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ABSTRACT 

 
With increasing numbers of health-conscious consumers purchasing 

nutraceutical supplements, total sales in the nutrition industry have soared to over 

$200 billion in 2006.1  Approximately $50 billion of this was spent in the United 

States on functional foods and supplements, which are categorized as 

nutraceuticals and perceived to afford health benefits to the consumer.  It is 

important to assess the safety of these nutraceutical products, with specific 

regards to toxic metals, including arsenic, cadmium, lead, and mercury.  Because 

species of these metals may be more toxic than others, they can have hazardous 

health effects if ingested in excess quantities.  Nutraceutical products can also 

vary by manufacturer, even if they contain the same active ingredient, and the 

plant ingredients used in manufacturing can be contaminated by pesticides or the 

soil in which they are cultivated.2   

For many years, nutraceutical products fell under the category of “food” 

and, as such, they were not subject to strict restrictions, such as those established 

for “drugs.”  After the establishment of the Dietary Supplement Health and 

Education Act, which defined a dietary supplement, the U.S. Food and Drug 

Administration was able to set forth guidelines to establish good manufacturing 

practices (GMPs) for the production dietary or nutraceutical supplements.  

Though not focused directly on nutraceuticals, the State of California also enacted 
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Proposition 65, which establishes levels of toxic elements or compounds that must 

not be exceeded on a daily basis.     

 The work described in this thesis focuses on the development of a sample 

preparation method for nutraceutical products, specifically ethanolic tinctures and 

glycerin-based matrices, and analysis of these products by inductively coupled 

plasma atomic emission spectrometry (ICP-AES) for toxic metal content.  This 

method was developed by utilizing microwave digestion, which allows high 

temperatures and pressures for complete digestion of difficult sample types.  A 

method was then established using an ICP-AES instrument that allowed simple 

and fast analysis through the generation of calibration functions for each toxic 

metal.  Botanical standard reference materials (SRMs) of Ephedra sinica stapf and 

Gingko biloba were analyzed for arsenic, cadmium, lead, and mercury to assess 

the validity of the developed sample preparation method. 
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CHAPTER ONE 
 

INTRODUCTION 
 

 
Introduction to Nutraceuticals 

The nutraceutical industry is a multibillion dollar per year industry, which 

encompasses herbal products, vitamins, dietary supplements, and tinctures.1  It 

has undergone a steady rise in the number of manufacturers and products 

available to consumers, as well as the increased demand for supplements for the 

health-conscious.  Some consumers use them as a part of a modified lifestyle, as a 

way of assisting a change to a healthier diet and more physically active life.  

Others use supplements as an alternative to prescription medicines and view them 

as a more natural remedy for ailments.3  Because of the widespread use of, and 

growing demand for, nutraceutical products, the nutraceutical industry faces 

continued scrutiny in the areas of product supply, quality, and safety.   

One of the major concerns in the nutraceutical industry is the potential 

presence of toxic metals, particularly arsenic, cadmium, lead, and mercury, in 

ingredients or final products.  It is well known that these metals can cause adverse 

effects if they are ingested in large quantities or in their more toxic forms, 

insinuating the need for methods of detection and speciation of these metals.  For 

example, inorganic forms of arsenic are more toxic than the organic form, the 

organic methyl mercury is more toxic than other mercury forms, while all forms 

of lead and cadmium are toxic.4  These metals can be naturally occurring in soils 
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and can also be incorporated into the environment by contamination, via pesticide 

usage or chemical runoff.  Therefore, it is easy to understand how they can be 

accumulated in the ingredients of nutraceutical supplements, especially those that 

primarily contain raw plant material.   

In this thesis, a method for sample preparation of nutraceutical 

supplements by microwave digestion and determination of toxic metals by 

inductively coupled plasma atomic emission spectrometry (ICP-AES) is 

described.  Chapter 1 details the challenges regarding the nutraceutical industry 

and the need for new methods for the assessment of product safety.  Ideal 

characteristics of a newly developed method are described, along with basic 

principles of microwave digestion and ICP-AES.  Chapter 2 presents research 

focused on development and validation of a method to analyze nutraceutical 

supplements for toxic metal content.  It primarily focuses on the sample 

preparation for these supplements, a critical component of the analysis process, as 

well as the optimization of the ICP-AES system for analysis and quantification 

and the validation of the developed procedure.  Finally, Chapter 3 discusses 

conclusions drawn from this study and proposes future studies for the 

continuation of this project. 

Challenges Facing Nutraceutical Industry 

 One of the major challenges facing the nutraceutical industry is the 

implementation of the testing of products in the marketplace.  Regulations by the 

government, with specific regards to these products, have not been heavily 

enforced.  Until 1994, nutraceutical products fell under the heading of food 
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products and were subject to regulation under the Federal Food, Drug, and 

Cosmetic Act (FFDCA).5  At that point, Congress passed the Dietary Supplement 

Health and Education Act (DSHEA), as an amendment to the FFDCA, to develop 

regulations on dietary supplements.6  The DSHEA defined a dietary supplement 

as “a product (other than tobacco) intended to supplement the diet that bears or 

contains one or more of the following dietary ingredients.”5  These ingredients 

include vitamins, minerals, herbs, botanicals, amino acids, and also combinations 

of these ingredients.  In addition to defining the term “dietary supplement,” the 

DSHEA also provided for the U.S. Food and Drug Administration (FDA) to 

establish good manufacturing practices (GMPs) for dietary supplements.  These 

GMPs would be modeled after those that were already developed for foods; 

however, they would take several years to be developed. 

 In 2003, the FDA issued its Proposed Rule on Dietary Supplement 

GMPs.5, 7  In the near-decade between the enactment of DSHEA and the FDA’s 

proposal, there was communication between the FDA and the dietary supplement 

industry with regards to developing these GMPs.  The industry sent the FDA 

information about its manufacturing practices in 1995, and the FDA published 

questions that it wanted the industry to answer in 1997, so the Proposed Rule was 

a long time in the making.  However, these GMPs were only intended to address 

concerns in one area of safety of the dietary supplements.  They were designed to 

ensure that manufacturers test their products for safety and effectiveness and that 

they indeed meet label claims as to what was included in the supplement.  It only 

required that the final product be tested, however it did recommend testing of 



 4 

individual ingredients and raw materials before manufacturing, as well as any 

material to be used for product packaging.  The responsibility of the FDA is not to 

“approve” safety and effectiveness of a sample; however, the FDA can act to 

prove that a product is “unsafe” before actions are taken to remove it from the 

marketplace. 

 Even with DSHEA and the FDA’s Proposed Rule, there still has not been 

any regulation on dietary supplements where safety, in the area of toxicity, is the 

major concern.  Though not specifically aimed at dietary supplements and other 

nutraceuticals, the state of California’s Proposition 65 established “levels of 

concern” for the exposure to hazardous chemicals and compounds.  This 

Proposition 65 stems from California’s Safe Drinking Water and Toxic 

Enforcement Act of 1986, which governs contamination of drinking water.8-10  

The law was updated in August 2003 to include Proposition 65, with the basic 

premise that a business has to warn a consumer of possible exposure to a 

substance that has been known to either cause cancer or reproductive problems. 

Stipulations of the law include “Safe Harbor Levels”, which indicate 

levels for each chemical or compound that must not be exceeded.  Chemicals that 

are known or suspected to cause cancer are assigned “No Significant Risk Levels” 

(NSRLs).  These represent “the daily intake level calculated to result in one 

excess case of cancer in an exposed population of 100,000, assuming lifetime (70 

year) exposure at the level in question.”10  Reproductive toxicants are assigned 

Maximum Allowable Dose Levels (MADLs), which are the levels “at which the 

chemical would have no observable adverse effect assuming exposure at 1,000 
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times this level.”10  The safe harbor levels for some chemicals and compounds are 

still in development.  The process for adopting an assigned safe harbor level is 

lengthy; therefore, priority levels have been established for those chemicals.  

Known safe harbor and priority levels for arsenic, cadmium, lead, and mercury 

are listed in Table 1.1.  It is also important to note that the route of exposure is 

indicated for some of these levels.  As indicated, the level that would cause 

adverse reproductive effects is higher than the level for carcinogenicity for 

cadmium, while the opposite is true for lead.  All chemical forms of both of these 

metals are toxic, while there is a distinction made for the chemical forms of 

arsenic and mercury that are more toxic.   

 

 

Table 1.1: Table of Proposition 65 Hazard Levels.  NSRL indicates No 
Significant Risk Level.  MADL indicates Maximum Allowable Dose Level.10  
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Lastly, for arsenic and mercury, some of the levels have not been fully established 

and priority levels, ranging from 1st to 3rd, have been assigned for their 

investigation.  For these metals, draft levels have been given as a guideline until 

final levels are established.   

Sample Preparation Techniques 

 Before sample analysis, sample preparation is typically a necessary step to 

modify the sample of interest for analysis.  Different instruments require different 

types of sample modification, such as dissolution or digestion for wet chemistry 

techniques, or even the modification by chemical reaction after a digestion step.  

The type of modification that can be readily performed also depends heavily on 

the sample itself.  Nutraceutical products exist in a variety of different forms and 

therefore have very complex matrices that must be digested or dissolved so that 

the sample is fully aqueous before analysis by ICP-AES.     

 Wet ashing and dry ashing are common methods of sample digestion 

procedures that utilize concentrated acids for the digestion of solid samples.11  A 

traditional hot-plate can also be used for an open vessel digestion, whereby the 

sample is heated slowly in an open container.  However, the most obvious 

drawbacks to these techniques are that they are very time-consuming, on the order 

of several hours to days, and increase the risk of sample contamination.  Hot-plate 

digestions are also limited by the number of samples that can be digested at once, 

the uneven heating of each sample while on the hot-plate, and the loss of volatile 

analyte species.   
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Microwave digestion techniques can overcome the difficulties associated 

with more conventional digestion methods.  First used in 1975, microwave 

digestion gained popularity because it can be performed in either open or closed 

vessels, which allow for higher pressures and temperatures to be achieved.12  

Early microwaves were modified home microwave appliances, but newer 

commercial systems have more safety features, including the ability to handle 

acid vapors and resist corrosion.  The addition of pressure and temperature control 

in 1989 and 1992, respectively, allowed more adaptability and control of 

digestions.13  Vessel technology has also progressed to allow pressures of up to 

60-100 atm.  Extensive investigation into microwave sample preparation has been 

studied and reviewed by Kingston and colleagues.12-15 

 Microwave digestion utilizes non-ionizing radiation, which causes the 

migration of ions and rotation of dipoles.12  The frequency can range from 300-

300,000 MHz, but 2450 MHz is most commonly used in commercial systems and 

corresponds to a wavelength of 12.2 cm, chosen so as not to interfere with typical 

telecommunication wavelengths.13  The magnetron inside the microwave unit 

typically produces 600-700W of microwave energy.  The construction of the 

microwave utilizes three classes of materials: reflective, transparent, and 

absorptive.12  Reflective materials are used in the actual unit construction, are 

typically metals, and act to keep the microwave radiation inside the unit.  

Transparent materials are used in the components that are inside the microwave 

cavity and allow microwave radiation to pass through them.  The sample 



 8 

solutions, water, and acid are absorptive materials, and therefore absorb energy 

generated from the microwave radiation. 

Although microwave unit construction has evolved since its early years, a 

generalized schematic of a microwave system is shown in Figure 1.1.12, 13  The 

microwave generator is a magnetron, a cylindrical diode with an anode and a 

cathode upon which a magnetic field is imposed.  A waveguide made of reflective 

material serves to propagate the microwave energy in the microwave cavity, 

where it is reflected from wall to wall.  The mode stirrer, a fan-shaped blade, 

reflects and mixes energy and distributes it in various directions, while a turntable 

rotates the samples for even heating.  The sample vessels used in microwave 

digestion vary and depend upon whether open vessel or closed vessel digestion is 

being performed.    

 

 

Figure 1.1. Generalized schematic of a commercially available microwave 
digestion system. 
 

Microwave cavity 

Mode stirrer 

Magnetron 

Waveguide 
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Containers used for open vessel microwave digestion can be the same used for 

hot-plate digestions, such as beakers and flasks.   

Microwave digestion, like ashing techniques, employs acids for the 

breakdown and digestion of a sample, with the type of acid used depending 

heavily on the sample matrix.  The most common acids used are nitric acid, 

hydrochloric acid, and perchloric acid, and also combinations of these acids.12, 13  

Nitric acid is the most suitable acid for digestion of biological and botanical 

samples because it is a very strong oxidizing agent.    Hydrochloric acid is ideal 

for digestion of metal oxides, silicates, refractory oxides, and basic compounds.  

Hydrofluoric acid is usually added to a sample if silica is present, but it is not 

used in glass or quartz vessels due to etching. Care has to be taken when using 

sulfuric acid, as it can melt most plastics before it reaches its high boiling point, 

but it is advantageous because it can completely destroy organic compounds.  A 

typical acid combination is aqua regia, a solution of 3:1 HCl to HNO3, which is 

more powerful than either acid alone.  Perchloric acid has a significant safety 

hazard in that it can react explosively with organic materials, but it can be used to 

attack metals when other acids are unsuccessful.  Hydrogen peroxide 30% is 

sometimes used in combination with an acid to increase oxidation power, but 

because of its strong reactivity with organic matrices, like perchloric acid, it is 

added after a predigestion of the sample with acid.  There are several examples in 

literature of different digestion protocol involving nitric acid only,16, 17 nitric and 

perchloric acids,18 as well as acid combinations with or without peroxide.19, 20  
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Basic Principles of ICP-AES 

 The theory for ICP-AES has been around since the 1960s, but the first 

instrument was not commercially available until the mid-1970s.21  The modern 

ICP-AES systems on the market are capable of analysis of 70 different elements 

and have a large linear dynamic range of over 5 orders of magnitude.  

Traditionally, the multielemental capabilities were achieved through rapid 

sequential wavelength scanning, but newer technology now affords simultaneous 

wavelength measurements.  Typical detection limits for ICP-AES range from 0.1 

ppb, for magnesium and calcium, to 50 ppb, for arsenic and thorium, but this 

depends largely on instrument configuration and sample type.22  Though ICP-

AES operation costs are large due to the inert gas consumption, they are less than 

inductively coupled plasma mass spectrometry (ICP-MS), where more cost is 

incurred for the mass spectrometric detector and upkeep.  The general schematic 

for an ICP-AES is shown in Figure 1.2.    Flow of a sample through the ICP 

system begins with sample nebulization and uptake into the plasma, followed by 

excitation and emission of light from excited atoms.  Separation of the emitted 

light into characteristic wavelengths occurs via an optics system, followed by 

detection and amplification of the light signal.  The light signal is converted into 

the digital domain and a computer is used to store and analyze data.  

 Sample introduction into the ICP is typically achieved through the 

combination of a nebulizer and a spray chamber.22  The most commonly used 

nebulizer and spray chambers are shown in Figure 1.3.  The sample is most 

commonly in liquid form, which usually necessitates a dissolution step or an acid 
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digestion procedure beforehand.  The nebulizer acts to convert the liquid sample 

into a fine aerosol, which is then carried into the spray chamber.  The spray 

chamber filters out the larger sample droplets, which are collected as waste, from 

the smaller droplets, which are then carried by argon gas into the plasma.  

Efficiencies for nebulizer and spray chamber combinations are in the range of 1-

3%.  Standard pneumatic nebulizers are of the Meinhard style, in Figure 1.3a, 

which afford a stable signal because they can be self-aspirating, but they are not  

 

 

 

 
Figure 1.2. Schematic of an ICP-AES instrument. 
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Figure 1.3: a) Schematic of a pneumatic nebulizer.  b) Schematic of a Scott-type 
spray chamber and c) cyclonic spray chamber. 
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tolerant of particulates in the sample.  Spray chambers are commonly one of two 

types: Scott type and cyclonic, Figures 1.3b and 1.3c, respectively.  Scott type 

spray chambers are also known as “double-pass” and consist of two glass tubes.  

The aerosol passes into the inner tube and larger droplets are carried to waste 

while the smaller droplets are carried up into the plasma.  An advantage of the 

Scott type is reduced aerosol turbulence, which increases signal stability, while 

the main disadvantages of this type are areas of dead volume inside the spray 

chamber, which lead to longer wash times and memory effects.23  The cyclonic 

spray chamber is advantageous over the Scott type because of its smaller volume 

and significantly greater transport efficiency than other spray chamber types.23, 24  

Sample is introduced into the spray chamber, swirls downward, and is carried up 

into an internal spiral. This allows shorter wash times and therefore less sample is 

used and chances of memory effects are lower.22     

The formation of the plasma is the critical step in ICP-AES.21  Inert argon 

gas passes through the torch of the instrument, which has a copper coil connected 

to a radiofrequency (RF) generator.  The frequency of the generator can range 

from 6-100 MHz, with most available instruments utilizing a 27.12 or 40.68 MHz 

frequency.  Higher frequencies afford a toroidal shaped plasma.  Utilizing the 

40.68 MHz frequency allows greater coupling efficiency, greater stability, and 

improved plasma robustness.24  However, shielding is required, to eliminate 

possible interferences with surrounding electrical equipment, and is more difficult 

with 40.68 vs. 27.12 MHz.25   Typical operating powers are between 900 and 

1500 W and depend upon the sample matrix.  Plasma formation starts with an 
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alternating current that oscillates at a particular frequency, setting up a magnetic 

field at the top of the torch.  A spark is applied from a Tesla coil, which acts to 

strip electrons from the argon gas atoms.  These electrons then collide with other 

gas atoms, creating a plasma that is self-sustaining and toroidal in shape.  In the 

tail of the plasma flame, the temperatures can be 5000-6000K, causing analytes to 

be excited and emit radiation at characteristic wavelengths.   

While the high temperatures of the plasma prevent a lot of interferences, 

such as those arising from molecule formation from occurring, no spectrometric 

technique is truly interference-free.25  Common interferences in ICP-AES include 

instrument drift, matrix effects, and spectral interferences.21   Instrumental drift 

can be corrected by an internal wavelength calibration.  Matrix effects, whereby 

the sample and standards have different transport efficiencies, i.e. they do not 

have the same matrix, can be remedied by matrix-matching of sample and 

standards as well as use of an internal standard.   Spectral interferences can also 

occur, when the emission wavelength for the element of interest cannot be 

resolved from emission from another element, atom, or ions that are close by.25  

Due to the abundance of wavelengths for many elements, an alternate wavelength 

can usually be selected to eliminate this problem. 

The orientation of the plasma can be one of two different geometries.  In 

the radial geometry, the plasma is vertically oriented and optically thin.  This 

geometry affords the probability of fewer interferences because of the short 

distance that the emitted light has to travel to the optics system.21  The other 

geometry possibility is axial, where the plasma is horizontal, pointed towards the 
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optics system.  Usually this type of geometry involves a shear gas that cuts off the 

tail end of the plasma to dissipate the hot gases.  Axial plasmas have better 

sensitivity, as the emitted light is collected with greater efficiency.21 

 There are two main classes of dispersive optics systems for an ICP-AES 

instrument: monochromators, which isolate a single wavelength band at a time, 

and polychromators, which are capable of isolating many wavelength bands 

simultaneously.21  Typical monochromators include the Ebert style, with one large 

mirror, and Czerny-Turner, which uses two mirrors.  These monochromators are 

shown in Figure 1.4.  In the Czerny-Turner configuration, light enters the 

monochromator through an entrance slit and is then reflected off a collimating 

mirror and onto a diffraction grating.  Diffraction gratings have groove densities 

ranging from 600-4200 grooves/mm, with higher resolving powers achieved at 

the larger densities.  In a sequential scanning monochromator, the diffraction 

grating is moveable and rotates to different angles corresponding to different 

wavelengths. From the diffraction grating, the light passes onto another 

collimating mirror and is focused onto the exit slit placed in front of the detector.   

Polychromator optics systems, shown in Figure 1.5, allow more rapid 

analyses due to their ability to simultaneously differentiate and detect many 

wavelengths.  In the Rowland circle polychromator with Paschen-Runge 

mounting, the grating and slits are aligned and fixed permanently along the 

circumference of a circle.  The detectors, typically photomultiplier tubes (PMTs) 

are fixed behind the exit slits.  The main advantage of this type of mounting is its 

very large wavelength coverage.   
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Figure 1.4: a) Schematic of the Ebert monochromator. b) Schematic of the 
Czerny-Turner monochromator. 
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Figure 1.5: a) Schematic of the Rowland circle polychromator with Paschen-
Runge mounting. b) Schematic of the Echelle polychromator. 
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Also available on newer, commercial instruments is the Echelle polychromator.  

In this configuration, a diffraction grating and a prism are set up perpendicular to 

each other.  The grating has a low groove density, which allows the production of 

multiple overlapping orders of light.  The orders of light are then separated by the 

prism into a 2-dimensional pattern that is focused onto the detector.  

The most common detector, until recently, is the PMT.21  PMTs are 

advantageous due to large wavelength coverage, from 160-900 nm, and their 

operating premise is fairly simple.  Emitted light enters the PMT, strikes the 

photocathode, and ejects electrons.  These electrons cascade down a dynode 

chain, emitting more electrons, which are collected by the anode.  Typical PMTs 

have 9-16 dynodes, with signal amplification of 106-10x.  The electrons measured 

correspond to the current measured at the anode, which is proportional to the 

number of photons striking the cathode, which is, in turn, proportional to the 

concentration of analyte in the sample. 

Solid state charge-coupled (CCD) and charge-induced devices (CID) are 

detectors used for instruments with simultaneous measurement abilities.22  These 

detectors are composed of pixels and have 3 parts: a photosensitive area, a storage 

area, and readout register.  Photons from incident radiation strike the 

photosensitive area, where they are then pulled away from the surface and 

amassed in the storage area.  Upon accumulation, the charges are then transferred 

to the readout register.  CCDs and CIDs are well-suited for use with an Echelle 

spectrometer, where the ability to produce 2-D information is advantageous.  

However, the main disadvantage of this type of detector is the potential for 
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blooming, where charges spill over onto adjacent pixels, but newer instruments 

have implemented anti-blooming technology to prevent this.22  

Other Techniques for Analysis of Aqueous Samples 

 There are several analytical techniques available for analyzing the same 

sample types that are discussed in this text.  It is useful to include a brief overview 

of some of these techniques.   

Inductively Coupled Plasma Mass Spectrometry 

 Inductively coupled plasma mass spectrometry (ICP-MS) was developed 

in the early 1980s and utilizes the same atomization principles as ICP-AES.  

Simplistically, it consists of an inductively coupled plasma that is interfaced with 

a mass analyzer.  The technique has advantages of high sensitivity and low 

backgrounds, which allow low limits of detection on the order of sub-ng/L.21   

 Sample introduction into an ICP-MS is capable of being changed to 

analyze samples that are solid, liquid, or gas.  A liquid sample can be nebulized in 

the same manner as in ICP-AES, but uptake can also be facilitated by flow 

injection, aerosol desolvation, or direct injection.21  Solid samples can be 

atomized by laser ablation, spark ablation, or slurry nebulization, while gaseous 

samples are adapted for analysis by cold vapor or hydride generation.  Flow rates 

are lower than ICP-AES and range from 0.1-0.5 mL/min, while typical powers 

used are 900-1500W, similar to ICP-AES .21, 22, 25   

Formation of the plasma occurs under the same principles as in ICP-AES.  

A schematic of an ICP-MS instrument is shown in Figure 1.6.  Between the 

plasma and the mass analyzer is an interface region, consisting of a step-down 
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vacuum stage and two cones, a sample and a skimmer cone, that each has a small 

orifice.21  This stage allows a representative sample of the ion population in the 

plasma to be extracted and then transferred to the high vacuum region.  Once in 

the high vacuum region, the ions are focused through a series of electrostatic 

lenses before reaching the analyzer.  

The next components of the ICP-MS system are the mass analyzer and the 

detector.  The quadrupole mass analyzer is the most common for inorganic MS.  It 

separates ions based on mass/charge (m/z) ratios over a mass range of 4-260 amu, 

with a resolution of 1 Da, and is relatively small in size.21, 24  Other mass 

analyzers include the magnetic sector analyzer, which has a curved ion flight path, 

and the time-of-flight (TOF).  The magnetic sector analyzer can obtain mass 

resolution higher than unit resolution and has limits of detection 5-10X lower than 

the quadrupole.21  Time-of-flight analyzers are simultaneous, making them 

advantageous when coupled to chromatographic and laser ablation sample 

introduction.24  The most common detector used in ICP-MS is the electron 

multiplier (EM), which operates much like a photomultiplier tube (PMT).   

One of the major applications of ICP-MS is in the area of agriculture and 

the environment.21  Trace element analysis of food and geological specimens 

allow for a “fingerprint” for each sample type for comparison to other samples of 

the same types.   

 

 



 21 

Because of the ability to differentiate between m/z ratios of species present in a 

sample, ICP-MS is a valuable technique for analyzing samples where a particular 

species may be a concern, i.e., it is more toxic than another species.  This is 

especially important in regards to contamination in the environment, which can 

include pesticide usage and runoff.17, 21, 26   

 

 

Figure 1.6: Generalized schematic of an ICP-MS instrument. 

 

 Other applications for use of ICP-MS are in the field of semiconductors, 

for detection of both dopants and contaminants, as well as in clinical and 

pharmaceutical settings, where primary sample types are body fluids and tissues.21   
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Atomic Absorption Spectrometry 

Atomic absorption instruments employ a line source, most commonly a 

hollow cathode lamp (HCL).21, 22    A HCL contains atoms of the element of 

interest, an inert gas, and a cathode and anode.  Cathodic sputtering produces the 

atomic vapor, causing radiation emission and absorption by the atoms in the 

flame.  Detection in AA techniques is accomplished by photomultiplier tubes 

(PMTs), like those used in ICP-AES, as well as monolithic solid-state devices, 

which are more recent advancements that afford simultaneous measurements.  A 

variation in instrumental design utilizes a double-beam spectrometer as the optics 

system, which reduces baseline noise and improves detection limits.  

Atomic absorption spectrophotometry (AAS) is generally classified by the 

type of atomizer used: a high temperature flame or an electrothermal atomizer.    

Graphite tubes or cup furnaces are commonly used in electrothermal AAS.22  In 

graphite furnace AAS, a liquid sample of known volume, 5-50 µL, is placed in the 

furnace and undergoes a multistep temperature program.  This temperature 

program acts to separate out the analyte of interest from other matrix components 

by vaporization.   The temperature is increased to the point of atomization and it 

is at this point that an atomic absorption measurement is made.  The temperature 

program consists of a drying step, followed by pyrolysis, which vaporizes the 

matrix of the sample.  A cool-down step after pyrolysis allows greater sensitivity 

and a reduction in peak tailing because a flat temperature profile is achieved.  

Also, cooling allows an increase in temperature range, thereby increasing the 

heating rate.  Atomization then completely dissociates the sample and converts 
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the sample into a vapor of free atoms.  The final step is a cleanout procedure, 

which burns off any remaining sample residue.   

 A second technique for atomic absorption utilizes long, thin flames.  

Flame AA is a very rugged technique for liquid samples, is relatively inexpensive, 

and affords detection limits at the mg/L level and lower.21  The flames in this 

technique are most commonly composed of air-acetylene or nitrous oxide-

acetylene.  Sample introduction into the instrument occurs via nebulization into a 

spray chamber, where oxidant and fuel gases mix.21, 22  As with ICP-AES, the 

spray chamber also filters out larger sample droplets.  Once in the flame, the 

solvent evaporates and leaves a salt behind, which later produces atoms as a 

byproduct of flame reactions.   

 Hydride generation can be coupled with spectrometric techniques to afford 

better detection of volatile elements, such as arsenic, selenium, bismuth, and 

others.27  The basic premise of hydride generation (HG) involves the conversion 

of the volatile element into a stable hydride, either in a reaction vessel or in a 

continuous flow or flow injection mode.21, 22  A flow of reducing agent, typically 

sodium borohydride, NaBH4, is reacted with an acidified sample, producing the 

covalent metal hydride and excess hydrogen.  This method of sample introduction 

affords greater transport efficiencies, up to 80% versus 1-3% in typical ICP 

instrumentation, because it eliminates the nebulizer/spray chamber set-up, i.e., the 

vapor is carried directly to the plasma.23  Other advantages include lower 

detection limits for these elements and essentially matrix-free detection; however, 

the experimental procedure is more complicated and the excess hydrogen requires 
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removal, by nitrogen trap.21, 22  Some recent applications of this technique include 

determination of arsenic and selenium in biological and herbal samples.18, 28  

 Cold vapor generation (CV) is used to aid in the analysis of mercury by 

conversion of inorganic mercury(II) to elemental mercury.22  It involves a similar 

setup to that of HG.  More commonly, however, stannous chloride, SnCl2, is used 

as the reducing agent rather than sodium borohydride.  A disadvantage of this 

technique is water mist entering the observation cell, when coupled to AAS, 

which causes scattering.  To eliminate this, a trap is used to collect the mist or the 

carrier gas and observation cell is heated.29  Major advantages to this technique 

are a lower detection limit for mercury, on the order of single-digit ng/L, and, by 

using SnCl2, excess hydrogen generation is avoided.
22  

 As with any spectrometric technique, AA measurements can suffer from 

interferences.  Spectral interferences tend to dominate because of significant 

background absorption, which can sometimes overlap the absorption of the 

analyte.21, 22  Matrix modification can be performed to control the matrix 

background.  Flame AAS suffers from flicker noise, due to fluctuation of the 

flame.  A common nonspectral interference in graphite furnace AAS occurs in the 

condensed-phase, when the analyte of interest forms a volatile compound, which 

is then lost during the pyrolysis step.  Spike recovery experiments can reveal gas-

phase interferences, where the matrix affects the atomization efficiency of the 

analyte.  Advantages of graphite furnace AAS include low detection limits and 

increased sensitivity versus flame AAS.  The sample size and gas consumption is 

also decreased in graphite furnace AAS.  However, graphite furnace AAS is met 
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with several disadvantages, a major one of which is analysis time.  Analysis is 

very slow and the working range of the instrument is very narrow, around 3 

orders of magnitude.  Applications of AAS include the determination of major 

constituents, such as calcium, iron, and magnesium, in food, biological, and 

herbal samples, where this technique is used in conjunction with ICP-AES or 

ICP-MS to determine concentrations of minor or trace constituents.11, 16    
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CHAPTER TWO 
 

ANALYSIS OF NUTRACEUTICALS FOR TOXIC METALS:  
 

DEVELOPMENT AND VALIDATION OF SAMPLE  
 

PREPARATION METHOD 
 

 
Introduction 

 In 2006, the nutrition industry was responsible for $210 billion in total 

global sales.1  This was increased by approximately $20 billion from the previous 

year.   Approximately one-third of the total global sales were attributed to 

supplements, with the remaining two-thirds attributed to functional foods, natural 

and organic foods, natural and organic personal care, and household products.   

Sales of these products in the United States alone comprised $75 billion of the 

total global sales, with $21 billion of it spent on supplements.  It is apparent from 

this data that the nutrition industry is experiencing a continual rise in product 

manufacturing and usage by consumers.    

 With the financial boom in the nutrition industry, a lot of attention has 

been focused on the safety of nutritional products.  Nutraceutical products, a 

branch of nutritional products comprised of functional foods and dietary 

supplements, are perceived to afford some health benefit to the user and these 

benefits may be promoted on product labels.  However, the validity of these 

health benefit claims, as well as the overall safety of these products, has generally 

not been tested and confirmed.  There have been strides toward establishing rules 
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and regulations on the manufacturing and testing of nutraceutical products in 

recent years, but due to the diversity of products available, as well as the large 

number of manufacturers, creation of these regulations and testing protocol to be 

applicable to all products is very difficult and time-consuming. 

The most recent developments in supplement product regulation include 

the Dietary Supplement Health and Education Act (DSHEA), which defined a 

dietary supplement with specific criteria, and the Food and Drug Administration’s 

Proposed Rule on Dietary Supplement Good Manufacturing Practices (GMPs), 

established to address safety concerns with regards to label claims of dietary 

supplements.5-7  In addition to these federal regulations, the state of California has 

enacted Proposition 65, an amendment to the Safe Drinking Water and Toxic 

Enforcement Act of 1986.8-10  This amendment establishes “Safe Harbor Levels” 

for many substances and compounds that are known or suspected to cause cancer 

or adverse reproductive effects.  While Proposition 65 is not specifically aimed at 

nutraceutical products, it does set forth specific guidelines for daily maximum 

exposure to toxic species, some of which can potentially be found in nutraceutical 

products.   

 Toxic metals that can be present in nutraceutical products include arsenic, 

cadmium, lead, and mercury.  However, for some of these elements, there are 

species that pose more risk of toxicity than others.  For example, organic methyl 

mercury is more toxic than other mercury species, because elemental mercury and 

other mercury compounds are converted to methyl mercury upon ingestion.  The 

converse is true for arsenic, however, in that the inorganic arsenic oxides are more 
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toxic than organic arsenic species.  There is no distinction made between species 

of lead and cadmium, as all forms of both metals have toxic qualities.  Because 

toxicity varies by species for arsenic and mercury, but not for cadmium and lead, 

it is important to determine total metal concentration in nutraceutical 

supplements, as well as concentrations for specific species. 

Nutraceutical products are available in a wide variety of matrices, 

including ethanolic tinctures, glycerin-based supplements, powders, and tablets.  

With such a spectrum of sample types, it is a big challenge to develop methods for 

the analysis of toxic metals that are applicable to most, if not all, of these different 

matrices.  The first and foremost focus of the method development is on the 

preparation required before sample analysis.  The various nutraceutical product 

types provide obstacles in this challenge, due to variability in matrix type, as well 

as variation within each matrix.     

Recently, several research groups have reported digestion and analysis 

procedures for dietary and botanical supplements, as well as for food and other 

biological samples.2, 11, 16, 17  Sample preparation of these matrices generally 

consist of either wet and dry ashing or microwave digestion.  Atomic absorption 

spectrometry (AAS) , inductively coupled plasma mass spectrometry (ICP-MS), 

and inductively coupled plasma atomic emission spectrometry (ICP-AES) were 

utilized for the determination of major and minor constituents, because atomic 

spectrometric methods are most suitable for the elemental analysis of these types 

of samples. 
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In this laboratory, recent attention has focused on the development and 

validation of a method of sample preparation for nutraceutical samples analysis 

by ICP-AES.  First, a microwave digestion procedure was investigated for 

preparation of ethanolic tinctures and glycerin-based nutraceutical samples.  It 

was found that microwave digestion lessened the sample decomposition time and 

allowed more samples to be prepared at the same time.  Secondly, an analysis 

procedure was developed for quantification of toxic elements, namely arsenic, 

cadmium, lead, and mercury, by ICP-AES.  Here, it was found that a fast and 

simple analysis could be performed via generation of calibration functions.  

Lastly, the sample preparation and analysis procedure was validated using 

nutraceutical standard reference materials (SRMs).   

Experimental Procedure 

Inductively Coupled Plasma AES Systems 

A JY 24 (Horiba Jobin Yvon, Longjumeau, France) sequential ICP 

spectrometer was used for preliminary method development experiments and 

routine sample analysis.  A peristaltic pump and high-solids concentric nebulizer 

were used for sample introduction into a Scott-type double pass spray chamber.  

This instrument utilizes a fully demountable radial observation torch.  The ICP-

AES employs a 1 m Czerny-Turner sequential monochromator, a holographic 

diffraction grating with 2400 grooves/mm, and is coupled to a single PMT 

detector.  Data acquisition is controlled by JY Analyst v5.2 and WinImage 

software. 



 31 

A Spectroflame Modula E (Spectro Analytical Instruments, GmbH) ICP 

spectrometer was utilized in this study for method validation experiments.  

Sample introduction into the ICP system was accomplished through use of a 

pneumatic nebulizer coupled to a cyclonic spray chamber.  Sample was pumped 

into, and waste pumped out of, the spray chamber by a computer controlled 

peristaltic pump.  The ICP utilizes a one-piece axially oriented torch, with 

measurements taken “end-on”.  A Neslab CFT-75 refrigerated recirculator 

operating at 16°C was used to cool the torch.  Instead of mirrors and lenses, fiber 

optics guide the light into the spectrometer through four entrance slits.  Also, a 

gas-filled (nitrogen) spectrometer enables detection below 190 nm, without the 

need for vacuum or flushing.   The monochromator optics system is a Paschen-

Runge mount with direct wavelength drive (DλD), which lessens the distance the 

detectors move.  On the Rowland circle, six exit slits, each with a PMT detector, 

are set up on a 7° arc.  The diffraction grating utilized in this instrument has 2400 

grooves/mm and the wavelength range of the spectrometer is 120-800 nm, with a 

focal length of 750 mm.  Data acquisition was controlled through Spectro System 

Software Smart Analyzer v2.20.  Instrument operation parameters for each ICP 

system are shown in Table 2.1.  

Microwave Digestion System 

 The system used for microwave sample digestion was a MARS XPress 

(CEM Corporation, Matthews, NC) with MARS XPress sample digestion vessels.  

The microwave system is internally coated with a fluoropolymer and includes an 

impact resistant door with safety interlocks.  The microwave digestion system 
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utilizes a 40-place sample rotor for use with PFA Teflon sample digestion vessels 

and is capable of temperature control via an infrared sensor that the vessels pass 

over during rotation.  The PFA Teflon sample digestion vessels used in this study 

are 75-mL capacity, operable at temperatures up to 260°C, and are capable of 

venting and resealing.   

Sample Preparation Procedures 

 Nutraceutical supplements, in the form of ethanolic tinctures and glycerin-

based samples, were provided for this study by Gaia Herbs (Brevard, NC).  The 

ethanolic tinctures consisted of 25-75% ethanol and either single herbs or herbal 

blends.  Ethanolic tinctures are designed to deliver effectiveness very quickly, as 

they do not need to be digested by the body first.     

 

  

JY 24 Sequential ICP 

Spectrometer 

 

Spectroflame Modula E 

ICP Spectrometer 

Power (W) 1000 1350 

Gases: 
Nebulizer 
Coolant 
Auxiliary 

 
0.35 mL/min 
12 L/min 
0.2 L/min 

 
22* 
26* 
35* 

Peristaltic Pump Speed 
(rpm) 

20.5 120 

Wavelengths (nm): 
As 
Cd 
Pb 
Hg 

 
193.695 
214.438 
220.353 
194.227 

 
193.695 
214.438 
220.353 
184.950 

 
Table 2.1.: Instrument settings for the two ICP-AES instruments utilized in the 
nutraceutical study and validation. 
* = Gas settings for Spectroflame Modula E ICP Spectrometer are particular to 
that instrument brand.  Units and conversion factors are unknown. 
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The glycerin-based samples consisted of pure alcohol-free liquid extracts and 

comprise the contents of vegetable gel capsules upon final product manufacturing.  

The glycerin content in the samples varies from 50-60% and these samples consist 

of more raw plant material than the ethanolic tinctures.  The glycerin-based 

samples are packaged in gel capsules, which require digestion by the body upon 

consumption, and are therefore designed for timed-release. 

Ethanolic tinctures were prepared for analysis by one of two methods.  In 

the preliminary method, 1 mL of tincture was heated by hotplate in a 50 mL 

volumetric flask.  To the tincture, 5 mL of concentrated trace metal grade nitric 

acid (Fisher Scientific) was added and the sample was heated until a vigorous 

reaction, including bubbling of nitric acid and sample mixture and the generation 

of red nitrogen dioxide fumes, had taken place.  The sample was then cooled and 

diluted to volume with plasma grade water (Fisher Scientific; VWR Scientific 

Products).  The second, ultimate, method utilized a microwave digestion 

procedure.  Approximately 1 g of tincture was accurately weighed on an 

analytical balance to 4 decimal places and placed into the bottom of the 75 mL 

Teflon microwave digestion vessels.  To eliminate the ethanol in the sample, 

concentrated trace metal grade nitric acid was slowly added to the uncapped 

vessel 0.5 mL at a time, up to a total volume of 5 mL.  After the reaction between 

the nitric acid and ethanol was complete, producing reddish-brown nitrogen 

dioxide gas, the vessels were placed in the microwave system with the caps not 

fully torqued down.  The microwave program consisted of a predigestion step, 

where the samples were heated at 80°C for 10 minutes.  After cooling, the vessel 
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caps were tightened and the samples were placed in the microwave system again 

and ramped to a temperature of 180°C in 10 minutes, followed by a temperature 

hold for 15 minutes.  Sample digestion was deemed complete when no raw plant 

material was visible in the vessel and the digestate was yellow in color.  The 

samples were then cooled and vented.  They were quantitatively transferred to 50 

mL volumetric flasks and diluted to volume with plasma grade water.  Prior to 

use, all volumetric flasks were soaked overnight in a 20% nitric acid bath and 

rinsed with plasma grade water.  For storage, digested samples were transferred 

to 2 ounce (60 mL) amber Nalgene bottles (Fisher Scientific) that had been rinsed 

with plasma grade water and dried. 

 Glycerin-based nutraceuticals were also prepared by microwave digestion.  

A sample size of approximately 1 g was accurately weighed on an analytical 

balance to 4 decimal places and placed into the bottom of a 75 mL Teflon 

microwave digestion vessel.  Because the digestion primarily takes place in the 

very bottom of the digestion vessel and the digestion volume is very small, care 

was taken to be sure that the sample was in the bottom of the vessel and little 

sample was on the sides of the vessel.  Concentrated trace metal grade nitric acid, 

5 mL total volume, was added to each sample.  The samples were allowed to 

remain in a fume hood to predigest.  Afterward, the samples were placed into the 

microwave system and digested using the aforementioned microwave digestion 

program.  The samples were then cooled and vented.  They were quantitatively 

transferred to 50 mL volumetric flasks and diluted to volume with plasma grade 
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water.  For storage, digested samples were transferred to 2 ounce (60 mL) amber 

Nalgene bottles. 

 Calibration solutions were routinely prepared from aqueous multielement 

standards.  Standards of 20 ppm arsenic, cadmium, lead, and mercury (High 

Purity Standards, Charleston, SC) were used to make a 1 ppm stock solution.  

This stock solution was used to prepare calibration standards on a daily basis.  

Calibration standards, including a blank solution of 10% nitric acid and increasing 

elemental concentrations up to 0.300 ppm, were prepared with the same acidity 

(10% nitric acid) as the digested samples.  Calibration standards were run in 5 

replicates and plotted as a linear function for each element. 

 Samples used for validation of the method by the Spectro ICP were NIST 

SRM 3241 ephedra sinica stapf native extract and SRM 3247 gingko biloba 

extract.  A preliminary validation experiment was performed on the JY 24 ICP, 

utilizing 0.9871 g SRM 3243 ephedra sinica stapf solid oral dosage form that was 

digested in the same manner as the glycerin-based nutraceutical samples.  Masses 

of 0.9957 g ephedra sinica stapf native extract and 0.7592 g gingko biloba were 

accurately weighed on an analytical balance and each placed into the bottom of 

separate 75 mL Teflon microwave digestion vessels.  Because the level of 

mercury in NIST SRMs 3241 and 3247 was very low, each SRM was spiked with 

20 ppb (final concentration) aqueous mercury standard before digestion.  To each 

sample, 5 mL of Ultrex ultrapure concentrated nitric acid (J.T. Baker) was added.  

Analytical blanks, consisting of 5 mL Ultrex concentrated nitric acid, were also 

prepared and digested along with the nutraceutical samples.  All samples were 



 36 

digested in the same manner as the glycerin-based nutraceutical samples and 

prepared to 50 mL total volume in volumetric flasks.  Aqueous single element 

standards of 1000 ppm each arsenic, cadmium, lead, and mercury (Inorganic 

Ventures) were used to prepare a stock solution containing 10 ppm of each 

element.  This 10 ppm solution was used for standard addition spikes of 50, 100, 

and 200 ppb of each element in 10 mL total volume of digested sample.  The 

original sample and the spiked samples were run in succession and the optical 

responses were plotted as a linear function.  The original sample concentration of 

each element was determined by calculation of concentration in the sample 

analyzed, with a correction for sample dilution.   

Results and Discussion 

Development of Sample Preparation Procedure 

 The crucial objective of sample preparation is to ensure that the prepared 

sample is in a matrix or format compatible with the chosen method of analysis 

with the highest possible yield.  For the ethanolic extracts and glycerin-based 

supplements, it was necessary to manipulate the sample in such a way to both 

acidify and make totally aqueous before introduction into the ICP-AES torch.  

The ethanol and glycerin in the starting materials are not compatible with the 

current ICP-AES instrumentation available for use.    It was also important to 

develop a procedure that could be adapted to other nutraceutical product matrices 

in addition to the ethanolic tinctures and glycerin-based samples, such as raw 

plant materials, tablets, and powders.  The desired procedure would be both 

efficient and easy to perform on a daily basis.    
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 Since samples that are analyzed by ICP-AES are typically acidic, the first 

step in developing the sample preparation procedure was to determine the acid 

that would best digest the sample.  The most common acid used for organic 

samples is nitric acid.  Concentrated nitric acid was added to the ethanolic 

samples and they were heated in open volumetric flasks on a hotplate.  While the 

reaction of the nitric acid with ethanol succeeded in digesting all plant material 

present, it should be noted here that the reaction is very violent, producing 

nitrogen dioxide gases (reddish-brown in color).  For some samples, it did not 

require a total of 5 mL nitric acid, but the volume of acid used for each sample 

was kept consistent.  Though this procedure was successful at digesting the plant 

material present in the ethanolic tincture, there were several disadvantages, 

including possible sample loss, because of the open vessels, and the time-

consuming nature of the reaction.  The procedure was limited to the number of 

flasks that would fit onto a hotplate, which was six, plus the time needed to 

thoroughly heat the sample until the digestion was complete, which was several 

hours.    

Since the hotplate procedure was successful at digesting the ethanolic 

tinctures, it was then attempted with the glycerin-based supplements.  The same 

sample preparation procedure was not as successful with the glycerin-based 

samples as it was with the ethanolic tinctures.  Because of the viscosity 

differences between samples, i.e. different percentages of glycerin in each sample, 

it was rather difficult to measure out the glycerin-based samples quantitatively.  It 

was nearly impossible to measure out 1 mL of sample volume, even after heating 
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the sample thoroughly, so an approximately 1 g sample, accurate to 4 decimal 

places, was weighed out instead.  Upon addition of the nitric acid and heating of 

the sample in volumetric flasks, the reaction was still incomplete, with undigested 

sample and an oily residue remaining.  Since 6 M hydrochloric acid is found in 

the human stomach and these glycerin-based samples are typically ingested 

orally, both 6 M HCl and concentrated HCl were tried and were both unsuccessful 

at fully digesting the glycerin-based samples.  Concentrated sulfuric acid was also 

tried and resulted in the same problems.  It was apparent that a different sample 

preparation procedure would be needed that would be more efficient in digesting 

the glycerin-based samples. 

The procedure developed here was modified from digestions performed by 

other research groups, namely nitric acid digestions of other nutraceutical 

products and standard reference materials17, as well as mixed-acid digestions of 

plant reference materials.19  However, these digestions by other research groups 

did not specifically include ethanolic tinctures and glycerin-based samples.  

Microwave digestion has seen a steady rise in the number of sample types and 

applications it can be used for, including food and nutraceutical samples.16, 17, 30  

Because microwave digestion systems allow the samples to be heated much 

quicker and under pressure, they are more efficient at total sample digestion than 

wet and dry ashing and open-vessel digestions.  A Mars XPress (CEM 

Corporation) microwave digestion system was purchased for digestion of the 

glycerin-based samples, as well as other nutraceutical samples.  The microwave 

digestion system enabled the design of procedures that could be tailored to 
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specific matrix types and adapted when the need arose, such as one based on the 

digestion of the ethanolic tinctures could be modified for the glycerin-based 

nutraceuticals.  The same volume of concentrated nitric acid, 5 mL, was used for 

each matrix type.  If less than 5 mL of acid was used, the samples were not 

completely digested.  Some samples would react immediately with the acid and 

some would react with the acid after a short time sitting in the fume hood.  

However, there were samples that did not exhibit this behavior, so a predigestion 

step was programmed into the digestion procedure.  This predigestion step heated 

all samples to 80°C for 10 minutes to jump-start the initial reaction.  Because 

pressure could build up very quickly in the vessels, the caps on the samples were 

not torqued down during this step.  By not tightening the caps on the vessels, 

there is a chance that volatiles may escape, and the probability of this happening 

could be determined by spiking experiments.  However, tightening the vessels 

would be dangerous, as an increase in pressure beyond vessel maximum could 

result in vessel explosion.  The total digestion protocol was much more successful 

after the predigestion step was implemented.  The typical digestion protocol 

included a temperature ramp to 180°C in 10 minutes, followed by a temperature 

hold for 15 minutes.  The digestion was complete when no undigested sample 

remained in the vessel and the digestate was yellow in color.  The final digestate 

was diluted to 50 mL total volume to achieve 10% acidity.  By using microwave 

digestion, more samples could be digested at once and the digestion proceeded at 

a much faster pace. 
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As mentioned, the microwave digestion procedure could be adapted 

depending on sample type.  Even within the glycerin-based samples, there was 

variation in the ingredients in each sample.  For example, some samples also 

contained soy lecithin as an ingredient in addition to the glycerin, which made 

them more difficult to digest.  The digestate remaining after the microwave 

digestion for glycerin-based samples contained oily sample residue and solid 

sample material, indicating an incomplete digestion.  The oily residue that 

remained was most likely remnants of the soy lecithin, whose structure is 

comprised of phospholipids.  The microwave digestion procedure was modified to 

include the addition of more acid, 10 mL total, as well as an increase in the 

temperature to 210°C, to fully digest the entire sample. 

 With the digestion procedure now different for the glycerin-based samples 

and the ethanolic tinctures, it was desirable to modify the procedure for the 

ethanolic tinctures so that one method could ultimately be used for all 

nutraceutical digestions.  As previously mentioned, the reaction between nitric 

and ethanol is very violent.  This was evident during a reaction of nitric acid with 

some ethanolic tinctures, as microwave digestion vessels exploded when the 

vessels were capped and pressure accumulated too quickly for the vessels to vent 

properly.  For subsequent digestions involving ethanolic tinctures, the ethanol was 

reacted with the nitric acid, producing nitrogen dioxide gas, by adding the acid 

very slowly in 0.5 mL increments up to 5 mL acid total, while the vessel was left 

uncapped.  This prevented runaway accumulation of pressure in the vessels from 

the evolution of nitrogen dioxide and the reaction was less violent than when the 
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full volume of acid was added at once.  This acted as the predigestion step for 

these samples and after reacting, they were digested by the same microwave 

digestion protocol as the glycerin-based samples.   

 In summary, the ultimate digestion procedure for the ethanolic tinctures 

and glycerin-based nutraceutical samples utilized microwave digestion of an 

approximately 1 g sample, accurately weighed to 4 decimal places, and 5 mL 

trace metal grade HNO3 for each sample.  The acid was added to the glycerin-

based nutraceuticals at once, but was slowly added to the ethanolic tinctures, 

while the vessels were not capped.  Samples were capped and allowed to 

predigest in a fume hood before being predigested in the microwave system for 10 

minutes at 80°C.  A final digestion program, consisting of a temperature ramp to 

180°C in 10 minutes, followed by a hold for 15 minutes, digested samples and 

resulted in a yellow colored digestate.  Samples were then diluted to 50 mL before 

analysis.     

Selection of Instrument Parameters for ICP-AES Instruments 

 Before the nutraceutical samples could be analyzed, development of an 

experimental procedure for the ICP-AES instrument was required.  Since ICP-

AES is an emission technique, it was vital to select the best wavelengths for 

emission of the chosen analytes.  The JY 24 ICP has a wavelength database that 

contains multiple wavelengths for selected elements.  However, this database 

contains wavelengths that are not sensitive, in addition to the most sensitive ones.  

The JY 24 ICP is equipped with WinImage software, which allowed scanning of 

the wavelengths from 165-765 nm in approximately 4 minutes.  The advantage of 
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this software is the ability to overlay spectra of differing concentrations to 

evaluate signal-to-noise characteristics at each wavelength.  To determine the best 

wavelengths for arsenic, cadmium, lead, and mercury, analytical blanks and 

standards with known elemental concentrations were scanned in WinImage and 

the five most abundant wavelengths for each element were viewed.  Elemental 

interferences at each wavelength were checked via both WinImage scanning and 

wavelength databases.  Wavelengths that were examined on the JY 24 ICP for 

arsenic, cadmium, lead, and mercury are shown in Table 2.2, including the 

wavelengths that were ultimately chosen.   

Since the method validation experiments were performed using a different 

ICP-AES system, a Spectroflame Modula E, it was necessary to reconfirm the 

selected wavelengths.  The Spectro ICP software allowed scanning and 

overlaying of spectra at the wavelengths of interest to determine whether the 

wavelength was acceptable for use.  The wavelengths for arsenic, cadmium, and 

lead were acceptable for use on both instruments, but the mercury wavelength 

used for the JY 24 ICP was not acceptable for use on the Spectro ICP because a 

0.300 ppm aqueous solution of mercury could not be distinguished from the 

background.  A sensitive mercury wavelength for the Spectro ICP was found at 

184.950 nm and this was used during the validation experiments.  The JY 24 ICP 

has two power settings: P1, set to 1000 W for aqueous samples, and P2, set to 

1250 W for organic samples.  The P1 setting was utilized on the JY 24 ICP for 

this study.   The power setting for the Spectro ICP is computer-controlled and was 

set at 1350 W for aqueous samples.  The gas settings for both ICP instruments 
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were not changed from those used for routine, everyday analyses and are 

indicated in Table 2.1, shown in the Experimental section. 

 

 

Table 2.2: Signal-to-noise characteristics for wavelengths on the JY 24 ICP in the 
wavelength selection process.  (Wavelengths chosen for use are denoted with *.) 
 

 

Sample Quantification Parameters for ICP-AES Instruments 

 Emission spectrometry techniques operate on the premise that the intensity 

of light emitted at a particular wavelength for an element is proportional to the 

concentration of that element present in a sample.  The simplest way to determine 

this relationship is through the generation of calibration functions for each 

element of interest.  By generating calibration functions, routine sample analysis 

becomes relatively fast and efficient.  While calibration functions that are linear 

Peak present for both blank and 1 ppm Hg 365.015  

Doublet peak 313.155  

No difference between signal and background 253.652  

Peak for 1 ppm distinguishable from background (Best S/N) 194.227*  

Below 190 nm, requires purging 184.887 Hg 

Doublet peak 283.307  

Peak for 1 ppm distinguishable from background (Best S/N) 220.353*  

Interferences with Ni, Fe 205.088  

Interference with As 197.179  

Below 190 nm, requires purging 168.155 Pb 

No difference between signal and background 361.051  

No difference between signal and background 326.106  

Interference with As 228.812 nm 228.802  

No difference between signal and background 226.502  

Peak for 1 ppm distinguishable from background (Best S/N) 214.438* Cd 

No difference between signal and background 236.967  

Interference with Cd 228.802 nm 228.812  

No difference between signal and background 193.759  

Peak for 1 ppm distinguishable from background (Best S/N) 193.695*  

Below 190 nm, requires purging 189.042 As 

Observation Wavelength (nm) Element 
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are ideal, non-linear functions can occur and require careful establishment of the 

relationship between intensity and concentration.  In developing a method for 

analyzing nutraceutical samples, a challenge presents itself in that there are very 

few standards that exist in the representative sample matrices and none exist that 

can be universally used for all matrix types.  Due to this obstacle, a calibration 

function generated through analysis of aqueous elemental standards would be the 

most universally applicable technique; however, they would not be matrix-

matched.  Before generating the calibration functions, the wavelengths for 

arsenic, cadmium, lead, and mercury were scanned with the highest concentration 

standard, as well as a calibration blank, to produce a line profile for each element 

at the respective wavelengths.  From this profile, spectral background positions 

were set and could be checked and adjusted on a daily basis.  In preliminary 

experiments, the concentration range for the calibration functions was from a 

calibration blank to 2 ppm, but this was re-evaluated upon realizing that the levels 

of each element of interest that would be expected in the nutraceutical samples 

lied in the lower end of this concentration range.  Subsequent calibration 

functions utilized calibration standards that were prepared from calibration blank 

to 0.300 ppm, including low concentrations of 0.025 and 0.050 ppm.  The 

intensity vs. concentration was plotted for each element to generate linear 

calibration functions.   

Calibration functions prepared on the Spectro ICP and JY 24 ICP are 

shown in Figures 2.1 and 2.2.  All of the calibration functions have correlation 

coefficients that are greater than 0.99, with the exception of cadmium on the JY 
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24 ICP, and the intercept of the each function crosses the y-axis at very close to 

zero.  Spectral background complexity at the cadmium and mercury wavelengths 

on the JY 24 ICP warranted weighting the cadmium function by 

1/(concentration)2 to reduce variance, while the mercury function was forced 

through zero.  Statistically, the weighting factor of 1/(concentration)2 is 

appropriate because of the approximate proportionality of replicate measurement 

variance to the concentration at each measurement point, if measurements are 

made within the calibration range of the instrument.31  The correlation coefficient 

of the unweighted cadmium function on the Spectro ICP was 0.9997.  The 

correlation coefficient of zero for the JY 24 data means that the weighted function 

has no correlation with the linear function.  The mercury function was forced 

through zero by setting the y-intercept to zero and allowing the function to pass 

closely to the higher concentration points.  Y-axis error bars, for 5 replicate 

analyses, are included for each concentration analyzed and the errors are generally 

small, ≤ 10% RSD, for most points with only a few exceptions.  The limits of 

detection for each element were determined using the calibration functions 

generated for each element and are listed in Table 2.3.  Limits of detection reflect 

the concentration of an element that must be present in a sample such that it can 

be detected with reasonable certainty.23  The limits of detection were calculated 

Equation 1, with n = 5. 

LOD = 3sx     (1) 

where x represents the 0.050 ppm calibration standard and s is the standard 

deviation.  The 0.050 ppm measurement was used instead of a blank measurement 
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because 0.050 ppm represented a reasonable concentration expected to produce a 

reproducible intensity, thus variation in this intensity is more representative of 

variation in a measured sample.  The detection limits calculated using the JY 24 

ICP are reasonably low for cadmium, lead, and mercury; however, it is very high 

for arsenic, indicating that a large concentration of arsenic has to be present in the 

sample to be detected with certainty.  The Spectro ICP yields very low detection 

limits for cadmium and mercury and only moderately low detection limits for 

arsenic and lead.  Detection limits calculated for each element using 5 replicate 

measurements of the blank sample were comparable for cadmium, lead, and 

mercury for the Spectro ICP, but higher for arsenic.  For the JY 24 ICP, detection 

limits calculated with blank measurements are comparable to those calculated 

with the 0.050 ppm measurement for all elements.  The standard deviations 

experienced at each concentration measurement are similar, to yield such results, 

except in the case of arsenic on the Spectro ICP, where standard deviation is less 

at the 0.050 ppm measurement.  

The differences in slopes of the calibration functions on the two 

instruments are indicative of differing sensitivities.  Calibration sensitivity refers 

to the slope, m, in the function y = mx + b.  A larger slope is indicative of a large 

change in intensity for a small change in concentration.29  For arsenic, the 

calibration sensitivities for the JY 24 ICP and the Spectro ICP are very similar, 

indicating that similarly large changes in intensity represent similarly small 

changes in concentration.   



 47 

Arsenic 193.695 nm

y = 39308x - 84.115

R2 = 0.9989

y = 48143x + 87.82

R2 = 0.9976

0

2000

4000

6000

8000

10000

12000

14000

0 0.05 0.1 0.15 0.2 0.25 0.3

concentration (ppm)

in
te
n
s
it
y
 (
c
p
s
)

Spectro ICP

JY 24 ICP

 

Cadmium 214.438 nm

y = 689096x - 1253.4

R2 = 0.9997

y = 401009x + 406.9

R2 = 0

0

50000

100000

150000

200000

0 0.05 0.1 0.15 0.2 0.25 0.3

concentration (ppm)

in
te
n
s
it
y
 (
c
p
s
)

Spectro ICP

JY 24 ICP

 

Lead 220.353 nm

y = 116243x + 2079

R2 = 0.9982

y = 37681x + 244.52

R2 = 0.9991
0

5000

10000

15000

20000

25000

30000

35000

0 0.05 0.1 0.15 0.2 0.25 0.3

concentration (ppm)

in
te
n
s
it
y
 (
c
p
s
)

Spectro ICP

JY 24 ICP

 

 
Figure 2.1:  Calibration functions of a) arsenic, b) cadmium, and c) lead on the JY 
24 ICP-AES and the Spectro ICP-AES instruments.   

a) 

b) 

c) 
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a) 
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Figure 2.2: Calibration functions for mercury on the a) JY 24 ICP-AES, with the 
function forced through zero, and on the b) Spectro ICP-AES instruments.   
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Element JY 24 Sequential ICP 

Spectrometer (ppb) 

Spectroflame Modula E ICP 

Spectrometer (ppb) 

As 47.1 20.8 

Cd 4.7 3.3 

Pb 2.5 16.6 

Hg 2.8 2.7 

 
Table 2.3: Limits of detection for each ICP-AES system used in this nutraceutical 
study and validation.  LOD = 3sx, where x represents the 0.050 ppm calibration 
standard and s is the standard deviation. (n = 5) 
 
 
 
The calibration sensitivity is greater for cadmium on the Spectro ICP versus the 

JY 24 ICP, while the reverse is true for lead and mercury.  Differences in 

detection limits between the JY 24 ICP and the Spectro ICP could be due to 

instrumental configuration differences.  Axial ICPs are known to produce better, 

i.e. lower, detection limits when compared to radially viewed ICPs.32  The 

detection limits are slightly lower for cadmium and mercury, and much lower for 

arsenic, on the Spectro ICP.  However, the detection limit for lead is lower on the 

JY 24 ICP, due to the much greater sensitivity for lead on the JY 24 ICP.  Also, 

even though the detection limits for arsenic on the Spectro ICP are lower than the 

JY 24 ICP, both detection limits are still higher than what would be considered 

“trace”.   

The accuracy of concentration determination by use of calibration 

functions can be evaluated by analysis of a spiked sample.  The concentration of 

the spike, as determined by the calibration function, is compared to the known 
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spike concentration.  To determine spike recoveries for each element, an acid 

blank that was digested with the standard reference materials was spiked with 

0.100 ppm of each element and analyzed by the generated calibration functions 

for the Spectro ICP-AES system.  An acid blank was used as the sample matrix 

due to the unavailability of an appropriate standard reference material, i.e. an 

unfortified sample matrix.  Spike recoveries for each element on the Spectro ICP 

are shown in Table 2.4.  Average spike recoveries are near 100% for arsenic, 

cadmium, and lead, while they are less for mercury.  For a spiked acid blank, the 

recoveries should be at or near 100%, since there should be no interfering species 

in the sample as well as no sample loss.  The low recovery for mercury means that 

the calibration function is not capable of accurately determining concentrations 

near the spike value.  Since the recoveries of the other three elements analyzed are 

near 100%, there may have been an error in the concentration of the mercury 

spike.  The closer to 100% recovery indicates the calibration function is accurate 

in determining the concentration of element present in aqueous solutions. 

Method Validation by Standard Addition 

The ultimate goal of this research project was to develop a method of 

preparing nutraceutical products for analysis by ICP-AES.  Upon development of 

a digestion procedure, it is necessary to be sure that this procedure effectively 

digests the nutraceutical products in such a way as to convey an accurate 

representation of elemental concentrations.  Therefore, it was important to 

validate the developed digestion procedure by analysis of a certified standard 

reference material and assess the efficiency of the developed procedure.   
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Standard addition experiments are very accurate at determining trace 

levels of elements present in a sample, provided the instrument response to 

increasing concentration levels is linear.  Standard addition is performed by 

adding increasing, known concentrations, called spikes, of the elements of interest 

to aliquots of a sample solution before sample analysis.  For example, spikes of 

50, 100, and 200 µL of a 10 ppm lead solution were added to 10 mL aliquots of a 

digested nutraceutical sample, to yield spike concentrations of 50, 100, and 200 

ppb lead, respectively.   

 

 

Element Average Spike Recoveries 

(%) 

As 94.2 

Cd 97.6 

Pb 107.5 

Hg 71.3 

 
Table 2.4.:  Average spike recoveries (%) for arsenic, cadmium, lead, and 
mercury as determined by the Spectro ICP-AES instrument.  Spike recoveries 
were determined by analysis of 0.100 ppm spike, where n = 5. 
 
 
 
The samples, including an unspiked sample, were analyzed by ICP-AES and the 

response function was plotted for each element.  The unspiked sample should 

yield intensity, Ix, representative of the concentration, [X]i, of lead, for example, 
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present in the digested sample.  The spike concentration, S, should yield intensity 

Is+x.  The form of the standard addition equation is then as follows
33, 

    
xs

x

ff

i

I

I

XS

X

+

=
+ ][][

][
 (2) 

where [S]f and [X]f represent final values.  The initial concentration present in the 

sample, [X]i, can be determined from the equation.   

Graphically, the concentration of lead in a sample can be determined by 

extrapolation of the line back to the x-axis or by solving the equation for the line 

of regression.  Using data from SRM 3247 gingko biloba extract, found later in 

this section in Figure 2.5b, the concentration of lead in the digested sample was 

determined by setting y = 0, giving 

x = -1226.9 / 24206 = -0.0507 ppm 

This value is the concentration of lead present in the digested sample.  The value 

is negative because it resides on the negative side of the x-axis, but the sign is 

dropped to give the concentration.  To determine the total lead concentration in 

the SRM, the dilution volume and mass of SRM digested are taken into account, 

as follows 

   0.0507 ppm x 50.00 mL = 2.535 µg    

and  2.535 µg  / 0.7592 g = 3.339 µg/g (ppm) 

The value of 3.339 ppm represents the concentration of lead in the original SRM 

as determined by microwave digestion and analysis by ICP-AES.  The standard 

deviation of the measurement was determined by using the following equation33 
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where n = 5.  All calculations for concentration determination by standard 

addition were performed in this manner and calculated values are given in Table 

2.5. 

Before validating the sample digestion procedure, a certified standard 

reference material was chosen for standard addition experiments.  It is important 

that the sample upon which to perform the standard addition experiment is a 

suitable matrix for the application, in this case a nutraceutical sample.  It is also 

desirable that this sample contain known certified levels of the element of interest 

in the range that could be expected to be detected by the method of analysis.  

However, because nutraceutical samples have only recently come under scrutiny 

for their safety, both in active ingredients and toxic metals, very few certified 

reference materials exist that are applicable to this type of procedure.  The 

National Institute of Standards and Technology (NIST) has recently developed 

two suites of nutraceutical standard reference materials (SRMs).  These SRMs 

encompass several examples of extracts and final manufactured supplements of 

ephedra sinica stapf and gingko biloba and are certified for active organic 

components and trace levels of toxic metals.   

Given the detection limits for the toxic metals in this study, the samples 

analyzed for validation would need to have or exceed levels of 50 ppb arsenic, 20 

ppb lead, and 5 ppb each of cadmium and mercury to be able to accurately be 

detected.  Due to varying levels of toxic metals in each standard, depending on the 
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particular extract, there was not one single SRM that could be used for validation 

that had levels for arsenic, cadmium, lead, and mercury that were all above the 

detection limits, upon sample digestion and dilution, capable of the ICP-AES 

instrument.  In order to evaluate the validity of the sample preparation procedure, 

three SRMs were selected for use in standard addition experiments.  A 

preliminary validation experiment was performed on the JY 24 ICP utilizing SRM 

3243 ephedra sinica stapf solid oral dosage form.  Validation experiments were 

also performed on the Spectro ICP for SRM 3241 ephedra sinica stapf native 

extract and SRM 3247 gingko biloba extract.  The certified concentrations of each 

toxic metal studied in each SRM are given in Tables 2.4a-c.  Mercury 

concentrations were very low, below instrument detection limits, in all SRMs in 

both sample suites.  Because of this, each SRM analyzed by the Spectro ICP was 

spiked with mercury before digestion, to yield a final concentration of 20 ppb 

after dilution, as a carrier study.  The SRM was then subjected to the digestion 

procedure and analysis, to determine the possibility and extent of elemental loss 

during the sample preparation procedure.    

The standard addition functions generated for each detectable toxic metal 

in the SRMs are shown in Figures 2.3a-e.  The standard addition functions display 

correlation coefficients greater than 0.99 for lead and mercury in SRM 3247, as 

well as cadmium in SRM 3243, indicating very linear agreement between 

intensity and concentration.  Lead in SRM 3243 and mercury in SRM 3241 have 

lower correlation coefficients of 0.9886 and 0.9723, respectively, because of the 

larger standard deviations in some of the measurements. 
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a) 

 SRM 3243 Ephedra sinica 
stapf Solid Oral Dosage 

form 
Certified values 
(mg/kg) 

Calculated values       from 
standard addition 
experiments 

(mg/kg) 

Arsenic 0.554 ± 0.018 ND 

Cadmium 0.122 ± 0.0033 0.096 ± 0.005 

Lead 0.692 ± 0.056 0.586 ±  0.102 

Mercury 
 

0.009 ± 0.00044 ND 

b) 

 SRM 3241 Ephedra sinica 
stapf Native extract 

Certified values 
(mg/kg) 

Calculated values from 
standard addition 
experiments 
(mg/kg) 

Arsenic 1.285 ± 0.081 ND 

Cadmium 0.0587 ± 0.0036 ND 

Lead 0.241 ± 0.012 ND 

Mercury* 
 

0.00383 ± 0.00029 0.020 ± 0.006 

c) 

 SRM 3247 Gingko biloba 
extract 
Certified values 
(mg/kg) 

Calculated values from 
standard addition 
experiments 

(mg/kg) 

Arsenic 0.31421 ± 0.0124843 ND 

Cadmium 0.007532 ± 0.000139 ND 

Lead 4.2728 ± 0.0313 3.339 ± 0.495 

Mercury* 
 

0.000980 
(information value) 

0.021 ± 0.005 

 

Table 2.5:  a) Certified and calculated values for NIST SRM 3243 by JY 24 ICP.  
b) and c) Certified and calculated values for NIST SRMs 3241 and 3247 by 
Spectro ICP. 
(* denotes samples were spiked before digestion to yield 20 ppb Hg, final 
concentration)
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Figure 2.3: Standard addition functions for a) cadmium and b) lead in SRM 3243 
in preliminary validation experiments on the JY 24 ICP. 
 
 
 
 
 
 

a) 

b) 
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Figures 2.3 (continued):  Standard addition functions for c) mercury in SRM 3241 
and d) lead and e) mercury in SRM 3247 as analyzed on the Spectro ICP. 

d) 

e) 

c) 
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The calculated concentrations for each element in the two SRMs evaluated 

with the Spectro ICP, as well as the preliminary validation results from the JY 24 

ICP, are given in addition to the certified concentrations in Table 2.5a-c.  The 

preliminary validation results, determined using the JY 24 ICP, indicated that the 

method was applicable for determination of cadmium and lead; however, the 

calculated values were lower than the certified values.  In standard addition 

experiments using the Spectro ICP, the only elements that could be validated were 

lead and mercury in SRMs 3241 and 3247.  Again, these values were less than 

certified values.  Standard deviations in calculated concentrations were low for 

cadmium and mercury, while they were higher for lead.  In SRM 3243, the error 

in lead may be larger due to the decreased correlation coefficient of the standard 

addition function.  For SRM 3247, the correlation coefficient for lead is very high, 

and so the lower calculated concentration and error may be due to sample 

inhomogeneity.  In cases where the element was not detected, such as arsenic, it 

was due to the certified concentrations being lower than the detection limits.  To 

determine how efficient the method was at determining known concentrations, 

recoveries for the NIST SRMs were calculated by ratioing the calculated 

concentration to certified concentration.  The recoveries were in the range of ~80-

85%, except for mercury in SRM 3247, and are shown in Table 2.6.  This 

indicates that the digestion method is not capable of 100% recovery, i.e. the 

calculated concentration is only representative of ~80% of the actual 

concentration in the sample, for these solid NIST SRMs.   
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Element SRM Recovery 

(%) 

Cadmium 3243      79 

Lead 3243 

3247 

     85 

     78 

Mercury 3241 

3247 

     85 

     99 

Table 2.6: Recoveries (%) for detected elements in standard reference materials. 

 

The recoveries of the mercury spike in the carrier study were 85% for SRM 3241 

and 99% for SRM 3247, as shown in Table 2.6.   

Since the sample was spiked before digestion and recovery after analysis 

is reasonable, the digestion method may still be applicable and not responsible for 

the lower calculated values.  Also, the SRMs that were used in the validation 

experiments are solid (powder) nutraceutical samples, and as such, the method 

may still be valid for the glycerin-based and ethanolic nutraceutcal samples.   

The standard addition experiments performed to assess the validity of the sample 

preparation procedure give a reasonable indication that the procedure is applicable 

to cadmium, lead, and mercury detection.  However, it also indicates that the 

procedure needs modification because of the low recoveries.  Calculated 

concentrations that are lower than certified concentrations can mean that the 

procedure is not 100% effective at complete digestion or that there is loss of 

important elements during the digestion procedure.   
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It is also important to note that the validation experiments utilized solid 

samples, not glycerin-based or ethanolic samples, and as such, may only be valid 

assumptions for solid matrix nutraceuticals, necessitating the need for standard 

reference materials in other matrices.   

In addition, it would be useful to locate a standard reference material that 

contained arsenic at a higher concentration to assess the validity of the sample 

digestion procedure for arsenic and to make recommendations on digestion 

procedure modification. 

 

 

 

 

 



 
 
 

CHAPTER THREE 
 

CONCLUSIONS 
 

  
Microwave digestion has been utilized as a sample preparation technique 

for nutraceutical products, specifically ethanolic tinctures and glycerin-based 

samples, prior to analysis for toxic metals by inductively coupled plasma atomic 

emission spectrometry (ICP-AES).  The use of ICP-AES as an analysis technique 

necessitates a sample preparation method that can digest all solid material, such 

that the sample is totally aqueous before introduction into the instrument.  

Because of the variation in sample matrices of nutracutical products, i.e. powders, 

tablets, tinctures, and glycerin-based samples, a sample preparation method 

utilizing microwave digestion was developed that can be adjusted depending on 

sample type and, thus, can be applicable to the many nutraceutical sample types.   

The ultimate sample preparation method microwave digests a 1 g sample with a 

small volume of nitric acid (5 mL).  It is capable of digesting up to 40 samples in 

less than 2 hours. 

 Calibration functions were generated by ICP-AES for arsenic, cadmium, 

lead, and mercury in aqueous solutions and reasonably low detection limits for 

cadmium, mercury, and lead were determined for a Spectro ICP with an axially 

oriented torch.  Certified standard reference materials (SRMs) of nutraceutical 

products were prepared using the developed sample preparation method and 

analyzed by ICP-AES for toxic metals.  Preliminary and final validation results 
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suggest that the sample preparation method is may be successful for glycerin-

based and ethanolic nutraceuticals but is only ~80% efficient for cadmium, lead, 

and mercury in solid standard reference materials (SRMs). The concentrations of 

arsenic in the SRMs were too low to be detected accurately by the ICP-AES 

instruments.   

The sample preparation method could not be fully validated because the 

efficiency is lower than 100%, suggesting possible incomplete digestion, loss of 

elements of interest during digestion, or loss of elements during dilution.  

However, mercury spikes before digestion exhibit reasonable high recovery, 

indicating that the digestion method may not involve loss of elements.  To assess 

the problems with the efficiency of the method for solid nutraceuticals, 

experiments should be performed that adjust the digestion protocol by the 

addition of more nitric acid, addition of other different acids, increased 

temperature, and increased temperature hold time.  Careful preparatory and 

transfer procedures should also be established and carried out to lessen any 

chance for sample loss and contamination.  It would also be useful to locate a 

certified nutraceutical SRM that has a significantly high concentration of arsenic 

present in it so that the sample preparation method can be evaluated with respect 

to the arsenic concentration.  If such an SRM cannot be located, exploration into 

hydride generation as a sample introduction technique for these nutraceutical 

samples should be investigated, as it affords greater efficiency and lower 

detection limits for arsenic.        
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