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ABSTRACT 

 

 

Manufacturing systems are complex.  They consist of many interrelated 

subsystems and elements.  This study investigates the effect on performance due to the 

complexity resulting from system design, i.e. internal static manufacturing complexity.  

The quantitative measure, ISMC, consisting of eight measurable complexity elements is 

proposed.  This new measure of complexity was then tested with another existing 

measure of internal static manufacturing complexity proposed by Frizelle and Woodcock 

(1995). 

A large set of simulation experiments, each modeling a general batch-type 

manufacturing system, was employed to test the effects of the overall complexity 

measure, ISMC, and the eight individual elements on five measures of manufacturing 

performance.  The experimental design included two levels for each of the eight static 

complexity elements and two levels for the environmental variable, due date tightness.   

The results indicated that neither the proposed measure, ISMC, nor the prior 

Frizelle and Woodcock’s measure demonstrate a practical level of predictive validity.  

Three of the eight individual components making up ISMC were correlated to 

manufacturing performance. These were the breadth of the product structures, the depth 

of the product structures, and the number of different end-products in a manufacturing 

system. 
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CHAPTER I 

INTRODUCTION 

 

 

 

Complexity is difficult to define.  Although we all have a sense of complexity, 

and can intuitively acknowledge differences in the level of complexity between systems 

(e. g. an automobile engine and a bicycle) an operational definition is not easy to 

articulate.  Simon (1962) defined complexity by saying that a complex system has a large 

number of parts, whose relationships are not “simple”.  Simple meaning “single, small”
1
, 

or “having or composed of only one thing, element, or part”
2
. 

Manufacturing systems have many elements and there are many relationships 

among those elements.  The relationships are not simple relationships.  For example, 

when viewing a single department relative to its workload (queue of jobs), it may appear 

simple.  However, since departments in a production system are interrelated, and job 

routings may vary, the overall manufacturing operation is extremely complex. 

Manufacturing systems are complex because of the many elements and 

subsystems of a manufacturing operation and their interactions.  The design of a 

production system greatly affects the degree of complexity a system will have, e.g. the 

                                                 
1 
“simple” The American Heritage Dictionary of the English Language, 4th ed. Boston: 

Houghton Mifflin, 2000. www.bartleby.com/61/. July, 28, 2003. 

 
2
 “simple”  The Concise Oxford Dictionary. Ed. Judy Pearsall. Oxford University Press, 

2001. Oxford Reference Online. Oxford University. http://www.oxfordreference.com.  

July 28, 2003. 

 



 

2 

number and type of machines or type of layout.  This study investigates how the various 

elements of design complexity, called static complexity, influence manufacturing 

performance. 

Manufacturing complexity can be separated into two constituents – static and 

dynamic complexity (Frizelle and Woodcock, 1995).  Desmukh, Talvage, and Barash 

(1998, p.645) define static complexity as being a “function of the structure of the system, 

connective patterns, variety of components, and strength of interactions.”  So, static 

complexity is the complexity in a system that is due to the factory structure or design, e.g. 

number of products, number of machines. 

Dynamic complexity deals with the uncertainty of a system as it moves through 

time (Desmukh et al., 1998).  Unpredictable events, like machine breakdowns and quality 

failures, are two common examples of what would be considered elements of dynamic 

complexity in a manufacturing system. Philosophies such as total productive maintenance 

(TPM) and total quality management (TQM) address some of the issues associated with 

dynamic complexity by reducing the number of unpredictable events. 

Another important distinction about complexity is whether it is internal or 

external.  The elements of manufacturing system complexity that are in the direct control 

of system managers are considered to be internal complexity.  The products to be offered, 

the type and amount of equipment, the degree of vertical integration, the quality system 

design, and the maintenance plan are examples of decisions that affect internal 

manufacturing complexity.  Those things that are outside the direct control of 

management are part of external complexity, e.g. customer orders and government 

regulations. 



 

3 

Manufacturing complexity, as an overall theory, has not received much research 

attention.  This is probably due to the difficulty in defining complexity.  This does not 

make manufacturing complexity unimportant.  For example lean manufacturing 

recognizes the impact of complexity and focused on simplifying the manufacturing 

system.  Organizations that adopt the lean manufacturing philosophy are, in part, trying to 

reduce the complexity in the manufacturing system.  Also, some techniques eschewed in 

the area of operations management such as product simplification and cellular 

manufacturing can be seen as reducing static complexity.  Product simplification efforts 

review product designs to eliminate any unnecessary components and identify common 

subsystems which can be used in many of the manufacturer’s products, i.e. reducing the 

number of elements in its system.  One of the main advantages of employing a cellular 

manufacturing layout is the reduction in the number of parts manufactured by each 

smaller system (cell), these parts being grouped by component and routing commonality.  

This reduces the complexity in the overall operation by dividing it into smaller, less 

complex units, i.e. the number of parts and the number of relationships. 

Since there has been little past research analyzing the relationship of complexity 

to performance, this study limits its scope of research to one category of manufacturing 

complexity with the intent to create a basis for future research.  This research effort 

focuses only on internal static manufacturing complexity.  The inclusion of dynamic and 

external elements of manufacturing complexity would make it difficult to effectively 

analyze and interpret the results.  This study of internal static manufacturing complexity 

examines many of the important management decisions about system design, (e.g. 

product design and process design). 



 

4 

The objectives of this research are: to identify the relevant elements of internal 

static manufacturing complexity; to develop a valid quantitative measure from those 

elements; to test the proposed quantitative measure; and to identify those individual 

complexity elements that have a significant impact on performance.   

 

The Current Study 

Frizelle and Woodcock (1995) and Desmukh et al. (1998) have proposed and 

evaluated measures for static complexity using the concept of entropy developed from the 

field of information theory.  Both related static complexity solely to the queue length at 

machines.  In basing their measure of complexity upon an entropic measure, potential 

users would likely have difficulty gaining an intuitive understanding of the measure.  

Furthermore, the vast data requirements and the intensive computational effort involved 

in applying their proposed measure reduce its potential adoption by practicing managers. 

It is important that any measure of internal static manufacturing complexity be 

practical (data is relatively easy to obtain), understandable to managers and researchers, 

and useful in explaining manufacturing phenomena.  In this study, an alternative measure 

of internal static manufacturing complexity will be developed, which addresses these 

important attributes for a practical measure. 

The proposed model, shown in Figure 1.1, identifies quantifiable elements of 

internal static manufacturing complexity, many of which have been considered in past 

research (i.e. Collier, 1981; Benton and Srivastava, 1993; Wacker and Treleven, 1986).  

These elements are combined to form a quantitative measure of internal static 

manufacturing complexity.  The model predicts that internal static manufacturing 



 

 

 

 

Figure 1.1  The Proposed Theoretical Model for Measuring the Effects of Manufacturing Complexity on Manufacturing 

Performance 
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Internal Static Manufacturing Complexity 

IMSC (proposed measure) 

Manufacturing Performance 
Std. Dev. of Job Flow Time 

Mean Order Lateness 

Std. Dev. of Order Lateness 

Mean Order Tardiness 

Std. Dev. of Order Tardiness 

Product Line Complexity 

Product Mix 

Product Mix Ratio 

Number of components 

Product Structure 

BOM Depth 

BOM Breadth 

Comp. Commonality 

Process Complexity 

Number of routing steps 

Number of work centers 

Routing commonality 

Dynamic Complexity 

Orders Arrival 

Order Quantity 

Machine Breakdowns 

Quality problems 

Etc. 
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complexity affects manufacturing performance.  The model recognizes that dynamic 

complexity also affects manufacturing performance. 

 

Research Questions 

The primary purpose of this research is to develop and test a practical measure of 

internal static manufacturing complexity.  This measure will then be used to investigate 

two related questions.  The first is: 

 

Do systems with lower levels of internal static manufacturing complexity have 

better manufacturing performance?  

 

In this study, it is theorized that two manufacturing operations that face the same 

external circumstances, having the same product mix, and having the same resources 

(machines and labor), but having different levels of internal static manufacturing 

complexity (system design), will have different performance.  In fact, the system with 

lower internal static manufacturing complexity should have better performance. 

The second research question is: 

 

Which elements of internal static manufacturing complexity have a greater impact 

on manufacturing performance?  

 

This asks, if everything was equally easy to change, which element(s) should a manager 

address first to obtain the largest “payback”?  This seeks to identify the complexity 

elements (e.g. number of components, component commonality, and number of routing 

steps) that have the greatest effect on performance. 



 

7 

Contribution of Research 

By developing a quantitative measure of internal static manufacturing complexity 

that integrates the manufacturing complexity elements identified in past research and 

testing its predictive validity, this research determines whether this specific measure of 

internal static manufacturing complexity, ISMC, is useful.  If so, ISMC can assist theory 

development by providing a way to control for complexity differences between systems 

or industries when conducting other manufacturing performance research. 

A quantitative measure for internal static manufacturing complexity that is related 

to performance would aid them in making decisions about system design.  They could 

determine how to allocate limited resources in order to make the largest possible impact 

on complexity, and thereby, system performance.  Managers could evaluate how 

decisions regarding system changes would affect manufacturing complexity.  They could 

also use the measure to benchmark themselves internally and externally. 

The remaining chapters are organized as follows:  Chapter II contains a review of 

literature regarding complexity and forms and operational definition for complexity.  In 

Chapter II the elements of internal static manufacturing complexity are identified from 

past research and a framework is developed for internal static manufacturing.  In 

Chapter III, a quantitative measure for internal static manufacturing complexity is 

proposed.  Research methodology is proposed to address the research questions.  The 

results of the research experiments using simulation of a batch manufacturing 

environment are presented In Chapter IV.  Lastly, Chapter V discusses the conclusions of 

this research study and recommends possible areas for future research.  



 

 



 

 

 

 

 

CHAPTER II 

 

REVIEW OF THE LITERATURE 

 

 

 

The first step in understanding manufacturing complexity is to define complexity.  

In this section, a general definition of complexity is adopted from past literature in the 

areas of physics, general systems theory, philosophy and medicine.  This definition is 

used to develop an operational definition of complexity by identifying three dimensions 

of a complex system – numerosity, intricacy, and states. 

 A framework is developed from past literature which identifies and categorizes 

the important aspects of a manufacturing system that create complexity.  These aspects of 

manufacturing complexity are then categorized as being either internal or external 

sources of complexity based on the extent to which they are under managerial control.  

The aspects comprising manufacturing complexity are further classified as elements of 

static or dynamic complexity. 

 

Complexity 

As previously stated, complexity is difficult to define.  We all have a sense of 

complexity, and can intuitively perceive differences in the level of complexity between 

systems.  So, in order to measure complexity, the first step is to articulate an operational 

definition of complexity. 



 

10 

The Oxford Dictionary defines the term complex as “consisting of many different 

and connected parts” and “not easy to analyze or understand”
3
. However, the scientific 

community admits that there is no single generally accepted definition of complexity 

(Flood, 1987; Klir, 1985; Lofgren, 1977; Ashby 1973; Simon 1962).  Stein (1988) says 

that “complexity is almost a theological concept; many people talk about it, but nobody 

knows what it really is.”  (p. xiii)   Although complexity is admittedly difficult to define, 

Casti (1979) has provided a good general definition of system complexity.  He defines a 

complex system as one that has a counterintuitive, unpredictable or complicated structure 

and behavior. 

  

Measuring Complexity 

Stein (1988) states that the first step in understanding complexity is to identify 

and measure the properties, or dimensions, of complex systems.  There have been two 

major approaches to this.  One way that researchers have considered measuring 

complexity is by measuring the length of the shortest description of a system (Klir, 1985; 

Lofgren, 1977; Ashby 1973; Simon 1962).  Longer descriptions indicate greater 

complexity exists.  However, determining what is the shortest complete description of a 

system is subjective.  A more precise, or scientific, way of defining complexity would be 

by what causes descriptions to be long, i.e. the dimensions of a system. 

A second approach to measuring complexity considers the number of elements in 

the system and the number and type of relationships between these elements (Flood, 

                                                 
3
 "complex •adj."  The Concise Oxford Dictionary. Ed. Judy Pearsall. Oxford University 

Press, 2001. Oxford Reference Online. Oxford University. 

http://www.oxfordreference.com. August 28, 2003. 
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1987; Klir, 1985; Lofgren, 1977).  This notion can be linked to Simon (1962) who says 

that a complex system has a large number of parts, whose relationships are not “simple”.  

Simple means “single, small”
4
, or “having or composed of only one thing, element, or 

part”
5
.  Lofgren, in his discussion of measuring complexity, termed these two elements of 

complexity numerosity (number of items) and intricacy (relationships of the parts). 

According to Klir (1985) there is a third element of the definition of complexity – 

the states that a system element can attain.  The state of a system element is the condition 

or mode of that element, e.g. on or off.  How one system element relates to other system 

elements is affected by its state and the states of the other system elements at a given 

point in time, thereby contributing to the complexity of a system. 

These two approaches to operationalize complexity may at first appear to be 

distinct.    Since increasing the number elements and relationships in a system increases 

the length of the description required for completely describing a system, these 

approaches are clearly related.  This research uses the latter approach of measuring 

complexity to examine existing literature about manufacturing complexity 

 

Manufacturing Complexity 

A manufacturing system is composed of numerous elements, (i.e. numerosity) – 

products, components, machines, work centers, etc.  The number of relationships among 

the elements in a manufacturing system (i.e. intricacy) is often evident in system 

                                                 
4 
“simple.” The American Heritage

®
 Dictionary of the English Language, 4th ed. Boston: 

Houghton Mifflin, 2000. www.bartleby.com/61/. July, 28, 2003. 

5
 “simple”  The Concise Oxford Dictionary. Ed. Judy Pearsall. Oxford University Press, 

2001. Oxford Reference Online. Oxford University. http://www.oxfordreference.com.  

July 28, 2003. 
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documents like the bills-of-materials (BOM), routings, and the facility layout.  The 

manufacturing system’s elements can have different conditions (i.e. states).  For example, 

machines has four states.  A machine may be processing work, out of work, inoperable, 

(e.g. broken down), or being set-up. 

Both Frizelle and Woodcock (1995) and Deshmukh et al. (1998) subdivide 

manufacturing complexity into static and dynamic complexity.  Static, or structural, 

complexity refers to the complexity resulting from the system design. Deshmukh et al. 

(1998) define static complexity as being a “function of the structure of the system, 

connective patterns, variety of components, and strength of interactions.” (p.645)   

Dynamic, or operational, complexity stems from the dynamic nature of system 

resources that cause uncertainty of a system as it moves through time (Deshmukh et al., 

1998).   Only with the passing of time do the system components have an opportunity to 

change states.  Dynamic complexity would include elements of manufacturing 

complexity that change states.   Examples of aspects of a manufacturing system that can 

be classified as part of dynamic complexity are machine breakdowns and rejection of an 

order due to poor quality. 

Another important distinction to make is that of internal versus external control.  

The elements of manufacturing system complexity that are in the direct control of system 

managers are considered internal complexity aspects.  The products to be offered, the 

type and amount of equipment, the degree of vertical integration, the quality system 

design, and the maintenance plan are examples of decisions that affect internal 

manufacturing complexity.  Those things that are outside of the direct control of 
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management can add external complexity, e.g. customer orders and government 

regulations. 

All of the identified previous research about manufacturing complexity is shown 

in Table 2.1.  The general topic each study examines is given in column two.  This table 

identifies the aspects of manufacturing complexity included in each article’s research 

(column 3).  It then classifies how each aspect of internal manufacturing complexity was 

measured, i.e. numerosity, intricacy, or states.  The type of manufacturing complexity 

that was measured in the study is represented in Table 2.1 by an “S” for static or “D” for 

dynamic.  The last column denotes aspects of manufacturing complexity that are external. 

As shown in Table 2.1, Kotha and Orne (1989) develop a generic manufacturing 

strategy paradigm in which they propose a construct for manufacturing complexity.  

Cooper, Sinha, and Sullivan (1992), Frizelle and Woodcock (1995), and Desmukh, 

Talvage, and Barash (1998) propose measures for manufacturing complexity, but do not 

test them.  Calinescu, Efstathiou, Schirn and Bermejo (1998) evaluate two potential 

measures of manufacturing complexity.  Khurana (1999) presents a typology of 

manufacturing complexity in his study on the technological process complexity of the 

color picture tube industry. 



 

 

Table 2.1  Aspects of Manufacturing Complexity Identified in Past Research 
 

 

   Internal Complexity component  

Article (Year) Topic Aspect of Complexity Numerosity Intricacy States External 

       

Kotha & Orne Generic Manufacturing Strategy Product complexity S S   

(1989)  Product Mix Ratio S   D 

  Product Mix S    

  Integration between processes  S   

       

Cooper et al. Product Mix S    

(1992) 

Manufacturing complexity in 

semiconductor fabrication Process complexity S S   

  Cycle Time *     

       

Frizelle & Woodcock Manufacturing complexity index Number of machines/resources S    

(1995)  Product Mix S    

  Number of components S    

  Product Mix S/D    

  Queue length D  D  

  Machine status   D  

       

Deshmukh et al. Product Mix S    

(1998) 

Static manufacturing complexity 

index for FMS Number of operations S    

  Number of machines S    

  Routings  S   

  Processing times  S   

  Product Mix S    

       

* Cycle time is an outcome of system performance.  It is not a measure of system complexity 

** Does note exhibit numerosity, intricacy or states. 

 

S = Static complexity 

D= Dynamic complexity 

1
4



 

 

Table 2.1  Aspects of Manufacturing Complexity Identified in Past Research (Continued) 
 

 

   Internal Complexity component  

Article (Year) Topic Aspect of Complexity Numerosity Relationships States External 

       

Calinescu et al. Product Mix S    

 (1998) 

Comparison of two mfg 

complexity measures Number of components S    

  Cycle Time *     

  Lot Sizes S/D    

  Routings S S   

  Number of machines/resources S    

  Layout S    

  Set-up time **     

  D  D D 

  

Dynamicism, variability, 

environmental uncertainty     

       

Khurana Technological process complexity Product mix S    

(1999)  Environmental complexity    D 

  Product complexity S S   

  Process complexity S S/D   

 

 
* Cycle time is an outcome of system performance.  It is not a measure of system complexity 

** Does note exhibit numerosity, intricacy or states. 

 

S = Static complexity 

D= Dynamic complexity 

 

 

1
5
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From this literature, 12 distinct aspects of static internal manufacturing 

complexity were identified.  Table 2.2 reorganizes the information in Table 2.1 to 

identify which research involved each of these 12 aspects of internal static manufacturing 

complexity. 

The first of these aspects of manufacturing complexity is the number of end-

products, called product mix. It is addressed by all six articles regarding manufacturing 

complexity.  It is measured by counting the number of active products produced by a 

system.  Product mix is considered an internal aspect of manufacturing complexity 

because it is determined by management.  The breadth of a product line is usually a 

strategic decision to increase competitiveness.  Offering a larger product mix may  

increase market share and profitability by increasing overall sales or by spreading 

overhead costs across greater output. A larger product mix increases system complexity 

because it increases the number of elements in the manufacturing system (numerosity) 

and the number and type of relationships (intricacy) of the elements. 
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Table 2.2  Aspects of Manufacturing Complexity Organized by Complexity Element 
  

 

Aspect of Internal Static Manufacturing Complexity Article 

  

Product mix Kotha and Orne (1989) 

 Cooper et al (1992) 

 Frizelle & Woodcock (1995) 

 Calinescu et al (1998) 

 Deshmukh, et al. (1998) 

 Khurana (1999) 

  

Product mix ratio Kotha and Orne (1989) 

 Frizelle & Woodcock (1995) 

 Deshmukh, et al. (1998) 

  

Number of components Frizelle & Woodcock (1995) 

 Calinescu et al (1998) 

  

Product complexity Kotha and Orne (1989) 

 Khurana (1999) 

  

Process complexity Cooper et al (1992) 

 Khurana (1999) 

  

Integration between processes Kotha and Orne (1989) 

  

Number of machines/resources Frizelle & Woodcock (1995) 

 Calinescu et al (1998) 

 Deshmukh, et al. (1998) 

  

Routings Calinescu et al (1998) 

 Deshmukh, et al. (1998) 

  

Processing times Deshmukh, et al. (1998) 

  

Layout Calinescu et al (1998) 

  

Set-up time Calinescu et al (1998) 

  

Lot Sizes Calinescu et al (1998) 

 



 

18 

Since a system may be producing more items than simply the end-products, e.g. 

subassemblies or fabricated parts, Frizelle and Woodcock (1995) and Calinescu et al. 

(1998) include not only the number of end-products, but also the number component 

parts produced by a system.  Whether to make or buy a component is a system design 

decision.  The number of components manufactured to support the end-products has an 

impact on system complexity similar to that of the number of end-products.  The product 

mix and the number of internally produced components add to internal static complexity 

by increasing its numerosity.  As the number of items manufactured (or assembled) 

increases, more equipment is required, more diverse processes exist and there is more 

interaction in the product flow, hence greater internal static manufacturing complexity. 

The product mix ratio is the proportion of unit sales (numerosity) of each end-

product in the product line for a business unit.  Kotha and Orne (1989) purport that a 

system has a different amount of complexity when the product volume is spread out 

across the entire product line than when a few products have high volumes.  Frizelle and 

Woodcock (1995) indirectly use the product mix ratio in their measure of static 

manufacturing complexity.  They use the probability of a product being in queue for a 

machine.  This probability, in essence, is the distribution of the product mix after 

considering the manufacturing routings.  Deshmukh et al. (1998) utilize a matrix of 

product mix percentages to determine the average processing requirements for a flexible 

manufacturing system. 

Kotha and Orne (1989) and Khurana (1999) address the issue of product 

complexity, the fourth aspect listed in Table 2.2.  The authors in both articles discussed 

how some products are more complex than others, i.e. their inherent complexity.  Kotha 
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and Orne (1989) suggest that the complexity of products could be evaluated subjectively.  

They illustrate this by simply saying that a sports car is more complex than a base-model 

economy sedan.  Khurana (1999) proposes that assembled products should be classified 

as being more complex than fabricated products.  This concept of product complexity 

relies on the subjective determination of which products are more complex.  This reduces 

its reliability as a measure. 

Another aspect of manufacturing complexity in Table 2.2 is process complexity.  

Cooper et al. (1992) and Khurana (1999) did not provide an operational definition, but 

argue that there are inherent differences in the “degree of difficulty” of individual 

manufacturing processes.  Neither author proposes an objective method of measuring 

process complexity.  They measure process complexity subjectively, which reduces its 

reliability as a measure. 

Kotha and Orne (1989) identify “level of interconnection” in their discussion of 

their process complexity construct.  The “level of interconnection” is meant to capture the 

integration between processes.  It considers the discontinuity, technological 

interdependence, and product-mix flexibility of the manufacturing processes.  Their 

research was theoretical development of a manufacturing strategy framework in which 

one dimension is process complexity.  In their definition of the “level of 

interconnection”, there is no link to any of the definitional elements of complexity, i.e. 

numerosity, intricacy, or states.  They did not attempt to quantify their factors. 

As shown in Table 2.2, three complexity researchers (Frizelle and Woodcock, 

1995; Deshmukh et al., 1998; Calinescu et al., 1998) identify the number of machines or 

processing resources as part of manufacturing complexity.  Since management has some 
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discretion over process design (i.e. number of machines or workstations) and since the 

number of machines or resources is independent of time, the number of machines or 

resources is an element of internal static manufacturing complexity. 

Frizelle and Woodcock (1995) indicate that one way to reduce static complexity is 

to reduce the number of processing resources.  By lowering static complexity, they 

suggest that there is less “resistance to flow” in the system.  Deshmukh et al. (1998) use 

the number of machines in their proposed measure of internal static manufacturing 

complexity.  It is one of three of their numerosity variables, the others being the number 

of products and the number of operations.  Calinescu et al. (1998) do not propose a 

complexity measure, but recognize that the number of resources is an important element 

of plant structure. 

Manufacturing routings are identified by Deshmukh et al. (1998) and Calinescu et 

al. (1998) as being another important aspect of internal static manufacturing complexity.  

Routings are the specific sequence of operations required to assemble or manufacture an 

item.  The routing is a simple way of describing the specific relationship that a product 

has to the processes in a manufacturing system.  It also has a numerosity component – the 

number of steps or operations.  Deshmukh et al. (1998) thought that the sequence of steps 

and the number of steps in a routing were both important to measure so they recorded 

them in separate matrices when calculating static complexity.  It is evident that routings 

have both numerosity and intricacy dimensions.  Routings are an internal aspect of 

manufacturing complexity because they can be altered by management through process 

redesign efforts, i.e. elimination of steps or combining process steps.  So, manufacturing 

routings can be classified as a component of internal static manufacturing complexity. 



 

21 

Deshmukh et al. (1998) included processing times in their static complexity 

measure.  However, processing time is a measure of time, and does not express 

numerosity, intricacy, or state.  It is also not clear how differences in processing times 

between two manufacturing systems can create complexity. 

As part of their definition of “product structure”, Calinescu et al. (1998) includes 

plant layout - the eighth of 12 identified complexity aspects in Table 2-2.  The facility 

layout is a static internal complexity element. The “design” decisions of locating 

equipment are directed by plant management (internal).  A layout is defined as the 

structure of the manufacturing system, and is not affected by the passing of time, i.e. it is 

static.  The plant layout defines the relationship, or interconnection, of processes.  

Although recognizing the potential impact of layout on manufacturing complexity, 

Calinescu et al. (1998) did not propose a method to measure it. 

Calinescu et al. (1998), as part of a general construct of “plant structure” include 

set-up times.  From a system design perspective, set-up time is determined by 

technological process selection, and thus, appears to be an element of internal 

complexity.  However, the set-up time encountered in a system is determined as time is 

passing.  The number of set-ups, a possible component of a numerosity measure of 

complexity, cannot be calculated or fairly estimated at a static point in time.  The 

sequence of batches, jobs, or items will determine both the total number of set-ups and 

the total set-up time for a system.  The total set-up time is unpredictable for a given 

system design exposed to stochastic events, e.g. customer order arrivals.  Therefore, 

equipment set-up (time or quantity) exhibits qualities of both static and dynamic 

complexity. 
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Lot-size is also one of the concepts listed by Calinescu et al. (1998) as being part 

of their “plant structure” construct.  Calinescu et al. (1998) do not explain why lot-size is 

a relevant element of internal static manufacturing complexity nor do they develop a 

measure for manufacturing complexity.   It is true that management makes the lot-size 

decisions, which means that lot-sizing is an internal aspect of manufacturing complexity.  

At the same time, the production lot-size for an item is often a dynamic decision that 

depends upon customer order size or system status.  In addition, the cost structure of a 

system is not fully in the control of management.  Certain industries require different 

levels of technological investment, e.g. continuous flow industries.  Like set-up time, lot 

size can be considered as being an aspect of both static and dynamic complexity. 

 

Measures of Manufacturing Complexity 

Only three researchers reviewed in Table 2.2 (Cooper et al., 1992; Frizelle and 

Woodcock, 1995; and Deshmukh et al., 1998) developed quantitative measures for 

manufacturing complexity.  Cooper et al. (1992) develop a complexity measure they call 

“total net die equivalent” (TNDE).  In their measure, they evaluated product mix, the 

relative complexity of each product, the relative complexity of each process technology, 

and the process-flow characteristics. Their formulation is given as: 

TNDE(j)=∑V(i,j)*PPI(i)*PFLOW(i,j), (1) 

where PP(i) is the product process index of the i
th
 chip type; V(i,j) is the volume of chip 

type i in the j
th
 period; and PFLOW(i,j) is the flow index.  The TDNE measure was 

specifically designed for the semiconductor industry and, as such, is difficult to 

generalize. 



 

23 

Both Frizelle and Woodcock (1995) and Deshmukh et al. (1998) propose 

measures for internal manufacturing complexity using entropy-based formulations. This 

methodology was adapted from information theory research (Shannon, 1948).  An 

entropic measure attempts to quantify the amount of uncertainty associated with a 

system.  The general form for quantifying entropy is given in Equation (2): 

 i

n

i

i ppSH ∑
=

−=
1

2log)(  (2) 

The entropy, H(S), is the sum of the weighted probabilities of a state or event.  In this 

equation, there is a probability (p) assigned to each possible state (i) which is weighted by 

the log2 of the probability of the i
th
 state.  The base of 2 for the log function is used 

because the states are considered binary, i.e. each state can be either occurring or not 

occurring. 

Frizelle and Woodcock (1995) propose an entropic formulation for both internal 

dynamic and internal static manufacturing complexity.  Equation (3) gives their 

formulation for internal dynamic manufacturing complexity. 
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Frizelle and Woodcock (1995) evaluate manufacturing complexity based upon the 

probabilistic blocking effect of a production system.  The queue length represents the 

state of a machine and is given by the probability p
q
.  The term p

q
ij is the probability that 

machine j has state i, where i represents a queue length greater than one.  The probability 

of machine j working or being idle is called the “makestate”, and is represented by the 
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term p
m
ij.  And p

b
ij is the probability of an unplanned state occurring on machine j, e.g. 

breakdowns or quality rejects.  P represents the probability that the system is in control; 

that it is operating within predefined limits.  For Frizelle and Woodcock (1995), the 

system is in control when there is no queue at any machine. 

For static complexity, Frizelle and Woodcock (1995), set P = 0, stating that 

control elements apply only to dynamic systems.  Their formulation for the internal static 

manufacturing complexity is given in Equation (4). 

 ∑∑
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 where pij is the probability that product i is running on machine j.  Frizelle and 

Woodcock (1995) suggest that the greater the number of products or machines in a 

system the greater the internal static manufacturing complexity.  They note that because it 

is scaled by log2, the addition of each new product or machine has a reduced impact on 

complexity.  That is to say that the marginal impact of adding a product or machine is 

less for large systems than small systems. 

In their conceptualization of their internal manufacturing complexity measures, 

Frizelle and Woodcock (1995) consider complexity as being “resistance” to the flow of 

production.  Since the results of the calculations are unitless, they propose that these units 

be called equivalent product process (epp).  According to Frizelle and Woodcock (1995), 

epp expresses the level of resistance to flow in a system, which represents the level of 

internal manufacturing complexity. 

Deshmukh et al. (1998) also formulates an entropic measure for internal static 

manufacturing complexity.  However, their measure is designed only to be applied to 

flexible manufacturing systems (FMS).  The measure proposed by Deshmukh et al. 
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(1998) does not consider product structure.  Also, despite being published four years after 

Frizelle and Woodcock (1995), Deshmukh et al. (1998) does not reference nor build upon 

this prior research. 

 

Product Mix 

All six research articles from Table 2.2 identified end-product variety, referred to 

as product mix or product line breadth, as an important aspect of internal static 

complexity.  An additional eight studies were identified that also investigated the impact 

of product mix on manufacturing performance.  These are shown in Table 2.3. Of these 

eight articles, five were identified by Ramdas (2003) in his review of research on product 

variety. This section summarizes the results of these studies. 

The past research that investigated the effect of product variety on manufacturing 

performance is shown in Table 2.3.  For each article, the table identities the type of 

research performed and the research findings.  It is interesting to note that all of the 

identified past research on product mix has used some type of empirical research 

methodology. 

In the first study shown in Table 2.3, Kaisa, The Japanese Corporation, Abegglen 

and Stalk (1985) recognize that a broad product line is a source of complexity for 

manufacturing plants.  They state that “With increasing complexity comes an increased 

number of parts, greater material handlings and inventories, more diverse process flows, 

higher supervision requirements, an increase of errors and defects, and smaller batches 

produced in shorter runs” (Abegglen and Stalk, 1985, p. 80).  Abegglen and Stalk (1985) 

link product line complexity to the need for more frequent set-ups, and the increased 

overhead associated with those set-ups.  The extra efforts associated with scheduling, 
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material handling and expediting are examples they cite as being drivers of increased 

overhead.  Using a Toyota forklift factory as anecdotal evidence, they show that by 

focusing their efforts on a narrower product line, hence lowering factory complexity, 

Toyota was able to reduce manufacturing costs by 18%. 

Foster and Gupta (1990) study the relationship between cost drivers and 

manufacturing overhead (MOH).  They examine MOH because MOH can also represent 

a sizeable portion of total manufacturing costs.  In their sample of 37 electronics facilities 

belonging to one parent company, MOH made up an average of 39% of total 

manufacturing cost. 

Complexity-based cost drivers are one of the three “classes” of cost drivers that 

Foster and Gupta (1990) investigate. The other two classes are volume-based and 

efficiency-based cost drivers.  The complexity-based cost drivers were divided into five 

categories: product design, procurement, manufacturing process, product range (i.e. 

product mix), and distribution complexity. 

. 



 

 

Table 2.3  Past Studies that Investigated Product Mix 
 

 

Authors (Year) Type of Study Findings 

   

Ramdas (2003) Literature Review Proposes a framework for variety-related decisions in a firm.  Identifies 

areas for future research in product variety including dimensions of 

variety, product architecture, degree of customization and points of 

variegation 

Abegglen and Stalk (1985) Field Study Narrower product mix leads to reduction in total MFG costs 

Foster and Gupta (1990) Survey Product mix  positively correlated to total Manufacturing Overhead 

Kekre and Srinivasan (1990) Analysis of PIMS data Mixed results 

Ittner and MacDuffie (1995) MIT Automotive empirical study Part complexity significantly related to direct labor hours and overhead 

hours per vehicle 

MacDuffie, Sethuraman, and Fisher (1996) MIT Automotive empirical study Part complexity significantly related to direct labor hours per vehicle 

Fisher and Ittner (1999) Single plant study Option variability negatively affects overhead hours per car and inventory 

Bozarth and Edwards (1997) Survey Product mix  had significant negative relationship with manufacturing 

performance 

Anderson (1995) Case studies in three textile plants Product line heterogeneity increased manufacturing overhead  through 

increased set-ups and greater raw material variety. 

 

 

2
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Although the primary conclusion was that volume-based cost drivers have the 

largest impact on MOH, Foster and Gupta (1990) speculate that the high correlation of 

volume-based variables with MOH could be driven by complexity factors.  There were 

significant correlations between MOH and several complexity factors within the five 

categories.  Two factors measuring product variety had significant correlation with MOH 

- the number of products offered and number of products accounting for 80% of business.  

Other complexity factors that had significant correlations included the number of 

components, the bill of materials depth, and the extent of vertical integration. 

Kekre and Srinivasan (1990) investigate the benefits and cost implications of 

product mix.  Their results provide mixed support for their hypotheses that (1) greater 

product mix leads to higher direct costs, (2) total inventory increases with greater product 

mix, and (3) greater product mix adversely affects a firm’s ROI. 

They evaluate their hypotheses using data from the Profit Impact of Marketing 

Strategies (PIMS) database.  Their results indicated that there was a slight decrease in 

manufacturing cost as product mix increased, the opposite of what was hypothesized.  

They also found no significant relationship between product mix and total inventory.  

Regarding the direct effect of product mix on ROI, their results show that there was a 

significant, but small, negative effect of a broader product line on ROI only for the firms 

classified as industrial goods providers. 

Although their hypotheses were not supported, Kekre and Srinivasan (1990) 

believe that having a broader product line will still negatively impact performance.  They 

suggest that firms that must offer a broad product line may employ strategies that 

mitigate these negative effects such as implementing cellular manufacturing, applying 
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Just-in-Time and Lean manufacturing practices, using focused factories, and designing 

products with a high degree of part commonality.  Kekre and Srinivasan (1990) 

acknowledge that the PIMS data does not capture information regarding these strategies. 

Using data from the MIT International Motor Vehicle Program study, Ittner and 

MacDuffie (1995) and MacDuffie, Sethuraman, and Fisher (1996) evaluate the impact 

from product variety on performance in automotive assembly plants.  Ittner and 

MacDuffie (1995) examine the effects of product mix complexity on direct and indirect 

labor requirements in automobile assembly.  They measure product mix complexity with 

three measures – model mix complexity, option complexity and parts complexity.  Each 

one is a scaled measure ranging from 0 to 100, where 0 is assigned to the plant with the 

least complexity and 100 to the plant with the greatest complexity.  Model mix 

complexity measures the major differences between models based upon the number of 

platforms, drive trains and export variations.  Option complexity is based upon the 

percent of vehicles assembled with a given option (from a limited list of 11 options).  

Parts complexity is a combined measure of four elements – parts/component variation, 

number of parts to the assembly area, percent of common parts across models, and the 

number of suppliers to the assembly area. 

From the results of their regression analysis, Ittner and MacDuffie (1995) find 

that parts complexity was a determinant of both direct labor hours per car and indirect 

labor hours per car.  Options complexity only had a significant relationship with indirect 

labor hours per car.  The authors contend that the option bundling programs and the line 

scheduling algorithms employed by many of the plants reduced the effects of option mix 

on direct labor, but could not entirely shield them from the need for increased materials 
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handling and production control.  Model mix had no significant relationship with either 

type of labor content.  Ittner and MacDuffie (1995) say that this is due to the dedicated or 

automated lines common in the automobile assembly industry.  

MacDuffie, Sethuraman, and Fisher (1996) in a sister study to Ittner and 

MacDuffie (1995), investigate the effects of product complexity on plant productivity and 

quality performance.  Product complexity is a combination of four measures.  The first 

three, model mix complexity, parts complexity, and option content (complexity), are 

identical to those of Ittner and MacDuffie (1995).  MacDuffie et al.(1996) add a fourth 

measure termed option variability, which measures the extent to which a vehicle contains 

a given option. They contend that the variability in options creates workload imbalances, 

thus reducing productivity in assembly. 

 In the study by MacDuffie et al.(1996), parts complexity again was directly 

related to direct labor productivity.  They surmise that as the number of components and 

subassemblies increase, there is an increase in the labor and effort expended to manage 

and assemble them.  Option content, in agreement with the prior research by Ittner and 

MacDuffie (1995), is related to the labor productivity – more options yielded lower 

productivity.   

An interesting outcome from MacDuffie et al.(1996) is that, contrary to their 

expectation, option variability had a significant negative regression coefficient.  This 

would mean that as variability in options increased, labor hours per vehicle decreased.  

While they can not provide a conceptual explanation for this result, they speculate that 

plants that deal with greater option variability have developed capabilities to cope with it. 
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Fisher and Ittner (1999) continue the investigation on the impact of product 

variety on automobile assembly plant performance.  They use empirical data from a 

single plant and a follow-up simulation to examine relationships between option content 

and variability and performance.  Option content is measured as the average number of 

options per car, limited to a set of eight options actively tracked by the management of 

the study plant.  Option variability is calculated as the standard deviation in the number 

of options installed (of the eight tracked options). 

Fisher and Ittner (1999) suggest that product variation in mixed-model assembly 

causes variation in process times at the different stations of an assembly line.  They note 

that scheduling (sequencing) of models is employed to help reduce the effects of product 

variation by reducing downtime that results from repeated long processing time 

requirements at stations (one auto after another).  The results concur with their thinking.  

There is not a significant relationship between option content and any of their measures 

of performance.  However, option variability has a significant, adverse effect on output 

(cars per hour), total labor hours per car, overhead labor hours per car and inventory.  

Fisher and Ittner (1999) note the plant that was studied used excess labor capacity as a 

tactical response to combat the affect of variability.  Increases in option variability lead to 

increases in excess capacity.  This single plant result conflicts with that of prior research 

in automotive assembly plants (MacDuffie et al., 1996) where option variability had a 

significant positive impact on productivity. 

The results of the follow-up simulation by Fisher and Ittner (1999) provide two 

important insights.  First, the results support those from the empirical study regarding 

option variability.  As option variability increase, labor requirements per car increase.   
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Secondly, random variation in the process (i.e. process time variation, defective parts, 

and poor quality from preceding workstation) was determined to be a larger contributor 

to the negative affects than product variety, since scheduling can be used to mitigate the 

affects of known variation.  Fisher and Ittner (1999) suggest that this makes product mix 

variation an important element in any measure of product variety. 

Bozarth and Edwards (1997) perform empirical research to test their proposed 

model relating market requirements focus and manufacturing focus to plant performance.  

Their survey includes 24 manufacturing plants that were original equipment suppliers 

(OEMs) in the automotive industry.  They measure the manufacturing focus construct 

using two measures of product similarity, two measures of similarity among work cells, 

and a measure of strategic orientation.  Market requirements focus is measured by the 

number of major customers (those that make up 80% of the plants dollar volume), 

variability in customers needs (made up of six variables), number of product lines (i.e. 

PLB), and variability in level of customization.  Bozarth and Edwards (1997) develop a 

combined plant performance measure consisting of six criteria - cost, conformance, 

quality, delivery speed and reliability, product range, and design capability.  All 

dependent and independent variables are perceived measures, either obtained as estimates 

or from questions using a Likert scale.  

The result of the Bozarth and Edwards (1997) study shows a significant, negative 

relationship between the number of product lines (i.e. product mix) and their plant 

performance measure.  They suggest that this result indicates that more product lines 

inhibit performance.  They also find that product homogeneity, as measured by similarity 

of processing requirements, is related to higher plant performance.  Lastly, Bozarth and 
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Edwards (1997) find that efforts identified as “plant-within-a-plant” like cellular 

manufacturing, are related to improved plant performance. 

In a three-plant case study, Anderson (1995) investigates the effects of product 

mix heterogeneity on manufacturing costs.  Anderson (1995) and Bozarth and Edwards 

(1997) are the only studies that seek to differentiate products by degree of similarity.  The 

research study by Anderson (1995) involves three textile manufacturing facilities with 

different levels of production line variety.  One plant focused on high volume, very 

similar textile products.  The second plant experienced greater variety of heterogeneous 

fabrics than the first.  The third plant’s niche was to introduce new products frequently 

and therefore had the highest levels of product heterogeneity.  The study measured 

product heterogeneity using variables specific to textile manufacturing that the author 

developed through interviews with plant personnel.  The results suggest that increases in 

MOH were associated with greater product mix through increases in total set-up time, 

and the diversity in process and quality requirements.  

Although there have been some mixed results on the effect of product variety, 

several important points can be drawn from past research.  First, product mix (number of 

end-products) appears to have an impact on system performance.  Secondly, because a 

larger product mix increases the number of components in a system, system complexity 

increases and more overhead is required to help manage the ensuing effects.  Lastly, from 

Fisher and Ittner (1999), consideration must be given to the variation of demand for the 

products in the product line.  As they imply, it may be the variation in the demand of the 

products across the breadth of the product line that has a significant effect on plant 

performance. 
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Product Mix Ratio 

The product mix ratio represents the distribution of unit sales across the product 

line for a business unit (Deshmukh et al.,1998).  It can be viewed as both an aspect of 

internal static or external dynamic complexity.  The actual product mix ratio is affected 

by the environment (external) via customer demand for the products.  As time passes, 

customer order volumes do not exactly match the forecasts or schedules, and dynamic 

decisions are made to adjust to these variations.  These are external dynamic complexity 

issues. 

At the same time, the product mix ratio is often a management decision (internal), 

determined by capacity planning and marketing decisions.  Product volume estimates are 

made periodically, and “static” decisions are made using them, i.e. layout, machine and 

labor requirements. Articles regarding manufacturing complexity that have included the 

concept of product mix ratio (Kotha and Orne, 1989; Frizelle and Woodcock, 1994; and 

Deshmukh et al., 1998) have considered it part of static complexity. 

Although they do not quantitatively measure manufacturing complexity, Kotha 

and Orne (1989) assert that a system in which the product volume is spread across the 

entire product line will have a different amount of complexity than a system having a few 

products with high volumes.  Frizelle and Woodcock (1995) make no conclusions about 

the effect of the product mix ratio on manufacturing complexity, but use it indirectly in 

their measure of static manufacturing complexity.  They use the probability of a product 

being in queue for a machine, which, in essence, is the product mix ratio after considering 

the manufacturing routings. 
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Likewise, Deshmukh et al. (1998) include product mix ratio in their formulation. 

They make no suggestions of the impact of the product mix ratio.  They utilize a matrix 

of product mix percentages to determine the average processing requirements for a 

flexible manufacturing system. 

 

Product Complexity 

According to Kotha and Orne (1989) and Khurana (1999), product complexity is 

an important determinant of manufacturing complexity.  Product complexity is created 

via the number of components and their relationships to one another.  A bill of materials 

(BOM), or product structure, is an expression of the relationships among products and 

components in a manufacturing system.  A BOM has both numerosity and intricacy 

dimensions. 

A BOM can be measured by numerosity in the number of levels (i.e. Veral and 

LaForge, 1985; Benton and Srivastava, 1985; 1993;) or the total number of components 

(i.e. Sum et al., 1993).  Its intricacy can be measured by its breadth of components 

(Benton and Srivastava, 1985; 1993; Fry et al., 1989), Although a BOM represents the 

specific relationships of components to a “parent”,  when considering all the BOMs in a 

system, other relationships can also be measured, e.g. component commonality (Sum et 

al., 1993; Collier, 1981; 1982; Wacker and Treleven, 1986).   

Veral and LaForge (1985) introduce product complexity when they include it as a 

factor in their study of the performance of four lot-sizing rules in a multi-level 

manufacturing environment.  In this study, they define product complexity as “the 

maximum number of levels of dependent relationships (depth) in a product structure” 
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(p. 60).  The three other factors investigated are value-added, variability of demand, and 

order/set-up cost.  Using simulation, Veral and LaForge (1985) evaluate the performance 

of lot-sizing rules on four products whose product structure ranged from two to five 

levels.  The performance measure used to evaluate the four lot-sizing rules was inventory 

cost relative to that of a baseline rule, i.e. the Wagner-Whitin model.  The results show 

that the relative performance of lot-sizing rules was not significantly affected by product 

complexity.  They make no inference about the overall effect of product complexity, 

because the analysis was based upon a relative measure and not an absolute measure of 

cost. 

In their research on lot-sizing rules in a multi-level environment, Benton and 

Srivastava (1985) evaluate product complexity in terms of both breadth and depth of the 

product structure.  They define product structure breadth as the number of immediate 

components for a parent item.  Similar to Veral and LaForge (1985), Benton and 

Srivastava (1985) define product structure depth as the number of levels in the product 

structure for an end-product.  One minor difference between the two studies is that 

Benton and Srivastava (1985) do not consider the end-item, but include all other levels. 

Benton and Srivastava (1985) conduct their investigation employing a simulation 

involving four contrived product structures These product structures have a variety of 

depths and breadths.  Using holding costs as the dependent variable, the results from their 

study led Benton and Srivastava (1985) to conclude that product structure complexity 

does not alter the performance of lot sizing rules.  This is consistent with Veral and 

LaForge (1985).  However, product structure complexity was statistically significant as a 

main effect and in all two-way interactions.  These results indicate that product structure 



 

37 

complexity likely affects performance.  Their data on mean total cost indicates that 

product structure depth has an inverse relationship with mean total system cost. 

In 1993, Benton and Srivastava continue their research in product structure 

complexity and lot-sizing.  They developed a quantitative measure of product structure 

complexity that included the number of operations performed, i.e. processing steps.  The 

product structure complexity index (PSCI) is a multiplicative function of the number of 

levels per parent (depth), the number of items per parent (breadth) and the number of 

operations per end item.  They used the same contrived products from Benton and 

Srivastava (1985) and assume that there is only one operation required at each parent 

node in a product structure. 

Utilizing simulation, Benton and Srivastava (1993) test the hypotheses regarding 

their three study factors - lot-size rules, product structure complexity and inventory 

capacity limits.  They use total manufacturing cost (set-up, holding and excess inventory 

storage space) and fill rate as the dependent variables.  In their results, all experimental 

factors have significant main effects and two-level interactions with both performance 

measures.  In general, the results indicate that as PSCI increases so do the total system 

costs, therefore Benton and Srivastava (1993) conclude that as product structure 

complexity increases, so do system costs. 

It is interesting to note that the data from Benton and Srivastava (1993) show that 

the fill rate increases as the PSCI increases.  Intuitively, a PSCI should have an inverse 

relationship with fill rate due to multi-level planning and performance issues.    As the 

complexity of products increases it should be more difficult to coordinate material 
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arrivals at each successive level in order to complete orders on-time.  It would be 

expected that fill rate would decline as product complexity increased 

Sum, Png, and Yang (1993) identify three factors useful in measuring product 

structure complexity during their investigation of the interaction of product structure 

complexity with lot-sizing rules (RU).  The three factors are (1) the total number of items 

in all products structures (NI), (2) the maximum number of levels in all product structures 

(LV), and (3) a commonality index (CI).  In their simulation model, Sum et al. (1993) 

include 180 different product structures, far greater than other studies (Veral and 

LaForge, 1985; Benton and Srivastava, 1985 & 1993).  As in Veral and LaForge (1985), 

performance is measured as the ratio of total cost of the specific lot-sizing rule to the total 

cost of the baseline lot-sizing rule (the Wagner-Whitin model). Sum et al. (1993) also 

report the mean total cost for each lot-size rule that they evaluated.  Sum et al. (1993) 

find that all factors have significant main effects, 2-level interactions, and 3-level 

interactions with the exception of NI*LV*RU.  As in prior research, the ranking of the 

lot-sizing rules is not affected by product structure complexity.  At the same time, the 

individual factors of product structure complexity are shown to have a significant 

relationship to total cost performance.  Based upon follow-up analysis of the interactions 

of NI, LV, and CI, Sum et al. (1993) suggest that CI (component commonality) has a 

greater effect on performance than NI or LV. 

In a study on lot-sizing rules in an assembly shop, Russell and Taylor (1985) 

include product structure complexity as a way to define an assembly environment.  They 

define product structure complexity by the number of levels in the product structure, the 

number of components, and the number of operations per component.  Purchased items 
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are not considered part of the product structure.  They do not propose a complexity 

“index”, but contrive five end-products with a mix of product structure complexity 

attributes.  In their simulation, the five end-products range in having product structures 

with either two or three levels, four or five components, and one to three operations.  

Mean flow time, mean tardiness, RMS of tardiness, percent tardy and assembly delay are 

the five dependent variables. 

The objective of the Russell and Taylor (1985) study is to investigate the 

performance of lot-sizing rules in an assembly environment, which is described by a 

given set of characteristics including product structure complexity.   It is after they 

completed the initial experiment that Russell and Taylor (1985) perform sensitivity 

analysis to evaluate the effect of “tall” and “flat” product structures.  They conclude that 

“tall-structured jobs were more difficult to process in an assembly shop than flat-

structured jobs, by every measure of performance” (p.208).   

Continuing research on assembly shops, Fry, Oliff, Minor, and Leong (1989) 

evaluate the effect of product structure on priority dispatching rules.  The authors 

compare 10 different product structures representing flat, tall and complex product 

structures in a simulated assembly job shop.  Three items had flat BOMs, each having a 

single level and containing from two to eight components. The three items with tall 

BOMs had two, four or six levels, each level having two components – one purchased 

item and one manufactured item.  The two items with complex product structures (a.k.a. 

BOMs) had three levels and either two or three components at each level. 

The definition of product structure by Fry et al. (1989) includes the routing steps 

required for each component in the BOM.  Each manufactured item has a routing with a 
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randomly selected number of operations ranging from one to four.  Components are 

processed in batches in a job shop environment made up of six machines (work centers).  

These components are assembled into the final product at one of four assembly work 

stations. 

Fry et al. (1989) show that the performance of sequencing rules is affected by the 

product structure.  Of all the rules evaluated, they identify the earliest job due date rule as 

the only rule consistently in the top performing rules across each of the 10 product 

structures.  The author’s conclusions regarding the effects of product structure are similar 

to those of Russell and Taylor (1985).  Taller product structures tend to be tardier than 

flat product structures across all of the dispatching rules that were examined. 

Regarding product structure complexity, past literature indicates that depth and 

breadth, and component commonality can affect system cost, flow time and customer 

service (e.g. tardiness and fill rate).  Past research has not investigated the extent of the 

effects of either depth or breadth.  It has typically been an environmental factor in 

research experiments.  These past studies investigated other management issues, e.g. lot-

sizing rules or dispatching rules, but have not examined the effects of product structure 

complexity in detail.  The inclusion of product structure complexity is obviously 

important and the analysis of its impact on performance is extremely relevant. 

 

Component Commonality 

Kekre and Srivansivan (1990) speculate that designing products that share parts 

may help to reduce internal static manufacturing complexity.  When products or 

subassemblies share components, it is referred to as component commonality (Collier, 
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1981).  Collier (1981) recognizes that component commonality in product structures 

could affect production process performance by way of the materials plan.  In his 1981 

research, Collier studies the effects of commonality on system cost and work center load.  

To do this, Collier develops a “degree of commonality” index (DCI).  It is designed to 

“reflect the number of common parent items per average distinct component part” 

(Collier, 1981, p.87).  Collier proposes the following formulation of DCI: 
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is the number of parents for each component in the set of d components 

used to make all the firm’s end-products. 

In a simulation experiment, Collier (1981) uses three lot-sizing rules (economic 

order quantity, least total cost, and lot-for-lot) to evaluate the effects of four sets of 

product structures with the degree of component commonality ranging from no 

commonality (DCI = 1.0) to high commonality (DCI = 2.5).  Each set consists of three 

end-products with identical product structures, the same part routings, set-up and 

processing times, and planning lead times.  The degree of commonality is altered for each 

set of product structures by changing the number of common components with the 

product set.  The results of the simulation show that higher levels of component 

commonality lead to reduced system costs (inventory carrying and set-up costs) and 

lower average workloads.  Collier (1981) finds that fewer set-ups occurred due to the use 

of common parts, thus there was a reduction in average workloads.  The negative effect 

of commonality observed by Collier (1981) is that it creates greater workload variation 



 

42 

when either the economic order quantity or least total cost lot sizing approaches were 

employed.  Collier suggests that greater component commonality leads to larger lot sizes 

and a lumpier material plan. 

In 1982 Collier applies his commonality index in research on the relationship of 

component commonality and safety stock level.  His experiment includes six levels of 

commonality ranging from no commonality (DCI = 1.0) to high commonality 

(DCI = 12.0) and two safety factors (k = 0.84 and k = 1.75).  The safety factor, k, is 

related to service level by a formulation proposed in this same article. Collier (1982) 

utilizes a simulation experiment to measure the effect of component commonality, 

measured by DCI, on total safety stock in an MRP environment.  According to Collier, 

the results suggest that greater component commonality reduces the safety stock 

quantities for components at any given constant service level.  Using three practical 

examples, he demonstrates that increasing component commonality reduces the safety 

stock requirements for components needed to maintain a certain service level.  In turn, he 

shows that this relationship between component commonality and component safety 

stock will lead to a reduction in inventory costs. 

Baker (1985) and Baker, Magazine, and Nuttle (1986) contend that commonality 

makes predicting service level performance difficult.  Collier (1982) had purported that 

lower amounts of safety stock of components were required when commonality existed.  

Baker (1985) agrees with this, but demonstrates that service level cannot be directly 

calculated for the end-products that shared common components as Collier (1982) 

formulated. 



 

43 

Using some simple product structures for examples, Baker (1985) tests Collier’s 

(1982) conclusion regarding the relationship of component commonality and component 

safety stocks.  He explores these issues in an assemble-to-order manufacturing 

environment.  Component safety stocks are used to maintain a target service level.  Using 

three end-products each with a 2-level product structure, Baker demonstrates that under 

Collier’s (1982) safety factor approach, greater component commonality does reduce 

component safety stock requirements.  He demonstrates this for both the cases of within-

product and between-product component commonality.  He also shows that end-products 

with correlated demand permit commonality to have a larger positive impact on safety 

stock requirements. 

The problem that Baker (1985) identifies with the theoretical relationship of 

commonality and safety stock is that the calculation of safety stock using the “k-factor” is 

not valid when there is between-product component commonality.  Baker (1985) states 

that the impact of component commonality is multidimensional, making it difficult to 

determine the actual service level for end-products.  He concludes that the service level 

performance can be negatively affected for systems with between-product component 

commonality, thus Collier’s (1982) formulation for determining service level cannot be 

used. 

Baker et al. (1986) continues the investigation of commonality and safety stock in 

an assemble-to-order environment.  They formulate and solve an optimization problem 

for two end-products, a two-level product structure with two components per end-

product.  The objective function is to minimize total component safety stock.  Using an 

example with two end-products, Baker et al. (1986) demonstrate qualitatively that the 
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safety stock of the common components decreases when compared to having individual 

unique components.  At the same time, when there is between-product commonality, the 

safety stock of non-common components must increase in order to maintain a minimum 

service level. 

Guerrero (1985) investigates the effects of component commonality on system 

performance in three production environments – make-to-order, assemble-to-order, and 

make-to-stock.  In his simulation model, Guerrero constructs two alternate 3-level 

product structures, one set with commonality (referred to as high commonality) and the 

other without commonality (referred to as low commonality).  Lot sizing rules, either 

Wagner-Whitin or lot-for-lot, are designated to each level of the product structure 

according to the production environment.  Performance measures are the total cost (set up 

and holding) and the variance of work-in-process inventory.  According to Guerrero 

(1985), significantly lower total cost occurred in the case of high commonality.  

However, in the case of commonality, work-in-process load variance was greater, 

suggesting to Guerrero (1985) that high commonality can cause lumpy requirements for 

those items “in common”. 

Weaknesses in Collier’s (1981) DCI are identified by Wacker and Treleven 

(1986).  Since the DCI is a cardinal measure, not a relative measure, Wacker and 

Treleven (1986) suggest that the measure cannot be used to compare the affects of 

component commonality across organizations.  They also state that the DCI does not 

identify the source of the commonality, i.e. within-product or between-products. 
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In order to resolve the first of these weaknesses in the DCI, Wacker and Treleven 

(1986) propose the Total Component Commonality Index (TCCI), given as: 
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represents the number of parents for each component in the 

set of d components used to make all the firm’s end-products.  TCCI can only range from 

zero to one.  A TCCI of zero represents a group of products having no commonality.  A 

TCCI of one signifies complete commonality, i.e. one component used everywhere.  

Since TCCI measures the relative degree of component commonality in a system, 

Wacker and Treleven (1986) suggest it may be used when comparing different systems. 

Wacker and Treleven (1986) go on to formally define two types of component 

commonality that can exist and proposed methods to measure them.  Baker (1985) 

informally identified these in the examples he used to demonstrate the affect of 

commonality on component safety stock.  According to Wacker and Treleven (1986), 

within-product component commonality occurs when there are multiple uses of the same 

component within the product structure of a single end-product.  Between-product 

component commonality is the amount of component standardization among all end-

products.  The indices proposed by Wacker and Treleven (1986) to measure within-

product or between-product commonality are designed to evaluate an individual end-

product.  Their within-product constant commonality index (WCCI) measures the within-

product commonality for a single end-product.  The between-product constant 
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commonality index (BCCI) measures the component commonality, ideally, for a new 

product or new product family. 

Many other commonality indices are proposed in Wacker and Treleven (1986). 

These include measures for average commonality within a single product structure level, 

and indices for total, within-product and between-product commonality for purchased 

parts.  Details of these have not been included here because they are not relevant for the 

proposed research. 

Vakharia, Pamenter, and Sanchez (1996) further investigate the affects on work 

center workloads due to component commonality that are identified in Collier (1981) and 

Guerrero (1985).  In their experiment, two types of commonality are used as two of the 

study factors – within-product and between-product commonality using commonality.  In 

their experimental design, Vakharia et al. (1996) use 10 end-products.  Product structures 

are established for the set of 10 end-products in order to achieve two levels of component 

commonality for each within-product and between-product commonality.  At the “low” 

setting, each end-product had none of the specific commonality.  At the “high” setting, 

the commonality is set at 0.2308 for the specific type of commonality, as measured by 

Wacker and Treleven’s  (1986)  TCCI.  When both factors, i.e. within-product and 

between-product commonality, are at their high setting, the overall TCCI is 0.4616. 

The four other study factors in Vakharia et al. (1996) are the number of work 

centers, set-up time, correlation of end-product demand, and variance of end-product 

demand.  The authors include five levels of the number of work centers ranging from 1 to 

150 work centers.  By doing this, the authors believe they would be able to analyze the 

average load and load variance at the work center level in a more realistic simulation.  
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Vakharia et al. (1996) investigate the affects of correlation and variation in demand, 

because these were not examined by Collier (1981, 1982) or Guerrero (1985).  They also 

include set-up time as a factor because they believe that component commonality may 

reduce total processing requirements by reducing the number of total set-ups, because 

components can be released in larger batches. 

The results of Vakharia et al. (1996) support those of Collier (1981) and Guerrero 

(1985).  When either type of commonality was introduced, average processing time per 

work center decreased and the standard deviation of work center processing time 

increased.  Vakharia et al. (1996) attribute the reduction in average processing time to the 

reduction of the total number of set-ups that was due to the increased commonality.  

According to Vakharia et al. (1996), all study factors have a significant relationship to the 

average standard deviation of work center processing time except set-up time.  Set-up 

time is only significant in the experiment using the economic order quantity (EOQ) as the 

lot-sizing rule.  The authors also investigate the effects of commonality on holding costs 

when the EOQ lot-sizing rule was used.  As anticipated by Vakharia et al. (1996), holding 

costs are lower under both types of commonality. 

Of the previously discussed commonality research (Collier 1981, 1982; Baker, 

1985; Baker et al., 1986), only Baker (1985) and Vakharia et al. (1996) considered 

correlated demand for end-products in their studies.  Eynan (1996) performs detailed 

research on the impact of demand correlation and component commonality on cost.  

Eynan generates product demand for the two end-products assuming a bivariate 

probability distribution.  Using two simple product structures (with and without 

commonality), Eynan shows that, at each service level of the experiment, inventory of 



 

48 

common components decreases as correlation decreases from ρ = 1 (perfectly correlated 

demand).  For specialized components (non-common), there is a bowl effect as 

correlation of demand moves from ρ = 1 to ρ = -1.  Inventory is highest at these extremes, 

and is reduced as correlations moves to ρ = 0, i.e. totally independent demands.  Eynan 

(1996) suggests that his analysis also revealed that the savings in purchasing cost 

resulting from the commonality increases as demand correlation decreases from ρ = 1.  

Eynan (1996) concludes that commonality leads to lower total component inventory, but 

depends on the degree of correlation of end-product demands. 

Component commonality was identified by Sum et al (1993) as having a greater 

impact on mean total cost than the number of items and the number of levels in a product 

structure.  Collier (1981) and Wacker and Treleven (1986) proposed indices for 

measuring component commonality.  The findings in past research into component 

commonality have indicated that the total inventory cost decreases as commonality 

increases (Collier, 1981; Guerrero, 1985).  Studies on assemble-to-order environments 

have shown that employing component commonality reduces safety stock requirements 

for components (Collier, 1982; Baker, 1985; Baker et al., 1986; Enyan, 1996).  Enyan 

(1996) and Vakharia et al. (1996) demonstrated that correlation of demand is an 

important consideration when evaluating the effects of component commonality. 

 

Number of Machines 

As shown in Table 2-2, only three researchers identified the number of machines 

or production resources as a relevant aspect of internal static manufacturing complexity.  

They are Calinescu et al. (1998), Frizelle and Woodcock (1995) and Deshmuhk et al. 
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(1998).  Calinescu et al. (1998) recommended including the number of machines or 

production resources as part of a measure of manufacturing complexity, but did not 

propose a quantitative measure. 

Frizelle and Woodcock’s (1995) measure of internal static manufacturing 

complexity was given in Equation 3.  As previously discussed, the authors suggest that 

their measure expresses the “resistance to flow” in a system due to queuing at each 

machine.  As such, this number of machines is implicitly evaluated in their calculation of 

manufacturing complexity as they sum their computation across all machines in the 

system. 

Deshmukh et al. (1998) considers resources in a system (i.e. machines) only to 

specify the machines eligible to perform an operation and the corresponding processing 

times for each operation in a product’s routing.  The numeric quantity of machines in a 

facility is not directly part of their formulation.  This is because their measure of internal 

static complexity is designed strictly for flexible manufacturing systems. 

 

Routing Complexity 

Routing commonality occurs when manufactured items have routings with steps 

in the same sequence.  The similarity of flows among items should require less 

management intervention since the reduction in variety of flow should make the system 

more predictable.  As stated earlier, unpredictability is an essential part of the general 

definition of system complexity (Casti, 1979).  

As shown in Table 2.2, only Calinescu et al. (1998) and Deshmukh et al. (1998) 

identify routings as a source of internal static manufacturing complexity.  However, 
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Calinescu et al. (1998) discuss their perspective on the components of manufacturing 

complexity, but do not formulate a quantitative measure for it.  Deshmukh et al. (1998) 

use a matrix that includes precedence of operations and processing times.  This is the 

equivalent of a manufacturing routing.  They go on to capture numerosity and intricacy 

via routing commonality in an intermediary matrix used for calculating static 

manufacturing complexity.  The matrix is counting the number of times an operation 

sequence occurs, i.e. two consecutive operations with the same precedence. 

Monahan and Smunt (1999) investigate the impact of flow dominance (routing 

commonality) on performance in a batch operating environment.  Their main objective is 

to consider the effects of transforming a batch process layout to a cellular layout, where 

cells are formed to support products with a high degree of routing commonality.  In their 

study, Monahan and Smunt (1999) do not develop a measure of routing commonality, but 

contrive sets of routings that reflect three distinct situations.  These are: (1) all routings 

have the same sequence, (2) most (10/12) routings have the same sequence, and (3) all 

product routings are different.  In addition to the degree of routing commonality, the five 

other study factors are set-up time (five levels), variation of processing times (four 

levels), number of machines per work center (three levels), lot size (five levels) and 

number of products (three levels).  The combination of these factors is evaluated using 

computer simulation.  Capacity utilization is controlled in each experiment by adjusting 

the arrival rate of orders to maintain a utilization level of 60%. 

Using mean flow time as the performance measure, Monahan and Smunt (1999) 

find that systems with 100% routing commonality or a high degree of commonality 

generally outperformed the systems with random routings and no commonality.  The one 
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exception acknowledged by the authors occurs at the highest level of processing time 

variation, where the random routing environment has lower mean flow time than the 

systems with high levels of routing commonality.  Monahan and Smunt (1999) establish 

that routing commonality is important, but they do not develop a quantitative measure for 

routing complexity. 

 

Layout complexity 

Calinescu et al. (1998) alone considers layout a relevant aspect of internal static 

manufacturing complexity.  However, they do not propose a quantitative measure for 

layout complexity.  There has been other research investigating the benefits of using 

layout algorithms like CRAFT versus using a visual method.  From this stream of 

research there have been several quantitative measures developed for layout complexity 

(Vollman and Buffa, 1966; Block, 1979; Gupta and Deisenroth, 1981; Herroelen and Van 

Gils, 1985).  These layout complexity measures attempt to quantify the dominance of 

product flow in a plant by evaluating the product routings for commonality.  A high level 

of difference in the routings would lead to recommending a visual layout approach.  A 

lower value of complexity indicated that a mathematical algorithm, like CRAFT, would 

likely provide results superior to a visual-based approach. 

These studies were not discussed in the prior section on routing complexity, 

because, in each case, the proposed measures all try to measure the degree to which there 

is one dominant flow.  It cannot identify if there are multiple “common” flows or 

routings.  Within this body of research, no method is proposed to quantitatively assign a 
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complexity value to a layout.  So, this body of research does not provide a means to 

evaluate the relative complexity of layout alternatives. 

 

Process Complexity 

As previously discussed, Cooper et al. (1992) and Khurana (1999) identify 

process complexity as a relevant aspect of internal static manufacturing complexity.  

Both associate process complexity with the “degree of difficulty” of individual 

manufacturing processes.  However, neither Cooper et al. (1992) nor Khurana (1999) 

propose an objective method of measuring process complexity; it is something they 

evaluate subjectively.  Both suggest measuring process complexity at the process or 

machine level.  The process or machine level of detail is beyond that intended in this 

research, which is to develop and test an objective, plant-level, quantitative measure for 

internal static manufacturing complexity. 

Treleven and Wacker (1987) formulate measures for process commonality; 

something that they believe affects process complexity.  They state that “the number and 

diversity of processes reflect the complexity of the internal planning and control system.”  

Televen and Wacker (1987) create three measures for each of the three separate 

components of process commonality – lot-sizing, sequencing, and expediting. 

Their lot-sizing component evaluates the weighted average set-up time at a work 

center, where each product’s set-up is weighted by its percentage of the total product mix.  

According to Televen and Wacker (1987), set-up time is the major determinant of lot-

size. 
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Their sequencing component measures the degree that sequencing can affect 

production throughput at a work center due to set-up dependency.  Manufactured items 

with a low process commonality index (meaning they have high commonality) have low 

set-up times.  Their process commonality index is high when there are large differences 

in the set-up times of jobs. 

Lastly, the expediting component of process commonality is designed to measure 

the probability of each product having to be expedited.  According to Televen and 

Wacker (1987), this component reflects a plant’s schedule flexibility. 

Using the three individual process commonality measures, Televen and Wacker 

(1987) propose that managers look to improve the work centers with the worst process 

commonality, i.e. the highest index values.  However, these measures cannot be 

combined into an overall measure of plant-level process complexity.  Their three 

measures are designed to be applied to the individual work centers. 

Ashby (1973) and Klir (1985) assert that system complexity depends on the point 

of view of the observer.  The current study is concerned with the overall plant structure, 

and not the detailed level of the complexity of each individual machine or process.  At 

the plant-level, process complexity will be addressed by the layout and manufacturing 

routing aspects of internal static manufacturing complexity. 

 

Summary 

Manufacturing systems are complex, because they are unpredictable and have 

complicated structures and behaviors (Casti, 1979).  Past literature has identified three 

elements that can be used to measure complexity – numerosity, intricacy, and states. 
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Manufacturing complexity consists of both internal and external complexity.  

Internal complexity is caused by the elements of a manufacturing system under 

management control, e.g. quality system design, facility layout and product design.  

External complexity relates to the impact to the system by actions outside managerial 

control, e.g. customer demand. 

Deshmukh et al. (1998) and Frizelle and Woodcock (1995) subdivide 

manufacturing complexity into static and dynamic complexity.  Static complexity refers 

to the complexity resulting from the system structure or design.  Dynamic complexity 

stems from the dynamic nature of system resources that causes uncertainty of a system as 

it moves through time (Deshmukh et al., 1998).   Dynamic complexity would include 

aspects of manufacturing complexity that have elements that change states, like machine 

breakdowns. 

Only three of the past studies attempted to quantify a measure for internal static 

manufacturing complexity (Cooper et al., 1992; Frizelle and Woodcock, 1995; and 

Deshmukh et al., 1998). Cooper et al. (1992) develop a measure to be used in the 

semiconductor wafer manufacturing industry, limiting its applicability. 

Frizelle and Woodcock (1995) and Deshmukh et al. (1998) each propose an 

entropy-based formulation for manufacturing complexity derived from information 

theory research.  Frizelle and Woodcock (1995) incorporate only some of the aspects of 

internal static manufacturing complexity that have been identified from literature.  They 

are number of machines, product mix, and product mix ratio.  They refer to the result of 

their computation as equivalent product processes, a measure of the “resistance” to the 

flow of production. 
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Deshmukh et al. (1998) formulation captures more aspects of manufacturing 

complexity than that of Frizelle and Woodcock (1995).  They incorporate in their 

measure of product mix, product mix ratio, routings, processing times, and number of 

machines.  However, their measure is directed solely at quantifying the internal static 

complexity of flexible manufacturing systems, thus limiting its applicability. 

From past research on manufacturing complexity, twelve distinct aspects of static 

internal manufacturing complexity were identified.  These are product mix, product mix 

ratio, the number of components, product complexity, process complexity, integration 

between processes, the number of machines or resources, manufacturing routings, 

processing time, plant layout, set-up time, and lot-size.  Some of these aspects of 

complexity have been studied independently in past research.   

The extent to which the product mix creates complexity has shown some mixed 

results.  Because greater product mix increases the number of components and processes 

in a system, internal static manufacturing complexity increases and plant performance is 

affected.  In past studies, greater product mix has been shown to be negatively related to 

manufacturing performance (Foster and Gupta, 1990; Ittner and MacDuffie, 1995; 

Bozarth and Edwards, 1997).  Kekre and Srinivasan (1990) suspected that this 

relationship would be demonstrated in their study, but obtained results to the contrary. 

Product mix can also include a level of similarity among its products that may 

make a difference in performance.  Anderson (1995) and Bozarth and Edwards (1997) 

obtained results to indicate that product heterogeneity negatively influences 

manufacturing performance. 
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Product complexity has been measured in the past by various measures of the 

product structure (Veral and LaForge, 1985; Benton and Srivastava, 1985; 1993; Sum et 

al., 1993).  In all cases in which it was a study variable, product structure complexity had 

a significant effect on performance.  Product structure depth, breadth, and total number of 

parts have been components of product complexity measures in past research.  However, 

a consistent measurement of product structure complexity does not exist. 

Along with product structure depth and breadth, the sharing of components 

among products is an element of product complexity.  Collier (1981) and Wacker and 

Treleven (1986) propose quantitative measure for component commonality.  In studies in 

assemble-to-order manufacturing environments, aggregate component inventory has been 

shown to be lower when component commonality exists (Collier, 1982; Baker; 1985; 

Baker et al., 1986).  Collier (1981) and Guerreo (1985) conclude from their results that 

higher commonality leads to reduced total system costs, but with a greater amount of 

workload variability at work centers. 

Routing complexity can be reflected in the number of routing steps or 

commonality among item routings.  Very little research has been done on routing 

complexity. Monahan and Smunt (1999) find that systems with high levels of routing 

commonality outperformed systems with random routings. 

The limited and somewhat incomplete development of quantitative manufacturing 

complexity measures leaves considerable room for further research.  The literature has 

isolated the relevant aspects of internal static manufacturing complexity.  Utilizing the 

operational definition of complexity in conjunction with these aspects of manufacturing 
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complexity will permit the development of a more complete formulation for static 

internal manufacturing complexity.



 

 

 

 



 

 

 

 

 

CHAPTER III 

RESEARCH DESIGN 

 

 

 

The purposes of this chapter are to describe the development of a quantitative 

measure for internal static manufacturing complexity and to explain the experimental 

design used to evaluate this measure.  A practical quantitative measure is proposed based 

upon many of the aspects of internal static manufacturing complexity identified in 

Chapter II. 

A simulation model was developed for a batch manufacturing environment.  

System performance was evaluated at different levels of the factors taken from the 

proposed quantitative measure. 

 

Requirements for a Useful Complexity Measure 

While researchers may be willing to use measures that are difficult to compute 

and require data that is difficult to obtain, most practicing managers want to be able to 

obtain the data quickly and be able to use the data in a clear, step-by-step analysis. 

Typically, managers are not willing to apply a measure if they must invest hundreds of 

man-hours for data collection each time they want to compute it. This means that a 

complexity measure must use data that is reasonably easy to obtain.  It must also be 

objective data that can be obtained reliably by multiple observers of the system.  Data 

available from computerized business systems like bills of materials, routing, inventory 
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masters, and product demand are examples of this type of objective data that are easily 

obtained. 

Calinescu et al. (1998) evaluated Frizelle and Woodcock’s (1994) entropic 

measure of manufacturing complexity and found that obtaining and analyzing the data for 

Frizelle and Woodcock’s measure was very time-consuming.  They could not calculate 

the static complexity for all parts in the system due to the vast number of parts, the 

unavailability of information, and the sheer impracticality of the resources required to 

obtain the data.  As far as the results of the calculations, Calinescu et al. (1998) 

concluded more was learned as a result of gathering the required data than was provided 

in the analysis of the computed complexity measures. 

For any system measure to be useful, it must of course be a valid measure of the 

system being studied. According to Nunnally and Bernstein (1994), validity “denotes the 

scientific utility of a measuring instrument, broadly statable in terms of how well it 

measures what it purports to measure” (p.83).  There are two pertinent types of validity 

pertaining to the development of a measure for internal static manufacturing complexity – 

construct validity and predictive validity (Nunnally and Bernstein, 1994). Construct 

validity applies to variables that are abstract, or constructed.  In this research, internal 

static manufacturing complexity is a construct created from nine observable variables in a 

manufacturing system.  Since the variables forming the proposed measure, ISMC, were 

identified from past literature on manufacturing complexity it is assumed that ISMC is a 

valid construct. 



 

61 

Predictive validity stems from the ability of a measure to “predict” the outcome 

that was theorized.  In this research the proposed measure is tested to ascertain its 

predictive validity, i.e. performance worsens as internal static manufacturing increases. 

Future construct validation for the proposed measure results from the analysis of 

the results of this study.  Once the proposed measure is shown to have predictive validity, 

further analysis is performed to verify the importance of each of the observable variables 

that form the measure. 

Frizelle (1996) argued that, in addition to validity, a useful complexity measure 

needs to be composed of separable, additive components. By being separable and 

additive the manufacturing complexity measure allows easy analysis of complexity 

change for alternative system designs.  

Any complexity measure should provide the practitioner a tool to compare system 

designs and to measure improvement.  It must have an intuitive formulation, so that 

managers can easily recognize what degree of affect that systems changes will have on 

the measure.  They will want to know whether it will increase or decrease, and by how 

much.  

At the same time, a measure of complexity should permit researchers to 

quantitatively analyze the relationships between system design and system performance.  

A useful quantitative measure of manufacturing complexity should be able to be applied 

to within- and across-industry research.  Therefore, a quantitative measure for internal 

static manufacturing complexity should: 

1. require data that is practical to obtain 

2. utilize objective data 
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3. be intuitive to managers and system designers 

4. be able to be used in academic research for performing within and across 

industry research 

 

5. be a valid measure of complexity 

These form the guiding principles for the quantitative measure proposed in this research. 

 

 A Measure of Internal Static Manufacturing Complexity 

In Chapter II, twelve relevant aspects of internal static manufacturing complexity 

were discussed.  Past attempts to quantify manufacturing complexity have included some, 

but never all of these aspects.  This was because some of these elements are difficult to 

objectively assess, like process complexity, or are not easily quantified, e.g. layout 

complexity. 

In this study, the complexity of a system is determined by the numerosity of 

elements and relationships, the intricacy of the relationships, and the different states that 

system elements can have.  Although the most complete measurement of complexity 

would include all of these dimensions, it may be only possible or even practical to 

measure just a portion of a system’s complexity.  The first measurement task should be to 

measure those elements of complexity that managers can control. 

The quantitative measure for internal static manufacturing complexity proposed in 

this research is composed of three components – product line complexity, product 

structure complexity and process complexity.  These three components incorporate seven 

of the twelve relevant aspects identified in Chapter II.  Table 3.1 lists the aspects of 

manufacturing complexity associated with the three components of the proposed 

measure. 
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Process complexity, as identified in past research, has been based upon a 

subjective evaluation of individual processes, (e.g. operations), that can somehow be 

combined to form the overall manufacturing process (e.g. Cooper et al, 1992; Khurana, 

1999).  In this research, a more “plant scale” view is preferred.  Similarly, the number of 

machines/resources is at a more detailed level than desired for this initial attempt to 

quantify complexity.  At the same time, from a “plant scale” viewpoint, these two 

measures can be viewed as objectively measuring the overall manufacturing process 

complexity.  Therefore, in this study, these two concepts are combined such that process 

complexity is measured by the number of work centers in the manufacturing system. 

 

 

Table 3.1  The Three Components of Internal Static Manufacturing Complexity 

 
 

ISMC Component Aspect of internal static manufacturing complexity 

  

Product Line Complexity Number of end-products 

 Number of components 

 Product Mix Ratio 

  

Product Structure Complexity Product complexity 

  

Process Complexity Process complexity 

 Routings 

 Number of machines/resources 

 

 

Layout complexity could not be integrated in the proposed measure of 

complexity.  None of the three prior attempts to quantify manufacturing complexity 

included layout complexity.  It is difficult to quantify layout complexity, because layout 

complexity does not have any evident numerosity or intricacy elements.  Because no 
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quantifiable element of layout complexity has been identified, it was not included in the 

proposed measure of internal static manufacturing complexity. 

Processing time is also not included in the proposed measure for internal static 

manufacturing complexity in this study.  Although Deshmukh et al. (1998) include 

processing times in their static complexity measure, processing time is a measure of time, 

and does not express numerosity, intricacy, or state.  It is also not clear how differences 

in processing times between two manufacturing systems can create complexity.  

Therefore, processing time has been excluded form the formulation of the proposed 

measure. 

Calinescu et al. (1998) suggested that a measure of manufacturing complexity 

include set-up times.  In the previous chapter, set-up time was identified as being both 

static and dynamic in nature.  Since set-up time is determined by technological process 

selection, it appears to be an element of internal complexity.  However, the set-up time 

encountered in a system is determined as time is passing.  The number of set-ups, a 

possible component of a numerosity measure of complexity, cannot be calculated or 

fairly estimated at a static point in time.  The sequence of batches, jobs, or items will 

determine both the total number of set-ups and the total set-up time for a system.  The 

total set-up time is unpredictable for a given system design exposed to stochastic events, 

e.g. customer order arrivals.  Therefore, equipment set-up (time or quantity) is considered 

in this research to be an aspect of dynamic complexity and will not be included in the 

proposed formulation for internal static manufacturing complexity. 

Calinescu et al. (1998) also suggest that lot-size as being part of their “plant 

structure” construct.  They do not explain why lot-size is a relevant element of internal 
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static manufacturing complexity nor do they develop a measure for manufacturing 

complexity.   As discussed in Chapter II, lot size can be considered as being an aspect of 

both static and dynamic complexity.  Because this is an exploratory study, the aspects 

that have dynamic complexity associated with them are not being considered in the 

proposed measure.  Therefore, lot size has also been excluded. 

Lastly, the integration between processes was not included in the proposed 

measure of internal static manufacturing complexity.  Kotha and Orne (1989) identify 

“level of interconnection” in their discussion of their process complexity construct 

attempting to capture the integration between processes.  It considers the discontinuity, 

technological interdependence, and product-mix flexibility of the manufacturing 

processes.  They did not attempt to quantify these factors.  As such, their concept was not 

included in an objective quantitative measure for internal static manufacturing 

complexity. 

  

ISMC Explained 

The product line complexity component of the proposed measure, ISMC, is the 

total number of manufactured items, which accounts for the end items (i.e. product mix) 

and the manufactured components.  The term manufactured is used to include 

components that are assembled or fabricated or both.  This portion of product line 

complexity can simply be stated as: 

 CE + , (7) 

where |E| represents the total number of end items and |C| represents the total number of 

manufactured components. 
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The product line complexity factor must also account for the affect of the product 

mix ratio. As will be shown in the next section, the product mix ratio is taken into 

consideration by using it to weight the impact of each product on the product and process 

complexity components of ISMC.  However, when a system has products which all have 

the same breadth and depth, the product mix ratio will have no effect on ISMC.  The 

product mix ratio will also have no impact on ISMC when all products have the same 

number of routing steps.  Therefore, the ISMC formulation must include a mathematical 

expression to ensure that the product mix ratio is reflected in ISMC under all conditions.  

As the difference between the proportions of production volume becomes smaller, the 

internal static manufacturing complexity of a system increases because more set-ups are 

likely to be needed, which will likely increase the unpredictability of flow times, and, 

hence, other performance measures. 

A simple mathematical factor to account for differences in the proportion of 

production volume is proposed.  The proportion of volume of the largest volume product 

is compared to the average proportion of the remaining products.  This product mix factor 

should also have numerical bounds of its maximum and minimum effect on ISMC.  To 

limit the impact of product mix ratio on total ISMC, it was permitted to, at its maximum, 

double the sum of product and process complexity when all products have equal 

proportions of production volume, i.e. the most complex situation.  When there is only 

one product, ISMC was to not increased, because one product is the “simplest” product  
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mix.  This factor is calculated using this formula: 
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where |E| is the number of distinct end-items and MAX(Qi) is the maximum volume of 

all products. 

Thus the complete product line complexity factor is given as: 
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Product structure complexity is comprised of the following elements:  (1) the 

weighed average product structure depth, (2) the weighed average product structure 

breadth, and (3) the component commonality multiplier. 

The proposed mathematical formulation for product structure complexity is: 
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where e is the number of distinct end-items, Qi represents the total requirements 

(e.g. annual) for the i
th
 end-item, di is the number of levels in the product structure for the 

i
th
 end item, bi is the breadth of the product structure of the i

th
 end item, and CCI is the 

component commonality index. 

The first subcomponent of equation (10) is the weighted average product structure 

depth.  For this study, the depth of a product structure, or bill of materials, is the number 

of levels of manufactured items in the product structure for an end item.  The individual 

contribution of the product structure depth for each end item is weighted by its percent of 
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total volume, which is the product mix ratio.  This is used to prevent a low volume 

product with an appreciably deeper or shallower product structure than the rest of the 

product line from having an undue influence on the valuation of the entire system. 

Because this study is strictly concerned with the impact of the design of a 

manufacturing system, the purchased component level is excluded from the product 

structure depth and breadth values.  The number of levels in a product structure is a 

numerosity component of product complexity.  The number of levels evaluates the added 

complexity taken on by a firm that has decided to “make” their components and 

subassemblies.  The number of levels assesses the degree of vertical integration within 

the manufacturing system under evaluation. 

The second subcomponent of the formulation for product structure complexity is 

the weighted average product structure breadth.  The breadth of the product structure is 

also a numerosity measure of product complexity. It is determined by counting the 

number of manufactured components at the end of each “branch” of the product structure.  

As stated previously, the purchased materials are truncated from the product structure in 

this study.  As in the product structure depth calculation, the breadth of the product 

structure for each end item is weighted by the product mix ratio. 

The third subcomponent of product structure complexity is the component 

commonality multiplier.  It employs a commonality index that measures the influence of 

component commonality on internal static manufacturing complexity.  Component 

commonality is a measure of the intricacy, or relationships, among the bills of materials 

for manufactured items in a manufacturing system. 
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The CCI, as proposed, is a measure that can range from zero, (no commonality), 

to one, (one item used everywhere).  It represents the average commonality of 

components among the end-products in a manufacturing system.  The formulation for 

CCI is as follows: 
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where |C| represents the total number of distinct  manufactured components, and θj 

represents the number of occurrences of the j
th
 component in all product structures for all 

active end-products.  An “active” end product has a product mix ratio greater than zero.  

This equation assumes that there are a minimum of two distinct components or two end-

products. 

In order to have the result equal a value of one for the case of total component 

commonality, one must be subtracted from both the number of distinct components (|C|) 

and the total occurrences of each component in all product structures (Σ θj).  Total 

component commonality can only occur when there is one distinct component used in 

every end product. 

In equation (10), the CCI is subtracted from two so that it would become one 

when there was complete commonality and not increase the value of product structure 

complexity in the proposed measure. When there is no commonality, the term becomes 

two, which serves to double the value for product structure. 

The decision to double complexity when there is no component commonality is 

subjective.  A factor is needed that will be large enough to represent a meaningful 
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increase in complexity as component commonality decreases.  At the same time, it cannot 

dominate the result of the overall product structure complexity calculation. 

Some alternatives for the component commonality factor were developed and 

evaluated.  All alternatives were developed such that in the case of perfect commonality, 

no increase to the product structure measure occurred, i.e. the result was equal to one.  

For all but two alternatives, when component commonality is low, the multiplier is too 

large.  A large component commonality factor would indicate that commonality is the 

driving factor in product structure complexity.  Since the relative affect of component 

commonality on complexity, and thereby performance, is not known, four of the 

alternative formulations were not acceptable for the proposed measure of product 

structure complexity. 

The two alternatives that were considered acceptable were (2-CCI) and 

log2(CCI)+1.  The resulting calculations are very similar.  Since the differences in the 

factors are relatively small, the linear formulation was selected.  A linear function is 

likely to be more intuitive to persons who utilize this measure than a logarithmic 

function.  However, one could make a case for the logarithmic formulation, because the 

multiplier increases at an increasing rate as component commonality approaches zero.  

This may better represent the way component commonality affects product structure 

complexity and system performance. 

The process complexity component is composed of three elements.  They are: (1) 

the weighted average number of routing steps associated with end items, (2) the total 

number of work centers in the manufacturing system, and (3) the routing commonality 

multiplier. 
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The proposed formula for the process complexity is: 

 

( ) ( )

( )RCWC

Q

C

CStepsESteps

Q

e

i

i

e

i i

C

j

iji

i

i

−××




















+

+

×

∑

∑
∑

=

=

2

1

1

1

, (12) 

where e is the number of distinct end-items, Ei represents the i
th
 end-item, |Ci| is the 

number of manufactured components in the i
th
 end-item,  Cij represents the j

th
 

manufactured component of the i
th
 end-item, Qi represents the requirements for the i

th
 

end-item, |WC| is the number of work centers, and RC is the routing commonality. 

The first subcomponent of equation (12) is the weighted average number of 

routing steps, or operations.  This is a numerosity element that takes the average of the 

number of individual operations required for the end item and all the manufactured 

components in its product structure.  It attempts to measure the complexity of 

coordinating the flow of production needed as the number of sequential operations 

increases for manufactured items.  Like product structure depth and breadth, the average 

number of routing steps for each end item is weighted by the product mix ratio. 

The number of work centers in a manufacturing system is the second 

subcomponent of the formulation for process complexity in equation (12)  As an 

alternative to counting the number of resources or machines, in this study a larger unit of 

evaluation, the number of work centers, is counted.  This was selected because it 

represents the level at which the lowest level of management (first line supervision) is 

implemented to mitigate the effects of manufacturing complexity.  A work center is 

usually a group of equipment with a common point of management.  It may be a group of 
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similar equipment that shares a common queue and a single manager (or supervisor).  It 

may be a group technology cell, again sharing a common queue and manager.  A 

manager may be responsible for multiple work centers, dependent on the size of the work 

centers and the overall size of the manufacturing system.  This research defines a work 

center as a group of equipment and workstations that share a common queue and 

manager. 

The third subcomponent of product structure complexity is the routing 

commonality multiplier. Routing commonality is the percentage of identical routings in 

the set of all active routings.  Routings are considered identical when the have the same 

sequence of operations at the same work centers.  Routing commonality is an attempt to 

measure the intricacy among the routings for manufactured items in a manufacturing 

system.  Identical routings have the same sequence of operations at the same work 

centers.  Complexity increases as the similarity among routings decreases. 

Routings typically include the operation time and set-up time.  Differences in 

these times are not considered when determining if routings are identical.  Routing 

commonality is calculated as: 

 
routingsactivetotal

routingsactiveidenticalofnumber
RC =  (13) 

In equation (13), the RC index was subtracted from two so that it would become 

one when there was perfect commonality and, therefore, it would not increase the value 

of process complexity in the proposed measure. When there is no commonality among 

routings, this term’s value becomes two, thus doubles the calculated amount of process 

complexity.  The rationale for using this linear formulation is the same as for that 

discussed for the component commonality multiplier for the product structure complexity 
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component. The overall measure of internal static manufacturing complexity (ISMC) is 

given in equation (14). 
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In equation (14), the three subcomponents, product, product structure and process 

complexity, are combined multiplicatively and additively.  The components in equation 

(14) are kept separate.  Frizelle (1996) argued that a useful complexity measure needs to 

have separable, additive components. By being separable and additive the manufacturing 

complexity measure would then allow easy analysis of change as complexity for 

alternative system design changes.  In this measure, managers can easily evaluate the 

relative impact on complexity of changes in the product structure or the process design.  

For academic research, the individual components could be applied depending on the 

focus of the research.  Individually, product structure complexity and process complexity 

are multiplied by the product line complexity.  This is done to distinguish between 

systems with similar product structures having appreciably different amount of end items 

and manufactured components.  The product structure and process complexity 

components are multiplied by the product line complexity component and then added 

together.   
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ISMC is a ratio measure.  The numeric results dictate a strict order of the internal 

static manufacturing complexity of systems under comparison.  The larger the value of 

ISMC, then the more complex a system’s structure is.  Also, the differences, or interval, 

between values for ISMC is important.  For example, systems with ISMC that differ by 

1000 are further apart in complexity than system whose ISMC differs by 100.  And, 

lastly, ISMC has a specific origin, i.e. zero.  ISMC can range from zero to positive 

infinity. 

ISMC is unitless and does not have a specific interpretation unlike Frizelle and 

Woodcock (1995) whose created there own unit, epp – equivalent product processes.  

ISMC provides a value of the unpredictability and the level of complication of the 

system’s structure (Casti, 1979).  As such, it is useful for comparison of manufacturing 

systems, benchmarking a single manufacturing system, and evaluating management 

decisions as to how they affect manufacturing complexity. 

 

Performance Measures 

According to Casti (1979), the behavior of a complex system is difficult to 

predict.  Variation is a measure of unpredictability.  The greater the variation in a system, 

the greater is its unpredictability.  Therefore it is important to include performance 

measures that capture the level of unpredictability in a system, which may be done by 

evaluating the variance of system measures. 

One measure of system performance would be mean flow time.  Companies are 

interested in having stable mean flow times so that they may have a better estimate of 

their manufacturing lead time.  As the variation of mean flow time increases, the more 
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“slack” must be built into the manufacturing lead time to ensure on-time delivery to the 

customer.  Speed of delivery is one way companies compete (Hill, 1994), so having 

lower lead time is important. 

Another measure of system performance would be lateness (Baker 1974).  

Lateness is the difference between the order completion date and the order due date.  

Lateness may be positive, i.e. the order is late, or negative, meaning the order was 

completed early.  It is desirable to have an average lateness close to zero, indicating that 

orders “on average” ship on their due date.  At the same time it is desirable that the 

variance in lateness be small so that the system doesn’t have orders that ship very late or 

are completed early and must be held in inventory for a long time.  Therefore, both mean 

lateness and the standard deviation of lateness are relevant performance measures for this 

study. 

Tardiness is another important measure of system performance (Baker 1974).  

Tardiness views performance from the customer’s perspective.  It measures the amount 

of time that an order is completed after its assigned order due date.  If an order is 

completed early, then it has a tardiness value of zero, i.e. it was shipped on time.  In order 

to maintain high levels of customer satisfaction, companies want to reduce the amount of 

tardiness.  Ideally, they want to have all orders ship on the assigned due dates and have 

no tardiness.  System performance can be measured by the mean of the tardiness for a 

system.  A low mean tardiness indicates that the system is closer to the goal of shipping 

on time.  Likewise, it is important to monitor the standard deviation of tardiness, so that 

the degree of unpredictability of systems can be evaluated.  Both mean tardiness and 

standard deviation of tardiness are included as performance measure in this study. 
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Hypothesized Performance 

There are nine variables that are part of the proposed measure of internal static 

manufacturing complexity.  In the theoretical model presented in Chapter I (Fig 1.1), 

internal static manufacturing complexity is shown as having a direct influence 

(relationship) on manufacturing system performance.  The objective of this research is to 

test the proposed measure of ISMC for its predictive validity, i.e. to see if it reflects the 

impact of the manufacturing system’s design on its performance.  Given the way this 

measure has been developed, and the results from past literature, some anticipated 

relationships between internal static manufacturing complexity and system performance 

are developed here.  The hypotheses below are made regarding the overall effect of the 

system design as captured by the proposed measure on manufacturing system 

performance. 

As ISMC increases all the performance measure should deteriorate.  The 

underlying assumption of this model is that manufacturing performance worsens as 

ISMC increases, regardless of the source of complexity, i.e. the individual element in 

equation (14).  So the following null hypotheses are proposed. 

H01:   An increased value of ISMC does not affect system performance. 

 

H01A:  An increased value of ISMC does not increase the standard deviation of 

flow times measured from the beginning of the lowest level component 

until the completion of the end product. 

 

H01B:  An increased value of ISMC does not increase the mean lateness of end-

products. 

 

H01C:  An increased value of ISMC does not increase the standard deviation of 

lateness of end-products. 
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H01D:  An increased value of ISMC does not increase the mean tardiness of end-

products. 

 

H01E:  An increased value of ISMC does not increase the standard deviation of 

tardiness of end-products. 

 

Because ISMC is a conglomeration of many elements of static complexity, the 

hypothesized effect of each element on shop performance can only be discussed in terms 

of the effects that each complexity source may have on performance.   

One way ISMC can increase is through an increase in the variety of end-products, 

i.e. product mix.  More end-products will likely lead to the requirement for more 

components, i.e. greater variety, to be manufactured.  The increase in end-products and 

manufactured components leads to a greater number of routings that are likely to be 

diverse.  There will be greater opportunity for shop congestion, thereby increasing flow 

time variability.  As flow time variance increases, the variance of lateness and tardiness 

will increase.  Since tardiness can only vary positively, increases in the variance of 

tardiness will mean there will be an increase in mean tardiness. 

As the product mix ratio moves from having a dominant end product to being 

more evenly spread among all products, there is likely to be more interaction among the 

product and component flows.  The queuing at each work center will become 

unpredictable.  There will be shifting bottlenecks as shop congestion increases, leading to 

an increase in flow time variance.  As flow time variance increases, the variance of 

lateness and tardiness also will increase. 

Lower commonality among manufactured components increases ISMC.  With 

less component commonality there will be more manufacturing orders having diverse 

routings.  This increases shop congestion and contributes to variation in flow times 
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(Vakharia et al., 1996). As flow time variance increases, the variance of lateness and 

tardiness also will increase. An increase in the variance of tardiness will mean there will 

be an increase in mean tardiness. 

As product structures become broader and deeper, the timing of component 

completion times affects the ability to release the order for the parent parts.  The mis-

timing of manufacturing order arrivals will likely lead to the delayed completion of 

components needed for the parent part, thereby increasing the lateness and tardiness of an 

order for an end product (Russell and Taylor, 1985).   

ISMC increases when the average number of routing steps in the product structure 

of end-products increases.  More routing steps will lead to more required set-ups and 

more opportunity to queue at work centers during the flow of a manufacturing order for 

all manufactured items.  Flow times will vary due to the unpredictability of the queuing 

that occurs, increasing the variance of flow time.  As flow time variance increases, the 

variance of lateness and tardiness also will increase.  An increase in the variance of 

tardiness will mean there will be an increase in mean tardiness. 

When there are more work centers in a manufacturing system ISMC increases.  

Assuming the same overall shop utilization, having a greater number of work centers 

increases the opportunity of bottleneck shifting.  This increases unpredictability of 

manufacturing order flow times, hence increasing the variation of flow times.  As flow 

time variance increases, the variance of lateness and tardiness also will increase.  An 

increase in the variance of tardiness will mean there will be an increase in mean tardiness. 

As routing commonality decreases, complexity increases, because there are more 

diverse routings, which can lead to shifting bottlenecks.  Shifting bottlenecks leads to less 



 

79 

predictability of flow times, meaning increased variation of flow time (Monahan and 

Smunt, 1999).  As flow time variance increases, the variance of lateness and variance of 

tardiness also will increase.  An increase in the variance of tardiness will mean there will 

be an increase in mean tardiness. 

The many elements of ISMC are interrelated, it is difficult to project which 

element would have greater effects than others.  However, it is unlikely that each element 

has an equal impact on system performance, so the following null hypotheses are made. 

H02:   No element (experimental factor) has an effect on system performance. 

H02A:  No element (experimental factor) has an effect on the standard deviation 

of flow times. 

 

H02B:  No element (experimental factor) has an effect on the mean lateness of 

end-products. 

 

H02C:  No element (experimental factor) has an effect on the standard deviation 

of lateness of end-products. 

 

H02D:  No element (experimental factor) has an effect on the mean tardiness of 

end-products. 

 

H02E:  No element (experimental factor) has an effect on the standard deviation 

of tardiness of end-products. 

 

From the formulation of ISMC it appears that the number of end-products would 

likely have the greatest impact because it is a multiplicand in both the product structure 

and process complexity components.  One reason that this may not be the case is that the 

formulation of the proposed measure for ISMC was not designed to weight any of the 

sources of complexity more than the others.  It was simply a way of describing 

complexity based upon the operational definition and the objectives established for a 

useful measure.  The relative effect of the elements is an objective of this study. 
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Another reason that it is difficult to predict the impact of an individual element on 

ISMC is that they can be interrelated.  For example, increasing component commonality 

will not only reduce the component commonality factor, but it will reduce the number of 

manufactured components in the system.  Also, as components are replaced by common 

components, there will be some effect to both the weighted average number of routing 

steps and the routing commonality factor.  Therefore, no specific prediction about the 

relative impact of each element of ISMC on an operation’s performance is made. 

The third concern of the current research is the predictive validity of ISMC as 

compared to the only other identified measure of internal static manufacturing 

complexity.  Frizelle and Woodcock (1995) proposed the entropy-based measure, H, 

discussed in Chapter II.  The null hypothesis to address this research question is: 

H03:   ISMC is not a better predictor of overall manufacturing performance than 

the Frizelle and Woodcock’s, H. 

 

H03A:  ISMC is not a better predictor of the standard deviation of flow time end-

products than H. 

 

H03B:  ISMC is not a better predictor of the mean lateness of end-products than 

H. 

 

H03C:  ISMC is not a better predictor of the standard deviation of lateness of end-

products than H. 

 

H03D:  ISMC is not a better predictor of the mean tardiness of end-products than 

H. 

 

H03E:  ISMC is not a better predictor of the standard deviation of tardiness of 

end-products than H. 
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The Simulated Shop 

The simulated shop will model a batch processing system. In this type of system, 

a manufacturing order, i.e. batch, remains together as it flows through all assigned 

operations in the production process.  At an individual operation (i.e. routing step), the 

individual units in a manufacturing order may be processed one at a time, but no unit 

moves to the next operation until all units have been completed at that operation. 

Batch processing systems are one of the four main process types identified by 

Hayes and Wheelwright (1979).  It is important to study this manufacturing setting 

because it constitutes a large percentage of actual industry application.  In a survey by 

Safizadeh, Ritzman, Sharma, and Wood (1996), the largest potion of their respondents 

(32%) identified themselves as primarily batch shops.  Batch shops would also be more 

likely to experience a wider range of the elements making up ISMC. 

In the proposed simulated shop, orders for end items are randomly created.  The 

end product and quantity attributes are assigned to each order as it is created. The bills of 

materials and routings are set in advance for each item.  The quantity of specific parts and 

the duration of each routing step is a function of the randomly generated order size.  Once 

the orders are generated, due dates are set using total work content of the critical path 

(TWKCP) and order release timing is determined working backward from the order due 

date for the end product. 

 

Order Due Dates 

TWKCP is the sum of all the operation times in the longest chain of the product 

structure.  In this study, the longest chain is the product structure branch with the largest 
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total per unit processing time.  The estimate for the total processing time will include a 

set-up time at each operation plus the run time for the order at each operation. 

The TWKCP method (as in Fry et al, 1989) was selected for setting due dates 

because it considers that operations occurring on the other branches of the product 

structure may occur in parallel to those of the critical path.  Due dates using TWKCP are 

established by the following equation: 

 DDi = k * TWKCP, (15) 

where DDi is the due date for the i
th
 order, k is an allowance factor (i.e. due date tightness 

factor), and TWKCP is the sum of the processing times on the critical path.  The due date 

tightness factor, k,  is one of the experimental factors. 

 

Experimental Factors 

Since this is the first such experimental study on a measure for internal static 

manufacturing complexity, it was considered an exploratory study.  This study was 

seeking to determine the value of such a measure by examining the relationship of ISMC 

to system performance and evaluating the relative effect of the individual elements of the 

measure on performance.  Therefore, only two levels of each variable were established – 

a low and a high level.  By using high and low levels, the existence of any effect on 

system performance should be evident. 

The experimental factors include all variable elements of the proposed ISMC 

equation.  Table 3.2 displays the factors and their experimental settings. 
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Table 3.2  Experimental Factor Levels 

 
 

 Levels 

Factor High Low 

   

Product Mix – No. of End-products (PM) 5 2 

Product Mix Ratio (PMR) All equal 1 Dominant/Others 

Product Structure Depth (D) 5 2 

Product Structure Breadth (B) 5 2 

Component Commonality (CC) ~30 % 0 % 

Number of Routing Steps (RS) 10 4 

Number of Work Centers (WC) 10 4 

Routing Commonality (RC) ~50 % 0 % 

Due Date Tightness Factor (k) 30% orders late 10% orders late 

 

 

 

Product Mix 

As stated in Table 3.2, the low and high factor settings for product mix are two 

and five end-products, respectively.  These levels were selected in order to have a 

sufficient difference between the levels to be able to perceive a difference in 

performance, if one exists.  The low setting had to be a minimum of two in order to 

permit the alterations necessary to achieve the desired amount of component 

commonality.  At the same time the high setting was kept to a level that made product 

structure development manageable. 

 

Product Mix ratio 

In Table 3.2, the settings for Product Mix Ratio (PMR) are given.  The low setting 

is the case when there is a dominant end-product, that is, one end-product having a large 
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proportion of unit sales.  At both levels of PMR, the percent volume of the dominant 

end-product was four times greater than the proportion of the other end-product(s).  The 

non-dominant end-products had equal proportions, i.e. the same unit volumes.  At the 

high factor setting, all end-products had an equal proportion of the total unit sales 

volume. 

When the Product Mix (PM) factor is at the low setting, E-1 (Product 1) had 80% 

and E-2 (Product 2) had 20% of the volume.  At the high setting of the Product Mix 

(PM), E-1 had 50% of the volume and the remaining four end-products (E-2, E-3, E-4, 

and E-5) each had 12.5% of the total unit volume. 

 

Product Structures 

Product Structures for each manufactured item, i.e. end-product or component, 

were prepared in advance corresponding to the levels of the three product structure 

factors - the number of levels in the product structure (depth), the breadth of the product 

structure, and component commonality.  Because this was an exploratory study, the usage 

of each component was set at one unit per parent.  

 

Number of Levels in the Product Structure – Product Structure Depth 

There were two levels of product structure depth, two and five.  The high level for 

product structure depth was set to five levels to have sufficient difference between the 

low and high settings to allow the measurement of a significant difference in 

performance, if one does exist. 
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At each setting, all the product structures for end-products were formed to have 

exactly two or five levels.  This was done for simplicity of experimental design.  

Maintaining this type of consistency reduces the possible artificial interactions between 

factors, since some of the factors are interrelated, e.g. component commonality and the 

number of routing steps,  

Although, in reality, a system could be designed where all components or raw 

materials are purchased, two levels are needed in order to test the effect of component 

commonality.  Recall, this study is solely concerned with the complexity due to internal 

system design.  Therefore purchasing complexity was excluded. 

 

Product Structure Breadth 

There were two levels of product structure breadth, two and five.  In order to 

obtain a reasonable high setting for component commonality, the end-products had to 

have a minimum product structure breadth of two.  The high level for product structure 

breadth was set to five levels to have sufficient difference between the low and high 

settings to allow the measurement of a significant difference in performance, if one does 

exist. 

Again, at each setting for product structure breadth, all the product structures for 

end-products were formed to have a breadth of exactly two or five.  As previously stated, 

this was done for the simplicity of experimental design. 
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Component Commonality 

There were two levels of component commonality.  The low setting is no 

commonality and the high setting is set to approximately 0.30.  A CCI of 0.30 results in 

having approximately 30% of the components shared within the product structures of a 

system.  This was believed to be a level that would be high considering that only 

manufactured components are being considered in this research. 

 

Formation of Experimental Product Structures 

The product structures are given in Appendix B.  Product structures for each 

manufactured item for the high level of the product structure depth, the high level of 

product structure breadth, and at the low level of component commonality were 

generated first.  To be consistent, the first two end-products at each experimental setting 

were identical for the low and high settings of product mix (PM).  There were five end-

products having two levels of product structure depth, two levels of product structure 

breadth, and two levels of component commonality (5 x 2 x 2 x 2) resulting in a total of 

40 products structures.   

The product structures for the low level of product structure depth and breadth 

and the high level of component commonality were created as variants based upon the 

initial sets of product structures.  To the extent possible, the components within the 

product structures for end-products and the relationships of these components, i.e. their 

product structures, were maintained across the experiment.  For example the product 

structure for Product 1 (E-1), at the high level of product structure depth and breadth, 

included manufacturing components C-101 and C-102.  At the low setting for depth and 
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breadth, E-1, also included C-101 and C-102.  This was done to attempt to have an 

equitable comparison at the product structure factor settings.  One exception was made to 

end-product E-3 where C-112 was replaced by C-113 in order to achieve the high setting 

of component commonality. 

The five product structures that were designed to be deep and broad were 

generated to have “branching” occur at various levels among the product structures in 

order to obtain diversity in the experiment.  These product structures also were designed 

so that the number of components at the lowest level ranged from two to five to avoid 

accidentally biasing the experiment.  Each of these product structures had nine 

components to avoid incurring variation due to the number of components.  Having nine 

components permitted enough opportunity for achieving the high setting for component 

commonality but simplified the process of generating product structures. 

The product structures created to achieve low product structure breadth and high 

product structure depth were deigned is a similar manner.  The product structures were 

generated to have “branching” occur at different levels.  An attempt was made to keep the 

total components in each product structure at five.  Five components was the maximum 

that can occur if the assembly “branching” occurs at the lowest level.  Four of the five 

product structures had five components each.  However, to permit the opportunity to 

achieve the high setting of component commonality the product structure for product E-5 

had to be constructed with eight components. 

As stated, it was not possible to achieve the same number of components in all 

product structures within the low setting of product structure breadth and the high setting 

of component commonality.  It was not possible to design product structures with high 
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product structure breadth and depth and have only five components.  Also, it was not 

possible to achieve a total number of components equal to nine when the products 

structure breadth was at its low setting, because the maximum number of components at 

the low setting of product structure breadth and high setting of product structure depth is 

eight.  Additionally, there was only one product structure design that can be made having 

eight components.  So, maintaining an equal number of components for the two settings 

of product structure breadth at the high setting of depth was not possible. 

The tree structure for each end-product at the high setting for component 

commonality was identical to those with no commonality with the exception that now 

some components were shared “in common” with other product structures.  Component 

commonality was designed to occur at a variety of levels in the product structures.  To 

the extent possible, the relationships in the product structures of components were kept 

consistent across experiments in order to model reality.  For example, if a level three 

item, i.e. C-301 in Product E-1, was exchanged for a level three item, i.e. C-303 from 

Product E-2, the level four items (C-402) associated with the level three item in Product 

E-2 would also become part of Product E-1’s product structure (see Figures B.3 and B.7). 

Components were exchanged in the product structures to obtain a CCI as close to 

0.30 as reasonable. Among the other settings for the product structure variables (PM, B 

and D), the CCI ranged from 0.29 to 0.33.  These differences were due to having different 

numbers of components in the product structures and to trying to make logical 

replacements of components that included any associated “child” components, as 

previously discussed. 
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A variety of components were made common among the end-products, but none 

were common with more than three end-products.  An alternative to this would be to 

make just one or two components common throughout all product structures.  The 

primary motivation for choosing the former design was to avoid any biasing affect of 

selecting the same few items to be common in all end-products.  

  

Routings 

Routings were prepared in advance for each item corresponding to the levels of 

the three routing factors - the number of routing steps, the number of work centers, and 

the routing commonality.  Routings for each manufactured item for the high level of the 

number of steps at the low level of routing commonality were generated first.  Routings 

were then varied based upon these initial routings to create the routings for the low level 

of routing steps and the high level of routing commonality. 

 

Number of Work Centers 

There were two levels of the number of work centers, four work centers being the 

low setting and 10 being the high setting.  This was supported from past literature.  

Monahan and Smunt (1999), in their study in routing commonality, experimented with 

six and 12 work centers.  Fry et al. (1989), used 10 work centers in their study of product 

structure complexity and dispatching rules.  In their study on dispatching rules in a hybrid 

flow shop, Barman and LaForge (1998) included six work centers. 
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In the preparation of the routings for the low setting of routing commonality, 

routing steps were randomly assigned to a work center for each level of the number of 

work centers. 

 

Routing Steps 

The low and high settings for the number of routing steps (RS) were four and 10 

steps.  Past literature has selected the number of steps to be in this range.  Monahan and 

Smunt (1999) selected six routing steps for their research on routing commonality.  

Barman and LaForge (1998) used a range of four to six operations. 

 

Routing Commonality 

At the high level of routing commonality, manufactured items were selected so 

that 50% of the routings had an identical sequence.  To the extent possible, the same 

items were selected among the various sets of product structures for the setting for 

product structure depth, product structure breadth, and component commonality.  Routing 

commonality was achieved by assigning the sequence of work centers visited in an item’s 

routing to the same sequence of another item.  The original processing times were 

maintained in the same sequence as the original routing. 

 

Formation of Experimental Routings 

Routings were generated randomly for each manufactured item.  Routings for the 

high level of RS were created first.  For each routing step, a work center was randomly 
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assigned, each having an equal likelihood (uniform) of being assigned.  The only rule was 

that consecutive routing steps could not be assigned to the same work center. 

Processing times were composed of a set-up time per order and a run time per 

unit.  The set-up time is set arbitrarily to 1.0 hour.   Set-up time was included in the shop 

design to determine the effect of component commonality.  When manufacturing orders 

for the same item are processed consecutively they will require a single set-up.  To avoid 

introducing a bias to the experiment, the same set-up time (1 hour) was designated for all 

items for all operations. 

Run times per unit for each item for each step were generated randomly using a 

uniform distribution with a mean or 0.1 and end points of 0.05 and 0.15 hours.  The mean 

of 0.1 hours was chosen to make the average ratio of set-up to unit run time equal to 10.  

This was in line with the setting developed by Krajewski et al. (1987) from information 

obtained from practicing managers.  The set-up to run ratio was deemed to be more 

important than actual time, because shop utilization will be adjusted by altering the 

arrival rate of orders (explained in detail in a subsequent section). 

For each manufactured item, the routing sequence of work centers visited and 

processing times were generated for the high setting of RS and WC and the low setting 

for RC.  Routings for the low setting RS are created for each manufactured item by 

truncating the routing for the high setting of RS.  The run time portion of the processing 

time was adjusted proportionally for each routing step so that the total of the run times 

was the same for high and low settings for the number of routing steps.  This was done to 

ensure an equitable basis of comparison for the mean lateness and mean tardiness 

performance measures. 
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For the low setting of WC, the processing times were maintained in their initial 

sequence, but work centers were randomly assigned using the low setting.  Again, this 

was done to ensure an equitable basis of comparison for the mean lateness and mean 

tardiness performance measures. 

Routings for the low setting RS and low setting of WC were created the same as 

with the high setting of WC.  The routings were created for each manufactured item by 

truncating the routing for the high level of RS and the run time portion of the processing 

time was adjusted proportionally for each routing step so that the total of the run times 

was the same for high and low settings for the number of routing steps. 

To achieve the high setting for routing commonality (RC), items were selected 

within the product structures created based upon the four experimental factors for product 

structure.  The items selected were selected from a variety of end-products and at a 

variety of levels within the products structure.  This was done to avoid biasing the 

experiment.  Items were arbitrarily made to have common routings to achieve the 

following objectives:  attain the high setting of routing commonality; have items with 

common routings at various product structure levels; selected items were changed across 

all product structure settings.  To the extent possible, these objectives were met. 

Routing were made “common” in the product structures to obtain a RC as close to 

0.50 as reasonable. The routing commonality ratio (RC) ranged from 0.44 to 0.80.  These 

differences were due to differences in the numbers of components in the products 

structures and in order to make the most logical choices of items that were to have 

common routings. 



 

93 

As stated previously, two items have a common routing when the sequence of 

work centers visited is identical.  The run-times did not have to be the same.  At the high 

setting for routing commonality, when an item was selected to have a common routing 

with another item, the processing time were maintained in their original sequence, but the 

work centers were changed to match those of the item selected to have the common 

routing. 

 

Environmental Settings 

 

 

Due Date Tightness (k) 

Three of the five performance measures evaluated order completion date 

compared to order due date.  As stated previously, due dates were set using TWKCP.  

The due date tightness will impact the amount of tardiness produced by a system. 

Therefore it was also considered an experimental factor, having two levels.  At the high 

level due dates were “tight”, having a lower value for k than when due dates are loose.  

The due date tightness factor, k, was established in preliminary runs of the experimental 

manufacturing system deemed to be the “simplest” (PM=low, PMR=low, D=low, B=low, 

CC=high, RS=low, WC=low, RC=high).  The low setting was set such that, after the 

warm-up period, approximately 10% of the orders were tardy.  The high setting for k was 

set, for this “simplest” case, when approximately 30% of the orders were tardy. 

 

Utilization 

In order to ensure that each experimental condition was being compared fairly, 

the shop utilization we held constant.  Past studies (e.g., Barrett and Barman, 1986) have 
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shown that shop utilization affects performance.  For this study, the average utilization at 

the bottleneck work center was set at 85%.  This has been a common mid-range setting 

used in the past (Barman, 1998; Pierreval and Mebarki, 1997; Fry et al., 1989). 

Work center utilization is affected when the number of work centers is altered.  

More work centers increases the total available capacity in the shop.  Also, when routing 

commonality increases, the shop utilization could be affected.  To maintain consistent 

mean shop utilization, the mean order arrival interval was adjusted (e.g. Barman, 1998; 

Kanet and Haya, 1982). 

The time between order arrivals was determined by sampling from the 

exponential distribution with a predetermined mean as done in similar studies (e.g. 

Barman and LaForge, 1998; Fry et al., 1989; Kanet and Haya, 1982).  The mean of the 

distribution was established using preliminary simulation runs to achieve the desired 

bottleneck utilization. 

 

Order Generation 

Orders were generated to include an order quantity for each end-product in the 

product mix.  The average total order size was approximately 200 units.  The average 

order size for each end-product was based upon the specific product mix ratio for the 

experimental run.  For example, at the low settings for PM and PMR, the mean order 

quantity for each end-product, E-1 and E-2, was 160 units and 40 units, respectively. 

As in many real manufacturing environments, the simulated system encountered 

variation in order sizes.  This was accomplished using a coefficient of variation of 0.30 

for the demand for each end-product.  The coefficient of variation is equal to the standard 
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deviation of a distribution divided by its mean.  The orders sizes were generated using a 

truncated normal distribution where the minimum order size is zero and the maximum is 

twice the mean order size.  A coefficient of variation of 0.30, assuming a normal 

distribution, permited the opportunity for order sizes to be zero, but this probability 

would be extremely small.  Approximately 68% of order sizes should randomly occur 

between ± 30% of the mean order size and approximately 95% of order sizes should be 

between ± 60%. 

Orders were generated during the simulation run based upon the mean time 

between order arrivals.  To make experimental conditions as consistent as possible, each 

end-product was assigned a specific random number stream to be used in all experimental 

runs.  Therefore, for experiments having the same settings of PM and PMR, order 

sequence and quantity was identical for each end-product. 

 

Order Release 

The release dates for manufacturing orders for components at the end of each 

product structure branch were calculated using the total work content (TWK) method 

(Goodwin and Goodwin, 1982) as soon as an order arrives.  Since changes to customer 

orders were not permitted once an order was received, these manufacturing order release 

dates were not changed. 

The order release for the lowest level component on the critical path of a product 

structure coincided with the order arrival date, because the due date was set using the 

TWKCP method.  Because the critical path is the branch in a product structure with the 

greatest number of operations, (i.e. routing steps), and not the greatest processing time, it 
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was possible that the TWK for another branch was greater than that of the critical path.  

In those cases, manufacturing orders for those items were released at the order arrival 

time, too.  By using the same allowance factor, k, for manufacturing order releases, 

orders had the same opportunity to complete as their “sister” items in the product 

structure. 

Parent items in the product structure were released at the time that the latest 

manufacturing order for child items was completed.  This gave the manufacturing orders 

for parent items an opportunity to be released early or late, thus providing clearer 

evidence of the impact of system complexity on performance.  If the order release for 

parent items were set using some other release rule, e.g. TWK, it might have artificially 

inflated the flow time, lateness and tardiness statistics. 

 

Order Sequencing 

A dispatch rule that is simple to employ in industry practice as well as simulation 

experiments is earliest job due date (EDD).  In the experimental scenario, each order for 

end-products is considered to be the “job”.  The EDD dispatch rule was used at each 

work center to select the next manufacturing order to process.  EDD for orders has been 

shown to be in the group of best performing dispatch rules under a wide range of product 

structure complexity in an assembly shop (Fry et al., 1989).  This allowed each 

experiment the best chance of performing well under the experimental conditions.  So, 

the primary reason for late order completion was due to the system design, i.e. internal 

static manufacturing complexity.   



 

97 

Other factors 

In a manufacturing system there are many factors that can be included when 

modeling a particular system.  In this study, to reduce the “noise” in the statistical 

analysis, most of the environmental factors were made constant.  The transfer time for 

moving a manufacturing order between work centers was ignored (i.e. transfer time = 0).  

There was a single server (i.e. machine) at each work center.  There was no maximum 

queue size at any queuing point, e.g. work center.  

  

Simulation 

Simulation was appropriate for this experiment since this is an exploratory study 

evaluating a proposed metric for internal static manufacturing complexity.  The number 

of variables is relatively large.  It would be nearly impossible to control the 

environmental factors if an empirical study were to be made. 

As part of the simulation process, three crucial steps in the simulation 

development process recommended by Pritsker (1986) are model verification, model 

validation, and tactical planning.  Verification of the model establishes that the computer 

program executes as intended (Law and Kelton, 2000).  Validation ensures that the model 

closely matches the system being modeled (Law and Kelton, 2000).  According to 

Pritsker (1986), tactical planning involves setting the starting conditions of simulation 

runs and selecting a method to reduce variance of the mean of the dependent variable. 
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Verification 

Verification of the final simulation model was done using the “trace” reports from 

Visual SLAM.  One order for each item was simulated individually in the computer 

model.  The intermediate reports indicating the arrival and departure times from specific 

activities were compared with manual calculations. By this, the routing sequence, set-up 

time and run-times were verified. 

To verify that the product structures were working as designed, one order for each 

end-product was initiated into the simulation.  “Output” nodes were inserted before the 

queue locations where the child item manufacturing orders waited to be matched and 

released as the parent manufacturing order.  Report data was reviewed to see if the 

“match” function and parent order release occurred correctly. 

 

Validation 

The proposed simulated manufacturing system was designed to evaluate the 

impact of internal static manufacturing complexity on a batch manufacturing 

environment.  It was not intended to depict a specific manufacturing system. 

External validity of any simulated system rests on its realistic nature.  While the 

experimental settings were primarily established to enable the identification of 

relationships between the independent variables of internal static manufacturing 

complexity and the dependent variables of system performance, some degree of realism 

must also exist. 
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Many of the settings were validated by their use in prior research, e.g. utilization 

and set-up/run ratio.  Others like products structure depth and number of work centers 

have not been as clearly justified. 

The past industry experience of this researcher supported, hence validated, some 

of the experimental levels.  For example, the printed circuit board (PCB) fabrication 

process typically required more than 10 routing steps at 10 different work centers.  PCBs 

subcomponents (called “innerlayers”) were manufactured internally, making a two level 

product structure with breadth ranging from two to 14 different innerlayer part numbers.  

Due to the custom nature of PCB electrical layout, there was little (near zero) component 

commonality. 

At a consumer handtool plant, differences in end-products often occurred late in 

the manufacturing process.  Thus the product structures often were a single, “chain-link” 

of manufactured items often going four levels deep.  The number of routing steps at each 

level ranged from two to over 10.  There was also a mild level of component 

commonality. 

In one electronics assembly plant, plastic housings were molded that were 

assembled to the printed circuit board assembly (PCBA).  The molding process involved 

a single routing step and one work center.  This is below the low level used in the 

proposed system, but this plastic housing was only one of many items manufactured or 

assembled in this plant.  The PCBA process often involved more than 10 operations 

visiting a minimum of four different work centers. 

Thus, even from this limited amount of experience, the experimental levels 

included in the simulated system have external validation. 
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Steady State Determination 

A simulation run begins in an empty state, i.e. entities in the system.  The warm-

up, or transient, period is the time when a simulated system goes from the empty state at 

time=0, to a “steady state”, where the mean distribution of matches within the steady 

state are approximately the same (Law and Kelton, 2000). To avoid the impact of the 

transient state to the performance variable statistics, the performance data collected 

during the transient state is cleared prior to starting the data collection for the experiment. 

Law and Kelton (2000) recommend a procedure for determining the steady state 

of a stochastic process.  Observations of random variables are collected in batches (time 

intervals) and plotted (variable vs. time).  Steady state can be observed when the mean of 

the random variable for successive batches become approximately the same. 

For this study, a pilot simulation run was made at each of the 256 experimental 

combinations to determine the “worst case” time until steady state is achieved.  Average 

queue length and mean flow times for individual manufacturing orders were collected in 

50 hour intervals and plotted to identify the end of the transient period. 

 

Number of Replications 

Replication of experiments was used to capture the variance of dependent 

variables.  Pilot simulation runs were made to determine the experimental combination 

that exhibited the longest transient period.  This transient period will be the basis for 

determining the size and number of replications. 

The batch means method was used to make the simulation runs for each 

experimental combination.  The batch means method employs a single long simulation 
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run where all the replications are extracted (Law and Kelton, 2000).  After reaching 

steady state, statistics were collected for a predetermined number of distinct batches, or 

replications.  Each batch was assumed to be independent of the other batches. 

Determining the number of replications needed to reduce the variance of sample 

means is not simple.  It often involves a reiterative process (Law and Kelton, 2000) and 

can lead to requiring a large number of replications.  Based upon his research, Schmeiser 

(1982) recommends that from 10 to 30 replications be conducted.  Pritsker (1986) 

developed a formula to determine the minimum number of replications needed in order to 

achieve a predetermined confidence range for the sample mean. 
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I = number of independent replications 

tα/2, I-1 = Student’s t value with I-1 degrees of freedom 

Sx =  sample standard deviation of the dependent variable, and 

g = half-width of the confident interval for the sample mean  

Pritsker (1986) goes on to restate g in terms of the standard deviation of the 

population by setting g = vσx, where v is the fraction of the standard deviation that forms 

the half-width of the confidence interval for the sample means.  In this study it was 

desired to have a 90% confidence interval.  At 15 replications, the 90% confidence 

interval results in achieving µx between ( XX σ55.+ , )55. XX σ− .  Therefore, using the 

batch means method, each experiment run had 15 independent replications (i.e. batches). 
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Avoiding Censored Data 

Censoring of data occurs by missing the start and completion of some orders 

when the start of the collection of statistics is based upon simulation time (Blackstone et 

al., 1982).  By using this method, the lateness and tardiness statistics do not apply to the 

same set of orders, thus making an unfair comparison.  To avoid this, Blackstone et al. 

(1982) recommend that the statistics for the same group of orders be evaluated.  

However, they recognize that as experimental factors change, the shop changes, i.e. the 

processing of orders (timing and sequence) will not be the same from experiment to 

experiment, thus altering the conditions of systems being compared.  Even so, Blackstone 

et al. (1982) recommend using a methodology that avoids censoring data. 

Pilot simulation runs were made to identify when steady state occurs for the 

worst-case experiment.  When steady state was reached for the worst-case, the simulation 

will be continued for an additional five times that duration.  During the steady state 

period the average orders per hour were determined.  The number of orders in a 

replication for all experiments was the time to clear the transient period for the worst-case 

multiplied by the average orders per hour.  Thus, for every replication in every 

experimental run, the same number of orders will be evaluated.  The longest transient 

period observed was 28,500 hours.  This yielded an average of 91 orders.  To ensure a 

long enough observation period, the replication size used was 200 orders, more that twice 

as long as the warm-up period.  For each experiment, data was collected beginning with 

order 201 and ended with order 400. 

In order to maintain independence of batches, an interval equal to one replication 

batch was left between batches where statistics will not be collected.  This was the same 
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for all experiments.  For example, statistics for the second replication were be collected 

for 200 orders beginning with order number 601, having ignored orders 401 through 600. 

Using this methodology maintained synchronization of the random number streams for 

all experimental runs, and kept the experiments as similar as possible. 

 

Statistical Hypotheses and Data Analysis 

In order to answer the first research question proposed in Chapter 1, H01 was 

developed.  Basically, the data will be evaluated to identify the existence of a relationship 

between the proposed measure, ISMC, and manufacturing performance, which is a 

multivariate dependent variable.  This relationship may be tested either by employing 

MANOVA with ISMC as the independent variable or using multiple regression viewing 

ISMC as the DV.  Both will be used to aid in interpretation of results, but the objective is 

to determine if ISMC have predictive validity. 

It is anticipated that ISMC will have a significant relationship with manufacturing 

performance.  In this case, subsequent univariate tests will be performed for each 

performance measure to determine which performance measures are significantly related 

to ISMC.  Linear regression will be used to test significance. 

The second research question seeks to determine which experimental factors, the 

individual aspects of manufacturing complexity that make up ISMC, are related to 

manufacturing performance.  Therefore, H02 was proposed to evaluate the means of each 

experiment factor to determine if they are equal to zero.  This will be tested using 

MANOVA (a 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 model).  Since this exploratory research, 

the analysis will be limited to testing the effects of each factor, the due date tightness 
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factor, k, and the interaction of each factors with k.  A set of univariate ANOVA tests 

will then be conducted for any significant effects revealed in the MANOVA test.  This 

protects against having an inflated Type I error resulting from multiple univariate tests on 

correlated dependent variables (Tabachnick and Fidell, 2000). 

For the third hypothesis, the same analysis will be performed for H as is planned 

for ISMC.  A MANOVA will be conducted using H instead of ISMC.  Follow-up 

univariate ANOVAs will be performed for each of the five individual performance 

measures.  Subsequently, a statistical test will be conducted to compare R-squared for 

ISMC to that for H.  It is anticipated that the R-squared for ISMC will be higher and 

statistically different from the R-squared for H. for all measures of manufacturing 

performance. 

 

Summary 

In this chapter a quantitative measure for internal static manufacturing complexity 

was proposed based upon the important aspects of manufacturing complexity identified 

in literature.  Each element of the proposed measure was considered an experimental 

variable each having two levels.   This experimental design requires 512 experiments 

with 15 replications made in each experiment for a total of 7,680 independent runs. 

A simulated batch manufacturing system was proposed as the basis for the 

experiment.  Both complexity measures, ISMC and H, will be calculated for each 

experiment.  Performance measures to be evaluated are mean job flow time, mean and 

standard deviation of lateness, and mean and standard deviation of tardiness. 



 

 

 

 

 

CHAPTER IV 

RESULTS 

 

 

The results of the statistical analysis are presented in this chapter.  Data was 

collected from the simulation using AweSim modeling software as described in the 

previous chapter.  Each of the three research questions is addressed through statistical 

tests.  A complete discussion of the results of these tests follows. 

 

Data Preparation 

An initial review of the data revealed that the dependent variables (DVs) had 

skewness and kurtosis that might affect the normality assumption and homoscedasticity 

requirement for using regression and ANOVA techniques.  Table 4.1 provides the 

dependent variable names to be used throughout the discussion of the statistical analysis.   

Table 4.2 lists the descriptive statistics for each DV.  Histograms were generated for each 

DV to visually analyze the results.  These histograms helped to identify the appropriate 

transformation for each variable (Tabachnick and Fidell, 2001).  All DVs had histograms 

that were mound-shaped and skewed to the right.  This indicated that either the logarithm 

or square root transformation would be likely to produce normality.  After trying these 

two standard transformations on each variable, each DV was transformed as Y = Y
1/2
 

because this reduced both skewness and kurtosis for each DV.  The descriptive statistics 

for the transformed DVs are given in Table 4.3. 
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Table 4.1  Dependent Variable Abbreviations 

 

Performance Measure Untransformed Variable Transformed Variable 

   

Standard Deviation of Order Flow Time SFT SQRT_SFT 

Mean Order Lateness LMean SQRT_LMean 

Standard Deviation of Order Lateness SL SQRT_SL 

Mean Order Tardiness TMean SQRT_TMean 

Standard Deviation of Order Tardiness ST SQRT_ST 

 

 

 

Table 4.2  Descriptive Statistics for Untransformed Dependent Variables 

 

Dependent 

Variable Mean 

Standard 

Deviation Minimum Maximum Range Skewness Kurtosis 

        

SFT 799.1 431.7 73.6 3143.9 3070.3 1.059 1.996 

LMean 522.8 524.9 -534.5 3077.2 3611.7 0.992 0.979 

SL 673.9 437.3 51.7 3089.1 3037.4 1.191 2.104 

TMean 579.7 492.3 0 3078.8 3078.8 1.198 1.372 

ST 633.9 444.5 0 3047.3 3047.3 1.131 1.832 

 

 

 

Table 4.3  Descriptive Statistics for Transformed Dependent Variables 

 

Dependent 

Variable Mean 

Standard 

Deviation Minimum Maximum Range Skewness Kurtosis 

        

SQRT_SFT 27.25 7.54 8.58 56.07 47.49 0.241 -0.016 

SQRT_LMean 31.56 7.87 0.72 60.10 59.38 0.343 -0.023 

SQRT_SL 24.62 8.25 7.19 55.58 48.39 0.325 -0.188 

SQRT_TMean 21.72 10.38 0.00 55.49 55.49 0.223 -0.512 

SQRT_ST 23.54 8.94 0.00 55.20 55.20 0.137 -0.221 
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One independent variable (IV), ISMC, had high skewness (2.093) and kurtosis 

(5.577) statistics.  Additionally, scatter plots of ISMC with each transformed DV 

indicated potential heteroscedasticity.   Therefore, ISMC was transformed using the 

standard transformation, Y = LOG10(Y), since this transformation reduced both skewness 

and kurtosis.  Table 4.4 shows the descriptive statistics for ISMC before and after 

transformation. 

 

Table 4.4  Descriptive Statistics for ISMC – Before and After Transformation 

 

Variable Mean 

Standard 

Deviation Minimum Maximum Range Skewness Kurtosis 

        

ISMC 3963.9 3860.3 181.1 25000 24818.9 2.093 5.577 

LOG_ISMC 3.41 0.41 2.26 4.40 2.14 -0.169 -0.363 

 

 

 

H, the measure of static manufacturing complexity proposed by Frizelle and 

Woodcock (1995), did not need to be transformed.  The skewness and kurtosis, as 

provided in Table 4.5, were already acceptable, because they were less than one.  The 

standard transformations were attempted to see if improvement was possible, but there 

was no satisfactory improvement to skewness and kurtosis. 

 

Table 4.5  Descriptive Statistics for H 

 

Variable Mean 

Standard 

Deviation Minimum Maximum Range Skewness Kurtosis 

        

H 21.65 9.31 8.16 49.5 41.34 0.890 0.032 
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Factor Analysis 

After transforming the DVs, an inspection of the bivariate correlations indicated 

that all five DVs were highly correlated with each other.  As shown in Table 4.6, many of 

the bivariate correlations between DVs exceeded 0.90.  High amounts of multicolinearity 

between DVs can confound statistical test results using the MANOVA method 

(Tabachnick and Fidell, 2001).  Therefore, factor analysis was used to create a single 

factor that represents overall manufacturing performance.  Using SPSS 13.0 statistical 

software, principle components analysis extracted a single factor (referred to as FDV) 

from the transformed DVs explaining 92.4% of the variation in the five DVs.  Tables 4.7 

and 4.8 summarize the results of the factor analysis.  A similar factor analysis was 

performed using the untransformed DVs.  Since the distribution of the transformed DV 

scores reduced skewness and kurtosis, these factors scores were preferred to those from 

the untransformed DVs.  Table 4.9 provides descriptive statistics for both the 

untransformed and transformed factor. 

 

Table 4.6  Coefficients of Correlation for Transformed Dependent Variables 

 

 SQRT_SFT SQRT_LMean SQRT_SL SQRT_TMean SQRT_ST 

      

SQRT_SFT -     

SQRT_LMean 0.762 -    

SQRT_SL 0.901 0.892 -   

SQRT_TMean 0.800 0.982 0.943 -  

SQRT_ST 0.879 0.928 0.989 0.963 - 
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Table 4.7  Results of Principle Components Analysis for Transformed Dependent 

Variables 

 
 

Component Eigenvalues % Variance 

   

1 4.621 92.425 

2 0.292 5.850 

3 0.072 1.433 

4 0.010 0.206 

5 0.004 0.086 

 

 

 

Table 4.8  Factor Loadings 

 

DV Loading 

  

SQRT_SFT 0.901 

SQRT_LMean 0.951 

SQRT_SL 0.984 

SQRT_TMean 0.977 

SQRT_ST 0.991 

 

 

 

 

Table 4.9  Descriptive Statistics for the Dependent Variable Factor using transformed and 

untransformed values for the Dependent Variables 

 
 

Factor scores from Mean 

Standard 

Deviation Min. Max. Range Skewness Kurtosis 

        

Untransformed 

DVs 0.00 1.00 -1.436 5.027 6.464 1.106 1.333 

Transformed DVs 0.00 1.00 -2.253 3.520 5.773 0.342 -0.353 
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Alterations to the Planned Statistical Analysis 

Since the statistical analysis was performed using FDV as a single dependent 

variable, it was necessary to deviate from the statistical methodology proposed in 

Chapter III.  The first hypothesis was tested by using linear regression.  FDV served as the 

dependent variable and ISMC was the independent variable.  The planned post hoc test to 

examine the effect of the due date tightness setting was conducted by adding k, the due 

date tightness factor, to the regression model as the second independent variable. 

The second hypothesis was tested using ANOVA instead of a MANOVA.  The 

first test conducted included FDV as the dependent variable and the eight complexity 

elements as the independent variables.  The due date tightness factor became a ninth 

independent variable in the ANOVA model during the planned post hoc test. 

The same regression analyses conducted for ISMC was repeated for Frizelle and 

Woodcock’s (1995) complexity measure, H. The statistical test proposed in Chapter III to 

compare the strength of relationship between ISMC and performance to that between H 

and performance was not affected and did not have to be changed. 

 

Tests of Hypothesis 1 

One of the objectives of this research is to test the proposed measure of ISMC for 

its predictive validity, i.e. to see if it reflects the impact of the manufacturing system’s 

design on its performance.  Using the single factor of all DVs, FDV, multiple regression 

analysis was employed to evaluate H10, that ISMC was not related to manufacturing 
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performance.  The general linear model for the regression model used in the “omnibus” 

test is: FDV = β0 + β1LOG_ISMC + ε 

 

The “Omnibus” Regression Results 

The results of the regression analysis are presented in Table 4.10.  For this 

analysis, coefficients of variables with p-values less than .01 indicate that the variable is 

statistically related to the performance measure.  The omnibus model is statistically 

significant having a p-value less than .001.  The null hypothesis for H01 is rejected and it 

is inferred that ISMC is related to manufacturing performance.  Follow-up regression 

analyses were conducted on the individual manufacturing performance measures, the 

DVs, to evaluate hypotheses H1a-H1e. 

 

Table 4.10  Omnibus Regression Results for ISMC 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 182.66 1 182.66 187.089 0.000 0.024 

Residual 7496.34 7678 0.98    

Total 7679.00      

       

       

Variable 

 

Coefficients 

b 

Standard 

error t Significance   

Constant -1.271 0.094 -13.578 0.000   

LOG_ISMC 3.720 0.027 13.678 0.000   
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Standard Deviation of Flow Time 

The regression results for the individual DVs are presented in Tables 4.11 through 

4.15.  LOG_ISMC is significant for each performance measure.  H01a is rejected.  It can 

be inferred that there is a relationship between ISMC and the standard deviation of flow 

time. The adjusted R
2
 for the model involving the standard deviation of flow time, 

SQRT_sFT, was .009.  This means that LOG_ISMC explained less than 1% of the 

variation in SQRT_sFT.  The coefficient of LOG_ISMC is positive indicating that as 

ISMC increases, order flow time becomes less predictable because the standard deviation 

of flow time increases. 

 

Table 4.11  Regression Results for ISMC: DV = SQRT_sFT 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 4173.37 1 4173.37 74.129 0.000 0.009 

Residual 432259.42 7678 56.30    

Total 436432.79 7679     

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 21.167 0.711 29.777 0.000   

LOG_ISMC 1.779 0.207 8.610 0.000   
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Mean Lateness 

The hypothesis H01b, stating that there is not a relationship between ISMC and 

the mean lateness is rejected.  LOG_ISMC explained 3% of the variation in the mean 

lateness variable, SQRT_LMEAN.  The estimated regression coefficient for LOG_ISMC 

was positive, thus indicating a positive relationship exists between ISMC and mean 

lateness.  As ISMC increased, mean order lateness tended also to increase. 

 

Table 4.12  Regression Results for ISMC: DV = SQRT_LMEAN 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 14249.56 1 14249.56 237.026 0.000 0.030 

Residual 461586.11 7678 60.12    

Total 475835.67 7679     

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 20.330 0.735 27.674 0.000   

LOG_ISMC 3.287 0.214 15.396 0.000   

 

 

 

Standard Deviation of Lateness 

H01c is also rejected in favor of the alternative hypothesis that ISMC is related to the 

standard deviation of lateness. The regression results for the standard deviation of 

lateness, SQRT_sL show that LOG_ISMC explained 1.8% of the variation in SQRT_sL.  

Since the coefficient of LOG_ISMC is positive, these results suggest that as ISMC 

increased, the variation in order lateness increased. 
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Mean Tardiness 

The regression model involving mean tardiness was statistically significant at the 

.01 level allowing H01d to be rejected and supporting the idea that ISMC and mean 

tardiness are related.  The adjusted R
2
 for this regression model shows that LOG_ISMC 

explained 3.2 % of the variation in the dependent variable, SQRT_TMean.  The coefficient 

of LOG_ISMC was also positive suggesting that when ISMC increased, mean order 

tardiness tended to increase. 

 

Table 4.13  Regression Results for ISMC: DV = SQRT_sL 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 9512.41 1 9512.41 142.437 0.000 0.018 

Residual 512762.42 7678 66.78    

Total 522274.83 7679     

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 15.442 0.774 19.944 0.000   

LOG_ISMC 2.686 0.225 11.935 0.000   

 

 

 

Standard Deviation of Tardiness 

H01e is also rejected in favor of its alternative hypothesis, that ISMC is related to 

the standard deviation of tardiness.  The LOG_ISMC explained 2.3% of the variation in 

SQRT_ST and the positive coefficient of LOG_ISMC suggested that as ISMC increased, 

the variation in order tardiness increased. 
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Table 4.14.  Regression Results for ISMC: DV = SQRT_TMEAN 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 26679.48 1 26679.48 255.797 0.000 0.032 

Residual 800811.61 7678 104.30    

Total 827491.08 7679     

       

       

   

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 6.362 0.968 6.575 0.000   

LOG_ISMC 4.498 0.281 15.994 0.000   

 

 

 

Table 4.15  Regression Results for ISMC: DV = SQRT_sT 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 14398.05 1 14398.05 184.578 0.000 0.023 

Residual 598923.35 7678 78.01    

Total 613321.41 7679     

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 12.252 0.837 14.642 0.000   

LOG_ISMC 3.304 0.243 13.586 0.000   
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Post hoc Analyses 

Two additional moderating factors might have had a large influence on the 

performance measures.   Two levels of due date tightness were evaluated for each of the 

256 experimental systems.  It is expected that systems where due dates were set “tighter” 

would have higher mean lateness and mean tardiness.  It is more important to see if 

ISMC predicts performance differently depending on the level of due date tightness used, 

i.e. is the interaction of ISMC with the due date tightness factor, k, statistically 

significant? 

The second possible moderating factor, the mean protective work center capacity, 

was examined after completion of the experiments.  Although the research design 

attempted to control for the effect of utilization level of each experiment, it is possible the 

differences in work center utilization may have affected performance.  Recall, shop 

utilization for each experiment was established by setting the mean arrival rate for orders 

such that the average long-run bottleneck utilization was 85%.  Differences in mean 

utilization between work centers could not be controlled, because the routings (sequence 

of work centers and unit production time) were randomly generated and order size and 

arrival was also random.  Lawrence and Buss (1994) showed that these utilization 

differences, referred to as protective capacity, can significantly affect mean flow times.  

Changes in mean flow times will likely affect the other four performance measures in this 

study.  Therefore, the protective capacity level of the system was considered in the 

analysis.  This protective capacity variable, PC, was calculated as the mean difference in 

utilization between the bottleneck work center and the long-run mean utilization of all of 

the other work centers.  Since this was a post hoc consideration, detailed utilization data 
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had not been recorded for all replication during the actual experimental runs so the mean 

PC was calculated using the utilization data from the preliminary simulation runs.  So, all 

the replications in each experimental cell used the same calculated PC. 

After calculating the mean PC for each experiment cell, a visual evaluation of the 

results showed that the distribution of mean PC values was acceptably close to normal. 

The descriptive statistics are provided in Table 4.16.  Both skewness and kurtosis were 

below 1.0.  The mean PC ranged from .56 to .016.  So, in under at least one set of 

experimental conditions, the average protective capacity between the bottleneck work 

center and all other work centers was 56%.  This is a large amount of protective capacity 

compared to the extreme of having a mean protective capacity of 1.6%. 

 

Table 4.16  Descriptive Statistics for PC 

 

Variable Mean 

Standard 

Deviation Minimum Maximum Range Skewness Kurtosis 

        

PC 3963.9 3860.3 181.1 25000 24818.9 2.093 5.577 

 

 

 

A new regression model was used to evaluate the impact of these factors.  The 

revised model included k and PC and their possible interactions with ISMC.  To protect 

against increased opportunity for Type I error, an omnibus regression test was performed 

using the factor created from the five dependent variables, FDV.  The general linear model 

for the regression model used in the revised “omnibus” test is given by: 

 

FDV = β0 + β1LOG_ISMC + β2k + β3(LOG_ISMC*k) + β4(PC) + β5(LOG_ISMC*PC) 
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+ ε. 

The results of this test are presented in Table 4.17.  For this analysis, coefficients 

of variables with p-values less than .01 indicate that the variable is statistically related to 

the performance measure.  Both the due date tightness factor (k) and ISMC were 

significant.  In addition, the utilization variable, PC, and the interaction between PC and 

ISMC were also significant.  The interaction between k and ISMC was not significant, 

meaning that ISMC “predicts” manufacturing performance in the same manner when due 

dates were set “tight” or “loose”. This interaction, therefore, was not included in the 

follow-up regression tests on the individual manufacturing performance measures. 

 

Follow-up Tests – Hierarchical Regression Results 

In the follow-up regression analysis for each of the DVs, hierarchical regression 

was used to evaluate the relationship of ISMC to each performance measure.  Since 

ISMC is the variable of primary interest, ISMC was the first variable entered into the 

regression analysis.  The due date tightness factor, k, was a planned environmental factor, 

so k was entered second in the regression analysis.  PC entered third, followed by 

ISMC*PC because these were considered after the conclusion of the experiments.  The 

adjusted R
2
 for each step in the regression was compared to the prior regressions as each 

variable was added.  Tables 4.18 through 4.22 contain a summary of the regression 

results for the five individual performance measures (DVs). 
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Table 4.17  Omnibus Regression Results for ISMC - Revised Model 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 1984.16 5 396.83 534.745 0.000 0.258 

Residual 5694.84 7674 0.74    

Total 7679 7679     

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant -2.795 0.215 -13.019 0.000   

LOG_ISMC 1.039 0.063 16.552 0.000   

k 0.498 0.163 3.051 0.002   

LOG_ISMC*k -0.064 0.047 -1.353 0.176   

PC 8.906 0.759 11.729 0.000   

LOG_ISMC*PC -3.739 0.228 -16.381 0.000   

 

 

 

Table 4.18  Hierarchical Regressions for ISMC: DV = SQRT_SFT 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

LOG_ISMC 0.098 0.098 0.027 0.348 

 (<0.000) (<0.000) (0.147) (<0.000) 

k  -0.013 - - 

  (0.247) - - 

PC   -0.33 1.091 

   (<0.000) (<0.000) 

LOG_ISMC*PC    -1.395 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.009 0.009 0.113 0.134 

Increase to R
2
 - 0.000 0.104 0.021 

F statistic - - 395.46 47.64 

p-value of F statistic - - 0.000 0.000 
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The first of the individual performance measures is the standard deviation of flow 

time.  LOG_ISMC explained 0.9 % of the total variation in SQRT_SFT.  The due date 

tightness factor, k, was not statistically significant.  This was expected since flow time of 

an order is not affected by the tightness of due dates.  PC increased the proportion of 

variation explained by the regression model to 11.3 %, supporting the past research 

findings that PC can have a large impact on flow times (Lawrence and Buss, 1994).   The 

interaction of ISMC and PC was also significant and increased the model’s performance 

by another 2.1 %, meaning that the affect of ISMC on predictability of flow times 

depends on the amount of protective capacity at work centers. 

As shown in Tables 4.19 through 4.22, the four remaining performance measures 

have similar results.  As expected, all variables are statistically significant, including k, 

since each of these variables measures the shop’s ability to meet due dates.  The amount 

of variation explained by ISMC alone ranged from 1.8 % to 3.2 %.  The level of due date 

tightness, k, increased adjusted R
2
 from between 0.6 % to 6.3 %   When PC is included in 

the regression model, the change to the adjusted R
2
 ranged from 17 % to 21 %.  As in the 

analysis of SQRT_SFT, these results also support the findings of Lawrence and Buss 

(1994).  The regression coefficient for PC in Model 3 for the five measures of 

manufacturing performance indicates that as the mean protective capacity (PC) increased, 

the individual performance measure improved. 
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Table 4.19.  Hierarchical Regressions for ISMC: DV = SQRT_LMean 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

LOG_ISMC 0.173 0.173 0.072 0.466 

 (<0.000) (<0.000) (<0.000) (<0.000) 

k  0.251 0.251 0.251 

  (<0.000) (<0.000) (<0.000) 

PC   -0.469 1.273 

   (<0.000) (<0.000) 

LOG_ISMC*PC    -1.710 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.030 0.093 0.303 0.334 

Increase to R
2
 - 0.063 0.210 0.031 

F statistic - 469.08 730.83 55.26 

p-value of F statistic - 0.000 0.000 0.000 

 

 

 

Table 4.20  Hierarchical Regressions for ISMC: DV = SQRT_SL 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

LOG_ISMC 0.135 0.135 0.045 0.378 

 (<0.000) (<0.000) (<0.000) (<0.000) 

k  0.080 0.080 0.080 

  (<0.000) (<0.000) (<0.000) 

PC   -0.422 1.056 

   (<0.000) (<0.000) 

LOG_ISMC*PC    -1.452 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.018 0.024 0.194 0.216 

Increase to R
2
 - 0.006 0.170 0.022 

F statistic - 45.23 636.64 45.35 

p-value of F statistic - 0.000 0.000 0.000 
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Table 4.21  Hierarchical Regressions for ISMC: DV = SQRT_TMean 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

LOG_ISMC 0.180 0.180 0.079 0.428 

 (<0.000) (<0.000) (<0.000) (<0.000) 

k  0.212 0.212 0.212 

  (<0.000) (<0.000) (<0.000) 

PC   -0.470 1.078 

   (<0.000) (<0.000) 

LOG_ISMC*PC    -1.520 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.032 0.077 0.288 0.312 

Increase to R
2
 - 0.045 0.211 0.024 

F statistic - 334.37 747.27 43.70 

p-value of F statistic - 0.000 0.000 0.000 

 

 

 

Table 4.22.  Hierarchical Regressions for ISMC: DV = SQRT_ST 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

LOG_ISMC 0.153 0.153 0.058 0.386 

 (<0.000) (<0.000) (<0.000) (<0.000) 

k  0.133 0.133 0.133 

  (<0.000) (<0.000) (<0.000) 

PC   -0.444 1.010 

   (<0.000) (<0.000) 

LOG_ISMC*PC    -1.428 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.023 0.041 0.229 0.250 

Increase to R
2
 - 0.018 0.188 0.021 

F statistic - 134.99 691.78 41.41 

p-value of F statistic - 0.000 0.000 0.000 
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The interaction of ISMC with PC increased the adjusted R
2
 for all individual 

performance measures.  The improvement ranged between 2.2 % and 3.1 %.  This 

indicates that there is practical significance in the effect that PC has on how ISMC 

predicts performance.  More importantly, for all individual performance measures, after 

evaluating the regression coefficients resulting from Model 4, when PC is relatively 

small, as ISMC increased, performance decreased.  However, for a large number of 

experiments, when the interaction of ISMC and PC is considered the regression 

coefficients demonstrate that as ISMC increased, performance increased.  This is contrary 

to the theory underlying measuring internal static manufacturing complexity.  Table 4.23 

summarizes the “turning point” values for PC where ISMC begins to “reverse predict” 

performance and the percentage of experiments in which the PC was greater than the 

turning point value. 

 

Table 4.23  Evaluation of LOG_ISMC*PC Interaction - Turning Points Values for PC 

 

 SQRT_SFT SQRT_LMean SQRT_SL SQRT_TMean SQRT_ST 

      

Turning Point for PC * 0.251 0.274 0.262 0.284 0.272 

% Above ** 46.5 41.8 44.5 38.3 41.8 

 
 

* The values for PC above which ISMC predicts improved performance with increased complexity 

** The percentage of experiments with a mean PC greater than the turning point value 
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These results also support the effect of PC observed in model 3.  With minimal 

exception, as PC increases, manufacturing performance improves (i.e. the performance 

measure decreases).  Table 4.24 shows the cut-off point for ISMC where the reverse 

occurs.  Again, this occurs in not more that 10 cases, depending on the performance 

measure.  A real manufacturing system is not likely have a value of ISMC as small as 

these, so PC appears to act consistent when the interaction with ISMC is considered. 

 

Table 4.24  Evaluation of LOG_ISMC*PC Interaction - Turning Points Values for PC 

 

 SQRT_SFT SQRT_LMean SQRT_SL SQRT_TMean SQRT_ST 

      

Turning Point for PC * 0.251 0.274 0.262 0.284 0.272 

% Above ** 46.5 41.8 44.5 38.3 41.8 

 
 

* The value for ISMC below which PC predicts reduced performance with increases in PC 

 

Summarized results for Hypothesis 1 

As ISMC increased, all five measures of manufacturing performance worsened.  

However, the low value for adjusted R
2
, indicates that ISMC explained very little of the 

variation in performance. 

In the post hoc analyses it was found that the average protective capacity in a 

system (PC) had a sizeable effect on manufacturing performance, supporting the research 

of Lawrence and Buss (1994).  As PC increased, manufacturing performance improved 

across all performance measures.  Additionally, the interaction between ISMC and PC 

was statistically significant, meaning that ISMC affects performance differently 

depending on the amount of protective capacity in a system.  At relatively high levels of 
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mean protective capacity, (i.e. PC exceeded 25%), systems with higher ISMC scores 

performed better than systems with lower ISMC. 

 

Tests of Hypothesis 2 

The second hypothesis, H2, examined which of the eight complexity factors 

composing ISMC listed were related to manufacturing performance.  These eight factors 

and their abbreviations are found in Table 4.25. A limited ANOVA was used to 

statistically test for relationships between the categorical variables (high and low), and 

the factor score of the performance measures (the DVs), which was a continuous 

variable.  As was done for H1, an “omnibus” test was performed first using the factor of 

the DVs derived from the factor analysis, FDV.  The general linear model for this 

regression model is given by: 

FDV  = µ + k + P + B + D + CC + PMR + OP + WC + RC + ε 

 

The statistical null hypothesis for this research question is: 

H20: k = P = B = D = CC = PMR = OP = WC = RC = 0 

The results of the ANOVA are presented in Table 4.26.  For this analysis, 

variables with p-values less than .01 indicate that the variable is statistically related to the 

performance measure.  The p-value for the model was approximately 0, so the null 

hypothesis for H2 was rejected.  Six of the eight factors were shown to be statistically 

related to the overall manufacturing performance measure factor, FDV.  These were P, D, 

B, PMR, WC, and RC. 
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Table 4.25  Individual Internal Manufacturing Static Complexity Factors 

 

Factor Description 

  

P Number of end-products produced 

D Levels in product structure 

B Breadth of product structure 

CC Component commonality index 

PMR Product mix ratio 

OPS Number of routing steps (operations) 

WC Number of work centers in the system 

RC Routing commonality index 

 

 

 

Table 4.26  Omnibus Regression Results for Internal Static Manufacturing Complexity 

Factors 

 
 

Tests of Between-Subjects Effects 

 

Source 

Type III 

Sum of Squares df 

Mean 

Square F Significance 

      

Corrected Model 4,228.05 8 528.51 1,174.801 0.000 

Intercept 0.00 1 0.00 0.000 1.000 

P 58.52 1 58.52 130.072 0.000 

D 729.40 1 729.40 1,621.369 0.000 

B 1,194.87 1 1,194.87 2,656.043 0.000 

CC 1.50 1 1.50 3.332 0.068 

PMR 18.54 1 18.54 41.203 0.000 

OPS 0.13 1 0.13 0.288 0.592 

WC 2,220.83 1 2,220.83 4,936.604 0.000 

RC 4.27 1 4.27 9.499 0.002 

Error 3,450.95 7671 0.45   

Total 7,679.00 7680    

Corrected Total 7,679.00 7679    

      

R Squared = .551 (Adjusted R Squared = .550) 
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Follow-up ANOVAs were conducted for the individual manufacturing 

performance measures to evaluate the six factors that were statistically significant in the 

omnibus test.   In the discussion of the results for each of these tests, the effect size is 

presented using the transformed variable while the meaning of the effect is expressed 

using the untransformed variable. 

 

Standard Deviation of Flow Time 

Table 4.27 summarizes the ANOVA results for the first performance measure, the 

standard deviation of flow time, SQRT_sFT.  The adjusted R
2
 for the models is .621, 

meaning that the individual variables explain 62% of the variation in SQRT_sFT. All six 

factors identified in the omnibus model were significant in this model – P, D, B, PMR, 

WC, and RC.  Of these, three factors had a relatively large effect size as measured using 

η
2
 (eta-squared) – B, D, and WC.  η

2
 is the approximate squared correlation between the 

individual independent variable and the dependent variable, i.e. the proportion of the 

variation in the dependent variable uniquely explained by change in the level of the 

factor.  Combined, these three factors explained over 58% of the variation in SQRT_sFT. 

A discussion of each significant factor follows. 
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Table 4.27  ANOVA Results for SQRT_sFT 

 
 

Tests of Between-Subjects Effects 

  

Source 

Type III 

Sum of Squares df 

Mean 

Square F Significance 

Eta 

Squared 

       

Corrected Model 271,034.47 8 33,879.31 1,571.287 0.000  

Intercept 5,700,645.73 1 5,700,645.73 264,389.935 0.000  

P 10,311.37 1 10,311.37 478.230 0.000 0.024 

D 109,480.50 1 109,480.50 5,077.590 0.000 0.251 

B 52,372.49 1 52,372.49 2,428.981 0.000 0.120 

CC 0.67 1 0.67 0.031 0.860 0.000 

PMR 4,266.55 1 4,266.55 197.878 0.000 0.010 

OPS 0.38 1 0.38 0.017 0.895 0.000 

WC 94,436.65 1 94,436.65 4,379.872 0.000 0.216 

RC 165.87 1 165.87 7.693 0.006 0.000 

Error 165,398.33 7671 21.56   0.379 

Total 6,137,078.53 7680    1.000 

Corrected Total 436,432.79 7679     

       

R Squared = .621 (Adjusted R Squared = .621)  

 

 

 

P: Number of End-products 

The number of end-products produced in a manufacturing system, P, accounted 

for 2.4% (η
2
 = 0.024) of the variation in SQRT_sFT.  Table 4.28 summarizes the marginal 

means for the six significant factors.  From these results, when the factor P increased 

from two to five products, the sFT decreased from a mean of 861 to 737 hours.  This 

indicates that as a greater number of end-products were produced in a manufacturing 

system, the variability in flow times tended to decrease, i.e. it improved.  Although this is 

significant, this was not as anticipated.  The calculations for ISMC were based on the 

assumption that more products implied more internal static manufacturing complexity, 
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which, in turn, should mean less predictability of flow times, i.e. greater fluctuation in 

flow times. 

 

Table 4.28  Marginal Means for sFT 

 

Factor Low High 

   

P 860.83 737.36 

D 599.52 998.68 

B 661.13 937.07 

PMR 836.78 761.42 

WC 997.91 600.28 

RC 803.95 794.25 

 

 

 

D: Depth of Product Structure 

The depth of the product structure, D, explained the greatest amount of variation 

in SQRT_sFT of any of the complexity factors.  It had a η
2
 of .251.  As D increased from 

two to five levels of items in the product structure, sFT increased from an average of 599 

hours to 1000 hours.  This supports the notion that systems with more product structure 

levels, and therefore greater complexity, have greater variability in flow times of orders. 

 

B: Breadth of Product Structure 

The breadth of the product structure, B, was one of the three largest contributing 

factors in explaining variation in SQRT_sFT.  It uniquely explained 12% (η
2
 = 0.120) of 

that variation.  As B went from its low setting to high setting, sFT increased from an 

average of 661 hours to 937 hours.  As was anticipated, the breadth of the product 
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structure indicates that systems having wider product structures have less predictability in 

the flow times of orders. 

 

PMR: Product Mix Ratio 

Although statistically significant, the PMR factor had a relatively small effect size 

with a η
2
 of 0.01.  The mean sFT decreased from 837 to 761 hours when PMR went from 

having a highly dominant end-product to having no dominant end product.  This was the 

reverse of what was anticipated.  This result indicates that having a balanced demand of 

products, as opposed to a demand with a highly dominant product, leads to a more 

predictable flow time for orders. 

 

WC: Number of Work Centers 

The number of work centers comprising a manufacturing system, WC, explained 

nearly 22% (η
2
 = 0.216) of the variation in SQRT_sFT.  It is the second largest contributor 

to explaining the predictability of flow time. As the number of work centers increased 

from four to ten, the mean sFT decreased from 998 to 600 hours.  The development of 

ISMC assumed that having more work centers in a manufacturing system would lead to 

higher variability in the flow times for orders.  The results indicate the opposite.  Having 

a greater number of work centers in a system, from the static design standpoint, did not 

negatively affect the variability of flow time, rather it resulted in improved performance.  

Variability was lower in systems that had more work centers. 
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RC: Routing Commonality 

Although statistically significant, RC explained virtually no change in SQRT_sFT.  

RC had a η
2
 that was less than 0.001.  As RC went from its low to high setting, sFT 

decreased from an average of 804 to 794 hours.  In these experiments, the flow time was 

more predictable when no routings were “common” than when some items shared 

“common” routings with other items. 

 

Mean Lateness 

The ANOVA results for mean lateness are presented in Table 4.29.  The six 

factors identified in the omnibus model were all significant predictors of SQRT_LMEAN.  

The adjusted R
2
 for the model containing all internal manufacturing static complexity 

factors was 0.503.  The factors B and WC explained a large portion of the variation in 

mean lateness, a total of 41.3%. A discussion of each statistically significant complexity 

factor follows. 

 

P: Number of End-products 

The number of end-products produced in a manufacturing system, P, had an η
2
 of 

0.064, meaning that this factor accounted for 6.4% of the variation in SQRT_sFT.  

Table 4.30 summarizes the marginal means for the six significant factors.  As the number 

of products increased from two to five products, the sFT increased from a mean of 408 to 

638 hours.  This indicates that as a greater number of end-products were produced in a 

manufacturing system, the mean lateness increased.  This supported the idea that as static 

complexity increases due to having more end-products, performance declines. 
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Table 4.29  ANOVA Results for LMean 

 

Tests of Between-Subjects Effects 

  

Source 

Type III 

Sum of Squares df 

Mean 

Square F Significance 

Eta 

Squared 

       

Corrected Model 239,710.72 8 29,963.84 973.436 0.000  

Intercept 7,648,449.42 1 7,648,449.42 248,475.459 0.000  

P 30,277.37 1 30,277.37 983.622 0.000 0.064 

D 11,894.09 1 11,894.09 386.404 0.000 0.025 

B 68,935.46 1 68,935.46 2,239.509 0.000 0.145 

CC 65.60 1 65.60 2.131 0.144 0.000 

PMR 568.62 1 568.62 18.473 0.000 0.001 

OPS 17.21 1 17.21 0.559 0.455 0.000 

WC 127,725.98 1 127,725.98 4,149.439 0.000 0.268 

RC 226.38 1 226.38 7.355 0.007 0.000 

Error 236,124.95 7671 30.78   0.496 

Total 8,124,285.09 7680    1.000 

Corrected Total 475,835.67 7679     

       

R Squared = .504 (Adjusted R Squared = .503)  

 

 

 

Table 4.30  Marginal Means for LMEAN 

 

Factor Low High 

   

P 407.97 637.73 

D 440.51 605.19 

B 333.20 712.49 

PMR 496.63 549.07 

WC 791.08 254.62 

RC 531.42 514.28 

 

 

 

D: Depth of Product Structure 

The factor, D, explained 2.5% of the variation in mean lateness (η
2
 = 0.025).  As 

the number of levels in the product structures in a manufacturing system increased from 

two to five, the average mean lateness increased from 441 to 605 hours.  This was as 
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anticipated.  As static complexity increases due to a system having more levels in product 

structures, performance was negatively affected. 

 

B: Breadth of Product Structure 

The depth of the product structure, B, was one of the two largest contributing factors in 

explaining variation in mean lateness.  It had an η
2
 of 0.145, nearly one third of the total 

variation explained by the model containing all factors.  As the breadth of the product 

structure increased from two to five, the average LMean increased from 333 to 713 hours.  

As was anticipated, when the breadth of the product structure increased, performance 

worsened. 

 

PMR: Product Mix Ratio 

As was the case with SQRT_sFT, PMR was statistically significant, but had an 

extremely small effect size.  It uniquely explained only 0.1% of the variation in 

SQRT_LMEAN (η
2
 = 0.001).  As PMR went from its low to high setting, the average mean 

lateness increased from 497 to 549 hours.  As expected, mean lateness was negatively 

affected for systems that were more complex due to having a balanced demand for its 

end-products (more complex) than those with one more dominant end product (less 

complex). 

 

WC: Number of Work Centers 

The number of work centers comprising a manufacturing system, WC, explained 

the largest amount of the variation in mean lateness.  It explained 26.8% of the variation 

in SQRT_LMEAN (η
2
 = 0.268).  As the number of work centers increased from four to ten, 



 

134 

the average mean lateness decreased from 791 to 255 hours.  As was the case with SFT, 

this was the opposite of what was anticipated.  In these experiments, as complexity 

increased by having more work centers in a system, the mean lateness of orders 

improved. 

 

RC: Routing Commonality 

Although statistically significant, RC explained virtually no change in 

SQRT_LMean.  RC had an η
2
 of less than 0.001.  When routing commonality went from its 

low to high setting, the average LMean decreased from 531 to 514 hours.  This indicates 

that although static complexity increased due to a system having no routing commonality, 

performance improved, as measured by mean lateness.  This was not as expected. 

 

Standard Deviation of Lateness 

Table 4.31 provides the ANOVA results for the SQRT_SL.  The adjusted R
2
 for 

the model containing all factors making up ISMC was 0.546.  Only five of the factors that 

were significant in the omnibus model were statistically significant for SQRT_SL.  In this 

model, P, the number of end-products, was not statistically significant at the 1% level.  

The factors D, B and WC had large effect sizes, combining to explain over 53% of the 

variation in SQRT_SL.  A discussion of each statistically significant factor follows. 
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Table 4.31.  ANOVA Results for SQRT_ SL 

 

Tests of Between-Subjects Effects 

  

Source 

Type III 

Sum of Squares df 

Mean 

Square F Significance 

Eta 

Squared 

       

Corrected Model 285,448.40 8 35,681.05 1,155.738 0.000  

Intercept 4,653,592.04 1 4,653,592.04 150,733.621 0.000  

P 180.94 1 180.94 5.861 0.016 0.000 

D 55,331.77 1 55,331.77 1,792.241 0.000 0.106 

B 74,978.20 1 74,978.20 2,428.605 0.000 0.144 

CC 156.78 1 156.78 5.078 0.024 0.000 

PMR 7,172.06 1 7,172.06 232.309 0.000 0.014 

OPS 1.54 1 1.54 0.050 0.823 0.000 

WC 147,383.89 1 147,383.89 4,773.884 0.000 0.282 

RC 243.21 1 243.21 7.878 0.005 0.000 

Error 236,826.43 7671 30.87   0.453 

Total 5,175,866.87 7680    1.000 

Corrected Total 522,274.83 7679     

       

R Squared = .547 (Adjusted R Squared = .546)  

 

 

 

D: Depth of Product Structure 

The depth of the product structure, D, explained nearly 11% of the total variation 

in SQRT_SL (η
2
 = 0.106).  As anticipated, as the depth of the product structure increased, 

the average variability in mean order lateness increased, i.e. performance declined.  

Table 4.32 displays the marginal means for each of the statistically significant factors.  

When the number of levels in the product structure changed from two to five in the 

experimental systems, the average sL increased from 541 to 807 hours. 
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Table 4.32  Marginal Means for sL 

 

Factor Low High 

   

P N.S. 

D 540.93 806.95 

B 523.47 824.41 

PMR 630.50 717.38 

WC 898.60 449.29 

RC 679.42 668.46 

 

 

 

B: Breadth of Product Structure 

The complexity factor, B, had an η
2
 of 0.144. This means that breadth explains 

the second largest portion of the variance in lateness.  As expected, systems with narrow 

product structures had more predictable mean lateness than systems with broad products 

structures.  The mean sL was 523 hours for experiments at the low setting for B, 

compared to 824 hours for experiments at the high setting. 

 

PMR: Product Mix Ratio 

The PMR factor explained 1.4% of the variation in SQRT_sL.  In experiments at 

the low setting for PMR, (i.e., a dominant end product), the average sL was 631 hours.  At 

the high complexity setting for PMR, the mean sL was 717 hours.  The results were as 

expected.  Systems that are more complex (i.e., they have a balanced demand for their 

end-products) had a higher standard deviation of order lateness than systems with a 

dominant end product. 
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WC: Number of Work Centers 

The number of work centers in a system, WC, uniquely explained the greatest 

amount of variation in SQRT_sL.   WC explained over 28% of the total variation in this 

performance measure.  However, the marginal means show that as the number of work 

centers in a system increased, variation in the mean order lateness decreased, meaning the 

system was more predictable in terms of mean order lateness.  At the low complexity 

setting for WC (i.e., fewer work centers), the sL was 899 hours compared to 449 hours at 

its high complexity setting. 

 

RC: Routing Commonality 

Once again, routing commonality was statistically significant, but explained 

virtually no change in manufacturing performance as measured by sL.  RC had an η
2
 less 

than 0.001. The relationship of RC to variability of order lateness was opposite of what 

was anticipated.  Experiments with some routing commonality (low complexity) had a 

mean sL of 679 hours.  Those systems with no routing commonality had slightly less 

variability having a mean sL of 668 hours. 

 

Mean Tardiness 

The ANOVA results for mean lateness are presented in Table 4.33.  All six 

factors identified in the omnibus model were significant predictors of SQRT_TMEAN.  The 

adjusted R
2
 for the model including all internal manufacturing static complexity factors 

was 0.529, explaining more the half of the variation in the DV.  Two factors, B and WC, 
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explained a substantial portion of the variation in mean tardiness - a total of 43.5%. A 

discussion of each statistically significant complexity factor follows.  

 

Table 4.33  ANOVA Results for SQRT_TMean 

 

Tests of Between-Subjects Effects 

  

Source 

Type III 

Sum of Squares df 

Mean 

Square F Significance 

Eta 

Squared 

       

Corrected Model 438,370.69 8 54,796.34 1,080.238 0.000  

Intercept 3,624,668.52 1 3,624,668.52 71,455.602 0.000  

P 32,342.91 1 32,342.91 637.598 0.000 0.039 

D 36,058.45 1 36,058.45 710.845 0.000 0.044 

B 127,361.54 1 127,361.54 2,510.766 0.000 0.154 

CC 309.48 1 309.48 6.101 0.014 0.000 

PMR 9,102.13 1 9,102.13 179.437 0.000 0.011 

OPS 0.30 1 0.30 0.006 0.939 0.000 

WC 232,646.44 1 232,646.44 4,586.320 0.000 0.281 

RC 549.44 1 549.44 10.831 0.001 0.001 

Error 389,120.40 7671 50.73   0.470 

Total 4,452,159.61 7680    1.000 

Corrected Total 827,491.08 7679     

       

R Squared = .530 (Adjusted R Squared = .529)  

 

 

 

P: Number of End-products 

The complexity factor, P, explained 3.9% of the variation in TMEAN.  As shown in 

the Table 4.34, when comparing experiments at the low setting for P to those with the 

high setting, the average TMEAN increased from 502 to 657 hours.  As expected, systems 

with more end-products tended to have higher mean order tardiness. 
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D: Depth of Product Structure 

The depth of product structure, D, explained 4.4% of the variation in mean 

tardiness (η
2
 = 0.044).  In these experiments, systems with shallow product structures had 

an average TMEAN of 488 hours opposed to 671 for systems with deep product structures.  

Performance declined in terms of mean tardiness as static complexity increased due to the 

depth of product structures.  This was the expected result. 

 

Table 4.34  Marginal Means for TMEAN 

 

Factor Low High 

   

P 502.35 657.07 

D 488.42 671.00 

B 407.01 752.41 

PMR 531.53 627.89 

WC 831.66 327.76 

RC 586.60 572.81 

 

 

 

B: Breadth of Product Structure 

The depth of the product structure, B, had an η
2
 of 0.154.  Systems with a narrow 

product structure (lower complexity) outperformed those with broad product structures 

(higher complexity).  When B was at the low setting, the average TMEAN was 407 hours in 

contrast to 752 hours for experiments when B was at the high setting.  The purported 

relationship existed because performance was worse, as measured by mean tardiness, 

when product structures were broad as opposed to narrow. 
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PMR: Product Mix Ratio 

The PMR factor had an η
2
 of 0.011.  The average mean tardiness was lower for 

experiments with PMR at the low complexity setting (TMEAN = 532 hours) than at the 

high complexity setting (TMEAN = 628 hours).  These results support the expectation that 

systems with a dominant end product demand had better mean order tardiness than 

systems without a dominant end product. 

 

WC: Number of Work Centers 

Over 28% of the variation in mean tardiness (SQRT_TMEAN) was explained by the 

factor WC.   The average TMEAN of systems with fewer work centers (lower complexity) 

was 832 hours.  This is much higher than the 328 hours observed for systems with more 

work centers.  This was the opposite of what was anticipated.  These results indicate that 

systems with more work centers with the same bottleneck utilization (85%) had better 

performance than systems with fewer work centers. 

 

RC: Routing Commonality 

While RC was statistically significant, it explained virtually no change in 

SQRT_TMean.  RC explained 0.1% of the variation in SQRT_TMean (η
2
 = 0.001).  

Observing the marginal means, performance was better for systems with no routing 

commonality than for those with some commonality in routings. The average mean 

tardiness was 587 hours at the low complexity setting, slightly higher than the 573 hours 

at the high complexity setting for RC.  This was contrary to what was anticipated. 
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Standard Deviation of Tardiness 

The ANOVA results for the SQRT_ST are shown in Table 4.35.  The model with 

all complexity factors explains 55% of the variation in the DV.  The six factors 

significant in the omnibus model were also statistically significant predictors of SQRT_ 

ST.  Over 53% of the total variation in the DV is explained by three primary factors – D, 

B and WC.  The remaining three factors, P, PMR, and RC, combined to explain less than 

2% of SQRT_ST.  Following is a discussion of each significant complexity factor. 

 

Table 4.35.  ANOVA Results for SQRT_ ST 

 

Tests of Between-Subjects Effects 

  

Source 

Type III 

Sum of Squares df 

Mean 

Square F Significance 

Eta 

Squared 

       

Corrected Model 337,509.77 8 42,188.72 1,173.372 0.000  

Intercept 4,255,181.35 1 4,255,181.35 118,347.056 0.000  

P 5,128.55 1 5,128.55 142.638 0.000 0.008 

D 55,570.51 1 55,570.51 1,545.553 0.000 0.091 

B 96,295.29 1 96,295.29 2,678.209 0.000 0.157 

CC 215.59 1 215.59 5.996 0.014 0.000 

PMR 2,682.00 1 2,682.00 74.593 0.000 0.004 

OPS 105.29 1 105.29 2.928 0.087 0.000 

WC 177,143.80 1 177,143.80 4,926.805 0.000 0.289 

RC 368.74 1 368.74 10.256 0.001 0.001 

Error 275,811.64 7671 35.96   0.450 

Total 4,868,502.75 7680    1.000 

Corrected Total 613,321.41 7679     

       

R Squared = .550 (Adjusted R Squared = .550)  
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P: Number of End-products 

The number of end-products produced in a manufacturing system, P, accounted for only 

0.8% of the variation in SQRT_sT.  The marginal means for the statistically significant 

complexity factors is provided in Table 4.36.  At the low setting for P the average sT was 

609 hours.  At the high complexity setting for P, the mean sT was only 659 hours.  

Contrary to what was anticipated, the results indicate that systems with more end-

products (i.e. more complex) have more predictable mean order tardiness than do systems 

with fewer end-products (i.e. less complex). 

 

Table 4.36  Marginal Means for sT 

 

Factor Low High 

   

P 608.94 658.90 

D 506.67 761.17 

B 474.37 793.47 

PMR 608.48 659.36 

WC 866.27 401.57 

RC 639.92 627.92 

 

 

 

D: Depth of Product Structure 

The depth of the product structure, D, had a η
2
 of 9.1%.  Variability in mean 

tardiness was greater for systems with deep product structures than systems with shallow 

product structures.  The mean sT was 507 hours for systems at the high setting for D 

compared to 761 hours for systems at the low setting.  This is consistent with 

expectations. 

 



 

143 

B: Breadth of Product Structure 

The complexity factor, B, had an η
2
 of 0.157 meaning this factor uniquely 

explains nearly 16% of the variation in this performance measure.  As anticipated, 

systems with narrow product structures encountered less variability in mean order 

tardiness than the systems with broad product structures.  When B was at its low setting, 

the mean sT was 474 hours.  At the high setting for B, the mean sT was 793 hours, 

substantially higher. 

 

PMR: Product Mix Ratio 

The PMR factor explained 0.4% of the variation in SQRT_sT.  In experiments 

conducted at the low setting of PMR, mean sT was 608 hours compared to 659 hours at 

the high setting.  This is consistent with the expectation that systems with low complexity 

due to having a dominant end product are more predictable in terms of mean tardiness 

than system with no dominant end product. 

 

WC: Number of Work Centers 

Once again the number of work centers in a system, WC, uniquely explained the 

greatest amount of variation in performance – 28.9%.  As with all previous performance 

measures, the results are contrary to what was expected.  As the number of work centers 

increased, performance improved, i.e. sT decreased.  At the low complexity setting for 

WC, sT was 866 hours.  At the high setting for WC, sT was only 402 hours. 
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RC: Routing Commonality 

As is the case for the previous four performance measures, the routing 

commonality factor, RC, was statistically significant, but explained virtually none of the 

variation in SQRT_sT.  RC had an η
2
 of 0.001.  Contrary to what was anticipated, but 

consistent with all other DVs, as static complexity increased by reducing the amount of 

routing commonality, performance improved.  Systems with less routing commonality, 

i.e. more complex, were more predictable in terms of mean tardiness.  The average sT for 

systems at the low complexity setting for RC was 640 hours.  For system at the high 

complexity setting for RC, the mean sT was slightly diminished at 628 hours. 

 

Post hoc Analysis 

A post hoc analysis was conducted of the findings related to hypothesis 2. The 

influence of due date “tightness” and the mean protective capacity were examined to 

determine if they could explain the results.  Systems where management sets “tighter” 

due dates may explain a sizeable portion of the variation observed in the manufacturing 

performance measures and change how we interpret the influence of the factors 

comprising ISMC.  Additionally, the amount of mean protective capacity may similarly 

help to explain system performance and moderate the affect of these complexity factors.  

From these concerns, these factors were included in a set of ANCOVA models to test for 

observable affects on manufacturing performance.  The covariate, PC, will be used to 

adjust DV scores in order to remove undesirable variance, i.e. noise, and clarify the 

effects due to factors and their interactions (Tabachnik and Fidell, 2001). 
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The revised model included k and PC and the interaction of k with the eight 

experimental factors.  The general linear model for the ANCOVA model used in the 

revised “omnibus” test is given by: 

FDV  = µ + P + B + D + CC + PMR + OP + WC + RC + k  

+ k*P +  k*B +  k*D + k*CC +  k*PMR +  k*OP + k*WC +  k*RC + PC 

+ ε 

 

The new statistical null hypothesis is: 

H10: P = B = D = CC = PMR = OP = WC = RC = k =  k*P = k*B = k*D = k*CC 

= k*PMR = k*OP = k*WC = k*RC = PC = 0 

 

 

The “Omnibus” ANCOVA Results 

The results of the ANCOVA are presented in Table 4.37.  For this analysis, 

variables with p-values less than .01 indicate that the variable is statistically related to the 

performance measure.  The null hypothesis for the revised H2 is rejected because at least 

one factor is shown to be statistically related to manufacturing performance.  Seven of the 

eight factors were shown to be related to the overall manufacturing performance measure 

factor, FDV.  These were P, D, B, PMR, OPS, WC, and RC.  Additionally, the due date 

tightness factor, k, the covariate, PC, and two interactions, k*P and k*D, were 

statistically significant in the omnibus test. 
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Table 4.37  ANCOVA Results for the Omnibus model 

 

Tests of Between-Subjects Effects 

Dependent Variable: Factor Score of transformed DVs  

Source 

Type III 

Sum of Squares df 

Mean 

Square F Significance 

      

Corrected 

Model 
4,498.24 18 249.90 601.900 0.000 

Intercept 86.24 1 86.24 207.716 0.000 

P 136.15 1 136.15 327.925 0.000 

D 816.96 1 816.96 1,967.677 0.000 

B 1,274.33 1 1,274.33 3,069.281 0.000 

CC 1.21 1 1.21 2.913 0.088 

PMR 34.60 1 34.60 83.325 0.000 

OPS 31.91 1 31.91 76.861 0.000 

WC 1,191.68 1 1,191.68 2,870.212 0.000 

RC 3.27 1 3.27 7.876 0.005 

k 149.27 1 149.27 359.535 0.000 

k * P 17.00 1 17.00 40.936 0.000 

k * D 8.01 1 8.01 19.287 0.000 

k * B 1.48 1 1.48 3.563 0.059 

k * CC 0.03 1 0.03 0.080 0.778 

k * PMR 1.75 1 1.75 4.215 0.040 

k * OPS 0.07 1 0.07 0.160 0.690 

k * WC 0.99 1 0.99 2.382 0.123 

k * RC 0.00 1 0.00 0.010 0.922 

Mean_PC 91.58 1 91.58 220.586 0.000 

Error 3,180.76 7,661 0.42   

Total 7,679.00 7,680    

Corrected Total 7,679.00 7,679    

      

R Squared = .586 (Adjusted R Squared = .585) 

 

 

 

Follow-up Tests 

In the follow-up tests to determine which complexity factors were important to 

explaining each performance measure, an ANCOVA was conducted for each DV.  Only 

significant effects that resulted from the omnibus ANCOVA were analyzed.  A summary 

of the ANOCOVAs is found in Table 4.38. 
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Due date tightness factor - k 

As expected, neither the due date tightness factor, k, nor any of the interactions 

with k were statistically significant for the dependent variable SQRT_SFT.  The tightness 

of due dates should not affect flow time either in terms of mean flow time or variation in 

flow time.  For the remaining four DVs, k, k*P, and k*D were statistically significant.  

The due date tightness factor, k, explained 7.3% and 5.1% of the variation in mean 

lateness (SQRT_LMean) and mean tardiness (SQRT_TMean), respectively.  It explained 

only 0.7% and 2.0% of the variation in SQRT_sL and SQRT_sT, respectively. 

By including the due date tightness factor, k, all statistical models explained more 

of the variation in manufacturing performance.  This result was entirely expected, 

because k was included as an experimental factor. 

 

Protective capacity - PC 

In order to evaluate the impact of including the interaction effects associated with 

k and the effect of PC, the three statistical models were compared.  Model 1 is the 

original ANOVA with the eight research factors.  Model 2 adds the due date tightness 

factor and corresponding interactions.  Model 3 is the ANCOVA model that incorporates 

PC into Model 2.  Similar to hierarchical regression, the statistical significance in the 

change to adjusted R
2
 was tested.  Tables 4.39 through 4.43 summarizes the effect size 

(η
2
) and significance for each factor and the results of the tests for change in adjusted R

2
, 

first, between Model 1 and Model 2, then between Model 2 and Model 3.



 

 

Table 4.38  ANCOVA Summary Results for Individual Performance Measures 

 

  SQRT_SFT SQRT_LMean SQRT_SL SQRT_TMean SQRT_ST 

Factor Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared 

                     

P 0.000 0.004 0.000 0.075 0.000 0.008 0.000 0.053 0.000 0.021 

D 0.000 0.291 0.000 0.035 0.000 0.132 0.000 0.058 0.000 0.114 

B 0.000 0.147 0.000 0.171 0.000 0.174 0.000 0.182 0.000 0.188 

CC 0.000 0.001 0.259 0.000 0.101 0.000 0.629 0.000 0.292 0.000 

PMR 0.000 0.006 0.000 0.003 0.000 0.020 0.000 0.016 0.000 0.008 

OPS 0.000 0.006 0.000 0.002 0.000 0.006 0.000 0.004 0.000 0.004 

WC 0.000 0.144 0.000 0.150 0.000 0.177 0.000 0.161 0.000 0.174 

RC 0.018 0.000 0.008 0.000 0.014 0.000 0.002 0.001 0.003 0.001 

k 0.056 0.000 0.000 0.073 0.000 0.007 0.000 0.051 0.000 0.020 

k * P 0.058 0.000 0.000 0.009 0.000 0.001 0.000 0.003 0.000 0.005 

k * D 0.133 0.000 0.000 0.004 0.000 0.001 0.000 0.002 0.000 0.001 

k * B 0.410 0.000 0.018 0.000 0.133 0.000 0.109 0.000 0.000 0.001 

k * CC 0.779 0.000 0.802 0.000 0.706 0.000 0.697 0.000 0.580 0.000 

k * PMR 0.001 0.001 0.387 0.000 0.000 0.002 0.000 0.001 0.000 0.001 

k * OPS 0.749 0.000 0.179 0.000 0.829 0.000 0.619 0.000 0.565 0.000 

k * WC 0.029 0.000 0.153 0.000 0.072 0.000 0.184 0.000 0.000 0.001 

k * RC 0.974 0.000 0.945 0.000 0.906 0.000 0.964 0.000 0.731 0.000 

Mean_PC 0.000   0.000   0.000  0.000   0.000   

                    

Adjusted R
2
 0.636 0.584 0.571 0.588 0.586 

 

 

1
4
8
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It should be noted that no effect size was calculated for PC, because it is a 

covariate providing adjustment to the means of the other effects in the model.  The effect 

size for the main and interaction effects was calculated by dividing the sum of squares for 

the effect by the adjusted total sum of squares.  The adjusted total sum of squares is the 

total of the sum of squares for all main and interaction effects and the sum of squares 

error.  The calculated sum of squares for the covariate is excluded (Tabachnick and 

Fidell, 2001). 

As expected, including k and its interaction with the eight complexity factors did 

not make any difference to sFT since flow time is not a measure of comparison to the 

order’s due date.  However, for the remaining four performance measures, the models 

that included k are better at explaining performance.  The largest increases in adjusted R
2
 

occurred for mean lateness and mean tardiness performance measures, which increased 

by 7.5% and 5% respectively.  The due date tightness factor also helped to explain more 

of the variation in performance for sL and sT.  Adjusted R
2
 for these measures increased 

by 1% and 2.5% respectively. 

Continuing the discussion of the significant interactions involving k, as seen in 

Tables 4.40 through 4.43, the effect size, η
2
, for each of the interactions was always less 

than 1%, meaning that, although the interactions are statistically significant, they played a 

very small role in explaining the change in performance. The adjusted marginal means 

for the interactions are shown in Table 4.44.  When comparing the marginal means for 

the k*P interaction, across all four of the later performance measures, regardless of the 

level of k, systems with more end-products performed worse than systems with fewer 

end-products.  Similarly for the k*D interaction, regardless of k, systems with more 
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levels in their product structures were outperformed by system with fewer levels.  The 

effect of D and P were both as expected.  

Referring to the marginal means for both the k*P and k*D interactions in 

Table 4.44, for all four performance measures in which these interactions were 

significant, performance was better in systems where due dates were set “loose” 

compared to systems where dues dates were set “tight”.  For mean lateness and mean 

tardiness, this was anticipated.  When due dates are set tighter, these measures should 

increase.  This explains the larger effect size of k for these two performance measures. 

As seen in the results from Model 3 for all performance measures, the covariate, 

PC, was statistically significant, meaning that the differences in the amount of mean 

protective capacity do help explain variation in performance.  In addition to being 

statistically significant, the inclusion of PC provided a clearer picture of the effects of 

some of the other factors. 

In comparing the results of these models, the three factors that constantly 

contributed to explaining the largest variation in performance were affected by the 

addition of the covariate, PC, into the statistical model.  For all performance measures, 

the effect size of factor D was larger in the presence of the covariate.  With the exception 

of sFT, the effect size for product structure breadth, B, was also larger when the affect of 

PC was considered.  The more interesting finding pertained to the factor WC.  In all 

cases, the effect size of WC decreased substantially.  The smallest decrease was 7% for 

SQRT_sFT.  For SQRT_TMEAN and SQRT_LMEAN, the effect size of WC decreased by 

12%.  This indicates that a substantial portion of what originally was attributed to WC 

was due to differences in PC. 
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Table 4.39  ANOVA/ANCOVA Model Comparisons: DV = SQRT_sFT 

 

 Effect Size (η
2
) & significance 

Factor Model 1 Model 2 Model 3 

    

P 0.024 0.024 0.004 

 (<0.000) (<0.000) (<0.000) 

D 0.251 0.251 0.291 

 (<0.000) (<0.000) (<0.000) 

B 0.120 0.120 0.147 

 (<0.000) (<0.000) (<0.000) 

CC 0.000 0.000 0.001 

 (0.860) (0.860) (<0.000) 

PMR 0.010 0.010 0.006 

 (<0.000) (<0.000) (<0.000) 

OPS 0.000 0.000 0.006 

 (0.895) (0.895) (<0.000) 

WC 0.216 0.216 0.144 

 (<0.000) (<0.000) (<0.000) 

RC 0.000 0.000 0.000 

 (0.006) (0.006) (0.018) 

k - 0.000 0.000 

 - (0.061) (0.056) 

k * P - 0.000 0.000 

 - (0.063) (0.058) 

k * D - 0.000 0.000 

 - (0.140) (0.133) 

k * B - 0.000 0.000 

 - (0.419) (0.410) 

k * CC - 0.000 0.000 

 - (0.783) (0.779) 

k * PMR - 0.001 0.001 

 - (0.001) (0.001) 

k * OPS - 0.000 0.000 

 - (0.754) (0.749) 

k * WC - 0.000 0.000 

 - (0.033) (0.029) 

k * RC - 0.000 0.000 

 - (0.974) (0.974) 

Mean_PC - - N/A 

 - - (<0.000) 

Adjusted R
2
 0.621 0.621 0.636 

Increase to R
2
 - 0.000 0.015 

F statistic - - 2.56 

p-value of F statistic - - 0.000 
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Table 4.40.  ANOVA/ANCOVA Model Comparisons: DV = SQRT_LMEAN 

 

 Effect Size (η
2
) & significance 

Factor Model 1 Model 2 Model 3 

    

P 0.064 0.064 0.075 

 (<0.000) (<0.000) (<0.000) 

D 0.025 0.025 0.035 

 (<0.000) (<0.000) (<0.000) 

B 0.145 0.145 0.171 

 (<0.000) (<0.000) (<0.000) 

CC 0.000 0.000 0.000 

 (0.144) (0.113) (0.259) 

PMR 0.001 0.001 0.003 

 (<0.000) (<0.000) (<0.000) 

OPS 0.000 0.000 0.002 

 (0.455) (0.417) (<0.000) 

WC 0.268 0.268 0.150 

 (<0.000) (<0.000) (<0.000) 

RC 0.000 0.000 0.000 

 (0.007) (0.003) (0.008) 

k - 0.063 0.073 

 - (<0.000) (<0.000) 

k * P - 0.007 0.009 

 - (<0.000) (<0.000) 

k * D - 0.004 0.004 

 - (<0.000) (<0.000) 

k * B - 0.000 0.000 

 - (0.019) (0.018) 

k * CC - 0.000 0.000 

 - (0.804) (0.802) 

k * PMR - 0.000 0.000 

 - (0.391) (0.387) 

k * OPS - 0.000 0.000 

 - (0.183) (0.179) 

k * WC - 0.000 0.000 

 - (0.156) (0.153) 

k * RC - 0.000 0.000 

 - (0.945) (0.945) 

Mean_PC - - N/A 

 - - (<0.000) 

Adjusted R
2
 0.503 0.578 0.584 

Increase to R
2
 - 0.075 0.006 

F statistic - 35.66 1.14 

p-value of F statistic - 0.000 0.306 
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Table 4.41  ANOVA/ANCOVA Model Comparisons: DV = SQRT_sL 
 

 

 Effect Size (η
2
) & significance 

Factor Model 1 Model 2 Model 3 

    

P 0.000 0.000 0.008 

 (0.016) (0.014) (<0.000) 

D 0.106 0.106 0.132 

 (<0.000) (<0.000) (<0.000) 

B 0.144 0.144 0.174 

 (<0.000) (<0.000) (<0.000) 

CC 0.000 0.000 0.000 

 (0.024) (0.023) (0.101) 

PMR 0.014 0.014 0.020 

 (<0.000) (<0.000) (<0.000) 

OPS 0.000 0.000 0.006 

 (0.823) (0.821) (<0.000) 

WC 0.282 0.282 0.177 

 (<0.000) (<0.000) (<0.000) 

RC 0.000 0.000 0.000 

 (0.005) (0.005) (0.014) 

k - 0.006 0.007 

 - (<0.000) (<0.000) 

k * P - 0.001 0.001 

 - (<0.000) (<0.000) 

k * D - 0.001 0.001 

 - (<0.000) (<0.000) 

k * B - 0.000 0.000 

 - (0.140) (0.133) 

k * CC - 0.000 0.000 

 - (0.711) (0.706) 

k * PMR - 0.002 0.002 

 - (<0.000) (<0.000) 

k * OPS - 0.000 0.000 

 - (0.832) (0.829) 

k * WC - 0.000 1.000 

 - (0.077) (0.072) 

k * RC - 0.000 1.000 

 - (0.907) (0.906) 

Mean_PC - - N/A 

 - - (<0.000) 

Adjusted R
2
 0.546 0.556 0.571 

Increase to R
2
 - 0.010 0.015 

F statistic - 4.34 2.99 

p-value of F statistic - 0.000 0.000 
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Table 4.42  ANOVA/ANCOVA Model Comparisons: DV = SQRT_TMEAN 
 

 

 Effect Size (η
2
) & significance 

Factor Model 1 Model 2 Model 3 

    

P 0.039 0.039 0.053 

 (<0.000) (<0.000) (<0.000) 

D 0.044 0.044 0.058 

 (<0.000) (<0.000) (<0.000) 

B 0.154 0.154 0.182 

 (<0.000) (<0.000) (<0.000) 

CC 0.000 0.000 0.000 

 (0.014) (0.009) (0.629) 

PMR 0.011 0.011 0.016 

 (<0.000) (<0.000) (<0.000) 

OPS 0.000 0.000 0.004 

 (0.939) (0.935) (<0.000) 

WC 0.281 0.281 0.161 

 (<0.000) (<0.000) (<0.000) 

RC 0.001 0.001 0.001 

 (0.001) (0.001) (0.002) 

k - 0.045 0.051 

 - (<0.000) (<0.000) 

k * P - 0.003 0.003 

 - (<0.000) (<0.000) 

k * D - 0.002 0.002 

 - (<0.000) (<0.000) 

k * B - 0.000 0.000 

 - (0.113) (0.109) 

k * CC - 0.000 0.000 

 - (0.700) (0.697) 

k * PMR - 0.001 0.001 

 - (<0.000) (<0.000) 

k * OPS - 0.000 0.000 

 - (0.623) (0.619) 

k * WC - 0.000 0.000 

 - (0.188) (0.184) 

k * RC - 0.000 0.000 

 - (0.964) (0.964) 

Mean_PC - - N/A 

 - - (<0.000) 

Adjusted R
2
 0.529 0.579 0.588 

Increase to R
2
 - 0.050 0.009 

F statistic - 22.53 1.70 

p-value of F statistic - 0.000 0.032 
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Table 4.43  ANOVA/ANCOVA Model Comparisons: DV = SQRT_sT 
 

 

 Effect Size (η
2
) & significance 

Factor Model 1 Model 2 Model 3 

    

P 0.008 0.008 0.021 

 (<0.000) (<0.000) (<0.000) 

D 0.091 0.091 0.114 

 (<0.000) (<0.000) (<0.000) 

B 0.157 0.157 0.188 

 (<0.000) (<0.000) (<0.000) 

CC 0.000 0.000 0.000 

 (0.014) (0.012) (0.292) 

PMR 0.004 0.004 0.008 

 (<0.000) (<0.000) (<0.000) 

OPS 0.000 0.000 0.004 

 (0.087) (0.078) (<0.000) 

WC 0.289 0.289 0.174 

 (<0.000) (<0.000) (<0.000) 

RC 0.001 0.001 0.001 

 (0.001) (0.001) (0.003) 

k - 0.018 0.020 

 - (<0.000) (<0.000) 

k * P - 0.004 0.005 

 - (<0.000) (<0.000) 

k * D - 0.001 0.001 

 - (<0.000) (<0.000) 

k * B - 0.001 0.001 

 - (<0.000) (<0.000) 

k * CC - 0.000 0.000 

 - (0.585) (0.580) 

k * PMR - 0.001 0.001 

 - (<0.000) (<0.000) 

k * OPS - 0.000 0.000 

 - (0.570) (0.565) 

k * WC - 0.001 0.001 

 - (<0.000) (<0.000) 

k * RC - 0.000 0.000 

 - (0.735) (0.731) 

Mean_PC - - N/A 

 - - (<0.000) 

Adjusted R
2
 0.550 0.575 0.586 

Increase to R
2
 - 0.025 0.011 

F statistic - 10.76 2.10 

p-value of F statistic - 0.000 0.004 
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Table 4.44  Adjusted Marginal Means 

 

Complexity 

Factor Level*  SFT LMEAN SL TMEAN ST 

             

0  773.01 849.20 566.22 362.09 487.40 
P 

1  712.15 1,154.27 647.00 596.38 625.00 

        

0  539.11 908.03 468.87 372.08 423.53 
D 

1  977.85 1,087.82 760.55 583.71 702.09 

        

0  589.80 801.58 445.43 298.59 385.12 
B 

1  912.25 1,211.27 791.09 684.86 753.63 

        

0  774.67 971.74 551.07 418.92 518.88 
PMR 

1  710.56 1,020.34 663.41 528.17 590.39 

        

0  703.55 966.76 568.23 439.04 523.96 
OPS 

1  782.03 1,025.45 644.85 506.07 585.00 

        

0  1,028.49 1,338.33 927.92 820.44 885.45 
WC 

1  502.63 703.96 352.30 219.22 300.00 

        

0  986.18 461.53 545.01 
RC 

1  
N.S. 

1,005.65 
N.S. 

482.51 563.18 

        

0  874.97 573.93 381.32 499.52 
k 

1  
N.S. 

1,124.64 638.81 572.26 611.42 

Significant 

Interactions 

  
k 

    

      

0 701.54 522.65 265.07 412.98 
0 1 N.S. 1,010.94 

611.53 474.20 

567.97 

 

0 1,067.53 627.61 518.65 594.29 

P 

1 
1 

N.S. 
1,244.39 666.69 679.52 656.47 

        

0 819.66 451.32 307.93 386.09 
0 

1 
N.S. 

1,000.91 486.77 442.29 462.71 

       

0 932.08 711.26 462.55 627.55 

D 

1 
1 

N.S. 
1,255.58 811.49 718.95 780.83 

 

 

* Low setting = 0; High setting = 1 
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Further analysis of the PC revealed that there was a difference in the amount of 

protective capacity in systems with four work centers compared to systems with ten work 

centers.  The average PC for systems with four work centers was 15.5%.  This is 17.6% 

lower than the average of systems with ten work centers – 33.1%.  (Refer to Appendix C 

for work center protective capacity and utilization statistics.)  This likely contributed to 

the high effect size for the WC factor.  Additionally, it helps, in part, to explain the 

“reverse prediction” of performance by WC.  Because the PC tended to be much larger 

for experiments with many work centers (ten) than for those with few work centers 

(four), it is logical that performance would improve.  The opportunity for a “moving” 

bottleneck or simultaneous bottleneck work centers is reduced when the mean protective 

capacity in a system is higher. 

Although the inclusion of PC did help explain part of the large effect due to the 

number of work centers, WC, the relationship between WC and performance has not 

changed.  As the number of work centers increased, performance improved for all five 

measures of performance.  This was the case for RC as well.  However, when controlling 

for mean protective capacity, RC was not statistically significant for the performance 

measures sFT and sL. 

Lastly, one additional factor became statistically significant when the covariate 

was considered - the number of routing steps, OPS.  Although statistically significant, 

OPS explained less than 1% of the variation of any measure of performance.   The 

marginal means for OPS show that for every measure of performance, systems with 

lower complexity due to having fewer routing steps (four) had better performance than 

systems with more routing steps (ten).  This was as anticipated. 
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Summarized results for Hypothesis 2 

The results of the ANOVAs for the eight internal manufacturing static complexity 

factors revealed that six of these factors appeared to be statistically related to 

manufacturing performance.  These were P, D, B, PMR, WC, and RC.  The models 

consisting of these factors explained a large portion of the variation in each of the five 

performance measures.  The adjusted R
2
 ranged from 0.503 to 0.621. 

Two factors, B and WC, consistently explained a sizeable portion of variation in 

performance on their own.  The factor D, depth of the product structure, individually 

explained more variation for performance measures that measured the standard deviations 

(sFT, sL, and sT), than it did for those measuring the mean of a statistic (LMEAN and 

TMEAN).  The number of end-products manufactured in a system, P, played a smaller role 

in explaining changes to performance.  It appeared to contribute more to performance 

measures involving the means for lateness and tardiness and less to those measures of the 

variation, i.e. sFT, sL, and sT.  The remaining two factors, PMR and RC, although 

statistically significant, their effect sizes were very small. 

The six significant factors did not always affect performance as expected.  The 

results for all five performance measures indicated that systems with WC at the high 

complexity setting performed better than those set to the low complexity setting for WC.  

The same occurred for factor RC across all five measures of performance.  With the 

exception of sFT, the complexity factors, P, D, B, and PMR all predicted performance as 

was anticipated - when complexity increased, performance decreased.  Only for sFT did P 

and PMR have results that were opposite of what was expected.  For both of these 
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factors, system at the high complexity setting for that factor, on average, outperformed 

those at the low complexity setting. 

In the post hoc analysis, the effects of due date tightness and mean protective 

capacity were studied.  The tightness of due date setting did not affect performance as 

measured by sFT.  Due date tightness did moderate the effect of two factors, P and D, for 

the other four measures of manufacturing performance.  In all cases, as due dates were set 

tighter, performance worsened.  The models including the due date tightness factor, k, 

with the predictable exception of sFT, explained more variation in performance than the 

initial models. 

Lastly, controlling for mean protective capacity in a system, to a small extent, 

helped to explain overall variation in the performance measures involving the variability 

in flow time, lateness, and tardiness.  The inclusion of PC helped to remove some of the 

“noise” in the variation in performance and provided a clearer idea of the effects of the 

complexity factors. The effect of the factors P, D, and B almost universally was larger 

when PC was included.  More importantly, the effect size of WC decreased substantially 

for all performance measures.  Further investigation revealed that the average amount of 

protective capacity in the experiments with higher number of work centers was much 

larger than the experiments with fewer work centers.  This helped to explain part of the 

counterintuitive results from changes in WC.  However, including PC did not change the 

way factors predicted performance.  WC and RC continued to show improved 

performance at the higher complexity setting for those factors across the five 

performance measures. 
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Tests of Hypothesis 3 

The final concern of this research was to test the ability of ISMC to predict 

performance compared to the measure of internal manufacturing static complexity 

proposed by Frizelle and Woodcock (1995).  They propose an entropy-based measure, H.  

The null hypothesis for H3 is “ISMC does not predict variation in performance better 

than H”. 

 

Regression Analysis 

In order to compare ISMC to H, a regression analysis was performed similar to 

that done for the first hypothesis regarding ISMC.  The omnibus regression model 

checked to see if H appeared to be related to overall manufacturing performance using 

the factor score of the transformed dependent variables. Table X shows the results of the 

regression.  Since the p-value of the model is less than 1%, it was concluded that H helps 

to predict manufacturing performance. 

Follow-up regression tests were performed for each of the individual performance 

measures.  The results of these tests are found in Tables 4.46 through 4.50.  H showed 

statistical significance for all performance measures.  The most important finding from 

these regression results is that, for all five measures of performance, the estimated 

coefficients for H were negative.  This indicates that for systems with greater complexity 

as measured by H, performance tended to improve.  This is not what is expected from any 

proposed measure of complexity. 
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Table 4.45  Omnibus Regression Results for H 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

       

Regression 140.21 1 140.21 142.80 0.000 0.018 

Residual 7538.79 7678 0.98    

Total 7679.00 7679     

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

       

Constant 0.314 0.029 10.979 0.000   

H -0.015 0.001 -11.950 0.000   

 

 

 

Table 4.46  Regression Results for H: DV = SQRT_sFT 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

       

Regression 12669.18 1 12669.18 229.548 0.000 0.029 

Residual 423763.61 7678 55.19    

Total 436432.79 7679     

       

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 30.233 0.215 140.814 0.000   

H -0.138 0.009 -15.151 0.000   
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Table 4.47  Regression Results for H: DV = SQRT_ LMEAN 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

       

Regression 4225.97 1 4225.97 68.801 0.000 0.009 

Residual 471609.70 7678 61.42    

Total 475835.67 7679     

       

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 33.284 0.226 146.949 0.000   

H -0.080 0.010 -8.295 0.000   

 

 

 

Table 4.48  Regression Results for H: DV = SQRT_sL 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

       

Regression 12767.95 1 12767.95 192.406 0.000 0.024 

Residual 509506.87 7678 66.36    

Total 522274.82 7679     

       

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 27.616 0.235 117.303 0.000   

H -0.139 0.010 -13.871 0.000   
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Table 4.49  Regression Results for H: DV = SQRT_ TMEAN 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

       

Regression 8215.12 1 8215.12 76.990 0.000 0.010 

Residual 819275.97 7678 106.70    

Total 827491.09 7679     

       

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 24.131 0.299 80.833 0.000   

H -0.111 0.013 -8.774 0.000   

 

 

 

Table 4.50  Regression Results for H: DV = SQRT_ sT 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 10568.86 1 10568.86 134.629 0.000 0.017 

Residual 602752.55 7678 78.50    

Total 613321.41 7679     

       

       

       

Variable 

Coefficients 

b 

Standard 

error t Significance   

Constant 26.268 0.256 102.585 0.000   

H -0.126 0.011 -11.603 0.000   
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Comparison of ISMC to H 

Although statistical analysis comparing the R
2
 values in the regression models 

with ISMC and models with H is possible, a simple visual inspection of Table 4.51 

provides the information necessary to draw a conclusion for H3.  Both measures of 

internal manufacturing static complexity explain between approximately 1 to 3 % of the 

variation in performance for the five performance measures.  It is obvious that they differ 

in their ability to predict the different measures of performance.  ISMC appears to do 

better in explaining mean lateness and mean tardiness.  H better explains the differences 

in sFT and sL.   

 

Table 4.51  Comparison of Regression Results – ISMC vs. H 

 

 Ajusted R
2
 

 SQRT_SFT SQRT_LMean SQRT_SL SQRT_TMean SQRT_ST 

      

ISMC 0.009 0.030 0.018 0.032 0.023 

H 0.029 0.009 0.024 0.010 0.017 

ISMC - H -0.020 0.021 -0.006 0.022 0.006 

 

 

 

Post hoc Analyses 

As with the first two hypotheses, further analysis of the effect of H was conducted 

giving consideration to the tightness of due date and the amount of mean protective 

capacity.  A set of hierarchical regressions were performed, the same as was done for the 

analysis of ISMC, that included the factors k and PC and the interactions k*H and H*PC. 

An omnibus test was conducted first using the factor of the transformed DVs in 

order to prevent inflation of the probability of making a Type I error.  The regression 
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results for the omnibus test are provided in Table 4.52.  The interaction k*H was not 

statistically significant so it was excluded from the subsequent follow-up regressions for 

each of the five performance measures. 

Tables 4.53 through 4.57 show the results of the hierarchical regression for each 

of the five measures of manufacturing performance.  As would be expected, k was not 

statistically significant for the performance measure associated with flow time, 

SQRT_sFT.  For the remaining four performance measures, k was statistically significant.  

Including k in the regression model helps to explain the variation in each performance 

measure to nearly the same extent as when it was added to the corresponding regression 

model with ISMC.  In both cases, the regression models are able to separate the unique 

variation explained by the due date tightness factor. 

For all five performance measures, incorporating mean protective capacity, PC, 

caused a large increase to adjusted R
2
.  The increases are comparable to the regression 

models for ISMC.  This means that the covariate, PC, is capturing the same variation in 

performance in the presence of the complexity measure H as it does for ISMC.  There 

were small differences between the regression models with H and those with ISMC. 
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Table 4.52  Omnibus Regression Results for H - Revised Model 

 

ANOVA 

       

Source 

Sum of 

Squares df 

Mean 

Square F Significance 

Adjusted 

R-Square 

Regression 1916.98 5 383.40 510.616 0.000 0.249 

Residual 5762.02 7674 0.75    

Total 7679 7679     

       

       

Coefficients   

       

Variable b 

Standard 

error t Significance   

Constant 0.357 0.072 4.927 0.000   

H*PC 0.022 0.004 5.940 0.000   

k 0.307 0.050 6.133 0.000   

k*H -0.001 0.002 -0.624 0.533   

PC -0.989 0.271 -3.654 0.000   

H*PC -0.136 0.014 -9.723 0.000   

 

 

Table 4.53  Hierarchical Regressions for H: DV = SQRT_SFT 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

H -0.170 -0.170 -0.150 0.058 

 (<0.000) (<0.000) (<0.000) (0.099) 

k  -0.140 - - 

  (0.214) - - 

PC   -0.326 -0.104 

   (<0.000) (0.005) 

H*PC    -0.321 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.029 0.029 0.135 0.139 

Increase to R
2
 - 0.000 0.106 0.004 

F statistic - 0.00 394.93 8.85 

p-value of F statistic - 1.000 0.000 0.000 
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Table 4.54  Hierarchical Regressions for H: DV = SQRT_LMEAN 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

H -0.094 -0.093 -0.064 0.292 

 (<0.000) (<0.000) (<0.000) (<0.000) 

k  0.251 0.251 0.251 

  (<0.000) (<0.000) (<0.000) 

PC   -0.481 -0.100 

   (<0.000) (0.003) 

H*PC    -0.548 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.009 0.072 0.302 0.315 

Increase to R
2
 - 0.063 0.230 0.013 

F statistic - 479.24 818.97 23.21 

p-value of F statistic - 0.000 0.000 0.000 

 

 

Table 4.55  Hierarchical Regressions for H: DV = SQRT_SL 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

H -0.156 -0.156 -0.130 0.153 

 (<0.000) (<0.000) (<0.000) (<0.000) 

k  0.079 0.079 0.080 

  (<0.000) (<0.000) (<0.000) 

PC   -0.423 -0.121 

   (<0.000) (0.001) 

H*PC    -0.436 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.024 0.031 0.209 0.217 

Increase to R
2
 - 0.007 0.178 0.008 

F statistic - 52.44 661.81 16.18 

p-value of F statistic - 0.000 0.000 0.000 

 

 

 



 

168 

Table 4.56  Hierarchical Regressions for H: DV = SQRT_TMEAN 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

H -0.100 -0.099 -0.069 0.257 

 (<0.000) (<0.000) (<0.000) (<0.000) 

k  0.211 0.211 0.212 

  (<0.000) (<0.000) (<0.000) 

PC   -0.483 -0.134 

   (<0.000) (<0.000) 

H*PC    -0.502 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.010 0.054 0.286 0.297 

Increase to R
2
 - 0.044 0.232 0.011 

F statistic - 334.37 842.11 20.09 

p-value of F statistic - 0.000 0.000 0.000 

 

 

 

Table 4.57  Hierarchical Regressions for H: DV = SQRT_sT 

 

 Standardized β Coefficient 

 Model 1 Model 2 Model 3 Model 4 

     

H -0.131 -0.131 -0.103 0.179 

 (<0.000) (<0.000) (<0.000) (<0.000) 

k  0.132 0.132 0.133 

  (<0.000) (<0.000) (<0.000) 

PC   -0.450 -0.149 

   (<0.000) (<0.000) 

H*PC    -0.434 

    (<0.000) 

     

p-value of Model <0.000 <0.000 <0.000 <0.000 

Adjusted R
2
 0.017 0.035 0.236 0.244 

Increase to R
2
 - 0.018 0.201 0.008 

F statistic - 135.82 744.24 15.63 

p-value of F statistic - 0.000 0.000 0.000 
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The interaction H*PC was also statistically significant for all performance 

measures.  The changes in adjusted R
2
 between the model including this interaction 

(Model 4) and Model 3 was relatively small, ranging between .004 and .013.  This was 

universally smaller in all similar models that included ISMC.  This indicates that how H 

predicts performance is affected less by the amount of protective capacity than ISMC.  

This is an important consideration for any measure of complexity.  The ability of both H 

and ISMC to predict changes in manufacturing performance depends upon the amount of 

protective capacity in a system. 

Two other observations resulted from the hierarchical regression analysis.  First, 

for all five performance measures, the signs of the coefficients for PC and H*PC are 

negative.  This signifies that as mean protective capacity increased, performance 

improved.  This is supported by Lawrence and Buss (1994), but differs from the prior 

analysis of ISMC. 

Finally, when including the mediating affect of PC, the way H predicts 

performance is not always counterintuitive, i.e. as complexity increases, performance 

improves.  The coefficients of H were all negative in Models 1 -3.  When the interaction 

H*PC was included in Model 4, the coefficients of H were positive.  However, since the 

interaction was statistically significant, the level of PC must also be considered when 

interpreting these coefficients.  Since the coefficients of the H*PC interaction are 

negative, there is a point at which the amount of protective capacity in a system may 

dominate and changes in H may have counterintuitive results. 

Table 4.58 summarizes for each of the measures of manufacturing performance 

the “turning point” values for PC where H begins to “reverse predict” performance and 
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the percentage of experiments in which the PC was greater than the turning point value.  

The proportion of experiments for which H increased and predicted improved 

performance is much greater than for ISMC across all performance measures.  This 

supports ISMC having greater predictive reliability than H. 

 

Table 4.58  Evaluation of H*PC Interaction - Turning Points Values for PC 

 

 SQRT_SFT SQRT_LMean SQRT_SL SQRT_TMean SQRT_ST 

      

Turning Point for PC * 0.067 0.196 0.129 0.188 0.148 

% Above ** 93.0 59.8 76.2 61.7 72.3 

 

 
* The value for PC above which H predicts improved performance with increased complexity  

 

** The percentage of experiments with a mean PC greater than the turning point value 

Summarized Results for Hypothesis 3 

The conclusion to the third hypothesis is that ISMC does not predict performance 

better than H.  Even when considering the tightness of due dates and the mean protective 

capacity in systems, neither H nor ISMC is clearly superior.  Frizelle and Woodcock’s 

(1995) H is less affected by differences in protective capacity.  However, H tends to 

predict performance more frequently in a manner that is inconsistent with the intent of a 

measure of manufacturing complexity. 

However, neither does much to explain any one performance measure.  To then 

suggest that ISMC is better or worse than H would not mean much.  It is better to say that 

both explain little about changes in performance. 
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Alternative formulations for ISMC 

The individual factors that comprise ISMC explained a large proportion of the 

differences in system performance.  In the ANOVA models, the adjusted R
2
 always 

exceeded 0.50, i.e. they explained over 50% of the variation in any performance measure.  

The inference from analysis of the second research hypothesis is that these individual 

elements are highly related to manufacturing performance.  However the composite 

measure of complexity, ISMC, as currently formulated, did not explain much of the 

variation in manufacturing performance (adjusted R
2
 of 0.032 or less). 

There are a few possible reasons for the poor performance of ISMC.  One of the 

reasons is that ISMC assumed that systems having more work centers (WC) would have 

greater complexity and, thus, worse performance. The effect size of WC was relatively 

large (i.e., it explained between 15 to 18% of the variation in performance), but its effect 

was the opposite of the predicted direction.  So, systems with more work centers had a 

higher ISMC than systems with fewer work centers.  But, the ANOVA results showed 

improved performance for systems with more work centers, instead of decreased 

performance. An explanation of how the research design failed to control for the effect of 

the number of work centers on protective capacity was given earlier. 

ISMC performance may have been hurt by including factors that had no statistical 

or practical significance, e.g. CC and OPS. Changes in any of these factors resulted in a 

change in the value of ISMC, but there was little, if any, corresponding change in 

manufacturing performance.  This further reduced the reliability of ISMC. 

Another possible cause of poor predictive reliability of ISMC was the method 

used to measure some of the individual elements of complexity.  For example, the 
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method used to incorporate the routing commonality factor (RC) was one of many 

possible methods.  This researcher chose to evaluate routing commonality by calculating 

the proportion of identical routings in a system and then create a factor based on that 

proportion ranging between one (i.e. least complex) to two (i.e. most complex). 

A post hoc analysis was conducted to examine whether different formulations of 

ISMC would improve its validity. Four of the eight complexity factors were highly 

correlated with manufacturing performance – D, B, WC, and P. But as stated earlier, WC 

cannot be considered to be a reliable metric. Therefore, it was excluded from post hoc 

analysis. Revised formulations for ISMC that incorporate D, B and P were examined, 

because each of these factors explained a proportion of performance that was practically 

significant.  The breadth of the product structures had a consistently large effect on all 

five measure of manufacturing performance, explaining from 15% to 18% of the 

variation in performance.  The number of levels in the product structures (D) was not as 

consistent over all the performance measures, but was substantially more correlated to 

those measuring the predictability of orders, e.g. the standard deviation of flow time.  The 

number of end-products (P) was shown not to have much effect on the predictability 

measures, but it had higher correlations with the measure of mean performance, e.g. 

mean lateness.  Including these practically significant complexity factors in the revised 

ISMC should result in a measure that recognizes the impact to both mean performance 

and predictability. 

Two possible formulations for the revised ISMC are suggested in the following 

equations. 
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where |E| is the number of distinct end-items, Qi represents the total requirements (e.g. 

annual) for the i
th
 end-item, di is the number of levels in the product structure for the i

th
 

end item, and bi is the breadth of the product structure of the i
th
 end item.  The number of 

end-products is reflected by e.  The weighted average number of levels in the products 

structures for all end-products, the second term, measures the depth of the product 

structures in a manufacturing system.  Similarly, the weighted average breadth of the 

product structures for all end-products, the last term in both formulae, measures the depth 

of the product structures in a manufacturing system. 

In both equations (17) and (18), the number of end-products geometrically 

increases the value of ISMC.  This was meant to imply that by adding one more end-

product to a system’s portfolio, the complexity of the system increases drastically due to 

the additional components and the added complexity of having to complete a new set of 

manufactured components in sequences specified in the bill of materials. 

In both equations, the effect of three complexity factors is equally weighted.  

Given the exploratory nature of this research and the limited environment that was tested, 

establishing weights for these factors was not justified. 

The difference between equations (17) and (18) is that changes in either the depth 

or the breadth of the system’s product structures would result in a increase in ISMC.  
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Equation (18) implies that increases in the depth or breadth results in a more dramatic 

increase in system complexity than equation (17). The formulation proposed in equation 

(17) adds the total depth of all product structures (number of end-products*weighted 

average depth of the product structures) to the total breadth of all product structures 

(number of end-products*weighted average depth of the product structures).  In this 

proposed version of ISMC, all three factors have an effect, but no interaction between the 

depth and breadth of product structures is presumed. 

In equation (18) a change in either the product structure depth or the breadth 

results in a larger change ISMC that is equation (17).  Here, an interaction between the 

depth and breadth of the product structures is considered.  It may be that the breadth of a 

system’s product structures adds more complexity when there are more levels in that 

system’s product structures, i.e. it has a greater effect on manufacturing performance 

when there is greater depth in the product structures. 

At the same time, it may be that a combination of these factors will not predict 

performance better than using one of the three factors.  The factor measuring the breadth 

of the product structures, B, consistently explained a large amount of variation in each of 

the five measures of manufacturing performance.  Perhaps, it could be as good of a 

measure of internal static manufacturing complexity as either of the two proposed 

versions of ISMC. 

In order to initially evaluate these possibilities, a set of statistical tests were 

conducted using the existing simulation results. First, a set of ANCOVAs was performed 

to measure the effects of the three factors individually.  Then another set of ANCOVAs 

was conducted to gauge to effect of a model containing all three factors with and without 
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the interactions between the factors.  Lastly, two further ANCOVAs were conducted to 

evaluate the two proposed revised formulations of ISMC.  The dependent variable used 

was the factor created from the five transformed measures of manufacturing performance.  

This was considered to be a measure of the overall manufacturing performance. 

Table 4.59 summarizes the results for the first two sets of ANCOVAs that 

investigated the three complexity factors.  When looking at the three factors individually, 

as expected, B explained more of the variation in overall performance.  It explained 

approximately 10% more of the variation in performance than the base model containing 

only the due date tightness factor, k, and the covariate PC, which measured the mean 

protective capacity. 

An additional 5% of the variation in manufacturing performance was explained 

when all three factors were included in the model.  When the possible interaction 

between the factors was considered, these interactions explained an additional 3.2% of 

the variation in performance.  The best possible model had an adjusted R
2
 of 0.429 

compared to an adjusted R
2
 of 0.229 for the base model and 0.329 for the single factor 

model (B). 

Table 4.60 summarizes the results from ANCOVAs for three possible revised 

formulations for ISMC.  The first two ANCOVA models evaluated the formulations 

proposed in equations (17) and (18).  The adjusted R
2
 for these was 0.332 and 0.331, 

respectively.  Neither one appeared to be superior to the other.  Also, these forms of 

ISMC were not better than using the single factor, B.  The results must be considered 

with caution.  Recall, ISMC was intended to be a ratio-type measure. However, the 

design of the experiment only had two levels for each factor.  For these three measures, 
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the levels were the same, i.e. two and five end-products, two and five levels of depth in 

the product structure, and a product structure breadth of two and five.  So, the calculation 

for ISMC using these formulation and the factors levels permitted a very limited range of 

values for ISMC.  There were, at most, five different values for ISMC for each measure, 

despite there being 256 different systems.  Using the current experiment provided a 

limited evaluation for these formulations for ISMC. 

The third model is based upon the significant interactions observed in the 

ANCOVA that included the interactions between the three components.  Since the 

interactions P*D and D*B were significant, another alternative for ISMC was created as 

shown in the following equation: 
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There are many other ways to mathematically combine these three components of 

complexity.  The three proposed versions of ISMC were simple combinations of these 

factors created to explore their interactions.  Proposing a measure of internal static 

manufacturing complexity in which the effect of a change is one factor would be easily 

understood was one of the objectives of this study.  More complex formulations are 

possible, however as the complexity of the formulation increases, the ability to intuitively 

understand ISMC decreases.



 

 

Table 4.59  Summary of the results of the ANCOVAs for Factors P, B and D 

 

  Base Model "P" only "D" Only "B" Only 

P, D, and B - 

No Interactions 

P, D, and B - 

With Interactions 

Factor Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared 

                          

P     0.000 0.004         0.002 0.001 0.000 0.001 

D         0.000 0.079     0.000 0.083 0.000 0.082 

B             0.000 0.127 0.000 0.130 0.000 0.128 

P*D                     0.000 0.004 

P*B                     0.588 0.000 

D*B                     0.000 0.038 

P*D*B                     0.511 0.000 

k 0.000 0.025 0.000 0.025 0.000 0.025 0.000 0.025 0.000 0.025 0.000 0.025 

Mean PC 0.000   0.000   0.000   0.000   0.000   0.000   

                         

Adjusted R
2
 0.229 0.232 0.292 0.329 0.397 0.429 

 

1
7
7
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Table 4.60  Summarized results of ANCOVAs for three alternatives for ISMC 

 

  

Revised ISMC - 

Additive 

Equation (17) 

Revised ISMC - 

Multiplicative 

Equation (18) 

Revised ISMC - 

A Third Alternative 

Equation (19) 

Factor Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared Sig. 

 Eta 

Squared 

              

ISMC = Px(D+B) 0.000 0.163         

ISMC = PxDxB     0.000 0.130     

ISMC = (PxD)+(DxB)         0.000 0.141 

k 0.000 0.024 0.000 0.025 0.000 0.025 

Mean PC 0.000   0.000   0.000   

             

Adjusted R
2
 0.332 0.331 0.340 

 

 

 

The final results of the ANCOVA show that this version of ISMC explained 34% 

of the variation in overall manufacturing performance.  This is marginally more that 

either of the other formulations and the single factor, B. 

Plots of the adjusted marginal means for each formulation for ISMC are presented 

in Figure 4.1.  Note that the calculations of ISMC from two levels of P, B, and D resulted 

in only four values of ISMC using equation (18) and five values for the other two 

versions of ISMC. This chart shows that the additive model specified in equation (17) did 

not predict performance reliably.  There are occurrences where higher complexity 

systems, according to ISMC, tended to have better performance than lower complexity 

systems.  Both of the other alternatives logically predicted performance, that is, as 

complexity increased, performance worsened. 

The adjusted marginal means for the individual factors were also plotted and are 

presented in Figure 4.2.  The factor P, when none of the other complexity factors are 

present, predicted performance counterintuitively.  As the number of products increased, 
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the measure for overall manufacturing performance decreased meaning performance 

improved.  This may, in part, explain why equation (17) did not perform reliably.  As was 

shown in the ANCOVA results, the effect size of P was very small (η
2
 = .004).  So, 

although P explained more substantial proportions of variation for some of the individual 

measures of performance, it did not explain much in the overall manufacturing 

performance. 

The plots for the factors D and B show that their correlation with overall 

performance was as expected.  As either the depth or breadth of the product structures 

increased, measures of overall manufacturing performance increased, meaning 

performance worsened.  The charts also confirm that the effect of B is greater than the 

effect of D. 

 

Summary 

Although demonstrated to be a statistically significant predictor of manufacturing 

performance, ISMC was shown to have little practical predictive ability.  The degree to 

which it helps to explain changes to manufacturing performance is relatively low.  When 

consideration is given the amount of protective capacity in a system, ISMC was not a 

consistently valid predictor of manufacturing performance. 

Six of the eight components that make up ISMC were shown to be related to 

manufacturing performance.  Three of these factors, breadth of the product structure (B), 

depth of the products structures (D), and the number of work centers (WC), individually 

explained a substantial amount of performance.  The number of work centers predicted 

performance opposite as expected, in that as the number of work centers in a system  
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Figure 4.1 Plots of the Adjusted Marginal Means for the Three Alternatives for ISMC 
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Figure 4.2 Plots of the Adjusted Marginal Means for the Complexity Factors P, B, and D 
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increased, the performance improved.  The relevance of these factors was clarified by 

considering the amount of protective capacity in a manufacturing system. 

The comparison of the proposed complexity measure, ISMC, was not superior to a 

previous measure put forth by Frizelle and Woodcock (1995).  However, neither 

proposed complexity measures were very good predictors of manufacturing performance.  

For both H and ISMC, how they predicted performance was affected by the amount of 

protective capacity in a system.  Also, both frequently “reverse” predicted performance.  

Although ISMC was not a valid predictor of performance, many of the individual 

complexity factors were.  Three revised formulations for ISMC were suggested and then 

tested.  Although a limited range of values for ISMC results, these versions appeared to 

explain more variation in performance than the originally proposed formulation.  At the 

same time, they did not explain much more than using a single complexity factor, B. 



 

 

 

 

 

CHAPTER V 

CONCLUSIONS 

 

The purpose of this study was to examine two research questions. These were (1) 

do systems with lower levels of internal static manufacturing complexity have better 

manufacturing performance, and (2) which elements of internal static manufacturing 

complexity have a greater impact on manufacturing performance?  To answer these 

questions, a measure of internal static manufacturing complexity, ISMC, was developed.  

ISMC incorporated eight complexity elements identified from the literature.  Two 

hypotheses were proposed to test the two research questions.  A third hypothesis  

compared the predictive validity of ISMC to H, another existing measure of internal static 

manufacturing complexity.  Data was obtained from a simulation in which each element 

of ISMC was tested at both a high and low level.  Post-hoc analyses of the influence of 

the due date tightness factor, the amount of protective capacity and alternative 

formulations for ISMC were also conducted. 

The meaning of these findings is presented first.  Then, the implications for both 

theory and practice are discussed followed by the limitations of the study follows the 

summary of findings.  Finally, opportunities for future research suggested by these 

findings are offered. 
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Summary of Findings 

The conclusions to the three primary research hypotheses are presented in 

Table 5.1.  The first hypothesis investigated the relationship between internal static 

manufacturing complexity and manufacturing performance.  It was not supported in the 

statistical analysis.  The second hypothesis explored the effects of the eight individual 

elements that comprise ISMC.  Seven of these elements were shown to be related to 

manufacturing performance.  Lastly, the predictive validity of ISMC was compared to 

another existing measure of internal static manufacturing complexity, H, proposed by 

Frizelle and Woodcock (1995).  The hypothesis that ISMC was superior to H was not 

supported.  Following is a summary of the findings from the statistical analysis. 

  

The Effect of 

Internal Static Manufacturing Complexity 

on Performance (H1) 

 

As internal static manufacturing complexity (measured by ISMC) increased, 

performance decreased.  This was true for all five performance measures – the standard 

deviation of flow time, the mean order lateness, the standard deviation of order lateness, 

the mean order tardiness, and the standard deviation of order tardiness.  Although ISMC 

was statistically significant for each performance measure, the amount of variation 

explained was very small, meaning ISMC is not practically significant.  This suggests 

that the current formulation of ISMC is not a valid predictor of performance, and thus is 

not a good measure of internal static manufacturing complexity, so hypothesis 1 is shown 

as not supported in Table 5.1 

 



 

 

Table 5.1.  Summary of the Research Hypotheses 

 

  Conclusion 

Hypothesis Description SFT LMEAN SL TMEAN ST 

       

H1 Changes in internal static manufacturing 

complexity affect manufacturing 

performance. 

Not Supported Not Supported Not Supported Not Supported Not Supported 

       

H2 The eight elements of ISMC are related to 

manufacturing performance. 

     

       

 Number of End-products (P) Supported Supported Not Supported Supported Supported 

 Depth of Product Structures (D) Supported Supported Supported Supported Supported 

 Breadth of Product Structures (B) Supported Supported Supported Supported Supported 

 Component Commonality (CC) Not Supported Not Supported Not Supported Not Supported Not Supported 

 Product Mix Ratio (PMR) Supported Supported Supported Supported Supported 

 Number of Routing Steps (OPS) Not Supported Not Supported Not Supported Not Supported Not Supported 

 Number of Work Centers (WC) Supported Supported Supported Supported Supported 

 Routing Commonality (RC) Supported Supported Supported Supported Supported 

       

H3 ISMC is a better predictor of performance 

than H (Frizelle and Woodcock, 1995). 

Not Supported Not Supported Not Supported Not Supported Not Supported 

 

1
8
5
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A post hoc analysis was conducted to determine if the results were influenced by 

the due date tightness, or the mean protective capacity. The post-hoc analysis indicated, 

with one exception, that performance worsened in systems where due dates were set 

tighter.  The only performance measure not affected was the standard deviation of flow 

time.  This result is intuitive because flow time is not associated with an order’s due date. 

The initial design of the experiments controlled for differences in utilization between 

systems by setting the average utilization for the bottleneck work center in each system to 

85%.  However, the random generation of routings (as planned) and the inherent 

differences due to the dynamic nature of a stochastic environment allowed some settings 

to have more protective capacity. The results of the post hoc analysis suggested that the 

amount of protective capacity does affect performance.  In general, systems with greater 

amounts of protective capacity performed better than those with less protective capacity.  

However, the tests of ISMC when PC was the covariate demonstrated that ISMC was not 

a reliable measure, because at higher amounts of protective capacity, greater values of 

ISMC predicted improved performance.  This suggests that the environment simulated 

added a confounding variable that prevented a final conclusion about the value of a 

composite measure of complexity. 

 

The Effects of the Eight Elements 

of ISMC on Performance 

 

ISMC was made up of eight individual complexity factors, based on previous 

research and this researcher’s manufacturing experience.  A description of these factors is 

given in Table 5.2. 
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Table 5.2  Individual Internal Manufacturing Static Complexity Factors 

 

Factor Description 

  

P Number of end-products produced 

D Levels in product structure 

B Breadth of product structure 

CC Component commonality index 

PMR Product mix ratio 

OPS Number of routing steps (operations) 

WC Number of work centers in the system 

RC Routing commonality index 

 

 

 

In the past, these factors have been primarily used as environmental factors, (e.g. 

Veral and LaForge, 1985; Benton and Srivastava, 1985; Fry et al, 1989; and Collier, 

1982).  The second research hypothesis sought to determine if the eight factors were each 

related to system performance.  This hypothesis was supported in that six of the eight 

elements of internal static manufacturing complexity were shown to be related to 

manufacturing performance.  Table 5.3 summarizes how each of experimental factors, 

representing the elements of ISMC, affected the individual performance measures in the 

study.   

Notice that, as the level of complexity increased for WC and RC, every 

performance measure decreased, which means performance improved (see Table 5.3).  

Also, the standard deviation of flow time performance improved (i.e., the measure 

decreased) at the high complexity setting of P and PMR. For the other four performance 

measures, performance worsened (i.e., the measure increased) at high complexity for P 

and PMR.  Only for D and B, did performance always worsen at their high complexity 

level. 



 

188 

The individual factors that comprise ISMC explained a large proportion of the 

differences in system performance.  In the ANOVA models, the adjusted R
2
 always 

exceeded 0.50, i.e. they explained over 50% of the variation in any performance measure.  

The inference from the set of tests for the second research hypothesis is that these 

individual elements are highly related to manufacturing performance.  Recall that ISMC 

did not explain much of the variation in manufacturing performance (adjusted R
2
 of 0.032 

or less).  The simulation results showing that ISMC was a poor predictor of 

manufacturing performance while some of its components, particularly D and B, were 

good predictors, suggest that ISMC’s combination of the individual elements was flawed. 

There are four possible reasons for the poor performance of ISMC.  One of the 

reasons is that ISMC assumed that systems having more work centers (WC) would have 

greater complexity and, thus, worse performance. As discussed earlier, the high level of  

WC was correlated with increased PC.  Because of this inadvertent confounding it is not 

clear from this experiment how the number of work center affects complexity and 

performance. 

The second reason for the poor reliability of ISMC is that it included factors that 

did not have either a statistically significant or practically significant effect on 

manufacturing performance.  Changes in any of these factors (i.e., CC, PMR, OPS and 

RC) changed ISMC, but there was little, if any, corresponding change in manufacturing 

performance.  This further reduced ISMC’s performance. 

A third possible cause of the poor predictive ability of ISMC was the method used 

to measure some of the individual elements of complexity.  For example, the method 

used to incorporate the routing commonality factor (RC) was one of many possible 
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methods.  This researcher chose to evaluate routing commonality by calculating the 

proportion of identical routings in a system and then create a factor based on that 

proportion ranging from one (i.e. least complex) to two (i.e. most complex).  This factor 

was incorporated into the process structure subcomponent of ISMC by multiplying it by 

the combination of measures for the number of operations and the number of work 

centers. So, the method of calculating these factors, like RC and CC, could have made a 

large difference to the value of ISMC, perhaps “overstating” of “understating” the 

relative amount of internal static manufacturing complexity. 

The design of the simulated manufacturing systems is the last possible reason for 

explaining ISMC’s performance.  In the creation of the routings, work centers were 

randomly assigned to each step of the process.  Processing times were randomly 

established for each product step.  This was done to avoid influencing the effect of the 

routing design or the processing times. Additionally, the arrival rate of orders and the 

order quantity for each end-product was random.  As such, the workload in each work 

center could not be controlled.  To attempt to fairly compare production systems in the 

set of experiments, the mean arrival rate of orders was set so that the bottleneck work 

center had an average utilization rate of 85%. But, there was no consideration given to 

the differences between non-bottleneck work centers.  The post hoc analysis accounted 

for some of these differences by using the average utilization difference between each 

work center and the bottleneck.  But these differences were estimated, since the 

experiment was not designed to evaluate work center utilization, and the actual data was 

not collected in the simulation runs.  The mean protective capacity used in the post-hoc 

ANCOVAs was based upon the utilization from the preliminary simulation runs.  So, the 
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PC for a replication was not based upon the work center utilizations observed in that 

specific replication.  The differences between work centers could have been small or 

large.  In systems where the work center utilization rates varied greatly, there might have 

been more opportunity for orders to flow quickly through work centers with low 

utilization, reducing both the mean flow time and variance of order flow times.  Lower 

mean flow times would also affect mean lateness and mean tardiness.  Similarly, 

reducing the standard deviation in order flow time could reduce the standard deviation in 

both order lateness and order tardiness.  This would account for part of the effect size of 

the WC factor, which, as previously discussed, likely confounded the relationship 

between manufacturing performance and ISMC. 

Additionally, in the simulated systems the interrarival time between orders was 

determined randomly using the exponential distribution.  The random arrival rates 

represented dynamic complexity. While the exponential distribution is normally used for 

queuing studies, it probably has a much larger coefficient of variation (CV) than is found 

in practice. For example, Lawrence and Buss (1994), who based their simulation on 

observed arrival rates at a facility, used distributions whose CV ranged from 0.5 to 0.832. 

The CV of one used here may have been a dominant factor in affecting shop performance 

and may have hidden some effects of static complexity. To fully investigate these issues 

would require a new set of experiments. 

  



 

 

Table 5.3.  Summary of the Relationship of Complexity Factors to Performance 

 

  Effect on Performance 

 Increased Complexity from SFT LMEAN SL TMEAN ST 

       

P Number of End-products (P) Decreased Increased Increased Increased Increased 

D Depth of Product Structures (D) Increased Increased Increased Increased Increased 

B Breadth of Product Structures (B) Increased Increased Increased Increased Increased 

CC Component Commonality (CC) N.S. N.S. N.S. N.S. N.S. 

PMR Product Mix Ratio (PMR) Decreased Increased Increased Increased Increased 

OPS Number of Routing Steps (OPS) N.S. N.S. N.S. N.S. N.S. 

WC Number of Work Centers (WC) Decreased Decreased Decreased Decreased Decreased 

RC Routing Commonality (RC) Decreased Decreased Decreased Decreased Decreased 

 

N.S. – not statistically significant 

1
9
1
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These findings regarding the individual factors also lend support to the empirical 

results of Bozarth and Edwards (1997), Anderson (1995), and Foster and Gupta (1990), 

that a larger product mix negatively affects manufacturing performance.  With one 

exception, as the number of end-products (P) in a system increased, performance 

decreased.  The lone exception was the standard deviation of flow time.  In this case, as 

the number of end-products in a system increased, the standard deviation of flow time 

also increased, meaning the predictability of order flow times was worse. 

For the next two factors, the results showed that as the depth of product structures 

(D) or the breadth of product structures (B) increased, manufacturing performance 

universally worsened.  The conclusions regarding depth and breadth of the product 

structure confirms implicit findings from Benton and Srivastava (1985; 1993) and Sum et 

al. (1993). 

The complexity factor measuring component commonality (CC) was not 

statistically significant.  Past research has indicated that commonality of components 

should positively affect performance.  However, prior research tended to focus on the 

effect of component commonality on inventory, e.g. Collier (1981; 1982) and Baker 

(1985; 1986).  No study investigated the impact of component commonality on 

performance using any of the five performance measure in this study.  Although, one of 

the conclusions from Baker (1985) is that service level may be negatively affected by 

commonality of parts shared among end-products.   

Although this study did not show an effect of component commonality on 

performance, component commonality may affect performance in other ways.  For 

example, manufacturing operations employing a make-to-stock strategy often seek to 
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utilize resources more efficiently by implementing a manufacturing planning system like 

MRP (materials requirements planning).  An MRP system is used to reduce the 

complexity due to many of the issues previously identified, e.g. customer orders, number 

of end –products, and number of components. Component commonality may help to 

reduce the number of manufacturing orders required to be processed, and, thus, reduce 

the time consumed by changeovers.  Or, a firm may desire to reduce the inventory of 

manufactured components as a tactic to reduce cost.  In this case, having increased 

amounts of component commonality may help decrease inventory. 

The results for the next factor, the product mix ratio (PMR), are similar to those 

for the number of products.  With the exception of the standard deviation of flow time, 

systems having one dominant end product tended to perform better than systems not 

having a single dominant product.  This supports the untested proposition of Kotha and 

Orne (1989). 

Contrary to the suppositions of Frizelle and Woodcock (1995) and Deshmukh et 

al. (1998), systems with more work centers had better performance than systems with 

fewer work centers.  If the work center results from this research are valid, they may 

explain in part the failure of Frizelle and Woodcock’s measure, H, to reliably predict 

performance.  H is an entropic measure that incorporated the number of resources, which,  

was represented by the number of work centers in this study.  Increases in the number or 

work centers would increase H, yet in the experiments conducted in this study, system 

performance improved. 

In the initial analysis, this researcher’s supposition that the number of routing 

steps (OPS) in the routings of all manufactured items would affect performance was not 
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supported.  Another finding regarding routings was that systems that had some degree of 

routing commonality performed worse than systems with no routing commonality.  This 

is contrary to the past research of Monahan and Smunt (1999).  They found that systems 

with higher degrees of routing commonality outperformed systems with no routing 

commonality.  The difference between this study and that of Monahan and Smunt is that 

a smaller proportion of routings were common in the current research than in the former.  

It is interesting to note that Monahan and Smunt did find a situation where systems 

having random routings had lower mean flow times than systems with high routing 

commonality.   So, the results of both studies support for the need for more research into 

the effect of routing commonality under a variety of environmental conditions. 

The post-hoc tests sought to evaluate the effect of due date tightness and the 

amount of protective capacity.  As anticipated, systems with tight due dates performed 

worse than those with loose due dates.  This was demonstrated for the performance 

measures involving the performance to order due date.  The only exception was the 

standard deviation of flow time, which is a measure that is not based on the due date. 

Controlling for differences in the amount of protective capacity between systems 

helped to eliminate some of the “noise” in the analysis.  The results show that, for the 

five performance measures, protective capacity does explain a small portion of the 

changes in performance. 

Additionally, the results show that the number of routing steps (OPS) was related 

to performance.  Systems in which manufactured items encountered a greater number of 

routing steps tended to have worse performance than system with fewer routing steps. 
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More importantly, accounting for differences in protective capacity helped to 

clearly establish the relative importance of each factor.  Table 5.4 presents the ranking of 

the importance of each of the significant factors for the five performance measures based 

upon the post-hoc tests.  The rankings are based upon the effect size obtained in the 

statistical analysis (reported parenthetically).   

 

Table 5.4  Ranking of Factors by Performance Measure and Effect Sizes 

 

  Performance Measure 

Rank SFT LMean SL TMean ST 

       

1 D (0.291) B (0.171) WC (0.177) B (0.182) B (0.188) 

2 B (0.147) WC (0.150) B (0.174) WC (0.161) WC (0.174) 

3 WC (0.144) P (0.075) D (0.132) D (0.058) D (0.114) 

4 PMR (0.006) D (0.035) PMR (0.020) P (0.053) P (0.021) 

5 OPS (0.006) PMR (0.003) P (0.008) PMR (0.016) PMR (0.008) 

6 P (0.004) OPS (0.002) OPS (0.006) OPS (0.004) OPS (0.004) 

7 - RC (0.000) - RC (0.001) RC (0.001) 

 

Eta squared shown in parentheses 

 

 

Predictability of Order Flow Time 

The depth of the bill of materials for the end-products in a system has the greatest 

effect on the predictability of order flow times.  Systems with deep product structures 

exhibited more variability than those with shallow product structures.  This indicates the 

difficulty of having the required components simultaneously available to either start the 

parent item in production or to have all end-products completed for shipment of the full 

order to the customer.  Each level in the product structure adds variability to the overall 

flow time for an end product.  In these experiments, an order could not be shipped until 
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all end-products were completed.  So, the variability in order flow time was compounded 

by the variability in the end product flow times. 

The breadth of product structure had the second largest impact on variability in 

flow times.  More unpredictability was observed in systems with broad product structures 

than in those with narrow products structures.  This also points out the difficulty of 

having the required components available simultaneously.  The variability of the flow 

times for manufactured components at each level, combined with the variability in the 

flow time of end-products, created the overall variability in the flow time for an order.  

As the number items that must be synchronized increased, each having its own 

variability, the overall order variability increased.  This means that order completion 

dates were less predictable. 

The number of work centers had the third largest impact on the predictability of 

flow times.  As with all of the performance measures, as the number of work centers 

increased, performance tended to improve.  In this instance, improved performance 

means that flow times became more predictable.  Implicit in the formulation of ISMC 

was the notion that systems with more work centers were more complex.  It was 

hypothesized that system with more complexity would have poorer performance than 

those with less complexity.  So, this result was not anticipated.  After controlling for the 

differences in protective capacity, there is no clear reason to explain this unexpected 

relationship.  Further, future investigation is necessary. 

The other three elements, although statistically significant, did not appear to have 

a practical effect on the variability in order flow time.  The number or end-products and 

the balance of the product mix (PMR) had little effect on the predictability of order flow 
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times. Neither did the number of production steps in the routing for manufactured items 

exhibit much influence on variability of order flow times. 

 

Order Lateness 

Both mean order lateness and the predictability of order lateness were strongly 

influenced by the breadth of the product structures of a system’s end-products.  Systems 

with broad structures tended to have orders completing farther past their due date than 

systems with narrow product structures.  This finding indicates, similar to that for flow 

times, that the greater the need to having simultaneous arrivals of items, either for the 

release of the parent item or the completion of an order for shipment, the greater the 

opportunity was for the entire order to be delayed past its due date.  At the same time the 

variability in order lateness increased for systems with broad product structures compared 

to those with narrow structures.  This implies that the delay of the completion of 

manufacturing orders and, thus, customer orders, became less consistent when a greater 

number of manufacturing orders was being processed simultaneously in order to fulfill 

another customer order.  There was likely a large, sudden demand of system capacity 

from all the components and subcomponents required by the end-products, which 

increases the opportunity for bottlenecking and longer queue times that, in turn, affected 

both the overall system order lateness and the variability in the amount of order lateness.  

This appears to have been a byproduct of the variability observed in order flow time. 

The number of work centers in a system highly influenced both lateness 

performance measures.  As shown in Table 5.2, the mean order lateness and the 

variability in order lateness improved for systems with more work centers.  Even after 
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adjusting for the effect of protective capacity.  This may indicate that the “flood” of work 

required to complete a customer order was spread among the many work centers, 

reducing the opportunity for long queues, thus giving manufacturing orders more 

opportunity to finish early than when system have fewer work centers.  Not only that, 

since having more work centers also reduced variability in flow times, it also reduced the 

variability in order lateness as was observed in the results from the experiments. 

The depth of the bill of materials also had an impact on the two performance 

measures pertaining to order lateness.  For both, systems with deep product structures 

performed poorer than systems with shallow structures. However, the depth of the 

product structure had a much larger effect on the predictability of order lateness, than 

mean order lateness.  This seems to indicate that the length of the “chain of 

dependencies” affected the variability in the flow time for end-products, and thus 

customer orders, which, in turn, affected the variability in order lateness.  The greater the 

sequence of dependent items in a product structure, the greater the variability in order 

flow time. This led to greater variability in order lateness. 

The depth of the product structures in a system, however, had less affect on mean 

order lateness.  This indicates that a greater number of dependencies increased variability, 

but, to a much lesser extent, increased order lateness.  Perhaps, when the product 

structures were deep, there was more opportunity for components to “catch up” and 

recover from being delayed.  The use of the earliest due date priority rule in the 

simulation may have enabled this “catching up” to occur. 

The product variety offered by a system also had a sizeable effect on mean order 

lateness.  It had no practical effect on the variability in order lateness.  The results 
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showed that systems with more end-products tended to be completed longer after their 

due date than systems with fewer end-products.  This seems to indicate that the “flood” of 

manufacturing orders released to support the increased number of products added a 

consistent additional load to the shop, resulting in longer completion times, thus, 

increased mean order lateness.  Because the additional load is consistent, the product 

variety had little effect on the variability in order lateness. 

 

Order Tardiness 

The breadth of a system’s product structures had the largest impact on order 

tardiness, both mean tardiness and variability in tardiness.  Systems with broad product 

structures had greater tardiness and less predictability in tardiness.  This is consistent with 

the findings regarding order flow times and order lateness.  Since mean order lateness 

was always positive, this indicates that orders were generally completed longer after their 

due dates than before.  Since tardiness is only concerned with orders past their due date, 

an increase in mean order tardiness corresponded to the increase in mean order lateness. 

This is supported by the high degree of correlation observed between these two 

performance measures reported in Chapter IV.  So the same conclusion regarding the 

effect that the breadth of products structures had on order lateness applies to order 

tardiness.  It appears that the greater the need to having simultaneous arrivals of items 

either to begin a manufacturing order for the parent item or to complete a customer order 

for shipment, the greater the opportunity was for the entire order to be delayed past its 

due date.  The likely “flood” of manufacturing orders demanding system capacity 

increased with a broader set of product structures, so that there is a greater opportunity 
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for bottlenecking.  This affected both the overall system order lateness and the variability 

in the amount of order lateness.  Again, this is mostly likely a byproduct of the variability 

observed in order flow time. 

The number of work centers in a system had a similar influence on the measures 

of order tardiness.  The mean order tardiness and the variability in order tardiness tended 

to be less for systems with more work centers than for those with fewer.  That was the 

reverse of what was expected.  It appears that, after controlling for the affect of protective 

capacity, the “flood” of work required to complete a customer order was distributed 

among a greater number work centers, thus reducing the opportunity for delays due to 

long queues.  This, in turn, permitted the manufacturing orders more opportunity to finish 

earlier than in systems having fewer work centers.  This helped to reduce order tardiness.  

Also, since having more work centers reduced variability in flow times, it thereby 

reduced the variability in order tardiness as observed in the results from the experiments. 

Based upon the previous discussion, it is not surprising that the influence that the 

depth of a system’s product structures had on the tardiness measures is similar to that 

observed for the measures of lateness.  Systems with deeper product structures tended to 

have greater mean order tardiness and greater variability in order tardiness.  Again, the 

logic will be the same as for lateness.  This suggests that the longer the “chains of 

dependencies” the greater the variability in the flow time for end-products which, in turn, 

also affects the variability in order tardiness.  Because the depth of the product structures 

in a system had less affect on mean order tardiness, although it a greater number of 

dependencies increased variability, it increased order tardiness to a much lesser extent.  

As previously suggested when the product structures were deep, there might have been 
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more opportunity for components to recover from being delayed. This was especially 

likely as a result of using of the earliest due date priority sequencing rule. 

The product variety offered by a system had a sizeable, but smaller effect on the 

tardiness measures than the three previous factors.  Systems with more end-products were 

apt to have higher mean order tardiness and greater order variability.  This is consistent 

with what was observed for the measures order lateness.  The results showed that orders 

in systems with more end-products tended to be completed longer after their due date 

than systems with fewer end-products.  This seems to indicate that there the “flood” of 

manufacturing orders released to support the increased number of end-products, which 

increased the capacity load to the shop.  This resulted in longer completion times, thus, 

increased mean order tardiness. 

The amount of product variety had a much smaller influence on the variability in 

order tardiness than it had on mean order lateness.  This is similar to what was observed 

with mean order lateness.  Its observed affect, although statistically significant, has 

marginal practical significance.  The effect of the “flood” of work released to support a 

greater number of end-products, i.e. more component manufacturing orders, was fairly 

consistent.  This extra load increased variation in order tardiness marginally. 

In the discussion of the effect of the complexity factors on performance, there 

were cases where the factors did not have the anticipated effect on performance.  When 

PMR and P were at their high complexity setting, the order flow time became more 

predictable, meaning performance improved when complexity increased.  Although 

statistically significant differences were found, the effect size of each factor was 

marginal.  As shown in Table 5.4, PMR and P explained less than 1% of the variation in 
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the standard deviation of flow time, which means that they do not have a practically 

significant effect on the standard deviation of flow times. 

As previously noted, the findings regarding the complexity factor measuring 

routing commonality (RC) consistently indicated that systems with no routing 

commonality, hence more complexity, resulted in better performance for three of five 

measures of manufacturing performance.  This was the opposite of what was expected.  

For the other two performance measures, RC was not statistically significant.  Even 

though the findings were opposite of what was anticipated, the effect sizes were minute, 

explaining less than 0.2% of the variation in performance.  Therefore RC cannot be 

considered to be a practically significant element for measuring internal static 

manufacturing complexity. 

The factor having the most surprising results was WC, which accounted for the 

complexity due to the number of work centers in a manufacturing system.  For all five 

measures of manufacturing performance, those systems with more work centers had 

better performance than systems with fewer work centers.  Systems with more work 

centers were expected to be more complex, and correspondingly have worse 

performance. 

There are three possible reasons (at least) for the unanticipated results for this 

factor.  The first is due to the design of the simulated systems.  The planned creation of 

routings for all manufactured items in a system could not control for the variation in the 

utilization rates of work centers.  Large differences in work center utilization could lead 

to improved performance.  The details of the potential impact of the differences in work 
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loads between work centers have previously been discussed.  This effect of the utilization 

differences could be reflected in the results observed for WC. 

The second possible explanation for the unexpected outcome that having more 

work centers led to improved performance was how set-up time was modeled in the 

simulation.  When two manufacturing orders for the same items requiring the same 

routing step were processed consecutively, no machine set-up was required for the 

second order.  This models real systems.  This was also the basis for believing component 

commonality would affect performance.  Because work centers were randomly assigned 

to routing steps, systems with more work centers had a narrower set of items assigned to 

them.  This may have permitted a greater opportunity for processing orders for the same 

item sequentially, thus reducing order flow times for some orders, which in turn reduce 

mean order lateness and tardiness. 

The third possible reason for the observed effect of WC is due to the dispatch rule 

used in the simulation experiments.  When prioritizing manufacturing orders that were 

waiting to be processed at a work center, priority was given to the manufacturing order 

having the earliest order due date.  Systems with fewer work centers might have longer 

queues.  Fewer work centers also meant that there was greater opportunity for a routing to 

require an item to have multiple, non-sequential routing steps assigned to that same work 

center.  This may have increased the opportunity for reprioritization of manufacturing 

orders which increased the queue time of more manufacturing orders, thus increasing 

mean and variability of order flow times, lateness, and tardiness. 

Some reasons supporting the negative impact of greater number of work centers 

may have to do with factors not included in the simulation model.  For example, more 
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work centers increases the amount of internal transportation required to move 

manufacturing orders for one work center to the next.  This could cause delays in the 

overall flow of products. 

Based upon this researcher’s personal experience, the number of work centers 

may affect dynamic complexity more than static complexity.  In actual shops, the 

operations that had more work centers employed more supervisors or work center 

coordinators (lead persons) to manage the increased complexity.  With more work centers 

there is more opportunity for human error.  This can mean more quality rejects, 

transporting materials to the wrong work center, or other issues associated with having to 

make a greater number of decision.  All of these would result in decreased performance.  

It may be more appropriate to model WC as part of dynamic complexity, which was not 

part of this study. 

 

Comparison of ISMC to H 

The third research hypothesis compared the predictive validity of ISMC to that of 

H, the static manufacturing measure proposed by Frizelle and Woodcock (1995).  To 

date, their measure has not been tested.  Frizelle and Woodcock (1995) and Calinescu et 

al. (1998) only present examples of calculations along with anecdotal evidence to support 

the validity of H.  The hypothesis was not formally tested, however the conclusion was 

that ISMC was not superior to H, nor was H superior to ISMC.  The findings were that, 

like ISMC, H is not a good measure of internal static manufacturing complexity.  It was 

not a reliable predictor of manufacturing performance.  In fact, it tended to predict 

performance opposite of how Frizelle and Woodcock (1995) supposed.  They purported 
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that systems with greater static complexity, H, would not perform better than systems 

with lower static complexity. 

 

Alternative formulations for ISMC 

Three alternative revised formulations for ISMC were proposed and tested in 

Chapter IV.  These formulations were developed utilizing the three of the four 

complexity factors with the greatest correlations to the five performance measures.  

These were P, the number of end-products, D, the depth of products structures, and B, the 

breath of products structures.  The factor, WC, was excluded at this time.  A post hoc 

examination of WC was not possible using the data from these experiments. 

The three alternative formulations for ISMC that were proposed were simple 

combinations of the three factors that explained sizeable proportions of the variation in 

performance for the five individual performance measures.  The combinations were 

designed to (1) explore the interactions between the three factors and (2) to be easy to 

understand intuitively. 

Of these three alternatives, the two proposed in equations (18) and (18) 

demonstrated reliability. For these formulations, as ISMC increased, overall 

manufacturing performance worsened. Even given the limited set of values for each, they 

explained over 10% of the variation in overall manufacturing performance.  Equation 

(18) performed marginally better than equation (18).  Both suggest that there are 

interaction effects between the three factors.  In fact, equation (18) resulted from the 

observed significant interactions between (1) the number of products and the product 

structure depth and (2) the product structure depth and breadth. 
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However neither performed much better than simply using a single factor, the 

product structure breadth, B.  It explained the same amount of variation in manufacturing 

performance. 

These results should be viewed cautiously.  The intent of this study was not to 

find a single factor to use to describe complexity.  This was exploratory research.  More 

levels of each factor would be necessary to better measure the performance of each as a 

measure of complexity.  The same must be said for the alternatives proposed in equations 

(18) and (18).  The values for ISMC should make it a continuous variable.  This study’s 

experiments were not designed to test these alternate formulations for ISMC.  Less than 

five different values for the revised formulations of ISMC resulted using the existing 

experimental design. Because the set of values was so limited, the post hoc analysis 

conducted considered ISMC a categorical variable, not a continuous variable.  A larger 

range of continuous values is needed to fully test these versions.  So, at this point, the 

results are positive, but not conclusive regarding their performance as measures of 

internal static manufacturing complexity.   

A composite measure of complexity, even if only marginally better than using a 

single factor, may still be preferable to use.  Managers may like to see the relevant factors 

that increase or decrease system complexity combined into one measure.  Using a simple 

composite measure utilizing these factors will help them evaluate how their decisions 

change the internal static complexity in their facility. 
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Implications for Practice 

Although six of eight of the individual complexity factors were statistically 

significant, not all six appear to be important to practicing operations managers.  There 

are three factors to consider when evaluating decisions involving design of a 

manufacturing system.  These are the number of end-products manufactured (i.e. product 

mix), the depth of product structures, and the breadth of product structures. 

When making decisions regarding expanding product offerings, managers should 

consider the consequential impact on performance.  If no supplementary effort is added to 

manage the increased complexity, performance will likely worsen.  The additional 

management effort required to maintain current performance levels while expanding the 

product line will increase manufacturing costs. 

The level of vertical integration should also be carefully considered.  The findings 

of this study show that the depth of the products structure affects the predictability of 

outcomes in a manufacturing system.  Even when the in-house cost to make components 

is lower than the cost to purchase the components, managers must account for the overall 

impact to performance.  This study’s findings suggest that systems with deeper product 

structures have less predictability in performance than systems with shallow product 

structures, i.e. having less vertical integration.  When increasing the amount of vertical 

integration, additional process management will be necessary to counter the 

unpredictability that would result, resulting in increased operating costs. 

Lastly, understanding the breadth of the product structures in a manufacturing 

system is important.  Product design efforts to combine individual purchased components 

into a single module would benefit a firm.  The breadth of product structures was the 
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factor having the largest affect on every measure of manufacturing performance in this 

study.  Reducing the breadth of product structures would help to improve performance to 

customer deliveries, reduce finished goods inventories and make completion dates more 

predictable. 

 

Limitations of this Study 

This study was designed to explore a possible method of quantifying internal 

static manufacturing complexity.  In an effort construct such a measure, several 

individual factors were identified.  The anticipated relationship that each complexity 

factor had with manufacturing performance was tested by employing a set of simulation 

experiments.  The range of manufacturing environments was limited to what could be 

practically evaluated in a single study.  Caution should be used when interpreting the 

results, because they are not readily generalizable to all manufacturing environments. 

These simulation environments used the exponential distribution for the arrival 

rate of orders.  This is typical for such simulations (e.g. Fry et al., 1989; Russell and 

Taylor, 1985) because it is a simple distribution that was used in simple theoretical 

queuing systems (Law and Kelton, 2000).  However, the exponential distribution used in 

the 1980's may no longer be appropriate in current production literature. Successful 

companies have moved far away from the extremely random environments represented 

by the exponential. Future studies should consider using distributions with much lower 

variability and no infinite tails.  Having used the exponential distribution to generate the 

time between order arrivals in this study may have created such a large variation hat the 

effects of static complexity could not be detected.  This could mean one of two things.  
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First, the complexity factors identified could have a larger effect than resulted from these 

experiments.  Alternatively, the results suggest that it may be the external dynamic 

complexity arising from the unpredictability in demand that affects performance more 

than the static complexity. 

One specific limitation was that the type of manufacturing system in the 

experiments was confined to batch-type systems where random routing of products and 

components was feasible.  There are many other types of systems ranging from job shop 

to assembly line production and all possible hybrids.   

Another limitation was that only two levels of each factor were included in the 

study.  This study was considered exploratory, so the minimum levels of a broad range of 

factors was incorporated.  Many existing systems handle far more than five end-products, 

which was the high level in this study.  At the same time, it might be equally questionable 

that many systems would have five levels of depth in their product structures. 

 

Future Research 

This was an exploratory study of elements considered a part of internal static 

manufacturing complexity.  As such, there are many possible areas for further research.  

This study limited its scope to static complexity.  A likely step would be to extend it by 

investigating dynamic complexity factors, e.g. control systems, decision-making of 

managers, equipment breakdown, and maintenance plans. 

Before attempting to reformulate ISMC, an investigation is needed into the effect 

observed for the factor WC, the number of work centers.  Others, beside this author, have 

purported that systems with more work centers are more complex, thus they should have 
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experienced decreased performance.  The opposite was observed in this study.  This may 

have been due to the type of system simulated or some combination of system 

parameters.   This factor should be investigated in other experimental environments to 

better understand its effects before deciding how to include it in ISMC. 

Suggestions for investigating WC would include a new set of simulation 

experiments that have a greater range in the number of work centers between low and 

high settings.  Additionally, more factor levels should be included.  This research showed 

that the difference in work center utilization is important, so these differences must be 

carefully controlled.  One method to control these is to run preliminary simulations to 

observe the utilization differences.  Item processing times could be adjusted 

proportionally to increase or decrease work center utilizations so differences are no so 

extreme. 

These experiments could be conducted in a manufacturing system similar to the 

design considered in this research – a batch system with random (predetermined) 

routings.  However, additional types of systems should also be examined in the future.  

Batch system with less “random” routings may better reflect real systems.  Or hybrid 

systems that have both a job shop and assembly shop set of operations (Fry et al., 1988) 

or ones that have a gateway and finishing work center (Barman and LaForge, 1998). 

The proposed measure of internal static manufacturing complexity contained a 

combination of eight individual complexity factors identified from previous research.  

(These eight factors were used to operationalize the three components of internal static 

manufacturing complexity – product line complexity, product structure complexity and 

process complexity.)  The proposed measured, ISMC, did not demonstrate predictive 
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validity.  ISMC explained little variation in manufacturing performance.  Additionally, 

there were situations where ISMC predicted performance opposite of what was expected.  

The reasons for the unreliability of ISMC have only partially been explained. 

The analysis of the eight individual complexity factors revealed that these factors, 

after accounting for due date tightness and mean protective capacity, explained 

approximately 35% of the variation in manufacturing performance.  However, four of 

these factors were either not statistically or practically significant.  One of the factors that 

explained a sizeable portion of the variation in performance was the number of work 

centers.  However, this factor’s effects were counterintuitive. Further study is suggested 

to better understand this factor. 

The remaining three factors, in the ANCOVA model, explained approximately 

17% of the variation in performance when the interactions were not considered, and 20% 

when the interactions effects were included.  Based upon these results, three alternative 

reformulations for ISMC were proposed and tested.  Although, due to the limited range of 

the values for ISMC, the results cannot be considered conclusive, any one of the three 

alternative measures only explained approximately 10% of the variation in performance.  

This was no better than utilizing a single complexity factor – the breadth of the product 

structures. 

Over 40% of the variation in manufacturing performance was left unexplained.  

There are either other elements of internal static manufacturing complexity that have not 

been identified in past literature, or the dynamic complexity elements of this simulation 

explain the difference.  But, it is not likely that a complexity element explaining such a 

large portion of performance has been missed. 
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However, the dynamic attributes of the simulations could have had a large effect.  

Recall, the interarrival time between orders occurred randomly based upon the 

exponential distribution.  Additionally, the order quantity for each end-product was also 

varied to better model a real system.  These two dynamic variables might have 

confounded the observed effects of the complexity factors.  Recall, past literature did 

purport that environmental dynamicism due to demand variation was part of 

manufacturing complexity (Kotha and Orne, 1989; Calinescu et al., 1998; and Khurana, 

1999).  If this was the case, further research should remove these dynamic factors in 

order to better study the static complexity factors.  In this case, a mathematical analytic 

approach would be needed instead of simulation research since there would no longer be 

a stochastic element in the systems studied. 

However, if these two dynamic factors did mask the effects of the static 

complexity factors, this indicates that dynamic complexity may play a substantially larger 

role in determining system performance.  Or, by eliminating most of the internal dynamic 

complexity from the simulation, the effects of these factors were reduced.  It may be that 

internal static and dynamic manufacturing complexity cannot be analyzed separately.  

The elements of internal manufacturing complexity, both static and dynamic, may be 

interrelated, e.g. the effect of the depth of product structures depends upon the amount of 

quality defects that are scrapped or reworked.  The effects due to the interrelationships 

that occur within a system follows Casti’s (1979) thought that complex systems have a 

complicated structure and unpredictable behavior.  This suggests that manufacturing 

complexity research should include both sets of elements in future research. 



 

 

 

 

Figure 5.1  The Revised Theoretical Model for Measuring the Effects of Manufacturing Complexity on Manufacturing Performance 
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Figure 5.1 presents a revised theoretical model for manufacturing complexity.  

Static and dynamic complexity elements are now presumed to interact, so they should be 

studied simultaneously.  Managers make decisions regarding static system design 

elements as well as dynamic system design.  For example, managers can implement 

programs that reduce quality defects, reduce machine breakdowns, etc.  External events 

also affect a manufacturing system and add complexity to it.  The resulting total 

manufacturing complexity affects manufacturing performance. 

Further research using this model would first require identification of the 

elements of dynamic manufacturing complexity.  Then, testing of the static and dynamic 

elements can be performed using simulation research to explore the effects of these 

elements.  Lastly, empirical research should be conducted to verify findings from the 

simulation research. 

As far as quantifying manufacturing complexity, it may not be possible to 

formulate a measure of manufacturing complexity.  The purposes of such a measure are 

(1) to help study other theories of management by being able to control for the effects of 

differences in complexity between systems, and (2) to provide a tool for managers to 

understand the effects that their decisions have on business performance.  Further 

research can identify complexity elements and examine their effects.  A single 

complexity measure, although attractive, may not adequately capture the true complexity 

of a system.  According to Ashby (1972), the complexity of a system cannot be 

quantified simply by the components that make up the complex system.  The “richness” 

of the interactions makes it too difficult to understand the complexity.  As demonstrated 

in this research, a simple combination of static complexity factors did not explain much 
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of the variation in manufacturing performance.  Further attempts should be made for the 

previously identified reasons.  However, it is recognized that even if a measure can be 

developed, it may not be practically deployable, that is, it may not be intuitive to users 

nor the data easily accessible.
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Appendix A 

An Example of the ISMC Calculation 

 

Two product structures from a fictitious manufacturing system are presented in 

Figure A.1.  Using these product structures, the method of calculating the proposed 

measure for product structure complexity is demonstrated.  The product structures 

presented in Figure A.1 have no component commonality.  There are two end items and 

15 manufactured components.  The purchased items are also shown, but they are not 

considered in the calculations as discussed previously.  For simplicity, assume the 

demand for each end product is 50 units.  The product line complexity according to 

equation (9) is: 

Product Line Complexity = ( ) ( )

( )













































































−

−

−−×+
∑

∑ 1

1

2 1

1

E

Q

QMAX

Q

QMAX
CE

e

i

i

e

i

i
 

 = ( )























































−

−
−−×+

12

100

50
1

100

50
2152  

 = 17 x 2 

Product Line Complexity = 34 

 

End-products E-1 and E-2 have four levels and three levels of manufactured 

items, respectively, representing the amount of vertical integration.  E-1 has a product 

structure breadth of four, which is determined by counting the number of manufactured 
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components at the lowest level of each branch of the product structure (C-31, C-22, C-23, 

and C-24).  The breath of the product structure for E-2 is five (C-25, C-26, C-15, C-27, 

and C-17).  There are no common components within or between the end-products; 

therefore, according to equation (11), the CCI is zero.  Applying equation (10), the 

product structure (P.S.) complexity is: 

 

P.S. Complexity = 

( ) ( )
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 = {[(50 x 4) + (50 x 3)]/100} x {[(50 x 4) + (50 x 5)]/100} x (2 - 0) 

 = 3.5 x 4.5 x 2 

 = 31.5 

  

In order to demonstrate the calculation of the process complexity component of 

the proposed complexity measure, some additional information about the fictitious 

manufacturing system is required.  Using the product structure in Figure A.1 and the 

previous end product demand of 50 units each, assume that the end-products have two 

routing steps, the level 1 items have five routing steps each, the level 2 items have six 

routing steps, and the level three item has four steps.  Also, assume that there are 10 work 

centers in the manufacturing system.  Lastly, assume that no two routings have an 

identical sequence of steps, i.e. no routing commonality.  The resulting process 

complexity using equation (12) is: 
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Process Complexity  = 

( ) ( )
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 = {50 x (2 + 5 + 5 + 5 + 6 + 6 + 6 + 6 + 4)/(8 + 1)]  

 + 50 x (2 + 5 + 5 + 5 + 5 + 6 + 6 + 6)/(7 + 1)]}/100  

 x 10 x (2 – 0) 

 = {[50 x (45/9)] + [50 x (40/8)]}/100 x 10 x 2 

 = 5 x 10 x 2 

Process Complexity = 100 

 

The total ISMC for this scenario is the combination of the three components: 

ISMC = Product Line Complexity x (P.S. Complexity + Process Complexity) 

 = 34 x (31.5 + 100) 

ISMC = 4,471 

 

Now, let’s examine the impact of component commonality on the calculation.  

Figure A.2 shows the revised product structures for the two fictitious end-products.  E-2 

has been redesigned, replacing manufactured component C-16 with component C-21.  In 

this scenario manufactured component C-31 also becomes “common” to E-2. 

The CCI is calculated first using equation (11). 

CCI = 1- [(13-1)/(16-1)] = 1 – 0.857 = 0.143 
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Now the product structure complexity component is calculated as follows: 

P.S. Complexity = {[(50 x 4) + (50 x 3)]/100} x {[(50 x 4) + (50 x 6)]/100} x (2 - 0.143) 

 = 3.5 x 4.5 x 1.857 

 = 29.25 

The product line complexity component is also affected by component 

commonality.  There are two less manufactured components is the system.  Therefore, the 

product line complexity component is now: 
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 =15 x 2 

Product Line Complexity = 30 

 

The total ISMC is now: 

ISMC = 30 x (29.5 + 100) 

ISMC = 3,885 

 

This is 586 points lower than the scenario where there was no component commonality. 

Another example occurs where management has decided to outsource all 

manufactured components.  Figure A.3 represents the product structures for this final 

scenario. The manufacturing system is redesigned to strictly to assembly end-products 

E-1 and E-2.  The number of levels and the breadth of the products structure are reduced 

to one for both E-1 and E-2, meaning that the system is only assembling the end-

products.  The new value of Product Structure complexity is: 
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P.S. Complexity = {[(50 x 1) + (50 x 1)]/100} x {[(50 x 1) + (50 x 1)]/100} x (2 - 0) 

 = 1 x 1 x 2 

P.S. Complexity = 2 

 

The product line complexity component is now: 

 = ( )
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 =2 x 2 

Product Line Complexity = 4 

 

The process complexity component is: 

= {50 x (2)/(0 + 1)]  + 50 x (2)/(0 + 1)]}/100 x 10 x (2 – 0) 

 = {[50 x (2/1)] + [50 x (2/1)]}/100 x 10 x 2 

 = 2 x 10 x 2 

Process Complexity = 40 

 

 

The total ISMC is now: 

ISMC = 4 x (2 + 40) 

ISMC = 84 

 

This is drastically lower than either of the two previous scenarios where vertical 

integration was present.  Here, the proposed measure is indicating that there is much less 

complexity due to no longer being required to coordinate system resources to 

manufacture the internally supplied components. 
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Figure A.1  Product Structures – No Component Commonality 
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Figure A.2  Product Structures with Component Commonality  
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Figure A.3  Product Structures with Outsourced Components  
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Appendix B 

Product Structures used in the Experiment 

Found in this appendix are eight sets of product structures used in the research 

experiments.  All items are “manufactured items”, meaning they are items that are 

fabricated or assembled.  No purchased items appear on the product structures.  Items 

containing the prefix of “E” are the end-products.  The prefix “C” denotes items that are 

the manufactured components. 

The first four figures, B.1 through B.4, are product structures in which there is no 

component commonality.  Figures B.5 through B.8 are the revised product structures that 

include component commonality within and between end-products. 

In all eight figures, the superscript capital letter indicates items with routing 

commonality when the experiment was designated to have routing commonality.  When 

the experiment was to not have routing commonality, then not routings were made 

identical and these superscripts have no meaning.
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Letters denote items with “common” routings when Routing Commonality=High 

 

Figure B.1  Product Structures with experimental settings of Depth=High, Breadth=High, 

Component Commonality = Low 
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Letters denote items with “common” routings when Routing Commonality=High 

 

Figure B.1  Product Structures with experimental settings of Depth =High, 

Breadth =High, Component Commonality = Low (Continued) 
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Letters denote items with “common” routings when Routing Commonality=High 

 

Figure B.2  Product Structures with experimental settings of Depth =High, 

Breadth =Low, Component Commonality = Low 
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Letters denote items with “common” routings when Routing Commonality=High 

 

Figure B.2  Product Structures with experimental settings of Depth =High, 

Breadth =Low, Component Commonality = Low (Continued) 
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Letters denote items with “common” routings when Routing Commonality=High 

 

Figure B.3  Product Structures with experimental settings of Depth =Low, 

Breadth =High, Component Commonality = Low 
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Letters denote items with “common” routings when Routing Commonality=High 

 

Figure B.4  Product Structures with experimental settings of Depth =Low, Breadth =Low, 

Component Commonality = Low 
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Letters denote items with “common” routings when Routing Commonality=High 

Bold, shaded items are “common” components. 

 

Figure B.5  Product Structures with experimental settings of Depth =High, 

Breadth =High, Component Commonality = High 
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Letters denote items with “common” routings when Routing Commonality=High 

Bold, shaded items are “common” components. 

 

Figure B.5  Product Structures with experimental settings of Depth =High, 

Breadth =High, Component Commonality = High (Continued) 
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Letters denote items with “common” routings when Routing Commonality=High 

Bold, shaded items are “common” components. 

 

Figure B.6  Product Structures with experimental settings of Depth =High, 

Breadth =Low, Component Commonality = High 
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Letters denote items with “common” routings when Routing Commonality=High 

Bold, shaded items are “common” components. 

 

Figure B.6  Product Structures with experimental settings of Depth =High, 

Breadth =Low, Component Commonality = High (Continued) 
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Letters denote items with “common” routings when Routing Commonality=High 

Bold, shaded items are “common” components. 

 

Figure B.7  Product Structures with experimental settings of Depth =Low, 

Breadth =High, Component Commonality = High 
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Letters denote items with “common” routings when Routing Commonality=High 

Bold, shaded items are “common” components. 

 

Figure B.8  Product Structures with experimental settings of Depth =Low, Breadth =Low, 

Component Commonality = High 

E-1 

C-102 C-101 

E-2 

C-102 C-106 

A 

B 

B 

A 

E-3 

C-113 C-111 

E-4 

C-122 C-116 

E-5 

C-122 C-113 

C 

C 



 

239 

Appendix C 

Work Center Mean Utilization and Mean Protective Capacity 

 

Table C.1 summarizes the observed mean utilization of work centers for the 256 

simulated systems.  These mean utilizations were obtained from each system during a 

long-run steady state period of 500,000 simulated hours.  The utilization statistic from 

AWESIM was reported at 100 hour time increments during the simulation run.  The 

mean of these utilizations is reported in table C.1 along with the mean protective capacity 

for each experiment. The mean protective capacity is the mean difference in utilization 

between the bottleneck work center and the mean utilization of all of the other work 

centers. 

 



 

 

Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

1 0.9059 0.4474 0.5122 0.6616 - - - - - - 0.6318 0.3655 

2 0.8939 0.6273 0.7876 0.8228 - - - - - - 0.7829 0.1480 

3 0.6984 0.9407 0.5533 0.5506 - - - - - - 0.6858 0.3399 

4 0.8024 0.9294 0.7245 0.7264 - - - - - - 0.7956 0.1783 

5 0.9137 0.5539 0.4802 0.5068 - - - - - - 0.6136 0.4001 

6 0.9362 0.6718 0.7195 0.6524 - - - - - - 0.7450 0.2549 

7 0.6233 0.8468 0.6046 0.5459 - - - - - - 0.6552 0.2556 

8 0.6304 0.8380 0.7024 0.6131 - - - - - - 0.6960 0.1894 

9 0.9032 0.3979 0.6011 0.7735 - - - - - - 0.6689 0.3123 

10 0.8009 0.5746 0.9039 0.8373 - - - - - - 0.7791 0.1663 

11 0.9403 0.9167 0.3369 0.9002 - - - - - - 0.7735 0.2224 

12 0.9001 0.8437 0.5292 0.9243 - - - - - - 0.7993 0.1666 

13 0.9377 0.4660 0.4950 0.6830 - - - - - - 0.6454 0.3897 

14 0.9256 0.6082 0.8662 0.7685 - - - - - - 0.7921 0.1780 

15 0.7559 0.8627 0.3687 0.5663 - - - - - - 0.6384 0.2990 

16 0.7870 0.8561 0.5822 0.6718 - - - - - - 0.7243 0.1758 

17 0.9114 0.7226 0.5624 0.6592 - - - - - - 0.7139 0.2634 

18 0.7376 0.7739 0.8833 0.8015 - - - - - - 0.7991 0.1124 

19 0.6922 0.9444 0.5012 0.6309 - - - - - - 0.6922 0.3362 

20 0.8767 0.9351 0.8181 0.8812 - - - - - - 0.8778 0.0765 

21 0.9449 0.7133 0.6523 0.5494 - - - - - - 0.7150 0.3066 

22 0.8923 0.7819 0.9329 0.7320 - - - - - - 0.8348 0.1308 

23 0.6655 0.8726 0.6599 0.6446 - - - - - - 0.7107 0.2159 

24 0.6714 0.8718 0.8099 0.7147 - - - - - - 0.7670 0.1398 

25 0.8132 0.5638 0.7530 0.8913 - - - - - - 0.7553 0.1813 

26 0.5038 0.5863 0.8998 0.6976 - - - - - - 0.6719 0.3039 

2
4
0



 

 

Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

27 0.7478 0.9460 0.3610 0.8995 - - - - - - 0.7386 0.2766 

28 0.8131 0.8204 0.6345 0.9394 - - - - - - 0.8019 0.1834 

29 0.9360 0.5866 0.6508 0.8063 - - - - - - 0.7449 0.2548 

30 0.6764 0.5898 0.9369 0.6698 - - - - - - 0.7182 0.2916 

31 0.6599 0.8599 0.4273 0.5768 - - - - - - 0.6310 0.3053 

32 0.7609 0.8539 0.7415 0.7453 - - - - - - 0.7754 0.1047 

33 0.9134 0.7738 0.5510 0.6995 - - - - - - 0.7344 0.2386 

34 0.9110 0.7773 0.7838 0.8339 - - - - - - 0.8265 0.1126 

35 0.9240 0.9395 0.8092 0.7023 - - - - - - 0.8437 0.1276 

36 0.9408 0.8908 0.8811 0.8975 - - - - - - 0.9025 0.0510 

37 0.9387 0.8597 0.8136 0.7416 - - - - - - 0.8384 0.1338 

38 0.9083 0.8499 0.9226 0.8529 - - - - - - 0.8834 0.0522 

39 0.7797 0.8710 0.7911 0.7345 - - - - - - 0.7941 0.1026 

40 0.7555 0.8358 0.8055 0.7696 - - - - - - 0.7916 0.0589 

41 0.9074 0.7665 0.5459 0.7368 - - - - - - 0.7391 0.2244 

42 0.8914 0.8627 0.8485 0.9000 - - - - - - 0.8757 0.0325 

43 0.9374 0.7002 0.7505 0.7981 - - - - - - 0.7966 0.1878 

44 0.9339 0.7295 0.8267 0.9289 - - - - - - 0.8548 0.1056 

45 0.9429 0.9061 0.6720 0.7699 - - - - - - 0.8227 0.1603 

46 0.9191 0.9267 0.9027 0.9114 - - - - - - 0.9150 0.0157 

47 0.8589 0.7862 0.7869 0.7625 - - - - - - 0.7986 0.0804 

48 0.8361 0.7900 0.8601 0.8591 - - - - - - 0.8363 0.0317 

49 0.8990 0.8559 0.6559 0.7461 - - - - - - 0.7893 0.1464 

50 0.8507 0.7698 0.9091 0.8790 - - - - - - 0.8521 0.0759 

51 0.9212 0.9399 0.8535 0.8222 - - - - - - 0.8842 0.0743 

52 0.8656 0.7913 0.8459 0.9390 - - - - - - 0.8604 0.1048 

2
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Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

53 0.9413 0.9248 0.9142 0.7269 - - - - - - 0.8768 0.0860 

54 0.8272 0.8085 0.9432 0.8373 - - - - - - 0.8541 0.1189 

55 0.7616 0.8538 0.8427 0.7621 - - - - - - 0.8050 0.0650 

56 0.7569 0.8356 0.8529 0.8152 - - - - - - 0.8151 0.0503 

57 0.8870 0.8489 0.6532 0.8572 - - - - - - 0.8116 0.1006 

58 0.7196 0.8006 0.9079 0.8763 - - - - - - 0.8261 0.1091 

59 0.9345 0.7984 0.8451 0.9400 - - - - - - 0.8795 0.0807 

60 0.8289 0.6890 0.7920 0.9235 - - - - - - 0.8083 0.1535 

61 0.9119 0.9414 0.7520 0.8205 - - - - - - 0.8565 0.1132 

62 0.7814 0.8385 0.9297 0.8817 - - - - - - 0.8578 0.0959 

63 0.8390 0.8337 0.8436 0.7906 - - - - - - 0.8267 0.0226 

64 0.7766 0.7684 0.8704 0.8702 - - - - - - 0.8214 0.0653 

65 0.3961 0.6916 0.1473 0.2904 0.5185 0.3250 0.8612 0.2352 0.2061 - 0.4079 0.5099 

66 0.3433 0.7587 0.3468 0.3729 0.5781 0.4938 0.8360 0.3166 0.3022 0.1560 0.4504 0.4284 

67 0.7564 0.8826 0.3482 0.6388 0.6763 0.6794 0.8195 0.5011 0.6188 0.3655 0.6287 0.2822 

68 0.6743 0.8263 0.5929 0.7615 0.7241 0.5894 0.8940 0.4753 0.6088 0.4169 0.6564 0.2641 

69 0.5696 0.9091 0.3225 0.7203 0.8903 0.2541 0.7779 0.7263 0.3820 0.3080 0.5860 0.3590 

70 0.6130 0.8508 0.6521 0.6570 0.8809 0.4554 0.7697 0.7280 0.6230 0.4350 0.6665 0.2382 

71 0.6670 0.9133 0.4914 0.8821 0.7673 0.5845 0.7472 0.7361 0.5576 0.3012 0.6648 0.2761 

72 0.7553 0.8353 0.7540 0.9097 0.8294 0.7263 0.7764 0.7322 0.6388 0.5079 0.7465 0.1813 

73 0.3606 0.6969 0.0657 0.2911 0.5779 0.3242 0.8614 0.2359 0.2467 - 0.4067 0.5116 

74 0.4078 0.6883 0.2531 0.2590 0.5426 0.3407 0.8380 0.2467 0.4413 0.1835 0.4201 0.4643 

75 0.8199 0.6514 0.0408 0.1794 0.1808 0.9143 0.6475 0.3443 0.5208 0.2505 0.4550 0.5104 

76 0.7327 0.7324 0.2977 0.5760 0.4054 0.8374 0.9005 0.3437 0.5877 0.3975 0.5811 0.3549 

77 0.5749 0.9266 0.2189 0.4782 0.6799 0.2146 0.8129 0.3268 0.1628 0.3717 0.4767 0.4998 

78 0.7633 0.9057 0.5226 0.4829 0.7353 0.3745 0.8534 0.5035 0.4601 0.5182 0.6120 0.3263 
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Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

79 0.8713 0.8213 0.5008 0.6518 0.3049 0.9160 0.7634 0.6858 0.3652 0.2041 0.6084 0.3418 

80 0.8632 0.7421 0.7742 0.8036 0.3889 0.8748 0.9021 0.7257 0.4193 0.3336 0.6827 0.2437 

81 0.4507 0.5899 0.3735 0.1910 0.5794 0.4754 0.8386 0.1547 0.2384 - 0.4324 0.4570 

82 0.3467 0.7944 0.6501 0.4015 0.6845 0.7399 0.8403 0.3517 0.4134 0.3027 0.5525 0.3198 

83 0.8852 0.7145 0.4205 0.3793 0.5832 0.8618 0.9027 0.4671 0.4454 0.2696 0.5929 0.3442 

84 0.6453 0.6874 0.6973 0.6744 0.6675 0.5776 0.9055 0.4197 0.4989 0.3796 0.6153 0.3224 

85 0.7255 0.7658 0.4222 0.5813 0.8680 0.3662 0.8995 0.7113 0.3276 0.3674 0.6035 0.3289 

86 0.6776 0.7034 0.8736 0.5195 0.8170 0.6080 0.7733 0.6832 0.7191 0.5200 0.6895 0.2046 

87 0.8988 0.7897 0.4764 0.7077 0.7690 0.7119 0.9213 0.7773 0.5647 0.3565 0.6973 0.2488 

88 0.9172 0.7297 0.9183 0.8502 0.8720 0.8743 0.8716 0.7487 0.6969 0.6707 0.8150 0.1148 

89 0.3714 0.6123 0.1735 0.1919 0.7323 0.4788 0.8456 0.1554 0.3410 - 0.4336 0.4636 

90 0.4608 0.6548 0.4492 0.1974 0.6026 0.4324 0.8334 0.2255 0.6449 0.3306 0.4832 0.3891 

91 0.8085 0.5754 0.1006 0.1110 0.2501 0.9172 0.6428 0.3432 0.5155 0.2477 0.4512 0.5178 

92 0.5512 0.6239 0.4298 0.6873 0.5055 0.6498 0.9040 0.2831 0.5194 0.4155 0.5570 0.3856 

93 0.5562 0.8285 0.2323 0.5068 0.8008 0.3181 0.8880 0.3476 0.2262 0.3928 0.5097 0.4203 

94 0.8690 0.7887 0.7515 0.4774 0.8064 0.5380 0.8816 0.6347 0.7124 0.6200 0.7080 0.1929 

95 0.8768 0.6765 0.4985 0.6483 0.3612 0.9203 0.8504 0.7291 0.2768 0.2004 0.6038 0.3517 

96 0.7585 0.5487 0.8292 0.7888 0.4106 0.7441 0.9060 0.6757 0.3607 0.3666 0.6389 0.2968 

97 0.8299 0.6402 0.3083 0.4543 0.4178 0.4016 0.5249 0.2612 0.4951 0.2458 0.4579 0.4133 

98 0.8440 0.7442 0.5306 0.6669 0.6190 0.5541 0.5958 0.2946 0.5353 0.5088 0.5893 0.2830 

99 0.9104 0.6606 0.3441 0.6779 0.5880 0.5305 0.5845 0.6251 0.6889 0.4663 0.6076 0.3364 

100 0.9128 0.8018 0.6462 0.9020 0.7307 0.5928 0.7173 0.6661 0.6813 0.6246 0.7276 0.2058 

101 0.8707 0.8930 0.5178 0.8382 0.7981 0.3936 0.5583 0.5843 0.5438 0.3683 0.6366 0.2849 

102 0.8673 0.8278 0.7847 0.8643 0.8889 0.5868 0.6696 0.5688 0.6114 0.6204 0.7290 0.1777 

103 0.8462 0.6964 0.4849 0.9146 0.6411 0.6138 0.5176 0.6561 0.5173 0.4985 0.6386 0.3066 

104 0.7758 0.7010 0.6746 0.9062 0.7021 0.6743 0.5964 0.6197 0.5891 0.5876 0.6827 0.2484 
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Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

105 0.8349 0.6412 0.2526 0.4513 0.4497 0.3621 0.5133 0.2288 0.5145 0.2762 0.4525 0.4249 

106 0.8322 0.6919 0.4311 0.4602 0.5546 0.4205 0.5734 0.2133 0.5005 0.4652 0.5143 0.3532 

107 0.9163 0.6131 0.1505 0.3069 0.4533 0.6000 0.5781 0.4103 0.4161 0.2973 0.4742 0.4912 

108 0.9166 0.8164 0.4025 0.5920 0.6334 0.6469 0.7259 0.4590 0.5035 0.4823 0.6178 0.3320 

109 0.8773 0.8423 0.4707 0.8679 0.8604 0.4859 0.5960 0.4636 0.5091 0.6494 0.6623 0.2389 

110 0.8977 0.7388 0.6518 0.7518 0.8915 0.6206 0.6778 0.4550 0.4958 0.7706 0.6951 0.2250 

111 0.9123 0.7392 0.5010 0.7277 0.5619 0.8401 0.5864 0.6407 0.3019 0.3484 0.6160 0.3292 

112 0.8856 0.7832 0.7536 0.8991 0.6217 0.9068 0.7568 0.6709 0.3911 0.5191 0.7188 0.2089 

113 0.8391 0.6951 0.6604 0.4956 0.5450 0.6224 0.7447 0.2624 0.5295 0.2412 0.5635 0.3062 

114 0.8096 0.8087 0.8282 0.8131 0.7961 0.7460 0.7188 0.3061 0.5531 0.6899 0.7070 0.1347 

115 0.9100 0.6232 0.4691 0.5277 0.6643 0.5957 0.6623 0.5809 0.5026 0.3618 0.5898 0.3558 

116 0.8893 0.8282 0.8249 0.9098 0.8105 0.6304 0.7932 0.6430 0.5719 0.6351 0.7536 0.1735 

117 0.8664 0.7798 0.6350 0.8818 0.8065 0.4763 0.6951 0.6221 0.5001 0.4796 0.6743 0.2305 

118 0.7720 0.6622 0.8873 0.8031 0.8416 0.6579 0.7095 0.5133 0.5643 0.7319 0.7143 0.1922 

119 0.9158 0.6358 0.5273 0.8502 0.7288 0.6267 0.6338 0.6791 0.4744 0.5190 0.6591 0.2852 

120 0.7935 0.7009 0.8096 0.9062 0.7933 0.7323 0.7033 0.6315 0.6264 0.6608 0.7358 0.1894 

121 0.8399 0.6872 0.4913 0.4718 0.6151 0.4983 0.6876 0.1714 0.5585 0.3170 0.5338 0.3401 

122 0.8427 0.7515 0.6478 0.4797 0.6903 0.5226 0.6928 0.1899 0.5202 0.6148 0.5952 0.2749 

123 0.9243 0.6174 0.2556 0.3065 0.5577 0.6597 0.6856 0.4262 0.4115 0.3200 0.5165 0.4531 

124 0.8732 0.9025 0.5887 0.7315 0.7584 0.6653 0.8287 0.4691 0.5250 0.5787 0.6921 0.2338 

125 0.7329 0.7192 0.5008 0.8025 0.8710 0.5065 0.6583 0.4353 0.4572 0.6484 0.6332 0.2642 

126 0.8446 0.6412 0.7403 0.6708 0.9011 0.6883 0.7368 0.4391 0.4678 0.8147 0.6945 0.2296 

127 0.9137 0.7066 0.5920 0.7902 0.6860 0.9011 0.6834 0.7120 0.2607 0.4185 0.6664 0.2747 

128 0.7715 0.7046 0.8353 0.9106 0.6266 0.8593 0.8045 0.6372 0.3741 0.5792 0.7103 0.2226 

129 0.6380 0.7790 0.8850 0.7730 - - - - - - 0.7688 0.1550 

130 0.7402 0.7903 0.8823 0.8677 - - - - - - 0.8201 0.0829 
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Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

131 0.6362 0.9380 0.9363 0.5385 - - - - - - 0.7622 0.2343 

132 0.8236 0.9267 0.9181 0.7571 - - - - - - 0.8564 0.0937 

133 0.9443 0.5910 0.7981 0.5865 - - - - - - 0.7300 0.2858 

134 0.9223 0.6060 0.8985 0.6687 - - - - - - 0.7739 0.1979 

135 0.3812 0.4852 0.5680 0.3786 - - - - - - 0.4532 0.1530 

136 0.6894 0.7756 0.8579 0.6456 - - - - - - 0.7421 0.1543 

137 0.5461 0.6579 0.9076 0.8153 - - - - - - 0.7317 0.2345 

138 0.4710 0.6205 0.9049 0.7650 - - - - - - 0.6903 0.2861 

139 0.6470 0.9444 0.4286 0.8072 - - - - - - 0.7068 0.3168 

140 0.7964 0.9208 0.5695 0.9200 - - - - - - 0.8017 0.1588 

141 0.9352 0.7130 0.7655 0.8442 - - - - - - 0.8145 0.1609 

142 0.9015 0.7097 0.9266 0.7949 - - - - - - 0.8332 0.1246 

143 0.7983 0.8749 0.6844 0.6178 - - - - - - 0.7439 0.1748 

144 0.8587 0.7987 0.7012 0.6547 - - - - - - 0.7533 0.1406 

145 0.6739 0.9022 0.7501 0.6721 - - - - - - 0.7496 0.2035 

146 0.8116 0.8471 0.8209 0.8731 - - - - - - 0.8382 0.0466 

147 0.6514 0.9423 0.7305 0.6290 - - - - - - 0.7383 0.2720 

148 0.9327 0.9149 0.8139 0.9131 - - - - - - 0.8937 0.0521 

149 0.9427 0.7337 0.8685 0.5910 - - - - - - 0.7840 0.2116 

150 0.8437 0.6289 0.9269 0.6756 - - - - - - 0.7688 0.2109 

151 0.6464 0.7898 0.8754 0.6812 - - - - - - 0.7482 0.1696 

152 0.7775 0.8154 0.8496 0.7259 - - - - - - 0.7921 0.0767 

153 0.5234 0.6996 0.9055 0.8629 - - - - - - 0.7479 0.2102 

154 0.4199 0.6110 0.8974 0.7483 - - - - - - 0.6691 0.3043 

155 0.5670 0.9454 0.4097 0.8282 - - - - - - 0.6876 0.3438 

156 0.8052 0.8559 0.6068 0.9399 - - - - - - 0.8020 0.1840 
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Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

157 0.9098 0.7601 0.8423 0.9143 - - - - - - 0.8566 0.0769 

158 0.7674 0.6402 0.9288 0.7015 - - - - - - 0.7595 0.2258 

159 0.6979 0.8711 0.6602 0.6293 - - - - - - 0.7146 0.2086 

160 0.8694 0.7798 0.7179 0.6951 - - - - - - 0.7656 0.1384 

161 0.6771 0.9068 0.6734 0.8261 - - - - - - 0.7709 0.1813 

162 0.8265 0.8705 0.8668 0.9112 - - - - - - 0.8687 0.0566 

163 0.9121 0.9385 0.9213 0.7044 - - - - - - 0.8691 0.0926 

164 0.9372 0.8752 0.8699 0.8435 - - - - - - 0.8814 0.0743 

165 0.8680 0.9378 0.9143 0.8374 - - - - - - 0.8894 0.0646 

166 0.8785 0.8355 0.9246 0.8592 - - - - - - 0.8745 0.0669 

167 0.7298 0.8659 0.8563 0.7401 - - - - - - 0.7980 0.0905 

168 0.7447 0.8266 0.8374 0.7466 - - - - - - 0.7888 0.0647 

169 0.6648 0.8968 0.6663 0.8633 - - - - - - 0.7728 0.1653 

170 0.6782 0.8610 0.8514 0.9078 - - - - - - 0.8246 0.1109 

171 0.8734 0.8252 0.8821 0.9334 - - - - - - 0.8785 0.0732 

172 0.8578 0.7747 0.8318 0.9337 - - - - - - 0.8495 0.1123 

173 0.7719 0.9382 0.7108 0.8024 - - - - - - 0.8058 0.1765 

174 0.8209 0.9190 0.8478 0.8636 - - - - - - 0.8628 0.0749 

175 0.8412 0.7999 0.8546 0.7148 - - - - - - 0.8026 0.0693 

176 0.7853 0.7509 0.8368 0.7415 - - - - - - 0.7786 0.0776 

177 0.7119 0.9071 0.7100 0.7977 - - - - - - 0.7817 0.1672 

178 0.8471 0.7846 0.9086 0.8668 - - - - - - 0.8518 0.0758 

179 0.9062 0.9300 0.9212 0.8210 - - - - - - 0.8946 0.0472 

180 0.9355 0.8354 0.8340 0.9287 - - - - - - 0.8834 0.0695 

181 0.8575 0.9336 0.9419 0.7562 - - - - - - 0.8723 0.0928 

182 0.8723 0.7891 0.9361 0.8363 - - - - - - 0.8585 0.1036 
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Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

183 0.7142 0.8413 0.8726 0.7380 - - - - - - 0.7915 0.1081 

184 0.7585 0.8165 0.8494 0.7615 - - - - - - 0.7965 0.0706 

185 0.6792 0.8847 0.6965 0.8940 - - - - - - 0.7886 0.1405 

186 0.6484 0.7920 0.9034 0.8844 - - - - - - 0.8070 0.1284 

187 0.8060 0.8035 0.8511 0.9420 - - - - - - 0.8506 0.1218 

188 0.8236 0.7414 0.7913 0.9259 - - - - - - 0.8205 0.1405 

189 0.7856 0.9437 0.7614 0.8253 - - - - - - 0.8290 0.1530 

190 0.8427 0.9081 0.9327 0.8962 - - - - - - 0.8949 0.0504 

191 0.7916 0.8159 0.8557 0.7141 - - - - - - 0.7943 0.0818 

192 0.7614 0.7491 0.8477 0.7675 - - - - - - 0.7814 0.0884 

193 0.2645 0.3433 0.3439 - 0.8832 0.5022 0.6477 - 0.3933 - 0.4826 0.4674 

194 0.2490 0.4627 0.4513 0.1431 0.8289 0.6707 0.6809 0.1582 0.5010 0.1031 0.4249 0.4489 

195 0.8329 0.2651 0.4661 0.3316 0.9052 0.8515 0.7255 0.2534 0.3531 0.4167 0.5401 0.4056 

196 0.7920 0.4881 0.5631 0.5405 0.8061 0.7314 0.9054 0.3654 0.4857 0.4584 0.6136 0.3243 

197 0.5375 0.4616 0.3482 0.1925 0.9116 0.2982 0.4574 0.3197 0.2333 0.3158 0.4076 0.5600 

198 0.6403 0.5740 0.6682 0.2923 0.9053 0.5858 0.5734 0.5297 0.4402 0.3479 0.5557 0.3885 

199 0.7542 0.5420 0.5800 0.4977 0.9105 0.6645 0.7444 0.4474 0.7060 0.3992 0.6246 0.3177 

200 0.8871 0.6736 0.7395 0.6577 0.9094 0.8288 0.7939 0.5232 0.7895 0.4959 0.7299 0.1995 

201 0.2172 0.3242 0.2528 - 0.8785 0.4707 0.6061 - 0.4039 - 0.4505 0.4994 

202 0.3405 0.4767 0.3827 - 0.8387 0.5120 0.8058 0.0771 0.6699 0.1879 0.4768 0.4072 

203 0.6547 0.3972 0.1585 - 0.3950 0.9147 0.4794 0.1693 0.5724 0.2175 0.4399 0.5342 

204 0.7853 0.6144 0.3004 0.3927 0.4723 0.9010 0.8442 0.2254 0.6981 0.3051 0.5539 0.3857 

205 0.4763 0.6790 0.3501 0.2665 0.9187 0.3422 0.6719 0.1562 0.2937 0.3527 0.4507 0.5199 

206 0.7341 0.6976 0.6303 0.3721 0.9127 0.5331 0.7592 0.4181 0.6565 0.3724 0.6086 0.3379 

207 0.9121 0.5650 0.5633 0.4594 0.4820 0.6971 0.8296 0.3995 0.2218 0.4389 0.5569 0.3947 

208 0.9021 0.5870 0.6566 0.6326 0.5032 0.7072 0.8649 0.4107 0.3404 0.3638 0.5968 0.3392 
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Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

209 0.3705 0.3698 0.5132 - 0.8520 0.6096 0.7169 - 0.3780 - 0.5443 0.3590 

210 0.2812 0.5627 0.6131 0.2639 0.7257 0.8442 0.7153 0.2882 0.5659 0.1984 0.5059 0.3760 

211 0.8740 0.3220 0.4626 0.1980 0.6960 0.9064 0.7912 0.2969 0.2798 0.2939 0.5121 0.4382 

212 0.6872 0.5581 0.5358 0.5190 0.5697 0.5972 0.9052 0.3869 0.4567 0.3685 0.5584 0.3853 

213 0.6976 0.4928 0.4389 0.2376 0.9272 0.3904 0.6660 0.4382 0.2418 0.3772 0.4908 0.4849 

214 0.6946 0.5865 0.8842 0.3524 0.7389 0.7888 0.6763 0.6858 0.5532 0.3422 0.6303 0.2822 

215 0.9034 0.5695 0.5106 0.4333 0.8236 0.5951 0.9175 0.5032 0.6319 0.4777 0.6366 0.3122 

216 0.9064 0.6705 0.7036 0.6363 0.7472 0.7824 0.7863 0.5192 0.6991 0.5182 0.6969 0.2327 

217 0.2569 0.3407 0.2798 - 0.8803 0.5382 0.6336 - 0.4212 - 0.4787 0.4686 

218 0.3994 0.5139 0.4324 - 0.6512 0.4850 0.8312 0.1302 0.7720 0.3092 0.5027 0.3695 

219 0.7031 0.4158 0.1744 - 0.3861 0.9206 0.5335 0.2279 0.5525 0.2269 0.4601 0.5181 

220 0.7133 0.6278 0.3351 0.5761 0.4069 0.6736 0.9215 0.2355 0.6056 0.2956 0.5391 0.4249 

221 0.4752 0.6442 0.3129 0.3510 0.9290 0.3890 0.7631 0.2239 0.3045 0.3684 0.4761 0.5032 

222 0.8493 0.6067 0.7592 0.4576 0.7950 0.6449 0.7806 0.6127 0.8683 0.3492 0.6723 0.2178 

223 0.8847 0.5532 0.5276 0.5121 0.4621 0.6497 0.9137 0.4860 0.1863 0.4142 0.5590 0.3941 

224 0.8818 0.5908 0.6916 0.7542 0.5057 0.6877 0.9163 0.4515 0.3915 0.3081 0.6179 0.3316 

225 0.4588 0.4867 0.8305 0.2188 0.7417 0.5129 0.6230 0.0245 0.3678 0.3122 0.4577 0.4142 

226 0.4679 0.5606 0.8403 0.4888 0.7789 0.6623 0.5556 0.1274 0.4483 0.4752 0.5405 0.3331 

227 0.6834 0.5364 0.6342 0.4832 0.9038 0.4995 0.5634 0.4322 0.4198 0.4449 0.5601 0.3819 

228 0.7184 0.7557 0.7424 0.7004 0.9030 0.5793 0.6487 0.5612 0.4882 0.5629 0.6660 0.2633 

229 0.5525 0.7032 0.7755 0.6070 0.9061 0.4180 0.5563 0.3779 0.4066 0.3679 0.5671 0.3766 

230 0.5819 0.6348 0.8922 0.6809 0.9038 0.6264 0.6018 0.4192 0.4922 0.5076 0.6341 0.2997 

231 0.7862 0.6187 0.8026 0.8188 0.9164 0.5752 0.6182 0.4609 0.5024 0.5645 0.6664 0.2778 

232 0.7595 0.7093 0.8740 0.8954 0.9093 0.7211 0.6469 0.5171 0.5935 0.6231 0.7249 0.2049 

233 0.5067 0.5311 0.8427 0.2377 0.8415 0.5154 0.6660 - 0.4224 0.3732 0.5485 0.3310 

234 0.6090 0.6419 0.8047 0.3119 0.8411 0.5694 0.6954 0.0582 0.4805 0.5497 0.5562 0.3166 
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Table C.1.  Work Center Mean Utilization and Mean Protective Capacity for each Simulation Experiment (Continued) 

 

Experiment WC1 WC2 WC3 WC4 WC5 WC6 WC7 WC8 WC9 WC10 Average 

Mean 

Protective 

Capacity 

             

235 0.9101 0.6714 0.5285 0.2342 0.7800 0.8270 0.7895 0.3612 0.4387 0.4174 0.5958 0.3492 

236 0.9020 0.8627 0.6031 0.5389 0.7939 0.7600 0.7807 0.4353 0.4869 0.4891 0.6653 0.2631 

237 0.4997 0.6019 0.7028 0.5753 0.9038 0.4682 0.5516 0.2383 0.3422 0.5757 0.5460 0.3976 

238 0.5771 0.5652 0.7955 0.6161 0.9004 0.6711 0.5846 0.3226 0.4020 0.5991 0.6034 0.3300 

239 0.8237 0.8470 0.8557 0.7060 0.9101 0.8814 0.6951 0.4980 0.1822 0.5638 0.6963 0.2376 

240 0.7753 0.8365 0.9066 0.8585 0.8107 0.8943 0.7365 0.4896 0.3012 0.5939 0.7203 0.2070 

241 0.4274 0.4502 0.8390 0.2448 0.6247 0.5559 0.6447 0.0583 0.3392 0.2280 0.4412 0.4420 

242 0.4575 0.5831 0.8444 0.6452 0.7376 0.7629 0.5301 0.1955 0.4769 0.5268 0.5760 0.2982 

243 0.8045 0.5742 0.6842 0.4329 0.9100 0.6048 0.6809 0.4832 0.3581 0.3709 0.5904 0.3552 

244 0.8016 0.9044 0.8298 0.7989 0.9132 0.6756 0.7520 0.6571 0.4991 0.6016 0.7433 0.1887 

245 0.6542 0.6682 0.8249 0.7299 0.9000 0.4976 0.6974 0.4820 0.4166 0.4791 0.6350 0.2945 

246 0.5896 0.5331 0.9028 0.7145 0.8242 0.7228 0.6311 0.4459 0.5022 0.5857 0.6452 0.2862 

247 0.8484 0.6071 0.7531 0.7841 0.9120 0.5770 0.7090 0.5119 0.4649 0.6180 0.6785 0.2594 

248 0.7664 0.7435 0.8813 0.9127 0.8973 0.7908 0.6942 0.5601 0.6183 0.6685 0.7533 0.1771 

249 0.5345 0.5483 0.8464 0.2858 0.8229 0.5581 0.7320 - 0.4465 0.3498 0.5694 0.3117 

250 0.6915 0.7235 0.8028 0.3775 0.8405 0.6369 0.7605 0.1026 0.5391 0.6545 0.6129 0.2529 

251 0.9117 0.6488 0.5129 0.2577 0.7782 0.8085 0.8323 0.3915 0.4221 0.3960 0.5960 0.3508 

252 0.8583 0.8999 0.6035 0.6530 0.7595 0.6864 0.7529 0.4520 0.4737 0.4843 0.6624 0.2640 

253 0.5057 0.5812 0.6554 0.6251 0.9078 0.4973 0.6279 0.2925 0.3585 0.6037 0.5655 0.3803 

254 0.6309 0.5503 0.8406 0.6724 0.9081 0.8092 0.6459 0.3956 0.4482 0.6325 0.6534 0.2830 

255 0.8126 0.7920 0.8442 0.7681 0.9178 0.8959 0.7618 0.5716 0.1770 0.6189 0.7160 0.2242 

256 0.7138 0.7724 0.8840 0.9135 0.7292 0.8640 0.7519 0.4890 0.3380 0.5997 0.7055 0.2310 
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