
Clemson University
TigerPrints

All Theses Theses

12-2011

Analysis and Implementation of Room Assignment
Problem and Cannon's Algorithm on General
Purpose Programmable Graphical Processing Units
with CUDA
Harsh vardhan Dwivedi
Clemson University, hvdwivedi@hotmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Dwivedi, Harsh vardhan, "Analysis and Implementation of Room Assignment Problem and Cannon's Algorithm on General Purpose
Programmable Graphical Processing Units with CUDA" (2011). All Theses. 1234.
https://tigerprints.clemson.edu/all_theses/1234

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Clemson University: TigerPrints

https://core.ac.uk/display/268635768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1234?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1234&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

i

ANALYSIS AND IMPLEMENTATION OF ROOM ASSIGNMENT PROBLEM AND

CANNON'S ALGORITHM ON GENERAL PURPOSE PROGRAMMABLE

GRAPHICAL PROCESSING UNITS WITH CUDA

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

COMPUTER ENGINEERING

by

Harsh Vardhan Dwivedi

December 2011

Accepted by:

Dr. Melissa C. Smith, Committee Chair

Dr. Walter B. Ligon

Dr. J. Barr von Oehsen

 ii

ABSTRACT

General-purpose Graphics Processing Units (GP-GPU) has emerged as a popular

computing paradigm for high-performance computing over the last few years. The

increased interest in GP-GPUs for parallel computing mirrors the trend in general

computing with the rise of multi-core processors as an alternative approach to increase

processor performance. Many applications that were previously accelerated on distributed

processing platforms with MPI or multithreaded techniques such as OpenMP are now

being investigated to assess their performance on GP-GPU platforms. Since the GP-GPU

platform is designed to give higher performance for parallel problems, applications on

other parallel architectures are good candidates for performance studies on GP-GPUs.

The first case study in this research is a GP-GPU implementation of a Simulated

Annealing-based solution of the Room Assignment problem using CUDA. The Room

Assignment problem attempts to arrange N people in N/2 rooms, taking into

consideration each person’s preference for a roommate. To evaluate the implementation,

it was compared against the serial implementation for problem sizes 5000, 10000, 15000

and 20000 people. The GP-GPU implementation achieved as much as 78% higher

improvement ratio than the serial version in comparable execution time. The second case

study is a GP-GPU implementation of Cannon’s Algorithm using CUDA. The GP-GPU

implementation is compared with a serial implementation of a conventional matrix

multiplication O(n
3
). The GP-GPU implementation achieved upto 6.2x speedup over the

conventional serial multiplication. The results for both applications with varying problem

sizes are presented and discussed.

 iii

DEDICATION

I dedicate this thesis to my parents and my academic advisor, Dr. Melissa C.

Smith. I also dedicate this work to all members of the scientific community, toiling in

laboratories for the advancement of our knowledge and the betterment in the quality of

life for people everywhere.

 iv

ACKNOWLEDGMENTS

This work acknowledges the guidance and support from my advisor Dr. Melissa

C. Smith. I am profoundly indebted to her for her guiding advice and direction in this

research. Her guidance helped inculcate a strong motivation for scientific research.

 v

TABLE OF CONTENTS

Page

TITLE PAGE ... i

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES .. vii

LIST OF FIGURES .. viii

CHAPTER

 I. INTRODUCTION ... 1

 II. RELATED WORK .. 4

 Room Assignment Problem .. 4

 Cannon’s Algorithm ... 6

 III. CUDA PROGRAMING MODEL AND HARDWARE, SOFTWARE USED

 GP-GPUs and the CUDA Programming Model 9

 CUDA Memories and Occupancy

 Hardware Used

 IV. CASE STUDIES ...15

 Room Assignment Problem ...15

 Room Assignment Problem Implementation..19

 Cannon’s Algorithm ..29

 Cannon’s Algorithm Implementation ...32

 V. RESULTS AND ANALYSIS

 Room Assignment ...37

 Cannon’s Algorithm ..44

 vi

Table of Contents (Continued)

 VI. CONCLUSION AND FUTURE WORK

 Conclusions ...50

 Future Work ..52

 Contributions ..53

APPENDICES ...54

 A: Room Assignment Problem GP-GPU and Serial Runtime Results55

 B: Results from Cannon’s Algorithm Implementation59

REFERENCES...62

 vii

LIST OF TABLES

Table Page

 3.1 System #1 GTX-580 Important Device Characteristics13

 3.2 System #2 GTX-580 Important Device Characteristics13

 5.1 Varying Cooling Constant for Serial Version of Room

 Assignment Problem ..38

 5.2 Average Runtimes Comparison between GP-GPU

 and Serial Version Across Different Problem Sizes

 using File #1 From Each Problem Size ...42

 viii

LIST OF FIGURES

Figure Page

 3.1 Hierarchy of Threads and Blocks During Execution10

 4.1 Pseudo-code for Simulated Annealing Based Solution

 for Room Assignment Problem ..19

 4.2 Room Assignment GPU Implementation Architecture21

 4.3 Solution Verification to Check Final Solution Validity25

 4.4 Tree Based Parallel Reduction Strategy ...27

 4.5 Multithreaded Warp Occupancy vs. Threads

 Per Block from CUDA Occupancy Calculator ..29

 4.6 Flowchart describing Steps Involved in Cannon’s Algorithm31

 4.7 Continued Flowchart Describing Cannon’s Algorithm32

 4.8 GP-GPU Implementation of Cannon’s Algorithm35

 5.1 Average Improvement Ratios Achieved for

 5000 people (Solution Quality) ..39

 5.2 Average Improvement Ratios Achieved for

 10000 People (Solution Quality) ..40

 5.3 Average Improvement Ratios Achieved for

 15000 people (Solution Quality)...40

 5.4 Average Improvement Ratios Achieved for

 20000 people (Solution Quality)...41

 5.5 Average Runtimes (File #1 From Each Size) ...42

 5.6 Observed Relation Between Improvement Ratio

 and Speedup Between GP-GPU and Serial Version

 For Increasing Problem Sizes with File #1 From Each Size43

 5.7 Speedup For Matrix Size: 1000x1000 ...45

 ix

 5.8 Speedup For Matrix Size: 2000x2000 ...46

 5.9 Speedup For Matrix Size: 4096x4096 ...46

 5.10 Speedup For Matrix Size: 8000x8000 ...47

 5.11 Sample Block of Code(For Sub-Matrix Multiplication) Running

 on Each Processor in the Processor Grid for Cannon’s Algorithm48

1

CHAPTER ONE

INTRODUCTION

General-purpose Graphics Processing Units (GP-GPUs) have emerged as a

leading architecture for parallel application development and acceleration in recent years.

Owing to their very high core count and ample on-device memory, they offer high

performance potential for suitable applications. This research presents two very different

case studies of algorithm implementation and performance analysis on a GP-GPU

architecture: the Room Assignment Problem [1] and Cannon’s Algorithm [1] for matrix-

matrix multiplication.

Monte Carlo methods, which are used in the Room Assignment Problem, have

been a popular choice for finding optimal solutions in computational problems. They are

particularly useful for multi-dimensional problems where the cost function is optimized

by repeatedly making and evaluating moves in a random order. One Monte Carlo

technique for optimization is Simulated Annealing. Simulated Annealing techniques have

been proposed for many algorithms including the Travelling Salesman problem, the

Room Assignment algorithm, and those related to the physical design of computers such

as the place and route of circuits [2]. The appeal of Simulated Annealing-based solutions

is their simplicity. Once a cost function for a problem is formulated, Simulated Annealing

can be applied to optimize the problem. The downside of these Monte Carlo based

techniques is that execution times for serial implementations are long since many random

steps are necessary to find a solution and serial implementations can only evaluate one

 2

move at a time. However, these techniques have a high potential for optimization through

parallel implementations, such as GP-GPUs, since each parallel branch of the code can

simultaneously generate and process random moves. The inherent parallelism of the GP-

GPU architecture is amenable to the implementation of Monte-Carlo based solutions due

to the large number of independent processing units, each of which can run parallel

branches of the code.

The first case study for GP-GPU implementation is the Room Assignment

problem where N peopled are assigned to N/2 rooms while maximizing mutual

compatibility between roommates in each room. A solution to this problem using

Simulated Annealing has been implemented on shared memory architectures using

OpenMP and distributed memory architectures using MPI [3]. This research will present

an implementation of the Simulated Annealing solution to the Room Assignment

problem on NVIDIA GTX-580 GP-GPU architecture using CUDA and study the

performance response for this architecture relative to the algorithm characteristics.

The second case study in this research is an implementation of Cannon’s

Algorithm for matrix-matrix multiplication on the same GP-GPU. Matrix-matrix

multiplication is found in many applications in high-performance computing such as

digital image and signal processing, graph theory and linear algebra subroutines. The

performance of the GP-GPU implementation of Cannon’s Algorithm is compared with a

common MPI-based implementation. Differences between the two implementations will

be discussed and compared with the performance of a traditional O(n
3
) implementation.

The analysis will provide insight regarding how similar/dissimilar the MPI

 3

implementations for homogenous clusters are with the GP-GPU implementations in terms

of performance.

The remainder of this thesis is organized as follows: Chapter 2 presents related

work, Chapter 3 details the CUDA programming model and the hardware and software

used, Chapter 4 presents the Room Assignment and Cannon’s Algorithm case studies

with implementation details for both algorithms. Finally Chapter 5 presents results and

analysis from both case studies and Chapter 6 offers conclusion and suggestions for

future work.

 4

CHAPTER TWO

RELATED WORK

In this chapter we discuss work found in the literature related to the two case

studies: the Room Assignment Problem and Cannon’s Algorithm. Section 2.1 discusses

two previous implementation efforts for the Room Assignment Problem, including a

previous shared and distributed memory implementation and a Simulated Annealing-

based solution. Section 2.2 covers prior implementation and analysis efforts for Cannon’s

Algorithm and other parallel matrix multiplication algorithms.

2.1 Room Assignment Problem

In [3], Lazarova presents an MPI and OpenMP implementation of the Room

Assignment problem. The OpenMP version is reported to achieve a speedup of 1.7x over

a sequential implementation for a problem size of 20,000 people. The MPI

implementation uses two strategies: synchronous and asynchronous move generation.

Both strategies use a master process that broadcasts the global configuration to the slave

processes, which independently generate moves and send them back to the master

process, which, in turn, applies them to the global configuration. The differentiating

factor between the synchronous and asynchronous strategies is how the slave processes

continue to generate and evaluate local moves while the master process updates and

broadcasts the global configuration. To prevent clashes between moves generated by any

two processes, each process in the asynchronous strategy is allowed to make

perturbations only to certain rooms. Such a hazard does not exist in the synchronous

 5

strategy since synchronization definitively takes place through the master process after a

set number of moves in the slave processes. The 8-processor MPI implementation for

20,000 people achieved a speedup of 4.6x for the synchronous strategy and 3.8x for the

asynchronous strategy.

In [4], Martinez-Alfaro et. al., present a Simulated Annealing-based solution for

the Classroom Assignment problem, which is analogous to the Room Assignment

problem. In this case, classrooms in a large institution are assigned to classes subject to

classroom and instructor availability and classroom special resource availability, among

other factors. A modular cost function composed of terms related to these factors is used

in their proposed optimization approach. The advantage with a modular cost function is

that it can be simplified to fit the data available for the problem at hand. The authors

explain that they could use this cost function, for instance, with just the meeting times

data and without any regard for special resource requirements for a classroom by

attaching zero weight to the term(s) related to that data.

Both [3] and [4] describe the use of simulated annealing to provide optimal

solutions for a given problem and present their implementations. While [4] does not use a

parallelized approach, [3] presents parallelized strategies for simulated annealing

methods. [5] and [6] present solutions for different problems (Protein Substructure

searching and IC Floorplanning) on GP-GPU architectures with Simulated Annealing

techniques. The work in this thesis presents a solution to the Room Assignment problem

based on Simulated Annealing techniques on a GP-GPU architecture. A review of the

literature did not reveal any previously published results for the Room Assignment

 6

problem on the GP-GPU and to the best of our knowledge, this is the first set of results

on this architecture.

2.2 Cannon’s Algorithm

In [7], Lee et. al, present an implementation of the Generalized Cannon’s

Algorithm (GCA) that runs on an arbitrary number of processors with toroidal mesh

interconnections. In their work, two layers of processor arrays are considered, a virtual

array of processors and the actual array of physical processors available. The number of

processors in the virtual array is equal to the number of sub-matrices the product matrix

is divided into. The virtual array of processors need not be square, which allows the

product matrix to be decomposed into a non-square array. Since in general the number of

physical processors available is less than the processors in virtual array, the virtual array

must be partitioned to fit into the physical array of processors. The virtual array is

partitioned differently for each matrix to be multiplied, depending on the number of

decompositions of the matrix. The decomposed matrices are then distributed in the virtual

array. Attempts are made to map any virtual processors receiving the same sub-matrix

block from the matrices to be multiplied to the same physical processor to reduce the

communication time during multiplication.

 They also propose a partitioning scheme that reduces the number of page faults. If

the sub-matrices distributed among the processors are too large, then after each

computation and shift step, page faults will occur. With their proposed partitioning

scheme, the sub-matrix blocks on each processor are further decomposed into smaller

sub-matrices such that each sub-matrix fits into the main memory. After the second step

 7

of decomposition, once a processor finishes computation of a sub-sub-matrix, it is shifted

to the left-neighbor processor, which performs computation on this sub-sub-matrix.

Finally, the shifting procedure stops when the sub-sub-matrix moves back to the original

processor. This scheme allows a sub-matrix to be used by all the processors while it is

still in the main memory, eliminating many disk-reads. The authors compared the

performance of the GCA against the Scalable Universal Matrix Multiplication Algorithm

(SUMMA) [8], another parallel matrix multiplication algorithm, and reported that GCA

performs better than SUMMA for all matrix sizes tested..

In [9], Alqadi et. al, present various parallel matrix multiplication algorithms, a

theoretical analysis of their performance, and a comparison with measured performance.

To evaluate the speedup and efficiency of the algorithm, they use the metric: average

number of flops per communication access. They analyzed six algorithms: Systolic

Algorithm [10], Cannon’s Algorithm [11], Fox’s Algorithm with squared and scattered

decomposition [12], Parallel Universal Matrix Multiplication (PUMMA) [13], SUMMA

and Distribution Independent Matrix Multiplication (DIMMA) [14], [15]. They report

that the systolic algorithm gave the maximum efficiency followed by PUMA, DIMMA

and SUMMA.

In [16], Ismail et. al, present an implementation of the conventional nested ‘for-

loop’ matrix multiplication algorithm with a new programming model called Serial,

Parallel and Concurrent Core-to-Core programming model (SPC
3
M) which is targeted

toward multi-core processors. They provide the basic guidelines to program with this

model and then provide a performance comparison against the same algorithm

 8

implemented with OpenMP. Using 24 concurrent threads, they report a speedup of up to

23.7x over the OpenMP implementation.

While [7] and [9] present implementations of Cannon’s Algorithm and

performance results, [16] presents a multi-threaded accelerated implementation for

matrix-multiplication. The implementation in this thesis is similar to works in [7] and [9]

in that it is a Cannon’s algorithm implementation and similar to [16] in that it uses a

multi-threaded approach to implement Cannon’s algorithm and completely different from

all the previously explored approaches in that this implementation is for a GP-GPU

architecture.

2.3 Summary

This chapter covered work related to the two case studies used in this research.

The next chapter discusses the CUDA programming model, introduces key CUDA

programming concepts and terms, and specifies the hardware and software used.

 9

CHAPTER THREE

CUDA PROGRAMMING MODEL AND HARDWARE, SOFTWARE USED

To obtain optimum performance from a GP-GPU platform using CUDA, it is

essential that the underlying architecture of the GP-GPU and the programming model be

investigated and understood. This chapter focuses on the CUDA programming model, the

software installations, and the specifications of the machine used in this research.

3.1 GP-GPUs and the CUDA Programming Model

The CUDA programming model introduces extensions to traditional C

programming. The portion of the code that is identified for parallel implementation on the

GP-GPU hardware is encapsulated in a CUDA kernel. A kernel contains the code

definition for threads that will run in parallel on the GP-GPU hardware. These threads are

organized into blocks and multiple blocks are scheduled to run on the GP-GPU hardware

at the launch of any kernel. The number of threads per block and the number of blocks

scheduled to run at the launch of the kernel are collectively known as the execution

configuration for that kernel. Figure 3.1, shows a hierarchical view of the blocks and

threads while executing a kernel [17]. The CUDA programming model dictates that all

thread blocks execute in parallel. CUDA offers built-in device related variables like

threadIdx, blockIdx, and blockDim that allow the user to access a particular

thread within a block.

 10

Figure 3.1: Hierarchy of threads and blocks during execution

A CUDA-supported GP-GPU consists of multiple streaming multiprocessors

(SMs). Each SM is composed of many Single Instruction Multiple Thread (SIMT)

processing units called CUDA cores, which execute threads from a kernel. The lowest

level of execution on the GP-GPU is a warp, which is a group of 32 threads. A group of

warps represents all threads in a block and finally the blocks are the top of the execution

hierarchy. Normally, each block is tied to a specific SM, but each SM may execute

multiple blocks at any given time. With the Fermi Architecture, each SM can execute a

maximum of eight blocks concurrently. Because of the SIMT architecture in the GP-

GPU, all threads in a warp execute the same instruction and if any thread in a warp

deviates from the common stream of instructions, execution in that warp is serialized.

Thus branching instructions potentially hurt the overall performance in GP-GPU codes.

 11

The maximum block size, i.e. the maximum number of threads a block can have,

is 1024 on the Fermi architecture. The maximum number of threads that a SM can

execute concurrently is 1536: a maximum of 48 concurrent kernels on a SM multiplied

by the warp size of 32 threads yields 48x32=1536 threads.

For the maximum performance, the number of threads in a block (block size)

should always be a multiple of 32, which ensures that none of the warps from that block

will be under-populated. Consider the following scenario of 193 threads per block. This

block will be split into 7 (ceil(193/32) = 7) warps. The 7
th

 warp, however will only

contain 1 thread and would thus be under-populated from its ideal size of 32 threads and

does not provide a reduction in processing time. The execution time would be the same

even if the 7
th

 warp contained 32 threads, hence a loss of potential performance or

underutilization.

3.2 CUDA Memories and Occupancy

The memory hierarchy in CUDA is comprised of the global, shared, and local

memory. The global memory can be accessed (Read/Write) by any thread from any

block. The shared memory is local to a block and can only be accessed by the threads

from that block. Local memory is only accessible from that thread. When no shared

memory is used for a block and all the threads are accessing only the global memory, it is

recommended to keep the block size lower so that the scheduling engine has maximum

freedom to schedule the blocks on any free SM.

Another important term that should be considered when tuning the application for

performance is Occupancy. Occupancy refers to the ratio of the number of warps running

 12

on an SM processing unit to the theoretical maximum number of warps that can run on

the SM. Occupancy is important for kernels that are bandwidth bound. Note that

occupancy does not directly imply performance, however a higher value of occupancy

can assist in hiding latency in memory bound kernels. To calculate the occupancy,

NVIDIA provides an Excel workbook called “CUDA Occupancy Calculator” that

calculates a kernel’s occupancy based on the number of threads in a block, number of

registers per thread, shared memory per block, and the compute capability of the GP-

GPU device. Version 2.4 of this workbook was used in this research.

3.3 Hardware Used

The experimental set-up consisted of two systems. The Room Assignment

problem was implemented on the first system, which consisted of a single Intel Xeon

2.66 GHz Quad Core processor with 4 GB system memory running the Ubuntu 11.04 64-

bit operating system and a NVIDIA GTX-580 GP-GPU with 3 GB of device memory.

The Cannon’s Algorithm was implemented on the second system, which consisted of an

Intel Core 2 Quad Core 2.66 GHz with Windows 7 64-bit operating system and a

NVIDIA GTX-580 with 1.5 GB device memory. Both GP-GPUs used in this research

were from the Fermi architecture family with compute capability 2.0. Each has 16 SMs

with 32 CUDA cores each for a total of 512 CUDA cores on these devices. Tables 3.1

and 3.2 provide key details about the GTX-580 devices used in this research.

 13

Table 3.1: System #1 GTX-580 Important Device Characteristics

GPU Clock Speed 1.57 GHz

Total Global Memory 3072 MB

Total CUDA Cores 512 (16 Multiprocessors x 32 Cores/MP)

L2 Cache Size 786432 Bytes

Total Registers per block 32768

Warp Size 32

Max Threads per block 1024

Table 3.2: System #2 GTX-580 Important Device Characteristics

GPU Clock Speed 1.59 GHz

Total Global Memory 1504 MB

Total CUDA Cores 512 (16 Multiprocessors x 32 Cores/MP)

L2 Cache Size 786432 Bytes

Total Registers per block 32768

Warp Size 32

Max Threads per block 1024

3.4 Software Used

 Both GP-GPU implementations were developed with CUDA version 4.0 SDK

and associated toolkits. The serial version of the Room Assignment problem was

compiled with g++ version 4.4.5 and the serial O(n
3
) multiplication for comparison with

 14

Cannon’s Algorithm was developed with Microsoft Visual Studio 2010. The GP-GPU

implementation of the Room Assignment algorithm also uses the CUDA Thrust library

[18]. Thrust is a C++ template library providing access to multiple parallel algorithms for

rapid development of applications. The parallel algorithms implemented with Thrust are

themselves accelerated with the GP-GPU.

The biggest benefit from using the Thrust library for the Room Assignment

problem was the convenient allocation of memory on the host and GP-GPU device. The

host and device memory could be allocated by simply using the “vector” construct

from the Thrust library. The vector can be of type “host” or “device”, the former

referring to allocation on the host and the latter referring to allocation on the GP-GPU

device. It was also useful for debugging purposes. At any point, any device variable can

be printed with the “cout” operator. If the CUDA API is used directly, the variable must

first be copied to a host variable and then print that host variable. The use of

Thrust::min_element() function allowed accelerated parallelized search through

an array of values to provide the search result and location of the result. This function is

further detailed in the next chapter.

3.5 Summary

 This chapter discussed the CUDA programming model, the software environment

used and key hardware specifications and details. The next chapter describes the GP-

GPU implementations of the Room Assignment problem and Cannon’s algorithm.

 15

CHAPTER FOUR

CASE STUDIES

 This chapter discusses the two case studies: the Room Assignment problem and

Cannon’s Algorithm for matrix multiplication. Each case study is presented with an

introduction to the problem followed by a discussion of the GP-GPU implementation

with a focus on the program architecture. Sections 4.1 and 4.2 discuss the Room

Assignment Problem and its solution implementation on the GP-GPU while sections 4.3

and 4.4 discuss Cannon’s Algorithm with its implementation on the GP-GPU.

4.1 Room Assignment Problem

The Room Assignment problem is concerned with distributing N people into N/2

rooms where each individual has a roommate preference list. The Room Assignment

problem was suggested as a research problem by Gale and Shapley in [19] which

described the stable marriage problem. The stable marriage problem involves a set of N

men and N women, each with their preference list for individuals of the opposite sex. A

stable matching in this problem would be a configuration that pairs a man and a woman

such that no two individuals prefer each other over their current partners. While Gale and

Shapley showed that for every stable marriage problem instance there would exist at least

one stable matching, this is not the case for the Room Assignment problem [20]. For any

given problem instance of Room Assignment, a stable matching may or may not exist. In

the context of the Room Assignment problem, a stable matching would be one where no

two individuals prefer to be matched with each other over their current roommates [20].

 16

In [20], Irving presents an O(n
2
) complexity algorithm to formulate a stable

solution for any instance of a Room Assignment problem and find that solution if one

exists. This thesis explores another approach towards the solution of the Room

Assignment problem using a Monte Carlo-based approach with Simulated Annealing.

Simulated Annealing is a combinatorial optimization method used for many complex

systems. This process is generally done through the use of a cost function whose

minimum value is reached through the process of Simulated Annealing as described

below. The cost function at any state of the system is associated with the current

configuration of the system. Thus, slightly varying the configuration of the system and

then evaluating this cost function moves the system in the intended direction.

Simulated Annealing is a Monte-Carlo-based technique to obtain optimized

solutions to a variety of problems. In [2], Kirkpatrick et. al., adapted the Metropolis

Algorithm [21], for use as a general-purpose solution optimization technique for various

problems. They adapted the Metropolis Algorithm by replacing the total energy of system

with a cost function, using a set of parameters {xi} to represent configurations and using

temperature as a controlling parameter. Simulated Annealing can be contrasted to an

iterative improvement based solution approach. The main advantage of using Simulated

Annealing is that the solution can transition out of local optimums at non-zero

temperatures. Another important feature of Simulated Annealing in [2] is that “the gross

features of the eventual state of the system appear at higher temperatures whereas fine

details develop at lower temperatures”. The general process of adapting a general

problem to Simulated Annealing is presented in the following points from [1]:

 17

 “Decide how to represent Solutions

 Define a cost function for the problem

 Define how to generate a new, neighboring solution from an existing

solution

 Design a cooling function”

The Room Assignment problem, which aims to obtain the best possible

arrangement of N people in N/2 rooms, was adapted for a Simulated Annealing-

based solution. First, individual i indicates a preference for individual j as a

roommate with a dislike coefficient, dij, defined between the two individuals. A

higher dislike coefficient value between two individuals indicates a lower

preference for them as roommates. For a given configuration of roommates, the

cost function is computed by summing the dislike coefficients between

individuals in a given room and then summing over all rooms. The total sum

obtained quantifies the quality of the roommate configuration. The initial sum is

equivalent to initial energy of the system and the change in cost function is

equivalent to change in energy of the system in the Simulated Annealing

approach. Starting with an initial configuration of roommates and obtaining an

initial sum for this configuration, a random perturbation is made to this

configuration by randomly choosing two people and swapping their roommates.

The cost function is then re-evaluated and if the new value of cost function is

found to be lower than the previous value, the current configuration is accepted. If

 18

the new value is larger, then a comparison is made between e
((sum-new_sum)/t)

 and a

random number generated between [0,1] [1]. If the random number is less than or

equal to the exponential term, then the new configuration is accepted despite

having a larger sum than the previous configuration. If the new configuration fails

both testing conditions (lower sum or comparison with the exponential term) then

it is discarded. Next, the temperature is lowered according to the cooling schedule

(T=αT) and the algorithm proceeds until the temperature reaches zero at which

point, the final configuration of roommates is accepted as the optimized solution.

In this way the Room Assignment problem is adapted to variables and constructs

from Simulated Annealing to arrive at a solution for the Room Assignment

problem. Figure 4.1 gives the pseudo-code for a sequential Simulated Annealing-

based solution for the Room Assignment problem.

 19

Create an initial configuration of roommates

Calculate initial sum

while(T>0)

{

 Pick two people randomly and swap their roommates

 Calculate the new sum with this configuration

 Generate random number (x) in the interval [0,1]

 If(new_sum<old_sum || x<=e((sum-new_sum)/T))

 {

 Accept new_configuration as current configuration

 }

 Reduce temperature according to cooling schedule (T=αT)

}

Figure 4.1: Pseudo-code for Simulated Annealing-based solution for the Room

Assignment Problem

4.2 Room Assignment Problem Implementation

 Two versions of the Room Assignment Solution problem were written, one for

serial execution and another for parallel execution on the GP-GPU. The inputs required to

run both versions include the dislike coefficient file describing the dislike coefficients

between any two individuals, initial temperature for simulated annealing, and the target

improvement ratio (the ratio of original sum to the minimized sum). A higher value of

 20

improvement ratio indicates a higher quality of solution. Upon completion of the

algorithm, both versions of the program display the minimized sum, the initial sum, the

number of iterations, the final temperature, execution time and final solution verification

results.

The total execution time is recorded for both versions by measuring from the

while (T>0) line in the pseudo-code. The parallel implementation on the GP-GPU

includes the time required to transfer the dislike coefficient matrix and the initial

configuration from the host to the GP-GPU and the final transfer of the solution

configuration back to the host from the GP-GPU.

The input files for the dislike coefficients are generated using a Mersenne Twister

random number generator [22]. An upper bound of 30,000 for a dislike coefficient value

between two people was selected to eliminate the problem of overflow. If the dislike

coefficients are very large and the problem size consists of a large number of people, then

it is possible that the sum of dislike coefficients can overflow the max bound of the

variable holding the sum value, which would give an invalid value for the minimized

sum.

 21

Figure: 4.2 Room Assignment GP-GPU Implementation Architecture

Figure 4.2 depicts the architecture of the GP-GPU implementation of the Room

Assignment problem. The blue boxes indicate execution stages running on the host and

the red boxes show code execution on the GP-GPU. The initial configuration phase (first

blue box) of the code runs on the host processor (x86) in both the GP-GPU and serial

versions. In this part, an initial room assignment is made and an initial sum is calculated.

The initial room assignment assigns the following pairs as roommates: (0,1), (2,3), (4,5)

and so on. The quality of any solution produced is measured by the improvement ratio of

 22

the solution. Both versions of the code use a dislike coefficient file to determine the

dislike between any two people. The dislike coefficients for the pairing (i,j) and (j,i) are

equal: dij=dji. As previously mentioned, the dislike coefficients between the two

roommates are summed together and this summation is carried out for all rooms giving

the total sum for the configuration. The dislike coefficients, which are normally stored in

a 2D array when used on the host, are stored in row-major order in a linear array on the

GP-GPU.

The GP-GPU code consists of three explicit CUDA kernels: seedInitRNG, k1

and k2.

1. seedInitRNG is used to initialize the random number generator for each

thread.

2. k1 is the main kernel where every thread generates a parallel move and

performs the simulated annealing exponential function calculation, comparing

the result to the global sum represented by the first red block in Figure 4.2.

3. k2 is the kernel used to update the global sum value. k2 was written to

obviate the need to transfer the global configuration back to the host for

updating. With the k2 kernel, the global configuration is updated on the GP-

GPU. Updating the configuration consists of updating the global sum value

and the current arrangement of roommates. In Figure 4.2, the third red block

represents this stage of execution.

 23

The following sub-sections, 4.2.1 to 4.2.5, provide the implementation details

including random number generation, solution verification, move selection, etc. for the

Room Assignment problem.

4.2.1 Random Number Generation

Kernel k1 generates parallel moves for simulated annealing using random

numbers generated inside the GP-GPU kernel with the CURAND library. In contrast, the

serial version of the code uses the Mersenne Twister random number algorithm [22] due

to the quality of random numbers generated by that algorithm. The MPI implementation

in [3] also uses the Mersenne Twister algorithm for random number generation.

The CURAND library API provides functions that are used both in the GP-GPU

kernel and the host code to generate random numbers: curand() and

curand_uniform(). The function curand() was used to generate the two random

people who swap roommates and the function curand_uniform() was used to

generate uniform random numbers between 0 and 1. Although the specification of the

Metropolis Algorithm in [23] mentions generation of uniform random numbers in the

range [0,1], the CURAND library guide [24] specifies that curand_uniform()

generates numbers in the range (0,1]. While this is different from the exact algorithm

specifications, we did not observe any significant difference in performance.

The CURAND random number generator (RNG) has a period greater than 2
190

[24]. Since each thread has its own RNG, each thread must have its RNG initialized. For

initialization, each thread receives the same seed, offset as 0, and a different sequence

number. The threadnumber or the threadID is used as the sequence number when

 24

initializing each RNG in the thread. The initialization is done through the

seedInitRNG kernel.

4.2.2 Cooling Schedule

To compare the performances of the serial and the GP-GPU version of the code, it

was determined that a better metric would compare the quality of the solution produced

by both the versions in an equivalent amount of execution time. Therefore, attempts were

made to equalize the execution times of the serial and GP-GPU implementations. With a

cooling constant of 0.999999 for the serial version and 0.999 for the GP-GPU version and

sufficiently varying the number of blocks for parallel move generation on the GP-GPU,

the execution time of both implementations were approximately equal for the problem

size of 5000 people. Subsequently, the same values for cooling constant and number of

blocks are used for the GP-GPU version for problem sizes 10000, 15000 and 20000

people. With this approach we were able to study the performance characteristics of the

GP-GPU version as the problem size varied with a fixed cooling constant. We were able

to observe that the GP-GPU version naturally moved toward a speedup against the serial

version even though both the serial and the GP-GPU version started with equalized

runtimes. These results, as discussed in the next chapter, revealed the performance

characteristics of the GP-GPU architecture with a fixed cooling constant. As discussed in

Chapter 6, future work will include equalizing the runtime for every problem size and

then studying the resulting quality of solutions achieved.

 25

4.2.3 Solution Verification

Two verification checks are applied to the solutions produced by both implementations.

The first verification checks the validity of the solution configuration as shown in Figure

4.3. The verification is performed by visiting each person and verifying that the listed

roommate also has this person listed as their roommate. If both people list each other as

the roommate, the verification is confirmed. The second verification recalculates the

configuration sum on the host side and compares it to the minimized sum received from

the GP-GPU.

 for(i=0; i<NUM_PEOPLE; i++)

 {

 if(a[a[i]]!=i)

 {

valid_soln='E';

 printf("\nWRONG SOLUTION!");

 }

 }

Figure 4.3: Verification To Check Final Solution Validity

4.2.4 Move Selection

As seen in Figure 4.2, for every temperature step, the GP-GPU implementation

evaluates multiple moves while the serial version evaluates only a single move. The GP-

GPU implementation goes through total of 1417415 (~1.42x10
6
) time steps. With

 26

evaluation of 19200 (100 blocks x 192 threads per block) moves per time step, the GP-

GPU implementation is evaluating 2.72x10
10

 moves. The serial version goes through

1418122547 (~1.42x10
9
) time steps and effectively the same number of moves since it

evaluates only one move per time step. Thus the GP-GPU version is able to go through

close to 19 times as many moves as the serial version in the same execution time.

Once all of the threads finish generating and storing moves and calculating the

new sum values, the least sum value must be selected. There are three potential ways to

implement this selection. The simplest option from a coding perspective would be to

copy the sum values back to the host, search for the least value among them and then

send the thread index responsible for this value back to the GP-GPU. This approach

involves extra overhead to transfer the data between the host and GP-GPU frequently. A

second option is to write a kernel that performs this operation, launch a single thread to

run this kernel that searches for the least sum value. This approach avoids the time

required to copy data to the host by running the search part on the GP-GPU, but still has

the disadvantage of an inherently sequential search. The third option is to use a GP-GPU

accelerated parallel search for selecting the thread with the minimum sum. This approach

has the advantage of no data transfer back to the host as well as utilizing the available

parallelism on the GP-GPU. Therefore, to search for the best move among all the parallel

generated moves, the reduce algorithm thrust::min_element() from the GP-GPU

accelerated Thrust library was used. The function min_element() is a reduce

algorithm implemented using a tree based reduction strategy. Multiple parallel executing

units on the GP-GPU compare two items from the array and the array values are reduced

 27

to an intermediate smaller set of values. The comparison continues until a single value

emerges. In this way, the search for smallest value is accelerated with parallelization.

Figure 4.4 provides an illustration of a tree based reduction strategy.

Figure: 4.4 Tree Based Parallel Reduction Strategy [25]

Another benefit from using the thrust::min_element() function is that the

user does not have to optimize the number of threads and the number of blocks to be

launched. The Thrust library automatically optimizes these variables for maximum

performance. Currently, the Thrust library optimizes the maximum occupancy

performance metric for the kernel.

4.2.5 Execution Configuration Selection For Parallel Move Generation

For GP-GPU implementations, it is desirable to have the maximum possible

number of simultaneously running threads. This criterion will maximize the number of

 28

parallel moves generated, which increases the probability of reaching better solutions.

The Roommate Assignment Problem implementation does not require the threads to use

shared block memory and each thread in any thread block is completely independent of

any other thread whether in the same block or in another thread block. The CUDA

occupancy calculator was used to calculate the optimum number of threads in a thread

block for the highest occupancy. The CUDA Occupancy calculator is an Excel workbook

where the user enters the Compute Capability of the device, threads per block, registers

per thread, and shared memory per block.

The number of registers per thread for a given kernel is obtained by compiling the

CUDA code with the option "--ptxas-options=-v". The compiler provides a

verbose output with this option and the number of registers for the kernel is provided in

this output. With this option it was determined that kernel k1 uses 25 registers per thread.

Figure 4.5 shows the graph generated by the CUDA Occupancy calculator. The

multiprocessor warp occupancy is highest for 192, 384 and 576 threads per block. Out of

these, the lowest block size of 192 was chosen so that the CUDA scheduling engine

would have the maximum flexibility to schedule the blocks on any SM.

After setting the thread block size to 192, the number of blocks was varied such

that the execution time for the serial and the GP-GPU code was approximately equal,

which allows for comparing the performance in terms of the quality of solution for both

the serial and parallel code.

 29

Figure 4.5: Multithreaded Warp Occupancy vs Threads Per Block from the

CUDA Occupancy Calculator

4.3 Cannon’s Algorithm

Traditional implementations of Cannon’s Algorithm have used MPI-based

clusters where each node computes a single block of the product matrix. In this regard,

this work investigates the performance of Cannon’s algorithm on a different parallel

architecture, a GP-GPU. While other fast and highly optimized libraries for matrix

multiplication such as CUBLAS [26] and MAGMA [27] exist for GP-GPUs, this work is

an investigation of the architectural portability of MPI-like implementations of Cannon’s

algorithm on the GP-GPU.

 In Cannon’s Algorithm [11], two matrices, each of size (NxN) are multiplied. The

algorithm uses P processors for computing the product matrix. Each processor computes

Selected Block Size

192

0

8

16

24

32

40

48

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

M
u

lt
ip

ro
c
e
s
s
o

r
W

a
rp

 O
c
c
u

p
a
n

c
y

(#
 w

a
rp

s
)

Threads Per Block

Impact of Varying Block Size

 30

an ((N/√P)x(N/√P)) block of the product matrix. Traditionally, Cannon’s Algorithm is

implemented on a two-dimensional mesh (√Px√P) of P processors. Two matrices, each of

size (NxN), are multiplied where each processor multiplies a sub-matrix of size

((N/√P)x(N/√P)) effectively dividing each matrix into P sub-matrices. This

implementation assumes that P is a perfect square and that N is a multiple of √P.

The first step in Cannon’s algorithm as shown in Figure 4.6, is dividing both

matrices into sub-matrices and then distributing them to the processors in the two-

dimensional mesh. Each of the matrices, A and B, is divided into a grid of sub-matrices of

the size, ((N/√P)x(N/√P)). In the next step, called skewing, each row i of this grid from

matrix A, is shifted left i times, with wraparound and each column i from the grid of

matrix B, is shifted i times upwards with wraparound. After the skewing phase, each

processor multiplies its two sub-matrices and accumulates the result in its product sub-

matrix. After each multiplication, each row from the sub-matrix grid of matrix A is

shifted left once (with wraparound) and each column from the sub-matrix grid of matrix

B is shifted up once (with wraparound). This process continues until all sub-matrices

have reached their starting locations at the end of skewing. Figures 4.6 and 4.7 together

depict a complete flowchart describing Cannon’s Algorithm.

 31

Consider two matrices A and B (each of size (NxN)) to be multiplied and the product matrix be C (NxN).

1. Consider a grid of P (√Px√P) processors.

2. Matrix A and B are divided into P sub-matrices each. Each sub-matrix is of the size

((N/√P)x(N/√P)).

 It must be noted here that each tile in the above grids of Matrix A and B, represents a sub-

matrix. Example: A(0,1) represents a sub-matrix of size ((N/√P)x(N/√P)) from main matrix A which

was of size (NxN).

P(0,0)

P(1,1) P(1,2)

P(0,2)P(0,1)

P(2,1)P(2,0)

P(1,0)

P(2,2)

√P

√
P

A(0,0)

A(1,1) A(1,2)

A(0,2)A(0,1)

A(2,1)A(2,0)

A(1,0)

A(2,2)

N

N

(N/√P)

(
N
/
√
P
)

B(0,0)

B(1,1) B(1,2)

B(0,2)B(0,1)

B(2,1)B(2,0)

B(1,0)

B(2,2)

N

N

(N/√P)

(
N
/
√
P
)

Figure 4.6: Flowchart Describing Steps Involved In Cannon’s Algorithm

 32

3. Each matrix is skewed. Each row i of grid of sub-matrices from A is shifted left i times with

wraparound and each column j of grid of sub-matrices from B is shifted up j times. The following

figure [29] shows the process of skewing for sub-matrices from A and B.

4. After skewing, each processor in the processor grid has the right sub-matrix from A and B. Each

processor multiplies the two sub-matrices available to it. After this, each sub-matrix from A is

shifted left once and each sub-matrix from B is shifted up once and the processors multiply the

two new sub-matrices available to them. Each processor accumulates the result of sub-matrix

multiplication in the product sub-matrix it is responsible for computing. The shifting of sub-

matrices and consequent multiplication and accumulation of new sub-matrices at each

processor continues until all the sub-matrices have reached the original position they had after

skewing.

Figure 4.7: Continued Flowchart Describing Cannon’s Algorithm

4.4 Cannon’s Algorithm Implementation

 The GP-GPU implementation differs from the previous MPI implementation [28]

in one major aspect, instead of sending and receiving sub-matrix blocks between

processors, no such communication is required on the GP-GPU between the processing

 33

elements. Instead both matrices are copied to the GP-GPU once at the start of

calculations and then copied back at the end of computation. A comparison of the GP-

GPU performance versus the serial implementation of the conventional matrix

multiplication O(n
3
) follows.

The GP-GPU implementation of Cannon’s Algorithm transfers both of the

matrices to the global memory of the GP-GPU in one operation. Individual threads on the

GP-GPU mimic the role of processors in the MPI implementation by multiplying sub-

matrices. Each thread requires the pointers to the sub-matrices as an input argument. The

use of pointers reduces the amount of communication required because after each

multiplication, only the pointers for an individual thread would change and no other data

communication is necessary.

The GP-GPU implementation uses flattened data structures, i.e. both matrices of

size (NxN) are converted into 1D arrays and then stored in row-major order in the GP-

GPU global memory. A sub-matrix is accessed through a pointer to the first element of

the sub-matrix. Therefore, to access a grid of sub-matrices, an array of pointers is used.

Each pointer in this array points to the first element of a specific sub-matrix. Hence, the

grid of sub-matrices is accessed using a 2D array of pointers. This 2D array itself is

flattened and is stored in a row-major format in the GP-GPU memory. Figure 4.8 shows

the architecture of the GP-GPU implementation of Cannon’s algorithm. The red blocks

refer to GP-GPU execution through a kernel and the blue boxes are implemented on the

host processor.

The GPU implementation of the algorithm consists of the following kernels:

 34

1. Pointer_assignX(): This kernel populates the pointers in the pointer array

with addresses to the starting elements of the sub-matrices. It takes as input the

dimensions of the processor array, which is (√Total number of threads) in the GP-

GPU implementation, pointer to the pointer array and the size of the main

matrices (N).

2. Row_shift_gpu(): Used to shift the rows of a matrix. This kernel shifts the

rows of the pointer array, which in turn shifts sub-matrices from one thread to

another. This kernel avoids unnecessary data transfers to the host and the

associated communication costs.

3. Col_shift_gpu(): Used to shift the columns of a matrix. Same as the above

kernel except this kernel shifts columns of the pointer array to shift the

corresponding sub-matrices.

4. Kernel_multiply(): Requires pointers to two sub-matrices as input

arguments. This kernel multiplies the two-submatrices and accumulates the

product sub-matrix for the given thread. This kernel performs the main

computation in the implementation. The multiplication of the sub-matrices is

performed just as in a traditional Cannon’s Algorithm using the O(n
3
)

multiplication for each sub-matrix multiplication.

 35

Figure 4.8: GP-GPU Implementation Of Cannon’s Algorithm

4.5 Summary

In this chapter we introduced both case studies and discussed the parallel

implementations for the GP-GPU platform including the program architecture used in

both applications. The Room Assignment problem’s GP-GPU implementation used

simultaneous threads for multiple move evaluation in each temperature iteration and the

GP-GPU parallelized search to select the best move. Our approach in the Room

Assignment problem shows that the GP-GPU solution naturally moves towards a faster

 36

solution starting with equalized runtimes as compared to the serial version. Cannon’s

Algorithm implementation used multiple threads as independent processing units to

compute product-submatrices and uses a shifting pointer array to implement movement

of sub-matrices from one thread in the processor grid to another. The next chapter will

discuss the results obtained from both case studies.

 37

CHAPTER FIVE

RESULTS AND ANALYSIS

In this chapter we discuss the results obtained for both case studies and provide an

analysis of these results. Section 5.1 discusses the results from the Room Assignment

problem including the basis for selecting a different cooling constant for the serial

version. Section 5.2 presents the performance results for the GP-GPU implementation of

Cannon’s Algorithm and contrasts it with the O(n
3
) x86 and MPI-based traditional

implementations.

5.1 Room Assignment

The performance of the GP-GPU implementation is evaluated by comparing the

improvement over the initial room assignments that was achieved by both versions

(improvement ratio). As mentioned in section 4.2.2, the constants related to the cooling

schedule were adjusted to make the runtime of the GP-GPU and the serial

implementations comparable, 0.999 and 0.999999 respectively. Table 5.1 shows the

runtimes of the serial version by increasing the cooling constant value (from 0.999 to

0.999999) for a problem size of 5000 people. From the table, the runtime with a cooling

constant of 0.999999 is closest to the runtime of the GP-GPU implementation using a

constant cooling constant of 0.999. With a cooling constant of 0.999, the GP-GPU

runtime for problem size 5000is 273.27 seconds and it produces an improvement ratio of

171.77, 75% better than the serial version.

 38

Table 5.1: Varying Cooling Constant for Serial Implementation of the Room Assignment

Problem

Value of Cooling Constant

for Serial Version

Runtime Duration for Serial

Version (seconds)

Improvement Ratio

achieved by Serial Version

0.999 0.27 20.67

0.9999 2.74 58.30

0.99999 27.37 96.77

0.999999 274.89 97.88

From Table 5.1 we see that if the cooling constant for the serial version was kept

the same as the GP-GPU version (0.999) a performance comparison with the GP-GPU

implementation would have been misleading because the GP-GPU version produces

higher improvement ratio but also a longer runtime while the serial version produces a

shorter runtime but also a lower improvement ratio. Further, even though there is not a

significant increase in the improvement ratio between 0.99999 and 0.999999, this is a

problem size specific issue. The same serial implementation for a problem size of 15000

people produces a higher improvement ratio (108.68 compared to 173.74) for 0.99999

versus 0.999999. Thus to increase the range of problem sizes comparable with this

adjustment of the cooling constant, 0.999999 was selected for the serial implementation.

As discussed, the problem size of 5,000 people was used when equalizing the

runtime of the two implementations; additional results were collected for problem sizes

of 10,000, 15,000 and 20,000 people using the same cooling schedule constants. Both

implementations use the gettimeofday() function to collect the runtime of the

algorithm. For each problem size, ten dislike-coefficient files were generated and each

 39

file was run ten times resulting in 400 executions of both the GP-GPU and serial

implementations.

 To achieve the best improvement ratio for the room assignments, a very high

initial temperature, 1.7x10
308

, was given to both implementations of the algorithm. The

program stops when the temperature variable (type: double) reaches the smallest

positive value possible for that data type. Figures 5.1, 5.2, 5.3 and 5.4 show the average

improvement ratios achieved by the parallel and the serial versions for each of the

problem sizes.

Figure 5.1: Average Improvement Ratios Achieved For 5000 people (Solution Quality)

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

Im
p

ro
ve

m
en

t R
at

io

File Number

Serial
GPGPU

 40

Figure 5.2: Average Improvement Ratios Achieved For 10000 People (Solution Quality)

Figure 5.3: Average Improvement Ratios Achieved For 15000 people (Solution Quality)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Im
p

ro
ve

m
en

t R
at

io

File Number

Serial

GPGPU

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Im
p

ro
ve

m
en

t R
at

io

File Number

Serial

GPGPU

 41

Figure 5.4: Average Improvement Ratios Achieved For 20000 people (Solution Quality)

While the execution time was equalized with a problem size of 5,000 people, the

execution time difference between the serial and parallel implementations remains small

for a problem size of 10,000 people as shown in Table 5.2. However, the performance of

the GP-GPU implementation was progressively faster than the serial version for problem

sizes 15000 and 20000. Table 5.2 shows the average runtimes for GP-GPU and serial

versions for problem sizes 5000, 10000, 15000 and 20000 using file #1 for each problem

size. It should be noted that file #1 is not the same file across different problem sizes

because the files are generated independently for different problem sizes. The same trend

in runtime difference is present from other files for each problem size. Figure 5.5 depicts

the data from Table 5.1 graphically showing the difference between the serial and GP-

GPU implementation average runtimes starting from problem size 5000 and how they

diverge for the larger problem sizes.

170

180

190

200

210

220

230

240

File 1 File 2 File 3 File 4 File 5 File 6 File 7 File 8 File 9 File 10

Im
p

ro
ve

m
en

t R
at

io

File Number

Serial

GP-GPU

 42

Table 5.2: Average Runtimes Comparison between GP-GPU and Serial Version across

Different Problem Sizes Using File #1 from Each Problem Size

Problem Size

(Number of People)

File Used Average runtime for

Serial Version

(seconds)

Average runtime for

GP-GPU version

(seconds)

5000 File #1 from

problem size 5k

274.89 273.27

10000 File #1 from

problem size 10k

299.46 299.62

15000 File #1 from

problem size 15k

354.19 318.92

20000 File #1 from

problem size 20k

432.89

327.14

Figure 5.5: Average Runtimes (File #1 for Each problem size)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

5000 10000 15000 20000

A
ve

ra
ge

 R
u

n
ti

m
es

 (s
ec

o
n

d
s)

Problem Size (Number of People)

Serial

GP-GPU

 43

Figure 5.6: Relation Between Improvement Ratio and Performance Difference

Comparing the GP-GPU and Serial implementations for Increasing Problem Sizes with

File #1 from Each Size. Values in brackets show (i) The Percentage Difference In

Solution Quality and (ii) the Speedup of the GP-GPU Implementation Over the Serial

Implementation.

From Figure 5.6 we see that the GP-GPU solution is naturally moving towards a

speedup with shorter runtimes than the serial version. Consider that at a problem size of

5000, the runtimes were equalized and the GP-GPU solution gave a 78% higher

improvement ratio; and for a problem size of 20000 people, the GP-GPU solution gave

(78% ↑, 1.01x)

(38% ↑, 1.00x)

(23% ↑, 1.11x)

(18% ↑, 1.32x)

0.00

50.00

100.00

150.00

200.00

250.00

5000 10000 15000 20000

Im
p

ro
ve

m
e

n
t R

at
io

 (
So

lu
ti

o
n

 Q
u

al
it

y)

Serial

GP-GPU

 44

an 18% higher improvement ratio 105 seconds faster than the serial implementation (1.3x

speedup). Finally, the GP-GPU solution delivered a solution that was of higher quality

than the serial version for all problem sizes.

Consider that the serial version of the Room Assignment problem goes through

~1.42x10
9
 time steps, which remains constant as the problem size increases. Similarly,

the GP-GPU version goes through ~1.42x10
6
 time steps, which also remains constant

with an increase in the problem size. Further, let ‘x’ be the number of memory

transactions performed by serial version per time step, which remains constant as the

problem size increases. Similarly, let ‘y’ be the number of memory transactions per time

step by the GP-GPU version, which also remains constant as the problem size increases.

Thus, for each implementation there is no increase in the number of computations or the

number of memory accesses to be performed. The only difference as the problem size

increases is an increase in the size of the data structures being accessed. Finally, consider

Figure 5.5 which shows the average runtimes for both the serial and the GP-GPU

versions with increasing problem size. As the problem size increases, the runtimes of the

serial version are increasing at a much higher rate than the GP-GPU version. We surmise

from this that the data distribution on the GP-GPU has more uniform access than the

serial version, which is contributing as a significant factor in GP-GPU’s increased

speedup compared to the serial version with the increase in problem size.

 45

5.2 Cannon’s Algorithm

The runtime of Cannon’s Algorithm on the GP-GPU was compared to a

conventional O(n
3
) matrix multiplication algorithm. Figures 5.7, 5.8, 5.9 and 5.10 show

the speedup achieved with Cannon’s Algorithm on the GP-GPU over the serial

multiplication. The speedup is measured with varying number of threads for multiplying

two matrices of a fixed size. Each thread computes a sub-matrix for the entire product

matrix.

Figure 5.7: Speedup for Matrix Size: 1000x1000

0

0.5

1

1.5

2

2.5

3

3.5

400 625 1600 2500

Sp
ee

d
u

p

Number of threads

 46

Figure 5.8: Speedup for Matrix Size: 2000x2000

Figure 5.9: Speedup for Matrix Size: 4096x4096

0

1

2

3

4

5

6

16 625 1600 2500

Sp
ee

d
u

p

Number of threads

0

1

2

3

4

5

6

64 1024 4096 16384

Sp
ee

d
u

p

Number of threads

 47

Figure 5.10: Speedup for Matrix Size: 8000x8000

In [28], the performance of a Cannon’s algorithm MPI implementation is

presented. A speedup of 150x with 64 processors is reported for a matrix size 4096x4096.

In comparison, Cannon’s Algorithm on the GP-GPU achieved a peak speedup of 4.8x

with 4096 threads. One factor contributing to this performance gap is the difference in the

cache size of the processing units for these implementations. To understand why cache

size plays an important role in Cannon’s Algorithm consider the code provided in Figure

5.11, which runs on the parallel processors used in Cannon’s Algorithm. During each

iteration of the outermost loop i, each element of sub-matrix B is read into the cache [1].

If the size of sub-matrix B is too large, then the elements of B that were read into the

cache earlier are flushed, and they must be re-read on the next iteration of i. This

overhead affects the performance of the code because of additional delay in fetching data

from memory again when the cache is too small to hold the entire sub-matrix.

0

1

2

3

4

5

6

7

625 1600 2500 6400

Sp
e

e
d

u
p

Number of threads

 48

for (i=0; i<n; i++)

 for(j=0; j<n; j++)

 {

 for(k=0; k<n; k++)

 {

 C[i][j]+=A[i][k]*B[k][j];

 }

 }

Figure 5.11: Sample Code for Sub-Matrix Multiplication

 The MPI implementation in [28] uses a quad core Intel Xeon 2.8 GHz processor,

which has a L1 cache of 64 KB per core. This cache is divided into two equal parts: 32

KB for instruction cache and 32 KB for data cache. The GP-GPU implementation uses

CUDA Streaming Processors as the executing units with a L1 cache of 64 KB for 32

Streaming Processors, because 32 streaming processors are grouped together to form a

Streaming Multiprocessor (SM) and each SM has a L1 cache of 64 KB. Thus 32

streaming processors must share 64 KB. Additionally, the entire 64 KB is not available

for caching purposes but rather it is split into two parts: one part of 16 KB and another of

48 KB. CUDA allows the programmer to configure which of these two parts should be

used for L1 caching purpose and which should be used for shared memory purpose with

the function cudaFuncSetCacheConfig(). To increase the performance on the GP-

GPU, this function was configured to use 48 KB for caching purpose and 16 KB for

shared memory. This optimization improved the speedup from 4.2x to 4.8x for a matrix

size of 4096x4096 with 4096 threads. We also found that the speedup remained more or

 49

less constant for the same matrix size with 1024 threads. This is expected, since with

fewer threads, the size of the sub-matrices operated on by a single thread increases and a

small increase in cache size will not affect the run time in these cases. However, with a

higher number of threads, the size of the sub-matrices operated on by each thread reduces

and the same amount of cache size increase leads to more speedup. Therefore, even

though the GP-GPU runs at 1.59 GHz with 512 CUDA cores, the difference in

architecture, more specifically, the difference in cache size impacts the performance of

the algorithm significantly.

5.3 Summary

This chapter presented results obtained from both case studies including

discussion on both with varying problem sizes. The parallel version of the Room

Assignment problem provided higher quality solutions than the serial version for all

problem sizes tested. Up to 78% higher improvement ratio was achieved for the GP-GPU

implementation over the serial version. The GP-GPU implementation exhibited a

speedup over the serial version as the problem size increased. We attribute this to the data

distribution on the GP-GPU being much more uniformly accessible than that on the serial

version (x86) due to the memory partitioning of the GP-GPU. Cannon’s Algorithm on the

GP-GPU achieved a peak speedup of 6.2x for a matrix size of 8000x8000. Its

performance with matrix size 4096x4096 was contrasted with an MPI based Cannon’s

Algorithm implementation. The next chapter offers some conclusions and outlines

possible future work related to both case studies.

 50

CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

In this research, two application case studies were implemented on a GP-GPU

platform, the Room Assignment problem solution with Simulated Annealing and

Cannon’s Algorithm for matrix-matrix multiplication. The performance characteristics of

both applications were studied with varying problem sizes.

6.1 Conclusions

The Room Assignment Problem was implemented on the GP-GPU using CUDA

and performance results were explored on this architecture. The GP-GPU architecture

and implementation proved to be a suitable candidate to a previous implementation in [3],

which was implemented on x86 processors. We could not find any published results in

the literature for the Room Assignment problem with Simulated Annealing on a GP-GPU

architecture and this is the first set of published results on the GP-GPU, to the best of our

knowledge. The GP-GPU version was highly parallelized and outperformed the serial

implementation in terms of the improvement ratio metric when both were allowed to

execute for a comparable amount of runtime. The runtimes were made comparable for a

problem size of 5000 by adjusting the cooling constants of both the serial and the parallel

implementations to give comparable runtimes. Both versions were tested with these same

constants for problem sizes 10000, 15000 and 20000 people. The GP-GPU version was

able to achieve up to 78% higher improvement ratio over the sequential implementation

in a comparable amount of runtime for a problem size of 5000 people. For the largest

problem size tested, 20000 people, the GP-GPU solution provided up to 18% higher

 51

improvement ratio 105 seconds faster than the serial implementation, a speedup of 1.3x.

We observe that our GP-GPU results are in agreement with expected Monte Carlo and

Simulated Annealing-based solutions where higher quality of solutions is inversely

related to runtime. The large number of parallel compute resources on the GP-GPU

architecture allowed each parallel thread to generate and evaluate moves independently.

Further, the availability of the CUDA CURAND library to generate parallel random

numbers for random perturbations was also highly instrumental in the realization on the

GP-GPU platform. Finally a GP-GPU parallelized search was used to search through

these generated moves, select the best move, and apply it to the global configuration. The

results from this implementation clearly establish the GP-GPU architecture as a suitable

candidate for future problems that use Simulated Annealing techniques.

The second algorithm studied in this work was a GP-GPU implementation of

Cannon’s Algorithm. The GP-GPUs have reached a point where they offer a very high

number of parallel compute cores and a large amount of device (global) memory. These

characteristics make them an interesting candidate for cluster applications that have

traditionally been implemented with MPI. In this regard, a common MPI application was

implemented on the GP-GPU architecture to study how well it maps to the platform. The

Cannon’s Algorithm achieved a peak speedup of 6.2x over a O(n
3
) conventional matrix

multiplication implementation. The GP-GPU implementation was also compared to a

conventional MPI implementation of Cannon’s Algorithm found in [28], which reported

a speedup of up to 150x with 64 processors for matrix size 4096x4096. For the same

matrix size, the GP-GPU implementation achieved a peak speedup of 4.8x. The wide gap

 52

in performance between the two architectures was concluded to be due to the small cache

size of the GP-GPU architecture. The inference drawn from the results of Cannon’s

Algorithm was that while most algorithm implementations on an x86 architecture make

memory management invisible to the programmer, to get the best results on the GP-GPU,

it is essential to manually optimize memory access for the algorithm at each hierarchy of

memory (i.e. device global memory, block shared memory, the L1 cache etc.). This need

for manual control is mainly due to the GP-GPU architecture approach: very high ratio of

compute-cores to memory and the fast memory resources are small and must be manually

tuned.

6.2 Future Work

As a future work it would be interesting to implement the Room Assignment

problem with OpenCL and compare its performance against the CUDA-based version.

Additionally, it would be very insightful to study the performance obtained by evaluating

more than one move in each parallel thread, in contrast to current implementation, where

each thread is evaluating a single move. Another possible future work, would be to

quantify how the quality of solution varies when the runtimes are equalized for every

problem size, in contrast to our current implementation where we explored the

performance of GP-GPU solution by keeping the cooling constant fixed. It would also be

interesting to compare the performance of the GP-GPU version against a similar, highly-

parallelized version using MPI.

For Cannon’s Algorithm, it can also be implemented with OpenCL and run on

different GP-GPUs (i.e. those from AMD) to compare and characterize performance

 53

versus the x86 platform. Intel’s Many Integrated Cores (MIC) co-processors would also

be an interesting architecture to investigate with this algorithm and compare performance

against NVIDIA’s GP-GPUs, since Intel claims the compute cores on this new platform

to be very similar to Intel Processor cores that most developers are familiar with. Another

possible future investigation would compare the performance of Cannon’s algorithm

where the threads that are organized in a block, cooperate among themselves, to better

utilize the cache available to them. For example, using a block multiply scheme that is

optimized based on the cache size.

6.3 Contributions

This research presented a solution for the Room Assignment problem on the GP-GPU

architecture based on Simulated Annealing. The performance results from Cannon’s

algorithm on GP-GPUs highlighted the inherent architectural differences between the two

platforms (x86 and GP-GPUs) and quantified the difference it can make in the

performance of Cannon’s algorithm.

 54

APPENDICES

 55

Appendix A

Room Assignment Problem GP-GPU and Serial Runtime Results

Table A-1: Results from Serial Implementation for Problem Size-5000 People

File # Avg. Improvement

Ratio

Improvement Std.

Deviation

Avg.

Runtime (s)

Runtime Std.

Deviation (s)

File 1 96.75 0.92 274.89 0.34

File 2 99.46 1.94 275.09 0.33

File 3 96.77 1.44 275.60 1.93

File 4 97.25 1.41 275.10 0.44

File 5 97.63 1.57 274.96 0.33

File 6 98.24 1.70 275.77 1.82

File 7 98.49 2.10 275.03 0.35

File 8 97.36 1.69 275.03 0.39

File 9 98.90 0.82 274.97 0.15

File 10 97.84 2.04 274.89 0.14

Table A-2: Results from GP-GPU Implementation for Problem Size-5000 People

File # Avg. Improvement

Ratio

Improvement Std.

Deviation

Avg.

Runtime (s)

Runtime Std.

Deviation (s)

File 1 171.77 1.92 273.2735 0.20

File 2 172.58 2.65 273.39 0.23

File 3 172.26 3.18 273.44 0.31

File 4 171.95 3.13 273.42 0.33

File 5 173.34 2.48 273.56 0.36

File 6 173.58 2.77 273.48 0.30

File 7 174.83 3.12 273.38 0.28

File 8 171.42 2.29 273.53 0.23

File 9 174.36 2.32 273.40 0.28

File 10 173.92 2.74 273.44 0.31

 56

Table A-3: Results from Serial Implementation for Problem Size-10000 People

File # Avg. Improvement

Ratio

Improvement Std.

Deviation

Avg.

Runtime (s)

Runtime Std.

Deviation (s)

File 1 137.96 1.98 299.46 0.68

File 2 137.28 2.26 298.84 0.39

File 3 137.96 1.56 298.60 0.59

File 4 137.26 1.15 298.60 0.75

File 5 141.29 1.50 299.27 1.81

File 6 140.41 1.19 298.83 0.69

File 7 140.14 2.02 298.57 0.63

File 8 138.71 0.94 299.03 0.74

File 9 139.58 1.72 298.93 0.62

File 10 136.46 1.15 298.62 0.60

Table A-4: Results from GP-GPU Implementation for Problem Size-10000 People

File # Avg. Improvement

Ratio

Improvement Std.

Deviation

Avg.

Runtime (s)

Runtime Std.

Deviation (s)

File 1 189.94 1.93 299.6212 0.47

File 2 188.97 2.26 299.37 0.29

File 3 191.11 1.57 299.67 0.35

File 4 191.15 2.39 299.48 0.26

File 5 192.71 3.28 299.35 0.33

File 6 194.63 2.92 299.45 0.44

File 7 192.95 1.96 299.55 0.63

File 8 192.47 2.77 299.46 0.39

File 9 191.91 1.97 299.70 0.26

File 10 191.57 2.64 299.36 0.25

 57

Table A-5: Results from Serial Implementation for Problem Size-15000 People

File # Avg. Improvement

Ratio

Improvement Std.

Deviation

Avg.

Runtime (s)

Runtime Std.

Deviation (s)

File 1 173.74 2.13 354.19 1.19

File 2 170.56 1.17 353.42 1.73

File 3 172.23 2.39 354.61 1.65

File 4 172.65 1.64 355.83 2.49

File 5 171.57 1.75 354.80 2.17

File 6 172.09 1.79 354.49 1.79

File 7 170.80 1.67 354.81 1.52

File 8 171.28 1.26 354.96 1.46

File 9 172.65 1.84 355.41 1.36

File 10 171.17 1.01 355.94 1.80

Table A-6: Results from GP-GPU Implementation for Problem Size-15000 People

File # Avg. Improvement

Ratio

Improvement Std.

Deviation

Avg.

Runtime (s)

Runtime Std.

Deviation (s)

File 1 212.95 1.24 318.92 0.25

File 2 210.70 1.62 318.64 0.37

File 3 212.96 1.73 318.70 0.40

File 4 212.83 2.04 318.66 0.36

File 5 210.81 1.87 318.65 0.40

File 6 212.34 2.50 318.76 0.45

File 7 211.09 1.80 318.57 0.43

File 8 210.84 1.86 318.79 0.37

File 9 212.39 2.11 318.45 0.39

File 10 211.06 2.65 318.67 0.33

 58

Table A-7: Results from Serial Implementation for Problem Size-20000 People

File # Avg. Improvement

Ratio

Improvement Std.

Deviation

Avg.

Runtime (s)

Runtime Std.

Deviation (s)

File 1 195.18 1.88 432.89 1.14

File 2 193.14 1.82 437.46 6.08

File 3 195.12 1.74 439.09 4.48

File 4 194.31 1.06 434.67 3.83

File 5 194.72 1.73 435.16 2.15

File 6 193.08 1.58 433.30 1.50

File 7 194.41 1.87 433.75 1.12

File 8 195.62 1.69 435.64 2.52

File 9 195.20 2.11 435.72 2.52

File 10 192.60 1.37 435.26 1.46

Table A-8 Results from GP-GPU Implementation for Problem Size-20000 People

File # Avg. Improvement

Ratio

Improvement Std.

Deviation

Avg.

Runtime (s)

Runtime Std.

Deviation (s)

File 1 230.44 1.66 327.14 0.26

File 2 228.57 1.40 326.97 0.28

File 3 230.55 1.54 327.37 0.53

File 4 228.78 1.47 328.04 0.39

File 5 230.11 1.88 327.91 0.36

File 6 229.21 2.36 328.07 0.30

File 7 228.84 1.97 327.90 0.31

File 8 230.12 2.64 328.00 0.30

File 9 228.99 2.00 327.60 0.36

File 10 226.39 2.27 326.89 0.30

 59

Appendix B

Results from Cannon’s Algorithm Implementation

Table B-1: Conventional O(n
3
) Matrix Multiplication Runtimes

Matrix Size (N) for NxN Average Runtime (seconds)

1000 5.37

2000 66.17

4096 640.56

8000 4810.56

Table B-2: Runtime Results from Cannon’s Algorithm

Implementations with Optimized Cache Size for Matrix Size

1000x1000

Number of Threads Average Runtime(seconds) Speedup

400 3.20 1.68

625 2.56 2.10

1600 1.64 3.28

2500 1.82 2.95

Table B-3: Runtime Results from Cannon’s Algorithm

Implementations with Optimized Cache Size for Matrix Size

2000x2000

Number of Threads Average Runtime(seconds) Speedup

16 237.98 0.28

625 19.05 3.47

1600 12.09 5.47

2500 13.28 4.98

 60

Table B-4: Runtime Results from Cannon’s Algorithm

Implementations with Optimized Cache Size for Matrix Size

4096x4096

Number of Threads Average Runtime(seconds) Speedup

64 705.09 0.91

1024 134.41 4.77

4096 132.25 4.84

16384 138.07 4.64

Table B-5: Runtime Results from Cannon’s Algorithm

Implementation with Optimized Cache Size for Matrix Size

8000x8000

Number of Threads Average Runtime(seconds) Speedup

625 1234.27 3.90

1600 775.94 6.20

2500 936.76 5.14

6400 1069.79 4.50

Table B-6: Runtime Results from Cannon’s Algorithm

Implementation without Optimized Cache Size for Matrix Size

1000x1000

Number of Threads Average Runtime(seconds) Speedup

400 3.22 1.67

625 2.52 2.13

1600 1.70 3.16

2500 2.03 2.64

 61

Table B-7: Runtime Results from Cannon’s Algorithm

Implementation without Optimized Cache Size for Matrix Size

2000x2000

Number of Threads Average Runtime(seconds) Speedup

16 237.97 0.28

625 19.24 3.44

1600 12.87 5.14

2500 15.30 4.33

Table B-8: Runtime Results from Cannon’s Algorithm

Implementation without Optimized Cache Size for Matrix Size

4096x4096

Number of Threads Average Runtime(seconds) Speedup

64 705.05 0.91

1024 133.36 4.80

4096 149.63 4.28

16384 143.76 4.46

Table B-9: Runtime Results from Cannon’s Algorithm

Implementation without Optimized Cache Size for Matrix Size

8000x8000

Number of Threads Average Runtime(seconds) Speedup

625 1277.00 3.77

1600 821.99 5.85

2500 1047.72 4.59

6400 1154.04 4.17

 62

References
[1] Quinn, M. J., Parallel Programming in C with MPI and OpenMP, McGraw Hill,

2004.

[2] Kirckpatrick, S., C. Gelatt, and M. Vecchi, "Optimization by Simulated Annealing,"

Science, Vol. 220, Issue 4598, pp.671-680, 1983.

[3] Lazarova, M., "Parallel Simulated Annealing for Solving the Room Assignment

Problem on Shared and Distributed Memory Platforms," CompSysTech '08

Proceedings of the 9th International Conference on Computer Systems and

Technologies and Workshop for PhD Students in Computing, ACM New York, NY,

USA, 2008.

[4] Martinez-Alfaro, H., J. Minero, G. E. Alanis, N. A. Leal, and I. G. Avila, "Using

Simulated Annealing to solve the Classroom Assignment Problem," Proceedings of

International Conference on Intelligent Systems Technologies, Cancun, Mexico,

1996.

[5] Stivala, A. D., P. J. Stuckey, and A. I. Wirth, "Fast and Accurate protein

substructure searching with simulated annealing and GPUs," BMC Bioinformatics,

Vol. 11, 2010.

[6] Han, Y., S. Roy, and K. Chakraborty, "Optimizing Simulated Annealing on GPU: A

Case Study with IC Floorplanning," 12th International Symposium on Quality

Electronic Design, Santa Clara, CA, pp.1-7, 2011.

[7] Lee, H.-J., J. P. Robertson, and J. A. Fortes, "Generalized Cannon's Algorithm for

Parallel Matrix Multiplication," ICS '97 Proceedings of the 11th international

conference on Supercomputing, ACM New York, NY, USA, 1997.

[8] Alpatov, P., G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt,

"PLAPACK: Parallel Linear Algebra Package," Supercomputing Conference 1997,

pp. 29, 1997.

[9] Alqadi, Z. A., M. Aqel, and I. M. El Emary, "Performance Analysis and Evaluation

of Parallel Matrix Multiplication Algorithms," World Applied Sciences Journal,

Vol. 5, pp.211-214, 2008.

[10] Jaeyoung, C., D. W. Walker, and J. J. Dongarra, "Level 3 BLAS for distributed

memory concurrent computers," CNRS-NSF collaboration workshop on

environments and tools for parallel scientific computing, St. Hilaire du Touvet

(France), 1992.

 63

[11] Cannon, L. E., "A Cellular Computer to Implement the Kalman Filter Algorithm,"

Ph.D. Thesis, Montana State University, 1969.

[12] Agarwal, R. C., S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, "A three-

dimensional approach to parallel matrix multiplication," IBM Journal of Research

and Development, Vol. 39, Issue 5, pp. 575, 1995.

[13] Jaeyoung, C., D. W. Walker, and J. J. Dongarra, "Pumma: Parallel universal matrix

multiplication algorithms on distributed memory concurrent computers,"

Concurrency: Practice and Experience, Vol. 6, Issue 7, pp. 543-570, 1994.

[14] Chtchelkanova, A., J. Gunnels, G. Morrow, J. Overfelt, and R. A. van de Geijn,

"Parallel Implementation of BLAS: General Techniques for Level 3 BLAS,"

Concurrency: Practice and Experience, Vol. 9, No. 9,pp.837-857, 1997.

[15] Choi, J., Dongarra, J. J., R. Pozo, and D. W. Walker, "ScaLAPACK: A Scalable

Linear Algebra Library for Distributed Memory Concurrent Computers,"

Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel

Computation, McLean, VA, USA, 1992.

[16] Ismail, M. A., D. Mirza, and D. Altaf, "Concurrent Matrix Multiplication on Multi-

Core Processors," International Journal of Computer Science and Security, Vol-5,

Issue-2, pp.168-297, 2011.

[17] NVIDIA CUDA C Programming Guide, Ver-4, 2011.

[18] CUDA Thrust Library, http://code.google.com/p/thrust/.

[19] Gale, D., and L. Shapley, "College Admission and the Stability of Marriage," The

American Mathematical Monthly, Vol. 69, No. 1 (Jan., 1962), pp. 9-15, 1962.

[20] Irving, R. W., "An Efficient Algorithm for the "Stable Roommates" Problem,"

Journal of Algorithms, Vol. 6, Issue 4, pp.577-595, 1985.

[21] Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, "Equation

of State Calculations by Fast Computing Machines," The Journal of Chemical

Physics, Vol. 21, No. 6, 1953.

[22] Nishimura, T., and M. Matsumoto, http://www.math.sci.hiroshima-u.ac.jp/~m-

mat/MT/MT2002/CODES/mt19937ar.c. Retrieved from

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html.

[23] Landau, R. H., and M. J. Paez, Computational Physics Problem Solving with

Computers, pp.303, John Wiley and Sons, 1997.

 64

[24] NVIDIA CURAND Library Guide, 2010.

[25] Harris, M., "Optimizing Parallel Reduction in CUDA,"

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reductio

n/doc/reduction.pdf.

[26] NVIDIA CUDA CUBLAS Library,

http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUBLAS_Li

brary_3.1.pdf, 2010.

[27] Nath, R., S. Tomov, and J. Dongarra, "A Improved MAGMA GEMM for Fermi

GPUs," International Journal of High Performance Computing Applications, Vol.

24, No. 4, 2010.

[28] Bartlett, S., "Comparison of Parallel Programming Paradigms," B.Sc.

Thesis,University of Bath, 2010.

[29] Cannon Algorithm Schematic,

http://www.cs.berkeley.edu/~demmel/cs267/lecture11/lecture11.html.

	Clemson University
	TigerPrints
	12-2011

	Analysis and Implementation of Room Assignment Problem and Cannon's Algorithm on General Purpose Programmable Graphical Processing Units with CUDA
	Harsh vardhan Dwivedi
	Recommended Citation

	tmp.1387585722.pdf.hs3SV

