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ABSTRACT 

 
Runoff from nursery operations is considered a potential non-point source 

contamination.  Water quality and quantity are quickly becoming important factors that 

drive management practices at these facilities.  Constructed wetland systems (CWS) are a 

management tool that can be used by nursery operations to improve water quality both 

for recycling within nursery production areas and for eventual release from nursery 

production areas into surrounding surface waters.  The overall goal of this research was 

to optimize nutrient removal efficiencies in CWS.  To accomplish this goal, I 

characterized the following: (1) the P sorption and desorption capacity of several 

substrates; (2) the effect of hydraulic retention time (HRT) and nutrient loading rate on 

nutrient retention efficiency in surface-flow CWS; (3) P sorption by an industrial mineral 

aggregate in a secondary, subsurface-flow treatment; (4) the impact of CWS planting 

style, whether floating mat, rooted plant material, or horticulturally-significant species, 

on nutrient removal; and (5) brick and industrial mineral aggregate root-bed substrate P 

sorption capacity under stable nutrient loading rates. 

The industrial mineral aggregate substrate displayed the greatest P sorption 

capacity of the substrates screened with a Langmuir Smax of 256.3 mg/kg P sorbed by the 

coarse aggregate (mesh size 4/20) and 462.9 mg/kg P sorbed by the fine aggregate (mesh 

size 24/48).  Brick substrate (mesh size 4/20) exhibited substantially lower P sorption 

capacity with a Smax of only 6.79 mg/kg.  The coarse aggregate sorbed 76% of the P in 

solution with exposure concentrations < 100 mg P/L, and so seemed ideally suited as a 
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subsurface flow CWS root-bed substrate.  The brick sorbed substantially less P but is also 

less expensive and, therefore, may be a viable root bed substrate. 

Nutrient loading rate is very important.  High nutrient inflow treatments were not 

adequately remediated with these experimental-scale systems, whereas the low and 

medium nutrient inflow treatments were efficiently assimilated.  Hydraulic retention time 

was not a consistent factor influencing nutrient removal efficiency for N or P.  The 4-day 

HRT resulted in consistently less P export from the CWS.  Floating and rooted treatments 

demonstrated highly efficient N and P assimilation, while the horticulturally significant 

species were not as effective.  Brick sorbed P efficiently but it saturated more quickly and 

did not reduce export concentrations as well as the industrial mineral aggregates, which 

effectively sorbed P from solution and reduced P exports from the mesocosms.  The 

surface- to subsurface-flow CWS was effective at assimilating and fixing nutrients from 

simulated nursery runoff. 
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PREFACE 

 Nutrient-rich runoff from nursery production areas is under increasing scrutiny 

because of the detrimental effects nutrient enrichment can cause in surface waters.  An 

effective and reliable remediation strategy is needed to reduce nutrient escape from 

nursery operations.  This research evaluated and defined some factors that contribute to 

nutrient remediation in constructed wetland systems.  The overall goal was to optimize 

constructed wetland system design to maximize nitrogen and phosphorus remediation.  

To accomplish this goal, I formulated a number of objectives including: 1) characterize 

the phosphorus sorption capacity of several substrates, 2) evaluate the impact of 

hydraulic retention time on remediation efficiency, 3) assess the effect of nutrient loading 

rate effect on remediation efficiency, 4) characterize planting strategy to attain the 

highest nutrient removal efficiency, 5) compare P sorbing effectiveness of two substrates 

over time, and 6) evaluate the remediation efficiency of planted and non-planted 

subsurface-flow wetlands. 

 This dissertation consists of a literature review describing past and current work 

with constructed wetlands and nutrient remediation, and three journal articles.  The first 

journal article (Chapter 2) describes phosphorus chemistry and the potential of several 

media for phosphorus sorption and desorption (objective 1).  The second article (Chapter 

3) evaluates the effects of nutrient loading rate, hydraulic retention time, and a substrate 

effectiveness for P sorption over time (objectives 2-3).  Finally, the third article (Chapter 

4) evaluates the effect of planting style and substrate on nutrient removal efficiency 

(Objectives 4-6)
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 CHAPTER 1: LITERATURE REVIEW 

Non-point source runoff 

 Contaminants are exported from a variety of land uses including suburban, golf 

courses, agriculture, and forestry.  One important class of contaminants is nutrients, 

including the many forms of inorganic and organic nitrogen and phosphorus.  Nutrients 

are most often considered non-point pollutants but point source discharges, such as 

wastewater treatment plant effluent, may contribute significant quantities of nutrients to 

receiving surface waters.  During the past 40 years we have begun to take action to 

reduce the loading of anthropogenic nutrients into the environment.  Phosphorus was 

removed from products reducing overall use and other point source contributors were 

regulated.  However, non-point source contributors are much harder to regulate and 

control.  Various agricultural activities export nutrients during storm events.  Quantities 

of exported nutrients usually depend on a variety of factors including application rates, 

crop production, soil type, and slope.  Landscape nursery operations, particularly in 

warmer climates, rotate plants every 8 to 12 weeks resulting in extensive use of 

agrochemicals including nutrients.  As water becomes increasingly regulated, these 

agricultural operations will have to manage their land to reduce, and even eliminate, 

nutrient export.   While various strategies are being considered to treat runoff from 

landscape nursery operations, one strategy with considerable promise is the use of 

constructed wetlands.. 

Wetlands remove both point- and non-point source pollutants via four principal 

components – microbial colonies, the water column, emergent macrophytes, and the 
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sediment/substrate (1).  Emergent macrophytes contribute to the remediation and 

purification function of wetlands by providing a substrate for establishing microbial 

colonies.  As water flow rates decrease because of stem density, sedimentation rates 

increase because of the slowed water flow.  Oxygenation of sediments around plant roots 

increases via air transport through aerenchyma cells in hollow, fleshy stems.  The 

sediment/substrate not only provides surfaces for growth of microbial colonies, it also 

supports the plant root system, and provides a variety of redox reactive surfaces for ion 

complexation.  The water column is the link between surface water and the sediment and 

facilitates transport of chemicals and gases between microbial, plant, and animal 

communities. 

Water quality varies seasonally with regard to concentrations of nitrogen (N), 

phosphorus (P), and dissolved oxygen (DO).  Kawara et al. (2) noted that nutrient 

concentrations and chemical oxygen demand were low during winter and increased in the 

summer.  Kröger et al. (3) noted internal wetland cycling during winter months resulted 

in increased export of nutrients from the decay of senesced plant material.  Headley et al. 

(4) reported consistent background levels of internally generated organic nitrogen and 

phosphorus at 0.45 mg/L and 0.15 mg/L respectively.  Several studies have shown that 

emergent plants rapidly leach nutrients into the water column when they begin to 

decompose (5-8).  This rapid release of nutrients, especially phosphorus, during the least 

biologically active time, may allow large amounts of phosphorus to leave wetland areas 

and leach into nearby sensitive bodies of water. 
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Phosphorus:  Background, chemistry, and sorption 

Eutrophication 

Manmade sources of P are commonly linked to stream and lake eutrophication.  

Phosphorus can be exported from erosion of agricultural land, agricultural runoff, urban 

runoff, as well as wastewater effluent (9).  Eutrophication can be broadly defined as the 

process whereby water body productivity, both primary and secondary, increases in 

response to increased nutrient availability (10-11).  Eutrophication is a naturally 

occurring process in surface waters, and a water body’s progression from oligotrophic (< 

5-10 µg/L of P and < 250-600 µg/L N), to mesotrophic (< 10-30 µg/L P and 500-1100 

µg/L N), and finally to eutrophic depends on the normal nutrient status of the lake, its 

geography, watershed size and location, nutrient sources, and time (10).  Typically, 

phosphorus is the most limiting nutrient for primary productivity in freshwater systems 

(12).  Thus it is normally phosphorus that determines the rate at which natural 

eutrophication occurs (10). 

 Hyper-eutrophication occurs when excess P becomes available.  Previous research 

has shown that P concentrations > 0.05 mg/L may contribute to increased eutrophication 

(13).  Eutrophication itself is not an inherently unstable process, but water bodies with 

communities of organisms adapted to low nutrient concentrations (oligotrophic or 

mesotrophic water bodies) are more susceptible to overfertilization, while naturally 

eutrophic water bodies are more resilient to additional nutrients because their plant and 

animal communities are adapted to the more productive environment (10). 
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Non-point source phosphorus pollution is a problem because it becomes the driving 

force in the eutrophication process compromising the natural phosphorus cycle.  When 

man-made sources increase the quantity of P reaching surface waters, the natural limit on 

primary productivity is removed, and growth can occur at an unsustainable rate.  Algal 

blooms are a natural process in many water bodies, but the problem with excess P is that 

it facilitates additional algal growth, so that when the crash comes after the bloom there is 

more biomass containing large amounts of organic matter.  Organic matter that is not 

incorporated into sediment is deposited along the shoreline and can change the physical 

habitat for littoral biota (both plant and animal).  Particulate organic matter settling to 

sediments where bacterial processing occurs will increase the rate of processing leading 

to increased biological oxygen demand.  The diminution of oxygen in the water column 

and sediment can have harmful impacts on organisms in deeper water and sediments (10, 

14).  If this decrease in oxygen occurs when the lake is highly stratified, the deeper 

portions of the lake may remain anoxic until turnover occurs.  Thus, organisms used to 

higher oxygen concentrations and unable to adapt to the low oxygen or anoxic 

environment die.  It is not the increase in nutrients that causes the death of the 

aquatic/benthic organisms; it is the secondary effect of the decrease in available oxygen. 

Wetland cycle and chemistry 

 Phosphorus is a limiting nutrient in northern bogs, freshwater marshes, and 

southern deepwater swamps (15).  In other wetlands, like agricultural wetlands, it is an 

important mineral, but not generally limiting due to its biochemical stability and relative 

abundance because of agricultural/non point source runoff.  Wetland cycling of 
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phosphorus involves its utilization in many pathways and various permanent and 

temporary sources and sinks (Figure 1; 16).  Phosphorus is present as both soluble and 

insoluble complexes in wetland soils.  The complexes are comprised of both organic and 

inorganic forms (Table 1).  Orthophosphate or soluble reactive phosphorus is the 

principle inorganic form; its principle forms are PO4
-3, HPO4

2-, and H2PO4
- and the 

predominant form present is based on wetland pH (Figure 2).  Soluble reactive 

phosphorus is the analytical measure of orthophosphate that is biologically available, 

although the two terms are not exactly equivalent (10).  Both insoluble organic and 

inorganic forms of phosphorus and dissolved organic phosphorus are not biologically 

available until their transformation into soluble inorganic P forms. 

 Phosphorus is only indirectly affected in sediments by changes in redox potential.  

This indirect change in P form is induced by association with elements whose forms are 

influenced by changes in redox potential (elements such as Fe and Mn).  Phosphorus 

availability to plants is reduced under aerobic conditions when insoluble phosphates 

precipitate with calcium carbonate, aluminum, or ferric iron (Fe3+ oxyhydroxide; 16).  

Phosphorus also becomes less available after binding to organic matter as a result of 

incorporation into living biomass, or after it sorbs onto ferric and aluminum hydroxides 

and oxides, organic peat, or clay particles. The chemical bonding of the positively 

charged edges of the clay with negatively charged phosphates and the substitution of 

silicate by phosphate in the clay particle are both processes that contribute to P sorption 

(17). 
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 Under anaerobic conditions, ferric iron is reduced to a more soluble ferrous (Fe2+) 

compound; phosphorus bound to ferric iron is then released to solution when ferric iron is 

transformed to ferrous.  Changing pH can also promote release of phosphorus from 

insoluble salts, either due to production of nitric or sulfuric acids or organic acids by 

chemosynthetic bacteria (15). Slightly acidic to acidic conditions may promote P sorption 

onto clay particles (17).  The complexity of phosphorus mineral chemistry makes 

quantitative solubility calculations difficult, but some solubility trends can be discussed.  

The first trend is noticeable in acid conditions and dependent upon iron and aluminum 

availability.  Under this condition, phosphorus may be fixed and insoluble.  The second 

trend involves fixation of phosphorus by calcium and magnesium when environmental 

conditions are alkaline.  The final trend involves the solubilization of iron minerals and 

subsequent release of phosphorus from them when conditions are reducing/anaerobic.  

Under reducing conditions the presence of sulfide can shift the balance from 

phosphorus:iron complexes to the formation of iron sulfide, which can prevent 

phosphorus mineralization with iron (16). 

Sorption and desorption mechanisms and characterization 

 The most straightforward way to describe sorption is to plot the amount of 

phosphorus sorbed (sorbate) as a function of the amount of phosphorus available in 

solution, after an equilibration period at a steady temperature (18-19).  Typically the 

highest amount of phosphorus is sorbed at the lowest solution phosphorus concentrations, 

or in other words, the lower the phosphorus concentration available in the water column, 

the greater the proportion of phosphorus sorbed to available solids.  At high phosphorus 
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concentrations a smaller proportion of phosphorus is actually sorbed to available binding 

sites.  If concentrations of sorbate are high enough, all binding sites will be saturated and 

no further sorption can occur. 

When phosphorus sorption isotherms are performed, cation balancing solutions are 

always used.  The cation balance solution, whether CaCl2, KCl, or NaCl, enhances 

phosphorus sorption rate to media (20-21).  The cation species used in the ionic balance 

solution influences the rate at which equilibrium between the solution and media is 

reached.  If a fast sorption reaction is desired a divalent cation (like Ca2+) should be used, 

but if higher concentrations of phosphorus are being tested, a monovalent cation (like K+ 

or Na+) should be used to minimize precipitation of insoluble calcium phosphates.  The 

ionic strength of the solution also influences the rate of sorption.  Higher ionic strength 

solutions, typically ranging between 0.01 to 0.1 M, reduce the thickness of the diffusion 

layer and thus maintain a larger concentration of phosphorus ions near the media surface 

which enhances initial phosphorus sorption (20). 

 The simplest models used to describe the relationship between concentration and 

amount sorbed are termed isotherm equations (19).  The Freundlich equation is the 

simplest of these and assumes an infinite supply of unsaturated binding sites and may be 

linearized by taking the log of the original equation: 

   

! 

log S =   b log CT +  log K     [1] 

where, S = amount of added sorbate retained by media (mg/kg), K and b are constants, 

and CT = the aqueous concentration (mg/L) after 24 hour equilibration (22).  The 
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Freundlich model assumptions are met if the data is linearized by this transformation.  If 

the data is linear, the intercept = K and the slope = b. 

 The Langmuir isotherm assumes a three-dimensional binding surface with a finite 

phosphorus sorption capacity limited by the number of internal and external binding sites.  

It can be linearized using the following inversion of the original equation: 
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where, Smax is the maximum possible sorption by the solid  in mg/kg, representing a 

monolayer surface coverage, and is the value of CT/S where the curve flattens.  The 

intercept is equal to 1/k*Smax and the slope is equal to 1/Smax (19, 23-24). 

 Desorption occurs if the phosphorus (sorbate) is reversibly bound to the media 

surface.  The phosphorus retention capacity (Pr) of a media is defined as the amount of 

phosphorus irreversibly bound to media after 24 h.  It is determined by calculating the 

difference between the amount of phosphorus adsorbed (Pad) to media and the amount of 

phosphorus recovered from (or desorbed from) the media after a 24h desorption period in 

an ionic solution with no additional phosphorus.  The formula to describe this retention 

relationship is as follows: 

   Pr = Pad * f       [3] 

where, f = the mean fraction of phosphorus retained by the media and is derived from 

Pr/Pad (23). Thus to calculate the proportion of phosphorus retained by the media after a 

specific desorption period, utilize Pr = f*100 (23). 
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 Many media have been incorporated into subsurface-flow wetlands because of 

their phosphorus sorption capacities including, gravel, dolomite, furnace slag, fly ash, 

shale, limestone, and sand (23, 25-27).  These media have improved the phosphorus 

retention capacity of constructed wetlands.  Many of these materials are inexpensive and 

naturally occurring and can be used as the root bed media for subsurface-flow 

constructed wetland systems.  When choosing a media to incorporate into subsurface 

flow wetlands it is important to evaluate its utility and its relative availability.  Is it a 

recycled product or does it require mining or harvesting to be useable?  Can we find a 

material that is recycled or could be recycled after its initial use?  Short-term monetary 

savings alone should not drive the decision making process, instead both short- and long-

term costs should be evaluated. 

Constructed Wetlands 

Wetlands assimilate and transform nutrients via a range of physical and biological 

mechanisms (1, 3, 23).  One such mechanism is plant uptake, but it accounts for < 5% of 

nutrient removal from contaminated waters (1).  Only in those systems with low nutrient 

loading rates, i.e. vegetative ditches and drainage canals, does plant uptake become a 

primary nutrient removal mechanism (3).  Constructed wetlands function similarly to 

natural wetlands and can be built to target specific remediation goals. 

The majority of constructed wetlands used for wastewater treatment are surface-

flow or free water surface systems (1).  The flow pattern of surface-flow systems directs 

water flow above media surfaces, which are typically clay or native soil.  In subsurface-

flow constructed wetlands water flows directly through media and is not generally 
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visible.  A drawback to the use of subsurface-flow wetlands is their tendency to clog after 

less than two years of heavy operation, e.g., sewage and dairy effluent, even though the 

filler media utilized is generally gravel or crushed rock.  Thus, surface-flow systems 

comprise the majority of treatment constructed wetland systems in the U.S., when any 

function less than tertiary polishing is needed. 

Over the past 30 years, subsurface-flow wetlands have been used to treat nutrient 

rich wastewaters (4) and have been shown very effective at nutrient removal, especially 

for nitrate. However, performance efficiencies vary, ranging from 20 to 95%.  

Subsurface-flow systems also seem to be ideal for phosphorus remediation if the root bed 

media used for fill has been chosen based on its capacity for phosphorus sorption (23).  

The long-term viability of the root bed media is based on the contaminant loading rate 

and desired effluent quality. 

Constructed wetlands are typically built so gravity flow directs water movement 

between cells, so that water pumping between treatment cells is unnecessary (1).  

Constructed wetland size is determined by both the nutrient (or contaminant) loading rate 

and by the daily volume of wastewater that must be treated.  If the nutrient-loading rate is 

high, the surface area of the constructed wetland system needed for treatment may 

increase in order to provide the needed detention time for nutrient transformation/uptake.  

To reduce excessive loading into the front of the wetland cells, they should be configured 

so that individual cells have a 2-5:1 length to width ratio (1, 16).  This configuration 

guideline helps to prevent short-circuiting and allows for more even distribution of the 

inflow water. 
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The quantity and relative dispersion of nutrient contaminants comprising non-point 

source pollution makes treatment via conventional means (wastewater treatment plants) 

untenable (28).   Instead, both natural and constructed wetlands are being used as tools to 

help remove nutrient contaminants introduced from non-point source locations.  The 

general efficiency with which a natural wetland removes nutrients varies from wetland to 

wetland, and many water quality factors influence wetland responses making them 

unpredictable and non-linear (28).  However, constructed wetland design can be 

optimized so that consistent nutrient removal efficiencies can be achieved. 

Mesocosms 

 Aquatic and terrestrial ecosystems are generally studied through the use of 

research mesocosms, first because of their statistical power and second for their ease of 

replication (29).  Mesocosms have been used to evaluate commercial scale applications, 

such as wastewater treatment and food production, and for ecological engineering and 

ecosystem restoration projects.  Over the last 25 years, mesocosms have been used in 

wetland science for studies examining pollutant fate and effects, biogeochemical cycling, 

and ecosystem dynamics as impacted by nutrients. Mesocosms facilitate relevant research 

that is replicated, repeatable, and less costly than larger, field-scale studies. 

 However, mesocosms are somewhat limited in scope, because they cannot always 

reflect the complex interactions that occur in natural ecosystems.  Mesocosms are very 

useful for explaining ecosystem processes when measured over a short time, but a 

mesocosm should not be used to study biogeochemical processes for more than two 

years, due to increasingly pot-bound vegetation and redox conditions that become 
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reducing more quickly than would normally occur in a field-scale constructed wetland.  

Differences in complexity between a mesocosm and a large-scale wetland can 

dramatically impact biogeochemical functions and pathways.  This loss of complexity 

with mesocosms makes it difficult to simulate accurately all of the physical and 

biological conditions and their interactions, for example the effects of sediment-water 

interface turbulence, water mixing, and boundaries (i.e. walls).  Even though the loss of 

ecological complexity may occur, depending upon mesocosm size, the advantages of 

their use, namely replicability, lower costs, and improved statistical power, increase these 

‘model systems’ frequency of use.  Ecosystem management decisions should not be 

solely based on mesocosm studies; instead some ecosystem-scale studies should be 

conducted for full confidence in management decisions (29). 

Hydrology  

 The study by Ahn and Mitsch (29) compared a large wetland and ten mesocosms 

with similar hydraulic loading rates (HLRs) and hydraulic retention times (HRTs).  They 

noted it was possible to overestimate the retention time of the large wetland because of 

the assumption that the entire volume of water is involved in the flow.  This is not always 

the case since the water mixing differs between the two-wetland scales.  In large-scale 

wetland systems basin morphology and topography may contribute to reduced mixing 

and thus to shorter retention times.  Kadlec and Knight (16) noted that retention time is a 

critical factor controlling nutrient retention in wetlands. 

 

 



 

13 

Physiochemistry  

 Ahn and Mitsch (29) found their larger wetland showed consistent water 

temperature increases from inflow to outflow over the four-year study; while, mesocosm 

water temperatures decreased over the two-year period.  Dissolved oxygen concentrations 

also differed when comparing the large wetland, where dissolved oxygen increased for 

two of the four study years, whereas with the mesocosms, the second study year showed 

a 50% decrease.  The anaerobic conditions of the wetland sediments led to a yearly 

decrease in water redox potential in both the large and mesocosm wetlands. 

 Ahn and Mitsch (29) suggest that a normal coefficient of variation (CV = 

(standard deviation/mean) x 100]) range for mesocosm variables simulating a large field 

system varies from 20 to 30%.  If a mesocosm has high variability it may fail to 

adequately simulate a large-scale wetland.  They noted similar variability between the 

mesocosm (CV = 16% on average) and large (CV = 20% on average) wetlands with 

regard to inflow water chemistry parameters: temperature, DO, pH, conductivity, and 

redox potential. 

Nutrient cycling 

 Phosphorus may be removed from the water column in wetlands via several 

biologically and physically mediated mechanisms including plant uptake, accretion into 

wetland soils, immobilization by microbes, sorption to root bed media, and precipitation 

(23, 30).  To ultimately remove excess phosphorus from wetland cycling, both plant 

harvest (to remove plant material before it decays and leaches phosphorus) and removal 

of saturated root bed media are needed.  Periodic plant harvesting seems a viable 
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solution, but experiments performed by Kim and Geary (31) found little decrease in total 

phosphorus in water column when comparing cells with harvested plants and treatment 

cells where no harvesting occurred.  They attributed the small change in phosphorus 

remediation efficiencies to the energy required for plant regrowth to begin and time taken 

for plants to regrow after harvesting occurred.  Phosphorus desorption from root bed 

media can occur under both aerobic and anaerobic conditions.  Phosphorus is also 

released into the water column as plant material senesces and undergoes decomposition 

(3).  Desorption and decomposition are both potential sources of internal wetland loading 

of phosphorus.  Ahn and Mitsch (29) noted that phosphorus was exported from their 

mesocosms during the second year of their study after dissolved oxygen and redox 

potential dropped significantly. 

 The work by Kröger et al. (3) with Leersia oryzoides examined its capacity for 

luxury uptake of phosphorus and nitrogen and the difference in nutrient loss during 

senescence from plants provided with normal or excess nutrient levels.  During the first 

week of plant senescence, L. oryzoides plants with excess nutrients exported > 3.5 mg/L 

nitrogen (NH3 and NO3) and > 3.0 mg/L phosphorus into the water column.  By contrast, 

plants supplied with normal nutrient levels exported similar nitrogen concentrations but 

phosphorus concentrations were below 1 mg/L.  However, after the first week, nitrogen 

release into the water column was reduced to less than 0.25 mg/L, but phosphorus export 

from both enriched (~ 3.0 mg/L) and non-enriched (~ 0.75 mg/L) plants remained at 

similar concentrations throughout the 12 weeks of sampling. 
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 Headley et al. (32) found that 96% of the influent phosphorus load was 

consistently removed by reed beds (Phragmites australis), with total phosphorus 

concentrations reduced from 0.5 mg·L-1 to 0.005 mg·L-1 without regard to loading rate or 

season studied.  They also identified three seasonal stages in the uptake and cycling of 

phosphorus by P. australis during the second and third years.  The first is a period of 

rapid aboveground growth during the spring fueled partially by rhizome-accumulated 

phosphorus reserves.  Then, during summer, the influent phosphorus loading rate 

governed the aboveground biomass uptake, while the belowground biomass phosphorus 

uptake remained relatively stable.  Finally, during the fall and winter, P appeared to be 

translocated to reserves in the rhizomes from senescent shoots.  They found 85% of the 

below-ground biomass P was in the top 20 cm of the substrate and that gravel P fixation 

increased in importance from 12% for the first year to approximately 30% of the P 

removal in the second year.  There was a correlation between P fixed by gravel and 

influent P loading rate.  Most of the P bound to the gravel was weakly bound in the lower 

30 cm of substrate during the second year.  Phosphorus incorporation into detritus, 

microbiota, or other compartments increased after the first year and became one of the 

most important P removal processes.  Consequently, while plant uptake occurred and 

phosphorus was stored in P. australis root systems, the controlling factor for phosphorus 

removal was not biological removal but rather the physical and chemical reactions that 

took place in the wetland ecosystem. 
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Vegetation 

 Plants uptake phosphorus in its highest oxidized form (H2PO4
-), and unlike 

nitrogen or sulfur, phosphorus remains in this form and is not reduced.  After uptake, the 

phosphorus form at physiological pH is generally H2PO4
-.  Phosphorus either remains in 

its inorganic form, is esterified to a simple sugar phosphate, or becomes part of high-

energy pyrophosphate bonds.  The rates of exchange between these three forms are very 

high in plants, and are dependent upon their location within the plant (33).  The 

phosphorus required by a plant for optimal growth is between 0.3 and 0.5% by mass 

during vegetative growth.  Plants regulate the amount of phosphorus they allow to enter 

through their root cells.  When plants that have undergone phosphorus deficient 

conditions become exposed to adequate phosphorus, they will initially (only for a few 

hours) take up higher concentrations of phosphorus and translocate it into their shoots.  

Once a certain internal phosphorus concentration has been attained, internal feedback 

mechanisms decrease the amount of phosphorus able to enter through the roots.  Thus, 

luxury phosphorus uptake is not a viable expectation for most plant species because they 

do not have the capacity to take up more phosphorus than they physiologically need (33). 

Ahn and Mitsch (29) determined two factors altered macrophyte productivity.  The 

first was a scale artifact observed from macrophyte overhang.  Macrophyte overhang 

involves sunlight reaching a larger proportion of plant stems than that of typical wetlands, 

due to the higher area/edge ratio of a mesocosm.  The second scale artifact is seen in the 

vegetation spatial pattern; in natural wetlands rarely does vegetation cover 100% of the 

surface area.  This is due to beaver, goose, and muskrat herbivory, harvesting, depth 
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variation, and other disturbances; while mesocosms often have 100% vegetative cover, 

simply due to their smaller size.  These two factors contribute to complete water column 

shading and increased wind protection.  Thus, when mesocosms are compared with large-

area wetlands, mesocosms exhibit cooler water temperatures, lower redox potentials, 

higher conductivity, and lower DO, all impacting and changing mesocosm nutrient 

uptake when compared with larger-scale wetlands.  Wetland function is not controlled by 

nutrient inflow and hydrology alone, but also by stream damming, transpiration, sediment 

excavation, detrital buildup, etc., all part of biotic feedback effects (15). 
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Figure 1.1. Phosphorus biogeochemical cycle (15-16, 34). 
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Figure 1.2. Distribution of phosphorus species expressed as a fraction as a function of 

aqueous solution pH (34). 
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Table 1.1. Major types of dissolved and insoluble phosphorus in the wetland environment 

(15-16). 

Phosphorus Soluble Forms Insoluble Forms and Precipitates 

Inorganic orthophosphates (H2PO4
-, clay-phosphate complexes 

  HPO4
2-, PO4

3-) 

 ferric phosphate (FeHPO4
+) metal-hydroxide phosphate 

   apatite  (Ca5(Cl,F)(PO4)   

 soluble reactive phosphorus  hydroxylapatite  (Ca5(OH)(PO4)3  

  (PO4-P)  variscite Al(PO4)·2H2O  

 condensed phosphates stringite   Fe(H2PO4)·2H2O 

  (pyro-,meta-, and poly- vivianite Fe3(PO4)2·8H2O   

  phosphates)  wavellite  Al3(OH3)(PO4)2·5H2O 

 phosphine gas (PH3) 

Organic dissolved organics, e.g., insoluble organic phosphorus 

  sugar phosphates, inositol bound in organic matter 

  phosphates, phospholipids, 

  phosphoproteins 
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CHAPTER 2: BRICK AND INDUSTRIAL MINERAL AGGREGATE: 

PHOSPHORUS SORBING MEDIA FOR CONSTRUCTED 

WETLAND SYSTEMS 

Abstract 

 Constructed wetland systems built to handle nutrient contaminants are often 

efficient at removing nitrogen, but ineffective at reducing phosphorus (P) loads.  The 

incorporation of media with large phosphorus sorption capacities often improves 

phosphorus removal in subsurface-flow constructed wetland systems.  Crushed brick, a 

recycled building product, and a palygorskite-bentonite industrial mineral aggregate 

(calcined clay) were screened for their P sorbing capacities using sorption isotherms.  

Also, their P retention capacities were examined with a series of desorption experiments.  

The fine calcined clay had the highest average P sorption capacity (1239.5 mg kg-1).  The 

coarse calcined clay average sorption capacity was 497.1 mg kg-1, and the average P 

sorbed by brick was 102.4 mg kg-1.  The coarse clay sorbed the highest percentage of P 

supplied (76%), except at exposure concentrations > 500 mg l-1 where the increased 

surface area of the fine calcined clay augmented its P sorption capacity enabling it to sorb 

a slightly greater percentage of P from solution.  The three substrates bound the P tightly, 

and desorbed < 3% (brick) to < 1% (fine calcined clay) of the P initially sorbed.  The 

calcined clays exhibited greater P sorption capacities than the brick.  Thus, a constructed 

wetland system established with calcined clay would have a longer expected lifetime than 
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a system established with brick.  Estimates of substrate life spans are highly influenced 

by P load and the daily flow rate into the constructed wetland system. 

Keywords  

Bentonite, Palygorskite, Langmuir isotherm, Freundlich isotherm, Sorption, Desorption 

Introduction 

 Nutrient contamination in surface waters is garnering increased attention both 

locally and globally because of its potential for deleterious impacts to humans and the 

environment (1-2).  Scrutiny of local, state, and federal environmental agencies as a result 

of increasing concerns about water quality preservation and improvement is likely to lead 

to formation of new water quality criteria for previously unregulated agricultural non-

point source contributors (3-4).  Constructed wetland systems (CWS) are useful for 

reducing nitrogen (N), phosphorus (P), biological oxygen demand, and suspended solids 

(5-7). 

 The phosphorus remediation efficiencies of CWS still often result in export 

concentrations greater than 0.05 mg l-1 P, which has been shown to contribute to 

increased eutrophication (8-10).  Phosphorus is not as consistently managed via CWS 

because internal phosphorus cycling often leads to the export of phosphorus (3-4, 11).  Of 

the various P immobilization pathways in CWS, fixation by substrate is the most reliable, 

and thus the factor that could be most easily manipulated for control (6).  Phosphorus 

sorption efficiencies of many substrates have been examined including: alunite, gravel, 

dolomite, furnace slag, fly ash, shale, limestone, and sand (7, 12-15), and their relative P 

sorption capacities characterized.  Sorption of phosphate by clays has interested many 
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researchers because of their positive surface charge, high ion-exchange capacities, and 

high affinity for P (16-17).  The upper limit for current-day phosphorus remediation 

strategies is thought to be 2,060 mg P kg-1 soil for amorphous, composite materials 

containing Fe, Al, oxides, and kaolinite (18). 

 When choosing a substrate for P removal, several characteristics and properties 

are desirable.  The substrate should exhibit, high selectivity and a large capacity for P, 

handling ease (cannot be too fine or coarse), high physical and chemical strength, and be 

nonhazardous (16).  An additional benefit would be a substrate that is cost effective, 

available from sustainable sources, and can be recycled or reused.  Reuse of the substrate 

is especially important because once a substrate becomes P saturated, it could serve as a 

potential fertilizer source in place of or in addition to traditional fertilizers, if desorption 

from the media occurs gradually over time at sufficient concentrations.  The objectives of 

this study were to characterize the sorption capacities of three clay media and relate this 

to their effectiveness as substrates for CWS, evaluate their desorption rates and 

concentrations, and determine the equilibration period necessary for maximal P sorption. 

Methods 

Industrial mineral aggregate 

 The palygorskite-bentonite mineral aggregate (calcined clay, CC) evaluated was 

mined in Ochlocknee, GA (Oil-dri Corp. of America, Chicago).  Two particle sizes were 

examined, a coarse 0.8 to 4.75 mm (4/20 LVM) and a fine 0.25 to 0.85 mm (24/48 

LVM).  Both had been pretreated to a temperature of 800 ºC. 
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Brick  

 The brick, a manufacturing waste by-product, was examined at only one range of 

particle sizes, 0.8 to 4.57 mm (4/20, National Brick Research Institute, Clemson, SC).  

The brick manufacturing process involved firing the clay, and a range of temperatures 

(149 to 982 ºC) was used depending upon the type of clay in the brick (19).  Since this 

brick is a waste product, the maximum temperature to which it was heated was not 

known. 

Phosphorus sorption experiments 

 Phosphorus sorption experiments were conducted with brick and fine and coarse 

CC using a batch incubation technique under anaerobic conditions.  Approximately 2 g of 

the fine and coarse CC were placed in 50 ml centrifuge tubes and treated with 45 ml of 

0.01 M CaCl2 solution containing 0, 0.5, 1.0, 10.0, 50.0, 100.0, 500.0, or 1000.0 mg l-1 P 

provided as KH2PO4.  Six replicates per media type and exposure concentration were 

prepared and allowed to equilibrate for 24 h at 25 ± 2 ºC, on a rotary shaker table set at 

150 rpm.  Equilibrated samples were centrifuged at 3500 rpm for 15 min and filtered 

through 0.45 µm polytetrafluoroethylene (PTFE) filters.  Total soluble P was measured in 

the filtrate using ICP MS/OES.   

 Approximately 3 g of brick were placed into 50 ml centrifuge tubes and treated 

with 45 ml of 0.01 M KCl solution containing 0, 0.5, 1.0, 10.0, 50.0, 100.0, 250.0, or 

1000.0 mg l-1P provided as KH2PO4.  Six replicates per exposure concentration were 

used.  The samples were equilibrated for 24 h at 25 ± 2 ºC on a rotary shaker table set at 

150 rpm.  Equilibrated samples were centrifuged at 3500 rpm for 15 min and filtered 
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through 0.45 µm PTFE filters.  Total soluble P was measured in the filtrate using ICP 

MS/OES.  Phosphorus not recovered in the filtrate of the three substrates was considered 

sorbed to substrate. 

Phosphorus desorption experiments 

 Phosphorus desorption experiments were performed immediately on substrate 

residues from sorption experiments.  The CC residues were equilibrated with 45 ml of 

0.01 M CaCl2 solutions for 24 and 48 h at 25 ± 2 ºC.  Equilibrated samples were 

centrifuged for 15 min at 3500 rpm and filtered through 0.45 µm PTFE filters.  The 

filtrates were analyzed for soluble reactive phosphorus using a Dionex AS50 IC.  The 

brick residues were equilibrated with 45 ml of 0.01 M KCl solutions for 24 and 48 h at 25 

± 2 ºC and were handled in the same manner as the CC residues.  The amount of P 

retained by the substrate was calculated from the difference in the amount of P sorbed to 

the media and the amount recovered from solution. 

Substrate equilibration period 

 Approximately 2 g of fine and coarse CC were equilibrated with 45 ml of 0.01 M 

KCl solution containing 500 mg P l-1 for 0, 12, 24, 48, 72, 96, 120, 144, 168, or 192 h at 

25 ± 2 ºC.  Approximately 2 g of brick were equilibrated with 45 ml of 0.01 M KCl 

solution containing 250 mg P l-1 for the same time points. There were six replicates per 

time period for both CC and brick and samples were handled as above. Phosphorus not 

recovered in the filtrate of the three substrates screened was considered sorbed to 

substrate. 
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Sorption characterization 

 At low P concentrations the relationship between P added and P sorbed is 

generally linear (12).  Sorption data were fit to Freundlich and Langmuir models.  The 

Freundlich equation is the simplest and assumes an infinite supply of unsaturated binding 

sites.  The Freundlich equation may be linearized by the following log transformation: 

   

! 

log S =   b log CT +  log K     [1] 

where, S = amount of added sorbate retained by media (mg kg-1), K and b are constants, 

and CT = the aqueous concentration (mg l-1) after 24 hour equilibration.  The Freundlich 

model assumptions are met if the data are linearized by this transformation.  If the data 

are linear, the intercept = logK and the slope = b. 

 The Langmuir isotherm assumes a three-dimensional binding surface with a finite 

phosphorus sorption capacity limited by number of internal and external binding sites.  It 

can be linearized using the following inversion of the original equation: 
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 Removal efficiencies were also calculated using: 

  
  

! 

Removal efficiency (%) =  
CI "  CT( )

CI

 x 100   [3] 
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where CI = initial exposure concentration and CT = aqueous concentration after 24 h 

equilibration period. 

Desorption characterization 

 The substrate phosphorus retention capacity (PR) was defined as the amount of P 

bound to media after 24 h or 48 h.  The difference between the amount of phosphorus 

adsorbed (Pad) to media and the amount of phosphorus recovered from (or desorbed from) 

the media after a 24h and 48 h desorption period in an ionic solution containing no 

additional phosphorus was calculated.  The formula to describe this retention relationship 

is as follows: 

   PR = Pad * f       [4] 

where f = the mean fraction of phosphorus retained by the media.  Following the methods 

of Pant et al. (12) PR vs. Pad for each substrate was plotted and the intercept was forced 

through the origin.  The slope obtained by graphing this relationship correlates with the 

calculated parameter f. 

Data analyses 

Data were fit to isotherm models and statistical analyses were performed on transformed 

data using SAS PROC REG (SAS Institute Inc. Cary, NC) for homogeneity of slopes and 

intercepts.  Treatment comparisons were made using SAS PROC GLM with LSD mean 

comparisons when appropriate (α = 0.05). 
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Results and discussion 

Substrate P sorption  

 Substrate P sorption capacity was examined by linearizing data using both the 

Freundlich and Langmuir isotherm models (Fig. 2.1).  Model parameters were then 

examined to determine the model that best illustrated sorption trends (Table 2.1).  The 

Freundlich model best described the linear brick sorption (r2 = 0.957; Fig 2.1A).  The 

Langmuir model best illustrated the P sorption relationship with both fine (r2 = 0.940; Fig 

2.1B) and coarse (r2 = 0.934) CCs.  The P sorption capacity of the CCs was much greater 

than the brick (Fig. 2.1 and Table 2.1).  The adsorption maxima for the coarse and fine 

CCs as described by the Langmuir Smax were 256.28 mg kg-1 and 462.85 mg kg-1, 

respectively.  A comparison of the Langmuir k values, which illustrate the relative 

binding strength of each media for P (12), showed that coarse CC had the greatest 

binding strength and brick the lowest. 

 When P exposure concentrations were between 1.0 mg l-1 and 500.0 mg l-1, fine 

CC sorbed P more strongly than the coarse CC, which sorbed P more strongly than did 

the brick (P < 0.0001).  However, when P exposure concentrations were < 1.0 mg l-1 the 

coarse and fine CC sorbed P in a similar manner, although both sorbed P more strongly 

than the brick (P < 0.0001).  Homogeneity of slope analyses using SAS PROC REG 

indicated the P sorption rate to fine and coarse CC was different from P sorption rate to 

brick (P < 0.0001).  Brick sorbed P at a faster rate (b = 0.741) than both fine and coarse 

CCs (b = 0.390 and b = 0.301, respectively).  All substrates examined had a b < 1.0 

which suggests saturation is possible and sorption processes will be limited by binding 
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site availability (8).  Relative media sorption capacities were greater for the CCs than the 

brick, indicating that even with slower sorption rates, CCs were able to sorb more P. 

 Homogeneity of intercept analyses compared the linear model intercepts.  The 

brick intercept differed significantly from the intercepts of both CCs (P < 0.0001).  

Further exploring this relationship, Fig. 2.2 depicts the removal efficiency of each media 

at specific exposure concentrations.  The coarse CC was generally the most efficient at P 

sorption when exposure concentrations were ≤ 100 mg L-1 P, with removal efficiencies 

ranging from 13 – 98 %.  The brick had consistently lower removal efficiencies with a 

range of 5 – 51% for 0.5 – 100 mg l-1 P equilibration solutions.  The fine calcined clay 

generally had higher removal efficiencies than the brick, but lower removal efficiencies 

than the coarse CC. 

 The coarse CC capacity for P sorption (Smax = 256.3 mg kg-1) and its higher 

binding strength (k = 9.79) indicated its effectiveness at P sorption when P exposure 

concentrations were between 0.5 and 100 mg L-1.  The binding sites of the coarse CC 

were saturated after exposure to the 500 and 1000 mg l-1 P solutions.  Phosphorus 

desorption into the solution occurred at these concentrations; this phenomenon was also 

described by Langmuir (20) under P saturated conditions.  Thus, if exposure 

concentration was likely to be > 100 mg l -1, fine calcined clay would be the more 

effective substrate for P sorption, because of its greater capacity for P sorption (Smax = 

462.9 mg kg-1).  Brick substrate was not as effective as either of the CCs examined.  It 

may still be useful as a root-bed media for P sorption in subsurface-flow CWS, but it 
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would have to be refreshed more often than the CCs, because its lower Smax (6.79 mg kg-1) 

indicated that it does not have the capacity to sorb as much P as the CCs. 

 When the K (1.62) and Smax (6.79 mg kg-1) of brick were compared with the other 

media screened, it was found to have a much lower Smax.  Drizo et al. (6) screened several 

substrates and found a range of Smax values from 420 mg kg-1 P for lightweight expanded 

clay aggregates to 860 mg kg-1 P for a coarse fly ash.  Xu et al. (7) screened fly ash, from 

a different source, and found an Smax of 8,810 mg kg-1, which is an order of magnitude 

greater than that of Drizo et al. (6).  However, fly ash increased the pH of its solution to 

>12, which also increased formation of insoluble calcium-phosphate complexes that 

precipitated from the solution and increased the Smax.  Özacar (13) examined calcined 

alunite’s sorption capacity and found its Smax = 118 mg kg-1.  The sorption capacity of 

brick is well below those of the substrates discussed above.  When the Smax of fine CC 

(462.9 mg kg-1) and coarse CC (256.3 mg kg-1) were compared other substrates; only fly 

ash had an Smax that exceeded fine CC, and the Smax of coarse CC was similar to many of 

the previously screened substrates. 

 Even though the sorption capacity of brick was much lower than that of many 

screened media, it could still provide enough P sorption capacity to adequately remove P 

from lower concentration runoff or wastewater.  Brick could be used in situations where 

nutrient concentrations in effluent are between 0.5 and 50.0 mg l-1, the range in which its 

removal efficiencies were the greatest.  Since brick is relatively cheap ($50/ton), it may 

be a more economical substrate for CWS with lower inflow volumes and nutrient 

concentrations.  The CC is very efficient at sorbing P, but costs around $300/ton. The 
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coarse CC recovered a larger proportion of the P supplied when compared with fine CC 

at concentrations < 100 mg l-1.  This indicates that for many CWS, coarse calcined clay 

would provide adequate P sorption and greater handling ease. 

Substrate P desorption 

 Desorption from each substrate was evaluated at individual exposure 

concentrations. Phosphorus concentrations desorbed did not change between 24 and 48 h 

(P = 0.769); thus all figures and tables present averages of 24 and 48 h data.  Brick P 

desorption differed from fine and coarse CC at all exposure concentrations (P < 0.0001; 

Fig. 2.3).  Coarse and fine CC desorbed more P than brick at all exposure concentrations 

except 1,000 mg l-1 P.  This trait may indicate that P bound to brick is less likely to 

desorb and thus more strongly bound than the P bound to CC, or it could be indicative of 

the disparity of sorption at lower P exposures, where CCs sorbed considerably more P 

than brick. 

 The relative PR capacities of the substrates were significantly different (P < 

0.0001), with the fine CC retaining the highest concentration of sorbed P, followed by 

coarse CC, and lastly brick (Table 2.2).  Since the PR relates to the initial amount of P 

sorbed, the high PR of fine CC correlated highly (P < 0.0001) with its capacity for sorbing 

more P than the other substrates.  The f and the slope obtained from plotting Pad vs. PR 

and forcing the intercept through zero was a better comparison of the relative PR 

capacities of each substrate.  Analyses comparing f and the slope for each substrate 

indicated that fine and coarse CC retained similar percentages of P sorbed at 99.8 ± 0.006 

%, while brick retained only 94.6 ± 0.01 % of its initially sorbed P. 
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 The three substrates examined desorbed only low levels of P, with the lowest f > 

95.1%.  When we compared our substrate PR with those determined in other studies, even 

brick shows a greater propensity for retention than the best media examined by Pant et al. 

(12), whose work screening several media for their sorption capacity resulted in a range 

of PR from 56% for Lockport dolomite to 92% for a Fonthill sand.  This indicates that the 

media screened were less likely to desorb P when P concentrations in water were lower 

than those necessary for sorption to occur.  However, most studies that examine P 

sorption to different media do not examine desorption parameters so it is difficult to draw 

further comparative conclusions from these desorption data. 

Substrate equilibration period 

 Equilibration time necessary for maximal sorption of P by each substrate was 

evaluated with steady exposure concentrations.  Calcined clays and brick were exposed to 

500 and 250 mg l-1 P, respectively, for eight days.  Exposure concentration was not an 

important factor when analyzing these results.  Instead, the focus was on time necessary 

for greatest P sorption.  Coarse CC sorbed P from solution maximally after 72h of 

exposure (Fig. 2.4), and fine CC sorbed the most P from solution after 48h.  Brick sorbed 

equivalent concentrations of P from solution after only 24h of exposure.  Even though 

both CC substrates sorbed larger quantities of P than brick during the sorption 

experiments, brick had the fastest equilibration time with P during this experiment.  Thus, 

even though brick P sorption capacity is lower than CC, it sorbed P more quickly.  These 

results indicate that brick may be more useful than CC when hydraulic retention time is 

short.  The CC would be useful in CWS settings with longer retention times or in 
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situations where higher P loading rates make incorporation of a substrate with higher P 

sorption capacity critical. 

Conclusions 

 This study showed that CCs could be especially effective substrates for P sorption 

in the root-bed media of CWS because of their high P sorption and retention capacities.  

The Langmuir Smax for fine CC was the largest at 462.9 mg kg-1 P.  The coarse CC Smax 

was only 256.3 mg kg-1 P.  Even though coarse CC had a lower Smax in comparison with 

the fine CC, it sorbed approximately 76 ± 2.6% of P supplied at exposure concentrations 

between 0.5 and 100 mg l-1 P, while the fine CC sorbed 68 ± 2.8 % of P supplied at the 

same concentration range. Fine CC’s higher Smax can be associated with its ability to sorb 

greater quantities of P under higher exposure concentrations.  At these higher 

concentrations, the coarse CC was saturated and actually desorbed P into the exposure 

solutions.  Both coarse and fine CCs desorbed < 2% of the P sorbed during the sorption 

experiments. 

 Brick had a very low Freundlich K, 1.62, indicating brick did not sorb as much P 

as did CCs.  Further, brick was not able to sorb P as strongly as the CC at any P 

concentrations.  It was able to remove only 19.7 ± 2.5% of the P supplied during sorption 

experiments at P concentrations < 100 mg l-1.  Brick desorbed < 5% of P sorbed during 

initial exposures.  Even though brick does not have a large P sorption capacity, it is able 

to sorb P more quickly than CC.  Indicating, it may be a useful substrate in CWS with 

lower influent P concentrations or shorter retention times. CCs have a large capacity for P 

sorption.  Coarse CC sorbs a greater proportion of P at exposure concentrations < 100 mg 
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l-1, so as long as P levels in runoff/wastewater do not exceed this concentration, coarse 

CC is the better choice for a P sorbing material.  Not only is it easier to handle, but the 

larger particle size also decreases the probability that a large storm event will facilitate 

loss of substrate via particle suspension.  These substrates should be further evaluated in 

long-term mesocosm or field-scale studies to characterize more fully their sorption 

capabilities over time and to evaluate the impact of P loading and flow rate on substrate 

life span. 
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Figure 2.1. Relationship between equilibrium solution P and sorbed P for substratesa 

examined. (A) Depicts brick P sorption relationship with the Freundlich model, and (B) 

depicts the fine and coarse CC relationship with the Langmuir model. 

 
aCC = calcined clay. Values are the mean of 6 replicates ± the standard error of the mean 

per exposure concentration. 
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Figure 2.2. Substrate P removal efficiency (percentage P sorbed vs. P available) 

evaluated with various P exposure concentrations. a 

 
a Bars with * are statistically different at the specified exposure concentration (P < 0.05). 

CC = calcined clay. Values are the mean ± standard deviation of the mean of 6 replicates 

per exposure concentration. 
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Figure 2.3. Relationship between P sorbed to substrate and P desorption over average of 

24 and 48 h equilibration period. a 

 
a Statistically significant difference (*) at specified exposure concentration (P < 0.05).  

CC = calcined clay. Values are the mean ± standard deviation of the mean of 6 replicates 

per exposure concentration. 
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Figure 2.4. Relationship between time and substratea sorption of P with fixed exposure 

concentrations. 

 
a CC = calcined clay. Values are the mean ± standard error of the mean of 6 replicates per 

exposure concentration. 
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Table 2.1. Freundlich and Langmuir coefficients derived from sorption isotherms for 

substrates tested. a 

 
a CC = Calcined clay industrial aggregate.  Only the positive portions of the slopes were 

used to characterize the sorption parameters, if saturation occurred, that negative slope 

was not included in the calculations.  Pad, average P adsorbed to substrate; b, slope; K, 

Freundlich sorption coefficient; Smax, sorption maxima; k, binding strength. 

 

Table 2.2. Average of P retained by substrate after 24 or 48 h equilibration with ionic 

solution. a 

 
a CC, Calcined clay industrial aggregate; Mean PR (mg P kg-1 substrate), Padsorbed - Pdesorbed 

after 24 and 48 h equilibration; PR = Pad * f; slope, mean fraction of PR; f, ratio of 
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CHAPTER 3: HYDRAULIC RETENTION TIME, 

CONCENTRATION, AND INDUSTRIAL MINERAL AGGREGATE 

IMPROVE NUTRIENT REMEDIATION EFFICIENCY OF 

CONSTRUCTED WETLAND SYSTEMS 

Abstract 

 Nutrient rich runoff from landscape nursery production areas is coming under 

increased scrutiny and is likely to be regulated in the near future.  Constructed wetland 

systems (CWS) are management systems that can assimilate and remove nutrients from 

the runoff.  This study evaluated how nutrient loading and hydraulic retention time 

impacted nutrient removal efficiencies in CWS.  Simulated nursery runoff water with N 

concentrations < 20 mg/L N were efficiently treated in surface-flow CWS; if N 

concentrations were ≥ 28.5 mg/L adequate treatment did not occur.  Instead net export of 

≥ 10 mg/L N occurred from October through March.  Secondary subsurface-flow 

mesocosms lined with industrial mineral aggregate were able to reduce P export by 60 – 

74 % until the media saturated during April and May.  Sequential extractions of the 

saturated media indicated that the majority of the P was associated with the Ca and Mg 

extractable fraction and that < 4.0 ± 4.0 % of P was freely exchangeable or available for 

plant uptake.  The 4-day hydraulic retention time provided the most consistent nutrient 

removal efficiencies, and reduced P concentrations exported during winter months.  This 

surface-flow to subsurface-flow CWS strategy shows great potential for reducing nutrient 
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exports from nursery runoff as long as average nutrient loading is accounted for when 

planning CWS size. 

Introduction 

 Nutrient contamination from non-point sources is garnering increased attention in 

public, private, and governmental sectors because of the very noticeable downstream 

effects that even minor increases in nitrogen (N) and phosphorus (P) can produce.  Non-

point source contributors of nutrients include runoff from agricultural, forested, and 

urban areas.  Even slight increases in nutrient concentration in water bodies can increase 

the rate of eutrophication.  Effects of increased eutrophication can range from slightly 

increased primary productivity, both phytoplankton and aquatic macrophytes, to 

expanding dead zones in estuaries, bays, and seas that are a result of very low dissolved 

oxygen levels from excess nutrient loading brought to estuarine areas by rivers (1, 2).   

 Nutrient runoff from nursery and greenhouse production areas are of interest, 

because these industries are the largest per unit area users of fertilizers and pesticides (2).  

Nursery effluent can range in concentrations from 0.1 to 135 mg/L NO3-N and 0.01 to 20 

mg/L P (2-6).  Constructed wetland systems (CWS) are low-cost treatment options that if 

implemented by nursery operators would reduce nutrient effluent concentrations.  Many 

CWS evaluated recently utilize one species, such as cattail, common reed, or bullrush (6-

8).  This monospecific plant-stand strategy does not account for differential nutrient 

uptake capacities of multiple plant species.  Mixed-plant CWS enhance ecosystem 

function and may retain up to 30% more nutrients (7, 9). 
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 Nitrogen is efficiently assimilated in constructed wetlands and released as N gas 

via nitrification-denitrification processes (10).  Phosphorus removal is more variable, and 

is aided to varying degrees by plant uptake, accretion into wetland soils, sorption to 

sediment, precipitation reactions, and immobilization by microbes (10-13).  Sustained 

phosphorus removal in CWS is low unless substrates with high sorption capacities are 

used.  To ultimately remove excess phosphorus from wetland cycling, both plant harvest 

and saturated sediment removal are needed.  However, the utility of plant harvest is not 

consistently agreed upon; Kim and Geary (14) found that plant harvest did not 

dramatically improve phosphorus remediation efficiency (PRE) because the energy 

required for plant regrowth and the time taken for plants to regrow after harvest reduced 

the overall PRE.  However, plant harvest is still considered by many researchers as a 

means to remove assimilated phosphorus because of the considerable quantities of P that 

reside in plant mass and can be exported during plant senescence (15-16).  

 Seo et al. (17) evaluated oyster shell additions to various filter substrates and saw 

P adsorption (Pad) ranging from 180 to 7925 mg/kg based on oyster shell percent.  Other 

media including gravel, dolomite, furnace slag, fly ash, shale, limestone, and sand have 

been incorporated into subsurface-flow CWS and have improved their P removal 

efficiencies from 10 to 71% (12, 17-20).  However, increased PRE does not necessarily 

coincide with lower effluent P concentrations because the substrate equilibrium 

concentration (where no net sorption or desorption occurs) may be at concentrations 

higher than desired effluent levels (12).  Akratos and Tsihrintzis (8) evaluated the effect 

of hydraulic retention time (HRT) on nutrient removal efficiency and found that 8-day 
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HRTs were adequate for P fixation as long as temperature was above 15º C.  If 

temperature was below 15 ºC 14- to 20-day HRTs were necessary.   

 Many factors drive nutrient cycling in CWS.  Water temperature, inflow 

concentration, inlet flow rate, and biogeochemical nutrient cycling all contribute to 

nutrient cycling patterns (21).  Objectives of this research were to characterize the 

influence of hydraulic retention time and influent nutrient concentration on N and P 

attenuation in surface-flow CWS and to determine the P sorption capacity of industrial 

mineral aggregate (calcined clay, CC) and its potential for reducing effluent P 

concentration when used as the root-bed substrate in subsurface-flow CWS. 

Experimental Procedures 

Primary Mesocosm Experiment 

 Primary mesocosm setup used twenty-four 380-L mesocosms planted with 

aquatic macrophytes.  Approximately 15.2 cm of granite pea gravel lined the bottom of 

each mesocosm.  Macrophytes were planted in gravel and water levels were raised slowly 

to maximum fill level.  Mesocosms were planted in late July 2005 and allowed to 

establish for two months before sampling began.  Sampling occurred from 10 October 

2005 to 22 May 2006. 

Plant Composition 

 Approximately 4.5 ± 0.4 kg of live plant material was planted in each primary 

mesocosm and plant species included in mesocosms were Sagittaria graminea (duck 

potato), S. latifolia (arrow-head), Pontaderia cordata (pickerelweed), Hydrocotyle 

ranunculoides (water pennywort), H. umbellata (marsh pennywort), Panicum hemitomum 
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(maidencane), Murdannia keisak (marsh dewflower), and Canna flaccida (Florida 

canna).  

Simulated Nursery and Greenhouse Runoff 

 Nutrients were supplied to mesocosms via pump from 1135.6 L holding tanks.  

Simulated nursery and greenhouse runoff was prepared using a 20-2-20 Nitrate Special, 

commercial-grade, water-soluble fertilizer (Southern Agricultural Insecticides Inc., 

Hendersonville, NC) and a 0-52-34 Phosphate Special, water-soluble fertilizer (Haifa 

Chemicals, Israel).  Three nutrient levels were used with eight mesocosm replicates for 

each level.  Initial (October 2005) exposure concentrations were 26.1 mg/L N (NO3-N, 

NH3-N, and urea N) and 9.5 mg/L P (P2O5 and P) for the low treatment, 72.9 mg/L N and 

13.4 mg/L P for the medium, and 146.6 mg/L N and 20.9 mg/L P for the high treatment.  

Thereafter (November 2005 – May 2006), exposure concentrations were reduced to 8.6 

mg/L N and 2.9 mg/L P for the low, 18.0 mg/L N and 3.6 mg/L P for the medium, and 

28.5 mg/L N and 4.2 mg/L P for the high to mimic more closely nutrient concentrations 

in nursery production runoff. 

Hydraulic Retention Time 

 Flow rate into each mesocosm was adjusted to the desired flow rate for either a 4- 

or 7-day hydraulic retention time (HRT) whenever holding tanks were refilled.  Flow rate 

into the 4-day HRT mesocosms averaged 70.9 L/day and flow rate into the 7-day HRT 

mesocosms averaged 40.6 L/day. 
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Secondary Mesocosm Experiment 

 Subsurface-flow, secondary mesocosm treatments were established by piping the 

discharge from eight primary treatment mesocosms into eight 190 L holding tanks filled 

with approximately 90.7 kg of a coarse (0.8 to 4.75 mm) industrial mineral aggregate 

(calcined clay).  The calcined clay (CC) was mined in Ochlocknee, GA (Oil-dri Corp. of 

America, Chicago), and previous work with the substrate had identified it as a media with 

good P sorbing properties (Chapter 2). 

Experimental Design 

 The design was a 2 x 3 factorial with six concentration by retention time 

combinations.  Four replicates were used for each treatment in the primary mesocosm 

experiment.  Primary mesocosm treatments were 1) 4-day High (H4), 2) 4-day Medium 

(M4), 3) 4-day Low (L4), 4) 7-day High (H7), 5) 7-day Medium (M7), and 6) 7-day Low 

(L7).  High, medium, and low refer to the nutrient inflow concentration for each 

treatment.  The secondary mesocosm experiment had two treatment combinations, a 4-

day High (H42) and 7-day High (H72), with four replicates per treatment. 

Sampling Endpoints 

 Water samples were taken weekly and analyzed for NH3
+, NO3

-, NO2
-, PO4, pH, 

non-purgable organic carbon (NPOC), total dissolved nitrogen (TN), water temperature 

(ºC), conductivity (mVolts), and dissolved oxygen (DO).  Anions were determined using 

a Dionex AS10 ion chromatograph with AS50 auto-sampler (Dionex Corp., Sunnyvale, 

CA).  NPOC and TN were analyzed using a Shimadzu TOC-V CPH total organic carbon 

analyzer with TNM-1 total nitrogen measuring unit (Shimadzu Scientific Instruments, 
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Kyoto, Japan), and ammonia was measured using Orion Ammonia Electrode 95-12 

(Thermo Electron Corp., Beverly, MA). 

Plant Harvest 

 At termination of the experiment, plant material was harvested from each 

mesocosm, water allowed to drain, and the wet weight of plant material removed from 

each mesocosm determined.  Water displacement by plant material was calculated by 

dividing the volume of water remaining in mesocosms after plant material harvest by the 

volume of water required to refill mesocosms to outflow pipe. 

Sequential P Extractions 

 Calcined clay samples were taken from three depths in the front and back of each 

secondary treatment mesocosm.  The sampling depths were 1) the top 3 cm of CC after 

the bio-layer was removed, 2) the middle CC layer ~ 9 cm below first sample, and 3) the 

bottom CC layer ~ 9 cm below the middle layer.  A series of sequential extractions was 

performed on each of the CC samples to determine plant available phosphorus, the 

relative proportion of P bound to each soil fraction, and total P sorbed to the CC (22). 

Statistical Analyses 

 The data were analyzed using SAS PROC GLM with LSD means separation in 

October 2007 (SAS Institute Inc. Cary, NC).  Correlation analyses were used to 

characterize relationships between dependent (N and SRP) and independent (temperature, 

conductivity, DO, pH, sulfate concentration, and NPOC) study variables.  Correlation 

analyses were conducted using SAS PROC CORR to evaluate parameter correlation and 
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detect multicolinearity if present among parameters.  Those variables that correlated with 

each other were input into stepwise regression models using SAS PROC REG. 

Results and discussion 

Removal efficiency of N in primary mesocosms 

 Nitrogen dynamics in the primary mesocosms were monitored.  The results 

displayed were averaged by month (with four sampling periods per month).  For greater 

detail, individual sampling results for N and P are shown in the supplemental figures 

(Fig. S3.1 - S3.3).  Low, medium, and high treatments showed increasing total N (NO2 + 

NO3 + NH3 mg/L) removal efficiency after January 2006 (Fig. 3.1).  Decreased N 

removal efficiencies for high treatments in October may be attributed to a number of 

factors including high nitrogen loading rates, insufficient establishment time for 

macrophytes, and insufficient acclimation time for the microbial colonies responsible for 

denitrification (Table 3.1).  During October, the high treatment inflow concentration was 

146.6 ± 10.9 mg/L N, and total October N loading into H4 and H7 mesocosms (1,038.1 ± 

41.4 and 714.9 ± 31.3 g N respectively) was comparable to total N loaded into H4 and H7 

for the November to May sampling period (1,369.7 ± 17.4 and 822.1 ± 11.2 g N 

respectively; Table 3.1).  During November, high treatment nitrogen removal efficiency 

(NRE) was positive; this was also when inflow N concentrations were decreased to more 

closely mimic runoff from nursery production areas. 

 Low treatment removal efficiencies were all positive (Fig. 3.1) except during 

December when the L4 treatment exported N.  Not only were N inflow concentrations 

not reduced, it is likely that plant senescence contributed N; thus, excess N was exported.  
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During December water temperatures were ~ 6.2 ºC (Fig S3.4).  As water temperature 

increased with the arrival of spring in late March, N removal efficiency for all treatments 

increased.  These findings agree with other researchers who have documented seasonal 

trends in field scale wetlands, where N removal efficiencies decrease as water 

temperature falls below 15 ºC (2, 13, 23). 

 Removal efficiencies were similar among treatments by February and March 

except for H4 and H7, which still had consistently lower N removal efficiencies, and N 

outflow concentrations of 21.7 ± 1.1mg/L total N in February and 16.5 ± 1.6 mg/L total 

N in Mar (Fig. 3.1).  These outflow concentrations were well above the water quality 

standard of 10 mg/L NO3 and 1 mg/L NO2 (24), which could indicate that mesocosm 

treatment area was insufficient to handle that loading rate during winter months.  M4 and 

M7 outflow N concentrations were 11.1 ± 1.2 and 10.3 ± 1.2 mg/L total N during 

February; thereafter M4 and M7 outflow concentrations were ≤ 10 mg/L total N.  L4 and 

L7 outflow concentrations were well below 5.0 mg/L total N for January, and from 

February through April L4 and L7 outflow concentrations were ≤ 2.7 ± 0.2 and 2.1 ± 0.2 

mg/L total N, respectively.  By May all treatments had similar NRE and N export 

concentrations were ≤ 0.6 mg/L total N, except H4 which had total N export of 2.0 ± 0.8 

mg/L. 

 Influent nutrient concentration was a factor in mesocosm total N removal 

efficiency, especially during winter months.  High treatment mesocosms exported N at 

concentrations much higher than those shown to contribute to increased eutrophication in 

surface waters.  The medium and low treatment mesocosms were able to efficiently 
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reduce total N exports at this experimental scale.  From December through March high 

treatment NRE was too low to reduce N export to acceptable levels. 

 Hydraulic retention time was only a major factor during winter months 

(December through February) when 7-day HRT showed consistently more efficient N 

removal than 4-day HRT.  The higher removal efficiencies of L7, M7, and H7 during 

December and January can be attributed to the longer retention time, which may have 

enabled microbial colonies to denitrify more of the loaded N (Table 3.2, Fig. 3.1).  

Akratos and Tsihrintzis (8) found similar results with HRT >14 days necessary for 

sufficient NRE efficiencies with lower temperatures.  During the fall of 2005 and spring 

of 2006, NRE of the 4- and 7-day HRT were similar among treatments.  It appeared that 

the rates of plant N uptake and microbially facilitated denitrification in the 4-day HRT 

were fast enough to have equivalent NREs and N export concentrations when compared 

with the 7-day HRT treatment systems.  These results differed from those of Akratos and 

Tsihrintzis (8) who found that NRE in subsurface-flow mesocosms with 6-day HRTs was 

significantly lower than those with 8-day HRTs.  However, although some statistical 

differences existed between NREs for 4-and 7-day HRT by inflow concentration, the 

differences were not large enough to suggest that a 7-day HRT should be used instead of 

a 4-day HRT.  The surface area required for a CWS with a 7-day HRT would be much 

larger than that required for a 4-day HRT.  Thus, if a nursery or greenhouse operation 

were to install a CWS to treat their runoff, the NRE difference between 4- and 7-day 

HRT would not justify taking the extra land from production to build a 7-day HRT CWS. 
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Removal efficiency of N in secondary mesocosms 

 Evaluating P removal was the objective for using secondary treatment 

mesocosms, but to ensure that secondary treatment did not increase N export from 

mesocosms, N concentrations were also monitored.  Treatment mesocosms H42 and H72 

exported N from November through December (Fig. 3.2).  Thereafter, treatments were 

similar with no effect of HRT on NRE.  However, total N remediation efficiency 

increased significantly in H42 and H72 treatments from February to March, but 

thereafter, no consistent pattern emerged.  It appeared that export from secondary 

treatments occurred when primary treatments cells were exporting (Figs 3.1 and 3.2).  

Secondary treatment resulted in no net increase or decrease in total N removal efficiency. 

Remediation efficiency of SRP in primary mesocosms 

 Soluble reactive phosphorus removal in CWS was not controlled by the same 

factors that had heavily influenced N remediation.  Microbial transformation is not a 

primary removal mechanism for P.  Sorption of P onto substrates and sediments is the 

primary removal mechanism for P, followed by plant uptake (usually < 5% of P 

removal), accretion into wetland soils, and precipitation reactions (11-12).  Temperature 

did not influence P removal efficiency (PRE); instead, the only seasonality effect noticed 

was when active plant growth facilitated greater PRE. 

 Positive SRP removal efficiency occurred in October for all primary treatments 

(Fig. 3.3) with no differences in removal efficiency between 4- and 7-day HRT (Table 

3.3).  This positive October SRP removal efficiency was remarkable, considering P 

loading into the mesocosm during October was similar to the combined P loading for the 
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period December to May (Table 3.1).  This positive removal efficiency may be attributed 

to active plant growth, since the macrophytes were still actively growing and filling in the 

mesocosms.  The two-month establishment period may not have been long enough for 

plants in mesocosms to attain their full size, so additional P may have been removed as a 

result.  Thereafter, until April all treatments exported some SRP.  Average P export from 

November to March was 4.2 ± 0.1 mg/L for L4 and L7, 5.3 ± 0.1 mg/L for M4 and M7, 

and 7.3 ± 0.2 mg/L for H4 and H7.  Four-day HRTs resulted in less SRP export than 7-

day HRTs.  This may be an artifact of dilution as the faster flow rate in 4-day HRTs 

dilutes P released from decaying plant material.  In April, SRP removal became positive 

in L7, M4, M7, and H4 but SRP was still being exported from L4 and H7.  In May all 

were positive except M4 and H4.  However, since P concentrations were highly variable 

in both M4 and H4 treatments (magnitude of standard error bars), positive SRP removal 

may have occurred, even though the average removal efficiency did not reflect this trend. 

 Primary treatment alone was not able to provide adequate SRP removal; for all 

treatments, five of the eight months sampled showed significant export.  Not only was 

SRP from inflow not being fixed, internal cycling processes were contributing SRP, 

resulting in a net export of SRP.  Other researchers have reported similar findings, in that 

SRP is not consistently managed via CWS because internal phosphorus cycling often 

leads to SRP export (2, 4, 15).  Therefore, a secondary treatment system is necessary to 

better manage SRP removal. 
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Remediation efficiency of SRP in secondary mesocosms 

 Secondary, subsurface flow mesocosms with a CC root-bed substrate were 

monitored to assess substrate P sorbing capacity and longevity.  The assessment was 

divided into two areas: 1) system (SYS), which represented SRP removal efficiency from 

inflow load to secondary treatment outflow, and 2) secondary (SEC), which represented 

SRP removal efficiency from primary treatment outflow to secondary treatment outflow.  

Sorption of SRP by CC in October was highly efficient; however, since loading was 

extremely high (Table 3.1), many P sorption sites were saturated during the first exposure 

month.  Both SEC and SYS P removal efficiencies were ~ 60 % with average system 

outflow concentrations of 7.3 ± 0. 6 mg/L P (down from 17.8 ± 1.1 mg/L P primary 

outflow, Fig. 3.4).  During October, for each 90.7 kg of CC substrate in secondary 

mesocosms, approximately 81.5 ± 2.2 g of P were fixed in H42 treatments and 65.8 ± 1.7 

g of P were fixed in H72 treatments. 

 Calcined clay sorption capacity was characterized in previous work (Chapter 2), 

and the maximum amount of P was sorbed (1740.5 ± 6.6 mg P / kg CC) by the CC when 

aqueous P concentrations were 50 mg/L.  This maximum Pad indicated saturation of the 

secondary treatments filled with 90.7 kg of CC should occur when 157.9 g of P had been 

bound.  The results of this study did not agree with this prediction.  However, the 

predicted binding did not take into account migration of P from external binding sites to 

internal sites over time, which would leave previously saturated sites available for further 

P sorption.  The possibility also exists that the CC lot used in this study may have a 

higher SRP sorption capacity than the previously screened lot.  If the latter possibility 
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was the main factor controlling P binding, pre-screening CC lots for their P sorption 

ability may be necessary when using it as a secondary subsurface-flow root bed substrate. 

 Because 98.5 ± 1.9 g of P were fixed in October by both H42 and H72, a rapid 

decline in PRE was expected.  However, PREs from November through March were still 

greater than primary treatments, resulting in lower P outflow concentrations (Fig. 3.4).  

From November through March SRP removal was efficient with SEC for H42 and H72.  

After March SEC PRE was no longer positive and the substrate began to desorb SRP.  In 

April and May, SRP desorption occurred for both H42 (-45.5 ± 4.1 g P) and H72 (-39.9 ± 

2.0 g P), resulting in a SYS P outflow much greater than P loaded from the primary 

treatment.  In May, both SEC and SYS for H42 were highly negative (~ -2700%) and 6.1 

± 1.6 mg/L P was exported from secondary treatments, while primary outflow P 

concentrations were 0.75 ± 0.94 mg/L.  The H72 P export concentration in May was 8.0 

± 0.2 mg/L P, while primary treatment outflow concentration was only 0.2 ± 0.01 mg/L 

P.  At this point (early April) both H42 and H72 were saturated and rapid desorption 

occurred because primary treatment outflow P concentrations were low because of 

increased plant P uptake during active growth.  These findings agreed with those of Pant 

et al. (12) and indicated that even though the CC had a large sorption capacity, its 

equilibrium P concentration, where no net sorption or desorption occurred, was higher 

than the desired P export concentration.  The increase in P export from H42 and H72 in 

April and May was expected.  However, since the H72 treatment had not fixed as much 

SRP as H42 in October and from November to March, it was anticipated that the CC 

substrate would be able to sorb additional SRP.  Instead, SRP desorption from the H72 
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treatment occurred concurrently with SRP desorption from the H42 treatment, and the 

mass desorbed was only 5.6 g less than that desorbed from H42 during April and May 

(Fig. 3.4, Table 3.1, and Table 3.4).  This happened because of the initially high P 

loading rate into H42 and H72 that caused an increase in the P equilibrium concentration 

of CC, where no net sorption or desorption occur.  This increased P equilibrium 

concentration lead to higher P effluent concentrations.  Pant et al. (12) found that 

equilibrium P concentrations of shale and sand substrates increased over time, resulting 

in higher effluent P concentrations.   

 Total SRP fixation at the conclusion of the experiment was 98.5 ± 4.9 g P for H42 

and 71.4 ± 3.8 g P for H72; masses very similar to the SRP fixation that occurred in 

October.  Secondary treatment mesocosms were very effective at removing SRP from 

effluent during October and November with a 2.9 fold increase in removal efficiency 

over the primary treatments.  The majority of the SRP that could be sorbed was fixed in 

the first month, making long-term predictions about SRP sorption and PRE difficult.  An 

experiment with consistent P loading rates should be conducted to predict with greater 

accuracy the lifetime of the substrate based on SRP loading rate and weight of CC used 

as root bed substrate.  This current experiment showed an increase in P removal 

efficiency with the use of CC as a substrate, but SRP concentrations in secondary 

treatment effluent were still much higher than the recommended 0.05 mg/L PO4-P and 

0.1 mg/L organic P for effluent (24-25).  Further experiments examining secondary 

treatment size based on SRP loading rate should be performed so that consistent 

remediation can be achieved when applying this technology to larger scale CWS. 
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Water displacement and primary treatment affects on plant mass 

 Upon termination of the experiment, plants were harvested and fresh weights 

were used to determine if nutrient treatment impacted plant mass in mesocosms.  When 

the treatment averages (Fig. 3.5) were evaluated; it was found that there were slight 

differences, but they could not be attributed to treatment effects alone.  The mesocosm 

treatment with the largest plant mass at harvest was L4, while H4 had the smallest plant 

mass at harvest.  Plant mass at harvest in the mesocosms was not attributable to nutrient 

inflow concentration or HRT. 

 Biomass displacement in the mesocosms was calculated.  After biomass removal, 

excess water drained from roots removed from each mesocosm was returned to the 

mesocosm.  The number of liters remaining in a mesocosm was subtracted from the 

number of liters required to fill the mesocosms to its outflow pipe and this number was 

used as a measure of percent displacement by biomass (Fig. 3.6).  Nutrient loading rate 

treatment (high, medium and low) and HRT did not impact displacement.  This 

information will facilitate CWS design by ensuring correct CWS size based not only on 

nutrient loading rate and desired HRT, but the added area needed to account for wetland 

biomass. 

Sequential phosphorus extractions 

 Once P binding sites on CC substrate in secondary treatment mesocosms were 

saturated, samples were taken at three depths and sequential P extractions performed.  

The initial extraction utilized distilled water and an anion exchange membrane to 

quantify freely exchangeable phosphorus.  No chemical modification of the substrate 
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solution was involved (22).  Very little P was extracted from CC during this step (Table 

3.5).  The second extraction utilized a 0.5 M NaHCO3 solution, which removed weakly 

bound, plant-available P (22, 26).  This P fraction was slightly larger than the previous 

(Fig S3.5) and > 2-fold more P was extracted from inflow locations than from outflow 

locations (Table 3.5). 

 The third extraction involved a 0.1 M NaOH solution and P obtained during this 

extraction is considered to be associated with Fe and Al (22, 26).  The majority of the P 

extracted in this step was associated with Al (Table 3.6) because Al concentrations > 

20% higher than Fe for both H42 and H72 treatments.  The fourth extraction utilized 1 M 

HCl and extracted P associated with Ca and Mg (22, 26).  This comprised the largest 

fraction of P extracted from CC (Table 3.5 and Fig. S3.5).  Calcium concentrations in the 

CC (6,094 ± 172 mg/kg) were slightly higher than Mg (4,189 ± 66 mg/kg), and thus P 

may have associated slightly more with Ca than Mg.  Since the majority of the P 

extracted from CC came from this step, it is likely that insoluble Ca compounds like 

hydroxyapatite formed and were a major factor controlling P fixation by CC.  Since the 

pH was generally > 7.0 conditions in these secondary treatments would have favored Ca-

P product formation rather than formation of Fe- and Al- compounds (26). 

 The last extraction step involved concentrated HCl and removed highly 

recalcitrant and residual P.  The P concentration extracted during this step was much 

lower than the concentration extracted during steps 3 and 4 (Table 3.5).  This reaffirmed 

that the majority of P extracted was associated with Ca and Mg.  Thus, as long as effluent 

pH is basic, Ca and Mg will be the primary factors controlling P binding with this 
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substrate, while if pH were to decrease; Al and Fe may become more important for P 

fixation. 

Nutrient effluent concentration modeling 

 After determining multicollinearity was not extensive with total nitrogen (mg/L), 

phosphorus (mg/L), sulfate (mg/L), pH, temperature (ºC), conductivity (mVolts), NPOC 

(mg/L), and nitrogen loading (g/day), stepwise regressions were performed, and those 

factors that significantly contributed to explaining model variability were fit with a 

regression model.  Estimates of slope for each variable were then standardized, using the 

stb option of SAS PROC REG, so that the relative importance of each variable for 

estimating N effluent concentration could be determined.  Around 89.3% of nitrogen 

effluent concentration variability was explained using these independent factors: 

 Nitrogen effluent  = 81.818 - 0.028*sulfate – 0.292*pH – 0.126*temperature +  

  0.912*conductivity – 0.114*NPOC – 0.039*nitrogen load +   

  0.107*sulfate_nitrogen load + 0.177*NPOC_nitrogen load  [1] 

Detailed residual plots of each factor (except nitrogen load) by nitrogen effluent 

concentration adjusted for the other model variables can be found in the supplementary 

material (Fig. S3.6).  Previous work by the authors examining nitrogen removal 

efficiencies in a large-scale CWS in Cairo, GA over a three-year period found that sulfate 

concentration correlated with NRE, but NPOC and water temperature, though highly 

correlated, did not consistently account for NRE variability.  Our findings that 

temperature and NPOC were useful may be an artifact of the shorter sampling period.  

While model variability was explained by these independent factors, none of them could 
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be easily manipulated to improve either NRE or PRE.  Consequently, while useful for 

predicting nitrogen concentrations, none, save nitrogen load, could be used to decrease N 

effluent concentrations. 

 These independent parameters explained 87.1% of total P effluent concentration: 

 Phosphorus effluent = 302.501 + 0.070*sulfate – 0.320*date + 0.077*pH –  

  0.170*DO + 0.583*conductivity + 0.057*NPOC + 0.039*phosphorus load 

  + 0.097*DO_phosphorus load + 0.035*NPOC_phosphorus load  [2] 

Detailed residual plots of each factor (except phosphorus load) by phosphorus effluent 

concentration adjusted for the other model variables can be found in the supplementary 

material (Fig. S3.7).  Previous work by the authors exploring PRE examined similar 

independent factors and found that none could provide consistent explanation of PRE.  

Thus, even though the above variables were significant in the model, there was no real-

world applicability for controlling/influencing PRE.  Only NPOC could be altered, and its 

concentration was similar across the loading range for N and P.  Thus, even though these 

models explained much of the NRE and PRE in this experiment, they cannot provide 

applicability for future N and P reduction. 
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Tables 

TABLE 3.1. Total nitrogen (TN) and total phosphorus (TP) mean ± standard error 

removal / fixationa in surface- to subsurface-flow mesocosms.  The experiment was 

broken into three sampling period groupings, October 2005, November 2005 to March 

2006, and April to May 2006, based on loading rate. 

 
a System fixation calculated from (Tx, out – Tx, in); secondary fixation calculated from corresponding 

mesocosm ( H4(7)out – H42(72)out). H4, high treatment 4 day hydraulic retention time (HRT); H7, high 

treatment 7 day HRT; M4, medium treatment 4 day HRT; M7, medium treatment 7day HRT; L4, low 

treatment 4 day HRT; L7, low treatment 7 day HRT; H42, high with secondary treatment 4 day HRT; H72, 

high with secondary treatment 7 day HRT.  Low, medium, and high represent influent concentrations 

treatments.
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TABLE 3.2. Total nitrogen removal efficiency statisticsa for primary, surface-flow 

mesocosms from October 2005 to May 2006. 

 
a Statistical differences signified by different letters in the month columns; L4, low with 4 day HRT; L7, 

low with 7 day HRT; M4, medium with 4 day HRT; M7, medium with 7 day HRT; H4, high with 4 day 

HRT; H7, high with day HRT. Low, medium, and high represent influent concentrations treatments. 

 

TABLE 3.3. Total phosphorus removal efficiency statisticsa for primary, surface-flow 

mesocosms from October 2005 to May 2006. 

 
a Statistical differences signified by different letters in the month columns; L4, low with 4 day HRT; L7, 

low with 7 day HRT; M4, medium with 4 day HRT; M7, medium with 7 day HRT; H4, high with 4 day 

HRT; H7, high with day HRT. Low, medium, and high represent influent concentrations treatments. 
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TABLE 3.4. Total phosphorus removal efficiency statisticsa for primary, surface-flow to 

secondary, calcined clay filled subsurface-flow mesocosms from October 2005 to May 

2006. 

 
a Statistical differences signified by different letters in the month columns; H4, high 4 day HRT; H42, high, 

secondary treatment 4 day HRT; H7, high 7 HRT; H72, high secondary treatment 7 day HRT; high refers 

to the inflow concentration treatment; Secondary, secondary P removal efficiency [1 – (Psecondary – Pprimary)]; 

System, system P removal efficiency [1 – (Psecondary - Pinflow). 

 

 

TABLE 3.5. Sequential P extractions of saturated calcined clay sampled from high 4- and 

7-day HRT treatments. Values are the mean (standard error of the mean) of three 

sampling depths and four replicate tanks. 
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TABLE 3.6. Aluminum, iron, calcium, and magnesium concentrations extracted from P 

saturated calcined clay sampled from high 4- and 7-day HRT treatments. Values are the 

mean (standard error of the mean) of three sampling depths and four replicate tanks. 
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Figures 

FIGURE 3.1. Total N (NO2 + NO3 + NH3) removal efficiency (bars) and effluent 

concentration (lines) for primary (A) low, (B) medium, and (C) high nutrient inflow level 

treatments from October 2005 to May 2006. a 

 
a Values represent averages of 4 replicates per sampling period ± standard error of the mean.  Bars with * 

had statistically significant differences (α < 0.05). L4, low 4 day HRT; L7, low 7 day HRT; M4, medium 4 

day HRT; M7, medium 7 day HRT; H4, high 4 day HRT; H7, high 7 HRT.
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FIGURE 3.2. Total N (NO2 + NO3 + NH3) removal efficiency (bars) and export 

concentration (lines) with secondary subsurface-flow (A) High 4-day HRT and (B) High 

7-day HRT mesocosm treatments from October 2005 to May 2006. a
 

 
a Values represent averages of 4 replicates per sampling period ± standard error of the mean, with 4 

sampling periods per month.  Bars with * had statistically significant differences (α < 0.05). H4, high 4 day 

HRT; H42, high, secondary treatment 4 day HRT; H7, high 7 HRT; H72, high secondary treatment 7 day 

HRT. High represents nutrient inflow level treatment. 
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FIGURE 3.3. Soluble reactive phosphorus removal efficiency (bars a) and export 

concentrations (lines) by primary mesocosm (A) low, (B) medium, and (C) high 

treatments from October 2005 to May 2006. 

 
a Values represent averages of 4 replicates per sampling period ± standard error of the mean, with 4 

sampling periods per month.  Bars with * had statistically significant differences (α < 0.05). L4, low 4 day 

HRT; L7, low 7 day HRT; M4, medium 4 day HRT; M7, medium 7 day HRT; H4, high 4 day HRT; H7, 

high 7 HRT.  Low, medium, and high are nutrient inflow level treatments.
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FIGURE 3.4. Soluble reactive phosphorus removal efficiencies (bars) and export 

concentrations (lines) of primary surface-flow to secondary subsurface-flow (A) High 4-

day HRT and (B) High 7-day HRT mesocosm treatments from October 2005 to May 

2006. a 

 
a Values represent averages of 4 replicates per sampling period ± standard error of the mean, with 4 

sampling periods per month.  Bars with * had statistically significant differences (α < 0.05). H4, high 4 day 

HRT; H42, high, secondary treatment 4 day HRT; H7, high 7 HRT; H72, high secondary treatment 7 day 

HRT; Sec., Secondary P removal efficiency [1 – (Psecondary – Pprimary)]; Sys., System P removal efficiency [1 – 

(Psecondary - Pinflow). 
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FIGURE 3.5. Macrophyte biomass (shoots and roots) at harvest from mesocosms. a 

 
a Values represent averages of 4 replicates per treatment ± standard error of the mean.  Bars with different 

letters were significantly different (α < 0.05). H4, high treatment 4 day HRT; H7, high treatment 7 day 

HRT; M4, medium treatment 4 day HRT; M7, medium treatment 7day HRT; L4, low treatment 4 day 

HRT; L7, low treatment 7 day HRT. Low, medium, and high are nutrient inflow level treatments. 
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FIGURE 3.6. Macrophyte biomass percent displacement of water in mesocosms. a  

 
a Values represent averages of 4 replicates per treatment ± standard error of the mean.  Bars with different 

letters were significantly different (α < 0.05). H4, high treatment 4 day HRT; H7, high treatment 7 day 

HRT; M4, medium treatment 4 day HRT; M7, medium treatment 7day HRT; L4, low treatment 4 day 

HRT; L7, low treatment 7 day HRT.  Low, medium, and high are nutrient inflow level treatments. 
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Supplementary Figures 

FIGURE S3.1. Nitrogen removal efficiency of primary, surface-flow mesocosms for all 

sampling dates from October 2005 to May 2006. (A) Shows Lowa 4- and 7-day treatment 

removal efficiency, (B) shows Medium 4- and 7-day treatment removal efficiency; and 

(C) shows High 4- and 7-day treatment removal efficiency. 

 
a Moving average trendlines for three sampling dates fitted to track N removal efficiencies. Low, medium, 

and high are nutrient inflow level treatments. 

A B 

C 
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FIGURE S3.2. Phosphorus removal efficiencya of primary, surface-flow mesocosms for 

all sampling dates from October 2005 to May 2006. (A) Shows Lowa 4- and 7-day 

treatment removal efficiency, (B) shows Medium 4- and 7-day treatment removal 

efficiency; and (C) shows High 4- and 7-day treatment removal efficiency. 

 

  

a Moving average trendlines for three sampling dates fitted to track P removal efficiencies.  Low, medium, 

and high are nutrient inflow level treatments. 

A B 

C 
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FIGURE S3.3. Phosphorus removal efficiency of primary surface-flow to secondary sub-

surface flow mesocosms for all sampling dates from October 2005 to May 2006. (A) 

Shows Higha 4-day secondary and system P removal efficiency, (B) shows High 7-day 

secondary and system P removal efficiency. 

 
a Moving average trendlines for three sampling dates fitted to track P removal efficiencies.  Secondary, P 

removal efficiency [1 – (Psecondary – Pprimary)]; System, P removal efficiency [1 – (Psecondary - Pinflow). 

A 

B 



 

79 

FIGURE S3.4. Average water temperature (oC) from October 2005 to May 2006.  Each 

data point is the mean of 24 mesocosms ± the standard deviation of the mean. 
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FIGURE S3.5. Sequential P extractions of saturated calcined clay sampled at three depths 

(1 to 3) and two locations (inflow and outflow) from secondary subsurface-flow 

mesocosmsa; A) concentration of P from each extraction step, and B) percent of total P 

extracted represented by each extraction step. 

 
aValues are the mean of two samples taken at each depth from four mesocosms for each treatment: H42, 

high inflow concentration and 4-day hydraulic retention time (HRT); and H72, high inflow concentration 

and 7-day HRT. Depth 1 is top 3 cm of CC, 2 is the middle layer, and 3 is the bottom layer. 
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 FIGURE S3.6. Residuals of total nitrogen plotted as a function of residuals of various 

regression parameters. 
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FIGURE S3.7. Residuals of phosphorus plotted as a function of residuals of various 

regression parameters. 
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CHAPTER 4: NURSERY NUTRIENT RUNOFF CONCENTRATIONS 

REDUCED BY FLOATING-MATS AND FIRED CLAY 

SUBSTRATES IN SURFACE- TO SUBSURFACE-FLOW 

CONSTRUCTED WETLANDS  

Abstract 

 Nutrient rich runoff from nursery operation production areas can potentially 

impair surface water quality offsite.  Constructed wetland systems (CWS) are low 

maintenance treatment systems that can reduce nutrient export.  This investigation 

examined surface (primary) to subsurface (secondary) flow CWS for nutrient removal 

efficiency.  The primary mesocosm treatment was established with three planting types: 

1) Floating mats of typical wetland plants, 2) wetland plants rooted into substrate, and 3) 

horticultural cultivars selected for nutrient uptake ability planted as a mixture of floating 

mat and rooted in substrate plants.  Secondary mesocosms were established with brick or 

industrial mineral aggregate and then were either planted or unplanted.  The floating 

treatment attained the highest nitrogen removal efficiency (NRE, 95.5 ± 0.5 %), and the 

rooted treatment facilitated the greatest phosphorus removal efficiency (PRE, 78.9 ± 1.1 

%).  Horticultural cultivars were least efficient in promoting both NRE and PRE.  Planted 

secondary treatment NRE (98.1 ± 0.9 %) and PRE (94.9 ± 1.2 %) was consistently 

greater than the NRE (90.6 ± 0.4 %) and PRE (91.9 ± 1.7 %) of the unplanted treatment.  

Unplanted industrial mineral aggregate sorbed P more efficiently than the brick, resulting 

in lower effluent concentrations, 0.24 ± 0.05 mg/L compared to 0.57 ± 0.11 mg/L.  
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Planted secondary treatment reduced P export further to 0.13 ± 0.02 and 0.37 ± 0.10 

mg/L P for industrial mineral aggregate and brick, respectively.  Mixed surface to 

subsurface flow CWS were highly effective at reducing nutrient export. 

Introduction 

 The greenhouse/nursery industry is one of the fastest growing segments of 

agriculture in the United States.  Nursery operations with $100,000 or more in sales were 

surveyed in 17 states and total gross sales were $4.65 billion in 2006, an increase of 17% 

over three years (1).  Over 471,106 acres are in production by nurseries with sales over 

$10,000.  Larger operations are able to produce high quality plants in a relatively short 

period of time by optimal application of nutrients, pesticides, and irrigation (2).  Some 

large nurseries utilize > 37,850 kL fresh water per day for irrigation (1).  Large-scale 

application of nutrients, pesticides, and water to containerized plant production beds 

often results in very large quantities of runoff containing pesticides and substantial 

nutrient concentrations (2-4). 

 An increased knowledge of surface water quality impairment from excess nutrient 

loading has raised awareness in the public, private, and governmental sectors resulting in 

the enforcement of regulations limiting nutrient runoff from nursery operations in 

Australia and in a number of states in the United States, e.g., California, Delaware, 

Florida, Maryland, and Oregon (2, 5-6).  The U.S. Environmental Protection Agency 

(EPA) has mandated maximum allowable NO3-N contaminant levels in any discharged 

water of ≤10 mg/L to protect drinking water quality, and, while no federal limits for P 

concentrations leaching into freshwater have been set, the EPA recommends that total 
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inorganic phosphorus not exceed 0.05 mg/L and total P (inorganic + organic forms) not 

exceed 0.1 mg/L (7). 

 Nursery operations have several management strategies available to manage 

runoff including denitrification walls and vegetated/turfgrass buffer strips for low flow 

volumes (8-11), vegetated ditches for low to moderate volumes (12), and constructed 

wetlands for moderate to high volumes of runoff (3-4).  Remediation system choice 

depends on runoff volume and frequency, whether continuous flow or intermittent, and 

nutrient loading in runoff.  Constructed wetland systems offer a low-tech, low 

maintenance remediation strategy for runoff either for release or recycling.  Both surface- 

and subsurface-flow CWS are effective at nutrient removal (3-5, 13-17).  Typically, CWS 

have been established with plant monocultures of Phragmites australis (common reed), 

Typha spp. (cattail), and Scirpus spp. and Schoenoplectus spp. (bulrushes) (5, 13-17).  

Only in recent years have researchers begun to examine the role of mixed macrophytes in 

CWS for nutrient remediation.  In some cases, plants with high nutrient uptake capacities 

also release those nutrients very quickly upon senescence while other plants retain the 

assimilated nutrients (18).  Some plant species assimilate nutrients at low exposure 

concentrations and others only efficiently remove N and P with higher exposure 

concentrations (19).  Mixed species studies have shown increased macrophyte richness in 

CWS improves wetland function and nutrient processing capacities (4, 11, 15, 18, 20-22).  

Therefore, CWS installation strategies incorporating those plant species with large 

nutrient assimilation capacities at high nutrient concentrations near inflow pipes, and 

nutrient ‘miners,’ which efficiently assimilate nutrients at lower concentrations near 
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outflow pipes, would combine the best of both nutrient uptake strategies, and could result 

in increased nutrient removal efficiency. 

 While surface-flow wetland systems generally facilitate high nitrogen removal 

efficiency (NRE), seasonal shifts in NRE have been noted (3, 21-25).  This seasonal 

remediation shift occurs during winter months when plant growth and nutrient uptake are 

reduced, and when water temperatures decrease to the point where biological processes 

are inhibited (22 - 25).  However, phosphorus removal efficiency (PRE) is not subject to 

temperature dependence; instead PRE is controlled to varying extents by plant uptake, 

sedimentation, microbial immobilization, precipitation, and sorption to root bed media 

(26-29).  The P sorption potential of root-bed media in subsurface-flow CWS is very 

important.  Typically, higher sorption capacities facilitate greater P sorption and the type 

of substrate present or used can influence the length of time that P is sorbed.  Many 

studies have examined a range of P sorbing substrates (gravel, dolomite, furnace slag, fly 

ash, shale, limestone, oyster shells and sand) and shown varying degrees of P sorption 

and removal efficiencies ranging from 10 to 71% (28, 30 - 32). 

 The objectives of this study were 1) to characterize the effect of CWS 

establishment type on nutrient removal efficiency by examining nutrient attenuation 

differences among mesocosms initially established with floating mats, root incorporation 

into substrate, or a mixture of the two, utilizing horticultural plants selected for their N 

and P uptake capacities; 2) to evaluate the relative PRE and longevity of two clay-based 

substrates in subsurface-flow mesocosms; and 3) to compare nutrient removal 

efficiencies of vegetated and non-vegetated subsurface-flow clay treatments. 
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Methods 

Surface to Subsurface-Flow Mesocosm 

 A two-stage surface to subsurface-flow wetland design was used to maximize 

both nitrogen and phosphorus remediation efficiency (Figs. S4.1 and S4.2).  The primary 

stage, surface-flow mesocosms utilized twenty-four 380-L stock tanks established with 

one of three planting-type treatments, 1) floating, 2) selected cultivars, or 3) rooted 

treatments.  The floating treatment consisted of plants typical of natural wetlands/bogs 

and was established as a floating mat.  The rooted treatment consisted of plants typical of 

natural wetlands/bogs that were established via planting into gravel substrate.  The 

horticultural cultivars were chosen from a set of species screened by Polomski et al. (19) 

as plants with high nutrient recovery rates, and were established as a mixture of floating 

mat and substrate rooted plants.   

 The bottom of each mesocosm was lined with approximately 15.2 cm of granite 

pea gravel.  Plants were either established as floating mats, planted in the gravel, or a 

mixture of both types.  Water levels were raised slowly to maximum fill level.  

Mesocosms were planted in August 2006 and allowed to establish for nine months before 

sampling began on 11 May 2007 and sampling continued through 8 October 2007.  The 

establishment period was longer because research has shown that in CWS more than one 

season may be needed to establish “natural wetland conditions” (15, 33).  Thus sampling 

started during the second growing season.  Hydraulic retention time was four days with a 

flow rate of 67.8 ± 5.01 L/day. 
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 Each secondary, subsurface-flow mesocosm received discharge piped from its 

corresponding primary mesocosm (Fig S4.2).  Twenty-four secondary mesocosms, 190 L 

stock tanks, were filled with approximately 90.7 kg of a coarse (0.8 to 4.75 mm) 

industrial mineral aggregate [calcined clay (CC), Oil-dri Corp. of America, Chicago] or 

coarse crushed brick (0.8 to 4.57 mm, National Brick Research Institute, Clemson, SC).  

Six of the CC and six of the brick secondary mesocosms were vegetated with 

horticultural cultivars, while 12 remained unplanted (six of each).  The horticultural 

cultivars were planted into the secondary mesocosms on 11 May 2007, after all secondary 

mesocosms were filled with substrate.  Secondary treatments were not filled with 

substrate until one week prior to sampling initiation. 

Planting Type 

 Approximately 13.4 ± 4.7 kg of plant material were added to each of the eight 

floating-type primary mesocosms.  Typical wetland species incorporated into floating 

treatment mesocosms were Sagittaria latifolia (arrow-head), Hydrocotyle umbellata 

(marsh pennywort), H. ranunculoides, (water pennywort), Pontaderia cordata 

(pickerelweed), and Canna flaccida (Florida canna).  The eight rooted-type, primary 

mesocosms were established with approximately 12.1 ± 4.7 kg of plant material and 

wetland species included were pickerelweed, arrow-head, S. graminea (duck potato), 

Florida canna, and Panicum hemitomum (maidencane). 

 Eight primary mesocosms were planted with horticulturally-important cultivar 

(plants of importance to the green industry) treatments, and 11.9 ± 5.8 kg of plant 

material were added to each.  Species planted were Juncus effusus var. effusus (soft rush), 
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Thalia geniculata (thalia), Iris x louisiana ‘Full Eclipse’, I. neomarica caerulea 'Regina' 

(iris Regina), I. louisiana 'Yellow' (yellow flag iris), Canna 'Australia', Itea virginica 

'Henry's Garnet' (Virginia sweetspire), Crinum americanum (swamp lily), and Eleocharis 

palustris (water chestnut). 

 Horticultural cultivars planted in secondary, subsurface-flow mesocosms were the 

following: Iris neomarica caerulea ‘Regina’, Carex laxiculmis ‘Hobb Bunny Blue’ 

(Hobb bunny blue sedge), Carex plantaginea (seersucker sedge), Canna ‘Paton’, Canna 

‘Intrigue’, Typha minima (dwarf cattail), Acorus gramineus ‘Dwarf Green’ (dwarf sweet 

flag), Alocasia wentii (hardy elephant ear), Colocasia antiquorum ‘Black Beauty’ (black 

beauty elephant ear), and Iris louisiana. 

Simulated Nursery and Greenhouse Runoff 

 Mesocosms received nutrients from solutions pumped from 1135.6 L holding 

tanks.  The simulated nursery and greenhouse runoff was prepared using a 20-2-20 nitrate 

special commercial-grade water-soluble fertilizer (Southern Agricultural Insecticides 

Inc., Hendersonville, NC) and a 0-52-34 phosphate special water-soluble fertilizer (Haifa 

Chemicals, Israel).  The nutrient concentration supplied to mesocosms was 10.70 ± 2.71 

mg/L N and 4.98 ± 0.42 mg/L P. 

Sampling Endpoints 

 Water samples were taken weekly and analyzed for NH3
+, NO3

-, NO2
-, PO4, pH, 

total organic carbon (TOC), and total dissolved nitrogen (TN), and water temperature 

(ºC) was recorded.  Anions were determined using a Dionex AS10 ion chromatograph 

with AS50 auto-sampler (Dionex Corp., Sunnyvale, CA).  TOC and TN were determined 
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using a Shimadzu TOC-V CPH total organic carbon analyzer with TNM-1 total nitrogen 

measuring unit (Shimadzu Scientific Instruments, Kyoto, Japan).  Ammonia was 

measured using an Orion Ammonia Electrode 95-12 (Thermo Electron Corp., Beverly, 

MA), and pH was measured using an Orion 710A+ pH meter. 

Statistical Analyses 

 Treatment effects were analyzed using SAS PROC GLM with LSD means 

separation (SAS Institute Inc., Cary, NC). 

Results and discussion 

Nitrogen and phosphorus removal efficiency in primary mesocosms 

 Primary mesocosms were established with different planting types to differentiate 

the influence of planting type and to determine if there were long-term impacts on 

nutrient remediation efficiency from planting type.  Total N (TN, NO3 + NO2 + NH3) 

concentrations were monitored over the 5 months of this study and remediation 

efficiencies calculated (Fig. 4.1).  Freezing temperatures two weeks before sampling 

initiation may have contributed to the lower nitrogen removal efficiency (NRE) of the 

horticultural-cultivar treatment, while the native wetland plant species in the floating-mat 

and rooted treatments were not as sensitive to freeze damage.  By early June, all 

treatments were functioning with NREs > 90%, resulting in outflow TN concentrations < 

1 mg/L TN. 

 All treatment NREs were similar and highly efficient until the last week in July.  

At this point, average water temperatures increased beyond 28 ºC (Fig S4.3).  This higher 

water temperature may have temporarily decreased microbial growth and processing, but 
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after a period of acclimation, N assimilation by microbes increased, resulting in TN 

export of < 1.0 mg/L for rooted and floating treatments.  Throughout the remaining 

sampling dates, the horticultural-cultivar treatment was less efficient than either the 

rooted or floating-mat treatment.  The floating-mat treatment consistently delivered the 

highest NRE, exporting only 4.4% of the TN loaded.  Vymazal (26) has reported that 

free-floating plants also achieve high NRE.  The increased NRE of the floating-mat 

treatment may be attributed to two factors: 1) the plant mix used to establish the 

treatments and 2) the greater root surface area in the water column of the floating 

treatment compared with the rooted treatment.  Nitrogen assimilation over the study 

period was 1,913 ± 7.6 g (97.3 ± 0.2 %) by the floating-mat treatment, 1,838.6 ± 7.1 g 

(93.5 ± 0.3 %) by the rooted treatment, and 1,703 ± 7.3 g (86.6 ± 0.4%) by horticultural-

cultivar treatment (Table 4.1). 

 Phosphorus removal efficiency (PRE) in the primary mesocosms was highly 

variable compared to NRE.  However, wetland aided phosphorus removal is inherently 

variable (4) and does not correlate with water temperature or season as does N removal 

(22).  Primary treatments maintained positive PRE (Fig 4.2), and few significant 

treatment effects were found consistently after May.  The rooted treatment facilitated the 

most consistent PRE throughout the experiment.  However, both horticultural-cultivar 

and floating-mat treatments facilitated similar PREs to the rooted treatment after May, 

averaging 69.4 ± 8.3 and 76.0 ± 6.8 % respectively, while PRE by the rooted treatment 

averaged 81.3 ± 0.3 %.  These removal efficiencies were relatively high for the summer 

as some studies have shown higher PRE in spring before attainment of maximum growth 
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by surface-flow constructed wetlands, followed by a decline in PRE during the summer 

when active plant growth slows (4, 26).  However, Picard et al. (22) noted consistent PRE 

from subsurface-flow microcosms from March through October followed by consistent 

export from November through February. 

 During September and October, the rooted treatment had consistently higher PRE, 

even though no significant treatment effects were detected (Fig. 4.2).  Rooted treatment 

outflow concentration was 0.92 ± 0.20 mg/L P, while floating-mat and horticultural-

cultivar treatment effluent P concentrations averaged 1.76 ± 0.46 mg/L.  Even though no 

statistical differences were detected among treatments from September to October, the 

two-fold increase in P export concentration between the rooted treatment and the 

floating-mat and horticultural-cultivar treatments was very significant, biologically 

speaking.  An additional export of 1 mg/L P from these treatments could have dramatic 

ecological effects downstream, since only minor (0.01 to 0.05 mg/L) increases in P in 

effluent have been shown to contribute to increased eutrophication rates (4, 7). 

 The horticultural-cultivar treatment was consistently less efficient at nutrient 

removal at lower nutrient inflow concentrations (~ 10.7 mg/L N).  Research by Polomski 

et al. (19) suggested Canna and Iris might be especially effective at nutrient assimilation 

in CWS.  However, Canna assimilated N and P most efficiently when exposure 

concentrations were > 21.57 mg/L N and > 3.63 P (19).  Since, the loading rate of N into 

the mesocosms never reached this concentration, Canna assimilation efficiency may not 

have been at its peak.  Iris was most efficient at assimilating nutrients when N and P 

exposure concentrations were < 15.0 mg/L (19) as were many of the other plant species 
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used to establish these mesocosm.  However, it appears that some condition(s) was not 

met to promote the maximal assimilative capacities of these horticultural-cultivars. 

 Native wetland/bog plants in both rooted (higher PRE) and floating-mat (higher 

NRE) treatments demonstrated highly efficient nutrient assimilation at nutrient inflow 

rates used in this experiment.  These results suggest that CWS installation incorporating a 

mixed planting strategy, with both rooted plants and floating mats, may provide 

optimized N and P removal efficiencies. 

Nitrogen and phosphorus removal efficiency in secondary mesocosms 

 The secondary subsurface-flow treatment mesocosms were filled with either 

coarse CC or brick.  Half were planted with horticultural cultivars, while the other half 

remained unplanted.  The clay and brick, vegetated (veg.) and non-vegetated (nonveg.) 

treatments were assigned randomly to receive effluent from primary treatments.  The 

secondary treatments were targeted at reducing TP in effluent and not for further 

reduction in TN.  However, it is important to characterize the N assimilation potential in 

the secondary treatment as well.   

 Calcined clay and brick substrates were ineffective at further reducing TN (Figs. 

4.3 and 4.4); instead, they released additional N (average concentration 1.0 ± 0.15 mg/L 

TN) to the effluent.  These TN concentrations, though relatively low, resulted in highly 

negative secondary removal efficiencies, even though system (SYS) efficiencies 

remained positive (Fig. 4.3b and 4.4b).  Secondary (SEC) removal efficiency was 

calculated as the difference in nutrient concentration between primary outflow and 

secondary treatment outflow, and SYS removal efficiency was calculated as the 
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difference in nutrient concentration between the initial inflow concentration and 

secondary treatment outflow concentration. 

 Nitrogen removal efficiency was much higher for planted secondary treatments 

compared to unplanted, substrate-filled treatments.  This additional TN fixation could be 

due to plant-mediated uptake, because secondary treatments with substrate alone resulted 

in decreased NRE.  Total nitrogen fixation credited to plant uptake was 119.1 ± 3.3 g TN 

for the brick treatment and 141.1 ± 3.0 g for the CC treatment (Table 4.1).  Other 

researchers have found similar patterns with veg. and nonveg. microcosms (15) from 

carbon limitation on denitrification in the nonveg. mesocosms and the additional N 

uptake by plants (34).  Mesocosm NPOC concentrations were not significantly different 

among the veg. and nonveg. secondary treatments (Fig. S4.4).  Consequently, plant 

uptake and not NPOC limitation may have controlled the additional NRE in the veg. 

treatment mesocosms. 

 Phosphorus removal efficiency in the secondary treatment mesocosms was 

relatively steady (Figs. 4.5A and 4.6A).  Throughout the experiment, SYS CC-veg. and 

CC-nonveg. treatments did not differ significantly.  However, CC-veg. treatment PRE 

was consistently slightly higher than CC-nonveg. treatment PRE.  An additional 166.9 ± 

4.4 and 209.6 ± 3.4 g of P were fixed by the CC-nonveg. and CC-veg. treatments 

respectively (Table 4.1).  The CC treatment was very efficient and reduced secondary 

effluent concentration to 0.24 ± 0.05 mg/L for nonveg. and 0.13 ± 0.02 mg/L P for veg. 

mesocosms.  Although P export concentration from the CC treatment was higher than the 
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eutrophication limiting target concentration of < 0.05 mg/L P; CC treatment 

demonstrated the potential this technology has for greatly reducing P export. 

 The brick-veg. and nonveg. treatments showed less consistent PRE.  Initially, 

brick-veg. and nonveg. PRE were very high (99%), but after May, PRE in both declined 

slightly to around 89.7 ± 2.2 %, with outflow concentration averaging 0.5  ± 0.1 mg/L P 

(Fig. 4.6). Phosphorus removal efficiency for the brick-nonveg. treatment began to 

decline the second week of September and by October was exporting 1.6 ± 0.4 mg/L P, a 

concentration higher than the primary mesocosm’s effluent.  However, the brick-veg. 

treatment continued to effectively reduce P export to 0.4 ± 0.1 mg/L. 

 When SEC removal efficiencies were compared, CC-veg. treatments consistently 

fixed more P and maintained positive removal efficiency (80.2 ±0.02 %) in comparison 

with CC-nonveg (36.6 ± 0.06 %).  Phosphorus removal efficiency by CC-nonveg. 

treatment was more variable and appeared dependent on inflow concentration from the 

primary treatment (Figs. 4.2 and 4.5).  When primary treatment PRE was high and 

effluent concentration low, CC-nonveg. SEC removal efficiency declined, resulting in 

periods of P desorption.  Conversely, when primary treatment PRE declined, CC-nonveg. 

SEC removal efficiency increased and P sorption to media resumed.  Brick-veg. and 

nonveg. treatments exhibited similar trends with initially high PRE.  Secondary PRE by 

the brick-veg. treatment was 67.7 ± 2.9 % and relatively consistent, similar to the CC-

veg. treatment.  However, brick-nonveg SEC PRE began to decline after May and by 

September consistent P desorption occurred.  At this time, brick-nonveg. treatment P 
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sorption sites were likely saturated and its substrate equilibrium P concentration was 

greater than the effluent concentration from the primary mesocosms. 

 From previous work we calculated that maximum Pad sorption for brick was 0.5 g 

P / kg substrate (Chapter 2).  This maximum Pad indicated that binding sites should be 

saturated in the secondary mesocosms when 46.9 g of P has been fixed.  Instead, sorption 

continued until 147.2 ± 4.5 g of P had been bound.  However, the brick screened in our 

earlier sorption study was not the same brick that was used to fill the secondary treatment 

mesocosms.  This brick substrate had a greater range of particle sizes.  The resulting 

increased diversity of fine and coarse particles (and increased surface area available for P 

sorption), may account for much of the disparity between predicted P sorbed and actual P 

sorbed.  Further, P migration from external to internal binding sites over time might have 

contributed to increased remediation efficiency of the brick used as a root-bed substrate 

compared (actual) with the initial 24-h sorption experiment (predicted).  These results 

demonstrate that it is critical to monitor remediation efficiency of secondary treatment 

CWS.  Basing expected substrate lifetime on sorption experiments alone does not account 

for change in sorption maximum over time or differences in P sorption capacity by brick 

source, however the sorption maximum determined from sorption experiments may yield 

a conservative estimate for substrate longevity. 

 The CC-nonveg. treatment fixed 1.8 g P / kg substrate and showed potential for 

additional P sorption because SEC PRE remained positive.  A previous 9-month 

mesocosm study utilizing CC as a secondary treatment substrate found that the maximum 

quantity of P sorbed when CC was used as a secondary treatment ranged from 7.1 to 9.7 
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g P /kg substrate (Chapter 3).  After comparison of the results of the previous study with 

the current one, it appears that the CC could potentially bind an additional 5.3 to 7.8 g of 

P / kg substrate, since PRE was still highly efficient and little detectable desorption had 

occurred. 

 The alkaline pH of the brick treatments may have increased the initial P sorption 

by the brick treatments.  pH values were consistently > 9, which is basic enough to 

enhance formation of insoluble calcium-phosphate complexes that precipitate out of 

solution upon formation and may be deposited onto brick surfaces (Fig. S4.5).  Calcium 

concentration in effluent of brick-veg and nonveg treatments were initially high, 401.2 ± 

28.9 mg/L Ca2+ for the first sampling and 145.0 ± 56.0 mg/L Ca2+ for the second (Fig. 

S4.6).  Thereafter, calcium concentrations among brick and CC treatments were similar.  

Grünberg and Kern (35) attributed high pH and Ca2+ concentrations in furnace slag with 

increased formation and precipitation of calcium phosphates.  Brick-veg. treatment pH 

values were initially > 8.5, but, after the one month plant establishment period, effluent 

pH values decreased, eventually becoming similar to those of CC effluent.  The presence 

of plant material in both CC and brick treatments resulted in a gradual pH decline, 

although the pH decline in the brick treatment was more dramatic. 

 Plant uptake of P accounted for the additional 105.9 ± 4.5 and 42.7 ± 3.9 g of P 

fixed by veg. brick and CC treatments, respectively (Table 4.1).  The veg. secondary 

treatments had higher NRE and PRE than the nonveg treatments.  The CC was more 

effective at polishing effluent water quality than the brick and showed potential for 

longer utility as a root-bed substrate.  However, even though brick was not as efficient as 
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CC, it may be useful in settings where P remediation requirements are not rigorous, such 

as when effluent will be recycled for irrigation water.  Further, since brick is a recycled 

product, it may be a more environmentally sustainable choice as a remediation substrate.  

These results indicate that a mixed primary surface-flow to secondary subsurface-flow 

CWS was able to maximize N and P removal from simulated nursery runoff.  Primary 

surface-flow cells facilitated the majority of NRE, while secondary subsurface-flow cells 

facilitated the majority of phosphorus removal.  Vegetated secondary treatment increased 

PRE and NRE, further reducing nutrients in effluent from the CWS. 
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Tables 

TABLE 4.1. Total nitrogen (TN) and total phosphorus (TP) fixationa in surface- to 

subsurface-flow mesocosms.  Loading (in), export (out), and fixation (fixed), on a per 

mesocosm basis, were calculated based as the mean (standard error of the mean) for each 

treatment. 

 
a 

 System fixation calculated from (Tx, out – Tx, in); secondary fixation calculated from 

corresponding mesocosm (Primaryout – Secondaryout).

a 
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Figures 

FIGURE 4.1. Total N removal efficiency (bars a) and effluent concentration (lines) of 

primary surface-flow mesocosms established with different planting types. 

 
a Values are the average of 8 replicates per sampling period ± standard error of the mean. * represents 

statistically significant differences (α < 0.05) at each sampling time. 
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FIGURE 4.2. Total P removal efficiency (bars) and effluent concentration (lines) of 

primary surface-flow mesocosms established with different planting types. 

 
a Values are the average of 8 replicates per sampling period ± standard error of the mean.  

* represents statistically significant differences (α < 0.05) at each sampling time. 



 

105 

FIGURE 4.3. Total N removal efficiency (bars) and effluent concentration (lines) of 

subsurface-flow mesocosms with calcined clay (CC) root-bed media.  Mesocosms were 

either vegetated (Veg) or non-vegetated (Non Veg). (A) represents system a N removal 

efficiency and  (B) represents secondary N removal efficiency. 

 
aSystem = [1 – (Nsecondary / Ninflow); Secondary = [1 – (Nsecondary / Nprimary)]; * represent statistically significant 

differences (P < 0.05).  Values are the average of 8 replicates ± standard error of the mean. 
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FIGURE 4.4. Total N removal efficiency (bars) and effluent concentration (lines) of 

secondary subsurface-flow mesocosms with brick root-bed media.  Mesocosms were 

either vegetated (Veg) or non-vegetated (Non Veg).  (A) represents system a N removal 

efficiency and  (B) represents secondary N removal efficiency. 

 
aSystem  = [1 – (Nsecondary / Ninflow); Secondary = [1 – (Nsecondary / Nprimary)]; * represent statistically significant 

differences (P < 0.05).  Values are the average of 8 replicates ± standard error of the mean.
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FIGURE 4.5. Total P removal efficiency (bars) and effluent concentration (lines) of 

secondary subsurface-flow mesocosms with calcined clay (CC) root-bed media.  

Mesocosms were either vegetated (Veg) or non-vegetated (Non Veg).  (A) represents 

system a P removal efficiency and (B) secondary P removal efficiency. 

aSystem  = [1 – (Psecondary / Pinflow); Secondary = [1 – (Psecondary / Pprimary)]; * represent statistically significant 

differences (P < 0.05).  Values are the average of 8 replicates ± standard error of the mean.
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FIGURE 4.6. Total P removal efficiency (bars) and effluent concentration (lines) of 

secondary subsurface-flow mesocosms with brick root-bed media. Mesocosms were 

either vegetated (Veg) or non-vegetated (Non Veg).  (A) represents system a P removal 

efficiency and (B) secondary P removal efficiency. 

a System  = [1 – (Psecondary / Pinflow); Secondary = [1 – (Psecondary / Pprimary)]; * represent statistically significant 

differences (P < 0.05).  Values are the average of 8 replicates ± standard error of the mean. 
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Supplementary Figures 

FIGURE S4.1. Mesocosm primary surface-flow to secondary subsurface-flow CWS in 

May 2007 (A) and August 2007 (B). 

 

 

A 

B 
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FIGURE S4.2. Water-flow schematic from inflow tank through secondary treatment 

outflow. 

 

 

FIGURE S4.3. Average water temperature in primary mesocosms. 
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FIGURE S4.4. Average non-purgable organic carbon (NPOC) concentration by A) 

primary treatments (floating, rooted, and horticultural cultivars) and B) secondary 

treatments (brick vegetated and non-vegetated; calcined clay vegetated and non-

vegetated).  Data points are the treatment mean ± standard error of the mean. 
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FIGURE S4.5. pH changes in primary (A, floating, rooted, and horticultural cultivar 

treatments) and secondary (B, brick vegetated (V) and non-vegetated (NV); CC, calcined 

clay vegetated and non-vegetated) mesocosm treatments. 
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FIGURE S4.6. Calcium concentration in brick vegetated and non-vegetated, CC, calcined 

clay vegetated and non-vegetated secondary subsurface-flow treatments. Data points are 

the treatment mean ± standard error of the mean. 
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CONCLUSIONS 

(1) A mixed surface- to subsurface-flow constructed wetland system (CWS) is more 

effective than either surface- or subsurface-flow CWS alone at nitrogen and 

phosphorus assimilation and removal. 

(2) Nutrient loading rate must be known to design a CWS with adequate treatment 

area. 

(3) A 4-day hydraulic retention time is adequate for nutrient remediation. 

(4) The floating-mat planting style provided the greatest nitrogen removal efficiency. 

(5) Horticulturally-significant cultivars did not exhibit optimum nutrient uptake at low 

nutrient loading concentrations. 

(6) Plant biomass displaces 20-25% of water in CWSs. 

(7) Brick and industrial mineral aggregate root bed substrates improve phosphorus 

remediation efficiency in secondary subsurface-flow CWSs. 

(8) Industrial mineral aggregate polishes effluent water quality more effectively and 

sorbs phosphorus longer than brick. 

(9) Planting secondary subsurface-flow CWSs further improves effluent water quality. 

 

 This research demonstrated that a mixed surface- to subsurface-flow constructed 

wetland system (CWS) was more effective at assimilating and removing nitrogen and 

phosphorus than either surface- or subsurface-flow CWSs alone.  Nutrient loading rate 

must be known to design a CWS with an adequate treatment area.  The high nutrient 

loading (> 30 mg/L N) treatment was not adequately managed by these CWS, but 
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treatments with N loading < 18 mg/L were adequately remediated.  The 4-day hydraulic 

retention time (HRT) treatment exhibited similar remediation efficiency to the 7-day 

HRT treatment.  During winter 2005, the 7-day HRT treatment exported more P than the 

4-day HRT treatment, regardless of nutrient load.  Phosphorus concentrations in 4-day 

HRT treatment effluent were lower because P released from decaying plant material was 

more diluted by the faster flow rate of the 4-day HRT treatment than the 7-day HRT 

treatment. 

 Planting style is important when establishing CWSs.  The floating-mat treatment 

provided the greatest N removal efficiency probably because the increased root surface 

area in the water column provided more attachment sites for microbial growth when 

compared with the rooted treatment.  The horticulturally-important species examined 

were not as effective as native wetland species at nutrient removal.  The decreased 

nutrient removal efficiency of horticultural-important species was a result of low (10 

mg/L N) nutrient loading rates and the species’ physiological predisposition to more 

efficient nutrient uptake at higher concentrations.  Plant biomass displaced 22.9% of the 

water in the mesocosms.  Thus, estimated CWS surface area should an increased by 20 to 

25% to provide adequate treatment area and retention time. 

 Secondary subsurface-flow treatments exhibited consistent, highly efficient P 

removal until P binding site saturation occurred.  After saturation, P desorbed from 

substrate, and effluent P concentrations were sometimes higher than inflow 

concentrations.  Both calcined clay and brick reduced P concentrations in effluent.  The 

calcined clay root-bed substrate more effectively polished effluent water than the brick 
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and was able to sorb P from runoff for longer periods of time.  However, dependent upon 

P removal efficiency needs, brick may reduce P concentrations in effluent to acceptable 

levels.  Further, since brick is a recycled product, it may be a more environmentally 

sustainable product than calcined clay, which is mined and processed.  Establishing 

plants in the subsurface-flow mesocosms further improved effluent water quality when 

compared with the non-vegetated secondary treatment, and both nitrogen and phosphorus 

concentrations were reduced.  This mixed surface- to subsurface-flow CWS design shows 

great potential as a highly effective, low-maintenance treatment system for runoff from 

nursery operations. 
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