.  [41] and Schell-Sorokin et 

al.  [54] who measured changes in curvature in cantilevered-thin plates due to 

adsorption of submonolayer of different atoms in ultrahigh vacuum conditions. 

Regarding this assumption, the arrangement of adsorbed atoms (or molecules) on 

the surface of microcantilever is modeled as shown in Figure 3.6.  

 

Figure 3.6: Arrangement of atoms (or molecules) on cantilever surface 

 

According to the proposed model, atoms in the attached film are attracted 

and repulsed according to the Lennard–Jones potential formula 

126
)(

r

B

r

A
rw +

−
=                                      (3.8) 

where r is the spacing between atoms (molecules) and A and B are Lennard–Jones 

constants. Part of this potential is transferred into the cantilever as elastic strain 

energy causing the beam to deflect. The equilibrium configuration of the 

cantilever is determined by minimizing the total potential function, which is made 

up of the Lennard–Jones potential and the elastic energy in the cantilever. By 

considering a simple model of the curved beam (after the bending of the 
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microcantilever) as depicted in Figure 3.7, the total atomic and elastic bending 

potential energy is found to be  
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(3.9) 

where R is the radius of curvature and a and b are parameters shown in Figures 

3.6 and 3.7. 

 

Figure 3.7: Position of surface atoms (or molecules) on the deflected 

microcantilever beam  [16] 

 

In order to find the radius of curvature of the deflected beam, and hence 

the deflection of the beam, the amount of U in Eq. (3.9) must be a relative 

minimum, which is determined from  [16] 

0
dU

c
d
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=
 
 
 

                                             (3.10) 
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Remark: Instead of the Lennard-Jones formula used in deriving Us, the 

simpler van der Waals potential [Eq. (3.11)] may be used 

6r

C
U s −=                                             (3.11) 

where the interaction constant C can be determined as C = 1.05×10
−76
cd (Jm

6 
), 

where c and d are van der Waals constants depending on the type of atoms 

(molecules)  [16]. 

 

Dynamic Mode 

Contrary to static mode, there exist different models for analyzing the 

effect of the adsorption induced surface stress on the resonance frequency shift of 

the microcantilever. Some of these models are explained in the following 

subsections. 

 

Taut-String Model Approximation 

This model approximates the microcantilever beam as a taut string and 

models the effect of surface stress as a constant force along the string, as depicted 

in Figure 3.8.  
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Figure 3.8: Taut-string approximation of the microcantilever beam  [50] 

 

The equation of motion of the beam can be represented as  [50] 

  0bN v A v+ =′′ ρ ɺɺ                                             (3.12) 

where LN σ=  is the longitudinal force and v(s,t) is the vertical displacement of 

the microcantilever. Prime denotes derivative with respect to position s and the 

over dot indicates derivative with respect to time t. 

 

Beam with Axial Force Model Approximation 

In the simplest model, surface stress is expressed as non-varying force (F) 

and moment applied at the free end of the microcantilever, as depicted in Figure 

3.9.  
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Figure 3.9: Schematic view of a microcantilever with uniform surface stress 

 

Having this force, the equation of motion of the microcantilever beam can 

be expressed as  [39]  

 0bEI v Fv A v− + =′′′′ ′′ ρ ɺɺ                                      (3.13) 

This model was later modified by assuming that the axial force due to 

surface stress varies along the microcantilever and the surface stress exists only 

on a fraction of the microcantilever as depicted in Figure 3.10.  

 

Figure 3.10: Microcantilever with fractional surface stresses coverage 

 

This assumption modifies the equation of motion of the beam as follows 

 [50] 
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( )( ) 0bEI v F s v A v′′′′′ ′− + =ɺɺρ                                  (3.14) 
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Studying “macro-scale” cantilever beams, both of these models provide 

relatively good representation of the physical systems. For the case of 

microcantilevers, however, the molecular forces are no longer negligible and must 

be taken into account in modeling the surface stress, as detailed in the next 

chapter. 

 

Utilizing Buckling Analogy in Formulating the Adsorption-induced Shift in 
Resonance Frequency 

The effect of adsorption induced surface stress on the change of the 

microcantilever resonance frequency has been found considering the buckling-

resonance analogy as  [42] 
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where ρ and Ab are the mass density and cross-sectional area of the 

microcantilever, respectively, and αi is the i-th positive root of the eigenfrequency 

equation 

01coshcos =+ii αα       (3.17) 

As the resonance frequency of the microcantilever beam can be easily 

found from the general equation of motion of the vibrating beam, the main effort 

has been done in formulating the surface stress (and its effects) into the equation 

of motion of the microcantilever.    

 

Recent Developments in Microcantilever Biosensors 

 

Sensitivity Enhancement 

   Physical dimensions play an important role in the sensitivity of 

microcantilever sensors for mass detection. Modeling the microcantilever as a 

simple 1D oscillator, its natural frequency may be formulated as follows  [13] 

1

2 b

K
f

m
=

π
            (3.18) 

where K  is the spring constant and bm =n beamm  is the effective beam mass with 

beamm  being it’s actual mass and n  being  a  geometric parameter accounting for 
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the non point-mass distribution. n has a typical value of 0.24 for a rectangular 

microcantilever beam.  

  Presence of mass on the microcantilever surface results in the generation 

of differential surface stress. This changes the spring constant, which in turn 

changes the natural frequency. In general, the altered resonance frequency can be 

formulated as follows  [13] 

1

2 b

K K
f

m n m

+
=

+δ

δ
π δ

      (3.19) 

where Kδ  is the change in the spring constant attributed to adsorption induced 

surface stress and mδ  being the added mass.  

   It has been shown that if adsorption is localized (i.e., end loading), the 

change in resonance frequency due to change in spring constant can be neglected. 

If the spring constant K  can be formulated as follows  [64] 

 
3

34

Ebh
K

L
=           (3.20) 

with E being the Young’s modulus of elasticity for the microcantilever beam 

material and ,  ,  and b h L  being width, thickness and length of the beam, 

respectively. Then, the resonance frequency f of the microcantilever beam can be 

given as follows  [64] 
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where eqm  is the equivalent mass consisting of mass of microcantilever beam and 

adsorbed mass. If  dm  is the mass added at the end of the microcantilever beam, 

then   eqm = dnm + bm . 

   The shifted resonance frequency fδ  can be given by  [64]  
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   The adsorbed mass mδ  can then be determined from the change in the 

resonance frequency using the following equation  [64] 

2 2

2

f f m

f m

δ δ−
=             (3.23) 

   The mass sensitivity mS of the sensor can be given by  [64] 
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where sA  is the active area of the sensor. The sensitivity is the fractional change 

in resonant frequency with addition of mass to the sensor. When applied to the 

microcantilever sensor, the sensitivity can be expressed as follows  [64]  
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where 1ζ  and dh  are  the fractional area coverage and thickness of the deposited 

mass at the end loaded microcantilever beam. The minimum detectable mass 

minm∆  can be given by the following equation  [64] 

f

f

S
m

m

min
min

1 ∆
=∆               (3.26) 

  Reduction in dimensions can lead to improvement in sensitivity of 

resonance mode of the mass sensors. However, size reduction leads to different 

sensor fabrication difficulties. Several different methods have been explored to 

improve sensitivity without having to reduce the microcantilever dimensions 

further. One of the most recent one of these presents a method of increasing the 

sensitivity by using a frequency tuning approach to measure mass changes. The 

method uses a closed loop strategy to measure mass change in parametric 

resonance based sensor. A DC offset is applied to the sensor as a feedback signal 

to compensate for the frequency shift at the boundary of the parametric resonance 

region. Mass changes are detected by measuring the DC offset feedback  [73].  
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Potential and Practical Medical Applications 

Microcantilever biosensors are useful platforms for different medical 

diagnostics. They have been successfully used in DNA detection [23, 60, 71]. The 

sensing or detection of DNA strands is important in the fabrication of DNA probe 

arrays useful in DNA sequencing or gene mapping applications  [23]. A schematic 

of microcantilever-based DNA detection is depicted in Figure 3.11. 

 

Figure 3.11: Scheme of microcantilever based DNA detection  [60] 

 

The ability to quickly identify the presence of specific DNA components may also 

be important in the rapid identification of certain bio-terror agents  [23]. 

Bacterial infections are common and involved in many forms of disease, 

such as food poisoning. Rapid detection of bacteria may lead to the fast 
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adjustment of antibiotic treatment, which in turn leads to decreased mortality and 

lowers the hospitalization cost  [21].  

One of the most common bacteria used in the experiments is Escherichia 

coli (referred to as E. coli). Surfaces of the microcantilevers are covered with this 

type of bacteria, as depicted in Figure 3.12. A schematic of the growth of the 

adsorbed E. coli on the surface of the microcantilever is also depicted in Figure 

3.13. 

 

Figure 3.12: Surface of a microcantilever biosensor covered with E. coli  [21] 

 

  

Figure 3.13: Schematic of mass increase due to bacterial growth on the surface of 

microcantilever sensor: (a) Freshly adsorbed E. coli cells on the surface of 

microcantilever, (b) The bacterial cells start to grow  [21] 

  

  (a)   (b) 
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Another type of bacteria used in the experiments is Listeria innocua. In 

this case, the surface of the microcantilever is covered with affinity-purified 

polyclonal antibody for Listeria innocua  [24]. An image of a microcantilever 

covered with Listeria innocua bacteria is depicted in Figure 3.14. 

 

Figure 3.14: SEM image of Listeria innocua bacteria nonspecifically adsorbedon 

the surface of a microcantilever  [24]  

 

Different virus particles such as baculovirus and single virus particle may 

also be detected utilizing microcantilever biosensors [25, 29]. Figure 3.15 depicts 

a microcantilever with the attached vaccinia virus particle on its surface. 
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Figure 3.15: A microcantilever beam utilized for the mass sensing of the adsorbed 

vaccinia virus particle  [25] 

 

Microcantilever biosensors may also be utilized in detection of protein 

[38, 53], glucose  [61] and thiol molecules  [28]. 

 

 

 

 

 

 



 

 

CHAPTER 4 
 

NONLINEAR MODELING OF PIEZOELECTRICALLY-DRIVEN 

MICRO-CANTILEVER BIOSENSORS 

As explained in the previous chapters, microcantilevers are useful 

platforms for biosensing applications. In this chapter, formulating the adsorption-

induced surface stress into the equation of motion of the vibrating microcantilever 

is of interest. As the microcantilever beam is being operated in the dynamic mode 

of detection, appropriate actuation and frequency read-out systems are required. 

Here, it is assumed that the microcantilever beam is actuated via the applied 

voltage to the piezoelectric layer attached on its surface. This PZT layer may 

cover all (as depicted in Figure 4.1) or part of the microcantilever surface.  

Having the surface of the microcantilever functionalized, target biological 

species will specifically adsorb to the surface of the microcantilever and they will 

form a biological layer on microcantilever surface, as depicted in Figure 4.1. 

In order to derive the equation of motion of the vibrating microcantilever 

beam and formulate the adsorption-induced surface stress, the potential energy of 

the attached PZT layer and the adsorbed biological layer is needed. Hence, an 

overview of the piezoelectric actuators and the nature of the molecular 

interactions of the adsorbed biological species are given in the beginning of this 

chapter.
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Figure 4.1: Schematic of a microcantilever biosensor with the attached biological 

species and the piezoelectric layer on its surface 

 

 

Piezoelectric Actuators 

The piezoelectric effect was discovered in 1880  [2]. The ability of certain 

crystalline materials (ceramics) to generate an electrical charge in proportion of 

an externally applied force is called direct piezoelectric field. This direct effect is 

used in force transducers. According to the inverse piezoelectric effect, an electric 

field parallel to the direction of polarization induces an expansion of the ceramic. 

The direction of expansion with respect to the direction of the electrical field 

depends on the constants appearing in the constitutive equations. The material can 

be manufactured in such a way that one of the coefficients dominates the others. 

One of the materials most frequently used for piezoelectric actuators is lead-

zirconium-titanate, or PZT  [2]. From here on, PZT is used to refer to the 

piezoelectric actuator unless otherwise stated.  

Piezoelectric 

Layer 

Biological 

Layer 
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For the inverse piezoelectric effect, the electrical and mechanical 

constitutive equations are coupled as follows  [2]: 

ES s T dE= +               (4.1) 

where constant d (with the dimension of C/N or m/V) relates the strain to the 

electric field E (with the dimension of V/m) in the absence of mechanical stress 

and s
E
 (having dimension of m

2
/N) refers to the compliance when the electric 

field is constant. S and T are the strain and stress vectors with dimensions of 

(m/m) and (N/m
2
), respectively. 

There exist two basic types of piezoelectric actuators: the stacked design 

or linear actuators and the laminar design or the spatially distributed actuators, as 

depicted in Figure 4.2.  

Here, utilizing the laminar design piezoelectric actuators is of interest and 

they will be considered in deriving the equations of motion through out the 

following modelings. 

In the laminar design, thin piezoelectric films are bonded on the structure, 

as depicted in Figure 4.3, where the PZT strip is attached to the surface of the 

beam. In this case, the geometrical arrangement is such that the piezoelectric 

coefficient d31 dominates the design and the useful direction of expansion is 

normal to that of the electric field  [2] Considering the beam and PZT layer 

depicted in Figure 4.3, and assuming that the thickness of the PZT layer is small 
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compared to that of the beam, the following stress relation within the PZT layer 

may be formulated  [2], 

( )
11 11 31p p

p

P t
E E d

h
σ = ε −           (4.2) 

where 
( )
p

P t

h
 is the electric field generated by controlling the voltage P(t) applied 

to the electrodes.  

 

Figure 4.2: (a) A stacked design piezoelectric actuator, (b) A laminar design 

piezoelectric actuator  [2] 

 

Now that the stress generated within the PZT layer is formulated 

according to Eq. (4.2), the equation of motion of the PZT-actuated 

microcantilever beam may be formulated utilizing the Hamilton’s principle 

method, as described in the following sections. 

 (a)       (b) 



 

 43 

 

Figure 4.3: PZT strip bonded to the surface of a beam  [2] 

 

Molecular Arrangement of the Adsorbed Biological Species and the 
Modeling the Adsorption Induced Surface Stress 

In case of chemical microcantilever sensors, experiments show that only 

the first atomic layer on the microcantilever surface plays a dominant role in the 

amount of induced surface stress [47, 54]. In regard to this assumption, the 

simplest model for the arrangement of the adsorbed species is as depicted in 

Figure 4.4. However, this molecular arrangement is best for the chemical species 

(such as Mercury) and may not be useful for the adsorption of the biological 

species. Biological species (e.g., Thiol molecules, protein or DNA) do not have 

such structured arrangements as depicted in Figure 4.4. As an example, self 

assembled monolayers (SAM) of Thiol molecules are assumed to be arranged as 

depicted in Figure 4.5. For simplicity, it is assumed in the present work that the 
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arrangement of the adsorbed biological species is similar to that depicted in 

Figure 4.4. 

 

Figure 4.4: Arrangement of a monolayer of the adsorbed biological species on 

microcantilever surface before the deflection of the microcantilever beam 

 

 

Figure 4.5: Schematic of a fully assembled alkane thiol SAM  [28] 

 

Origin of the Adsorption Induced Surface Stress 

Molecules of the adsorbed biological species on the surface of 

microcantilever apply intermolecular adhesion forces to their neighboring 

molecules. In AFM, when the tip comes to contact with the sample particles, there 

will be different forces applied to tip and particle as depicted in Figure 4.6. 

   b      b            b             b 

Adsorbed Biological Species 

PZT 

Layer 

Microcantilever Beam 
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Figure 4.6: The interacting forces between tip and nanoparticles in AFM 

positioning  [57] 

 

Repulsive contact forces, Aas and Ata are the adhesion forces. The main 

components of these adhesion forces are van der Waals, capillary, and 

electrostatic forces  [57]. 

In microcantilever sensing method, the only forces present are adhesion 

ones. In this section, the presence of different types of adhesion forces in 

biosensing microcantilevers are verified, and tried to be formulated. 

 

Intermolecular Forces of Attraction and Repulsion 

Considering the chemical microcantilever sensors, the arrangement of the 

first layer of the adsorbed species (e.g., mercury) may be simply modeled as 

depicted in Figure 4.7.  
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Figure 4.7: Arrangement of the adsorbed atoms (molecules) on microcantilever 

surface 

 

According to this model, the attraction and/or repulsion forces among 

atoms (molecules) may be formulated considering the following two approaches: 

1) van der Waals Potential Formulation: In some cases, the interactive 

forces between the adsorbed atoms (molecules) in the monolayer of the biological 

species may be defined by the van der Waals force of attraction, with its potential 

is given by the following equation  [16], 

6r

C
U vdw

s −=                                        (4.3) 

where the interaction constant, Cvdw, can be determined from Eq. (4.4)  [66],  

Cvdw = 1.05×10
−76

 ed (J.m
6
)                                  (4.4) 

where e and d are van der Waals constants depending on the type of atoms. 

2) Lennard–Jones Potential Formulation: This theory is better compared to 

the van der Waals, since it considers both attraction and repulsion effects. Its 

potential energy of repulsion and attraction is formulated as follows  [16],  
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6 12
( )

A B
w r

r r

−
= +                (4.5) 

where r is the spacing between atoms (molecules) and A and B are the Lennard–

Jones constants depending on the types of molecules. These constants are 

available for individual atoms and simple molecules. However, it is not an easy 

and straight forward procedure to obtain the Lennard-Jones constants for complex 

molecules and biological species such as protein. 

 

Lennard-Jones Constants of A and B 

In case of having two atoms, the Lennard-Jones constants of attraction/ 

repulsion is found to be as A=10
-77
Jm

6
 and B=10

-134
Jm

12
. However, in general, in 

order to find the Lennard-Jones constants, we should follow the steps described 

bellow: 

In general, the Lennard-Jones potential is formulated using the following 

equation  [72], 

12 6

( ) 4w r
r r

σ σ
ε
    = −    
     

           (4.6) 

where ε is a parameter determining the depth of the potential well and σ is a 

length scale parameter that determines the position of the potential minimum and 

is defined as follows  [72], 
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1/ 62 Nr
−σ =             (4.7) 

in which rN  is the nearest neighboring distance in the atomic structure. For FCC 

(face-centered cubic), BCC (body-centered cubic) and diamond crystal structures, 

rN equals 2 / 2a , 3 / 2a , and 3 / 4a  respectively, where a is the lattice 

constant of the specific crystal. The value for parameter a is given in Table 4.1 for 

some elements. 

where z0 is the equilibrium distance between the two contact planes 

(

1/ 6

0

2

15
z σ =  

 
)  [72]. 

Once σ is known, ∆γ (the work done to move two surfaces from 

equilibrium separation z0 to infinity) could be readily obtained from tabulated 

handbook values or from measurement. Thus, the second parameter of the 

interatomic Lennard–Jones potential, ε, could be obtained from the following 

equation  [72]: 

1

016

A

z
γ

π
∆ =             (4.8) 

where 

2 6

1 1 24A επ ρ ρ σ=                 (4.9) 

with ρ1 and ρ2 being the number density of the atoms of the two bodies. 
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Table 4.1: Lattice structure for some elements  [58] 

Element Structure a (Å) σ (Å) z0 (Å) 

C Diamond 3.57 1.38 0.98 

Na BCC 4.22 3.26 2.33 

Al FCC 4.05 2.55 1.82 

Si Diamond 5.43 2.09 1.49 

K BCC 5.23 4.03 2.88 

Ca FCC 5.58 3.52 2.52 

Fe BCC 2.87 2.21 1.58 

Cu FCC 3.61 2.27 1.62 

Ge Diamond 5.69 2.20 1.57 

Ag FCC 4.09 2.58 1.84 

Au FCC 4.08 2.57 1.84 

 

In the present work, the simple equation of Eq. (4.5) will be used in 

formulating the Lennard-Jones potential energy and constants A and B are found 

by applying an inverse engineering approach on the available results of the related 

experiments. This will be extensively described in Chapter 5.  
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Electrostatic Forces 

In the experiments held by G. Wu et al.  [71], V-shaped gold-coated silicon 

nitride (AuySiNx) microcantilevers are utilized to detect single-stranded DNA 

(ssDNA). In all stages of the experiments, a solution of sodium phosphate buffer 

(PB) at pH ≈ 7.0 (always with the same pH but possibly different ion 

concentrations for different experiments) is used to equilibrate the cantilever. 

Experimental results show that the cantilever deflections for both steps of 

immobilization and hybridization of ssDNA probe and target were influenced by 

PB concentration, as depicted in Figure 4.8. 

This change in microcantilever deflection induced by change in PB 

concentration suggests that electrostatic repulsive forces between neighboring 

DNA molecules must play a role in cantilever motion. 

These electrostatic repulsive forces can be reduced by grounding the 

(semi)-conducting substrate such as Si, Au, or HOPG. However, a model for the 

electrostatic forces is still desirable for general cases. 
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Figure 4.8: (a) Steady-state cantilever deflections caused by immobilization of 

ssDNA (sequence K-30) at different PB concentrations, (b) Steady-state changes 

in cantilever deflection for hybridization of 30-nt-long ssDNA (sequences K-30 

and K9-30) at different PB concentrations  [71] 

 

Capillary Forces 

Capillary forces of the model given in Figure 4.6 result from the water 

layer on the surfaces of the probe and particle. A liquid bridge occurs between the 

tip and surface at close contact as depicted in Figure 4.9.  

 

Figure 4.9: Schematic of capillary effect during a sphere and flat surface contact, 

with e being the initial thickness of the water, h the tip-surface distance, r and ρ 

the radii of curvature of the meniscus  [57] 

 

         (a)                 (b) 
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In microcantilever biosensors, we do not have such contact mode as in 

AFM applications. Therefore, the capillary effects and forces are neglected in the 

microcantilever modeling. 

 

The General Equation of Motion Microcantilever utilizing Hamilton’s 
Principle 

The PZT-actuated microcantilever biosensor with the adsorbed biological 

species on its surface utilized in the present modeling framework is depicted in 

Figure 4.4. Here, the PZT layer and the adsorbed biological layer only cover parts 

of the microcantilever. However, later in running the simulations it will be 

assumed, for simplicity, that these two layers cover the whole surface of the 

microcantilever.   

 

Figure 4.10: (a) Schematic of the microcantilever with the PZT and the adsorbed 

biological layers on its surface, and (b) coordinate system of the microcantilever 

beam 

 

v(s,t) 

s+u(s,t) 

s 

x 

y 

ψ 
ξ θ 

l1 

l2 

l3 
l4 

L 

x 

y 

     (a)                             (b) 

PZT Layer Adsorbed Biological 

Layer 



 

 53 

The angle ψ  is formulated, according to the system depicted in Figure 4.10 (b), 

as follows, 

tan
1

v

u

′
ψ =

′+
           (4.10) 

The curvature ( ′ψ ) and the angular velocity (ψɺ ) of the segment of the 

beam depicted in Figure 4.10 may then be formulates as follow, 

( )
( )2 2

1

1

v u v u

u v

′′ ′ ′ ′′+ −
′ψ =

′ ′+ +
      (4.11) 

( )
( )2 2

1

1

v u v u

u v

′ ′ ′ ′+ −
ψ =

′ ′+ +

ɺ ɺ
ɺ      (4.12) 

Eqs. (4.11) and (4.12) may be simplified by utilizing Taylor series 

expansion, assuming ( )2u O= ∈  and considering only terms of order up to 

( )3O ∈ , as follows, 

2v v u v u v v′ ′′ ′′ ′ ′ ′′ ′′ ′ψ = − − −          (4.13) 

2vvuvuvv ′′−′′−′′−′=ψ ɺɺɺɺɺ        (4.14) 

It is known that the beam is inextensible, hence, the following equations 

apply to the element of the beam depicted in Figure 4.10  [18], 

( ) ( )2 2

1 , 1 1 0f u v u v′ ′= − + − =            (4.15) 
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Applying Taylor series expansion to Eq. (4.15), u′  and v′  may be related as 

follows, 

2 21
1 1

2
u v v′ ′ ′= − − ≈ − +⋯           (4.16) 

 

Potential Energy of the Microcantilever Beam 

The total kinetic energy of the system depicted in Figure 4.10 (a) is only a 

function of the microcantilever structure. The adsorbed biological layer does not 

have any effect on the kinetic energy as we have assumed that the effect of 

adsorbed mass is negligible compared to that of the induced surface stress. 

However, in formulating the total potential energy, the effects of both PZT and 

biological layer need to be taken into account. Both kinetic and potential energies 

of the microcantilever depicted in Figure 4.10 (a) are derived in the following 

sections.  

 

Potential Energy due to the Beam’s Structure Having the PZT Layer on Its 
Surface 

In this section, it is assumed that the PZT layer on the surface of the 

microcantilever beam doesn’t store energy. Hence, its effect will be considered in 

altering the flexural rigidity of the microcantilever beam only. It is also assumed 
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that the adsorbed biological layer thickness is much smaller than that of the beam 

and PZT layer; hence, it doesn’t affect the beam’s overall flexural rigidity. 

 

Figure 4.11: Schematic of a segment of the microcantilever beam and the PZT 

layer on its surface  [15] 

 

The overall flexural rigidity of the microcantilever beam and the PZT 

layer attached on its surface may be formulated considering Figure 4.11, as 

follows  [8], 

( ) ( )
2 2

( )
1 1

pb

b p

b p

EE
EI s I s I s

ν ν
= +

− −
   (4.17) 

where Ib(s) and Ip(s) are formulated using the parallel theorem as follows, 

( ) ( )
1 2

3

2

12

b b

b l l b b n

w h
I s H H w h y= + −              (4.20) 

( ) ( )
1 2

23

12 2 2

p p p b

p l l p p n

w h h h
I s H H w h y

  
 = − + + − 
   

   (4.21) 

H is the Heaviside function and defined as follows, 

yn 

(l2 - l1) 

neutral axis 

PZT 

layer 

microcantilever 

beam 

hb 

hp 

geometric  

center of  

the beam 

x 

z 
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0 ;

1 ;
i

s i
H

s i

<
= 

≥
            (4.18) 

and yn, is defined as follows, 

( )
( )bbpp

bppp

n
hEhE

hhhE
y

+

+
=
2

    (4.19) 

Remark: For a microcantilever beam, the thickness of the beam is 

typically much smaller than its width and length, thus it is in a “plane strain” 

configuration. For this reason, the modulus of elasticity of the microcantilever and 

the PZT layer utilized in Eq. (4.17) is corrected from E to 
21

E

ν−
 where ν is the 

Poisson’s ratio of the microcantilever or the PZT layer. 

Considering terms of order up to ( )4O ∈ , the potential energy due to the 

beam’s structure and the attached PZT layer may be formulated as follows, 

( ) ( )( )2 2 2 2 2

0 0

1 1
2 2 2

2 2

L L

bpU EI s ds EI s v v v v u v v u dsψ ′ ′′ ′′ ′ ′′ ′ ′ ′′ ′′= = − − −∫ ∫   (4.22) 

 

Potential Energy due to the Energy Storage of the PZT Layer 

The potential energy may be found using the following equation  [40], 

0

1

2

L

cU M dsψ ′= ∫              (4.23) 
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where Mc is the conservative moment. Considering the second term in Eq. (4.2), 

which is related to the energy storage of the PZT layer, Mc may be formulated for 

the PZT layer as follows, 

( ) ( )

( ) ( )

1 2

1 2

2

11 312

2

312

1

2 21

b
p n

b
n

h
h y

p

c l l

p hp
y

p p b

l l n

p

E P t
M ydA H H d ydy

h

E h h
H H d y P t

 
+ − 

 

 
− 

 

= σ = − −
− ν

 
= − − + − 

− ν  

∫ ∫
          (4.24) 

The potential energy due to the energy storage of the PZT layer may then 

be found by substituting Eqs. (4.13) and (4.23) into Eq. (4.24), as follows, 

( ) ( ) ( )

( )( ) ( )

1 2

2

312

0

2

0

1

2 2 21

1

2

L
p p b

PZT l l n

p

L

c

E h h
U H H d y P t v v u v u v v ds

C s v v u v u v v P t ds

ν

  
′′ ′′ ′ ′ ′′ ′′ ′= − − + − − − −  

−   

′′ ′′ ′ ′ ′′ ′′ ′= − − − −

∫

∫
 

(4.25) 

where 

( ) ( )
1 2 312 2 21

p p b

c l l n

p

E h h
C s H H d y

ν

 
= − + − 

−  
          (4.26) 
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Potential Energy due to the Adsorbed Biological Layer 

As mentioned before, it is assumed that a monolayer of the biological 

species is adsorbed on microcantilever surface, where the spacing between the 

neighboring molecules is b, as depicted in Figure 4.4. This spacing depends on the 

concentration of the solution of biological species and is not a property of the 

adsorbed molecules. This spacing changes to (1 )b u′+ and bv′  in horizontal and 

vertical directions, respectively, after the deflection of the microcantilever, as 

depicted in Figure 4.12. 

 

Figure 4.12: Arrangement of a monolayer of biological species on microcantilever 

surface after the deflection of microcantilever 

 

Applying the Lennard-Jones potential formula to the molecular 

arrangement of Figure 4.12, the potential energy of the surface stress (originating 

from the molecular interactions of the neighboring adsorbed biological species) 

may be found as follows, 

 b(1+u′) 

  b 

    bv′ 
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( )
( ) ( ) ( )3 4 3 6

2 26 2 12 2
0

1
2

1
1 1

L

ss l l

A B
U H H ds

b u
b u v b u v

  
 − 

= − +   ′+    ′ ′ ′ ′+ + + +      

∫  

(4.27) 

Applying Taylor’s series expansion to Eq. (4.27), it will be reduced as 

follows, 

( ) ( ) ( ) ( )( )2 2

1 2 3 4

0

2

L

ssU A s A s v A s v u A s u ds′ ′ ′ ′= − + −∫      (4.28) 

where 

( ) ( )
3 41 7 13l l

A B
A s H H

b b

 = − − + 
 

             (4.29) 

( ) ( )
3 42 7 13

3 6
l l

A B
A s H H

b b

 = − − + 
 

              (4.30) 

( ) ( )
3 43 7 13

27 90
l l

A B
A s H H

b b

 = − − + 
 

               (4.31) 

( ) ( )
3 44 7 13

7 13
l l

A B
A s H H

b b

 = − − + 
 

              (4.32) 
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Total Potential Energy of the Microcantilever Beam with the PZT Layer and 
the Adsorbed Biological Layer 

Putting Eqs. (4.22), (4.25) and (4.28) together, total potential energy of the 

system can be formulated as follows, 

( )( ){
( )( ) ( )

( ) ( ) ( ) ( ) }

2 2 2 2

0

2

2 2

1 2 3 4

1
2 2 2

2

4

L

bp PZT ss

c

U U U U EI s v v v v u v v u

C s v v u v u v v P t

A s A s v A s v u A s u ds

′′ ′′ ′ ′′ ′ ′ ′′ ′′= + + = − − −

′′ ′′ ′ ′ ′′ ′′ ′− − − −

′ ′ ′ ′ + − + − 

∫

 (4.33) 

 

Kinetic Energy of the Microcantilever Beam 

The total kinetic energy of the microcantilever beam and the PZT layer 

and adsorbed biological layer, as depicted in Figure 4.10 (a), may be formulated 

as follows, 

( ) ( )2 2

0

1

2

L

m s u v dsT  + = ∫ ɺ ɺ          (4.34) 

where  

( )
1 2

( ) p pb b b l lm s w h H H h 
 
 

= ρ + − ρ                (4.35) 

It is assumed that the mass of the adsorbed biological layer is negligible. 

 



 

 61 

General Equation of Motion of the Microcantilever Depicted in Figure 4.10 (a) 

Having Eqs. (4.15), (4.33) and (4.34), Lagrangian of the microcantilever 

beam and the PZT and adsorbed biological Layer may be formulated as follows, 

( ) ( )( ){
( ) ( ) ( )

( ) ( ) ( ) }

2 2 2 2 2 2

0

2 2

1 2

22 2

3 4 1

1
2 2 2

2

( ) ( ) 4

1 1

L

c

L m s u v EI s v v v v u v v u

C s v v u v u v v P t A s A s v

A s v u A s u u v dsλ

′′ ′′ ′ ′′ ′ ′ ′′ ′′ = + − − − − 

′′ ′′ ′ ′ ′′ ′′ ′ ′+ − − − − −

 ′ ′ ′ ′ ′+ − + − + −  

∫ ɺ ɺ

  (4.36) 

where 1λ  is the Lagrangian multiplier. 

Eq. (4.36) may be rewritten as  

( )
0

1
,

2

L

L l s t ds= ∫             (4.37) 

where function l(s,t) is defined as follows, 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2

2 2

1 2

22 2

3 4 1

, 2 2 2

( ) ( ) 4

1 1

c

l s t m s u v C s v v v v u v v u

C s v v u v u v v P t A s A s v

A s v u A s u u v

ζ

λ

′′ ′′ ′ ′′ ′ ′ ′′ ′′ = + − − − − 

′′ ′′ ′ ′ ′′ ′′ ′ ′+ − − − − −

 ′ ′ ′ ′ ′+ − + − + −  

ɺ ɺ

 (4.38) 

It is known from the extended Hamilton’s principle that, 

( )
0

0, where , , , , , ,
dt

t

Ldt L L u u u v v v vδ = = ′ ′′ ′ ′′∫ ɺ ɺ           (4.39) 

Substituting Eq. (4.37) into Eq. (4.39) will result as follows, 
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2

2

0
0 0

2

2

0

1

2

d d L

L

L

s L

t t

t t

d l d l d l
Ldt uds

dt u ds u uds

d l d l d l
vds

dt v ds v vds

l d l l d
u

u ds u u ds=

  ∂ ∂ ∂      δ − − + δ       ′ ′′∂ ∂ ∂       

 ∂ ∂ ∂     + − − + δ      ′ ′′∂ ∂ ∂      

  ∂ ∂ ∂ ∂  + − δ − −   ′ ′′ ′∂ ∂ ∂    

= ∫

∫

∫ ∫ ɺ

ɺ

0

0

0

0

0 0

0 0

0

s

L

s L s

L L

s L s s L s

l
u

u

l d l l d l
v v

v ds v v ds v

l l l l
u u v v dt

u u v v

=

= =

= = = =

   δ  ′′∂  

    ∂ ∂ ∂ ∂    + − δ − − δ       ′ ′′ ′ ′′∂ ∂ ∂ ∂        

∂ ∂ ∂ ∂       ′ ′ ′ ′+ δ − δ + δ − δ =       ′′ ′′ ′′ ′′∂ ∂ ∂ ∂        

 

(4.40) 

The partial derivatives in Eq. (4.40) are found from Eq. (4.38) as follows, 

( )2
l

m s u
u

∂
=

∂
ɺ

ɺ
            (4.41) 

( )( ) ( ) ( )

( ) ( )

2 2

3

4 1

2 ( ) ( ) 4

4 2 2

c

l
EI s v C s v P t A s v

u

A s u

∂ ′′ ′′ ′= − − + − −
′∂

′+ + λ − −
              (4.42) 

( )( ) ( )2 ( ) ( )c

l
EI s v v C s v P t

u

∂ ′ ′′ ′= − − + −
′′∂

                  (4.43) 

( )2
l

m s v
v

∂
=

∂
ɺ

ɺ
             (4.44) 

( ) ( ) ( )

( ) ( ) ( )

2

2 3 1

4 2 ( ) 2 ( )

8 8 2

c

l
EI s v v v u C s u v v P t

v

A s v A s v u v

∂ ′′ ′ ′′ ′′ ′′ ′′ ′= − − − + − −
′∂

′ ′ ′ ′+ − + λ −
       (4.45) 
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( )( ) ( )2 22 4 4 2 ( ) 1 ( )c

l
EI s v v v v u v u C s u v P t

v

∂ ′′ ′′ ′ ′′ ′ ′ ′′ ′ ′= − − − − + − −
′′∂

 (4.46) 

Substituting Eqs. (4.41) to (4.46) into Eq. (4.39) and knowing that 

0, , , , ,L Lu v u u vδ δ δ δ δ 0 0 0, , , andL Lv u u v v′ ′ ′ ′δ δ δ δ δ  are independent, the following 

relation may be derived, 

for ( )uδ : 

( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

2

1

2

3 4

2 2 ( ) ( ) 2 2

4 4 2 ( ) ( ) 0

c

c

mu EI s v C s v P t u

A s v A s EI s v v C s v P t

λ′ ′ ′ ′′ ′′ ′   − + − − − − − −    

′ ′ ′′ ′′′ ′ ′′ ′       + − − − + − =      

ɺɺ
(4.47) 

for ( )vδ : 

( )( ) ( ) ( )

( ) ( ) ( )( )

( )

2

1

2

2 3

2

2 4 2 ( ) 2 ( ) 2

8 8 2 4 4 2

( ) 1 ( ) 0

c

c

mv EI s v v v u C s u v v P t v

A s v A s v u EI s v v v v u v u

C s u v P t

λ′ ′ ′ ′′ ′ ′′ ′′ ′′ ′′ ′ ′   − + − − − − − +    

′′′ ′  ′ ′ ′ ′′ ′′ ′ ′′ ′ ′ ′′   − + − − − −     

′′ ′ ′+ − − = 

ɺɺ

(4.48) 

The other terms of Eq. (4.40) will be later considered as the boundary 

conditions of the vibrating system.  

Lagrangian multiplier may be formulated from Eq. (4.47). Applying the 

inextensibility condition (from Eq. (4.16)), 1λ  may be formulated as follows, 
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( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

2
2 2

1 2

0

2

3 4

1 1
( ) ( )

2 2

1
2 2 ( ) ( ) 0

2

ys

c

L

c

m s v dx dy EI s v C s v P t
t

A s v A s EI s v v C s v P t

λ
 ∂

′ ′′ ′′= − + −  ∂ 

′ ′′ ′ ′′ ′   − + − + =   

∫ ∫
  (4.49) 

Substituting 1λ  found in Eq. (4.49) into Eq. (4.48) and applying the 

inextensibility condition, Eq. (4.48) may be rewritten as follows, 

( )( ) ( )( )

( )( ) ( )( ) ( ) ( )

2
2 2

2

0

2 3

3 1

2

1

2

4 2

1 1 1
( ) 1 ( ) ( ) ( )

2 2 2

ys

L

c c

mv v m v dx dy EI s v v EI s v
t

EI s v v v EI s v v A s v A s v

C s v P t C s v v P t

′  ∂ ′ ′′ ′ ′ ′′ ′ ′′ − + − + − −      ∂   

′′   ′′ ′ ′ ′′ ′ ′ ′′ ′ ′    + − − +        

′′      ′ ′′ ′+ − − −     
     

∫ ∫ɺɺ

( )

( )

1
( ) ( )

2

1
( ) ( ) 0

2

c

c

C s v v P t

v C s v P t

′
′′ ′′ −  



′ ′′ ′ + =   

(4.50) 

Simplifying Eq. (4.50), the general equation of motion of the 

microcantilever depicted in Figure 4.10 can be formulated as follows, 

( )( ) ( )( )

( ) ( )

( )

2
2

2

0

3 2

1 3

1

2

1 1
2 4 ( ) 1 ( )

2 2

1
( ) ( ) 0

2

ys

L

c

c

mv v m v dx dy EI s v v EI s v v
t

A s v A s v C s v P t

v C s v P t

′ ′  ∂  ′′ ′′ ′ ′′ ′ ′ ′′   − + − − −        ∂     

′′  ′′′ ′ ′  + − + −        

′ ′′ ′ + =   

∫ ∫ɺɺ

 (4.51) 

Now that the equation of motion of the microcantilever is derived, the 

boundary conditions will be derived in the rest of this chapter. 
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The geometric admissibility results in the following relation, 

(0, ) 0v t =         (4.52) 

which may be rewritten as follows, 

0 0vδ =       (4.53) 

Equations giving the boundary conditions are derived from Eq. (4.40) as 

follows, 

for ( )Lv′δ : 

0l

s l

l
v

v =

 ∂  ′δ =  ′′∂  
    (4.54) 

Substituting Eq. (4.46) into Eq. (4.54) will result in the following relation, 

( )( )2 21
2 ( ) 1 ( ) 0

2
L c L LEI L v C L v P t vδ

  ′′ ′ ′− + − =  
  

  (4.55) 

Lv′δ  being arbitrary, Eq. (4.55) will result in the following relation, 

( )( )2 21
2 ( ) 1 ( ) 0

2
L c LEI L v C L v P t

 ′′ ′− + − = 
 

        (4.56) 

It is derived from Eq. (4.26) that ( ) 0cC L = . Even if the piezoelectric layer 

covers the whole length of the microcantilever, it is a correct assumption to 

consider 2L l− = ε . Thus, Eq. (4.56) reduces to the following equation, 
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( )( )22 0LEI L v′′− =                (4.57) 

Knowing that ( ) 0EI L ≠  the following relation may be concluded, 

0Lv′′ =                  (4.58) 

for ( )Lvδ : 

1 1
0

2 2
L

s L

l d l
v

v ds v =

  ∂ ∂  − δ =   ′ ′′∂ ∂    
   (4.59) 

Substituting Eqs. (4.25) and (4.46) into Eq. (4.59) the following equation 

may be formulated, 

( )( ) ( ) ( ){

( )( )

2

1

2

2 ( ) ( ) 2

1
2 ( ) 1 ( ) 0

2

L L c L L L

c Ls L
s L

EI L v v C L v v P t v

EI s v C s v P t v
=

=

′′ ′ ′′ ′ ′− − + − + λ −

′   ′′′ ′ − − + − δ =       

         (4.60) 

Lvδ  being arbitrary, Eq. (4.60) will result in the following relation, 

( )( ) ( ) ( )

( )( )

2

1

2

2 ( ) ( ) 2

1
2 ( ) 1 ( ) 0

2

L L c L L L

cs L
s L

EI L v v C L v v P t v

EI s v C s v P t
=

=

′′ ′ ′′ ′ ′− − + − + λ −

′  ′′′ ′ − − + − =      

     (4.61) 

Assuming ( )EI s′  and ( )
c
C s′  are zero and considering Eq. (4.58), Eq. 

(4.61) will be rewritten as follows, 
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( ) ( )2 1 0L LEI L v v′′′ ′ + =                   (4.62) 

Therefore, the second boundary condition at s=L will be found from Eq. 

(4.62) as follows, 

0Lv′′′=        (4.63) 

for ( )0vδ : 

0

0

1 1
0

2 2
s

l d l
v

v ds v =

 ∂ ∂ − δ =  ′ ′′∂ ∂  
            (4.64) 

Having 0 0vδ =  from Eq. (4.53), Eq. (4.64) doesn’t result in a new 

boundary condition. 

for ( )0v′δ : 

0

0

0
s

l
v

v =

 ∂  ′δ =  ′′∂  
               (4.65) 

Substituting Eq. (4.46) into Eq. (4.65) will result in the following relation, 

( )( )2 2

0 0 0

1
0 2 (0) 1 ( ) 0

2
cEI v C v P t vδ

  ′′ ′ ′− + − =  
  

           (4.66) 

Assuming 0v
′δ  is arbitrary, Eq. (4.66) will give the following equation, 
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( )( )2 2

0 0

1
0 2 (0) 1 ( ) 0

2
cEI v C v P t

 ′′ ′− + − = 
 

      (4.67) 

It is derived from Eq. (4.26) that (0) 0cC = . Even if the piezoelectric layer 

covers the whole length of the microcantilever, it is a correct assumption to 

consider 1l = ε . Thus, Eq. (4.67) reduces to the following, 

( )( )200 2 0EI v′′− =               (4.68) 

However, it is concluded from Eq. (4.17) that ( )0 0EI ≠  and also due to 

the nonzero moment at s=0, 
0 0v′′ ≠ . This means that Eq. (4.67) may not be 

satisfied unless 0v
′δ  equals zero, 

0 00 0v v′ ′δ = ⇒ =     (4.69) 

Thus, the general equation of motion and the boundary conditions of the 

vibrating microcantilever beam depicted in Figure 4.10 will be as follows, 

( )( ) ( )( )

( ) ( )

( )

2
2

2

0

3 2

1 3

1

2

1 1
2 4 ( ) 1 ( )

2 2

1
( ) ( ) 0

2

ys

L

c

c

mv v m v dx dy EI s v v EI s v v
t

A s v A s v C s v P t

v C s v P t

′ ′  ∂  ′′ ′′ ′ ′′ ′ ′ ′′   − + − − −        ∂     

′′  ′′′ ′ ′  + − + −        

′ ′′ ′ + =   

∫ ∫ɺɺ

   (4.70) 
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At s=0:   

0v v′= =         (4.71) 

At s=L:   

0v v′′ ′′′= =           (4.72) 
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CHAPTER 5 
 

SOLUTION TO THE NONLINEAR EQUATIONS OF MOTION OF THE 

MICROCANTILEVER 

The nonlinear equation of motion of the piezoelectrically-driven 

microcantilever beam with a layer of the adsorbed biological species, depicted 

schematically in Figure 4.10 (a), was derived in the previous chapter, Eq. (4.70), 

with the boundary conditions of Eqs. (4.71) and (4.72). 

The beam deflection, ( , )v s t , can be truncated into n-modes as follows, 

1 1

( , ) ( , ) ( ) ( )
n n

i i i

i i

v s t v s t s q t
= =

= = φ∑ ∑     (5.1) 

where φi is the comparison function (satisfying only the boundary conditions and 

not necessarily the equations of motion) and qi is the generalized time-dependent 

coordinate for i
th
 mode of the beam. For the cantilever boundary conditions 

considered in Eqs. (4.71) and (4.72), the following linear mode shapes of bending 

are considered  
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cosh( ) cos( )
( ) cosh( ) cos( ) [sin( ) sinh( )]

sin( ) sinh( )

i i

i i i i i i

i i

L L
s A s s s s

L L

 λ + λ
φ = λ − λ + λ − λ 

λ + λ 
(5.2) 

where λi  are the roots of the following frequency equation, 

1 cos( )cosh( ) 0i iL L+ λ λ =                                      (5.3) 

and Ai is a constant being obtained using the orthogonality condition (of the mode 

shapes).  

Substituting Eqs. (5.1) and (5.2) into Eq. (4.70) and taking the inner 

product of the resulting equation with φi(s) yields the following ordinary 

differential equation for qi(t) 

( )3 2 2 2

1 2 3 4 5 6( ) ( )i i i i i i i i i i i i i ig q g q g q g q q q q g q P t g P t+ + + + − =ɺɺ ɺɺ ɺ          (5.4) 

where 

2

1

0

( ) ( )

L

i ig m s s ds= φ∫                                            (5.5) 

( ) ( )( )2 1

0

( ) ( ) ( ) 2 ( )

L

i i i ig s EI s s A s s ds
′″ ′′ ′= φ φ − φ  ∫                    (5.6) 

( ) ( )

( )

2 2

3

0

3

3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4 ( ) ( ) ( )

L

i i i i i i i

i i

g s EI s s s s EI s s s

s A s s ds

′ ″ ′ ′′ ′ ′′= φ φ φ + φ φ φ
′ ′+ φ φ 

∫
         (5.7) 
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2

4

0 0

( ) ( ) 2 ( )

yL s

i i i i

L

g m s s x dxdy ds

′
 
′ ′= φ φ φ 

  
∫ ∫ ∫                           (5.8) 

( ) ( )2

5

0 0

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2

L L

i i c i i i c ig s C s s s ds s C s s ds
″′′ ′′ ′= φ φ φ + φ φ∫ ∫         (5.9) 

6

0

1
( ) ( )

2

L

i i cg s C s ds′′= φ∫                                       (5.10) 

Using Eq. (5.4), the nonlinear equation of motion of the microcantilever 

given in Eq. (4.70) can be simulated using Matlab

/Simulink


. The Matlab code 

and simulation diagrams are both given in Appendix A. Results and discussions 

of the simulation are discussed in the following sections. 

 

Numerical Simulations and Results 

Considering the general equation of motion of the microcantilever given in 

Eq. (4.70) or its discretized version given by Eq. (5.4), the resonance frequency of 

the PZT-driven microcantilever with the adsorbed biological species can be 

found. In order to run the simulation for deriving the solution to Eq. (5.4), 

structural properties of the microcantilever beam and the attached PZT layer 

together with Lennard-Jones constants and molecular spacing of the adsorbed 

biological species are needed. The microcantilever and the PZT layer considered 

here and in the simulations have the following properties, 
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3

Beam: (length) 500 µm

(width) 100 µm

(thickness) 1µm

0 23

170GPa

2330 kg/m

L    

w    

t   

ν  .

E   

ρ   

=
=

=
=
=

=

             

3

PZTLayer: (length) 500 µm

(width) 100 µm

(thickness) 0.5µm

0 25

133GPa

6390 kg/m

L    

w    

t   

ν  .

E   

ρ  

=
=

=
=
=

≅

 

(5.11) 

The Lennard-Jones constants and molecular spacing of the biological 

species are also needed. As mentioned earlier, it is not easy to find the Lennard-

Jones constants of biological species. The Lennard-Jones constants for different 

molecular structures vary in the range of A=2×10-79 to 1×10-76 J.m6
 and B=2×10-

136
 to 4×10-134 J.m12

 [11, 71]. There exist different tables of the Lennard-Jones 

constants for gases, however, these constants are found empirically for each 

biological species in the desired conditions.  

In our modeling, in order to have an estimate of these Lennard-Jones 

constants and due to the fact that were no in-house experimental results available, 

the McFarland et al.’s results  [42] were utilized and the inverse engineering was 

performed. This is done in order to obtain the resonance frequency shifts as 

measured in McFarland et al. experiment. Hence, the following physical 

properties of microcantilever beam are considered here. 

3

(length) 500µm

(width) 100 µm

(thickness) 1µm

0 23

170GPa

2330 kg/m

b

L    

w    

t    

ν  .

E   

ρ   

=
=

=
=
=

=

                                       (5.12) 
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These parameters are nominal values as reported by McFarland et al.  [42] 

It is mentioned in McFarland et al. results that the actual values for length, width 

and thickness of the beam are 499 µm, 97 µm and 0.8 µm, respectively. Hence, 

these values are used in our simulations in order to be in accordance with these 

experiments.  

In McFarland et al. experiment, no PZT patch has been attached to the 

surface of the microcantilever. Hence, in order to find the properties of the 

adsorbed biological species, it is assumed here that no PZT is attached to the 

microcantilever surface and the simulations are done. 

Performing the simulations for this microcantilever beam, its resonance 

frequency before the adsorption of biological species is found to be 4549 Hz. 

Having the initial natural frequency of microcantilever, constants A and B are 

changed until the desired frequency shift is obtained (assuming the molecular 

distance is constant and equal to 0.5 nm). McFarland et al. frequency shifts for 

three different beams are listed in Table 5.1. From this table, we choose the 

desired shift of frequency to be in the range of 20-30 Hz.  

Table 5.1: Experimental resonance frequencies before (f1), and after adsorption 

(fads), and the variation in microcantilever’s resonance frequency (∆)  [42]  

Beam 

Number 

f1 
(kHz) 

fads 

(kHz) 

∆      

(Hz) 

1 4.56 4.57 10 

2 4.55 4.59 40 

3 4.62 4.64 20 
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Based on McFarland et al. experimental data, the simulations and reverse 

calculations have been performed for such values of A and B that result in a shift 

in the resonant frequency of about 20-30 Hz. A number of simulations were done 

with the best results for constants A and B provided in Table 5.2.  

Table 5.2: Simulation results for constants A and B and the corresponding 

frequency  

A  

(J.m
6
) 

B 

 (J.m
12
) 

f  

(Hz) 

∆  

(Hz) 

0 0 4552 0 

0.7×10-72 0.3×10-135 4563 11 

1×10-72 0.4×10-135 4574 22 

1.3×10-72 0.4×10-135 4586 34 

 

These results show that for a range of A=0.7×10-72 to A=1.3×10-72 J.m6
 and 

B=0.3×10-135 to B=0.4×10-135 J.m12
, the parameter ∆ varies from 11Hz to 34Hz 

which is almost the desired range 

One pair of possible Lennard-Jones constants are found as follows, 

A=1.3×10-72 J.m6
 and B=0.4×10-135 J.m12

,         (5.13) 

satisfying the desired shift of resonance frequency. The frequency response for 

this pair of Lennard-Jones constants is depicted in Figure 5.1. Through the rest of 

the simulations, these two constants are considered for the adsorbed biological 

species.  
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Figure 5.1: Frequency response of a microcantilever with properties listed in Eq. 

(5.12) and the adsorbed biological species on its surface having Lennard-Jones 

constants of A=1.3×10-72 J.m6
 and B=0.4×10-135 J.m12

 

 

The obtained constants A and B, however, do not match the typical range 

for molecules (and biological species). It should be mentioned that the 

intermolecular forces of attraction/repulsion are not the only adhesion forces 

present. Our results clearly show that other adhesion forces such as electrostatic 

interactions have non-negligible effects on the resonance response of the system. 

It is also demonstrated that there exist other sources accounting for the surface 

stress such as the surface charge redistribution of the underlying substrate. This 

may have a dominant role in the resonance frequency shift of the microcantilever 

 [42]. It is important to mention that these effects are even more dominant than the 

attraction/repulsion effect, since the Lennard-Jones constants found here are far 

beyond the reality. Therefore, the obtained constants need to be refurbished by 

considering the mentioned forces and effects in further investigations.  
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Remark: The value of b as mentioned in Chapter 4 depends on the 

concentration of the solution. We assume this parameter to be 0.5 nm and will 

later (in the following sections) study how it is related to the resonance frequency 

of microcantilever beam. 

As mentioned earlier in this section, the resonance frequency of the 

vibrating microcantilever may be numerically derived from Eq. (5.4). In the 

following sections, the effects of the adsorbed biological and the attached PZT 

layers on the resonance frequency of microcantilever beam are investigated. The 

nonlinear terms and their influence on the frequency response of the system are 

first studied for the case where there is no biological layer adsorbed on the surface 

of the microcantilever (before the adsorption); hence, only the effect of the 

attached PZT layer is investigated. Having the effect of PZT layer on the shift in 

the frequency studied, it is assumed that the biological layer is adsorbed and the 

effect of both layers is investigated on the shift in the resonance frequency of the 

vibrating microcantilever. 

 

The Effect of the Attached PZT Layer  

Unlike the biological layer with its thickness and rigidity being negligible, 

the attached PZT layer is thick enough to change the rigidity of the system. 

Considering the microcantilever studied before, a PZT layer with the properties 

listed in Eq. (5.11) is considered to be attached on its surface.  



 

 79 

In the first step, we will only consider the effect of linear terms on 

frequency response of the system, thus, the coefficients of nonlinear terms are 

considered to be zero. A voltage of 1V with frequency of excitation of 9 kHz is 

applied to the PZT actuator to obtain the linear frequency. Figure 5.2 shows the 

response of the system with the added PZT layer. It is indicated that its resonance 

appears at the frequency of 8248 Hz (which is much higher than the resonance 

frequency of the microcantilever without the piezoelectric layer).  
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Figure 5.2: Linear frequency response of the PZT-driven microcantilever 

 

The nonlinear terms are now considered in the simulations and the 

numerical frequency response is calculated again. The values of the exciting 

voltage are considered to be the same as the excitation for linear frequency 

response. The obtained nonlinear frequency response is depicted in Figure 5.3. 
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When linear and nonlinear frequency responses are compared, it is 

observed that there exists roughly 14 Hz of shift in the frequency responses. This 

amount may seem to be rather small. However, this difference is in the 

measurable range of the microcantilever sensors, and hence, important for 

accurate measurement. Hence, it is important that the nonlinearity of the 

microcantilever’s structure and the attached PZT layer be considered in the 

resonance response measurements.  
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Figure 5.3: Nonlinear frequency response of the PZT-driven microcantilever  

 

The Effect of Both PZT and the Adsorbed Biological Layers 

In our simulations, it was observed that considering the biological layer 

effect on the resonance frequency shift in the presence of PZT layer, highly 

depends on the geometry of the system. For the original microcantilever with 
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length, width and thickness of 500 µm, 100 µm and 1 µm, respectively, and with 

no PZT layer, a shift in the range of 11 to 34 Hz was induced, depending on the 

Lennard-Jones constants (see Table 5.2). However, this shift further decreases if 

the PZT layer is added to the microcantilever, as listed in Table 5.3 and depicted 

in Figure 5.4 for  A=1.3×10-72 J.m6
 and B=0.4×10-135 J.m12

. 

Table 5.3: Simulation results for constants A and B and the corresponding 

frequencies for PZT-driven microcantilever  

A 

(J.m
6
) 

B 

(J.m
12
) 

f 

(Hz) 

∆ 

(Hz) 

0 0 8262 0 

0.7×10-72 0.3×10-135 8265 3 

1×10-72 0.4×10-135 8267 5 

1.3×10-72 0.4×10-135 8268 6 
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Figure 5.4: Nonlinear frequency response of the PZT-driven microcantilever 

covered by a biological layer with A=1×10-72 J.m6
 and B=0.4×10135 J.m12

 

 

This demonstrates that adding a PZT layer with half the thickness of the 

microcantilever result in a thicker beam, and hence the molecular surface stress of 

the adsorbed biological species will have less effect on the frequency response of 

the system. This indicates that there exist limitations on the structural geometry of 

the microcantilever in order to be applicable for biosensing.    
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CHAPTER 6 
 

SENSITIVITY STUDY OF THE STATIC MODE DETECTION 

The nonlinear equation of motion of the PZT-driven microcantilever 

biosensor of Figure 4.10, Eq. (4.70), was solved in Chapter 5 by first discretizing 

the equation of motion and applying the Galerkin method and numerically solving 

the derived ordinary differential equations of motion of the microcantilever. In 

this Chapter, a new approach is introduced towards the solution of the equation of 

motion (4.70). This new approach is utilized in formulating the static deflection of 

the microcantilever and as a result, the sensitivity of this formulated static 

deflection detection mode is compared to that of the dynamic mode formulated in 

Chapter 5. 

This method of formulating the static deflection is a powerful method as it 

formulates all the intermolecular forces causing the surface stress into the general 

equation of motion of the microcantilever. It is easy and straightforward to bring 

the forces into the equation of motion of the microcantilever by just knowing its 

potential. 
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A New Approach toward Solution of the Nonlinear Equation of Motion of 

Eq. (4.70) 

The nonlinear vibration of the microcantilever given in Eq. (4.70) can be 

considered as the linear vibrations of the microcantilever around its statically 

deflected position. In other words, the transversal displacement of the 

microcantilever, ( ),v s t , can be written as, 

( ) ( )( , ) ,s Linearv s t v s v s t= +            (6.1) 

where ( )sv s  is the static deflection of the beam. The difference between this 

method and the method of previous chapter is that the special function φn(s) of the 

equation of motion of the vibrating microcantilever is no longer a comparison 

function, instead the eigenfunction of the beam satisfying both boundary 

conditions and the equation of motion of the linear vibrating beam.  

The static deflection of Eq. (6.1) may be easily found by ignoring the 

time-varying terms in Eq. (4.70), which results in an equation as follows, 

( )( ) ( )( ) ( ) ( ) 3

1 32 4 0s s s s sEI s v v EI s v v A s v A s v
′  ′′′ ′ ′′′ ′ ′ ′′ ′ ′      − − + − =         

  (6.2) 

Similar to the assumption made in Chapter 5, it is assumed that 

( ) ( ) ( )1 3, andEI s A s A s  are constants, hence their derivatives will vanish when 

expanding Eq. (6.2).  
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In order to solve Eq. (6.2) and find the static deflection of the 

microcantilever beam, Eq. (6.2) needs to be non-dimensionalized first. In this 

regard, the new non-dimensional variables x and ˆ ( )sv x  are defined as follows, 

( ) ( ) 1̂( )s s

s
x

L

v s v xL v x⇒ = =

≜
          (6.3) 

( ) 1̂( )
ˆ
s

v x
v x

L
≜                (6.4) 

Substituting Eqs. (6.3) and (6.4) into Eq. (6.2) and taking the derivatives, 

the equation of the static deflection can be rewritten as follows, 

( )2 3 2

1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 4 0s s s s s s s s sB v v v v v v B v B v v ′′′′ ′ ′′ ′′′ ′′ ′ ′′ ′′ ′− + + + + − =  

          (6.5) 

with the boundary conditions of 

at x=0 :   

ˆ ˆ 0s sv v′= =                                             (6.6) 

at x=L:   

ˆ ˆ 0s sv v′′ ′′′= =                                     (6.7) 

where 
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1 3

EI
B

L
=                      (6.8) 

1
2

2A
B

L
=                       (6.9) 

3

3

12A
B

L
=                      (6.10) 

Only two of the four boundary conditions listed in Eqs. (6.6) and (6.7) are 

available at x=0. Hence, in order to solve Eq. (6.5) the “shooting method” will be 

utilized. Using this method, the two unavailable initial conditions at x=0 are 

assumed to be known as ( )ˆ 0sv ′′ = α  and ( )ˆ 0sv′′′ = β , where α and β are some 

constants to be determined. Having all four initial conditions, the static deflection 

of the microcantilever may be found numerically based on the following equation, 

1

2 1

3 2

4 3

2 33 2
3 2 3 3 4 3 2

1 1

4 2

2

ˆ

ˆ

ˆ

ˆ

4

ˆ
1

s

s

s

s

s

y v

y v y

y v y

y v y

B B
y y y y y y y

B B
y v

y

=

′ ′= =

′′ ′= =

′′′ ′= =

   
− + − −   
   ′ ′′′′= =

+

    (6.11) 

with the initial conditions as follows, 
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( )
( )
( )
( )

1

2

3

4

0 0

0 0

0

0

y

y

y

y

=

=

= α

= β

         (6.12) 

The values of α  and β  are found by trial and error, i.e., they are changed 

until the original boundary conditions of ˆ ˆ 0s sv v′′ ′′′= =  are satisfied at the free end 

of the microcantilever.  

 

Numerical Simulations and Results 

 The properties of the microcantilever beam, the PZT layer and the 

adsorbed biological species (monolayer of thiol molecules) considered in the 

simulations are those derived and listed in Eqs. (5.13) and (5.11) as follows, 

3

Beam: (length) 500 µm

(width) 100 µm

(thickness) 1µm

0 23

170GPa

2330 kg/m

L    

w    

t   

ν  .

E   

ρ   

=
=

=
=
=

=

             

3

PZTLayer: (length) 500 µm

(width) 100 µm

(thickness) 0.5µm

0 25

133GPa

6390 kg/m

L    

w    

t   

ν  .

E   

ρ  

=
=

=
=
=

≅

 

(6.13) 

Biological Layer:            A=1.3×10-72 J.m6
 ,  B=0.4×10-135 J.m12

                    (6.14) 

As described in the previous section, shooting method is applied for the 

static deflection formulation. By trial and error, the appropriate α  and β  for the 
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system with the properties listed in Eqs. (6.13) and (6.14) are found as 1α = −  

and 1.05β = . The static deflection of the microcantilever is then found 

numerically for these two values of α  and β  as depicted in Figure 6.1. 

 

Figure 6.1: The static deflection of the microcantilever with length=500 (µm), 

width= 100 (µm) and thickness=1 (µm) 

 

It is also demonstrated in Figure 6.2 that if all the properties of the system 

remains unchanged, microcantilever’s tip deflection varies almost linearly by 

varying its length, especially for the larger lengths. The properties of the five 

microcantilevers depicted in Figure 6.2 are the same as those listed in Eqs. (6.13) 

and (6.14) except for the width. The width is considered to be 10 µm so that 

reducing the length of the microcantilever doesn’t violate the assumptions of the 

Euler- Bernoulli beam. 
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Figure 6.2: The static deflection of five microcantilever beams differing only in 

their lengths  

 

Sensitivity of the Static vs. the Dynamic Detection Mode 

Figure 6.2 depicts the change in the static deflection of the microcantilever 

while the only property being altered is the length of the beam. In order to find the 

sensitivity of the static deflection detection mode to the adsorbed biological 

species, the properties of the microcantilever beam and the PZT layer on its 

surface are kept unchanged and the Lennard-Jones constants of the adsorbed 

biological species are varied.  

It is depicted in Figure 6.3 how the static deflection of the PZT-driven 

microcantilever with properties listed in Eqs. (6.13) and (6.14) varies by varying 

the Lennard-Jones constant A of the adsorbed species. Constant A is varied from 

1.3×10-72 to 1.3×10-63. It is observed that even by increasing A to 1.3×10-66 (which 



 

 90 

is quite a large number for A constant) there will be no significant change in the 

static deflection; hence the static deflection formulated in the present chapter is 

not much sensitive to the change in the properties of the adsorbed biological 

species. 

 

Figure 6.3: Different static deflections of the PZT-driven microcantilever with the 

properties listed in Eqs. (6.13) and (6.14) for different Lennard-Jones A constants 

 

The effect of the change in the properties of the adsorbed species on the 

frequency response of the system is also depicted in Figure 6.4. It needs to be 

considered that this response is found for the first mode of vibration of the 

microcantilever applying the approach explained in Chapter 5. It is clearly 

observed that by increasing constant A to 1.3×10-70 the resonance frequency of the 

microcantilever shifts by a large, measurable value of 290 Hz.  
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Figure 6.4: Resonance frequencies of the first mode of vibration for the PZT-

driven microcantilever with the properties listed in Eqs. (6.13) and (6.14) for 

different Lennard-Jones A constants 

 

It is clearly observed from Figures 6.3 and 6.4 that the dynamic mode of 

detection of the adsorbed biological species derived using the method of Chapter 

5, while only considering the attraction/repulsion forces as the major factor in the 

microcantilever’s vibration/deflection, is more sensitive compared to the static 

deflection mode formulated in the present chapter.  
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CHAPTER 7 
 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

Nonlinear vibrations of a piezoelectrically-driven microcantilever beam in 

presence of a biological monolayer were investigated and the corresponding 

equations of motion were derived and simulated. In formulating the general 

equations of motion of the beam, both linear and nonlinear terms due to the 

microcantilever’s geometry were present. Moreover, the attached piezoelectric 

layer and the adsorbed biological layer produced new nonlinear terms. Two new 

nonlinear terms due to presence of these layers were derived and introduced in the 

present modeling framework.  

It was concluded that the intermolecular forces of attraction/repulsion play 

a less dominant role on the adsorption induced surface stress and the resonance 

frequency shift. It was then proposed that other effects such as the electrostatic 

adhesion forces or the surface charge redistribution of the underlying substrate 

may be the contributing factors on the surface stress. It was also observed that 

adding the piezoelectric layer causes a great resonance frequency shift from the 

initial resonance frequency. Taking the nonlinearities into account causes a small 

shift in the resonance frequency of the system. Despite the shift being small 
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compared to the linear shift in resonance frequency, it is in the measurable range 

of the microcantilever sensors. Hence, the nonlinear effect of piezoelectric layer 

was shown to be important for the resonance response calculations of the system. 

In presence of both piezoelectric and biological layers, it was observed that the 

addition of piezoelectric layer on the surface of the microcantilever dominates the 

effect of intermolecular forces on the resonance frequency shift of the system. 

However, piezoelectrically-actuated microcantilever provides the ability of 

indirect sensing through this layer, instead of using laser sensor. 

In the last phase of the present paper, a new approach was proposed for 

equating the static deflection of the microcantilever beam due to the adsorption-

induced surface stress. It was then depicted that the proposed dynamic mode of 

detection of the adsorbed biological species derived, while only considering the 

attraction/repulsion forces as the major factor in the microcantilever’s 

vibration/deflection, is more sensitive compared to the static deflection mode 

formulated in the present chapter.  

 

Future Work and Directions 

It needs to be noted that the aim of the current study is just to create a new 

research pathway for the problem of biologically-induced surface stress sensing 

when piezoelectric and geometrical nonlinearities are considered. There is the 

need for extensive experiments in order to verify the theoretical and numerical 
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results. The functionalization unit (depicted schematically in Figure 7.1) will be 

used in culturing the surface of microcantilever biosensors with desired target 

molecules. An imaging system is required in order to make sure the biological 

species have been adsorbed on microcantilever surface. 

 

Figure 7.1: Cantisense functionalisation unit 

 

 The micro system analyzer (MSA-400, depicted in Figure 7.2) will be 

used for measuring and analyzing the frequency response of the vibrating 

microcantilever biosensor.  

     

Figure 7.2: Polytec state-of-the-art Micro System Analyzer MSA 400 
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APPENDIX 
 

SAMPLE CODES AND BLOCK DIAGRAMS USED FOR NUMERICAL 
SIMULATIONS AND EXPERIMENTS 

Matlab
®
 and Simulink

®
 were used for the numerical simulations. The block 

diagram depicted in Figure A.1 was used to derive the frequency response of the 

resonating, piezoelectrically-driven microcantilever biosensor. 

 

Figure A.1: Simulink
®
 block diagram of deriving the frequency response of the 

vibrating microcantilever beam
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The Matlab
®
 code used for measuring the constants of g1 to g6 is also given as 

follows. 

close all; clear all; clc;  
format long e; 

  
wb = 100e-6;            %Beam width 
wp = 100e-6;            %Piezoelectric layer width 
hp = 1e-6;              %Thickness of the piezoelectric layer 
hb = 1e-6;              %Thickness of beam 

  
l1 = 0;                 %Length from clamped end to begining of  

          the piezoelectric layer 
l2 = 500e-6;            %Length of the piezoelectric layer 
l3 = 0;                 %Length from clamped end to begining of  

     the piezoelectric layer 
l4 = 500e-6;            %Length of the piezoelectric layer 
l = 500e-6;             %Length of beam 

     
nup= 0.25;              %ZnO (Piezoelectric) Poisson's ratio 
Ep = 133e9/(1-nup^2);   %ZnO (Piezoelectric) Modulus of 

       elasticity 
nub= 0.23;              %Beam Poisson's ratio 
Eb = 170e9/(1-nub^2);   %Beam Modulus of elasticity 

  
rb = 2330.00;           %Beam density 
dens = (0.25*(19320)+3.5*(5605)+0.25*(4500))/4; %Density Au:19320  

         ZnO:5605 Ti:4500 
rp = dens;              %Piezoelectric layer density 
mb = rb*wb*hb;          %Mass per length of beam 
mp = rp*wp*hp;          %Mass per length of piezoelectric layer 

  
d31 = 11e-12;           %Piezoelectric layer compliance parameter  

  
% System parameters 

  
yn = (wp*hp*Ep*(hp+hb))/(2*Eb*hb*wb+2*Ep*hp*wp); 

  
iy = hb*wb^3/12; 
iyp = hp*wp^3/12; 

  
iz = 1/12*wb*hb^3; 
izb = wb*yn^2*hb+iz; 
izp = wp*((hp)*yn^2-((hp+1/2*hb)^2-

1/4*hb^2)*yn+1/3*(hp+1/2*hb)^3); 

  
id = wp*(0.5*hp^2+0.125*hb^2+yn*(0.5*hb-hp))/hp; 

  
dt=1e-6; 
s=[dt:dt:l-dt]; 
n=length(s); 
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 % Lennard Jones Coefficients 

  
b = 0.5*10^-9; AA = 1.3e-72;  
BB = 4e-136; 

  
K1 = -(heaviside(s-l3)-heaviside(s-l4))*(AA/b^7-BB/b^13); 
K2 = -(heaviside(s-l3)-heaviside(s-l4))*(27*AA/b^7-90*BB/b^13); 

  
% Mass and stiffness coeficients 

  
m = (heaviside(s-0)-heaviside(s-l1))*mb+... 
    (heaviside(s-l1)-heaviside(s-l2))*(mb+mp+ms); 

  
cz =((heaviside(s)-heaviside(s-l1))*Eb*iz+... 
    (heaviside(s-l1)-heaviside(s-l2))*Eb*izb+... 
    (heaviside(s-l1)-heaviside(s-l2))*Ep*izp); 

  
cc=(heaviside(s-l1)-heaviside(s-l2))*Ep*d31*id; 

  

  
v=0; nm=1; qout=0; 

  
zz(1) = 3750; 
zz(2) = 9388;  
zz(3) = 15709.5; 

  
for zcounter=1:nm 

        
        ba = 0; 
        z = zz(zcounter); 

         
        for i=1:n-1 
            ba = 0.5*(m(i)*(cosh(z*i*dt)-

cos(z*i*dt)+(sin(z*i*dt)-sinh(z*i*dt))*(cosh(z*l)+... 
                

cos(z*l))/(sinh(z*l)+sin(z*l)))^2+m(i+1)*(cosh(z*(i+1)*dt)-

cos(z*(i+1)*dt)+... 
                (sin(z*(i+1)*dt)-

sinh(z*(i+1)*dt))*(cosh(z*l)+cos(z*l))/(sinh(z*l)+... 
                sin(z*l)))^2)*dt + ba; 
        end; 
        ba = sqrt(1/ba); 

  
        beta = ba*(cosh(z*s)-cos(z*s)+(sin(z*s)-

sinh(z*s))*(cosh(z*l)+cos(z*l))/(sinh(z*l)+... 
            sin(z*l))); 
        beta1 = ba*(sinh(z*s)*z+sin(z*s)*z+(cos(z*s)*z-

cosh(z*s)*z)*(cosh(z*l)+cos(z*l))/... 
            (sinh(z*l)+sin(z*l))); 
        beta2 = ba*(cosh(z*s)*z^2+cos(z*s)*z^2+(-sin(z*s)*z^2-

sinh(z*s)*z^2)*(cosh(z*l)+... 
            cos(z*l))/(sinh(z*l)+sin(z*l))); 
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        g2d1 = diff(diff(cz.*beta2)/dt)/dt; 
        g2d2 = diff(2*K1.*beta1)/dt; 
        g3d1 = diff(cz.*beta1.*beta2.*beta2)/dt; 
        g3d2 = diff(diff(cz.*beta1.*beta1.*beta2)/dt)/dt; 
        g3d3 = 4*diff(K2.*beta1.^3)/dt; 
        g4d1 = -0.0006666666667*exp(-

7500*s).*(2.505832817*10^12*exp(-1.875000000+7500*s)+... 
            3.842419143*10^11*exp(1.875000000+7500*s)-

5.432106822*10^11+... 
            

1.277243178*10^10*exp(3.750000000+7500*s)+1.081842602*10^12*exp(7

500*s)... 
            +5.432106822*10^11*exp(-

3.750000000+7500*s)+2.506024275*10^12*exp(3750*s).*cos(3750*s)... 
            -1.839661185*10^12*sin(3750*s).*exp(3750*s)-

1.095165960*10^19*s.^2.*exp(7500*s)+... 
            

1.060876501*10^12*cos(3750*s).*sin(3750*s).*exp(7500*s)+3.9782868

79*10^15*s.*exp(7500*s)-... 
            

3.331815452*10^11*(cos(3750*s)).^2.*exp(7500*s)+3.842712723*10^11

*exp(11250*s).*cos(3750*s)... 
            -2.820918181*10^11*sin(3750*s).*exp(11250*s)-

1.277243178*10^10*exp(15000*s)); 
        g4d2 = diff(m.*beta1.*g4d1)/dt; 
        g5d1 = diff(cc.*beta1.*beta2)/dt; 
        g5d2 = diff(diff(cc.*beta1.*beta1)/dt)/dt; 
        g6d = diff(diff(cc)/dt)/dt; 

  
        g1 = 0; g2 = 0; g3 = 0; g4 =0; g5 = 0; g6 = 0; 

  
        for i=1:n-3 

  
            g1 = g1 + 0.5*( m(i)*beta(i)^2 + 

m(i+1)*beta(i+1)^2)*dt; 

  
            g2 = g2 + 0.5*( beta(i)*g2d1(i) + 

beta(i+1)*g2d1(i+1)... 
                -beta(i)*g2d2(i) - beta(i+1)*g2d2(i+1))*dt; 

  
            g3 = g3 + 0.5*( beta(i)*g3d1(i)+beta(i)*g3d2(i) + 

beta(i+1)*g3d1(i+1)+... 
                beta(i+1)*g3d2(i+1)+ beta(i)*g3d3(i) + 

beta(i+1)*g3d3(i+1))*dt; 

  
            g4 = g4 + 0.5*( beta(i)*g4d2(i) + 

beta(i+1)*g4d2(i+1))*dt; 

             
            g5 = g5 + 0.5*( beta(i)*g5d1(i)+0.5*beta(i)*g5d2(i) + 

beta(i+1)*g5d1(i+1)+... 
                0.5*beta(i+1)*g5d2(i+1))*dt; 

  
            g6 = g6 + 0.25*( beta(i)*g6d(i) + 

beta(i+1)*g6d(i+1))*dt; 
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        end; 

  
        sim simsBio 

              
        v=qout; 
end; 

  
t=20; 
N=2^t; 
Y = fft(v,N); 
Pyy =(1000/4)*Y.* conj(Y) / N; 
f = (1/tout(2))*(0:(N/2)-1)/N; 

  
figure (1) 
plot (tout,v) 
xlabel('Time (Milisecond)') 
ylabel('v(L,t) (Micrometer)') 
title('Time Response') 

  
figure (2) 
plot(f,Pyy(1:N/2)) 
xlabel('Frequency (KHz)') 
ylabel('v(L,t) (Micrometer)') 
title('Frequency Response') 
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