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Abstract

Embedded networked devices are required to produce dependable outputs and communicate

with peer devices given limited computing resources. These devices monitor and control processes

within the physical world. They are used in applications related to environmental monitoring,

telecommunications, social networking, and also life-critical applications in domains such as health

care, aeronautics, and automotive manufacturing. For such applications, software errors can be

costly - both in terms of financial and human costs. Therefore, software programs installed on

these devices must meet the appropriate requirements. To guarantee this, one must verify that the

implemented code meets the corresponding specifications. Manual trial-and-error validation of such

applications, especially life-critical software programs, is not a feasible option.

This work presents a verifying compiler developed for embedded network programs by ex-

tending the RESOLVE verifying compiler with a software module that translates RESOLVE code

to equivalent C code. Specifications and implementations for embedded networked applications

are written in the RESOLVE language. The compiler supports automated verification, automati-

cally generating mathematical assertions, which, if satisfied, ensure that the code is correct. These

assertions are proved using the mathematical theorems and lemmas provided by the RESOLVE

mathematical library. The verified code is then translated to C and installed on the embedded

target.

The contributions described in this thesis are: (i) We explore the use of RESOLVE in

specifying pin-level drivers for components of an embedded device. (ii) We describe the translation

strategies implemented to generate correct-by-construction C source code from verified RESOLVE

code, with examples of basic and reusable operations such as sense data, broadcast data, and receive

data. (iii) We provide techniques used to optimize the generated code in terms of memory usage

and runtime efficiency.
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Chapter 1

Introduction

1.1 Embedded Networked Systems

Embedded networked systems are composed of small computing devices capable of processing

data and communicating with peer devices within a network. These systems are closely coupled

with physical processes and are generally used to monitor and control them. For example, a wireless

sensor network contains sensing devices that collect sensed data and communicate that data over

a network. The resources on such devices are limited; for example, a Tmote Sky [14] relies on an

8MHz microcontroller with 10K RAM and 48K Flash .

Practical applications of embedded networked systems can be found in the areas of envi-

ronmental monitoring, telecommunications, and social networking. Embedded networked systems

are also widely used in the fields of health care, aeronautics, and automotive engineering, where

applications are life-critical. The information produced by these physical processes is unlimited,

therefore embedded devices are deployed in large numbers and are programmed to function over

long periods of time. The limited computing resources on these devices constraints their behavior,

including their ability to collaborate with other devices, causing developers to face significant system

design challenges.
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1.2 Problem Statement

Embedded networked systems are built targeting quality attributes such as accuracy, reli-

ability, security, and availability in spite of their limited computing and power resources. Though

each of the attribute is equally important, their priority changes depending on the domain and ap-

plications. For example, the aeronautics and medical fields demand more accuracy and reliability,

whereas environmental monitoring applications require more availability. In the health care field,

embedded software correctness is more important because of two reasons: First, decision support

systems are developed based on the data sampled by embedded devices in the medical instruments;

Second, it involves risk to patient’s life. Similarly, the criticality of software written is higher in

the fields of aeronautics and automotive manufacturing because software errors in embedded devices

used in such systems can lead to loss of life.

In addition, incorrect software may affect the power consumption of an embedded device

leading to reduced lifetime. For example, an embedded networked system deployed for environmental

monitoring uses devices that have limited power (usually from batteries). The software interacts

with and controls various hardware components, such as radios, sensors, and storage devices. If

an error exists in the software, these components may consume more power than required. In

such scenarios, batteries may have to be replaced often, which is time-consuming and expensive.

There has been extensive research on maximizing the lifetime of embedded networked systems and

minimizing the maintenance costs incurred due to power consumption [50, 2, 32]. In the case of

software maintenance, it is difficult to manually program each device in the network; instead, the

operating system should support a remote maintenance interface for upgrades, such as dynamic

reprogramming [19]. All these techniques introduce more complexity in the software that is being

installed on the devices, which in turn increases software maintenance costs [5].

In summary, embedded networked systems need software correctness to provide reliable data

for applications and to reduce maintenance costs. The following section introduces the approach

taken in this work.

1.3 Solution Approach

To guarantee software correctness, one must verify that the implemented code meets the

corresponding specifications. Formal verification is the approach taken in this work. This process can

2



be done either by model checking or logical inference. In a logical inference approach, mathematical

assertions that specify behavior of the system are used. However, the complexity of these assertions

increases with the complexity of the code, making verification more difficult. Therefore, manual

verification, which uses human-written mathematical assertions, is not always feasible, especially in

the case of a life-critical software. In a model checking approach, finite state concurrent systems

are verified. The requirements are provided as a model (written in formal language) and tested

with specifications (written as temporal logics). A good description of model checking technique is

provided in [36]. Our work is based on logical inference approach because model checking approach

works only for finite state systems and increases confidence in software correctness by finding bugs

that are not found using testing and simulation [15].

The verification process involves specifying software components, implementing those com-

ponents, generating mathematical assertions for the implementations, and proving their correctness

based on mathematical theorems. The specification of embedded hardware drivers, their implemen-

tation and application logic are written in the RESOLVE Language [20]. These specifications can

be implemented in numerous ways [8]. The RESOLVE compiler supports automatic verification of

component implementations. This work extends the functionality of the RESOLVE compiler with

a translator module that generates C code that can be installed on an embedded networked device.

1.4 Contributions

The following are the contributions described in this thesis: (i) We explore the use of

RESOLVE in specifying pin-level drivers for components of an embedded device. (ii) We describe the

translation strategies implemented to generate correct-by-construction C source code from verified

RESOLVE code, with examples of basic and reusable operations such as sense data, broadcast data,

and receive data. (iii) We provide techniques used to optimize the generated code in terms of memory

usage and runtime efficiency.

3



1.5 Organization of Chapters

Chapter 2 presents related work in the area of programming verification. Chapter 3 provides

an overview of the basic RESOLVE language constructs, definitions of the basic RESOLVE keywords

and modules. Chapter 4 details the translation strategies and optimizations applied in this work.

Chapter 5 presents application examples specified, implemented, and verified using the RESOLVE

language, and the resulting C code. Chapter 6 concludes the work with summary of contributions.

4



Chapter 2

Related Work

Hoare in [30] discusses the criteria to be considered for “grand challenge” computing research

problems. As an example, he presents the verifying compiler problem which lists attributes to be

considered for solving the verification problem. The logical inference approach is one approach to

verifying programs, based on the mathematical theorems to model and prove program correctness.

Ireland in [34] presents the practical issues involved in proving the associated theorems and proof

planning techniques that are used to search proofs in automated theorem proving. He explains issues

associated with verifying tools that depend on factors such as use of annotations, code generation

techniques, and targeted programming languages, which helps in identifying the designing issues of

the verifying compiler. He also describes the importance of feedback provided by a verifying compiler

that helps in program debugging. Holzmann in [31] explains the economic factors that should be

considered to understand the importance of formal verification, especially in case of finding defects

that are rare and catastrophic. He mentions that traditional testing practices may not be helpful

and can be expensive to find such defects.

This chapter introduces some of the related work focused on improving the software correct-

ness using verification. In the following sections we discuss the prominent approaches to software

testing and verification in embedded networked systems and prior work done on C verification. We

briefly discuss the RESOLVE verification system, deferring a complete treatment to Chapter 3.

5



2.1 Testing Embedded Software

Beutel et al. in [6] argue that a complete test methodology is required to develop a robust

wireless sensor network. They present a distributed unit testing framework that decreases software

testing time and provides set of features that help in achieving software correctness. The framework

relies on wireless sensor network simulators and testbeds. They claim that test cases developed

for the framework can be reused across different testing platforms (simulator or testbed), ensuring

software correctness. As this work is based on testing, though it helps in finding defects, it will not

help in checking software correctness as per the specifications.

Network simulators imitate the behavior of networked devices without the use of a network.

They are widely used to test code prior to deployment. They offer two advantages: First, it is less

expensive. Second, testing can be performed with simulated hardware configurations, which saves

time in building hardware for testing. Titzer et al. in [49] present a “cycle-accurate” instruction

level sensor network simulator called Avrora. The objective of the work is to enable scalable, cycle-

accurate simulation. This allows testing time-dependent properties of large networks. Since Avrora

supports instruction-level emulation, the sensor network installations will be at a higher confidence

level before actual deployment. Levis et al. in [42] present another simulator called TOSSIM for

wireless sensor networks developed using TinyOS. It focuses on providing network scalability, com-

plete coverage of possible system interactions, accuracy in capturing network behavior, and enabling

developers to test their implementation code. Since both these tools are based on simulation, which

is an abstraction from reality, and helps finding defects, they cannot verify the software correctness.

Network reprogramming can be used to test new or updated features of an embedded net-

worked system. Dunkels et al. in [19], describe a run-time dynamic linker and loader using Executable

and Linkable file format for reprogramming a sensor network. Energy cost and execution time are

used as metrics to evaluate the dynamic linking mechanism. Hui and Culler in [33] explain a data

dissemination protocol called Deluge. This protocol implements a multi-hop dissemination service

used to propagate data (divided into fixed-size pages) from one device to another. In general, these

techniques are preferred after the software is installed in the real network in order to reduce the

maintenance costs. Our work avoids such maintenance costs by verifying the software well before

the installation in the real network.

Another testing approach is to use a network testbed, a network of embedded devices created

6



for experimenting with application code. Arora et al. in [3] present Kansei, a heterogeneous testbed

including stationary, mobile and portable sensor nodes. Using these hardware resources, a time-

accurate hybrid simulation engine is built into the testbed. Kansei is more efficient for experiments

that run for long durations. Werner-Allen et al. in [52] present Motelab, a web-based testbed that

provides web interface. It supports data logging for debugging programs, network reprogramming

and maintaining testbed jobs. Dalton et al. in [18] present the first sensor network testbed that

supports visualization for application developed using Tiny OS 2.0. A UML- based sequence diagram

is provided to understand the node-level behavior. It provides developers with program analysis

and instrumentation features to manage the non-determinism in the execution order for distributed

wireless sensor networks, device messages and asynchronous event-based semantics. Though testbeds

provide a good architecture to find defects in embedded software, they do not guarantee the software

correctness.

Khan et al. in [37] present Dustminer, a tool to identifying errors in wireless sensor networks.

It logs different event types occurring in a sensor network. The event log contains information about

the node, event type, attribute values associated with each event and a timestamp. It performs data

mining on the collected data to identify execution sequences that lead to network failure. This is

done in two steps: identifying repeated patterns that lead to failure and correlating the patterns

with less frequently occurring events to find the actual bug. They describe a configurable software

architecture that provides an interface for plug-in modules. This tool also addresses non-determinism

in distributed network interactions (by classifying them into “good” and “bad”) and the complexity

of interactions. To avoid redundant and false patterns, Apriori algorithm is implemented in the tool.

This work is based on data mining on the logged information, which is fundamentally different from

our approach of verifying embedded software.

2.2 Verification of Embedded Software

Cousot and Cousot in [15] present problems and perspectives in the verification of embedded

software. One of the problems they mentioned is handling data structures that use pointer aliasing

in embedded software programs. Such data structures are generally ignored in the model checking

approach because of the complexity. Our work handles such problems by using the RESOLVE [20]

language for writing specifications and implementations. RESOLVE minimizes aliasing by use of
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swap operator.

Hanna et al. in [26] present Slede, a framework that focuses on automatically verifying sensor

network security protocols. It uses a formal verification process based on model-checking techniques.

It generates models from nesC language implementations for security protocols using supplemental

program information such as message structure, topology, and protocol properties to be verified.

A separate annotation language is used to provide this information. It verifies a protocol with an

intruder model that introduces malicious code in the message structure information. Their work

includes an evaluation of security protocols such as “one-way key chain based one-hop broadcast”

authentication protocol and µ-tesla protocol. Model checking verification technique faces scalability

issues and our work avoids such issues by using logical inference technique.

Kim et al. in [38] propose an automated protocol verification framework for wireless sensor

networks that uses XML-based test procedure description language (TPD) to describe the test cases,

test conditions and test procedures. The framework contains test application block installed on the

user computer and is responsible for executing the test cases as described in TPD and generates

message required by the test driver block installed on sensors. This framework is based on testing

and does not provide a verification procedure for software correctness.

2.3 Verification of C Programs

Most embedded networked systems are implemented using the C programming language.

Accordingly, our work focuses on generating verified C code from embedded networked system

specifications and implementations. Other authors considered verifying C programs using model

checking [23] and automated reasoning [17] based on low-level memory models for C [51] and models

specific to VLSI designs [24].

Schulte et al. in [45] present Verifying C Compiler that performs formal verification based on

a logical inference technique. It generates verification conditions from annotated C programs, which

are proved using an automatic theorem prover. It is specifically designed to verify operating systems;

as a result it supports type safe, pointer arithmetic and volatile data access. By adding additional

assertions in the generated verification conditions, it also checks for null pointer references, dangling

pointers, double frees, division by zero, a over/underflow. Leinenbach et al. in [41] in the context

of pervasive systems verification, present a dialect of C programming language that is compiled and
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verified to check the correctness of program implementations . The work mainly focuses on proving

logical blocks that involve dynamic memory allocation, address alignments and function calls based

on Haore’s partial correctness logic. Tuch in [51], presents the research work on verifying system

C code based on its low-level memory model improved techniques to prove correctness of code,

especially programs with pointer address arithmetic and structure types such as structs . The input

source is annotated with pre-/post-conditions and invariants for each functional program block.

The verification framework uses this information and translates source to higher order logic required

by the prover. Filliâtre and Marché in [23] present a similar research on verifying C programs

with pointers and prototype implementation based on Burstall’s model for structures. The work

inserts annotated pre and post conditions, global invariants, and loop variants in to C programs

and uses Why [22] tool for generating verification conditions. It also supports pointer aliasing.

Crocker and Carlton in [17] present research work that uses Perfect developer [16] tool to reason

about requirements and specifications using an automatic theorem prover, along with the ability to

generate code based on a formal specification language called Perfect [1]. They extended this work to

verify annotated C programs to support developers interested in writing code by hand for embedded

software. Many of these works supports verification of annotated C, however by using annotations

everywhere these approaches makes the code complex and difficult to maintain. Additionally errors

in these annotations may introduce complexities of their own.

Blazy in [7] presents an optimizing and verifying compiler, CompCert that uses the Coq

proof assistant. The language is based on C, except that it does not support goto and longjmp

instructions. The compiler optimizations include constant propagation, common subexpression elim-

ination, and instruction scheduling. Compcert generates six intermediate languages, therefore Blazy

defined formal semantics for all languages of CompCert sharing a common memory model. Gallardo

et al. in [25] discuss about construction of a model checker using OPEN/CSAR for distributed

applications that use C source code. Ivanicic et al. in [36] present a procedure to generate a model

from C semantics that can be used for model checking C programs. A C program is transformed into

smaller subsets until the program state is represented as scalar variables and boolean representa-

tions. This is achieved by presenting the model as a finite state system with the use of abstractions

provided by F-Soft tool [35]. They modeled pointers as integers, heap as a finite array, stack as

a global array. All functions are moved in the main function, variables are declared globally, and

return statements are replaced with goto statements. A control flow graph is generated from labels

9



and goto statements. F-Soft tool is developed targeting sequential C programs, specifically verifying

if all label statements are reachable within the program scope using control and data flow of the

program. It also verifies NULL pointer references, array bound violations, etc. Chaki et al. in [9]

present Modular Analysis of Programs in C (MAGIC) that verifies a C program. This work also

supports compositional verification. MAGIC extracts a finite model from a program using predicate

abstractions and theorem proving. It uses label transition systems (LTS) to generate a specification

state machine and uses actions as state transitions. For procedures that perform multiple tasks

depending on the parameters, multiple LTS are created and are selected using guards. This infor-

mation is provided as predicate abstraction for procedures. MAGIC creates a model from a control

flow graph generated for the program, verifies the program and refines the model when it fails.

These works adapted the model checking approach and as mentioned earlier they face scalability

issues which is not a problem in our work.

Coen-Porisini et al. in [10] describe the usage of symbolic execution for building models

useful for verifying safety-critical systems software programs. Symbolic execution uses symbolic

expressions (that can be formalized) to represent values of program variables. They use Safer-C [28],

a subset of C language, that can be analyzed by symbolic execution. In other words, this work does

not support complex programs involving dynamic memory allocation, recursion, file operations,

etc. They use Path Description Language (PDL) to represent the safety-related properties of the

system as predicates in the model. PDL is a formal language used to express structural properties

of a program. They also developed the Symbolic execution Aided Verification Environment tool

to validate their approach. Sharma et al. in [46] describe Assertion Checking Environment (ACE)

for compositional verification of programs written in MISRA C [4], a subset of C language used

for safety-critical systems. This compositional verification reduces the complexity of verification by

slicing the program into smaller units to be verified. ACE uses Haore logic [29] to define pre and post

conditions of a program. ACE generates a call graph of the program and translates the annotated

C program to Simple Programming Language and specifications containing axioms and properties

(expressed in temporal logic), are used as input to Stanford Temporal Prover [43]. The leaf nodes in

the call graph are verified initially so that a compositional verification can be performed on function

that calls another functions in a program. The pre-conditions of verified leaf nodes (functions) are

used to build prefunction annotations for their caller function. All these research works use subset

of C language and does not support complex programs. Our work do not have such restrictions since
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we use RESOLVE language to write implementation and generate verified C source code.

2.4 RESOLVE

Kirschenbaum et al. in [39] present a case study that explains the importance of automating

the verification process and the challenges faced using a sorting example. The first challenge was

that the generated verification conditions could not be proved because of the human error in writing

specifications and loop invariants. The second challenge was lack of supported theories and lemmas.

So theories from the RESOLVE mathematical theory library were imported to Isabella theory library

as Isabella theories. They have also tagged the new lemmas imported into Isabella theory, to help

the tool in constructing proofs. Finally they have eliminated universal quantifications in annotations

to ease reuse of theories and create general versions.

Smith et al. in [47] explain the importance of verifying reusable components. As an ex-

ample, they created specification of a List component, implemented and extended its features using

RESOLVE. The RESOLVE verifier module is used to generate verification conditions for List compo-

nent specifications and implementations. These verification conditions are proved using RESOLVE

prover and translated to Java language using RESOLVE Translator.
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Chapter 3

RESOLVE

3.1 Overview

RESOLVE is a specification and implementation language developed to support the design

of reusable software components and formal reasoning about software correctness. In this context,

a software component is defined as a unit of a software system that hides its internal implemen-

tation and provides a well-defined interface for interaction. The framework supports verification

of components and automatic proofs of software correctness. RESOLVE adopts logical inference

approach to formal verification. In this approach, objects provided by a component are modeled as

mathematical entities. For example, a Stack object is modeled as a mathematical String. The rea-

soning is based on a set of mathematical assertions generated (from formally specified pre-conditions

and post-conditions), and proved using a set of relevant mathematical theorems and lemmas. The

following sections provide an overview of RESOLVE. We describe component specifications, termed

“concepts”, implementations, termed “realizations”, extensions, termed “enhancements” and instan-

tiations, termed “facilities”.

3.2 Operators

As a programming language, RESOLVE provides a set of primitive operators; Table 3.1

lists some of the most basic. As explained in [40], object aliasing introduced by references causes

difficulties for program reasoning. To avoid aliasing of object references, RESOLVE uses a swap
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Arithmetic Operators Name
+ Add
- Subtract
/ Divide

% Modulus
∗ Multiply
ˆ Exponential

REM Remainder
Logical Operators Name

= Equal to
/= Not equal to
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
∼ Not

AND Logical and
OR Logical or

Data Movement Operators Name
:= Function Assignment
:=: Swap

Table 3.1: RESOLVE Operators

operator for basic data movement instead of reference copying (Java) or deep copying (C++).

3.3 Keywords

We now introduce some of the RESOLVE keywords that will be used in the remaining

chapters. Table 3.2 serves as a keyword reference.

In RESOLVE, operation parameters are declared with a mode that provides additional

information about the effect of the operation on the value of the parameter passed.Table 3.3 explains

the different modes and their usage. In the table, if E is a parameter to an operation, its value prior

to the operation call is denoted #E, and its post value is denoted as E.

3.4 Concepts

Software component specifications are expressed as concepts, which use mathematical models

to represent component state and behavior. We present a Queue specification as an example to make

these concepts more concrete. To support queue entries of different data types, the Queue concept is
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Keywords Description
Integer Data type representing whole numbers
Character Data type representing character symbols
Boolean Data type representing true or false values
type Introduces a generic type
Type Family Introduces a concept as an object type
Array Static array data structure
Record Similar to a struct in C language
exemplar Used within a Type Family declaration to represent the concept
constraint Defines conditions that needs to be true before and after calling a public

method
requires Defines pre-conditions for an operation
ensures Defines post-conditions for an operation
uses Declares the list of facilities, theories, and concepts used by the current module

Table 3.2: RESOLVE Keywords

Keywords Description
restores E operation uses #E, potentially changes its value during the operation,

and restores E to #E before returning
replaces E operation ignores #E and replaces its value
alters E operation uses #E, potentially changes its value to a random value because E

will not be used later in the program
updates E operation uses #E and potentially modifies its value that will be used later

in the program
preserves E operation uses #E and maintains E value with #E value
clears E operation removes the value of #E and sets it to the initial value for its type
evaluates E operation evaluates that E contains a constant data value

Table 3.3: RESOLVE Parameter modes

defined as a generic component, parameterized by the type of entry it contains. Listing 3.1 presents

a generic Queue declaration in RESOLVE

1 Concept Queue_Template(type Entry; evaluates Max_Length: Integer);

2 uses Std_Integer_Fac, String_Theory;

3 requires Max_Length > 0;

Listing 3.1: Declaration of Queue Concept in RESOLVE [48]

Here, the concept has two parameters: Entry of generic type type and Max Length of

type Integer. The uses clause specifies concepts, facilities, and theories used by the concept. The

Queue concept uses Std Integer Fac (explained in section 3.7) and String Theory. One of

the advantages of RESOLVE is that it provides reusable theories. For example, String Theory

can also be used to model a stack or a list. The requires clause defines a pre-condition that requires
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the length value passed as argument be greater than zero (for creating an instance of this concept).

String theory is used to express the component model, as shown in Listing 3.2.

1 Type Family Queue is modeled by Str(Entry);

2 exemplar Q;

3 constraint |Q| <= Max_Length;

4 initialization ensures Q = empty_string;

Listing 3.2: Queue Type Family Declaration [48]

Since the concept is generic, it defines the model’s type as a Family; it must be instantiated

with actual parameter values before it can be used [20]. The exemplar keyword is used to define a

prototypical instance of the concept, and the constraint clause asserts a condition on the queue’s

length. The initialization clause asserts that the queue be empty at the point of declaration.

Listing 3.3 shows the queue operations defined in the concept.

1 Operation Enqueue(alters E: Entry; restores Q: Queue);

2 requires |Q| < Max_Length;

3 ensures Q = #Q o <#E>;

4

5 Operation Dequeue(replaces R: Entry; updates Q: Queue);

6 requires |Q| > 0;

7 ensures #Q = <R> o Q;

8

9 Operation Swap_First_Entry(updates E: Entry; updates Q: Queue);

10 requires |Q| > 0;

11 ensures there exists Rem: Str(Entry) such that

12 #Q = <E> o Rem and Q = <#E> o Rem;

13

14 Operation Length(restores Q: Queue): Integer;

15 ensures Length = (|Q|);

16

17 Operation Rem_Capacity(restores Q: Queue): Integer;

18 ensures Rem_Capacity = (Max_Length - |Q|);

19

20 Operation Clear(clears Q: Queue);

Listing 3.3: Queue Operations [48]
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All parameters are passed with a mode that imposes conditions on their post-conditional

values. The # symbol, as noted earlier, denotes the value of a variable prior to the operation call,

and the symbol ◦ denotes the string concatenation operator. Since Queue is modeled as a String,

the Enqueue operation appends the new entry variable at the end of the string representing the

queue. |Q| denotes the length of the string (i.e., the number of entries in the queue).

3.5 Realizations

A realization module defines implementations for the operations defined in a given concept.

Each concept may have many realizations. For example, a Queue concept can be implemented with

a static array or a Stack component. Listing 3.4 presents the header of a circular array-based

realization of a Queue concept.

1 Realization Circular_Array_Realiz for Queue_Template;

2 Type Queue = Record

3 Contents: Array 0..Max_Length of Entry;

4 Front, Length: Integer;

5 end;

Listing 3.4: Queue Realization declaration [48]

Here, the Type Queue is represented as a Record consisting of an Array of unknown

type (Contents) and two integer variables (Front, Length). The operation implementations are

declared as procedures in the realization module unlike operations in the concepts that specify the

required behavior. An example is shown in Listing 3.5.

Note that the pre-conditions specified in the concept are not checked in the implementation

code. The conditions must be satisfied by modules that use the realization.
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1 Procedure Enqueue(alters E: Entry; updates Q: Queue);

2 Var I: Integer;

3 I := (Q.Front + Q.Length) mod Max_Length;

4 Q.Contents(I) :=: E;

5 Q.Length := Q.Length + 1;

6 end Enqueue;

7

8 Procedure Dequeue(replaces R: Entry; updates Q: Queue);

9 R :=: Q.Contents(Q.Front);

10 Q.Front := (Q.Front + 1) mod Max_Length;

11 Q.Length := Q.Length -1;

12 end Dequeue;

13

14 Procedure Swap_First_Element(updates E: Entry; updates Q: Queue);

15 Q.Contents(Q.Front) :=: E;

16 end Swap_First_Element;

17

18 Procedure Length(restores Q: Queue): Integer;

19 Length := Q.Length;

20 end Length;

21

22 Procedure Rem_Capacity(restores Q: Queue): Integer;

23 Rem_Capacity := Max_Length - Q.Length;

24 end Rem_Capacity;

25

26 Procedure Clear(clears Q: Queue);

27 Q.Front := 0; Q.Length := 0;

28 end Clear;

Listing 3.5: Implementation of Queue Operations [48]
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3.6 Enhancements

A RESOLVE concept is intended to provide basic operations. Any extensions to a concept

can be defined using enhancement modules. These extensions are specified and implemented in a

similar fashion as concepts and realizations. For an enhancement, an implementation may only use

public methods declared in the corresponding concept. For example, consider the Stack concept in

Listing 3.6.

1 Concept Stack_Template(type Entry; evaluates Max_Depth: Integer);

2 uses Std_Integer_Fac, Modified_String_Theory;

3 requires Max_Depth > 0;

4

5 Type Family Stack is modeled by Str(Entry);

6 exemplar S;

7 constraint |S| <= Max_Depth;

8 initialization ensures S = empty_string;

9

10 Operation Push(alters E: Entry; updates S: Stack);

11 requires |S| < Max_Depth;

12 ensures S = <#E> o #S;

13

14 Operation Pop(replaces R: Entry; updates S: Stack);

15 requires |S| /= 0;

16 ensures #S = <R> o S;

17

18 Operation Depth(restores S: Stack): Integer;

19 ensures Depth = (|S|);

20

21 Operation Rem_Capacity(restores S: Stack): Integer;

22 ensures Rem_Capacity = (Max_Depth - |S|);

23

24 Operation Clear(clears S: Stack);

25

26 end Stack_Template;

Listing 3.6: Stack Concept [48]
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To enhance Stack with a copy operation, the specification in Listing 3.7 would be provided.

1 Enhancement Copy_Capability for Stack_Template;

2 Operation Copy_Stack(replaces S_Copy: Stack; restores S_Orig: Stack);

3 ensures S_Copy = S_Orig;

4 end Copy_Capability;

Listing 3.7: Copying Capability Stack Enhancement [48]

Here, Stack Template is the name of the concept being enhanced. (Recall that Stack

is the type family defined in the concept). The operation Copy Capability copies all of the

elements from S Orig to S Copy without modifying the contents of S Orig. The implementation

of the above specification is shown in Listing 3.8.

On line 3, the implementation declares an operation parameter used to copy stack entries.

The specification provided in the operation parameter helps in verifying the program to make sure

it copies the stack entries. A temporary Stack is used to store the entries of S Orig in reverse

order. The entries in the temporary stack are then popped, copied and pushed to S Orig and

S Copy. This satisfies the conditions imposed by the parameter modes (replaces, restores)

noted in the operation signature. The while loops declare loop invariants and variant functions used

in verification. The invariant (maintaining) and progress metric (decreasing) keywords specify

the conditions that have to be satisfied for each iteration of the loop.
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1 Realization Obvious_CC_Realiz

2 (

3 Operation Copy_Entry(replaces Copy: Entry; restores Orig: Entry);

4 ensures Copy = Orig;

5 )

6 for Copy_Capability of Stack_Template;

7 uses Std_Boolean_Fac;

8 Procedure Copy_Stack(replaces S_Copy: Stack; restores S_Orig: Stack);

9 Var Next_Entry, Entry_Copy: Entry;

10 Var S_Reversed: Stack;

11

12 While ( Depth(S_Orig) > 0 )

13 maintaining #S_Orig = Reverse(S_Reversed) o S_Orig;

14 decreasing |S_Orig|;

15 do

16 Pop(Next_Entry, S_Orig);

17 Push(Next_Entry, S_Reversed);

18 end;

19 Clear(S_Copy);

20

21 While ( Depth(S_Reversed) > 0 )

22 maintaining S_Copy = S_Orig and #S_Orig = Reverse(S_Reverse) o S_Orig;

23 decreasing |S_Reversed|;

24 do

25 Pop(Next_Entry, S_Reversed);

26 Copy_Entry(Entry_Copy, Next_Entry);

27 Push(Next_Entry, S_Orig);

28 Push(Entry_Copy, S_Copy);

29 Depth(S_Reversed);

30 end;

31 end Copy_Stack;

32 end Obvious_CC_Realiz;

Listing 3.8: Copying capability realization [48]
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3.7 Facilities

A Facility provides an instance of a concept implemented by a particular realization. In

the case of a standard concept, such as Integer, Boolean, etc., RESOLVE provides instances as

“standard” facilities. A user-defined facility declaration includes actual values for both the concept

parameters and the realization parameters. For example, consider the Stack concept with two

parameters provided in Listing 3.6; its corresponding Facility declaration is shown in Listing 3.9.

1 Facility ISF is Stack_Template(Integer, 5)

2 realized by Array_Realiz;

Listing 3.9: Stack Facility

The code in Listing 3.10 creates a facility for the Stack concept with the copying capability

enhancement. The operation parameter is implemented in the calling module and passed as argument

to the enhancement realization. This facility can also be used to write the “main” function of the

application.

1 Operation Copy_Integer(replaces Copy: Integer; restores Orig: Integer);

2 ensures Copy = Orig;

3 Procedure

4 Copy := Orig;

5 end;

6 Facility SF is Stack_Template(Integer, 5)

7 realized by Array_Realiz

8 enhanced by Copy_Capability

9 realized by Obvious_CC_Realiz (Copy_Integer);

10 Operation Main();

11 Procedure

12 ...

13 end Main;

Listing 3.10: Stack Facility with Enhancement
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Chapter 4

Compiler Translation Strategies

4.1 Overview

On successful verification of a RESOLVE module, the compiler translates the RESOLVE

code into functionally equivalent C code. This verification process is carried out in a hierarchical

manner, verifying all included modules first, followed by modules instantiated using facilities, and

finally the top-most RESOLVE module itself. The translation process follows the same structure.

Concepts are translated to C header files; they specify the interface of a component. Realizations

may represent a concept in several ways. For example, a Queue can be represented as an array

of Record type or a Stack component. Each realization is translated to a C file and a header

file. Enhancements extend the behavior of a component by specifying additional operations. Each

enhancement is translated into a header file, and each corresponding realization is translated into

a C file. A Facility is created to instantiate a concept with actual parameters and to write the

application logic that uses instantiated concepts and their enhancements. For example, a typical

sense and broadcast application could be created as a facility that uses a Queue component to store

the sensor readings prior to transmission over the radio. Each facility is translated into a C file, and

if a concept is instantiated in the facility, corresponding header files and C files are generated for

that particular instance of that concept. Figure 4.1 provides an overview of the translation process

used for each type of RESOLVE module. A common header file is created to include libraries shared

by multiple RESOLVE modules.

This chapter introduces the strategies used to translate RESOLVE to C Code. We addi-
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Figure 4.1: Overview of Compiler Translation Process

tionally discuss the optimization techniques used to handle scalar variables, scalar constants, and

array initialization.

4.2 Datatypes

The compiler supports three built-in datatypes: Integer, Character, and Boolean.

There is no RESOLVE realization code available for these concepts; the realizations are provided in

C. Integer variables declared in RESOLVE are translated to long ints; Characters are trans-

lated to chars; Booleans are translated to uint8 t. In case of Booleans, symbolic constants

(TRUE/FALSE) are created using preprocessing directives in C.

4.3 Swap Operation

The basic data movement operator in RESOLVE is the swap operator (:=:). The operator

swaps the values of two objects in constant time. The chief advantage of using swap is that it does

not create object aliases; i.e., it does not create multiple references to a single object. Aliasing

is a well known obstacle in verifying software correctness. This is not a problem in our compiler

because all RESOLVE programs control aliasing using swapping [27]. To provide the same operator

implementation for swapping object of various types in C, we define a new data type, r type

(“resolve type”), as shown in Listing 4.1, realized as a void pointer. We also define a pointer to

r type.
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Figure 4.2: Variable Declaration in RESOLVE and C

1 typedef void* r_type;

2 typedef r_type* r_type_ptr;

Listing 4.1: RESOLVE Generic Datatypes Declared in C

A variable declared (both local and global) in RESOLVE is translated to a global variable

in the generated C code to make sure the object value is persistent across the stack frames. More

precisely, each variable declaration is associated with a storage location, and a pointer (r type) to

that location as shown in Figure 4.2. The variable value is accessed only using its pointer in the

generated code. For example, if a variable Var 1 is declared as an Integer, the statement will be

translated to the C code shown in Listing 4.2

1 long int int_var_1 = 0 ;

2 r_type var_1 = &int_var_1 ;

Listing 4.2: Translated C Code for Integer Variable Declaration in RESOLVE

Here the storage location for Var 1 is declared as int var 1, and the translated C code

uses var 1 to read and modify its value. All variable declarations are translated to r type variables

including the operation parameters. Further, all constants used within the input source are wrapped

in temporary variables and accessed using pointers in the translated code.
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This translation strategy enables constant time swap implementation based on the pointer

(r type) reassignment. The swap implementation accepts two r type ptr ( pointer to r type )

variables as parameters and performs a “shallow” swap. Since swap operates on pointers to objects,

a shallow swap is both sufficient and efficient. For a more detailed treatment, the behavior of the

swap operation is illustrated in Figure 4.3. The figure illustrates a case where swap operates on two

Integer variables, Var 1 and Var 2. The operation is defined in the common C file as shown in

Listing 4.3. In Figure 4.3, the program state that is illustrated in the numbered blocks corresponds

to the line numbers in Listing 4.3

1 void swap(r_type_ptr ptr1, r_type_ptr ptr2){

2 r_type temp = *ptr1;

3 *ptr1 = *ptr2;

4 *ptr2 = temp;

5 }

Listing 4.3: Swap Operation in C Source Code

This strategy enables a single generic swap implementation for all data types. We have

optimized the translation for scalar variables and scalar constants, as explained in Section 4.5.

4.4 Arrays

We now describe the translation process for arrays and their initialization. In RESOLVE,

every variable is initialized to the default value for its type prior to the point of first access. This

is done by initializing the storage location of the translated variable to a default value, as shown in

Listing 4.2. Here variable int var 1 is initialized to 0 because Var 1 is declared as Integer type

in RESOLVE. In the case of arrays, initialization depends on the type of its contents. As is the case

for all objects, each array variable in RESOLVE is declared as an r type variable in the translated

code. An associated array of the same dimension and actual contained type is also declared, similar

to the storage strategy for scalar variables. Listing 4.4 shows an example declaration for an array

containing Integers.
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Figure 4.3: Swap Operation
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Figure 4.4: Arrays Representation in Memory

1 ...

2 Type Arr = Array 1..4 of Integer;

3 ...

4 Var A : Arr;

Listing 4.4: Integer Array Declaration in RESOLVE

First note that the array size is declared as 1..4, which means that the minimum index that

can be accessed is 1, and the maximum index that can be accessed is 4. To generate equivalent

C code, the corresponding array size is declared as [maximum index - minimum index + 1].

When array index ’i’ is accessed, the translated code will access index [i-minimum index]. The

translated code for the array declaration example in Listing 4.4 is shown in Listing 4.5. A pictorial

representation is shown in Figure 4.4.

1 long int arr_a[4] = { 0 };

2 r_type a[4-1+1] = { &arr_a[0],&arr_a[1],&arr_a[2],&arr_a[3] };

Listing 4.5: Translated Integer Array Declaration in C Source Code

Since the type of a is Array of Integer, the generated code defines an associated array

arr a of type long int, initialized to 0. The variable A in RESOLVE is declared as r type
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in C and initialized with the addresses of the arr a content slots. This initialization strategy is

implemented to enable constant time swapping over the array elements. The swap operation on

Integer array in RESOLVE is illustrated in Listing 4.6.

1 Type Arr = Array 1..4 of Integer;

2 Operation Main();

3 Procedure

4 Var I : Integer;

5 Var A : Arr;

6 I := 6;

7 A(2) :=: I;

8 end Main;

Listing 4.6: Using Swap on an Integer Array in RESOLVE

Here the RESOLVE code contains a procedure “Main” that declares an Integer variable

I and a variable A of type Array of Integer. On line 7, a swap operation is performed on A(2)

and I. Now consider the translated C code in Listing 4.7. Lines 1 to 4 contain variable declarations

and initialization logic as explain earlier. The RESOLVE procedure Main is translated to the main

function in C. Line 6 shows the translated code for accessing an Integer variable using its r type

pointer.

1 long int arr_a[4] = { 0 };

2 long int int_i= 0;

3 r_type i = &int_i;

4 r_type a[4-1+1] = { &arr_a[0],&arr_a[1], &arr_a[2],&arr_a[3] };

5 void facility_main(){

6 *(long int*)i = 6;

7 swap(&a[2-1], &i);

8 }

9 int main(){

10 facility_main();

11 }

Listing 4.7: Translated C code for Swap Operation on Integer Array

On line 7, the translated code contains a call to the swap function with parameters contain-

ing the addresses of variables on which the swap is operated. This ensures that a[2-1] contains

the value 6, and i contains 0, the default value for Integer, after the swap function completes.
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4.5 Concept Instantiation

The translation strategy for instantiating a concept involves several steps. In this section,

we explain the generic instantiation strategy using an example concept, Int Stack. A concept can be

realized in several ways, and each of its realizations may have a unique representation. So the type

of a concept is always declared as r type in C, and the representation defined in each realization

is declared as a struct. In RESOLVE, the Int Stack concept is declared as shown in Listing 4.8.

1 Concept Int_Stack(evaluates Max_Length: Integer);

Listing 4.8: RESOLVE Concept Declaration

A concept may take parameters, such as Max Length for Int Stack. These parameters

are accessible in concepts, realizations, and enhancements. For example, consider the representation

declared in Listing 4.9. Int Stack is represented as a Record type containing an Array of

Integers having maximum length Max Length.

1 Type Int_Stack = Record

2 Contents: Array 1..Max_Length of Integer;

3 Top: Integer;

4 end;

Listing 4.9: Record Declaration in RESOLVE

Actual parameter values are provided at the time of facility creation, which is required for

concept instantiation. The facility type declaration will ensure that a value for Max Length is

provided to Int Stack, as shown in Listing 4.10.

1 Facility IS_Fac is Int_Stack(5)

2 realized by Array_Realiz;

Listing 4.10: Facility Declaration in RESOLVE

In the case of enhancements, the facility declaration must include the enhancement and its

realization details. For example, if Int Stack has an associated copying capability enhancement

(explained in Section 3.6) which is realized by Integer CC Realiz, the facility declaration would

be as shown in Listing 4.11.
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Figure 4.5: Steps Involved in Concept Instantiation

1 Facility IStack;

2 ...

3 Facility IS_Fac is Int_Stack(5)

4 realized by Array_Realiz

5 enhanced by Copying_Capability

6 realized by Integer_CC_Realiz (Copy_Integer);

7 ...

8 end IStack;

Listing 4.11: Facility Declaration in RESOLVE

When the compiler parses the above facility declaration, it instantiates the concept with

actual parameter values. The instantiation process is shown in Figure 4.5. It involves the following

steps.

• Step 1: Int Stack is translated into C header file

• Step 2: Array Realiz is translated into C file and associated C header file containing the

representation as a C structure
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• Step 3: Copying Capability is translated into C header file

• Step 4: Integer CC Realiz is translated into C file

• Step 5: IS Fac.h and IS Fac.c files are generated as a copy of C header file and C file from

Step 2 with actual parameter values

• Step 6: IS Fac Copying Capability.h and IS Fac Integer CC Realiz.c are gener-

ated as a copy of C header file and C file from Step 3 and Step 4 respectively, with actual

parameter values

As explained in Section 4.1, Step 1 corresponds to Concept translation, Step 2 corresponds

to Realization translation, Step 3 and 4 correspond to Enhancement translation, and Steps 5 and

6 correspond to Facility translation. The main operation defined in a facility will be generated as

“main” function in C source code.

The translated files in Step 2 and 4 are non-functional intermediate files without actual

concept parameter values. Precisely, these intermediated files contain an unique string pattern for

each parameter variable. This string pattern is replaced with actual parameter value in Steps 5 and

6. The file names for files generated in Step 5 and 6 contain the facility name provided for concept

instantiation. For example, in Listing 4.11, the facility name is declared as IS Fac, therefore the

files generated have IS Fac in their file names.

The RESOLVE language allows to create multiple instances of a single concept with different

parameter values. This is done by creating separate facilities for each set of parameter values. To

support multiple instances of a concept in C, the facility name (for example, IS Fac in Listing 4.11)

is used as unique key and prefixed to the function names and representation names in the files

generated in Step 5 and 6. For example, the translated representation from concept realization is

shown in Listing 4.12. Note that the original array shown in Listing 4.9 is translated to two arrays

(as explained in Section 4.4).
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1 /* From file IS_Fac.h */

2 typedef struct is_fac_rep{

3 r_type contents[5-1+1];

4 long int contents_store[5-1+1];

5 r_type top;

6 long int int_top;

7 }is_fac_rep;

Listing 4.12: Representation Structure in Translated C Code

Now the variable of type Int Stack is declared as shown in Listing 4.13. Here the facility

name IS Fac is used as the qualifier to uniquely identify the object for the Int Stack type.

1 Operation Main();

2 Procedure

3 Var IS_Var: IS_Fac.Int_Stack;

4 end Main;

Listing 4.13: Int Stack Variable Declaration in RESOLVE

The translated C code declares IS Var along with its representation structure in global

scope. The initialization is performed inside the main function. Listing 4.14 shows the translated

code in C.

1 /* From file IStack.c */

2 int_stack is_var;

3 is_fac_rep is_var_rep;

4 void facility_main(){

5 is_fac_array_realiz_init(&is_var_rep);

6 is_var = &is_var_rep;

7 }

8 int main() {

9 facility_main();

10 }

Listing 4.14: Int Stack Variable Declaration in Translated C Code

Here is var is the concept variable and is var rep is its representation. Similar to

other arrays, these objects need to be initialized before they are accessed. The initialization of the

Int Stack variable requires initializing the representation structure. On line 5, the is fac array
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realiz init function initializes the representation structure. This function is generated during

Step 5 of the concept instantiation process; its implementation is shown in Listing 4.15.

1 void is_fac_array_realiz_init(is_fac_rep* s){

2 long int al_1;

3 memset(s->contents_store,0, sizeof(s->contents_store));

4 for(al_1=0;al_1<(5-1+1);al_1++)

5 s->contents[al_1] = &s->contents_store[al_1];

6 s->int_top = 0;

7 s->top = &s->int_top;

8 }

Listing 4.15: Generated Initialization Function for Int Stack in C

The RESOLVE language supports nested components, such as stack of stacks of integers,

stack of queues of integers, etc. The compiler supports nested components using a compositional

translation strategy. For example, consider a generic stack concept, Stack Template [48] that has

two parameters, Entry (a generic data type) and Max Depth (maximum number of stack elements).

Listing 4.16 shows the Stack Template declaration.

1 Concept Stack_Template(type Entry; evaluates Max_Depth: Integer);

Listing 4.16: Generic Stack Concept Declaration [48]

To instantiate a stack component containing stacks of integers, the facility declaration

would be written as shown in Listing 4.17. Here IS Fac instantiates Stack Template with the

Integer data type and maximum depth of 5. SS Fac instantiates a nested stack component with

IS Fac.Stack as the data type and maximum depth of 5. The pictorial representation of stack of

stacks of integers is shown in Figure 4.6

1 Facility IS_Fac is Stack_Template(Integer, 5)

2 realized by Array_Realiz;

3 Facility SS_Fac is Stack_Template(IS_Fac.Stack, 5)

4 realized by Array_Realiz;

Listing 4.17: Facility Declaration in RESOLVE

The translated representation structures for IS Fac is shown in Listing 4.12 and for SS Fac

are shown in Listing 4.18. The stack datatype in ss fac rep is a generic Stack type that stores

elements of is fac rep type.
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Figure 4.6: Representation of Nested Components - Stack of Stacks of Integers
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1 typedef struct ss_fac_rep{/* From SS_Fac.h file */

2 r_type contents[5-1+1];

3 stack contents_store[5-1+1];

4 r_type top;

5 long int int_top;

6 }ss_fac_rep;

Listing 4.18: Representation Structure for Nested Stack Components in C

The generated initialization is similarly nested. Listing 4.19 shows the initialization func-

tions generated during Step 5 of concept instantiation. The function ss fac array realiz

init initializes the array of is fac rep variables declared in global space by calling the is fac

array realiz init (from Listing 4.15) as shown on line 4. The contents of the input ss fac rep

variable are initialized with initialized is fac rep variables as shown on line 6 and 10.

1 void ss_fac_array_realiz_init(ss_fac_rep* s){ /* From SS_Fac.c file */

2 long int i_r,al_1; long int r =0;

3 for(i_r = 0; i_r < 5;i_r++)

4 is_fac_array_realiz_init(&rep[i_r]);

5 for(al_1 = 0; al_1 < (5 - 1 + 1); al_1++){

6 s->contents_store[al_1]= &rep[r];

7 r++;

8 }

9 for(al_1 = 0; al_1 < (5 - 1 + 1); al_1++)

10 s->contents[al_1]= &s->contents_store[al_1];

11 s->int_top = 0;

12 s->top = &s->int_top;

13 }

Listing 4.19: Generated Initialization Functions for Nested Stack Components in C
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4.6 Operations as Parameters

The RESOLVE language supports passing operations as parameters to realizations. These

operations must be provided at the time concept instantiation. Listing 4.20 shows an example real-

ization for the copying enhancement for Stack Template taken from the RESOLVE examples [48].

The realization defines a copy operation as a parameter, where Entry is the type of element defined

as a parameter in Stack Template.

1 Realization Obvious_CC_Realiz

2 (

3 operation Copy_Entry(replaces Copy: Entry; restores Orig: Entry);

4 ensures Copy = Orig;

5 )

6 for Copy_Capability of Stack_Template;

7

8 Procedure Copy_Stack(replaces S_Copy: Stack; restores S_Orig: Stack);

9 ...

10 Copy_Entry(Entry_Copy, Next_Entry);

11 ...

12 end Copy_Stack;

13 end Obvious_CC_Realiz;

Listing 4.20: Use of an Operation as a Parameter to a Realization in RESOLVE [48]

As explained in the previous section, when instantiating Stack Template with an enhance-

ment, the facility declaration will be as shown on lines 10-13 in Listing 4.21. Since the enhancement

realization, Obvious CC Realiz, defines an operation parameter, a Copy Integer procedure is

created as per the specification and passed as argument to Obvious CC Realiz in the facility

declaration.
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1 Facility Copy_Stack_Fac;

2 uses Std_Boolean_Fac,Std_Integer_Fac;

3

4 Operation Copy_Integer(replaces Copy: Integer; restores Orig: Integer);

5 ensures Copy = Orig;

6 Procedure

7 Copy := Orig;

8 end;

9

10 Facility SF is Stack_Template(Integer, 5)

11 realized by Array_Realiz

12 enhanced by Copy_Capability

13 realized by Obvious_CC_Realiz (Copy_Integer);

14

15 Operation Main();

16 Procedure

17 Var S_Orig: SF.Stack;

18 Var S_Copy: SF.Stack;

19 ...

20 SF.Copy_Stack(S_Copy,S_Orig);

21 ...

22 end Main;

23 end Copy_Stack_Fac;

Listing 4.21: Facility Using Copy Enhancement of Stack in RESOLVE

The translated C code for Obvious CC Realiz includes an additional parameter of type

function pointer, to accommodate implementations of the Copy Entry procedure. The implemen-

tation expects a function pointer with the same signature as defined in the instantiated operation

specification. Listing 4.22 shows the translated code.

1 ...

2 void copy_stack(stack* s_copy, stack* s_orig, void(*copy_entry)(long int*, long int*)){

3 ...

4 copy_entry(&entry_copy, &next_entry);

5 ...

6 }

Listing 4.22: Generated C Source Code for Obvious CC Realiz
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In the translated version of Copy Stack Fac, an implementation of Copy Entry is gen-

erated, and the function’s address is passed as parameter to the Copy Stack procedure, as shown

on line 18 in Listing 4.23. As before, the stack variables S Orig and S Copy are declared globally.

The code also includes the initialization logic for the stacks prior to their first point of access.

1 ...

2 void copy_integer(long int* copy, long int* orig);

3 stack s_orig;

4 sf_rep s_orig_rep;

5 stack s_copy;

6 sf_rep s_copy_rep;

7 ...

8

9 void copy_integer(long int* copy, long int* orig) {

10 *copy = *orig;

11 }

12 void facilty_main(){

13 sf_array_realiz_init(&s_orig_rep);

14 s_orig = &s_orig_rep;

15 sf_array_realiz_init(&s_copy_rep);

16 s_copy = &s_copy_rep;

17 ...

18 copy_stack(&s_copy, &s_orig, copy_integer);

19 ...

20 }

21 int main(){

22 facility_main();

23 }

Listing 4.23: Generated C Source Code for Copy Stack Fac

38



4.7 Translator Optimizations

We have incorporated two optimization strategies in the translator. The first avoids wrap-

ping scalar variables and scalar constants as r type objects. The second introduces lazy initializa-

tion of arrays. These optimizations are intended to provide better memory utilization and run time

efficiency, respectively.

4.7.1 Scalar Variables and Scalar Constants

As described earlier, every RESOLVE variable is translated to an r type to enable constant

time value swapping. In the case of scalar variables and constants - Integers, Booleans or

Characters - there is no need to use a wrapper because standard value assignment takes constant

time. So the compiler is optimized to translate scalar variables and constants to their corresponding

C data types. Consider the example discussed in Section 4.3, where the variable Var 1 is declared

as an Integer. With this optimization enabled, that declaration statement will be translated as

shown in Listing 4.24.

1 long int var_1 = 0 ;

Listing 4.24: Translated C Code for Integer Variable Declaration in RESOLVE

If a swap operator is used with two scalar operands (both variable and constants), the code

is implemented using assignment statements. Consider the same example provided in Listing 4.6.

Since a and i are both of scalar type, the translated code will be as shown in Listing 4.25. Note

that the associated array arr a is not created because the array is of type Integer. Also note

that the swap operator is translated to assignment operator on lines 5-6.

4.7.2 Lazy Array Initialization

The second optimization strategy is to delay the initialization of array entries until the point

of first access. This is implemented using bit flags. When an array is translated from RESOLVE

to C, the compiler creates an associated array of type uint8 t. The compiler uses one bit flag for

each array location. Therefore, if the original array is of size n, then the length of the bit array

will be equal to (n/8), if n is divisible by 8, or (n/8) + 1, if n is not divisible by 8. When an

array location i is accessed, the compiler inserts an initialization check for the ith array location
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using the bit array. If the bit indicates that the entry is not initialized, the compiler inserts a call

statement to the function initialize array element, to initialize ith location.

1 long int a[4-1+1] = { 0 };

2 long int i= 0; long int ci_0 = 0;

3 void facility_main(){

4 i = 6; ci_0 = a[2-1];

5 a[2-1] = i; i = ci_0;

6 }

7 int main(){

8 facility_main();

9 }

Listing 4.25: Optimized Translated C code for Swap Operation on Integer Array

Listing 4.26 shows the definition of the initialize array element function created in

the common C file. Since the default value of an object depends on its type, the flag parameter

determines the value to be set. For example, 0 is default value for an Integers, and FALSE for

Booleans. The parameter array element is the pointer to the original array location to be

initialized, array init is the pointer to the base address of the bit array, and index is the array

location to be checked for initialization. The inited index variable stores the byte index of the

bit array to be modified. The expression (1 << mod result) sets the index bit to 1. On line 7,

the condition checks whether the corresponding bit for the input index is set; if not, it initializes

the array element, and on line 10, the corresponding bit is set to 1.

1 void initialize_array_element(uint8_t flag, void* array_element, uint8_t array_init[],

2 int index){

3 uint8_t mod_result;

4 uint8_t inited_index;

5 mod_result = index % 8;

6 inited_index = (mod_result == 0 ) ? index /8 : (index/8) +1;

7 if(!(array_init[inited_index] & (1 << mod_result))){

8 // array_element is initialized to its default value

9 ...

10 array_init[inited_index] |= (1 << mod_result);

11 }

12 }

Listing 4.26: Array Initialization
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For example, consider the RESOLVE code in Listing 4.27. Here an array of 100 Integers

is declared. Prior to the optimized translation, this declaration would translated to an array of

type long int, and all 100 locations would be initialized to 0. The Main procedure accesses only

one array location - index 20. In this case, initializing all array locations is unnecessary. It is only

necessary to initialize array index 20.

1 Type Arr = Array 1..100 of Integer;

2 Operation Main();

3 Procedure

4 Var A : Arr;

5 Var I : Integer;

6 I := A(20);

7 end Main;

Listing 4.27: Array Declaration and Access in RESOLVE

Listing 4.28 shows the optimized translated code in C. On line 3, the bit array is declared,

and line 7 checks for the initialization of array index 20.

1 long int a[100-1+1];

2 long int i = 0;

3 uint8_t a_init[(100 \% 8 == 0)? 100/8 : (100/8) +1];

4

5 void facility_main() {

6 //a[20-1] initialization check

7 initialize_array_element(0, &a[20-1], a_init,(((20-1) * 1 )));

8 i = a[20-1];

9 }

10 int main(){

11 facility_main();

12 }

Listing 4.28: Optimized Translated Code for Array Declaration and Access in C

In Chapter 5, an evaluation of the above mentioned optimization strategies is conducted

using the sample applications as test cases.
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Chapter 5

Validation and Evaluation

Embedded networked systems consist of devices that provide information to decision support

systems in various fields such as health care, aeronautics, environmental monitoring, and others. The

constituent devices collect data (sense) and communicate (broadcast and receive) that data to peer

devices. These are the basic operations for any embedded sensing device irrespective of the field,

the network size, and hardware/software setup. For this reason, we chose to validate the compiler

translation using these basic operations and developed embedded application programs targeting the

MoteStack [21] platform in RESOLVE. In this chapter, we describe two basic applications. The first

can sense and broadcast sensor data over an embedded network, and the second can receive sensor

data over an embedded network. We also present evaluation results focused on the optimization

techniques adopted in our translation strategies.

The MoteStack is a sensing platform developed by the Dependable Systems Research Group

at Clemson University. One of the key features of the platform design is that it supports hardware

customization through a stackable board interface. The specifications for the hardware driver com-

ponents are created as concepts in RESOLVE; the realizations are implemented in C. The following

components are used to support the broadcast and receive applications.

• Light Emitting Diode (LED) component, used as a visual indicator. There are five LEDs

on a platform and Leds Template is the RESOLVE concept that specifies the operations on

those five LEDs.

• Analog to Digital Converter (ADC) component, converts analog readings from a sensor
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to digital value that can be processed by a microcontroller. ADC Template is the RESOLVE

concept that specifies the operations for an ADC.

• Universal Asynchronous Receiver and Transmitter (UART) component, provides

asynchronous serial communication between the microcontroller and XBEE radio.

• XBEE radio component, provides wireless communication services over the 2.4 GHz band.

All MoteStack applications use these basic components. They are therefore provided as

standard facilities. The LEDs concept is shown in Listing 5.1. The concept is modeled as a cartesian

product of five boolean variables corresponding to the five LEDs on a MoteStack device. Each LED

has two states: on and off; the initialization operation of every LED ensures that the LED is off

(as shown on line 7 for L.L0) and ready to use.

1 Concept Leds_Template;

2 ...

3 Var L:Cart_Prod

4 L0:B;L1:B;L2:B;L3:B;L4:B;

5 end;

6 ...

7 Operation LED0_Init();

8 ensures L.L0 = false;

9 Operation LED0_Set(evaluates b: Boolean);

10 ensures L.L0 = b and L.L1 = #L.L1 and L.L2 = #L.L2

11 and L.L3 = #L.L3 and L.L4 = #L.L4;

12 Operation LED0_Toggle();

13 ensures L.L0 = not(L.L0) and L.L1 = #L.L1

14 and L.L2 = #L.L2 and L.L3 = #L.L3

15 and L.L4 = #L.L4;

16 Operation LED0_Status(): Boolean;

17 ensures LED0_Status = L.L0;

18 --similar operations created for LED1, LED2, LED3, and LED4

19 end Leds_Template;

Listing 5.1: Leds Template Specification in RESOLVE

The Set operation sets the LED state with the value passed as argument. The Toggle

operation changes the current state of the LED from True to False and vice-versa. The Status

operation returns the current state of the LED (on or off). As discussed in Section 3.3, #L.L1 on
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line 10 denotes the pre-conditional value of variable L.L1. The ensures clause of Set guarantees

that LEDs L.L1, L.L2, L.L3, and L.L4 are not changed when L.L0 is set.

The ADC concept is shown in Listing 5.2. The ADC is modeled as a cartesian product

of two boolean variables representing the on/off state of the attached sensor and the initialization

state of the component. The ADC must be initialized before it can be used. ADC Init specifies the

initialization operation for the ADC, which ensures that the sensor is off. To read the sensor value,

the sensor must be turned on by calling Sensor On. The operations Sensor On and Sensor Off

are used to provide and remove the power from the sensor, respectively. The efficient use of these

operations can save energy and increase the node’s life.

1 Concept ADC_Template;

2 uses Std_Integer_Fac;

3 Var ADC:Cart_Prod

4 Sensor_On:B;

5 Init:B;

6 end;

7 Facility_Initialization ensures

8 ADC.Init = false and ADC.Sensor_On = false;

9 Operation Sensor_On();

10 ensures ADC.Sensor_On;

11 Operation Sensor_Off();

12 ensures ADC.Sensor_On = false;

13 Operation ADC_Init();

14 ensures ADC.Sensor_On = false and ADC.Init;

15 Operation Read_ADC(evaluates I: Integer): Integer;

16 requires ADC.Init = true and ADC.Sensor_On and 0 <= I <= 7;

17 ensures Read_ADC > 0 and ADC.Sensor_On = false;

18 end ADC_Template;

Listing 5.2: ADC Template Specification in RESOLVE

Read ADC is used to query the sensor to retrieve its current value. This operation ensures

that the value read is positive. Read ADC takes one Integer parameter. The mode evaluates

ensures that the parameter contains constant data value, since the value for I corresponds to a port

number from 0 to 7 that is used to attach a sensor.

The UART concept is shown in Listing 5.3. It is also modeled as a cartesian product of

a natural number for UART baud rate and a Boolean variable for the initialization state of the
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component. UART Init takes one Integer parameter, corresponding to the desired UART baud

rate. UART Send Bytes Blocking is used to send the data value passed as argument via the

UART. Similarly, UART Receive Bytes Blocking is used to receive a data value via the UART.

Both operations require that UART to be initialized.

The XBEE radio component is similarly defined; the details are hence omitted. The ra-

dio component is modeled as a cartesian product of two boolean variables, corresponding to the

initialization state and the error state of the component, respectively. It includes specifications sim-

ilar to the UART component, but communicates data over a wireless network via an XBEE radio

module [44].

5.1 Broadcast Data Application

The Motestack broadcast application provides basic sensing and broadcasting functions.

The ADC component is used to query an attached sensor, and the XBEE radio component is used

to broadcast the collected data over a wireless network. Once the basic functions are verified, more

complex sensing applications can be developed by reusing these verified functions.

For the sake of presentation, the broadcast application code is partitioned into separate

listings. Listing 5.4 shows the facility declaration of the broadcasting application, Broadcast Data.

Lines 2 and 3 list the standard facilities used by the application. On line 4-7, using a facility,

an instance of Queue concept for natural numbers is instantiated with the circular array based-

implementation and the averaging enhancement. This enhancement extends the behavior of Queue

to calculate the average of all its entries. Circular Array Realiz defines the representation as

an array with minimum index 0 and maximum index as the concept parameter.

When translated to C, Listing 5.4 will be translated to the header files includes shown in

Listing 5.5. These header files are translated concepts for the corresponding standard facilities used,

as shown on lines 2-3 in Listing 5.4. Note that the header files IQF.h and IQF Averaging Capabi

lity.h are generated in the process of instantiating Queue concept, as explained in Section 4.5.
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1 Concept UART_Template;

2 uses Std_Boolean_Fac, Std_Integer_Fac;

3 Var UART:Cart_Prod

4 Baud_Rate:N;

5 Init:B;

6 end;

7 constraint UART.Baud_Rate = 1200 or UART.Baud_Rate = 2400 or

8 UART.Baud_Rate = 4800 or UART.Baud_Rate = 9600 or

9 UART.Baud_Rate = 14400 or UART.Baud_Rate = 28800 or

10 UART.Baud_Rate = 38400 or UART.Baud_Rate = 57600 or

11 UART.Baud_Rate = 76800 or UART.Baud_Rate = 115200;

12 Facility_Initialization

13 ensures UART.Init = false;

14 Operation UART_Init(evaluates baud_rate:Integer);

15 requires (baud_rate = 1200 or baud_rate = 2400 or

16 baud_rate = 4800 or baud_rate = 9600 or

17 baud_rate = 14400 or baud_rate = 28800 or

18 baud_rate = 38400 or baud_rate = 57600 or

19 baud_rate = 76800 or baud_rate = 115200);

20 ensures UART.Set_Speed and UART.Init;

21 Operation UART_Send_Bytes_Blocking(restores data:Integer;);

22 requires UART.Init;

23 Operation UART_Receive_Bytes_Blocking(alters data:Integer;): Integer;

24 requires UART.Init;

25 end UART_Template;

Listing 5.3: UART Template Specification in RESOLVE

1 Facility Broadcast_Data;

2 uses Std_Integer_Fac, Std_Boolean_Fac, Std_Leds_Fac,

3 Std_ADC_Fac, Std_UART_Fac, Std_XBEE_Fac;

4 Facility IQF is Queue_Of_N_Template(10)

5 realized by Circular_Array_Realiz

6 enhanced by Averaging_Capability

7 realized by No_Overflow_Realization;

Listing 5.4: Facility Declarations in the Broadcast Data Application
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In Listing 5.6, the Main procedure is defined on lines 1-10. The variables Garbage, Sample,

and Average are declared as Integers. Garbage is used to store the dequeued entry (to be

discussed) from queue; Sample is used to store a sensor data read from the ADC; and Average

is used to store the average value calculated over the entries in the queue. The variable On is

declared as Booleans, used to set the LED state. Data Samples is declared as a variable of type

IQF.Queue, where IQF is the qualifier of the Queue type (this is the facility name declared on line

4 of Listing 5.4). It is used to store the collected sensor data to be averaged. Lines 6-10 initialize

LED components, the ADC component, the UART component, and the XBEE radio component.

1 #include "Common.h"

2 #include "Integer_Template.h"

3 #include "Boolean_Template.h"

4 #include "Leds_Template.h"

5 #include "ADC_Template.h"

6 #include "UART_Template.h"

7 #include "XBEE_Template.h"

8 #include "IQF.h"

9 #include "IQF_Averaging_Capability.h"

Listing 5.5: Translated Facility Declarations in Broadcast Data Application in C

1 Operation Main();

2 Procedure

3 Var Garbage, Sample, Average : Integer;

4 Var On: Boolean;

5 Var Data_Samples: IQF.Queue;

6 LED0_Init();

7 --Similarly call Init for LED1, LED2, LED3, and LED4

8 ADC_Init();

9 UART_Init(9600);

10 XBEE_Init();

Listing 5.6: Variable Declaration and Component Initialization in the Broadcast Data Application

The translated C code is shown in Listing 5.7. As discussed in Section 4.3, all local vari-

ables declared within Main are translated to global variables. These variables are initialized to

their default values inside the main function. Note that the queue variable is initialized by calling

iqf queue initialize, generated at the time of concept instantiation.
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Listing 5.8 shows the program logic that reads and broadcasts sensor data within a non-

terminating While loop. The changing clause lists the variables that may change during an

iteration of the While loop. For example, the variable Sample is assigned a sensor value from the

ADC component within the loop. The maintaining clause specifies the loop invariant. In this

case, the value is set to True. Lines 5-8, check the remaining capacity of the Data Samples queue.

If the queue is full, one sensor reading is dequeued and LED0 is turned off.

1 long int garbage;

2 long int sample;

3 long int average;

4 boolean on;

5 queue data_samples;

6 iqf_queue_rep data_samples_rep;

7

8 void broadcast_data_main(){

9 garbage = 0;

10 sample = 0;

11 average = 0;

12 on = FALSE;

13 iqf_queue_initialize(&data_samples_rep);

14 data_samples = &data_samples_rep;

15 leds_template_led0_init();

16 /* Similarly call Init for LED1, LED2, LED3, and LED4 */

17 adc_template_adc_init();

18 uart_template_uart_init(9600);

19 xbee_template_xbee_init();

Listing 5.7: Translated C code for Listing 5.6
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On Lines 9-12, a new sensor value is read into Sample from ADC port 0. This value is

enqueued into the queue, and an average of all the entries in Data Samples is calculated and stored

in Average. To make the data more “readable” using the 5 LEDs on the MoteStack, the Average

value is divided with 256 and the remainder is set back in Average variable. Depending on the

remainder value, corresponding LED is set to On and the Average value is broadcasted by calling

UART Send Bytes Blocking. Listing 5.9 shows the translated C code.

1 While(On)

2 changing Average,Sample,Garbage,Data_Samples;

3 maintaining True;

4 do

5 If (IQF.Rem_Capacity(Data_Samples) = 0) then

6 IQF.Dequeue(Garbage, Data_Samples);

7 LED0_Set(!On);

8 end;

9 Sample := Read_ADC(0);

10 IQF.Enqueue(Sample, Data_Samples);

11 Average := IQF.Average(Data_Samples);

12 Average := Average mod 256;

13 If (Average >= 0 ) then

14 LED1_Set(On);

15 else

16 LED1_Set(!On);

17 end;

18 --Similarly >= 64 sets LED2 , >= 128 sets LED3, >= 192 sets LED4

19 UART_Send_Bytes_Blocking(Average);

20 LED0_Set(On);

21 end;

22 end Main;

23 end Broadcast_Data;

Listing 5.8: Sensing and Broadcasting Logic in the Broadcast Data Application
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1 while(on){

2 if(integer_template_are_equal(iqf_rem_capacity(&data_samples), 0)){

3 iqf_dequeue(&garbage, &data_samples);

4 leds_template_led0_set(boolean_template_not(on));

5 }

6 sample = adc_template_read_adc(0);

7 iqf_enqueue(&sample, &data_samples);

8 average = iqf_average(&data_samples);

9 average = integer_template_mod(average, 256);

10 if(integer_template_greater_or_equal(average, 0)){

11 leds_template_led1_set(on);

12 }

13 else{

14 leds_template_led1_set(boolean_template_not(on));

15 }

16 /* Similarly >= 64 sets LED2, >= 128 sets LED3, >= 192 sets LED4 */

17 uart_template_uart_send_bytes_blocking(&average);

18 leds_template_led0_set(on);

19 }

20 }

21 int main(){

22 broadcast_data_main();

23 }

Listing 5.9: Translated Sensing and Broadcasting Logic in the Broadcast Data Application in C

5.2 Receive Data Application

The MoteStack receive application implements the functionality to receive the sensor value.

The XBEE radio component is used to receive data over a wireless network. Listing 5.10 shows

the Receive Data application created as a facility, constituent variables declared inside the Main

function, and initialization logic for components and variables.
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1 Facility Receive_Data;

2 uses Std_Integer_Fac, Std_Boolean_Fac, Std_Leds_Fac,

3 Std_UART_Fac, Std_XBEE_Fac;

4

5 Operation Main();

6 Procedure

7 Var Data, Bytes: Integer;

8 Var On: Boolean;

9

10 LED0_Init();

11 --Similarly call Init for LED1, LED2, LED3, and LED4

12 UART_Init(9600);

13 XBEE_Init();

Listing 5.10: Facility and Variable Declarations in the Receive Data Application

The variables Data is declared as an Integer to store received data, and Bytes is declared

as Integer variable to store the total count of integers received. On is declared as a Boolean

variables and are initialized with True. The UART component is initialized with 9600 as the baud

rate similar as in the case of Broadcast Data application. The XBEE and LED components are

also initialized. The translated C code is shown in Listing 5.11.

Listing 5.12 shows the data receiving logic within a non-terminating While loop. The

changing clause lists the variables (Data and Bytes) that may change during an iteration of the

loop. The maintaining clause specifies the loop invariant. On line 5, received data is stored in

Data by calling UART Receive Bytes Blocking. The number of bytes received is returned to

Bytes depending on which LED0 is set. The value in Data is checked against the same data values

sent by the Broadcast Data application and corresponding LEDs are set. The translated C code

is shown in Listing 5.13.
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1 #include "Common.h"

2 #include "Integer_Template.h"

3 #include "Boolean_Template.h"

4 #include "Leds_Template.h"

5 #include "UART_Template.h"

6 #include "XBEE_Template.h"

7

8 long int data;

9 long int bytes;

10 boolean on;

11

12 void receiveapplication_main(){

13 data = 0;

14 bytes = 0;

15 on = FALSE;

16 leds_template_led0_init();

17 /* Similarly call Init for LED1, LED2, LED3, and LED4 */

18 uart_template_uart_init(9600);

19 xbee_template_xbee_init();

Listing 5.11: Translated Facility and Variable Declarations in the Receive Data Application in C
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1 While(On)

2 changing Data, Bytes;

3 maintaining True;

4 do

5 Bytes := UART_Receive_Bytes_Blocking(Data);

6 If (Bytes = 0) then

7 LED0_Set(!On);

8 else

9 LED0_Set(On);

10 end;

11 If (Data >= 0 ) then

12 LED1_Set(On);

13 else

14 LED1_Set(!On);

15 end;

16 -- Similarly >= 64 sets LED2, >= 128 sets LED3, >= 192 sets LED4

17 LED0_Set(!On);

18 end;

19 end Main;

20 end Receive_Data;

Listing 5.12: Data Receiving Program Logic in the Receive Data Application
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1 while(on){

2 bytes = uart_template_uart_receive_bytes_blocking(&data);

3 if(integer_template_are_equal(bytes, 0)){

4 leds_template_led0_set(boolean_template_not(on));

5 }

6 else{

7 leds_template_led0_set(on);

8 }

9 if(integer_template_greater_or_equal(data, 0)){

10 leds_template_led1_set(on);

11 }

12 else{

13 leds_template_led1_set(boolean_template_not(on));

14 }

15 /* Similarly >= 64 sets LED2, >= 128 sets LED3, >= 192 sets LED4 */

16 leds_template_led0_set(boolean_template_not(on));

17 }

18 }

19 int main(){

20 receive_data_main();

21 }

Listing 5.13: Translated Data Receiving Program Logic in the Receive Data Application in C

The Broadcast Data and Receive Data application programs serve as useful test cases

to validate sense, broadcast, and receive operations. As a part of validation process, each transmitted

sensor value and the received sensor value were compared; the results were as expected. Since these

are the basic operations of any embedded networked application, testing the correctness of the

translated C programs on the MoteStack device increases our confidence of being able to develop

more complex programs.

5.3 Optimization Results

To evaluate the optimizations applied in the compiler translation strategies, three test case

application programs were created using the RESOLVE language and translated to C. The translated

code was then installed on MoteStack devices to conduct the experiments. In this section, we explain
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the experimental goals, the experimental setup and evaluation results.

5.3.1 Experimental Goals

We pursue the following experimental goals.

• GOAL I: To evaluate the efficacy of the optimization strategy implemented to handle scalar

variables and constants. This goal is important because the optimization strategy is intended

to decrease the overall memory usage of the translated C programs - a precious resource on

resource-constrained embedded devices.

• GOAL II: To evaluate the efficacy the optimization strategy implemented for lazy array ini-

tialization. As explained in Section 4.4, the basic array translation strategy generates an array

of equal size to the declared array and initializes all array locations. The optimized strategy as

explained in Section 4.7.2, creates a supplemental bit array of equal dimension to the original

array and introduces an initialization check each time an array index is accessed. This goal is

important because the optimization strategy is intended to improve the runtime efficiency of

translated C programs and guarantee constant-time initialization.

5.3.2 Experimental Setup

The experimental setup consists of two MoteStack embedded devices configured with LEDs,

an ATMEGA644 microprocessor [11], and an XBEE radio module [44]. The test case programs were

created using the RESOLVE language. They are compiled, verified, and translated to C programs

using two versions of the compiler: Version 1 implements optimized translation strategies and version

2 implements non-optimized translation strategies.

The test cases for Goal I include the translated C code for Broadcast Data and Receive

Data, described in Sections 5.1 and 5.2, respectively. The test case for Goal II is the RESOLVE

code shown in Listing 4.27, which declares an array A of 100 Integers and assigns value at index

20 to the variable I. These translated programs are installed on the MoteStack embedded device

using AVR Studio [12] and an AVRISP mkII In-System Programmer [13].
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5.3.3 Experimental Results

• Experiment I: In this experiment, Goal I is targeted. Both the optimized code and the

non-optimized code are compiled. The memory usage in both cases is shown in Table 5.1. The

results show that the optimized code uses significantly less memory when compared to the

non-optimized code.

No Optimization With Optimization
Application Program (ROM) Data (RAM) Program (ROM) Data (RAM)

Broadcast Data 10860 686 6990 (∼64.37%) 282 (∼41.11%)
Receive Data 9634 432 5804 (∼60.25%) 126 (∼29.17%)

Table 5.1: Memory Usage of Applications Compiled for the ATMEGA644 Processor

• Experiment II: In this experiment, Goal II is targeted. The execution times are calculated for

the optimized and non-optimized C code generated from the RESOLVE code in Listing 4.27.

The execution times are compared for different array sizes. The results are shown in Figure 5.1.

The vertical axis measures the execution time in microseconds and the horizontal axis measures

the size of the array declared within the test program. The results show that lazy initialization

yields better execution times as the size of the array increases, as expected.

Figure 5.1: Execution Times for Basic and Lazy Array Initialization Strategies
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Chapter 6

Conclusions

Embedded Networked Systems play a vital role in providing information to decision support

systems in various fields such as healthcare, environmental monitoring, and others. These systems

consist of networks of devices distributed in large numbers that can collect data and communicate

with other devices within the network. Since embedded devices are resource-constrained, developers

face challenges in designing systems with long life that can provide reliable data. When compared to

other systems, software correctness is more critical for embedded networked systems as they involve

significant maintenance costs, and errors can lead to loss of life. Our work focuses on realizing

verified programs for embedded networks based on specifications and implementations written in

the RESOLVE language. We extended the RESOLVE verifying compiler with a translator module

used to generate verified C language programs that can be installed on an embedded device.

We provided an overview of the operators, datatypes, and modules of the RESOLVE lan-

guage, and then described the strategies implemented by our translator module to generate equiv-

alent C source code. The translator supports standard datatypes (Integers, Booleans, and

Characters), arrays, and operators including Swap. We implemented a generic swap function

using void pointers to support constant time data movement for all object types. One of the key

features of the RESOLVE language is that it supports parameterized specifications (Concepts)

and implementations (Realizations). Each specification is instantiated by passing its actual

parameter values using RESOLVE Facilities. The translator module generates a unique ob-

ject instance of a specification for each set of parameters. It also supports the extension modules

(Enhancements) provided by RESOLVE. To enhance the efficiency of the translator, we imple-
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mented two optimizations for translating variable declarations and array initializations, respectively.

Finally, we presented the results of experiments conducted to validate the translation strate-

gies with test case programs implementing basic operations. We evaluated the variable declaration

optimization using the same test case programs. We also evaluated the array initialization opti-

mization with a test program using arrays. The results show that the optimizations offer decreased

memory usage and better runtime efficiency, respectively. In future, we would like to provide ini-

tialization function for each type, provide better support for specifying drivers, and integrate the

project with RESOLVE web tool to provide translated C code to all users.
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