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ABSTRACT 

The integrity of the genetic information encoded by DNA is essential to all living 

organisms, yet the reactive bases of DNA are constantly attacked by endogenous and 

exogenous agents resulting in as many as one million individual molecular lesions per 

cell per day. Excessive DNA damage or deficiency in DNA repair enzymes may cause 

cancer, premature aging, and neurodegenerative diseases.  

Endonuclease V (Endo V) is a DNA repair enzyme which can recognize all four 

types of DNA deamination products, specifically, uracil, hypoxanthine, xanthine and 

oxanine. It was also shown that endo V can recognize mismatches. We screened about 60 

mutants of endo V from Thermotoga maritima and found some mutants had altered base 

preferences for mismatches. Tma endo V Y80A was shown to become a C-specific 

mismatch endonuclease. G13D mutation in K-ras oncogene which was not recognized by 

wild type Tma endo V was successfully cleaved by Tma endo V Y80A. This study 

provides valuable information on base recognition and active site organization of Tma 

endo V. Tma endo V mutants can be used for cancer mutation scanning and mutation 

recognition. 

In order to further understand the role of Y80 of endo V in base recognition, we 

substituted the Y80 with sixteen amino acids. Together with three Y80 mutants isolated 

before, we characterized all nineteen mutants of Tma endo V Y80 using deaminated base-

containing DNA substrates and mismatch-containing DNA substrates. This 

comprehensive amino acid substitution at a single site (Y80) underlines the importance of 

aromatic ring and hydrogen bond donor capacity in base recognition by endo V, reveals 
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additional Y80 mutants with altered base preferences in mismatch cleavage, and offers 

new insight on the role of Y80 in base recognition.  

Though endo V was shown to be important for repair of deaminated lesions in 

vivo, its DNA repair pathway remains unknown. In order to understand the DNA repair 

pathway mediated by endo V, we have developed a cell-free system from Escherichia 

coli. The preliminary results indicated that the repair patch of endo V mediated DNA 

repair pathways may consist of a long patch and a short patch repair pathway.  
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CHAPTER ONE 

Repair of Deaminated Lesions and Applications of Endonuclease V 

 

I. Introduction 

DNA is constantly being attacked by exogenous and endogenous agents. Over one 

million damage incidences occur in DNA per cell per day (1), mostly by oxidation, 

ionizing radiation, UV radiation, alkylation, hydrolysis, thermal disruption, and 

deamination. In the following reviews, I will address the DNA damages caused by 

deamination and the enzymes involved in deamination DNA repair; in particular, 

endonuclease V, a DNA repair enzyme capable of repairing all four deaminated DNA 

lesions will be discussed in detail. Last, I will cover DNA damage recognition 

mechanisms.   

 

II. Deaminated lesions and related enzymes 

Guanine has two major deamination products: xanthine (Xan) and oxanine (Oxa), 

while the deamination of adenine, cytosine, and 5-methylcytosine leads to hypoxanthine, 

uracil, and thymine respectively. In this review, I will focus on nitrosative deamination of 

DNA and related repair enzymes and pathways. 
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A. How does deamination occur? 

1. Spontaneous hydrolytic deamination 

There are many sources of deamination in DNA. The most common one is 

spontaneous hydrolytic deamination. Hydrolytic deamination of cytosine has been

estimated to introduce between 100 and 500 uracil residues in the form of U:G 

mismatches per cell per day (2). Deamination of adenine to hypoxanthine is about 10-fold 

less frequent (2, 3). In the spontaneous hydrolytic deamination, protonated cytosine is 

thought to undergo direct attack by hydroxyl group from water at the fourth position of 

the pyrimidine, this may be the main reaction under physiological condition (Figure 1.1) 

(4). Another pathway involves formation of dihydrocytosine (5, 6). 

 

 
 
Figure 1.1 Pathways of cytosine hydrolytic deamination. 1. The first pathway includes 
direct attack of the fourth position of the pyrimidine by hydroxylion. This is the main 
mode of cytosine deamination under physiological conditions. 2. The second pathway 
occurs via dihydrocytosine formation as an intermediate. Taken from (4). 
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Spontaneous hydrolytic deamination is enhanced by heat, acidic pH and basic pH. 

The rate constant of the cytosine deamination in single strand DNA is 2·10–10 sec–1 at 

37°C. In double-stranded DNA, the rate of cytosine deamination in vitro is about 3000-

fold less (7). Pyrimidine bases are more susceptible to spontaneous deamination than are 

the purine bases (5, 7). Purine bases, however, are more easily deaminated by nitrous acid 

(8). 

 

2. Nitrosative deamination   

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are 

continuously produced in cells as by-products of aerobic metabolism or in response to 

stresses. ROS/RNS are known to play a dual role in biological systems, since they can be 

either harmful or beneficial to living organisms. ROS/RNS are integral parts of the host 

defense and are released by activated white blood cells in response to bacterial and viral 

infection in human (9). ROS/RNS also act as messengers in signaling pathways (10, 11). 

ROS includes several oxygen radicals, superoxide (O2
·-) and its protonated form, 

hydroperoxyl (HO2
·), hydroxyl (OH·), peroxyl (RO2

·), alkoxyl (RO·). ROS also includes 

some nonradicals such as hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and 

ozone (O3), which are oxidizing agents and are easily converted into radicals. DNA 

oxidative damage can result in base or sugar adducts, single and double strand breaks, as 

well as cross-links to other molecules. Most of these DNA modifications are mutagenic, 

and thought to be related to cancer, aging and neurodegenerative diseases (12-14). 

Oxidative damage to pyrimidine and purine bases has been well characterized. The most 

common pyrimidine lesion, thymine glycol can block replication and transcription (15). 
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The most common and extensively studied purine modification is 8-oxodeoxyguanine (8-

oxodG). It is formed by the addition of HO· to C-8 of guanine. It can cause G:C to A:T 

transversion mutation (16). RNS includes nitric oxide (NO·), nitrate (NO3
-), nitrite (NO2

-

), peroxynitrite (ONOO–), nitrogen dioxide, and peroxynitrous acid (ONOOH). They can 

be converted to more active N2O3 which can induce nitrosative deamination of DNA 

(Figure 1.2) (10, 17).  

 

 
 
Figure 1.2 Nitrosative deamination of cytosine. Taken from (17).  

 

Increasing evidence shows that chronic inflammation is a risk factor for the 

development of a variety of human cancers (18-20). Although the mechanisms of 

carcinogenesis associated with inflammation are not fully understood, it is suggested that 

DNA damage by reactive oxygen species and reactive nitrogen species secreted by 
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activated macrophages and neutrophils is one of the mechanisms. Nitric oxide (NO) can 

be generated endogenously through the oxidation of L-arginine by nitric oxide synthases 

(21). NO exists in various cells after infection, chemical stimulation, and inflammation. 

NO is produced at the surface of the endothelial cells following the addition of 

bradykinin and in activated macrophages (22). Activated macrophages generate NO at a 

rate of 6 pmol s–1 per 106 cells (23). NO also can be formed by the combustion of fossil 

fuels and smoking of cigarettes (24). NO concentrations in the atmosphere of large cities 

range from 0.040 ppm to 0.077 ppm due to emissions from motor vehicle (24, 25). 

Cigarettes smoke contains 80–110 ppm NO (26). Approximately 80% of NO was 

absorbed during human breathing (27). The NO reacts quickly with O2 to generate nitrous 

anhydride (N2O3),
 a potent nitrosating agent that causes deamination of aromatic amines 

by formation of an aryl diazonium ion (28). G:C to A:T mutations at CpG sites 

containing 5'-methylcytosine may result from the deamination of 5-methylcytosine to 

thymine (29). The deamination of cytosine to uracil causes G:C to A:T mutations by 

pairing of uracil with adenine (30). Deamination of guanine to xanthine causes G:C to 

A:T mutations by pairing of xanthine with thymine (17). The deamination of adenine to 

hypoxanthine causes A:T to G:C mutations by pairing of hypoxanthine with cytosine 

(17). 

 

3. Deaminase caused deamination 

In 1999, Muramatsu and colleagues found a novel RNA-editing deaminase named 

activation-induced cytidine deaminase (AID) (31). Later, it was found that AID can 

catalyze deamination of dC residues on single-stranded DNA in vitro (32).  The dC to dU 
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deamination activity was most avid on double-stranded DNA substrates containing a 

small "transcription-like" single-stranded DNA bubble (32). 

When human AID is expressed in yeast, which does not have a DNA deaminase, 

it causes increased C:G to U:G mutation (33). Recently, researchers showed that AID is 

necessary in mouse and human for the somatic hypermutation (SHM) and class-switch 

recombination (CSR) of immunoglobulins (Igs) (34, 35). Patients with AID deficiencies 

suffer recurrent infections due to autoimmune disorders (34, 36). AID is not only 

required for a healthy immune system to fight off pathological invaders but also 

necessary for bioenergetics (37, 38, 39). Though we need deaminases to help immune 

system to fight pathogens, too many of them may increase the chance of cancer. 

I will discuss the deaminated lesions and related enzymes in the following 

sections. 

 

B. Occurrence of uracil in DNA and related repair enzymes 

1. dUTP formation and regulation in DNA 

dUTP (2´-deoxyuridine 5´-triphosphate) is one of the nucleotides in living 

organisms. It takes part in several chemical reactions in cells.  dUTP can be formed from 

the reaction of a DNP kinase on dUDP (40). It can be generated from UTP by a 

ribonucleotide reductase in E. coli (41). dUTP also can be produced by dCTP deaminase 

through deamination of dCTP (42). dUTP is consumed in the dUTPase reaction where 

the dUMP is utilized as precursor for the synthesis of thymine nucleotides by the enzyme 

thymidylate synthase (43). Anticancer agents, such as 5-fluorouracil (5-FU), 

fluorodeoxyuridine (FUdR), and xeloda (capecitabine) can inhibit the thymidylate 
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synthase activity, leading to dUTP accumulation, uracil misincorporation into DNA, and 

uracil-DNA glycosylase-induced strand breaks, ultimately result in cell death (44). Uracil 

in DNA results from either deamination of cytosine or misincorporation of dUTP, giving 

rise to mutagenic U:G mispairs and less harmful U:A respectively. U:A pairs, though not 

miscoding, may yield cytotoxic and potentially mutagenic abasic sites (45). The 

concentration of dUTP in vivo is regulated by DNP kinase, ribonucleotide reductase, 

dCTP deaminase, and dUTPase (Figure 1.3) (46). 

 

 
 
Figure 1.3 The de novo pathway of pyrimidine deoxynucleotide synthesis. Individual 
enzymes are identified. Dotted arrows indicate enzymic activities, so far only found in E. 
coli and other enterobacteria. Dashed arrow indicates enzymic activities not found in E. 
coli but observed in a majority of other organisms. Taken from (46).  
 

Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is the key regulator of 

cellular dUTP pool. dUTPase acts in hydrolyzing dUTP to dUMP and inorganic 

pyrophosphate. This reaction not only provides the precursor for de novo dTMP synthesis  
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but also decreases intracellular dUTP level and reduces the probability that dUTP will be  

incorporated into DNA by DNA polymerases during replication and repair processes 

(47). dUTPase can be classified into two groups, one is extremely specific to dUTP while 

the other has broader enzyme specificity. The dUTPases that work exclusively on dUTP 

are almost ubiquitous in nature. dUTPases from animals, higher plants, fungi, bacteria 

and viruses (DNA and RNA viruses) have been characterized, which consist of three 

identical subunit polypeptides, each of approximately 150 amino acid residues (47-50). 

The other group of dUTPases which is less well known consists of the enzymes from 

protozoa like Leishmania and Trypanosoma (51, 52). The members of this group differ in 

sequence from the dUTPase in the first group. The active form of dUTPase of this group 

is homodimer and the enzymes have broader specificity. dUTPase from Leishmani and 

Trypanosoma can hydrolyze both dUTP and dUDP (53, 54). The activity of dUTPase is 

not sufficient to protect against the presence of uracil in the genome. A small, steady-

state concentration of dUTP is present in cells at all times that can be incorporated into 

DNA by polymerases. In addition to this, cytosine deamination also cause considerable 

amount of the uracil in the genome.  Cells need a mechanism to remove the uracil from 

the DNA. 

 

2. Enzymes that recognize uracil in DNA 

Uracil lesion in DNA is mainly repaired by uracil glycosylases through Base 

Excision Repair pathway (55). 
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a. Uracil-DNA glycosylase (UDG) 

In E. coli, Uracil-DNA glycosylase (UDG) and mismatch-specific uracil-DNA 

glycosylase (MUG) can recognize uracil residues in DNA and cleave N-glycosidic bond 

between uracil and deoxyribose sugar. In 1974, Lindahl first discovered the E. coli uracil 

DNA glycosylase which is the first glycosylase discovered (56). The E. coli UDG gene 

(ung) was also the first uracil DNA glycosylase cloned (57) and sequenced (58). UDG is 

inhibited by free uracil and some of its derivatives (59, 60). Interestingly, a family of 

bacteriophages including PBS1 and PBS2 which infect the bacteria Bacillus subtilis 

incorporate uracils instead of thymines into their genomes (61, 62). PBS1 and PBS2 have 

a UDG inhibitor protein (Ugi) to avoid these futile repair cycles by the host UDG (63, 

64). E. coli UDG removes uracil both from single-stranded and duplex DNA (65). 

Researchers have shown uracil-DNA glycosylase binds, kinks, and compresses the 

duplex DNA backbone while scanning the minor groove for a uracil residue (66). Once 

bound with the uracil, the enzyme uses a “pinch-push-pull” mechanism to extract the 

uracil nucleotide from the DNA base stack and position it into the active site (66-68). 

 

b. Mismatch-specific uracil-DNA glycosylase (MUG) 

E. coli mismatch-specific uracil-DNA glycosylase (MUG) was first discovered by 

Gallinari and Jiricny (69). It shares homology with the mammalian thymine-DNA 

glycosylase and can excise uracil from U:G pairs. Thus, it was thought to be a backup 

enzyme for uracil DNA glycosylase. MUG was found to excise 3, N4-ethenocytosine 

(εC) from εC:G pairs and had much better activity for εC from εC:G pairs than uracil 

from U:G pairs (70). Some evidence showed that neither εC nor U may be the 
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biologically relevant substrate for MUG. Ethenocytosine is not detected in E. coli and the 

reversion assay showed no increase in mutations when mug was inactive (71, 72). Mug 

was later shown to have wide substrate specificity: it can cleave T (73), 5-

hydroxymethyluracil (74), 1,N2-ethenoguanine (75), and 8-(hydroxymethyl)-3,N4-

ethenocytosine (76). 

In human, it was reported that human uracil DNA glycosylase 1 (UNG1), human 

uracil DNA glycosylase 2 (UNG2), single strand-selective monofunctional uracil-DNA 

glycosylase (SMUG1), thymine DNA N-glycosylase (TDG), and mCpG binding domain 

protein 4 (MBD4) can recognize the uracil in DNA.  

 

c. Uracil DNA glycosylase 1 and 2 (UNG1, UNG2)  

In 1976, a human uracil-DNA glycosylase activity was first reported by Sekiguchi 

and colleagues (77). Olsen and colleagues cloned human UNG cDNA based on the amino 

acid sequence of N-terminal end of human placental UNG (78, 79). The human UNG 

gene is located at 12q24.1 and spans approximately 13.8 kb (80). The human UNG-gene 

encodes the mitochondrial form UNG1 and nuclear form UNG2 using differentially 

regulated promoters (PA and PB) and alternative splicing. UNG1 and UNG2 have a 

common catalytic domain, but different N-terminal sequences (81). The N-terminal end 

of UNG1 has a classical and very strong mitochondrial targeting signal (MTS) which is 

not found in UNG2. Most of the MTS will be cleaved by mitochondrial processing 

peptidase once entering the mitochondria (82). About 100 amino acids of the N-terminal 

of UNG2 are required for complete nuclear targeting, though the unique N-terminal 44 

amino acids have the most important information in the nuclear localization signal 
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(NLS). The N-terminal part of UNG2 contains a motif for binding with proliferating cell 

nuclear antigen (PCNA) (83). It also contains a motif which has been demonstrated to 

bind replication protein A (RPA) (84). The interactions of UNG2 with PCNA and RPA 

take place in replication foci (83).  

UNG2 plays an important role in removing misincorpated uracil (U:A pairs) in 

DNA. It is supported by the fact that Ung-/- mice have very slow rate of removal of 

incorporated uracil in nuclei (85) and anti-UNG2 antibodies can inhibit immediate post-

replicative removal of incorporated uracil in isolated nuclei (86). UNG2 has a turn over 

number of 600-1000 per min which is important for removal of misincorporated uracil 

close to the fast moving replication fork. UNG2 is also found in neucleoplasm and may 

repair U:G mispairs generated from cytosine deamination (87). UNG2 has greater affinity 

for the abasic site than for the uracil in DNA and remains bound to the abasic site after 

the removal of uracil (88). The abasic site is next processed by apurinic/apyrimidinic 

endonuclease (APE1) which nicks at 5′ side of the abasic site, resulting in a 5′-

deoxyribose phosphate group that is a substrate for subsequent repair by repair enzymes. 

 

d. UNG2 in immunoglobulin diversity 

B lymphocytes are specialized in antibody production. Functional antibody-

encoding immunoglobulin variable (V) genes are assembled from non-functional V, 

diversity (D) and joining (J) gene segments only in B cells (89). After antigen encounter, 

these cells can then further modify their V genes by somatic hypermutation (SHM), 

generating antibodies with improved affinity. In addition, the constant region, Cµ in 

virgin B cells, can be changed to Cγ, Cα, or Cε by class switch recombination (CSR) 
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after activation of B cells. Both AID and UNG are essential for somatic hypermutation 

(Figure 1.4) and class-switch recombination (Figure 1.5) (35). Compared to nuclear form 

UNG2, mitochondrial form UNG1 is less studied. The role of UNG1 in mitochondria is 

still unclear. Recent research shows that inhibition of UNG1 in mitochondria by uracil 

glycosylase inhibitor (UGI) did not lead to either spontaneous or induced mutations in 

mtDNA suggesting that backup mechanism(s) may exist in the mitochondria (91). 

 

 

Figure 1.4 Model for somatic hypermutation. The dU bases resulting from AID-
mediated dC deamination can be removed by uracil DNA glycosylases. If removed, 
mutations from G/C or A/T can arise via replication or base excision repair. If U is not 
removed the U template can be copied into A by replication, leading to a C/G to T/A 
transition in one daughter cell. The other daughter cell will have the unmutated C/G. 
AID, activation-induced deaminase; E, Ig enhancer; EBP, enhancer-binding proteins; 
RNAP, RNA polymerase II; bent arrow, transcription start site; Taken from (90) 
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Figure 1.5 Model for class switch recombination. The top line shows the mouse Ig 
heavy chain genes in B cells expressing IgM. Small arrows indicate that AID deaminates 
dC within Sµ and a downstream S region (Sγ1 here) to initiate CSR. UNG excises U, AP-
endonuclease/lyase activities create single-strand nicks on top and bottom strands of Sµ 
and Sγ1. Also shown are germline transcripts which must be transcribed in cis from the 
unrearranged S–CH segment in order to obtain switching. Recombination occurs by an 
intrachromosomal deletional end-joining process. The bottom line shows the heavy chain 
chromosome after CSR to IgG1. Taken from (90). 
 

e. Single strand-selective Monofunctional Uracil-DNA Glycosylase (SMUG1) 

hSMUG1 was first discovered in 1999 (92). It has wide spectrum of substrates. It 

removes uracil, 5-hydroxymethyluracil (93) and 5-formyluracil from single- and double- 

stranded DNA (94). hSMUG1 is not indicated to have a role in removal of incorporated 

uracil and it does not accumulate in replication foci. It is proposed that SMUG1 evolved 

as a necessary and separate mechanism on premutagenic U:G lesions resulting from 

genome-wide hydrolytic deamination of cytosine (95). Overexpression of SMUG1 does 

not restore detectable in vitro class switching in UNG-deficient mouse B lymphocytes 

suggesting that SMUG1 is not involved in the diversification of antibody genes (96). In 

mammalian cells, SMUG1 is only expressed at low levels and is not detected in cell-free 
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extracts by western blotting with SMUG1 antibodies (97). UNG1, UNG2, and SMUG1 

are the only known DNA glycosylases with preference for single-stranded DNA. 

 

f. mCpG binding domain protein 4 (MBD4)   

Human MBD4 was first discovered in 1998 as a protein which binds specifically 

to methylated DNA in vitro (98). It has 580 amino acids which contains an N-terminal 

methyl-binding domain, MBD (residues 82-147) and a C-terminal glycosylase domain 

(residues 401-580) with homology to E. coli thymine glycol glycosylase (Endo III) and 8-

oxoG:A specific adenine glycosylase (MutY). MBD4 recognizes and removes thymine 

and uracil from a G:T and G:U mispair respectively at unmethylated CpG sequences (99, 

100). MBD4 also removes the uracil analog, 5-fluorouracil from G:5-fluorouracil mispair 

(101). It has been shown to interact with MLH1, a protein involved in mismatch repair, 

by using a yeast two-hybrid system (102). Further experiments demonstrated that loss of 

MBD4 function causes several MMR proteins to be down-regulated (103). It mediates the 

apoptotic response to DNA damage in cells. MBD4 deficiency reduced the normal 

apoptotic response to a range of cytotoxic agents including gamma-irradiation, cisplatin, 

temozolomide and 5-fluorouracil (5-FU) (104). MBD4 is frequently mutated in a large 

number of MMR-deficient tumors that exhibit microsatellite instability (MSI).  However, 

MBD4-null mice are viable and fertile, and have no apparent increase in tumor 

susceptibility (105). 
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g. Thymine DNA N-glycosylase (TDG) 

Human thymine DNA glycosylase (hTDG) was first purified from Hela cells by 

Neddermann and colleagues (106). It was cloned in 1996 and showed a molecular weight 

of 46 kDa (107). hTDG was found to have activity on G:U and G:T mispairs while it 

removes U from U:G mispairs with 10-fold higher kcat than T from G:T mispairs. hTDG 

can cleave 5-fluorouracil (5-FU) in both double-stranded and single-stranded DNA. It 

also has activity on εC in DNA which may result from exposure to vinylchloride or lipid 

peroxidation (108). After hTDG cleaves the U from U:G mispair, it remains bound to the 

products suggesting it has a very low catalytic turnover number. The rate-limiting step in 

this reaction is the release of the product due to strong interactions between the enzyme 

and the Watson-Crick face of the guanine opposite the AP-site (109). APE1 strongly 

stimulates the activity of TDG by displacing TDG from the AP site due to its higher 

affinity for the AP site (110). It has been demonstrated that a large portion of cellular 

TDG is covalently modified by the ubiquitin-like proteins SUMO-1 and SUMO-2/3.  In 

vitro sumoylation of TDG leads to the reduction of TDG’s affinity for both substrates and 

products. It was suggested that TDG binds its substrate in the unmodified state, and the 

cleavage, sumoylation allows TDG detach from the product AP-site due to reduced 

affinity (111). 

 

C. Occurrence of hypoxanthine in DNA and related repair enzymes 

1. dITP formation and regulation 

dITP exists in all cells in a low concentration. dITP may be generated from dATP 

by spontaneous and nitrosative deamination (112). dITP is potentially mutagenic, and the 
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concentration of the nucleotide in cell is controlled by inosine triphosphate 

pyrophosphatase (ITPase). The gene coding for ITPase, ITPA, is located on the short arm 

of chromosome 20 (113). ITPase hydrolyzes ITP/dITP to IMP/dIMP and PPi (114). 

ITPase deficiency is a common inherited condition characterized by the abnormal 

accumulation of inosine triphosphate (ITP) in erythrocytes that can lead to thiopurine 

drug toxicity (115, 116). An ITPase which hydrolyze ITP, XTP, dITP was first 

discovered in Methanococcus jannaschii by a structure-based approach (117). In 2001, 

Lin and colleagues cloned a 21.5-kDa human inosine triphosphate pyrophosphatase 

(hITPase) which can hydrolyze ITP, dITP, and xanthosine 5'-triphosphate to their 

respective monophosphates, at optimal pH of 10 (118). A dITP- and XTP-hydrolyzing 

protein was found in E. coli by Chung and colleagues (119). Later, a protein of 184 

amino acid encoded by yjjX gene in E. coli was found to hydrolyze ITP and XTP (120). 

ITPase may play a role in protecting the genome from incorporation of rogue nucleotides, 

such as ITP, dITP and XTP, into DNA and RNA (121). 

 

2. Enzymes that recognize hypoxanthine in DNA 

a. 3-methyladenine-DNA glycosylase II (AlkA)  

3-methyladenine-DNA glycosylase II (AlkA) was first purified from E. coli by 

Riazuddin and Lindahl in 1978 (122). The enzyme was later cloned by two groups at 

about the same time (123, 124). The E. coli AlkA protein is a member of the glycosylase 

family which includes the endonuclease III, MutY, and 8-oxoguanine glycosylase (OGG) 

proteins (125, 126). These proteins have little similarity in amino acid sequence except in 

the region of the Helix-hairpin-Helix (HhH) motif and a conserved catalytic aspartate, but 
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share a very similar three-dimensional structure. E. coli AlkA can remove alkylated bases 

such as 3-methyladenine (3-MeA), 3-methylguanine (3-MeG), 7-methylguanine (7-

MeG), 7-methyladenine (7-MeA) among which 3-MeA is a preferred substrate (127). 

AlkA also recognizes formyluracil (128), ethanobases (129, 130), hypoxanthine (131) 

and xanthine (132). The Kcat value of AlkA for xanthine was 5-fold lower than that for 7-

methylguanine (132). The crystal structure of AlkA suggests the widening of the active 

site located in the cleft between two domains of the AlkA protein could explain the broad 

spectrum of substrates of this enzyme (133). Though AlkA excise hypoxanthine in DNA 

in vitro, it is not likely the primary enzyme that involved in repair of hypoxanthine in 

vivo. E. coli mutant cells which lack AlkA protein did not exhibit significant increase in 

mutation frequency when exposed to nitrous acid (134).  

 

b. Endonuclease V (Endo V) 

Endonuclease V (Endo V) was first discovered as an enzyme that can recognize 

DNA treated with osmium tetroxide, acid, and base (135). Endo V was shown to be a 

primary enzyme that deals with hypoxanthine (136). We will review this enzyme in detail 

later (Section II and Section III). 

 

c. Alkyladenine DNA glycosylase gene (AAG) 

In 1991, three groups published data on cloning and expression of human 

alkyladenine DNA glycosylase gene (hAAG) by phenotypic screening of E. coli (tag- 

alkA-) cells exposed to methylmethane sulfonate (137-139). AAG is also named MPG 

(138) and ANPG (139). Besides alkylation damages, hAAG recognizes a wide variety of 
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other damaged bases in DNA, including hypoxanthine (131), xanthine (140), 8-

oxoguanine (141), oxanine (143), cyclic etheno adducts (144, 145), and various adducts 

of nitrogen mustards used in cancer chemotherapy (146). The structure of AAG 

complexed with DNA containing a modified apurinic/apyrimidinic (AP) site showed that 

the AP site analogue was flipped out of the DNA helix and into the active site of the 

enzyme (147). Using cell extracts from wild-type and AAG knockout mice, researchers 

found that AAG is the principal enzyme repair 3-methyladenine, 1, N6-ethenoadenine, 

and hypoxanthine (148, 149). hAAG activity can be stimulated by AP endonuclease, 

proliferating cell nuclear antigen (PCNA) (150), hRAD23 (151), estrogen receptor α 

(ERα) (152). ERα can increase acetylation of hAAG, stabilize the binding of hAAG with 

hypoxanthine-containing oligos, and enhance removal of hypoxanthine from DNA by 

hAAG. In addition, hAAG can decrease p300-mediated acetylation of estrogen receptor, 

stabilize the interaction of ERα with estrogen response element-containing oligos and 

reduce transcription of simple and complex ERE (estrogen response element)-containing 

reporter plasmids (152). Interestingly, the interaction of hAAG with MBD1 studied in 

vivo showed that the MBD1–hAAG complex normally exists on the methylated gene 

promoter suggesting that hAAG may cooperate with MBD1 for transcriptional regulation 

(153). Recently AAG from Bacillus subtilis was cloned and characterized (154). It was 

shown that the AAG from Bacillus subtilis removes hypoxanthine much faster than 

human AAG with a 10-fold higher value for kcat   than that of hAAG. We have cloned the 

AAG from Mycobacterium tuberculosis which has stronger activity toward hypoxanthine 

than that of hAAG (H. Gao and W. Cao, unpublished data). 

 



   

19 

D. Occurrence of xanthine in DNA and related repair enzymes 

1. dXTP formation and regulation 

Xanthine, is a product on the pathway of purine metabolism and is converted to 

uric acid by the action of the xanthine oxidase enzyme. 2'-deoxyxanthosine (dX) results 

from the deamination of deoxyguanine by hydrolytic or nitrosative deamination. dX is a 

relatively stable lesion at pH 7 and could play a role in deamination-induced mutagenesis 

(154). Xanthine in DNA under acidic conditions is unstable and tends to depurinate (155-

157). Oligos containing xanthine can be prepared post-synthetically (156). It also can be 

prepared by phosphoramidite chemical synthesis (157). The miscoding properties of dX 

have been studied by several groups using various polymerases (157-160). Among the 

polymerase investigated, human immunodeficiency virus I reverse transcriptase, exo- 

Klenow fragment of DNA pol I, and Drosophila DNA pol α tends to incorporate dCMP 

and dTMP opposite the dX lesion. Taq pol, rat pol β and human pol β insert only dCMP, 

the correct base, opposite the lesion, human pol α, η and κ preferentially incorporate 

dTMP opposite the lesion.  

 

2. Enzymes that recognize xanthine in DNA 

In 2000, Kow and colleague first reported that deoxyxanthosine in DNA can be 

recognized by E. coli endo V (161). E. coli endo V cleaves both deoxyinosine and 

deoxyuridine in single or double-stranded DNA, while it only recognizes 

deoxyxanthosine in double-stranded oligos. It was shown endo V cleaved DNA 

containing deoxyxanthosine at the second phosphodiester bond 3′ to the lesion just like 

the cleavage of DNA containing deoxyinosine or single base mismatches (161-163). 
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Terato and colleagues showed that AlkA and endo VIII also can recognize 

deoxyxanthosine. The Km values of AlkA and endo VIII for xanthine were 53 nM and 

124 nM respectively (164). AAG, endonuclease III, and formamidopyrimidine-DNA 

glycosylase (Fpg) also cleave deoxyxanthosine from DNA but limited to X:C mispair 

(140). 

 

a. Endonuclease V 

See Section II-B, page 27 

 

b. 3-methyladenine-DNA glycosylase II (AlkA) 

See section I-C-2-a, page 17 

 

c. Alkyladenine DNA glycosylase gene (AAG) 

See section I-C-2-c, page 18  

 

d. Endonuclease VIII 

nei, the gene for E. coli endonuclease VIII, was first cloned in 1997 (164). It 

encodes a 263 amino acid protein that has significant similarity in both the N-terminal 

and C-terminal regions with bacterial Fpg proteins (164). E. coli single nei mutant has no 

obvious phenotype while E. coli double mutants of nth (endonuclease III), nei, are 

hypersensitive to the lethal effects of ionizing radiation and hydrogen peroxide (164-

166). nei nth double mutant has 20-fold spontaneous C to T transitions above background 

(167). E. coli endonuclease VIII (nei) is a bifunctional glycosylase with both N-
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glycosylase and AP lyase activities. It excises modified pyrimidines, including thymine 

glycol, dihydrothymine, β-ureidoisobutyric acid, urea residues, hydroxycytosine, 5-

hydroxyuracil, and uracil glycol from DNA (168-170). Endonuclease VIII also can 

recognize 8-oxoguanine (8-oxoG) (171), 2,6-diamino-4-hydroxy-5N-methyl-

formamidopyrimidine (171) and xanthine (132). The Kcat value of endonuclease for 

xanthine was 50-fold lower than that for thymine glycol (132). Human nei homologs 

hNEI1 and hNEI2 was cloned recently (172, 173). hNEI1 cleaves substrates containing 

thymine glycol, dihydrothymine, dihydrouracil, 5-hydroxycytosine and 5-hydroxyuracil 

(174). It was demonstrated that hNEI1 can recognize FAPY-A and FAPY-G from X-

irradiated DNA and have weak activity against 8-oxoG (175). 

 

e. Endonuclease III 

Endonuclease III (nth) initiates base excision repair of oxidatively damaged 

pyrimidine bases in DNA (176). The primary substrates for E. coli Endonuclease III are 

5,6-saturated pyrimidines, such as 5,6-dihydrothymine, 5,6-dihydro-5-hydroxythymine 

and thymine glycol (5,6-dihydro-5,6-dihydroxythymine), and 5-hydroxy-5-

methylhydantoin formed by -irradiation in DNA (177). E. coli Endonuclease III also 

excise a pyrimidine ring-opened derivative of 1, N6-ethenoadenine (178), 8-oxoguanine 

in 8-oxoG:G mispair (179), hydantoins derived by further oxidation of 8-oxoguanine 

(180), apurinic/apyrimidinic (AP) site, thymine glycols, urea residues (181), and 5-

hydroxycytosine and 5-hydroxyuracil (182). E. coli endonuclease III first excises the 

damaged base by hydrolyzing the N-glycosylic bond between the damaged base and the 

DNA backbone, and then cleaves the phosphodiester linkage on the 3' side of the 



   

22 

resultant AP site by a ß-elimination reaction to generate a strand scission product 

containing a 5' phosphate and a 3' unsaturated aldehyde (183-186). Endonuclease III 

contains a [4Fe-4S] cluster which is not directly involved in the substrate binding (187-

190). It is reported that endonuclease III may use the [4Fe-4S] cluster to mediate redox 

chemistry as part of a signaling mechanism to detect base lesions (191). 

 

f. Formamidopyrimidine-DNA glycosylase (Fpg) 

E. coli formamidopyrimidine-DNA glycosylase (Fpg, also known as MutM) is a 

bifunctional glycosylase which has 269 amino acids with a molecular weight of 

30.2 kDa. The monomeric zinc finger repair enzyme excise damaged bases such as 8-

oxoguanine (8-oxoG) (192, 193), 2, 6-diamino-4-hydroxy-5-formamido pyrimidine 

(Fapy-G) (194, 195), which were indicated as the major substrate in vivo. Fpg also 

remove 7-hydro-8-oxoadenine (8-oxoA), Fapy-A (196), apurinic/apyrimidinic (AP) sites 

(197), 5-hydroxycytosine, 5-hydroxyuracil (5-OHU) (181), dihydrouracil (DHU) (198), 

uracil glycol (170), thymine glycol (199), and hydantion (200). Fpg has three enzymatic 

activities, DNA glycosylase activity that remove the damaged base from the DNA to 

generate an abasic (AP) site (192), AP lyase activity that cleaves the 3′- and 5′-

phosphodiester bond at AP sites via a β,δ-elimination mechanism (201, 202), 

deoxyribophosphodiesterase (dRpase) activity that removes the 5′-deoxyribose phosphate 

moiety (Figure 1.6) (202). 
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Figure 1.6 Fpg activities. 1. Glycosylase activity.  2. AP lyase activity.  3. dRpase 
activity. Adapted from (202).  
 

E. Discovery of oxanine in DNA and related repair enzymes 

1. dOTP discovery and enzymes that recognize oxanosine in DNA 

Oxanosine was discovered as a new antibiotic in 1981 from Streptomyces 

capreolus MG265-CF3 (204). Oxanosine suppresses the growth of L-1210 leukemia in 

mice, HeLa cells in vitro, and exhibits antibacterial activity against E. coli K-12 (204-

206). The antitumor studies of oxanine using rat kidney cells infected with mutant Rous 

sarcoma virus showed that oxanosine is more cytotoxic to tumor cells than to normal 

cells (207). Oxanosine also can reverse K-ras-transformed rat kidney cells to normal 

phenotype (208). Majumdar and colleagues showed oxanosine and 2'-deoxyoxanosine are 

substrates of adenosine deaminase (ADA) (209). In 1996, Suzuki and colleagues first 

reported deoxyoxanosine (dO) which is generated through nitric oxide (NO)- or nitrous 

acid (HNO2)
- induced nitrosative oxidation of deoxyguanosine (210). Compare to 

deoxyuridine, deoxythymidine, deoxyinosine and deoxyxanthosine, deoxyoxanosine is a 
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unique deaminated form in which an endocyclic nitrogen atom of guanine is substituted 

by an oxygen atom (210-212). Several groups demonstrated that the ring-opened 

intermediate of guanine, after loss of dinitrogen in guanine diazonium ions, results the 

formation of oxanine as well as xanthine (212-214). Whether dO exists in the cellular 

system is still under debate. Dong and colleagues showed that there are no 2'-

deoxyoxanosine in DNA exposed to nitric oxide at controlled physiological 

concentrations (215) while Shuker and Glaser showed dO exists at physiological 

condition (211, 214). Several groups have used T4 polymerase (exo–) or Pol I Klenow 

fragment to prepare O-containing DNA (142, 216-218). Recently, a chemical method for 

preparing O-containing oligos also has been developed (219). To assess genotoxic 

potential of dO, in vitro DNA polymerase studies have been conducted by different 

groups. It was shown that dOTP can pair with C or T in DNA by the Klenow fragment of 

DNA polymerase I using O-containing template, resulting in G/C to A/T transition 

mutations (216).  Recent studies showed that cytosine, adenine and thymine all can be 

incorporated opposite oxanine. Deoxyoxanosine triphosphate only pairs with cytosine 

using human DNA polymerase β (142). Several enzymes, including endo V, hAAG, 

AlkA, Fpg, Endo VIII, which recognize oxanine in DNA have been reported (142, 132, 

217, 218). hAAG can cleave oxanine from O-containing oligos, but only 30% substrate 

can be cleaved using excess of enzyme (E:S=10:1). Oxanine DNA glycosylase (ODG) 

activity was detected in spleen cell extracts of wild type age-matched mice but not in 

AAG-knockout mice, suggesting that AAG is the primary enzyme for oxanine (142). 

Other studies showed that hAAG can cleave only 9% of the O-containing substrates 

using hypoxanthine-containing substrates as control (218). It was reported that DNA-
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binding proteins such as histone, high mobility group (HMG) protein, and DNA 

glycosylases can crosslink with O-containing DNA duplex to form DNA-protein cross-

links (DPCs) which are potentially carcinogenic (220). UvrABC nuclease was 

demonstrated to have activity towards Oxanine–spermine cross-link lesions (218). Endo 

V can cleave O-containing DNA at the second phosphodiester bond 3' to the lesion in the 

presence of Mg2+ or Mn2+. The cleavage of T/O substrate can reach 70% when enzyme is 

in excess.  Both Endo V and hAAG have similar cleavage efficiency towards all four 

oxanosine-containing base pairs (A/O, T/O, C/O and G/O) (142, 217).   

 

III. Endonuclease V initiated DNA repair 

A. History of research on endonuclease V  

E. coli Endonuclease V was first discovered and characterized by Linn and 

colleagues (135, 221). During the course of purifying the RecBC deoxyribonuclease of E. 

coli K-12, the researchers found that endodeoxyribonuclease activity eluted from DEAE-

cellulose prior to the RecBC enzyme. Unlike the RecBC enzyme the activity was not 

stimulated by adding ATP. It differed from E. coli endonuclease II by requiring Mg2+. It 

is also distinguishable from the restriction enzymes of E. coli which require ATP and 

require, or are stimulated by S-adenosylmethionine. Further characterization of this 

enzyme by Linn’s group found it has endonuclease activity toward DNA, treated with 

osmium tetroxide, or 7-bromomethyl-benz[a]anthracene, irradiated with ultraviolet light, 

or exposed to pH 5.0. The uracil-containing duplex DNA was a good substrate. The 

enzyme was then designated as endonuclease V of E. coli. It was thought the enzyme 
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may provide an alternative mechanism for remove the uracil residue from DNA due to its 

high activity towards uracil-containing duplex DNA (221). 

In 1988, Sperling’s group published a paper which suggested there was a 

hypoxanthine-DNA glycosylase in E. coli. The enzyme had a molecular mass of 56 kDa. 

This hypoxanthine-DNA glycosylase from E. coli requires Mg2+ and is totally inhibited 

in the presence of EDTA (222). In an effort to clone the gene encoding the hypoxanthine-

DNA glycosylase described by Sperling and colleagues, Kow’s group started to purify 

the activity. During the purification they detected a deoxyinosine-specific endonuclease. 

SDS-PAGE showed that the enzyme had an apparent molecular mass of 25 kDa. Since 

the enzyme made an incision at the second phosphodiester bond 3’ to a deoxyinosine this 

enzyme was named as deoxyinosine 3’ endonuclease (136). In late 1996 and early 1997, 

two papers were published by Kow’s group and Weiss’s group, both groups cloned 

endonuclease V gene (nfi), which was the same gene encoding deoxyinosine 3’ 

endonuclease (161, 223). The nfi gene was located in a cluster of four codirectional 

genes, yjaD-hemE-nfi-yiaG and expressed independently (223). Since then Weiss and 

colleagues set out to study the function of endonuclease V in E. coli.  In order to 

understand its role in DNA repair pathways, they constructed nfi insertion mutants and 

over-expression strains. A nfi mutant displayed a 12- to 1,000- fold in the frequency of 

nitrite-induced A:T to G:C transition mutation compare to the wild-type strain. A nfi xth 

dut (dutpase) mutant also had increased lethality compare to an xth and dut mutant. These 

results suggested that endo V played an important role in the repair of deoxyinosine and 

abasic sites in DNA (224). Further study also show endo V was important in remove 

deaminated guanine (xanthine), while AlkA did not contribute to repair deaminated base 
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in vivo, though it has hypoxanthine-DNA glycosylase activity (225). Endo V from 

Thermotoga maritime was first cloned and studied by Cao and colleagues (217, 226, 

227). 

 

B. Properties of endonuclease V from different species 

1. Escherichia coli endonuclease V (E. coli endo V) 

Endonuclease V (Endo V) is a ubiquitous enzyme. Its homologues have been 

found in different species from bacteria to eukaryotes including Escherichia coli, 

Streptomyces coelicolor, Bacillus subtilis, Archaeoglobus fulgidus, Thermoplasma 

acidophilum, Ferroplasma acidarmanus, Sulfolobus solfataricus, Pyrococcus furiosus,  

Salmonella typhimurium, Yersinia pestis Schizosaccharomyces pombe, Caenorhabditis 

elegans, Arabidopsis thaliana, rats, mice, and humans. E. coli endo V is the first 

endonuclease V discovered (135, 221). Characterization of E. coli endo V has 

demonstrated that the enzyme recognizes a wide variety of DNA lesions including 

deoxyinosine, deoxyuridine, AP sites, tetrahydrofuran (an AP site homolog), base 

mismatches (136, 162, 228, 229), deoxyxanthosine (161), deoxyoxanine (217), N-6-

hydroxylaminopurine (HAP) (230), loops, hairpins, pseudo-Y and flap structures (162). 

Endo V cleaves the lesion containg DNA at the second phosphodiester bond 3′ to the 

DNA damage, results in a nick with 3′ hydroxyl and 5′-phosphoryl end groups (163). The 

enzyme forms stable complexes with deoxyinosine containing DNA before and after 

cleavage, exhibiting similar affinity to the substrate and the product (228). This property 

is also observed in endo V from other species (217). Based on the tight binding of endo V 

with the substrate, it was suggested that the enzyme may function to target other repair 



   

28 

protein(s) to the lesion to continue the subsequent repair (163). It was reported that E. 

coli endo V cleaves mismatch containing oligos in a strand-specific manner; it cleaves 

the DNA strand containing mismatch closer to the 5’ terminus (162). Using Tma endo V, 

the strand-specific manner of cleavage was not obvious (226). Mismatch activity of E. 

coli endo V is much higher in the presence of Mn2+ than Mg2+ (162). Deoxyinosine-

specific activity of E. coli endo V is not affected by the sequence context of the 

deoxyinosine containing oligo while the mismatch-specific activity of the enzyme is 

reduced when the flanking sequence of the mismatch is G:C pairs. Based on these 

findings, it was speculated E. coli endo V adopts different modes of interaction between 

DNA containing deoxyinosine and mismatches (162). E. coli endo V cleaves 

deoxyuridine in the duplex efficiently in the presence of Mg2+ or Mn2+, but it has a very 

weak activity on deoxyuridine in single-stranded DNA (162). 

 

2. Salmonella typhimurium endonuclease V (Sty endo V) 

Salmonella typhimurium endonuclease V (Sty endo V) was recently cloned and 

characterized. Sty endo V shares 93% amino acid sequence identities with E. coli endo V 

(231). The study of Sty endo V’s activity towards deaminated lesions revealed that Sty 

endo V possesses single-stranded deoxyxanthosine endonuclease activity while E. coli 

endo V doesn’t. Sty endo V turns over double-stranded deoxyuridine-containing 

substrates very slowly (231) while Tma endo V shows rapid turn-over of deoxyuridine-

containing duplex DNA when the substrate is in excess (226). The results demonstrated 

that Sty endo V binds deoxyuridine-containing products much better than does Tma endo 

V. 
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3. Thermotoga maritime endonuclease V (Tma endo V) 

Endonuclease V from Thermotoga maritime (Tma endo V) is a thermal stable 

enzyme, prolonged incubation at 65°C which is an optimum reaction temperature for 8 

hours doesn’t cause significant loss of the enzyme activity (226). The enzyme recognizes 

inosine, abasic site (AP site), uracil, mismatches (226), oxanosine (217), and xanthosine 

(W Cao, unpublished data). Excess of Tma endo V in the reaction may lead to a second 

nicking event on the complementary strand and generate a double-stranded break (227). 

Study of mismatch cleavage activity of Tma endonuclease V showed that purine bases 

(A, G) in the mismatch are cleaved preferentially; cytosine is the most difficult one to 

cleave for Tma endo V (226). Mutational study of Tma endo V revealed residues 

important for the functions of the enzyme. Seven motifs universal to all endo V family 

proteins have been identified (227, 232). D43 in motif II, E89 in motif III, and D110 in 

motif IV are residues essential for coordination of catalytic metal ions. Y80, G83, and 

L85 in motif III, G113, H116, and G121 in motif IV, G136 and A138 in motif V, and 

S182 in motif VI are involved in both substrate and product binding. Interestingly, some 

Tma endo V mutants defective in DNA binding showed 3'-exonuclease activity, based on 

the results, an alternative model of endonuclease V initiated DNA repair was proposed by 

Cao and colleagues (232). 

 

4. Archaeoglobus fulgidus endonuclease V (Afu endonuclease V) 

Endonuclease V from Archaeoglobus fulgidus (Afu endo V) which is a 

hyperthermophilic archaea shows 39% identity to the E. coli nfi gene (231). In contrast to 

E. coli endo V, A. fulgidus endo V only recognizes deoxyinosine. Abasic site, 
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deoxyxanthosine, deoxyuridine and base mismatches are not cleaved by the enzyme. The 

fact that A. fulgidus endo V recognizes exclusively deoxyinosine indicates that 

deoxyinosine activity may be a primordial activity for endo V (233). 

 

5.  Mouse endonuclease V 

Moe and colleagues recently cloned and expressed mouse endonuclease V, a 37-

kDa protein which has weak activity toward hypoxanthine and uracil (234). Expression of 

the mouse protein in an E. coli mutant strain (nfi alkA) suppresses its spontaneous mutator 

phenotype. The study showed mouse endo V does not have broad substrate specificity as 

has been described for E. coli endo V.  It has the following substrate preference: ss DNA 

containing hypoxanthine > DNA ds containing hypoxanthine 
≥ ss DNA containing uracil 

(234). No obvious activity was monitored on uracil residues in double-stranded DNA, nor 

against 8-oxoguanine, AP-sites or 5' flap structures. Like other endo V, the mouse endo V 

is a metal dependent enzyme (234). 

 

6. Ferroplasma acidarmanus endonuclease V (AGTendo V) 

AGTendonuclease V is a DNA repair protein of 303 amino acids from the 

archaeal organism Ferroplasma acidarmanus (235). It consists of two domains, the C-

terminal active site domain of O6-alkylguanine-DNA alkyltransferase (AGT) and an 

endonuclease V domain. AGT is a DNA repair enzyme which excises alkyl damages 

from the O6-position of guanine and O4-position of thymine in DNA (236, 237). AGTs 

directly repair alkyl adducts by transferring the alkyl group to a cysteine amino acid 

residue at the active site of the protein and restore the damaged DNA to its unmodified 



   

31 

form. The enzyme thus loses the activity permanently. AGTendoV repairs O6-

methylguanine lesions but not O4-methylthymine adducts in DNA. The enzyme shows 

optimal AGT activity at pH 6.6 and 46°C. AGTendoV also recognize uracil, 

hypoxanthine, or xanthine in DNA. It exhibited good endo V activity at pH 6.6-pH 7.6 

and 46°C in the presence of Mg2+. Inactivation of the AGT domain of AGTendo V by 

formation of S-methlycysteine at Cys-58 did not alter the endo V activity of AGTendoV 

(236, 237). 

Endonuclease V was studied extensively by different researchers. Unfortunately, 

the repair pathway initiated by the enzyme remains unknown after one decade of 

research, mostly due to no other component was found downstream of endo V. Several 

repair models have been proposed, I will discuss these models in detail in the following 

sections. 

 

C. Proposed models for endonuclease V mediated pathways 

Genetic studies done by Weiss’s group clearly suggested that E. coli endonuclease 

V prevents mutations from nitrosative deamination in vivo (238, 239). In vitro study also 

showed that deoxyinosine and deoxyxanthosine are two major substrates for endo V 

(136, 161, 226, 227). Based on genetic and biochemical data, Kow proposed a model for 

the repair pathway of E. coli endo V (161, 240). Endo V first recognizes hypoxanthine or 

xanthine and makes a nick at the second phosphodiester bond 3’ to the lesion. It does not 

remove the lesion, but only initiates repair. The initiation of the repair resembles that of 

the VSR protein in the repair of T:G mismatch in DNA which showed that the 

subsequent step of repair involves a 3’-5’ exonuclease (Figure 1.7) (241, 242). So it is 
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likely that the repair initiated by endo V may also require a 3’-5’ exonuclease to remove 

the lesion followed by polymerase and ligase to complete the repair. It is also likely that 

an unknown 5’ endonuclease that cleaves the phosphodiester bond 5’ to the deaminated 

purine. However, despite great efforts, no such 5’ endonuclease was found (240). 

 

 
 
Figure 1.7 Alternative repair pathway of endonuclease V proposed by Kow. Taken 
from (241).  
 

Klungland and colleagues proposed a similar model for mouse endo V initiated 

DNA repair scheme, incision at hypoxanthine residues in DNA by a mammalian 

homologue of the E. coli endo V (234). In this model, mouse endo V first generate a nick 

at the second phosphodiester bond 3’ to the deaminated purine, then APE1 which posses 

3’ mismatch-specific exonucleolytic activity or Mus81 which posses a 3’ flap specific 

endonuclease activity remove a short 3’ region containing the lesion. Finally polymerase 



   

33 

fills in and ligase seals the nick. Cunningham and colleagues proposed a model for endo 

V to remove purine base N-6-hydroxylaminopurine (HAP) based on genetic studies 

(230). They suspected that endo V initiated repair may be a slow process in which the 

repair intermediates is subject to recombinational repair and induce SOS response. 

Recently Cao and colleagues found an interesting phenomenon in Tma endo V 

(232). In the presence of Mn2+, this enzyme displays a 3’ exonuclease activity. A model 

was proposed that endo V may play a dual role in the repair pathway, after endo V 

cleaves the lesion-containing DNA and forms a complex with the product, downstream 

proteins may be recruited to the repair complex, and change the conformation of endo V. 

This may trigger the endo V’s exonuclease activity and remove the lesion and generate a 

gap for polymerase and ligase to finish the repair (Figure 1.8). 

 

 
 
 
Figure 1.8 Proposed models for endonuclease V-mediated repair. I represents 
deoxyinosine. The ovals represent endo V and the circles putative endo V interacting 
proteins. After the inosine strand is nicked, the model shown at the top suggests that endo 
V is displaced by downstream protein(s) from the lesion and a 3'-exonuclease other than 
endo V initiates the removal of the deaminated lesion. An alternative model shown at the 
bottom based on data obtained from this study illustrates that endo V recruits other 
protein(s) to the repair site, which switch endo V from endonuclease mode to 3'-
exonuclease mode for removal of the deaminated lesion from DNA. Taken from (232)  
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IV. Endonuclease V related techniques 

A. Alternative method for DNA fragmentation with endonuclease V 

1. DNA shuffling and its applications 

DNA shuffling, also called sexual polymerase chain reaction (PCR) was first 

developed by Stemmer and colleagues (243, 244). This method generates libraries by 

random fragmentation of one gene or a pool of related genes, followed by the reassembly 

of the fragments into full length chimeric sequence by PCR reaction (245). The libraries 

are then screened to identify desired recombinants. The methods of DNA shuffling and 

screening which develop novel chimeric DNA and proteins with desirable characteristics 

are also known as Molecular BreedingTM(maxygen, Inc., Redwood City, CA), directed 

molecular evolution (246). Directed evolution is now widely used in academic and 

industrial labolatories to enhance protein stability and improve the activity or overall 

characteristics of enzymes and organisms or to alter enzyme substrate specificity and to 

obtain new activity. An emerging field in biotechnology is to modify DNA-modifying 

proteins which can lead to novel application in genetic engineering, functional genomics, 

and gene therapy. One of the enzymes which have been successfully modified by directed 

evolution is DNA polymerase. The modified enzymes have enhanced activity (247, 248) 

or have been converted to RNA polymerases (249). Restriction endonucleases are good 

targets for directed evolution because they are widely used in modern molecular biology. 

Many restriction enzymes with altered substrate specificity have been developed with the 

method (250-252). Other enzymes, such as transposase (253), integrase/recombinase 

(254-258) have been modified using directed evolution to obtain desired properties. 

Directed evolution technique is not limited to the research, the method also has great 
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applications in industry. Many novel industrial enzymes variants have been developed by 

the directed evolution technique to yields desired properties, including proteolytic 

enzymes (259-268), cellulolytic enzymes (269-271), lipases and esterases (272-278) and 

so on. 

Directed evolution has played an important role in pharmaceuticals. Directed 

evolution can be used to generate improved antigens or other immunomodulatory 

molecules, and DNA vaccines (279-288). Therapeutic antibodies represent the fastest 

growing area in pharmaceutical industry. High-affinity antibodies have been developed in 

vitro by direct evolution (289-295). Directed evolution has great impact on the 

development of therapeutic proteins with better properties, such as P53 (296-297), insulin 

(298), hormones and hormone receptors (299-301). Stem’s method to use DNase I to 

generate a pool of random DNA fragments has proven to be very useful in directed 

evolution (244), but the experimental procedure is extremely labor intensive and time 

consuming. DNA fragmentation by DNase I is problematic since the reaction has to be 

carefully controlled in order to obtain fragments of appropriate length. In addition, the 

length of the fragment generated by DNase I digestion varies greatly with minor changes 

in conditions, including the amount of nuclease, the source or lot of nuclease, the reaction 

temperature and the purity of DNA substrates. Therefore, using fragments generated by 

DNase I digestion may induce a sequence bias into the recombination (302, 303) 

 

2. Endonuclease V as an enzyme for DNA fragmentation 

Endonuclease V can cleave uracil containing DNA. Miyazaki prepared uracil-

containing recombinant templates by PCR in the presence of dUTP (304). The E. coli 
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endo V was incubated with the PCR products thus generating random fragments. The 

length of random fragments can be controlled by adjusting the number of the uracil 

residues in the DNA simply by changing the concentration of dUTP in the PCR. Using 

the random fragments generated by endo V digestion, successful DNA shuffling was 

achieved with shuffling efficiency equivalent to DNase I (304). 

 

B.  Balanced Linear DNA amplification by Endonuclease V and Polymerase 

1. In vitro nucleic acid amplification methods 

In vitro nucleic acid amplification techniques can be classified into two 

categories, isothermal systems which include Nucleic Acid Sequence-Based 

Amplification (NASBA) (305), Strand Displacement Amplification (SDA) (306), and 

those requiring temperature cycling, which include Polymerase Chain Reaction (PCR) 

(307) and Ligase Chain Reaction (Ligase Chain Reaction) (308, 309). Here I will focus 

on a strand displacement amplification method that employs endo V combined with 

polymerase.  

 

2. Strand displacement amplification (SDA) 

Strand displacement amplification was first developed in 1992 by Walker and 

colleagues (310). In 1994, walker and colleagues developed a multiplex form of SDA 

which allowed two target sequences and an internal amplification control to be co-

amplified by a single pair of primers after common priming sequences are spontaneously 

appended to the end of target sequences. Although multiplex amplification has its 
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advantage, it often leads to large decreases in amplification efficiency (311), nonspecific 

amplification, especially when low concentrations of template DNA are used (312).  

 

3. Modified SDA method using Thermotoga maritima endonuclease V 

Recently, Barany and colleagues developed a method of SDA by nicking and 

extending that relies on the cooperation of Thermotoga maritima (Tma) endonuclease V 

(endo V), a DNA mismatch-cleavage enzyme, and Bacillus stearothermophilus (Bst) 

polymerase (313).  

 

 

 
             Figure 1.9 Endo V facilitated DNA amplification. Primer Uni1 anneals to a template 

containing the pentanucleotide GATAG, creating a U:T mismatch. The primer is 
extended by Bst polymerase and is nicked by Thermotoga maritima (Tma) endonuclease 
V (Endo V), 2 phosphodiester bonds to the 3′ side of the mismatch, leaving the mismatch 
intact. The top strand is unaffected. Because the primer contains uracil, after cleaving the 
strand, Endo V dissociates. The newly generated 3′ end can again be extended. Bacillus 
stearothermophilus (Bst) polymerase is able to displace the strand in front as it extends 
the primer. Cycles of nicking and extending amplify the template molecule. Product 
molecules can be detected and quantified by the ligase-detection reaction (LDR) followed 
by capillary electrophoresis. Taken from (313).  
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Compared to multiplex strand-displacement amplification, this method minimizes 

the chance for amplification of primer artifacts and other nonspecific products by using 

single primer, coupled with a high reaction temperature (65°C). In addition, unlike the 

restriction enzymes used in strand-displacement amplification, endo V can nick one 

strand of duplex DNA without requiring the presence of a phosphorothioate nucleotide in 

the template strand. In this method, a uracil-containing primer is annealed to a DNA 

template generating a U:N mismatch. Tma endo V will only nick the uracil-containing 

strand preferentially if the mismatch is in an appropriate position and sequence context. 

The enzyme dissociates after nicking and produces a 3′ end that can be extended by Bst 

polymerase, resulting in repeated cycles of extension followed by nicking, which amplify 

the template in a linear fashion (Figure 1.9). SDA performed by this way has more 

products than conventional SDA which use restriction endonuclease Taq I to nick the 

primers that contain a phosphorothioate linkage. Although the phosphorothioate bond can 

prevent cleavage of the template strand, it also hampers the amplification. The method 

currently allows 100-fold multiplexed amplification of target molecules to be performed 

isothermally, with an average change of <1.3-fold in their original representation. 

 

C. Mutation scanning by endonuclease V 

1. Mutation detection methods 

The detection of sequence in DNA is important in the diagnosis of both genetic 

and somatically acquired diseases. Many techniques have been developed during the past 

two decades in an effort to detect minor changes in DNA. Such changes may take the 
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form of insertions or deletions, or single base changes. The following review will focus 

on single base mutation detection. 

 

a. Sequencing method 

The most direct way to detect a mutation is to sequence the DNA using the 

Sanger & Coulson dideoxy chain termination method. DNA sequencing has been a very 

accurate and reliable tool for pinpointing mutated sequences. However, DNA sequencing 

can involve time-consuming cloning and purification steps. These additional steps make 

rapid and routine high-volume screening very difficult. Thus, methods based upon non-

sequencing mutation detection principles are needed as an alternative to DNA sequencing 

which is expensive and laborious.  

 

b. Nonsequencing mutation detection techniques 

Several methods that based on melting temperature change of the DNA have been 

developed, such as denaturing high-performance liquid chromatography (DHPLC) (314, 

315), single-stranded conformational polymorphism (SSCP) (316), heteroduplex analysis 

(HA) (317), and denaturing gradient gel electrophoresis (DGGE) (318). Several 

chemicals like osmium tetroxide, KMnO4 and hydroxylamine can react with mismatched 

thymine or cytosine. Based on the findings, Cotton et al. (319), Gogos et al. (320) 

Lambrinakos et al. (321) developed the chemical cleavage of mismatch (CCM) method 

which was first a solution-based reaction and recently modified as support-based assay of 

more convenience (322-325). This methods offer greater sensitivity than the melting 

temperature-based systems.  
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The enzyme mismatch cleavage (EMC) of mutation detection is similar to 

chemical cleavage of mismatch method. Both methods require amplification of the 

mutant and wild type using fluorescence labeled primers or radiolabeled primers. 

Heteroduplexes are formed by annealing mutant DNA with wild type DNA. Mismatch 

signals can be subsequently detected after chemical or enzyme cleavage. However the 

enzymatic technique offers greater simplicity and is non-toxic compared to the chemical 

method. Bacteriophage T7 endonuclease I is a 149 amino acid protein that is a Holliday 

junction-resolving enzyme (resolvase) (326, 327). Endonuclease VII, the product of gene 

49 of phage T4, was shown to have activity on Holiday junctions (328), Y junctions 

(329), and heteroduplex loops (330). Later, both enzymes were found to posses activities 

towards mismatches, and were useful for mutation screening (331-333). The phage 

resolvase-based mutation detection systems tend to have high noise background because 

both enzymes naturally function to recognize Holiday junctions instead of mismatches. 

Recently several DNA N-glycosylases have been used to detect DNA mismatches, 

including MutY (334) and Thymine DNA glycosylase (335). DNA glycosylases are 

highly specific DNA repair enzymes that cleave the N-glycosidic bond between the base 

and the sugar deoxyribose in a DNA molecule and generate an apyrimidinic (AP) site. 

The AP site can subsequently be cleaved chemically by alkali or an AP endocuclease 

(336, 337). The MutY protein and Thymine DNA glycosylase are involved in a DNA 

repair pathways which convert A:G or T:G mismatches respectively to C:G base pair 

(338-340). CEL 1 nuclease from celery is a member of the S1 nuclease family. It was 

found that the enzyme can cleave mismatches and insertions/deletions (341). 
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2. Endonuclease V-based mutation scanning method 

The enzymatic detection methods described above can identify the mutations and 

polymorphisms of DNA fragments. However these enzymes also nick matched DNA 

resulting in high background in the assays.  Barany and colleagues in Cornell University 

developed an endonuclease V (endo V)/ligase mutation scanning method which has very 

high sensitivity and is suitable for low-frequency known or unknown mutation detection 

(342). This method has been shown to detect mismatches, insertions/deletions in DNA 

fragments up to 1.7 kb (342). Endonuclease V recognizes a wide variety of DNA lesions 

including base mismatches, insertions/deletions. Like other mismatch cleavage enzymes, 

endo V also nicks matched base pairs slightly, but in contrast to other enzymes, it leaves 

ligatable ends. TAK16D ligase is a high fidelity thermostable ligase from Thermus 

species (342). By using the two enzymes sequentially, they can religate the nonspecific 

nicks, while maintain the desired nicks (Figure 1.10). 

 

 



   

42 

 
 
Figure 1.10 Endonuclease V/DNA ligase mismatch scanning assay for scoring 
unknown mutations. Heteroduplexes are formed from PCR amplicons both normal and 
variant sequence. Mixed amplicons of variant sequence can be obtained by amplifying 
heterozygous germline samples, or from tumor samples where stromal cell contamination 
provides sufficient amount of wild-type DNA, or by mixing the PCR products from 
unknown and wild-type samples in a 1:1 ratio,. Tma Endo V nicks DNA one base 3’ to 
the mismatch (big triangle), and it can also generate non-specific nicks in homoduplex 
DNA with minor activity (small triangle). Addition of Thermus. Sp. AK 16D DNA ligase 
(solid circle) seals these non-specific nicks, providing a proofreading mechanism to 
improve signal-to-noise. Both top and bottom strand PCR primers are 5’ end-labeled with 
different fluorescent dyes (6-FAM and TET, respectively) allowing for cleavage products 
to be distinguished on a denaturing polyacrylamide gel. The approximate position of the 
mutation can be determined from the resultant fragment lengths. Taken from (342). 
 

V. DNA lesion recognition mechanisms 

A fundamental question in DNA repair is how mismatched or modified bases are 

located within the vast excess of normal base pairs. On the basis of the frequency at 

which spontaneous DNA lesion forms in mammalian cells, it is estimated that one DNA 

repair enzyme need to survey 10,000 to 100,000 in order to locate a single lesion (344). 

The lesion recognition mechanism may be considered in two parts: how a DNA repair 
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enzyme finds a lesion embedded in genome, and how a lesion, once found, is 

accommodated in the enzyme’s active site. 

 

A. Models for enzymes to locate ‘targets’ 

It is known that proteins locate their specific targets on DNA up to two orders-of-

magnitude faster than the three-dimensional diffusion rate. A general explanation of this 

fact is that proteins are randomly bound with DNA, and sliding along DNA (facilitated 

diffusion) provides for the faster one-dimensional scanning (344-346). Several models 

including ‘sliding’, ‘hopping’ and ‘intersegmental transfer’ have been put forward to 

explain how facilitated diffusion of a protein to a target actually occurs (Figure 1.11) 

(347).  

 

 
 
Figure 1.11 Models for target site location. (1) ‘sliding’,  a protein might ‘slide’ along 
the double helix, transferring from one base pair position to the adjacent one without 
dissociating from the DNA (2) ‘hopping’, if dissociation occurs, the protein might re-
encounter the same DNA, but at a new contour position. (3) ‘intersegmental transfer’, on 
scales beyond the persistence length of the DNA double helix, 150 bp (50 nm), the DNA 
can run into itself as a result of its random thermally excited bending. Such encounters 
permit the protein to move from one DNA site to another via an intermediate in which the 
protein is bound transiently to both sites. Taken from (347)   
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For proteins which do not use biochemical energy to facilitate their diffusion, 

target search along DNA is a thermally activated and directionally unbiased process. 

Sliding is a process which the protein undergoes diffusion while remaining bound to the 

DNA. Hopping refers to the process that the protein repeatedly dissociates from the DNA 

and rebinds at a new location on the DNA. Intersegmental transfer is a process that the 

protein molecule bound at one end jumps to another end of the same DNA lattice. 

Whether proteins use ‘sliding’ or ‘hopping’ to move along DNA remains controversial. 

Studies with restriction enzymes have demonstrated that hopping is the primary mode of 

translocation and that sliding, if it occurs, only contributes to movement on length scales 

of <173 bp (349, 350). Recently, Blainey and colleagues proved that at near-physiologic 

pH and salt concentration, human oxoguanine DNA glycosylase 1 (hOgg1) has a 

subsecond DNA-binding time and slides with a diffusion constant as high as 5 x 106 bp2/s 

(351). However, the searching for the targets by enzymes may be not just a naive one-

dimensional sliding or hopping but rather a delicately weighted mixture of ‘sliding’ 

‘hopping’, ‘intersegmental transfer’ and three-dimensional diffusion. In the following 

review, I will focus on how DNA mismatches or damages are recognized by the enzymes 

through different mechanisms.  

 

B. Models for DNA repair enzymes to recognize DNA damages 

1. Structure-based recognition 

Early hypotheses which tried to explain the recognition of damaged or 

mismatched DNA focused on the structural detail of the lesion and the difference 

between lesion and normal DNA. The X-ray crystallography and NMR study of damaged 
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and mismatched DNA showed that the incorporation of a base mismatch does not result 

in large changes in the overall conformation of a B-form DNA helix (352-362). The 

structure of an oligonucleotide containing the 8-oxo-guanine lesion showed almost no 

structural differences from B-DNA (363). Bulky lesion-containing DNA showed more 

structural distortion as revealed by NMR studies (364-369). The small differences 

between DNA lesion and normal DNA may be used by DNA repair enzymes to identify 

the lesion through direct read out (direct base–amino acid interactions). DNA repair 

enzyme may also detect bulky lesions which distort DNA by indirect read out 

(conformational properties of the DNA). 8-oxo-guanine and guanine differ in chemical 

composition at only two positions: C8 (O versus H) and N7 (H versus lone electron pair). 

The crystal structural studies showed that the hydrogen bond made by the N7 H of oxoG 

to the main-chain carbonyl of Gly 42 of human 8-oxogunanine DNA glycosylase I 

(hOGG), which would be missing with G, contribute to the discrimination (370). 

Hanawalt and Haynes proposed a model of DNA damage recognition mechanism for 

nucleotide excision repair, termed ‘close fitting sleeve’ model, which postulated that 

DNA repair is dependent on the difference between the structure of the DNA surrounding 

the lesion and that of the normal Watson–Crick double helix (371). Gunz and colleagues 

demonstrated that the efficiency of bulky lesion recognition by the human NER pathway 

can vary over several orders of magnitude and the efficiency of repair of a particular 

lesion is related to the amount of helical destabilization it can cause (372). Crystal 

structure of T4 endonuclease V (a DNA repair enzyme not related to endonuclease V 

family) complexed with thymine dimer revealed a sharp kink at the central thymine 

dimer in the bound DNA that split the DNA duplex into two halves of B-DNA, which 
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may facilitate the recognition (373). Further studies on different DNA repair enzymes 

indicate that structural discrimination of damage and mismatch in DNA do not explain 

the full range of mechanisms applied in DNA damage recognition. In addition, some 

DNA repair enzymes, such as AAG, AlkA, MutY etc, have very wide substrate 

specificity (374, 375). It is noteworthy that AlkA cleaves not only damaged nucleobases, 

but also releases undamaged native bases at a low background level (376). Models based 

upon structural recognition cannot explain wide substrate specificity of these DNA repair 

enzymes which identify and correct lesions of different sizes and structures.  

 

2. Thermodynamic and kinetic aspect 

Thermodynamic studies of base lesions and mismatches indicate that the damages 

tend to induce destabilizing influences on the DNA helix (376-378). This destabilization 

can be measured through a reduction in the denature temperature (Tm) compared to their 

undamaged counterpart.  In addition, the thermodynamic consequences of the damage are 

sequence dependent (379-380). Also, damage can induce a kinetic destabilization of the 

helix lead to the increase of the rate of base pair opening events at the aberrant site (381). 

NMR studies showed that for some mismatches, such as G:G, interconversion between 

different conformations of the mispair is fast, approx. 104 s−1 at 303 K (30°C), while the 

G:A mismatch had a conformational exchange rate of only 100 s−1 at 303 K comparable 

to the rates of opening for Watson–Crick base pairs (382). Modified DNA base pairs tend 

to adopt extra-helical conformations. The non-planar thymine glycol lesion has been 

shown to undergo significant motion by NMR studies and may be completely extra-

helical (383). It is generally believed that both a distortion of the DNA helix and a 
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modification to the DNA chemical structure are needed for a NER substrate (384, 385). 

DNA helix distortions, including disruption of Watson-Crick base pairing, DNA bending, 

and unwinding of the DNA strands, are thought to play an important role in the NER 

recognition process (386-388). Simple mismatches or bubbles are not processed by the 

NER pathway, indicating the local thermodynamic destabilization of duplex DNA is not 

sufficient to be considered as a NER substrate. The human NER complex remains 

inactive on DNA substrates in which only the backbone of the duplex has been modified 

(389). However, the presence of covalent DNA backbone modifications in conjunction 

with mismatches results in a robust response by the NER machinery (389). 

 

3. Base unstacking initiated recognition 

Yang recently proposed that DNA repair proteins may first recognize poor base 

stacking in the search for DNA damages among a large excess of normal bases (390). 

The hypothesis suggests that all lesions have weakened base stacking. It results in local 

flexibility, reduced melting temperature, changes in helical parameters, steric clashes, 

duplex opening, bending of helical axis, and base flipping in the lesion containing DNA 

(391-394). The structure of the DNA helix is stabilized mainly by hydrogen bonding of 

coplanar base-pairs and vertical stacking potential between base-pairs. Wobble base 

pairing between mismatched bases requires base displacement (a shift in the plane of 

base pair), which may cause the base to unstack. In the crystal structures of 

oligonucleotides containing a G:T wobble base pair, base stacking in the neighborhood of 

the mismatch is perturbed and helical parameters are altered (395). Yakovchuk and 

colleagues recently demonstrated that in DNA duplexes with solitary nicks or gaps, base 
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stacking is the dominant stabilizing factor while A:T pairing is always destabilizing and 

G:C pairing contributes almost no stabilization (396). It may explain why DNA lesions 

are favorably repaired in some sequences, since base stacking stabilization is sequence 

dependent. DNA lesions in less stabilized sequences may be better recognized by DNA 

repair enzymes when they search for the ‘unstacking signal’. Fluctuations in local helical 

conformation of DNA, known as ‘DNA breathing’, is also sequence dependent (397-

398). Lesions in some sequences may open more frequently and result in favorable 

repair. Crystal structures of E. coli MutS complexed with a variety of mismatches reveal 

a common recognition mechanism. Mismatch binding by E. coli MutS involves the 

stacking of a phenylalanine residue (Phe 36) of one of the monomers, onto one of the 

mismatched bases and causes the mismatched base unstack with neighboring bases. The 

same base is reoriented and brought into proximity to the glutamate (Glu 38) and forms a 

hydrogen bond with this amino acid (399). VSR endonuclease recognizes T:G 

mismatches in a particular sequence context [5′-CT(A or T) GG-3′ paired with 5′-CC(T 

or A)GG-3′] and cleaves the DNA 5′ of the mispaired T. Tsutakawa and colleagues (400) 

showed that in the crystal structure of VSR-DNA complexes, three aromatic residues 

intercalate into the DNA next to the T:G mismatch and the T:G mismatch forms a wobble 

base pair, which is completely unstacked from the adjacent base pair at the 5′ side of the 

mismatched guanine. Mismatch Uracil DNA glycosylase (MUG) excises uracil or 

thymine base from U:G or T:G mismatches. The crystal structure of E. coli Mug-DNA 

complex shows that the U:G mismatch is unstacked from the neighboring base pair. Phe 

30 of Mug makes π-π stacking interaction with uracil. The guanine opposite this uracil is 

separated from its 5′ neighbor by Arg-146 side chain (401). 
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4. Nucleotide flipping mechanism 

Nucleotide flipping was first observed in cytosine-5-methyltransferases bound to 

their target DNA sequences (402). Nucleotide flipping, a process in which a target DNA 

nucleotide is flipped out of the DNA base stack, has been demonstrated to occur in some 

damage-specific DNA repair enzymes. Accumulating evidence shows that many repair 

enzymes use nucleotide flipping mechanism to recognize and remove damaged DNA 

(403-407). Crystal structures of repair enzymes complexed with damaged DNA exhibit a 

flipped-out base accompanied by substantial bending and distortion of the DNA. DNA 

bending and distortion by the enzymes may facilitate base-pair opening (408-410). In the 

processive mechanism, the enzyme scans along the duplex and samples every base it 

encounters. Normal bases are released and reanneal within the duplex. When the enzyme 

reaches a lesion that displays enhanced affinity for the enzymatic binding pocket, it stops 

and removes the base. This scenario applies to the lesions, such as 8-oxoG, which induce 

little destabilization of the duplex and show little extrahelical tendency.  Lesions causing 

destabilization of the DNA duplex adopt extrahelical conformation frequently. These 

lesions are subject to the repair of nonprocessive mechanism in which the random 

extrusion of lesions from the duplex substrate are accommodated and processed by the 

repair enzymes. Nucleotide flipping is thought to be the primary mechanism for base 

excision repair enzymes to detect and remove a variety of base lesions within a large pool 

of undamaged DNA (411). Crystal structures of uracil-DNA glycosylase (407), 

alkyladenine glycosylase (412) and 8-oxoguanine-DNA glycosylase (413) complexed 

with lesions have shown that the damaged base exists in an extrahelical mode. Uracil 

DNA glycosylase (UDG) is a highly specific DNA repair enzyme which only removes 



   

50 

uracil lesions from DNA. Crystal structure of human UDG bound to uracil-containing 

DNA shows that UDG uses pinch-push-pull mechanism to flip the uracil out (407). UDG 

rapid scanning by DNA backbone compression (pinch) slightly bends the DNA. The Leu 

272 side chain (L of the HPSPLS motif) penetrates into the base stack through the minor 

groove, causing extrahelical localization ("push") of the target uridine, which was then 

accommodated ("pull") into the active site pocket by specific interaction between them 

(407). However nucleotide flipping is not confined to base excision repair enzymes. 

Photolyase in direct reveral (414) and uvrB in NER (415) also use nucleotide flipping 

mechanism to facilitate the DNA repair. DNA photolyases  use the energy of a blue-light 

photon to transfer an electron onto UV-damaged DNA, such as the cis-syn cyclobutane 

pyrimidine dimers (CPDs) and the resulting radical anion then splits into two pyrimidines 

and transfers back the excess electron to the enzyme (414). Crystal structure of a 

photolyase bound to a CPD-Like DNA lesion shows the thymine dimer is specifically 

recognized in the active site by being completely flipped out of the duplex DNA (416). 

The DNA bends about 50°C at the CPD bend. The complementary adenines stack with 

neighboring bases but do not stack on top of each other because of the large intrahelical 

bend (416). UvrB, a DNA helicase, is a central component of the bacterial NER system 

participating in damage recognition, strand excision and repair synthesis (417). Crystal 

structure of uvrB complexed with fluorescent adenine analogue 2-aminopurine indicates 

that binding of UvrB to the damage containing DNA moves the base adjacent to the 

lesion at the 3' side into an extrahelical position and the base opposite this flipped base is 

also extruded from the DNA helix. Tyr 95 in the haipin region is involved in base 
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flipping in the non-damaged strand. This conformational change in the non-damaged 

strand may be critical for 3' incision by UvrC (417). 
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CHAPTER TWO 

Switching Base Preferences of Mismatch Cleavage in Endonuclease V: 

An Improved Methods for Scanning Point Mutation 

 

I. Abstract 

Endonuclease V recognizes a broad range of aberrations in DNA such as 

deaminated bases or mismatches.  It nicks DNA at the second phosphodiester bond 3’ to 

a deaminated base or a mismatch.  Endonuclease V obtained from Thermotoga maritima 

preferentially cleaves purine mismatches in certain sequence context.  Endonuclease V 

has been combined with a high fidelity DNA ligase to develop an enzymatic method for 

mutation scanning.  A biochemical screening of site-directed mutants identified mutants 

in motifs III and IV that altered the base preferences in mismatch cleavage.  Most 

profoundly, a single alanine substitution at Y80 position switched the enzyme to 

essentially a C-specific mismatch endonuclease, which recognized and cleaved A/C, C/A, 

T/C, C/T and even the previously refractory C/C mismatches.  Y80A can also detect the 

G13D mutation in K-ras oncogene, an A/C mismatch embedded in a G/C rich sequence 

context that was previously inaccessible using the wild-type endonuclease V.  This 

investigation offers insights on base recognition and active site organization.  Protein 

engineering in endonuclease V may translate into better tools in mutation recognition and 

cancer mutation scanning. 
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II. Introduction 

Techniques to scan unknown single nucleotide polymorphisms (SNPs) or point 

mutations are an essential tool in the post-genomic era.  Current mutation scanning 

methods include single-stranded conformational polymorphism (SSCP) and heteroduplex 

analysis (HA) (1,2), denaturing high performance liquid chromatography (DHPLC) (3), 

and chemical or enzymatic cleavage (4-7).  Several enzymatic cleavage methods have 

been developed (7,8).  T4 endonuclease VII and T7 endonuclease I, the two phage 

resolvases, have been used for mutation scanning with limited success due to high 

background generated by cleavage of non-mismatch sequences (9).  Other enzymes such 

as MutY DNA glycosylase and thymine DNA glycosylase (TDG), and CEL1 nuclease 

have also been employed in mutation scanning (7,10).   

 Endonuclease V (endo V) is a DNA repair enzyme with unique enzymatic 

properties.  Under physiological conditions, endo V cleaves deaminated bases at the 

second phosphodiester bond 3’ to a lesion.  By shifting reaction conditions to higher pH, 

metal cofactor to Mn2+, using excess enzyme, and/or using solvents such as DMSO and 

betaine, this repertoire may be extended to include cleavage of most mismatched DNA 

base pairs (11-13).  This enzymatic property has been explored for the development of 

mutation scanning techniques (8,14).  We have devised a scheme that uses thermostable 

endonuclease V obtained from Thermotoga maritima (Tma) to cleave mismatches and a 

high-fidelity thermostable DNA ligase from Thermus species AK16D to seal nonspecific 

cleavage (8,15,16). Co-incubation of the two enzymes allows for endonucleolytic 

cleavage of mismatches with real-time resealing of matched nicks, allowing for detection 
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of low-abundance mutations in tumor tissue at a ratio of 1:50 mutant to wild-type DNA 

(8,15). 

 Tma endonuclease V preferentially cleaves purine bases in a mismatch in certain 

sequence context (13).  The wild-type enzyme cleaves the C-containing mismatches the 

least and C/C mismatches are essentially resistant to cleavage (13).  Even some A/C 

mismatches are refractory to cleavage when located in a G/C rich sequence context, as 

exemplified in the G13D mutation in K-ras (8).  Identification of endo V variants that can 

cleave C-containing mismatches will broaden the applicability of the endo V/ligase 

mutation scanning technique.  Although an endo V-DNA complex structure is not 

available, an extensive site-directed mutagenesis analysis has identified motifs and 

specific amino acid residues that influence base recognition and DNA-protein 

interactions (17).  Taking advantage of a battery of over sixty endo V single-site mutants 

previously isolated, we screened for and identified endo V variants that possessed altered 

base preference in mismatch cleavage.  Y80A in motif III converted endo V to essentially 

a C-specific mismatch cleavage variant that was capable of nicking refractory A/C 

mismatches in the K-ras gene.   

 
 

 

 

 

 

 

 



   

92 

III. Materials and Methods 

A. Materials  

Purified deoxyribooligonucleotides were ordered from Integrated DNA 

Technologies Inc. (Coralville, IA).  Duplex deoxyoligonucleotide substrates were 

prepared as previously described (17).  The wild-type and mutant Tma endonuclease V 

proteins and Tsp AK16D DNA ligase were purified as previously described (16-18).   

 

B. Endo V cleavage assays   

The cleavage reaction mixtures (10 µl) containing 10 mM HEPES-KOH (pH 7.4), 

1 mM dithiothreitol, 2% glycerol, 5 mM MnCl2 unless otherwise specified, 10 nM 

oligonucleotide DNA substrate and 10 nM of Tma endo V protein unless otherwise 

specified were incubated at 65°C for 30 min.  The reactions were terminated by addition 

of an equal volume of GeneScan Stop Buffer (80% formamide, 50 mM EDTA (pH 8.0), 

and 1% blue dextran).  The reaction mixtures were then heated at 94°C for 3 min and 

cooled down on ice.  Samples (3.5 µl) were loaded onto a 10% denaturing 

polyacrylamide gel containing 7 M urea.   Electrophoresis was conducted at 1500 volts 

for 1.5 h using an ABI 377 sequencer (Applied Biosystems).  Cleavage products and 

remaining substrates were quantified using the GeneScan analysis software version 3.0.   

 

C. PCR amplification of K-ras exon I 

 For detecting K-ras mutations, genomic DNA was extracted from cell lines as 

described (19).  Cell lines HT 29 contains wild-type K-ras gene.  SW480 contains G12V 

(G->T) mutation (pure G12V mutant).  DLD-1 contains G13D (G->A) mutation.  K-ras 
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exon I was amplified by PCR as described (8).  To remove Taq DNA polymerase, 4 µl of 

20 mg/ml proteinase K (QIAGEN) was added to the PCR mixtures (50 µl) and incubated 

at 70°C for 10 min.  Proteinase K was inactivated by incubating at 80°C for 10 min.  

Amplicons containing wild-type sequence were added in approximately equal ratios 

when missing from the sample (i.e. pure mutant cell line DNA).  The mixed PCR 

fragments, were heated at 94°C for 1 min to denature the DNA, and then cooled at 65°C 

for 15 min and at room temperature for 15 min to allow efficient formation of 

heteroduplex DNA. 

 To generate sticky ended PCR products, K-ras exon I was amplified as described 

with the exception that the PCR primers are as follows (8): Oligo 1, 5’-

CCCCGCTGAGGATAGTGTATTAACCTTATGTGTGACATGTTC-3’ (underlined: 

N.BbvC IA site); Oligo 2, 5’-Fam-CCCCCCTCAGCAAAATGGTCAGAGAAACCTTT 

ATCTGTATC-3’ (underlined: N.BbvC IB site, which is complementary to the N.BbvC 

IA site).  After PCR, the top strand contained two N.BbvC IA sites and the bottom strand 

contained two N.BbvC IB sites (Fig. 2.4A).  Post-PCR processing and formation of 

duplex DNA were carried out as described above.  PCR products (6 µg) were then 

digested at 37°C overnight with 60 units of N.BbvC IA in NEB buffer 2 (New England 

Biolabs).  The reaction mixtures were extracted with phenol/chloroform/isoamyl alcohol 

(25:24:1) to remove proteins and passed through microcon YM-50 spin column 

(Millipore) to remove the small DNA fragments generated by BbvC IA nicking. 
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IV. Results and Discussion 

A. Examination of base preferences of mismatch cleavage in endonuclease V 

mutants.   

Endonuclease V contains seven conserved motifs in which motifs III and IV play 

a major role in protein-DNA interactions (17).  We screened a total of sixty-four mutants 

previously isolated for mismatch cleavage activity (Fig. 2.1) (17). The assays were 

performed in the presence of Mn2+ instead of Mg2+ since endo V enzymes show enhanced 

mismatch cleavage with Mn2+ (12,13).  As expected, a majority of mutants lost mismatch 

cleavage activity.   

 

N I II III IV V VI VII C
Q20A:± G41V:WT

F46A:-

P79A:±

L85A:-

Y80A:C
Y80F:WT
Y80H:T
I81A:WT
P82A:WT
G83V:A

A86M:A
F87A:A

R88K:WT
R88E:WT
R88Q:WT

G111V:-
G113V:-

H116E:A
H116Q:±
H116T:A
H116Y:±
R118A:WT
R118K:-
R118L:-
K119A:±
G121V:-
A123I:-
H125A:WT
G127V:-

G136V:-
V137A:-
A138I:-
K139A:-
K139E:-
K139R:-
K139Q:-

S182I:-
G184V:-

R205A:-
R205K:WT:
P207A:WT
P209A:WT
R211A:WT
R211K:WT
A213L:-

K119R:±

WT:A,G>T>C
±: <20% wt cleavage activity
-: No cleavage activity

D43E:-
D43H:-
D43C:-
D43A:-

E89A:-
E89H:-
E89D:-

D110E:-
D110H:±
D110C:-

H214E:±
H214D:WT
H214C:-
H214A:-

D110A:-

H116A:A

R88A:±

 

Figure 2.1 Base preference of mismatch cleavage of Tma endonuclease V mutants. 
Cleavage reactions were performed as described in Materials and Methods.  Motifs are 
shown in Roman numbers.  See (17) for sequence alignment. 
 

Other mutants still maintained mismatch cleavage activity in a pattern similar to 

the wild-type enzyme, which included G41V in motif II; Y80F, I81A, P82A, R88K and 

R88Q in motif III, R118A and H125A in motif IV; R205K, P207A, P209A, R211A, 

R211K, and H214D in motif VII (Fig. 2.1). Yet, several mutants in motifs III and IV 

showed quite distinctively altered base preference in mismatch cleavage.  An alanine 
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substitution at Y80 position essentially switches the base preference from purine 

mismatches to C-specific mismatches (Figs. 2.1-2.2). All five C-containing mismatches 

were cleaved by Y80A (Fig. 2.2, compare the band intensities in wild-type and Y80A).  

Most remarkably, even the refractory C/C mismatch in this sequence context was cleaved 

on both strands (Fig. 2.2, C/C lane in Y80A). On the other hand, cleavage of other 

mismatches was minimum or not detected. A histidine substitution at Y80 rendered the 

enzyme more active in cleaving T-containing mismatches, while reducing the cleavage of 

other mismatches (Fig. 2.2, Y80H). Apparently, A86M preferentially cleaved A-

containing mismatches. All four A-containing strands G/A, C/A, A/G and A/C and both 

strands in A/A were cleaved by A86M. Other mutants such as G83V and F87A also 

showed preference for A bases (Fig. 2.1).  
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Figure 2.2 Representative GeneScan gel pictures of mismatch cleavage.  Cleavage 
reactions were performed as described in Materials and Methods 
 

The base preference in R88E remained similar to the wild-type enzyme, i.e., G 

and A bases were preferred. However, the cleavage site on the top strand (blue band) is 

more promiscuous. Cleavage at one nt closer or one nt further away from the mismatches 

was observed (Fig. 2.2, R88E).  Similar cleavage site promiscuity occurred in R88Q (data 

not shown). A few H116 mutants such as H116A, H116E and H116T somewhat 

preferred the A base in a mismatch (Figs 2.1-2.2)  
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B. Cleavage of A/C mismatches in synthetic K-ras substrates.    

Given the strong preference of Y80A for the C base in a mismatch, we tested its 

ability to cleave C-containing mismatches that were refractory for the wild-type enzyme.  

Previously, we developed an enzymatic mutation scanning method, which takes 

advantage of the mismatch cleavage of endo V and nicking joining activity of DNA 

ligase to seal nonspecific cleavage at matched bases (8).  During the course of that study, 

we found G13D mutation in K-ras was completely refractory to endo V cleavage when 

using Mg2+ as cofactor in the presence of both 5% (V/V) DMSO and 1.5 M betaine.  

G13D is a G to A transition that yields G/T and A/C mismatches.  A closer look at the 

flanking sequence indicates that the mismatches are located in a G/C rich sequence 

context (TGGCG, the mutation site is underlined), which may make it difficult for endo 

V to cleave (11).  To test the ability of Y80A to cleave this sequence, we synthesized an 

oligodeoxynucleotide substrate that was identical to the G13D sequence in K-ras (Fig. 

2.3A, A/C).  The overall design was consistent with the mismatch substrates used for 

initial activity screening (Fig. 2.2).  When using Mn2+ as the metal cofactor, the wild-type 

endo V exhibited non-specific fragmentation of both the top and the bottom strand as a 

result of non-specific cleavage, but did not yield correct length fragments from the 

mismatched base pair (Fig. 2.3B).  Remarkably, Y80A generated a cleavage band from 

the bottom C-containing strand at about 38-39-mer position, indicating that the altered 

base preference has enabled the mutant to cleave the refractory sequence (Fig. 2.3B).  To 

verify the specificity of the cleavage by Y80A, we synthesized a similar substrate but 

with the C base on the top strand, which would generate a 27-mer if cleaved (Fig. 2.3A, 

C/A).  Again, the Y80A cleaved the C-containing strand in the C/A mismatch at the 
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anticipated position, while the wild-type enzyme generated lower molecular weight 

fragments (Fig. 2.3B).  These results confirmed the C base preference of the Y80A 

mutant in the refractory sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 Cleavage of A/C mismatch in synthetic K-ras G13D sequence by Y80A 
Tma endonuclease V mutant.  Cleavage reactions were performed as described in 
Materials and Methods with 2.5 mM MnCl2.  A. Schematic illustration of A/C cleavage.  
A/C heteroduplex was formed by annealing of 5’-FAM-TAACTTGTGGTAGTTGG 
AGCTGGTGACGTAGGCAAGAGTGCCTTGACGATACAGCTAATTCATTCC-3’ 
and 3’-TGAACACCATCAACCTCGACCACCGCATCCGTTCTCACGGAACTGCGA 
TGTCGATTAAGT-TET-5’. C/A heteroduplex was formed by annealing of 5’-FAM-
TATCGTCAAGGCACTCTTGCCTACGCCACCAGCTCCAACTACCACAAGTTTAT
ATTCAGTCATTCC-3’ and 3’-AGCAGTTCCGTGAGAACGGATGCAGTGGTCGAG 
GTTGATGGTGTTCAA ATATAAGTCAGT-TET-5’.  B. Cleavage of A/C K-ras G13D 
mismatch by wild-type Tma endonuclease V and Y80A mutant.   
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C. Cleavage of A/C mismatch in K-ras amplicons.   

To test the ability of the Y80A mutant to cleave PCR products, we amplified the 

exon 1 of the K-ras gene from both the wild-type, G12V, and G13D mutant cell lines.  

Heteroduplexes were generated by mixing the wild-type PCR amplicon with the mutant 

amplicons (Fig. 2.4A, left).  The 286-bp long heteroduplexes containing T/C and G/A 

mismatches from G12V and A/C and G/T mismatches from G13D were treated with 

Y80A mutant endo V.  Since Y80A acted as a C-specific mismatch endonuclease (Figs. 

2.2-2.3), we scored the specific cleavage bands as resulting from cleaving C-containing 

mismatches.  As expected, G12V was cleaved by Y80A on the C-containing strand to 

yield a 166-mer product (Fig. 2.4B, left).  However, cleavage of A/C mismatch in the 

G13D was minimal (Fig. 2.4B, left).   
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Figure 2.4 Cleavage of A/C mismatch in K-ras G13D sequence amplified from colon 
cancer cell lines by Tma endonuclease V mutant Y80A.  A. Schematic illustration of 
blunt end and sticky end heteroduplex G12V and G13D PCR products.  See Materials 
and Methods for details.  B. Cleavage of G13D by Y80A Tma endonuclease V mutant.  
Cleavage reaction mixtures (10 µl) containing 10 mM HEPES-KOH (pH 7.4), 1 mM 
DTT, 2% glycerol, 2.5 mM MnCl2, 100 ng of wild-type K-ras homoduplex or G12V 
heteroduplex or G13D heteroduplex and 100 nM Tma endo V mutant Y80A protein were 
incubated at 65°C for 30 min.  For the reactions that were followed by ligation, the 
amount of K-ras homoduplex or heteroduplex was increased to 200 ng in the cleavage 
reactions.  The cleavage reaction mixtures were filtered through an YM-10 microcon spin 
column and washed with TE buffer containing 10 mM Tris-HCl (pH 7.6) and 1 mM 
EDTA.  To seal the nonspecific nicks, the washed cleavage reaction mixtures (in 6 µl TE) 
were supplemented with 1 µl of 10 x Taklig buffer (20 mM Tris-HCl (pH 7.6), 100 mM 
KCl, 10 mM dithiothreitol, 20 µg/ml bovine serum albumin), 1 µl of 100 mM MgCl2, 1 
µl of 10 mM NAD+, and 1 µl of 20 nM Tsp AK16D ligase.  The ligation mixtures were 
incubated at 65°C for 20 min.  
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Previously, we have observed a reduction in fluorescence signal in blunt end 

amplicons due to cleavage of the fluorescent label and the adjacent base by endo V, 

liberating the label from the amplicon (15).  We suspected a similar cleavage event might 

have occurred in the blunt ended amplicons that have reduced the cleavage product 

signals (Fig. 2.4B left, bottom of gel).  Given that the synthetic duplexes contained 

overhangs (Fig. 2.3), we thought the overhangs at the ends may reduce the loss of 

fluorescence signal by endo V.  We, therefore, designed a method to convert the PCR 

amplicons to sticky ended duplexes (Fig. 2.4A, right).  N.BbvC IA recognizes double-

stranded 5’-GC↓TGAGG-3’ sequence and nicks between the C and T.  The recognition 

sequence was incorporated into the PCR primers for amplifying the exon I of K-ras gene 

(see Materials and Methods for details).  The resulting PCR amplicons were then treated 

with N.BbvC IA to generate a two-base overhang at the 3’ end and five-base overhang at 

the 5’ end for the C-containing strand, respectively (Fig. 2.4A, right).  Both the G12V 

and G13D heteroduplexes were cleaved by Y80A mutant endo V (Fig. 2.4B, middle).  

The nonspecific products were sealed by the high fidelity Tsp. AK16D ligase, thus 

reducing the background (Fig. 2.4B, right).  Some of the mismatch cleavage products 

were also sealed by the DNA ligase (16), resulting in a reduction in the intensity of the 

specific band. 

 This work identified endo V variant enzymes with substantially altered base 

preferences in mismatch cleavage.  Since all these variant enzymes contained changes in 

motifs III and IV, this underscores the important role these motifs play in base 

recognition (Fig. 2.1).  Consistent with a previous study (17), Y80 and H116 appear to be 

important determinants of base recognition. Although an endo V-DNA co-crystal 
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structure is not available, secondary structure analysis indicates that both Y80 and H116 

are located in loop regions (20).  We speculate that motifs III and IV are components of 

recognition loops that are involved in specific base recognition.   

 Y80A is the most striking in that it essentially converts the enzyme to a C-specific 

mismatch endonuclease (Fig. 2.2).  Consequently, the previous refractory C/C mismatch 

for the wild-type enzyme now becomes cleavable by the Y80A mutant.  First, how does a 

single alanine substitution at Y80 position accomplish such a dramatic alteration in base 

preference?  A simple model is illustrated in Fig. 2.5.  In the wild-type enzyme, Y80 

imposes an unfavorable interaction with a C base, in which the amino group at C4 

position spatially clashes with the bulky tyrosine residue.  This steric hindrance prevents 

the wild-type endo V from recognizing and cleaving C-containing strand in a mismatch.  

By substituting the phenol side-chain with a small methyl group, Y80A releases the steric 

tension and allows the C base to be accommodated in the recognition pocket (Fig. 2.5).  

A comparison with uracil DNA glycosylase (UDG) is illuminating.  The N204 in the 

recognition site of human uracil DNA glycosylase forms hydrogen bonds with O4 and 

N3 of uracil via the amide side chain and the Y147 excludes a thymine base by steric 

complementarity (21).  Interestingly, N204D confers cytosine DNA glycosylase activity 

to hUDG by forming hydrogen bonds with the C4-amino group and the N3-nitrogen via 

the carboxyl side chain, while Y147A switches the enzyme to thymine DNA glycosylase 

by preventing the steric clash with the C5-methyl group of the thymine base (22).  It is 

possible that endo V and UDG adopted a similar strategy as part of base-specific 

recognition mechanism (22-26).   
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Figure 2.5. A hypothetical model for alteration of base recognition by Y80A.  See 
text for details. 
 

The surprising alteration in base preference of mismatch cleavage prompted us to 

investigate the potential implication in improving the endo V/ligase mutation scanning 

technique previously reported (8).  The use of this technique in scanning K-ras mutations 

met with difficulty partly due to the inability of the wild-type endo V to cleave A/C 

mismatches in some G/C rich sequence context (8).  Data presented here indicate that the 

Y80A is not only specific for C-containing mismatches, but also for those embedded in 

G/C rich environment (Fig. 2.3).  Therefore, the C-specific mismatch cleavage ability 

may have enabled the Y80A to recognize and nick the C-strand previously not accessible 

by the wt endo V.  Based on the model explained above, favorable interactions between 

Y80A and a C base may facilitate the base recognition process, which assists in guiding 

the complex to a catalytically competent path.  Likewise, the previously inaccessible C/C 

mismatch now becomes a substrate for Y80A (Fig. 2.2).  The difference in A/C mismatch 

cleavage efficiency between amplicons with blunt or overhang ends is due to loss of 

fluorescence signal by endo V cleavage.  This problem was previously addressed by 
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synthesizing modified primers that are refractory to Endo V cleavage (15).  Introducing a 

nicking site into a PCR primer provides a simple alternative method to maintain 

mismatch cleavage signal.  This study demonstrates how malleable endonuclease V is, 

allowing for alteration of base preference in mismatch cleavage by single amino acid 

changes.  Some of these mutants offer the potential for developing base-specific Endo 

V/DNA ligase mutation scanning assays. 
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CHAPTER THREE 

Role of Tyrosine 80 in Base Recognition in Endonuclease V  

from Thermotoga maritima 

 

I. Abstract 

Endonuclease V recognizes and cleaves deaminated DNA and mismatch base 

pairs. Tyrosine 80 located in motif III is involved in protein-DNA interactions. This study 

investigates the role of Y80 in base recognition by substituting it with all nineteen natural 

amino acids. The resulting mutants were characterized biochemically using deaminated 

base-containing and mismatch-containing DNA. Substitutions with aromatic amino acid 

residues retained partial binding affinity as demonstrated by gel mobility shift analysis 

with double-stranded inosine-containing DNA. Uridine-containing double-stranded DNA 

as an adenosine/uridine base pair was only cleaved by the wild type endo V in the 

presence of MgCl
2
. Uridine-containing double-stranded DNA as a guanosine/uridine base 

pair was cleaved by the wild type endo V and to a much less extent by Y80F in the 

presence of MgCl
2
, indicating an essential role of the aromatic ring and the hydroxyl 

group in base recognition.  For mismatched base pairs, Y80H preferred cleavage of 

thymidine-strand in a thymidine-containing mismatch; Y80P and Y80S, along with 

previously identified Y80A, enhanced the cleavage of the cytosine-strand in a cytosine-

containing mismatch, Y80R tended to cleave thymidine- and cytosine-strand in a 

mismatch.  The ability to alter cleavage preferences in a mismatch further underscores the 
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role of Y80 in base recognition. Base recognition by Y80 and its relationship to amino 

acid substitutions were discussed. 
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II. Introduction  

 Endonuclease V (endo V) is a DNA repair enzyme that recognizes deaminated 

bases and mismatch base pairs and in general nicks the second phosphodiester bond 3’ to 

the aberrant site (1-5).  Its broad substrate specificity raises important questions as to how 

endo V recognizes deaminated bases and mispairs and the role of specific amino acid 

residues in base recognition.  Based on the biochemical analysis of enzymatic activities 

towards different deaminated bases, we previously proposed that endo V may use a three-

element base recognition mechanism to distinguish a deaminated base from a regular 

base (6). This model suggests that recognition element A of endo V may interact with the 

6-keto in deaminated purine bases or 4-keto in uracil, while element C recognizes the N7 

position in purine bases (6).  Element B may be snug between the 2-keto and N3 in uracil.   

To define the DNA-protein interactions in endo V, we previously conducted a 

systematic site-directed mutagenesis and biochemical analysis using the thermostable 

endo V from Thermotoga maritima (Tma) as a model system (7).  This study reveals that 

some conserved residues such as Y80, G83 and L85 in motif III and H116, R118 and 

G121 in motif IV make significant contribution to base recognition.  In particular, Y80 in 

motif III and H116 in motif IV are interesting as the hydrogen bond donor capacity of 

these residues appear to be important for DNA-protein interactions (7).  It was speculated 

that Y80 and H116 might act as elements A and C in base recognition.   

 The notion that motifs III and IV contain important base recognition elements is 

further supported by biochemical analysis of mismatch cleavage activities in endo V 

mutants (8).  In a biochemical screening using Mn2+ as the metal cofactor, we found that 

several mutants in these two motifs that altered base preference in mismatch cleavage.  
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While the wild type endo V prefers A and G in a mismatch, Y80H showed some degree 

of preference for a T base (8).  Y80A, on the other hand, became a C-specific mismatch 

endonuclease. Several mutations at H116 converted the preference to an A base.  

Consistent with the above-mentioned three-element model and the implication of Y80 as 

recognition element A, we proposed that Y80A might prevent the steric clash with a C 

base due to its smaller side chain, thus altering the base preference in mismatch cleavage. 

 The interesting biochemical properties exhibited by some Y80 mutants prompted 

us to survey the effects of all possible amino acid changes at position 80 in Tma endo V.  

Here, we report a biochemical analysis of nineteen Y80 mutants using deaminated base- 

and mismatch-containing DNA substrates. This comprehensive amino acid substitution at 

a single site underscores the importance of aromatic ring and hydrogen bond donor 

capacity in base recognition, reveals additional mutants with altered base preference in 

mismatch cleavage, and offers new insight on the role of Y80 in base recognition. 
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III.  Materials and Methods 

A. Reagents, media, and strains  

All routine chemical reagents were purchased from Sigma Chemicals (St. Louis, 

MO), Fisher Scientific (Suwanee, GA) or VWR (Suwanee, GA). Restriction enzymes and 

T4 DNA ligase were purchased from New England Biolabs (Beverly, MA). DNA 

sequencing kits were purchased from Applied Biosystems (Foster City, CA). BSA and 

dNTPs were purchased from Promega (Madison, WI). Taq DNA polymerase was 

purchased from Eppendorf (Hamburg, Germany). Deoxyoligonucleotides were ordered 

from Integrated DNA Technologies Inc. (Coralville, IA). Duplex deoxyoligonucleotide 

substrates were prepared as previously described (7). LB medium was prepared according 

to standard recipes. GeneScan Stop Buffer consisted of 80% formamide (Amresco, 

Solon, OH), 50 mM EDTA (pH 8.0), and 1% blue dextran (Sigma Chemicals). TB Buffer 

(1X) consisted of 89 mM Tris base and 89 mM boric acid. TE buffer consisted of 10 mM 

Tris-HCl, pH 8.0 and 1 mM EDTA.  Escherichia coli host strain AK53 (mrrB-, MM294) 

was from our laboratory collection.  

 

B. Site-directed mutagenesis of Thermotoga maritima endo V 

An overlapping extension PCR procedure was used for site-directed mutagenesis 

(9).  PCR products digested with a pair of NdeI and BamHI were ligated to cloning vector 

pEV5 treated with the same pair of restriction endonucleases. The ligated vectors were 

transformed into E. coli strain AK53 (mrrB-, MM294). Plasmids containing inserts were 

reisolated and sequenced on an ABI sequencer using dye-dideoxy terminator chemistry to 

identify mutated sequence and ensure that the constructs were free of PCR error. An 
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overnight E. coli AK53 LB culture containing the desire site-directed mutation was 

diluted 100-fold into MOPS medium supplemented with 50 µg/ml ampicillin. The E. coli 

cells (1 liter) were grown at 37°C while shaking at 250 rpm overnight. The cells were 

collected by centrifuging at 4000 rpm at 4°C and washed once with pre-cooled PBS 

buffer and stored at -20°C. Protein purification and quantitation were carried out 

essentially as previously described (4, 10). 

 

C. Endonuclease V cleavage assays 

The cleavage reaction mixtures (10 µl) containing 10 mM HEPES-KOH (pH 7.4), 

1 mM dithiothreitol, 2% glycerol, 5 mM MgCl2 or 5 mM MnCl2, 10 nM oligonucleotide 

DNA substrate and 10 nM of Tma endo V protein unless otherwise specified were 

incubated at 65°C for 30 min. The reactions were terminated by addition of an equal 

volume of GeneScan Stop Buffer (80% formamide, 50 mM EDTA (pH 8.0), and 1% blue 

dextran).  The reaction mixtures were then heated at 94°C for 3 min and cooled down on 

ice.  Samples (3.5 µl) were loaded onto a 10% denaturing polyacrylamide gel containing 

7 M urea. Electrophoresis was conducted at 1500 volts for 1.5 h using an ABI 377 

sequencer (Applied Biosystems). Cleavage products and remaining substrates were 

quantified using the GeneScan analysis software version 3.0.   

 

E. Gel mobility shift assays 

The binding reaction mixtures (20 µl) contained 100 nM fluorescently labeled 

oligonucleotide DNA substrates, 5 mM CaCl
2
, 20% glycerol, 10 mM HEPES-KOH (pH 

7.4), 1 mM DTT, and 100 nM of Tma endo V protein. The binding reactions were carried 
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out at 65°C for 30 min. Samples were electrophoresed on a 6% native polyacrylamide gel 

in 1 x TB Buffer supplemented with 5 mM CaCl
2
. The bound and free DNA species were 

analyzed using a Typhoon 9400 Imager (Amersham Biosciences) with the following 

settings: PMT at 600 Volts, excitation at 495 nm, emission at 535 nm. 
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IV. Results 

A. Cleavage of inosine-, xanthosine-, oxanosine-containing DNA 

Endonuclease V contains seven conserved motifs in which motifs III and IV play 

a major role in protein-DNA interactions (7). Y80 located in motif III is implicated in 

base recognition (8).  To better define the role of Y80 in protein-DNA interactions and 

base recognition, we systematically substituted Y80 with all nineteen amino acids.  Since 

endo V recognizes and cleaves all three deaminated purine bases, hypoxanthine, xanthine 

and oxanine, we tested the cleavage activity of these mutants against inosine (I)-, 

xanthosine (X)-, oxanosine (O)-containing oligonucleotide substrates first. The 

deaminated purine bases were placed in the bottom strand at position 37 (Fig.3.1A). Endo 

V in general cleaves at the second phosphodiester bond from the lesion at the 3’ side (1-

4). Therefore, cleavage by Y80 and its mutants would generate a 38-mer product 

(Fig.3.1).  Under that assay condition that the enzyme:substrate ratio of 1:1, all the 

mutants achieved a close-to-complete cleavage of the T/I substrate (Fig.3.1B), suggesting 

that inosine in DNA is still recognized by Y80 mutants.  A similar cleavage pattern was 

observed with C/X substrate, i.e., all the Y80 mutants as well as the wild type enzyme, 

achieved a close-to-complete cleavage of the T/X substrate (data not shown). On the 

other hand, C/O substrate was only partially cleaved by the wt enzyme. None of the 

nineteen Y80 mutants exhibited detectable cleavage of the C/O substrate (data not 

shown), suggesting that the any amino acid substitution at Y80 disables its oxanosine 

endonuclease activity. These results are consistent with a previous large-scale 

mutagenesis analysis, which indicated that oxanosine cleavage is vulnerable to amino 

acid substitutions at the positions that affect base recognition (7).   
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Figure 3.1 Cleavage of T/I substrate by Y80 Tma endonuclease V mutants.  Cleavage 
reactions were performed as described in Materials and Methods with 5 mM MgCl2.  A. 
Lesion-containing deoxyribooligonucleotide substrate.  I: deoxyinosine.  The 5’ end of 
the bottom strand was labeled with FAM fluorophore.  B. Cleavage activity of wt and 
Y80 Tma endo V mutants on inosine-containing substrate (T/I).  The single letter amino 
acid code is shown above the gel 
 

B. Binding of inosine-containing DNA and kinetic analysis of T/I cleavage 

One of the unique enzymatic features endo V possesses is that the enzyme retains 

tight binding to inosine- and xanthosine-containing DNA after cleavage, resulting in 

single-turnover of these substrates (4, 5, 7).  To compare the binding affinity of the Y80 

mutants with the wt enzyme, we performed gel mobility shift assay using the T/I 

substrate (Fig. 3.2A).  Among the three aromatic ring-containing mutants (Y80F, Y80H 

and Y80W), Y80F retained the highest degree of binding affinities to the T/I substrate 

(Fig. 3.2B).  The binding affinity of Y80R to the T/I substrate was about one fourth of 

level demonstrated by the wt enzyme (Fig. 3.2B). Other mutants either showed no 

detectable retarded band by gel mobility shift or very low level binding to the T/I 

substrate (Fig. 3.2B).  To evaluate the binding affinities to the cleavage product, we 
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performed gel mobility shift assay using the nicked T/I substrate (Fig. 3.2C). The four 

mutants (Y80F, Y80H, Y80W and Y80R) that retained significant binding to the T/I 

substrate also retained binding to the nicked T/I substrate (Fig. 3.2D).  Y80F again 

exhibited highest degree of binding affinity among all nineteen mutants, while the other 

mutants showed low or no detectable binding to the nicked T/I substrate (Fig. 3.2D). In 

repeated experiments, Y80R consistently showed some smearing in the retarded band, 

indicating that the Y80R-T/I complex or the Y80R-nicked T/I complex is less stable that 

the complexes formed by the wt enzyme and some other mutants such as Y80F (Fig. 

3.2A, 3.2C).   

 

 
 
Figure 3.2 Binding analysis of Y80 Tma endo V mutants on double-stranded inosine-
containing DNA.  Gel mobility shift assays were performed as described in Materials 
and Methods.  A. Gel mobility shift analysis of binding of Y80 Tma endo V mutants to 
double-stranded inosine-containing substrate (T/I) with 5 mM CaCl2.  B. Quantitative 
analysis of binding affinity of Y80 Tma endo V mutants to T/I substrate.  The binding 
affinity of the wt Tma endo V was taken as 1.0.  C. Gel mobility shift analysis of binding 
of Y80 Tma endo V mutants to nicked double-stranded inosine-containing product 
(nicked T/I) with 5 mM CaCl2.  D. Quantitative analysis of binding affinity of Y80 Tma 
endo V mutants to nicked T/I product.  The binding affinity of the wt Tma endo V was 
taken as 1.0. 
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Previously, we have observed that tight binding may limit the turnover of the 

enzyme to inosine-containing DNA substrates (7, 10).  To test the kinetic behavior of the 

Y80 mutants, we conducted a time-course analysis at the enzyme: substrate ratio of 1:10.  

As expected, the wt enzyme behaved as a single-turnover enzyme (Fig. 3.3). Among the 

nineteen mutants examined, Y80F showed limited turnover of the T/I substrate, in 

keeping with the retention of tight binding to the nicked T/I (Fig. 3.2D).  Other mutants 

achieved close-to-complete cleavage, suggesting that the reduced binding affinity caused 

the mutants to dissociate from the nicked T/I (Fig. 3.3 and data not shown).   

 

 
 
Figure 3.3 Representative time course analysis of T/I cleavage by wt and Y80 Tma 
endo V mutants.  Cleavage reactions were performed as described in Materials and 
Methods with 1 nM Tma endo V protein (E:S = 1:10) and 5 mM MgCl2.  Reactions were 
stopped on ice at indicated time points and followed by adding equal volume of 
GeneScan Stop Buffer. Time course of (■) wt Tma endo V; (●) Y80F; (▲) Y80H; (♦) 
Y80R; (▼) Y80W; (○) Y80S.   
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C. Cleavage of uridine-containing DNA 

Deamination of cytosine yields uracil in DNA, which is recognized and cleaved 

by endo V (4, 5, 11, 12).  However, a uridine in a mismatched base pair seems to be more 

recognizable than an A/U base pair, which maintains Watson-Crick base pair symmetry 

(4, 5). To investigate the effects of amino acid substitutions may have on uridine 

endonuclease activity, we tested cleavage of both A/U and G/U substrates.  In the 

presence of Mg2+, the wt enzyme was the only one that cleaved A/U to a limited extent 

(Fig. 3.4A).  Both the wt endo V and the Y80F cleaved the G/U substrate, albeit the latter 

was about 15% of the wt activity (Fig. 3.4B).  Since Mn2+ often relaxes the specificity of 

nucleases, we then tested uridine endonuclease activity in the presence of Mn2+.  For the 

A/U substrates, nine mutants exhibited detectable cleavage activity (Fig. 3.4C). The 

general trend was that substitutions by aromatic rings (Y80H, Y80F, Y80W) retained 

higher activity followed by two substitutions with small side chains (Y80C and Y80A).  

Other substitutions (Y80I, Y80S, Y80R and Y80K) showed lowest activity (Fig. 3.4C).  

For the G/U mismatched base pair, Y80G, Y80V, Y80L, Y80T, Y80M, Y80E and Y80D 

did not show detectable activity (Fig. 3.4D).  The cleavage activity of the rest of Y80 

mutants followed the order of Y80A = Y80F > Y80A, Y80S > Y80C, Y80H > Y80W, 

Y80P, Y80R > Y80K > Y80I, Y80N, Y80Q, Y80V, Y80L (Fig. 3.4D).   
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Figure 3.4 Cleavage of uridine-containing DNA by Y80 Tma endonuclease V 
mutant.  Cleavage reactions were performed as described in Materials and Methods with 
inosine-containing substrate substituted by uridine-containing substrate.  A. A/U cleavage 
by endo V in the presence of 5 mM MgCl2.  B. G/U cleavage by endo V in the presence 
of 5 mM MgCl2.  C. A/U cleavage by endo V in the presence of 5 mM MnCl2.  D. G/U 
cleavage by endo V in the presence of 5 mM MnCl2.    
 

C. Cleavage of mismatched base pairs 

The analysis of uridine cleavage illustrates that endo V recognize uridine more 

readily in a mismatched base pair than a Watson-Crick base pair.  In fact, in addition to 

recognition and cleavage of all four deaminated bases, endo V is also capable of cleaving 

mismatched base pairs, especially with Mn2+ as the metal cofactor (3). Previously, we 

reported that a single alanine substitution at Y80 position switched the enzyme to 

essentially a C-specific mismatch endonuclease, which recognized and cleaved A/C, C/A, 

T/C, C/T and even the previously refractory C/C mismatches (8). Therefore, it is of 

interest to evaluate the cleavage of mismatched base pairs by all Y80 mutants.  In 

addition to Y80A that prefers C-containing mismatches and Y80H that prefers T-

containing mismatches (8), several mutants showed interesting cleavage patterns for the 

mismatched base pairs in the presence of Mn2+ (Fig. 3.5).  The majority of mutants 
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showed low or no detectable mismatch cleavage (Fig. 3.5).  However, similar to Y80A, 

Y80P and Y80S showed preference to C-containing mismatches as demonstrated by 

cleavage of C-containing strands in C/A, C/T, A/C, T/C and weak cleavage of C/C (Fig. 

3.6). Y80R somewhat reduced cleavage of purine-containing mismatches while enhanced 

cleavage of pyrimidine-containing mismatches (Fig. 3.6). These data underscore the role 

of Y80 in mismatch recognition and cleavage. 

 

 
 
Figure 3.5 Base preference of mismatch cleavage of Y80 Tma endonuclease V 
mutants.  Cleavage reactions were performed as described in Materials and Methods 
with 5 mM MnCl2.  Motifs are shown in Roman numbers.  The sequence of motif III is 
FPYIPGLLAFRE (The catalytic residue E89 is underlined).  See (7) for sequence 
alignment.  
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Figure 3.6 Representative GeneScan gel pictures of mismatch cleavage.  Cleavage 
reactions were performed as described in Materials and Methods with 100 nM endo V 
protein and 5 mM MnCl2.   
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V. Discussion 

 Y80 in endonuclease V is an invariant residue located in a highly conserved 

region we defined as motif III [Fig. 3.5 and (7)].  Several amino acids in this motif affect 

DNA-protein interactions (7).  E89 in this motif is part of the active site that may involve 

coordination of a catalytic metal ion (12). Previously, we proposed a three-element base 

recognition mechanism for endo V, which suggests that recognition elements A and C 

may interact with the 6-keto (or 4-keto in uracil) and N7 position of a deaminated purine 

base while element B may be snug between the 2-keto and N3 in uracil (6) (Fig. 3.7). A 

biochemical analysis implicates that Y80 may potentially play a role as element A in base 

recognition (7). This notion is further strengthened by the observation of altered base 

preference in mismatch cleavage (8). Prompted by insight from previous studies, this 

work intended to conduct a systematic analysis by substituting Y80 with all nineteen 

possible amino acids to gain a deeper understanding of the role of Y80 in base 

recognition.   

 

 

Figure 3.7 A hypothetic model of deamianted base recognition mechanism by 
endonuclease V. See text for detail. I: Inosine X: Xanthosine O: Oxanosine U: Uridine.  
Adapted from (6). 
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A. Substitutions with aromatic residues at Y80 position  

 One of the major findings revealed from this study is that aromatic amino acid 

residues play an important role at this position. The Y80F mutant retains much of the 

binding affinity to both the T/I substrate and the nicked T/I product (Fig. 3.2), indicating 

that the aromatic benzene ring of the tyrosine residue in the wt enzyme obviously is 

involved in Protein-DNA interactions. The requirement for the tyrosine residue is specific 

and can only be substituted partially by other aromatic residues as seen in Y80H and 

Y80W.  From the kinetic analysis of the T/I cleavage, it is clear that the wt enzyme and 

the Y80F mutant are the only ones that maintain single-turnover character (Fig. 3.3).   

 This conclusion is also well illustrated by cleavage of uridine-containing DNA 

(Fig. 3.4). The wt enzyme is the only one that shows cleavage of A/U, while the wt 

enzyme and the Y80F mutant are the only ones that are active on the G/U in the presence 

of Mg2+ (Fig. 3.4A-3.4B). The discrepancy in A/U and G/U cleavage is likely due to 

mismatch nature of the G/U base pair. For all uridine-containing substrates, endo V 

enzymes prefers mismatched uridine-containing base pairs (4, 5). It appears that the 

ability of endo V to recognize a Watson-Crick base paired A/U is highly dependent on 

the tyrosine residue at this position (Fig. 3.4A).  How a tyrosine residue play such a role 

is still unknown. However, among the other DNA repair enzymes, when F114 in MutM 

(a glycosylase that recognizes 8-oxoguanine) was inserted into duplex DNA, causing loss 

of helix stacking and localized destabilization of target base pair (14). Whether Y80 in 

endo V plays a similar role in base recognition or not remains to be seen.   

 The three aromatic side chains show different cleavage patterns of mismatched 

base pairs (Fig. 3.5), while Y80F maintains wt level of cleavage, Y80W is not quite as 
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active on mismatches. Y80H is more distinct as it somewhat prefers T-containing 

mismatches (Fig. 3.6). The structural basis of such an alteration is not clear. Yet, we 

speculate that the imidizole ring may facilitate the recognition of a thymine base in a 

mismatch by formation of a hydrogen bond with the C4-keto group. 

 

B. Substitutions with small side-chain residues at Y80 position 

 The systematic site-directed mutagenesis allows a complete view of amino acid 

substitutions. Another finding emerged from this study is that substitutions with small 

side-chain amino acids help maintain mismatch cleavage or alter base preference in 

mismatch cleavage.  The first scenario is exemplified in the case of G/U cleavage in the 

presence of Mn2+ (Fig. 3.4D). Y80A, Y80S and Y80C retain greater than 50% of 

cleavage activity as compared with the wt enzyme. The second scenario is observed in 

mismatch cleavage by Y80A and Y80S (Fig. 3.6). Both mutants prefer C-containing 

mismatches rather than the purine-containing mismatches as seen in the wt enzyme.  It is 

not clear why substitutions with small side-chain residues retain greater uridine 

endonuclease activity in the G/U base pair.  However, the alteration of base preferences 

in mismatch cleavage may be explained by steric factors.  In the wt enzyme, cytosine in a 

mismatch may spatially clash with the bulky tyrosine residue.  Substitutions with Ala and 

Ser may prevent the steric hindrance, thus accommodate a C base in a mismatch. How to 

explain the narrowing of mismatch cleavage specificity to almost exclusively a C-only 

endonuclease? Both T and G bases may be excluded because they lose a favorable 

interaction between the hydroxyl group in Y80 and the keto group at the C4 or C6 

position (6, 7). How the A base is excluded is not obvious from the model. Yet, we 
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speculate that with a small side-chain substitution at Y80, the recognition pocket may 

become more compact that makes the A base (and possibly the G base as well) difficult 

to fit into it. Consequently, the A base is also excluded. A caveat is that this model would 

not explain all the small side-chain substitutions. The lack of mismatch cleavage by 

Y80G is a case in point.  Amino acid substitutions may cause effects beyond steric 

factors.  

 

C. Substitutions with Arg and Pro at Y80 position 

 Y80R and Y80P exhibit some unique effects on endo V. First, Y80R still retains 

some binding affinity to the T/I substrate and the nicked T/I product (Fig. 3.2). Second, 

both Y80R and Y80P cleave the uridine strand in G/U in the presence of Mn2+ (Fig. 

3.4D). Third, both mutants show altered base preference in mismatch cleavage (Fig. 3.6).  

While Y80R prefers T and C, Y80P predominantly cleaves the C-containing strand in a 

mismatch. These observations can not be simply explained by steric effects, perhaps, 

Y80R and Y80P cause localized conformational changes so that only pyrimidine base is 

accommodated in the active site during mismatch cleavage.    

 In summary, this work probes the effects of all nineteen amino acid substitutions 

on endonuclease V. Data presented here further underscore the role of Y80 in recognition 

of deaminated bases and mismatched base pairs.  The aromatic ring and the hydroxyl 

group in Y80 play important role in base recognition.  Although Y80A, Y80S, Y80P and 

Y80R cause a similar alteration in base preference in mismatch cleavage, but the 

underlying mechanism may not be the same. These observations, thus, highlight the 

dynamic nature of the active site in endonuclease V. 
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CHAPTER FOUR 

A Cell-Free System from Escherichia coli for Study of  

Endonuclease V Initiated DNA Repair  

I. Abstract 

Deamination of deoxyadenosine can occur spontaneously, generating highly 

mutagenic deoxyinosine which can cause A:T to G:C transition mutation. Escherichia 

coli endonuclease V (E. coli Endo V) recognizes deoxyinosine-containing DNA and 

cleaves the DNA strand at the second phosphodiester bond 3’ to the damage, leaving a 

nick with 3’-hydroxyl and 5’-phosphoryl groups. Endo V remains bound to the nicked 

lesion-containing DNA, exhibiting similar affinity to both the substrate and the product. 

Little is known about the subsequent repair processes after the nicking step initiated by 

endo V. In order to understand the repair pathway initiated by endo V, we established a 

cell-free system from E. coli to monitor the repair in vitro. Plasmid containing an inosine 

lesion was incubated with cell-free extracts made from wild type and nfi mutants E. coli 

strains in the presence of α32P-dCTP and non-radiolabed dNTPs to characterize the E. 

coli endo V mediated DNA repair pathway. The cell-free reactions showed significant 

repair synthesis using wild type E. coli cell-free extracts while little repair synthesis was 

monitored using nfi mutant cell-free extracts. The preliminary results obtained from the 

cell-free assays indicated that the repair patch of endo V mediated DNA repair pathways 

may consist of a long patch (longer than 2.3 kb, estimated) and a short patch (less than 

330 bp, estimated). 
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II. Introduction  

The DNA molecules that carry the vital genetic material of cells are constantly 

subject to spontaneous decay under physiological conditions. Hydrolytic deamination 

occurs at non-negligible rates (1-2). For example, hydrolytic deamination of cytosine has 

been estimated to introduce between 100 and 500 uracil residues in the form of U:G 

mismatches per cell per day (3). Nitric oxide (NO), nitrous acid and high temperature can 

further enhance this process (4-5). It is speculated that chronic inflammation is associated 

with cancer. Tissues with chronic inflammation have high concentration of NO secreted 

by activated macrophage which can induce nitrosative damage to DNA in cells, thereby 

increasing cancer risk (6-8). 

Uracil, hypoxanthine, and xanthine are the deamination products of cytosine, 

adenine and guanine, respectively. Deamination of adenine to hypoxanthine causes A:T 

to G:C transition mutation. Endonuclease V, an evolutionarily conserved DNA repair 

enzyme, found in bacterial, archaeal and eukaryotic cells, recognizes deaminated DNA. 

This enzyme incises the DNA at the second phosphodiester bond 3’ to a deoxyinosine 

site (9). The enzyme has almost equal affinity for the substrate and the product (10). It 

stays bound with the product after the cleavage. Genetic studies of E. coli endo V suggest 

that E. coli endo V is involved in the repair of hypoxanthine, xanthine and abasic sites in 

DNA (11-12).  It was showed that E. coli endo V is the primary DNA repair enzyme 

deals with deoxyinosine lesion in vivo while AlkA is not involved in the repair of 

deoxyinosine in vivo (11-12). It was suggested that endo V may use a novel alternative 

excision repair pathway, in which an exonuclease is required to remove the lesion (13-

15). The gap is then filled in by polymerase and sealed by ligase to finish the repair. Both 
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in vivo and in vitro studies of DNA repair mechanism have used DNA substrates which 

contain specific DNA lesions at defined sites. For in vitro studies using purified proteins, 

short linear synthetic substrates are useful. For in vivo studies or in vitro studies using 

cell-free extracts, closed circular duplex substrates are more desirable to avoid substrate 

degradation and other effects that short linear substrates may encounter (16).  

Studies of the repair patch size associated with gap-filling DNA synthesis using 

cell-free extracts and closed circular plasmids have been conducted by many researchers 

(16-18).  In order to understand the repair pathway initiated by endo V, we established a 

cell-free system to monitor the repair in vitro. We constructed a pUC19-derived plasmid 

which contained two nicking sites (N.BstNB I and N.Bbvc IA) at the same strand with 32 

flanking bases. The plasmid was nicked by the two nicking enzymes and a fragment of 32 

bases was removed, producing a gapped plasmid. 32-nt oligonucleotides containing a 

single deoxyinosine was annealed and ligated to the gapped plasmid. Closed circular 

inosine-containing plasmid was purified by the CsCl purification method. The inosine-

containing substrate was confirmed by converting closed circular form of the plasmid to 

nicked form by E. coli endo V. We incubated inosine-containing plasmid with different 

endonuclease V (nfi) mutants (Table 4.1) [BW1034 (nfi -,ung -) (ung is the gene for uracil 

DNA glycosylase), BW1162 (nfi -,nfo -) (nfo is the gene for endonuclease V), BW1163 

(nfi -,nfo -,xth -) (xth is the gene for exonuclease III), BW1179 (nfi -,alkA -) (alkA is the 

gene for AlkA)] cell-free extracts and AB1157 (nfi+) cell-free extract together with α32P-

dCTP and non-radiolabed dNTPs. The results showed that significant repair synthesis 

occurred using wt E. coli cell-free extracts, while using nfi- E. coli cell-free extracts only 
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a little repair synthesis was monitored. This confirmed that endo V is the major enzyme 

responsible for inosine repair.  

To determine the repair patches of endo V initiated repair, we used Hpa II and 

EcoR I to digest the plasmids recovered from the cell-free assays. Following the 

restriction enzyme digestion and non-denaturing gel electrophoresis, the extent of 

incorporation of the radioactively labeled dCTP in the plasmid was determined by 

autoradiography.  The results from the cell-free assays indicated that the repair patches of 

endo V-initiated DNA repair pathways may consist of a long (longer than 2.3 kb, 

estimated) and a short patch (less than 330 bp, estimated) 
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III. Materials and Methods 

A. Materials  

All routine chemical reagents were purchased from Fisher Scientific (Suwanee, 

GA), Sigma Chemicals (St. Louis, MO), VWR (Suwanee, GA). Restriction enzymes, 

nicking enzymes, T4 DNA ligase, T4 polynucleotide kinase and BSA were purchased 

from New England Biolabs (Beverly, MA). dNTPs were purchased from Promega 

(Madison, WI). α32P-dCTP and γ32P-ATP were purchased from MP Biomedicals (Irvine, 

CA). Purified deoxyribooligonucleotides were ordered from Integrated DNA 

Technologies Inc. (Coralville, IA). YM-3 and YM-100 spin columns were purchased 

from Milipore Corporation (Bedford, MA). LB medium was prepared according to 

standard recipe. 1 X TBE buffer contains 89 mM Tris-Boric acid and 2 mM EDTA. 10 X 

agarose gel loading buffer contains 0.02% bromophenol blue, 25% sucrose, 0.01 M 

EDTA, 1% SDS, 0.25% xylene cyanol.  1 X T4 DNA ligase buffer contains 50 mM Tris-

HCl (pH 7.5), 10 mM MgCl2, 10 mM dithiothreitol, 1 mM ATP, 25 ug/ml BSA. 1 X T4 

polynucleotide kinase Buffer contains 70 mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mM 

dithiothreitol. Protein purification and quantitation were carried out as previously 

described (19). 

 

B. Preparation of E. coli cell-free extracts  

E. coli wt strain AB1157 was obtained from the E. coli Genetic Stock Center 

(MCDB Department, Yale University). BW1034 (nfi -, ung -), BW1162 (nfi -, nfo -), 

BW1163 (nfi -, nfi -, xth -), BW1179 (nfi -, alkA -) were kind gifts from B. Weiss (Emory 

University) (Table 4.1). Cell-free extracts were prepared according to (17). E. coli cells 
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were grown to an A590=1.0-1.2 in 1-Liter cultures of LB media [with or without 

antibiotics, (wt: without antibiotic), (BW1034: 34ug/ml chloramphenicol and 50ug/ml 

thymine), (BW1162: 34ug/ml chloramphenicol and 10ug/ml kanamycin), (BW1163: 

34ug/ml chloramphenicol and 10ug/ml kanamycin), (BW1179: 34ug/ml 

chloramphenicol)] supplemented with 0.1% glucose. Cells were collected by 

centrifugation at 4°C and suspended in 5 ml of 0.05 M Tris-HCl (pH 7.6) with 10% 

sucrose, and frozen in liquid nitrogen and stored at -70°C. The thawed cells were 

supplemented with 1.2 mM DTT, 0.15 M KCl, 0.23 mg/ml lysozyme, followed by heat 

shock at 37°C until a final suspension temperature of 20°C. After cell debris was 

removed by centrifugation at 13,000 rpm for 20 min at 4°C, proteins were precipitated 

from the supernatant by addition of 0.5 g of powdered ammonium sulfate per ml of the 

extract, and the precipitate was recovered by centrifugation at 13,000 rpm for 20 min at 

4°C. The pellet was resuspended in 0.3 ml of a buffer contains 0.025 M HEPES 

(pH7.6)/0.1 mM EDTA/ 2 mM DTT/100 mM KCl, and dialysized against the same 

buffer until the conductivity reaches the equivalent of 0.2 M KCl as measured by a hand 

held conductivity meter (model PM6304  Control Company). The resulting solution was 

aliquoted and frozen by liquid nitrogen and stored at -70°C. Protein concentration was 

estimated by Bradford method.  
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Table 4.1 Bacterial strains used. 
 

C. Construction of a pUC19 derivative plasmid encoding two different nicking sites  

pUC19HE (2 ug)  which is a pUC19 derivative containing one N.BstNB1 nicking 

site (a gift from John B. Hays, Oregon State University) and pUC19 were digested with 

20 U Afl III and Aat II at 37°C for 3 hours. The 1.8 kb fragment of pUC19HE and 0.87 

kb fragment of pUC19 recovered from 1% agarose gel were ligated together to generate 

pUC19E. A synthesized double-stranded oligo (5'-CGGGGTACCGCTGAGGAGATC 

TGGATCCACATGTGGG-3', complementary strand 5’-CCCACATGTGGATCCAGAT 

CTCCTCAGCGGTACCCCG-3’) and pUC19E were digested with Kpn I and Afl III and 

ligated together to generate a plasmid which has two nicking sites N.BstNB1 and 

N.BbvcIA in the same strand with 32 flanking bases. The standard procedures of 
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molecular cloning were carried out as described in (20). The new plasmid was designated 

as pUC19EN3. 

 

D. Preparation and purification of a single inosine-containing plasmid  

pUC19EN3 (1.5 mg) was purified using Qiagen Plasmid Mega Kit (Qiagen 

Science, Maryland), starting with 1 L of bacteria culture. 60 ug of pUC19EN3 was 

completely digested by 200 U of N.Bbvc IA at 37°C overnight as determined by 1% 

agrose gel. The nicked plasmid was purified by phenol/chloroform/isoamyl alcohol 

extraction followed by ethanol precipitation. The purified nicked plasmid was then 

digested by 200 U of N.BstNB I at 37°C overnight (Fig 4.1). Previous experiments 

showed that 200 U of N.BstNB I was sufficient to completely digest 60 ug of pUC19EN3 

at 37°C (Data not shown). The doubled nicked plasmid was purified by phenol extraction 

followed by ethanol precipitation. The recovered plasmid was dissolved in TE buffer (pH 

7.4) to a final concentration of 100 ng/ul. It was heated at 85°C for 5 minutes and put on 

ice quickly. 
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Figure 4.1 A scheme for preparing inosine-containing circular substrates. 
pUC19EN3 was digested by nicking enzymes N.BstNBI and N.BbvcIA respectively, the 
double nicked plasmid was denatured by heat treatment at 85°C for 5 minutes and the 
small fragment was removed by YM-100 spin column. The resulting gapped pUC19EN3 
was annealed with an inosine-containing oligo and ligated to yield the closed circular 
pUC19EN3-I.C which contains a single inosine lesion.  
 

To purify the resulting gapped plasmid, the small fragment was removed by 

passing through an YM-100 spin column and washed with 500 ul TE (pH 7.4) five times. 

Gapped plasmid (200 ng) was ligated overnight at 4°C using T4 DNA ligase. Agarose gel 

analysis (1%) showed that there was no significant ligation, indicating the gapped 

plasmid was relatively pure. The gapped plasmid was annealed with 20 fold excess of 

oligo containing a deoxyinosine (5'-p-TGAGGAGATCTGIATCCACATGTGAGTCCG 

AT-3') and then ligated overnight at 4°C using T4 DNA ligase. The ligated products were 

then subject to CsCl-Ethidium Bromide Gradient Purification and the deoxyinosine-

containing plasmid was collected and purified according to (20). Specifically, closed 

circular plasmid was withdrawn by using a disposable syringe; Ethidium bromide was 

removed by extracting the DNA solution with water-saturated n-butanol until all the pink 

color disappeared from both the aqueous phase and the organic phase. CsCl was removed 
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from the DNA solution by passing through a YM-100 microcon spin column (Milipore 

Corporation, MA) and washed five times with 500 ul TE (pH 7.4). The product was 

aliquoted, quickly frozen by liquid nitrogen and stored at -70°C. DNA samples were run 

on 1% agarose gels and quantified by Quantity One Software of Gel Doc system (Bio-

Rad, CA) 

 

E. E. coli endonuclease V cleavage assays 

The reaction mixtures (10 ul) containing 10 mM HEPES-KOH (pH 7.4), 1 mM 

DTT, 2% glycerol, 5 mM MgCl2, 200 ng deoxyinosine-containing closed circular 

substrate or control plasmid, and 20 nM E. coli endo V protein were incubated at 37°C 

for 30 minutes.  The products were resolved by electrophoresis in 1% agarose gel in 1 X 

TBE buffer (Tris-Boric acid 89 mM, EDTA 2 mM). 

 

F. In Vitro cell-free assays 

Reactions mixture (50 ul) contained 10 mM HEPES (pH 7.4), 2 mM DTT,  0.5 

mM EDTA,  2 mM ATP, 20 uM of dNTP, 10 uci of α32P-dCTP, 0.5 mM NAD, 50 ug/ml 

BSA, 5 mM MgCl2, 1 mM glutathione, 0.2 mM spermidine, 300 ng inosine-containing 

plasmid or control plasmid and 4 mg/ml of cell-free extract proteins. The mixture was 

incubated at 37°C for 1 hour and terminated by adding 50 ul of 40 mM EDTA and 2 ul of 

10 mg/ml protease K. The mixture was incubated for an additional 30 minute at 37°C. 

The reaction product was purified by phenol/chloroform/isoamyl alcohol extraction 

followed by ethanol precipitation and dissolved in 10 ul TE (pH 7.4). Restriction 

digestions were carried out in 20 ul mixtures containing purified substrates, different 
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restriction enzymes and buffers at 37°C for 5 hours. 2 ul of 10 X agarose gel loading 

buffer (0.02% bromophenol blue, 25% sucrose, 0.01 M EDTA, 1% SDS, 0.25% xylene 

cyanol) was added to the mixture and the products were separated by electrophoresis in 

1% agarose gel in 1 X TBE buffer (Tris-Boric acid 89 mM, EDTA 2 mM). For restriction 

digestion with Hpa II and EcoR I, 10 ul of 50% glycerol was added to the mixture and the 

products were resolved by electrophoresis in 6% native polyacrylamide gel in 1 X TBE 

buffer. The gels were then analyzed by autoradiography and quantified by ImageQuant 

software using Typhoon Imager (Filter, 390BP; Laser, Red 633 nM). 

 

G. Preparation of radiolabeled inosine-containing plasmid  

The reaction mixture (50ul) containing 200 nM single-stranded oligo [5’-

IATCCACAGTGAGTCCGAT-3’) (10 pmol), 120 uCi γ32P-ATP (26.4 pmol), 1 X T4 

polynucleotide kinase Buffer (70 mM Tris-HCl (pH 7.6), 10 mM MgCl2, 5 mM 

dithiothreitol] and 30 U of T4 polynucleotide kinase was incubated at 37°C for 4 hours. 

The mixture was then heat treated at 60°C for 20 minutes to denature the T4 

polynucleotide kinase. The mixture was passed through a YM-3 spin column and washed 

extensively with TE buffer (pH 7.6) till there was little radioactivity in the flow-through. 

The purified labeled oligo (5 pmol) and another single-stranded oligo (5’-phos-

TGAGGAGATCTG-3’) (10 pmol) were annealed with 10 ug gapped pUC19EN3 in the 

presence of 1 X T4 DNA ligase buffer [50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 10 mM 

dithiothreitol, 1 mM ATP, 25 ug/ml BSA] at 68°C for 2 minutes and gradually lowered 

temperature to 25°C in 30 minutes. T4 DNA ligase (24 U) was added to the mixture and 
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incubated at 4°C overnight. The ligated closed circular plasmid was run on 1% agarose 

gel and recovered by glass wool spin column method. 

 

H. Determination of the released inosine-containing fragments in cell-free assay 

The reaction mixture contained 100 ng labeled plasmid, 10 mM HEPES (pH 7.4), 

2 mM DTT,  0.5 mM EDTA,  2 mM ATP, 20 uM of dNTP, 0.5 mM NAD, 50 ug/ml 

BSA, 5 mM MgCl2, 1 mM glutathione, 0.2 mM spermidine, and 4 mg/ml of E. coli 

AB1157 cell-free extract proteins. The mixture was incubated at 37°C for 1 hour and 

passed through a YM-100 spin column (cutoff: single-stranded DNA 300 bps, double-

stranded DNA 125 bps) and washed three times with 25 ul TE buffer (pH 7.4). The flow-

through was then passed through a YM-3 spin column (cutoff: single-stranded DNA 10 

bps, double-stranded DNA 10 bps) and washed three times with 25 ul TE buffer (pH 7.4). 

The flow-through from the YM-3 spin column, which contains DNA fragments smaller 

than 10 bps, was collected. The remaining radioactivity, which contains DNA fragments 

smaller than 300 bps and bigger than 10 bps, on YM-3 was also collected. The 

radioactivities were determined by scintillation counter (Model LS 6500 Beckman 

Coulter). 
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IV. Results 

A. Substrate quality and yield 

pUC19EN3 (60 ug) can generate about 9.6 ug of inosine-containing plasmid. The 

inosine-containing substrate and control plasmid pUC19EN3 were treated with E. coli 

endo V, and over 95% of the closed circular form of inosine-containing substrate was 

converted to the nicked form (Figure 4.2, Lane 5) while less than 10% of the control 

plasmid was converted to the nicked form (Figure 4.2, Lane 3). It is reported that endo V 

has weak nicking activity on plasmid DNA (21). 

 

         1                          2                       3                    4                          5 

 
 
Figure 4.2  Digestion of inosine-containing circular substrate by E. coli endonuclease V. 
Inosine-containing substrate (200 ng) was digested with 20 nM E. coli endoV in a 10ul 
reaction buffer for 30 minutes at 37°C. Lane 1, λDNA Hind III digestion. Lane 2, 
pUC19EN3 Lane 3, pUC19EN3 digested by E. coli endoV Lane 4, pUC19EN3-I.C Lane 
5, pUC19EN3-I.C digested by E. coli endo V 
 

B. DNA repair synthesis in inosine-containing plasmid after incubation with E. coli 

cell-free extracts 

 pUC19EN3-I.C (Figure 4.3A) which was identical except for the presence of an 

incorrect I.C pair was used to determine whether endo V is responsible for the repair 
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synthesis induced by inosine lesion. Cell-free assays were carried out using wt E. coli 

cell-free extracts in the presence of α
32P-dCTP. After incubation, α32P-dCMP containing 

products were isolated and digested with restriction endonuclease Afl III and AlwN I. 

The DNA fragments were resolved by electrophoresis in 1% agarose gel, followed by 

Phosphor Image analysis. Figure 4.3B showed that control plasmid pUC19EN3 did not 

show significant repair synthesis (Fig 4.3B, Lane 1), while pUC19EN3-I.C, which 

contains a single inosine lesion, had significant amount of radioactive incorporation (Fig 

4.3B, Lane 2), indicating that the repair synthesis is inosine dependent. Lanes 3-5 showed 

that E. coli cell extracts from nfi mutants did not induce repair synthesis, suggesting that 

endo V is responsible for initiating the inosine repair.   

 

 

 

 

 

 

 

 

 



   

145 

 

 
 
Figure 4.3 Inosine-lesion mediated DNA repair synthesis in E. coli cell-free extracts. 
A. pUC19EN3-I.C restriction map. B. pUC19EN3 and pUC19EN3-I.C were incubated 
with E. coli cell-free extracts at 37°C for 1 hour and terminated by adding 50 ul of 40 
mM EDTA and 2 ul of 10 mg/ml protease K. The mixture was incubated for additional 
30 minute at 37°C. The reaction products were purified by phenol/chloroform/isoamyl 
alcohol extraction followed by ethanol precipitation and dissolved in 10 ul TE (pH 7.4) 
and subject to AlwN 1 and Afl III digestion and resolved by 1% agarose gel. The gel was 
then analyzed by autoradiography. Lane 1, E. coli AB1157 (wt) cell-free extract incubate 
with pUC19EN3 (homoduplex, G.C pair). Lane 2, E. coli AB1157 (wt) cell-free extract 
incubate with pUC19EN3-I.C (heteroduplex I.C pair). Lane 3, E. coli BW1034 (nfi- ung-) 
cell-free extract incubated with pUC19EN3-I.C. Lane 4, E. coli BW1162 (nfi- nfo-) cell-
free extract incubated with pUC19EN3-I.C. Lane 5, E. coli BW1163 (nfi- nfo-xth-) cell-
free extract incubate with pUC19EN3-I.C.  Lane 6, E. coli BW1179 (nfi- alkA-) cell-free 
extract incubate with pUC19EN3-I.C.  
 

There are twelve Hpa II recognition sites and one EcoR I recognition site located 

in the pUC19EN3-I.C, but only 8 fragments generated by Hpa II and EcoR I digestion are 

larger than 100 bp (Figure 4.4A-B). Among these fragments, the 301-bp fragment 

generated by EcoR I and Hpa II digestion is located 31 nt 5’ to the inosine lesion. In 
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order to define the distribution of DNA repair synthesis associated with inosine-mediated 

DNA repair involving the inosine-containing plasmid, cell-free assays were carried out 

using E. coli cell-free extracts in the presence of α
32P dCTP. After incubation, α32P-

dCMP containing products were isolated and digested with restriction endonuclease Hpa 

II and EcoR I. The DNA fragments were separated by a 6% native polyacrylamide gel 

electrophoresis (Figure 4.4). Following the electrophoresis, Phosphor Image analysis of 

the α32P labeled DNA fragments showed that α
32P-dCMP was incorporated into the 

whole plasmid, while the 301 bp fragment had the strongest radioactivity incorporation. 

The results suggested that multiple pathways may be involved in the repair of the inosine-

containing substrates in the cell-free assays. Control reactions were conducted using a 

pUC19EN3 plasmid (homoduplex) containing a G:C base pair at the target site to 

determine the extent of α32P-dCMP incorporation at the same assay condition. The results 

showed that there was no significant α
32P-dCMP incorporation in the plasmid, suggesting 

that the repair synthesis of inosine-containing plasmid is lesion mediated. 
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Figure 4.4 Characterization of inosine mediated repair synthesis in E. coli AB1157 
(wt) cell-free extract.  pUC19EN3-I.C and pUC19EN3 were incubated with E. coli 
AB1157 cell-free extract at 37°C for 1 hour. The reaction products were purified and 
subject to Hpa II and EcoR I digestion and resolved in 6% native polyacrylamide gel. The 
gel was then analyzed by autoradiography and quantified by ImageQuant software using 
Typhoon Imager. A. pUCEN3-I.C restriction map. B. Autoradiography of the gel  Lane 1, 
E. coli AB1157 cell-free extract incubate with pUC19EN3  Lane 2, E. coli AB1157 cell-
free extracts incubated with pUC19EN3-I.C. C. Relative intensity of radioactivity 
incorporation. The incorporation of α32P-dCMP in each DNA fragment was normalized 
by dividing the amount of α-32P radioactivity detected by the number of cytosine residues 
in each corresponding DNA fragment. The 301 bp fragment which has the highest 
normalized value was designated as 1, and the α

32P-dCMP incorporation in other DNA 
fragments was calculated relative to that value. The data are the average from three 
reactions and the standard error is calculated. 
 

 

 



   

148 

C. Analysis of the released inosine-containing fragments in E. coli cell-free extracts 

A synthesized single-stranded oligo was phosphorylated and labeled with γ32P-

ATP at the inosine position. The labeled oligo and another single-stranded oligo were 

annealed with gapped pUC19EN3 and ligated using T4 DNA ligase to form a closed 

circular plasmid. The closed circular plasmid was incubated with wt E. coli AB1157 cell-

free extracts and subsequently passed through YM-100 spin column and YM-3 column 

(Figure 5.5). The radioactivity remained on the YM-3 spin column was 55000 cpm and 

the radioactivity in the flow-through was 293000 cpm determined by scintillation 

counter. The results showed that the sizes of most of the released fragments are less than 

10 bps. 

 

 
 
Figure 4.5 Analysis of the released inosine-containing fragments by E. coli cell-free 
extract. Inosine-containing pUC19EN3 were labeled with γ32P-ATP at the inosine 
position, and incubated with E. coli AB1157 wt cell-free extract at 37°C for 1 hour. The 
mixture was passed through YM-100 spin column; the flow-through was then passed 
through a YM-3 spin column. The radioactivity in the flow-through and the radioactivity 
remained on the YM-3 column were counted using scintillation counter. 
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V. Discussion 

A. Endonuclease V-initiated DNA repair 

The pathway of endonuclease V-mediated DNA repair is still unknown. In order 

to unravel the problem, we first constructed a closed circular substrate which contained a 

single inosine lesion. We then developed an in vitro cell-free system which uses E. coli 

cell-free extracts, inosine-containing closed circular substrates, dNTP, and α32P-dCTP to 

analyze endo V-mediated DNA repair synthesis. Our preliminary results showed that 

endo V-mediated DNA repair may involve multiple pathways. The preliminary results 

from the cell-free assays suggested that the repair patches of E. coli initiated DNA repair 

pathways may consist of a long patch (longer than 2.3 kb, estimated) and a short patch 

pathway (less than 330 bps, estimated). After endo V nicks the inosine-containing 

substrate, there may be two scenarios (Figure 4.6). It is possible that endo V binds with 

the nicked inosine-containing substrate and recruits some exonuclease (Figure 4.6A). It is 

also possible that endo V recruits partner protein (s) and switches endonuclease V to an 

exonuclease mode. Recently, endonuclease V was shown to have a 3’ exonuclease 

activity in certain conditions (22). Cao and colleagues proposed an alternative model that 

after endo V binds with the nicked inosine-containing substrate and recruits some 

protein(s), endo V changes to an exonuclease mode and removes the lesion (22). The 3’ 

exonuclease activity removes the inosine lesion together with a portion of the plasmid. A 

polymerase subsequently fills in the gap and the ligase seals the nick. This will result in 

the incorporation of the radioactivity into the gap that is 5’ to the inosine lesion site, a 

short patch repair. The model has been proposed by several groups (13-15). Analysis of 

released fragments by E. coli cell-free extracts showed that most of the released 
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fragments were less than 10 bps, suggesting that exonuclease activity is involved in the 

pathway.  Another scenario is that after the polymerase fills in the gap, it starts strand 

displacement reaction. After the synthesis of a new DNA strand, an endonuclease nicks 

the strand and releases the displaced old strand, resulting in a long patch of the 

incorporation of radioactivity (Figure 4.6 B).  
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A 

 
B 

 
 
Figure 4.6 Hypothetical Model for Endonuclease V initiated DNA repair pathway in 
a single lesion-containing plasmid (from preliminary studies).  A, in this pathway, 
endonuclease V first nicks at the second phosphodiester bond 3’ to the inosine lesion and 
stay bound with the substrate. An exonuclease displaces endonuclease V and removes the 
inosine lesion together with a portion of the substrates; alternatively, a partner protein 
switches endonuclease V to an exonuclease mode and removes the inosine lesion, 
generating a gap in the plasmid. A DNA polymerase fills in the gap and E. coli ligase 
seals the nick. B, in this pathway, after the exonuclease activity removes the inosine 
lesion and generates a gap, a polymerase fills in the gap and starts strand displacement. 
After the synthesis of a new DNA strand, an endonuclease nicks the strand and releases 
the displaced old strand. A DNA polymerase fills in the gap and E. coli ligase seals the 
gap.  
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B. Recent research progresses on endonuclease V 

An alternative way to study the endo V mediated pathway is to find the key 

components of this pathway. We have used gel shift assays to test different possible 

enzymes but failed to identify one that interacts with endo V (data not shown).  Genetic 

screening of the strains that are sensitive to nitrosative stress may also provide us 

important information. It is conceivable that multiple sites will be deaminated when the 

cells encounter significant nitrosative stress. If the two sites are very close to each other 

and located in different strands, double strand breaks may occur. In this case, 

recombinational repair is a pathway to repair the lesions. RdgB is an NTPase with a 100-

fold preference for ITP, XTP and dITP than the canonical nucleotides (23-24). RdgB 

mutants accumulate Endo V-recognized modification and show elevated double strand 

breaks (25). It is speculated that RdgB may play a role in the 5’ incision around the lesion 

site after endo V nicks the lesion containing DNA (25). More experiments need to be 

done to understand this pathway. 
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CHAPTER FIVE  

Research Significance and Concluding Remarks 

 

DNA damages may arise as a consequence of exposure to various DNA damage 

agents. In order to maintain the genetic integrity of chromosomes, it is essential that DNA 

damages are repaired efficiently. Fortunately, the genome is under continuous 

surveillance by DNA repair mechanisms. Defects in DNA repair cause hypersensitivity to 

DNA-damaging agents, accumulation of mutations in the genome and finally to the 

development of cancer and various metabolic disorders (1). So, it is important to 

understand different DNA repair pathways in order to prevent or cure these diseases. 

Endonuclease V is a ubiquitous enzyme found in different species from bacteria to 

mammals. It recognizes deaminated lesions including deoxyinosine (2), deoxyuridine (3), 

deoxyxanthosine (4), and deoxyoxanosine (5).  It was suggested that endo V prevents 

mutations from nitrosative deamination in vivo (6).   

Endo V also has mismatch cleavage activity (7). The detection of the mutations in 

DNA is important in the diagnosis of both hereditary diseases and acquired diseases. 

Barany and colleagues in Cornell University developed an endo V/ligase mutation 

scanning method which has very high sensitivity and is suitable for low-frequency known 

or unknown mutation detection (8). However some A/C mismatches embedded in G/C 

rich sequences are refractory to endo V cleavage, such as the G13D mutation in K-ras 

(8). Despite intensive studies by researchers, the DNA repair pathway of endonuclease V 
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remains unknown. Several models have been put forward (9-12). Most interestingly, in 

the presence of Mn2+, endo V displays a 3’ exonuclease activity. A model was proposed 

by Cao and colleagues that endo V may play a dual role in the repair pathway (12). After 

endo V cleaves the lesion-containing DNA and forms a complex with the product, 

downstream proteins may be recruited to the repair complex, and change the 

conformation of endo V. This may trigger the endo V’s exonuclease activity and remove 

the lesion and generate a gap for polymerase and ligase to finish the repair. 

My projects were aimed to broaden our knowledge for the biochemical properties 

of endo V and its application in mutation scanning. We are also interested in 

understanding endo V initiated DNA repair pathway. We have screened over 60 endo V 

single-site mutants previously isolated and identified endo V mutants with altered base 

preference in mismatch cleavage. Y80A, a mutant in motif III, exhibits strong preference 

for C in mismatches. Taking advantage of this property, Y80A was successfully used to 

detect G13D mutation in K-ras (13), an A/C mismatch embedded in a G/C rich sequence 

context which was previously inaccessible using the wild-type endo V. We also devised a 

method to covert blunt end PCR products to sticky end products thus reduced the 

fluorescence signal loss during mismatch cleavage assay using endo V. A hypothetic 

model was proposed to explain the dramatic change in base preference (12). In the wild-

type enzyme, tyrosine 80 (Y80) imposes an unfavorable interaction with a C base, in 

which the amino group at C4 position spatially clashes with the bulky tyrosine residue.  

This steric effect prevents the wild-type endo V from recognizing and cleaving C-

containing strand in a mismatch. By replacing the phenol side-chain with a small methyl 

group, Y80A releases the steric tension and allows the C base to be accommodated in the 
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recognition pocket. This investigation provides us insights on base recognition and active 

site organization. Protein engineering in endonuclease V may translate into better tools in 

mutation recognition and cancer mutation scanning. 

In view of the interesting properties possessed by several Y80 mutants, we further 

mutated and characterized the other sixteen Y80 mutants (14). The nineteen mutants were 

characterized biochemically using mismatch-containing DNA and deaminated base-

containing. Substitutions with aromatic amino acid residues retained partial binding 

affinity as revealed by gel mobility shift analysis with double-stranded inosine-containing 

DNA. An adenosine/uridine base pair in a uridine-containing double-stranded DNA was 

only cleaved by the wild type endo V in the presence of MgCl
2
. A guanosine/uridine base 

pair in a uridine-containing double-stranded DNA was cleaved by the wild type endo V 

and to a much less extent by Y80F in the presence of MgCl
2
, indicating an essential role 

of the aromatic ring and the hydroxyl group in base recognition. For mismatched base 

pairs, Y80H preferred to cleave thymidine-strand in a thymidine-containing mismatch; 

Y80P and Y80S, along with previously identified Y80A, tended to cleave the cytosine-

strand in a cytosine-containing mismatch, Y80R preferred to cleave thymidine- and 

cytosine-strand in a mismatch.  The ability to alter cleavage preferences in a mismatch 

further underscores the role of Y80 in base recognition. The studies showed that aromatic 

ring and hydrogen bonding are very important in base recognition for endo V and offers 

new insight on the role of Y80 in base recognition.  

Endonuclease V initiated DNA repair pathway remains unknown. No other 

component of this pathway is identified.  In order to understand the DNA repair pathway 

initiated by endo V, we developed an in vitro cell-free system which uses E. coli cell-free 
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extracts, inosine-containing closed circular substrates, dNTP, and α32P-dCTP to analyze 

endo V mediated DNA repair synthesis. The preliminary results from cell-free assays 

indicated that the repair patch of endo V initiated DNA repair pathways may consist of a 

long patch (longer than 2.3 kb, estimated) and a short patch (less than 330 bps, 

estimated). More experiments need to be done to understand the pathway mediated by 

endo V. 
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