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ABSTRACT

Slow-frequency-hop (SFH) spread-spectrum communications provide a

high level of robustness in packet-radio networks for both military and com-

mercial applications. Reed-Solomon (R-S) coding has proven to be a good

choice for countering the critical channel impairments of partial-band fading

and partial-band interference in a SFH system. In particular, it is effective

if information about the reliability of individual code-symbol decisions or the

content of entire dwell intervals is obtained at the receiver and used in errors-

and-erasures (EE) decoding of the R-S code words.

In this dissertation, we consider high-data-rate SFH communications for

which the channel in each frequency slot is frequency selective, manifesting

itself as intersymbol interference (ISI) at the receiver. The use of a packet-

level iterative equalization-and-decoding technique is considered in conjunc-

tion with a SFH system employing R-S coding. In each packet-level iteration,

MLSE equalization is used in each dwell interval and is followed by bounded-

distance EE decoding of the R-S code words. Several per-dwell interleaver

designs are considered for the SFH systems. It is shown that packet-level iter-

ations result in a significant improvement in performance with only a modest

increase in detection complexity for a variety of ISI channels. The use of differ-

ential encoding in conjunction with the SFH system and packet-level iterations

is also considered, and it is shown to provide further improvements in perfor-

mance with only a modest additional increase in detection complexity. The

performance SFH systems employing packet-level iterations with and without

differential encoding is also evaluated for channels with partial-band interfer-

ence. Comparisons are made between the performance of this system and the



performance of SFH systems using some other codes and iterative decoding

techniques.
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CHAPTER 1

INTRODUCTION

Many applications of packet radio communications involve circumstances

in which only limited coordination is possible among the nodes of the radio

network. As a consequence, multiple-access interference frequently gives rise

to the near-far interference condition at receivers in the network [1]. More-

over, the receivers are often subjected to non-network sources of partial-band

interference of varied and unpredictable bandwidth and power. A high level

of robustness can be achieved by the network in the face of these impairments

if the nodes in the network employ slow-frequency-hop (SFH) spread-spectrum

modulation with appropriate channel coding techniques.

In particular, Reed-Solomon (R-S) coding has proven to be an effective

tool for countering multiple-access interference and other partial-band inter-

ference in SFH systems [2]. Effective receiver designs employing R-S decoding

can be implemented without any estimates of either the signal-to-noise ratio

or the signal-to-interference ratio at the receiver. R-S codes are most bene-

ficial if they are used with errors-and-erasures (EE) decoding and a method

of identifying and erasing code-symbol decisions of low reliability [2–5]. The

effectiveness of this technique is responsible in large part for the widespread

use of SFH spread spectrum in military packet radio communications [6,7] as

well as its use in some commercial ad hoc radio networks.

Current SFH packet radio networks operate at low-to-moderate link data

rates for which the most common channel impairments are partial-band inter-

ference across the system bandwidth and frequency-flat fading within each

hop frequency. For future SFH systems, however, the link data rates will

be higher. Thus the channel is likely to be frequency selective within each



frequency slot, resulting in significant intersymbol interference (ISI) at the

receiver. Consequently, the receiver designs for future SFH systems must

incorporate equalization in each dwell interval while preserving the robust-

ness of existing SFH systems with respect to partial-band impairments. Such

designs can also be exploited as enhancements of existing (lower data rate) SFH

systems to improve performance in those instances in which a channel with a

large delay spread is encountered. It is thus desirable that the resulting detec-

tion complexity is not much greater than the complexity required for receiver

designs in current use.

In earlier work [8], we consider a SFH packet radio system with R-S

coding that is subjected to ISI in each frequency slot. Maximum-likelihood

sequence estimation (MLSE) equalization [9] is employed at the receiver, which

is retrained on a hop-by-hop basis. Unreliable code symbols are identified

using the parity-bit method [4] and erased for EE decoding. The performance

of this system is compared with a system which does not use the parity-bit

method and instead employs errors-only decoding of R-S code words. It is

shown that the use of parity bits significantly improves the performance of the

SFH systems for a wide variety of ISI channels.

Our previous work concerns a receiver that employs a single pass of equal-

ization followed by EE decoding of each of the multiple R-S code words in a

packet (i.e, one-shot equalization and decoding). In this dissertation, we con-

sider reception techniques that employ iterative equalization and decoding in

a manner that results in only a modest increase the detection complexity com-

pared with one-shot equalization and decoding. The iteration is applied to

the entire content of a packet, rather than individual R-S code words within

the packet. Hence it is referred to as packet-level iterative equalization and

decoding.

2



In this dissertation, we consider a packet-level iterative equalization-and-

decoding technique in which MLSE equalization and bounded-distance EE

decoding is employed in each iteration. Each dwell interval for a packet trans-

mission contains one parity-encoded code symbol from each R-S code word in

the packet. In each packet-level iteration at the receiver, the receiver employs

MLSE equalization to detect the binary channel symbols in each dwell interval

followed by EE decoding of those code words in the packet that could not be

successfully decoded in the previous iterations. The channel-symbol polari-

ties for the code symbols corresponding to code words successfully decoded

in the current and previous iterations are fed back to the equalizer for use in

the next iteration. This feedback is used as a priori information that enables

state pinning [10, 11] which constrains the paths through the equalizer trellis

in the new iteration in a way that aids in successful decoding of additional

code words in the packet.

The code symbols in a dwell interval are transmitted consecutively in

their parity-encoded binary representations in one of the packet transmission

formats we consider with iterative equalization and decoding [12]. Both the

performance and the detection complexity of packet-level iterative equaliza-

tion and decoding are investigated for a variety of ISI channels, and they are

compared with the performance and detection complexity of one-shot equal-

ization and decoding. A modification to the packet transmission format is

also considered in which the binary contents of each dwell interval are inter-

leaved before transmission [13]. Several interleaver designs are considered in

conjunction with packet-level iterative MLSE equalization and EE decoding.

For a SFH system with R-S coding, it is shown in Chapter 6 that poor

performance in partial-band interference results if the bits forming the repre-

sentation of a given code symbol are interleaved across multiple dwell inter-

vals. Thus the bit-interleaving techniques considered in this dissertation sat-
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isfy the constraint that all the bits in the representation of a given code symbol

are transmitted in the same dwell interval. It is shown that bit interleaving

with this constraint results in significant performance improvement for a wide

variety of multipath channels with only a modest increase in detection com-

plexity.

The effect of state pinning on the minimum free distance of the equal-

izer trellis is determined analytically. Previous methods employed in finding

minimum distance properties for a trellis without any state pinning [14–16]

are suitably modified, and it is shown that state pinning results in an increase

in the minimum free distance of the trellis. For a channel response of length

greater than two, state pinning is shown to overcome a substantial portion of

the worst-case asymptotic performance loss in SNR that results with one-shot

MLSE equalization.

In this dissertation, we also consider a SFH system design that is moti-

vated by previous results in which the serial concatenation of an outer binary

code and an inner differential encoder separated by a pseudo-random inter-

leaver yields codes with distance spectra that are asymptotically good with

increasing block size [17,18]. The SCC codes considered in [17] are shown to

provide an interleaving gain, and near-maximum-likelihood iterative decoding

at the receiver results in excellent performance in an AWGN channel. In the

SFH systems we consider, the need to provide adequate protection against

partial-band impairments introduces an additional constraint on the inter-

leaver design as a consequence of the non-binary code-symbol alphabet of the

R-S code. We show that in spite of this, the use of differential encoding in SFH

systems with R-S coding can be exploited at the receiver to achieve improved

performance.

The SFH systems that we consider with differential encoding employ a

packet transmission format in which the binary contents of each dwell interval

4



are bit interleaved and differentially encoded prior to transmission [19]. Packet-

level iterative detection and EE decoding is employed at the receiver for such

a system. A generalization of state pinning (denoted “branch pruning”) is

introduced to account for the effect of differential encoding, and it is used

by the receiver in each iteration to constrain the equalizer based on feed-

back from the EE decoder. It is shown that differential encoding results in

improved performance in AWGN channels and channels with moderate ISI.

The performance improvements are achieved with a modest increase in detec-

tion complexity. The effect of branch pruning on the minimum free distance

of the equalizer trellis is determined analytically for AWGN and multipath

channels, and it is shown that branch pruning resulting from feedback results

in an asymptotic gain in performance.

The performance of SFH systems employing packet-level iterations are

also evaluated for channels in which the received signal is subjected to partial-

band interference [20]. SFH systems which employ per-dwell bit interleaving

with and without differential encoding are considered and the performance of

each of those systems is compared with the performance of one-shot equal-

ization and decoding. The performance comparison and detection complexi-

ties are determined for instances in which the received signal is subjected to

partial-band interference and for both an AWGN channel and an ISI channel.

It is shown that the benefits of using differential encoding in conjunction with

packet-level iterative detection and decoding in the SFH system are preserved

if partial-band interference is introduced into the channel.

The use of the parity-bit method [4] is considered for both symbol-by-

symbol erasures and threshold-based dwell erasures in conjunction with com-

munications over the partial-band-interference channel. More efficient parity-

bit techniques are also considered in which blocks of multiple R-S code sym-

bols in a dwell interval are encoded with a single parity bit and corresponding
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block erasures occur at the receiver [4]. (This results in different tradeoffs

than those that arise in the use of test symbols for dwell erasures [4, 21].)

The performance of the dwell-erasure technique along with packet-level

iterative detection is also compared with the performance of other previously

introduced coding and decoding techniques for SFH systems that include both

one-shot decoding techniques and iterative decoding techniques. It is shown

that the performance of the SFH systems which employ R-S coding and packet-

level iterative detection and decoding are superior to the earlier systems using

one-shot detection and they are competitive with the other systems using

“turbo” coding and iterative decoding.

The remainder of this dissertation is organized as follows. Related prior

work is summarized in Chapter 2. In Chapter 3, the channel model that

is employed for the performance evaluation of the SFH system designs is

described. Chapter 4 describes the packet-level iterative MLSE equalization

and EE decoding technique and a variety of bit interleaving designs for the SFH

systems. Performance evaluation and detection complexities of the system

designs are determined for a wide variety of ISI channels. Analytical results

for the distance properties of the equalizer trellis is shown. In Chapter 5, the

packet-level iterative technique is considered in conjunction with a SFH system

which employs bit interleaving and differential encoding in each dwell interval.

Performance comparison for systems with and without differential encoding is

made for AWGN and a variety of ISI channels. Analytical results for the min-

imum free distance of the detector trellis is shown for a system which employs

differential encoding. Chapter 6 shows the performance results of SFH sys-

tems employing packet-level iterations with and without differential encoding

in a partial-band interference channel. Finally, conclusions are presented and

future work discussed in Chapter 7.
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CHAPTER 2

RELATED PRIOR RESEARCH

Iterative equalization and decoding has been widely examined in contexts

corresponding to narrowband communications [22,23], but its consideration in

the context of SFH communications appears to have been limited to its use

with serially concatenated convolutional (SCC) codes [24] and (in our work)

with R-S codes. Most previous work on iterative detection techniques for SFH

communications has focused instead on the performance of iterative decoding

with single-path static or frequency-flat fading channels (in some instances

in the presence of partial-band interference). Among the systems addressed

are those using parallel concatenated convolutional (PCC) codes [25–27], SCC

codes [28, 29], turbo product codes [30, 31], and bit-interleaved coded mod-

ulation [32]. Iterative channel estimation and decoding using convolutional

codes is considered in [33] for a SFH system.

The use of PCC codes and iterative decoding is considered in [25–27] for

SFH communications using both coherent and noncoherent communications.

In the work it is assumed that the receiver has a priori knowledge of both the

noise and interference power spectral densities but no a priori knowledge of

which frequency slots are subjected to interference. It is shown that the use

of a PCC code results in performance in partial-band interference superior to

that of either of two SFH systems using non-iterative detection: R-S codes and

errors-only decoding [34], and concatenated R-S and convolutional codes with

test symbols [35]. SCC codes with M-ary PSK and inner differential encoding

are considered in [29] for SFH systems, and good performance is achieved in

partial-band interference by using an adaptation of the ratio-threshold test [3].

A SCC code with inner CPFSK modulation is considered in [28] for SFH com-

munications in the presence of jamming. Turbo product codes are considered



in [30,31] for SFH communications. They are shown to provide performance

comparable to that of PCC codes, but with a relatively low detection com-

plexity. Bit-interleaved coded modulation with iterative decoding is consid-

ered in [32], and it is shown to be useful in SFH communications with fast

fading.

A form of packet-level iterative detection is considered in [36] for a SFH

packet radio system using R-S coding in partial-band interference, where feed-

back from bounded-distance decoding of R-S code words is used to make per-

dwell erasures of code symbols for the remaining undecoded code words in the

packet. This use of feedback is similar to the “error forecasting” technique

introduced in [10] for detection of a packet containing multiple R-S code words,

though the techniques addressed in the two papers differ in some respects.

The use of state pinning with packet-level iterative detection is considered

in [10] and [11] for a packet format employing a concatenation of multiple outer

R-S code words per packet and inner convolutional encoding. The results of

successful errors-only decoding of some of the R-S code words in the packet is

used to constrain the trellis search for subsequent iterations of Viterbi decoding

of the inner code. Performance is considered only for an AWGN channel

in the two papers. The use of state pinning in this manner can be viewed

as an improvement of an earlier technique in which decoding of each R-S

code word is attempted only once and only the trellis decoding of the inner

code is iterated [37,38]. Additional work employing error forecasting or state

pinning is cited in [39]. In the previous work that addresses either technique in

conjunction with concatenated coding, only a nonrecursive inner convolutional

code is considered and only modest performance gains are achieved.

Numerous other decoding techniques employ iterated decoding attempts

for individual code words in a packet format that includes multiple R-S code

words [40–42]. Each decoding attempt of a constituent R-S code word is itself
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an iterative algorithm [43–46] in most of these techniques, which may impose

an excessive computational burden on many radio receivers for code rates of

interest in packet radio communications.
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CHAPTER 3

CHANNEL MODEL

Each transmitted radio-frequency signal considered in this dissertation

has the form

s(t) = v(t) cos(2πfct + ν(t) + φ)

where v(t) is an amplitude-modulation function and ν(t) is a phase-modulation

function. (This form is sufficiently general to include frequency modulation

and frequency hopping.) Thus the transmitted signal can be expressed as

s(t) = v1(t) cos(2πfct) − v2(t) sin(2πfct)

where v1(t) = v(t) cos[ν(t) + φ] and v2(t) = v(t) sin[ν(t) + φ].

The channel is a doubly selective, Gaussian, wide-sense-stationary, uncorrelated-

scattering channel [47] with a discrete delay spectrum [48]. The transmitted

signal is also distorted by additive thermal noise and interference at the receiver.

Thus the received signal is given by

r(t) =

M−1
∑

i=0

{[

v1(t − τi)g
(I)
i (t) − v2(t − τi)g

(Q)
i (t)

]

cos[2πfc(t − τi)]

−
[

v2(t − τi)g
(I)
i (t) + v1(t − τi)g

(Q)
i (t)

]

sin[2πfc(t − τi)]
}

+n(t) + i(t)

where M is number of multipath components in the received signal, n(t) is a

white Gaussian noise process with doubled-sided power spectral density N0/2,

and i(t) is an interference process. (The interference process is identically zero

in all the results except those of Chapter 6. It is defined in that chapter.)



The time-varying multipath attenuation functions of the channel are given

by

g
(I)
i (t) = h

(I)
i (t) + ρ

(I)
i (t) and g

(Q)
i (t) = h

(Q)
i (t) + ρ

(Q)
i (t)

for i = 0, · · · , M − 1,where {h(I)
0 (t), h

(Q)
0 (t), · · · , h

(I)
M−1(t), h

(Q)
M−1(t)} are mutu-

ally independent, zero-mean, Gaussian random processes and

{ρ(I)
0 (t), ρ

(Q)
0 (t), · · · , ρ

(I)
M−1(t), ρ

(Q)
M−1(t)} are deterministic functions of time. The

pair of random processes for the ith multipath component are characterized

by their autocorrelation functions

E
[

h
(I)
i (t)h

(I)
i (x)

]

= E
[

h
(Q)
i (t)h

(Q)
i (x)

]

= σ2
i d(t − x)

where σ2
i is the power in either random process and d(t) is the time-correlation

function for all of the multipath components.

The transmitted and received signals and the channel’s impulse response

can also be represented in a baseband-equivalent form with respect to fc [49].

The baseband-equivalent transmitted signal is given by

s̃(t) =
1√
2
{v1(t) + jv2(t)} ,

and the baseband-equivalent, time-varying impulse response of the channel is

given by

g̃(t, τ) =

M−1
∑

i=0

g̃i(t) exp[−j2πfcτi]δ(t − τi) (3.1)

where

g̃i(t) =
{

g
(I)
i (t) + jg

(Q)
i (t)

}

.

The baseband-equivalent received signal is given by

r̃(t) =

∫ ∞

−∞

g̃(t, τ)s̃(τ)dτ + ñ(t) + ĩ(t)
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where ñ(t) is a proper, complex-valued white Gaussian random process [50]

with double-sided power spectral density N0 and ĩ(t) is the baseband equivalent

of the interference random process. Then

s(t) =
√

2 Re{s̃(t) exp[−j2πfct]}

and

r(t) =
√

2 Re{r̃(t) exp[−j2πfct]}.

The baseband-equivalent attenuation function of the ith multipath component

in the received signal can be expressed as

g̃i(t) = h̃i(t) + ρ̃i(t)

where h̃i(t) = h
(I)
i (t) + jh

(I)
i (t) and ρ̃i(t) = ρ

(I)
i (t) + jρ

(Q)
i (t) are the baseband-

equivalent attenuation functions of the diffuse part and the specular part of

the multipath component, respectively.

In each example considered in this dissertation, the specular part of

the attenuation function is a constant for each multipath component in the

received signal. Thus the notation ρ̃i(t) is simplified to ρi. Moreover, the

value of ρi is real in each example. The power attenuation of the specular

part of the ith multipath component is thus ρ2
i . The average power atten-

uation of the diffuse part is 2σ2
i , and the average power attenuation of the

complete multipath component is ρ2
i + 2σ2

i .

The magnitude attenuation of the diffuse part of the ith multipath com-

ponent in the received signal follows a Rayleigh distribution at any time, and

thus the magnitude attenuation of the complete multipath component follows

a Rician distribution. A multipath component with zero diffuse signal power

is referred to as a static multipath component, and a multipath component with

zero specular signal power is referred to as a Rayleigh-fading multipath compo-

nent. If all the multipath components are static, the channel is referred to as
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a static channel. Conversely, if all the multipath components exhibit Rayleigh

fading, the channel is referred to as a Rayleigh-fading channel. Each example

that is considered in this dissertation concerns either a static channel or a

Rayleigh-fading channel.

The time-correlation function determines the rate of variation in the atten-

uation of the diffuse part of each multipath component. A two-sided exponen-

tial time-correlation function [51] is considered in all the examples of Rayleigh-

fading channels in this dissertation. It is given by

d(t) = exp(−2πBdt),

where Bd is the half-power bandwidth of the Fourier transform of d(t). If the

information rate of the SFH system is denoted by Rb bits/s, the (normalized)

Dopplerspread of the channel is given by DT = Bd/Rb. For a given informa-

tion rate, the Doppler spread is proportional to the system’s carrier frequency

and the velocity between the transmitter and the receiver.

The SFH systems that are the focus of this dissertation use distinct car-

rier frequencies for the different frequency slots of the system. Thus at any

time t, the baseband-equivalent impulse response of the channel with respect

to the center frequency of a given frequency slot depends on the slot. This is

apparent from the expression in equation (3.1), which depends on fc. In each

example in this dissertation, however, the center frequencies of any two fre-

quency slots differ by an integer multiple of the inverse of the channel-symbol

duration for the system. Moreover in most of the examples, each path delay

τi is an integer multiple of the channel-symbol duration. For each such exam-

ples, the baseband-equivalent impulse response of the channel at any time t is

the same with respect the center frequencies of all frequency slots.
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CHAPTER 4

INTERLEAVING TECHNIQUES FOR SFH SYSTEMS WITH

PACKET-LEVEL ITERATIVE DETECTION

4.1 Description of SFH Systems

For each SFH system considered in this chapter, the information content

is encoded at the transmitter by an (n, k) singly extended R-S encoder [52].

Each packet consists of Ns code words and each code word contains n code

symbols belonging to an n = 2m-ary code alphabet. Each n-ary code symbol

is represented by a distinct (m + 1)-bit binary sequence of even parity. (This

parity-encoded representation is used to generate code-symbol erasures at the

receiver [4].) The code words are written into an n-by-(m+1)×Ns block code-

symbol interleaver such that each interleaver row contains the parity-encoded

binary representation of one code symbol from each of the code words.

Some of the systems considered here include a second level of inter-

leaving, which is referred to as bit interleaving. For each of these systems,

with one exception, the binary contents of each row of the interleaving block

are reordered prior to transmission. In the one exceptional system, the binary

contents of each row are redistributed across the entire interleaving block. In

all of the SFH systems, a packet is transmitted in n dwell intervals with the

contents of each row of the resulting interleaving block transmitted in a dif-

ferent dwell interval. Each dwell interval consists of a preamble sequence of

Nt bits followed by the (m + 1) Ns bits from the corresponding row of the

block interleaver and a guard interval of Ne bits in which no signal is trans-

mitted. Thus in each system save the exception noted above, the contents of

a dwell interval correspond to one code symbol from each of the Ns R-S code

words. The binary contents of each dwell interval (including the preamble



sequence) are transmitted using BPSK modulation. The generic transmitter

for the SFH systems considered in this chapter is shown in Figure 4.1.

Each dwell interval is transmitted in a frequency slot that is determined

by a frequency-hopping pattern given by {f0 = fc + k0∆f, ..., fn−1 = fc +

kn−1∆f} where fc is the center frequency of the lowest-frequency slot, ∆f

is the offset between the center frequencies of adjacent frequency slots and

ki ∈ {0, ..., S−1}. If the duration of each binary channel symbol transmitted

using BPSK modulation is T , then ∆f = 2/T . Thus if the total system

bandwidth is Bt, the number of frequency slots available is S =BtT/2. For a

packet transmitted at time t = 0, the transmission is thus given by

s(t) =
√

2P

n−1
∑

i=0

Nt+(m+1)Ns−1
∑

j=0

(−1)bi(Nt+(m+1) Ns)+j

×pT (t − (i(Nt + (m + 1) Ns + Ne) + j)T )cos(j2πfit + φi) (4.1)

where pT is the unit-amplitude pulse over [0,T ], P is the transmitted power,

bl is the lth binary channel symbol, and φi is the carrier phase offset in the ith

dwell interval.

The transmission occurs over the multipath, fading channel described in

Chapter 3. The average signal-to-noise ratio at the receiver is thus given by

Eb

N0
=

PT

N0

n(Nt + (m + 1) Ns)

mkNs

M−1
∑

l=0

(ρ2
l + 2σ2

l ). (4.2)

In the results presented in this chapter, no interference process appears at the

receiver.

There are two stages of data reception in each dwell interval. In the first

stage, the dwell interval’s preamble is used as a training sequence to obtain a

discrete-time equivalent impulse response of the channel. The receiver includes

in-phase and quadrature filters matched to the waveform for the transmitted

preamble, and the over-sampled filter outputs are used to determine the maximum-

energy, symbol-rate discrete-time estimate of the channel’s baseband-equivalent
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impulse response at the center frequency for the dwell interval [8]. The number

of taps in the resulting channel model is a pre-determined parameter of the

receiver. (A value of four taps is used for all the examples in this dissertation,

except where otherwise noted in Chapter 6.)

The estimated impulse response provides the equalizer’s complex-valued

channel coefficients for the dwell interval. The channel coefficients for each

dwell interval are obtained once for each packet, and they are used in the

equalizer for that dwell interval throughout the attempt to detect the packet.

Since the channel coefficients include phase information, the data detection is

coherent.

In the second stage of reception, the received signal is passed through

in-phase and quadrature branches of the receiver. In each branch the signal

is demodulated and passed through a baseband filter which is matched to

the rectangular data pulse. The filter outputs are sampled once per channel-

symbol interval and the sequence of complex-valued samples is generated for

each of the binary channel symbols corresponding to the data contents of

the dwell interval. The equalizer training and data-sample generation are

employed in each of the SFH systems described below. The generic receiver

for the systems considered in this chapter is shown in Figure 4.2.

Seven packet formats and a total of nine combinations of packet format

and receiver are considered in this chapter. The nine combinations are desig-

nated as systems A through I, and their respective characteristics are shown

in Table 4.1. In systems A through G, a rectangular block code-symbol inter-

leaver is employed. That is, each R-S code word in the packet is written in

its parity-encoded binary representation as (m+1) consecutive columns of the

block interleaver (prior to any bit interleaving that may be used). Systems

H and I use diagonal block code-symbol interleaving instead. The contents

of the first row are the same as in rectangular block interleaving so that the
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System Code-Symbol Bit Interleaver Packet-Level
Interleaver Iteration

A rectangular none no
B rectangular none yes
C rectangular regular, per dwell yes
D rectangular pseudo-random, per dwell yes
E rectangular odd-even, per dwell yes
F rectangular distance-swap, per dwell yes
G rectangular s-random, packet-wide yes
H diagonal none no
I diagonal none yes

Table 4.1 Characteristics of SFH systems considered in Chapter 4.

order of the code symbols in the dwell interval is 1, 2, ..., Ns after block inter-

leaving. For the second row, a circular right shift by (m + 1) bits (i.e,, the

parity-encoded representation of one code symbol) is applied to the inter-

leaving pattern of the first row. Thus the order of the code symbols in the

second row is Ns, 1, 2, ..., Ns − 1 after block interleaving. For each subsequent

row of the diagonal block interleaver, the interleaving pattern is obtained by

an (m + 1)-bit circular right shift of the interleaving pattern in the previous

row. The interleaving pattern thus repeats in every Ns rows.

The first SFH system considered (referred to as system A) does not use

bit interleaving so that the code symbols in each row of the block interleaver

are transmitted consecutively in the corresponding dwell interval using their

binary parity-encoded representations. The receiver in system A employs

maximum-likelihood sequence estimation (MLSE) for equalization of the data

samples in each dwell interval [9], and the outputs of the equalizer are the

hard decisions for the corresponding binary channel symbols in the dwell

interval. The equalizer structure for each dwell interval can be represented

by a trellis diagram with the branch labels for the paths in the trellis deter-

mined by the complex coefficients of the estimated channel impulse response
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for the dwell interval. The Viterbi algorithm is employed using the trellis

with the squared-Euclidean-distance metric to implement MLSE equalization

in the dwell interval [53]. An example of such a trellis structure is shown in

Figure 4.3 in which the training stage for a given dwell interval has resulted

in a two-path model as the estimate of the baseband-equivalent channel. The

initial time step of the trellis is constrained to a unique state determined by

the preamble sequence.

The detected channel symbols from each dwell interval are used to form

the detected (m + 1)-bit parity-encoded representation for each code symbol,

and the detected representation is tested for even parity. If parity check

fails, the corresponding code symbol is replaced by an erasure symbol for

use in decoding. The contents of the packet are deinterleaved by writing the

detected n-ary code symbols and the erasure symbols from each dwell interval

into a row of an n-by-Ns rectangular block deinterleaver. Each column of the

deinterleaving block thus represents the detected code symbols and erasure

symbols for one (n, k) R-S code word. The contents of each column are passed

to a bounded-distance EE decoder for the R-S code. One-shot equalization

and decoding is employed. (That is, there is only one MLSE equalization

performed for each dwell interval and only one EE decoding attempt for each

R-S code word.) Thus system A is represented by Figures 4.1 and 4.2 with

all the dashed elements excluded.

The second SFH system that is considered uses the same packet transmis-

sion format as system A. The receiver employs packet-level iterations of MLSE

equalization with state pinning and EE decoding, however [12]. We refer to

this system as system B. In the first packet-level iteration the equalizer uses

the entire equalizer trellis in each dwell interval, and code symbols that fail

parity check are replaced by erasure symbols. The detected code symbols and

erasure symbols are deinterleaved using an n-by-Ns block deinterleaver, and
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bounded-distance EE decoding is employed for each R-S code word. Thus

the first packet-level iteration in the receiver of system B is equivalent to the

reception employed in system A.

The first packet-level iteration can result in failure of bounded-distance

decoding for one or more code words in the packet, however. If any such

failures occur, further iterations of equalization and decoding are employed in

system B. In each subsequent iteration, the equalizer for each dwell interval

is provided with feedback in the form of the channel-symbol polarities for the

code symbols corresponding to code words that were correctly decoded in the

earlier packet-level iterations. (Thus the receiver in system B is illustrated by

Figure 4.2 with the dashed feedback loop included but both the bit interleaver

block and the bit deinterleaver block excluded.)

As in the first iteration, the equalizer for a given dwell interval in subse-

quent packet-level iterations uses the Viterbi algorithm employing the samples

from the channel for that dwell interval. It differs from the first iteration, how-

ever, in that the Viterbi algorithm is constrained to only those paths through

the equalizer trellis that are consistent with the feedback information. The

constraint can be expressed as a restriction to a subset of the trellis states at

the end of those time steps for which the channel-symbol polarity has been fed

back: hence the use of the term “state pinning” to describe the technique [11].

State pinning is illustrated in Figure 4.4 for the equalizer trellis for a two-path

channel in which the feedback information (b1 = 1, b2 = 0, b4 = 1, b5 = 0)

is provided from successful decoding of R-S code words in previous packet-

level iterations. The equalizer’s hard decisions for the remaining unknown

bits are employed as before for EE decoding of the R-S code words that were

not successfully decoded in the earlier iterations. Packet-level iterations of

equalization and decoding continue until all the code words in the packet are
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successfully decoded or no additional code words are successfully decoded in

an iteration.

A modification of system B is also considered in which bit interleaving

is applied to the contents of each dwell interval prior to transmission. Bit

interleaving is accomplished by reordering the (m+1)Ns bits that represent the

contents of each row of the transmitter’s rectangular block interleaver. At the

receiver, the same technique of packet-level iterative equalization and decoding

is employed as in system B except that the hard-decision outputs from the

equalizer for each dwell interval are bit deinterleaved before detected code

symbols and erasures are determined for the corresponding row of the receiver’s

rectangular block deinterleaver. Conversely, the feedback decisions from the

decoder are bit interleaved for each dwell interval for use by the equalizer in

the next packet-level iteration. Bit interleaving has the effect of spreading the

feedback from each packet-level iteration more uniformly across each dwell

interval for the equalization in subsequent iterations. In system B, which

lacks bit interleaving, each correct code-word decision results in state pinning

for (m+1) consecutive time intervals in the equalizer trellis in the subsequent

iteration. In the modified system with bit interleaving, in contrast, the pinned

states are scattered throughout each dwell’s equalizer trellis.

Systems using four different bit-interleaver designs of this type are consid-

ered here. The first system uses regular bit interleaving, and it is referred to

as system C. In system C, the bit interleaver shown in Figure 4.5 is applied to

each row of the rectangular interleaving block. This results in m + 1 groups

of Ns consecutive bits in each row of the interleaving block, with each group

containing one bit from the parity-encoded binary representation of each of

the Ns code symbols in the dwell interval. (The regular bit interleaver is

illustrated for m = 5, i.e., for a 32-ary R-S code.) The same bit-interleaving

pattern is used for all dwell intervals in the packet. Another system, referred
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to as system D, uses pseudo-random bit interleaving. In system D, the reg-

ular bit interleaver is applied first to the contents of each dwell interval . A

pseudo-random reordering is then applied to the Ns bits within each of the

m + 1 groups. The same reordering is applied to all m + 1 groups in a given

dwell interval, but different randomization patterns are applied to different

dwell intervals.

More structured per-dwell bit-interleaver designs are used in two other

SFH systems in place of per-dwell pseudo-random reordering within each

group. System E uses odd-even bit interleaving. The regular bit interleaver

is applied to the first dwell interval of the packet, and the ordering within each

dwell interval is not altered further. The interleaving pattern for the second

dwell interval is obtained starting with the pattern for the first dwell interval.

Bits are then swapped for positions one and two, positions three and four,

and so forth. (The description assumes that Ns is even, though the modi-

fication for odd Ns is straightforward.) The same reordering is applied for

all the (m + 1) groups in the dwell interval. The interleaving pattern for the

third dwell interval is obtained starting with the pattern for the second dwell

interval. Within each group, the bits are then swapped for positions two and

three, four and five, and so forth, and the bits are swapped for positions one

and Ns. Again, the same reordering is applied for all the (m + 1) groups in

the dwell interval. The interleaving pattern for each subsequent dwell interval

is based on a comparable modification of the pattern for the previous dwell

interval, using the swapping pattern of the second dwell interval for even-

numbered dwell intervals and the swapping pattern of the third dwell interval

for all odd-numbered dwell intervals. If Ns = 12, for example, the interleaving

pattern repeats every twelve dwell intervals.

A method referred to as distance-swap bit interleaving is used in system F.

It is applicable if NS is even, and it is determined by the positive integer factors
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of Ns/2, which are denoted in increasing order as {i1, · · · , ip}. The regular bit

interleaver is applied to the first dwell interval of the packet. The interleaving

pattern for the second dwell interval is obtained starting with the pattern for

the first dwell interval. Bits are then swapped for positions one and i1 + 1,

positions two and i1 +2, and so forth until every bit position in the first group

has been part of exactly one swap. The same reordering is applied to the

other groups in the dwell interval. The interleaving pattern for the third dwell

interval is obtained starting with the pattern for the second dwell interval using

the same approach but with swaps at a distance of i2. Increased swapping

distances are employed for subsequent dwell intervals, up to a distance of ip.

After that the swapping distances for subsequent dwell intervals cycles through

{i1, · · · , ip}. For example, suppose Ns = 12 and there are thirty-two dwell

intervals. Then the set of swapping distances is {1, 2, 3, 6}, each distance is

used with the swapping technique for either six or seven dwell intervals, and

the interleaving pattern repeats every twenty dwell intervals.

A bit-interleaver design is also considered in which the bit interleaving

is not restricted to the contents of individual dwell intervals. Instead, an

s-random interleaver [54] with s = 12 is applied to all the encoded binary

symbols in the interleaving block for the packet. Each dwell interval may

thus contain binary symbols from more than one code symbol of a given code

word, in contrast with the packet format of each of the other SFH systems

considered here. The SFH system with s-random bit interleaving is referred

to as system G, and it also uses packet-level iterative equalization and decoding

at the receiver.

Two SFH systems are considered that use diagonal block code-symbol

interleaving instead of rectangular block code-symbol interleaving. System

H employs diagonal block code-symbol interleaving with no bit interleaving,

and it uses one-shot equalization and decoding at the receiver. System I also
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employs diagonal block code-symbol interleaving with no bit interleaving, but

it uses packet-level iterative equalization and decoding at the receiver. Sys-

tems H and I thus differ from systems A and B, respectively, only in the form

of block code-symbol interleaving they use.

4.2 Effect of State Pinning on Minimum Distance of Equalizer Trellis

Optimal sequence detection (MLSE equalization) for a binary antipodal

sequence received over a static intersymbol-interference channel with additive

white Gaussian noise can be implemented efficiently by applying the Viterbi

algorithm to a trellis that represents all possible sequences of ISI-distorted

binary symbols [9]. One-shot MLSE equalization suffers from an asymptotic

performance loss relative to communication over a single-path AWGN channel,

where the loss is characterized by the limiting increase in the signal-to-noise

ratio required to achieve a given probability of bit error or probability of first

event error. Specifically, an asymptotic performance loss occurs with MLSE

equalization if the ISI channel consists of three or more paths, and the loss

depends on the impulse response of the channel [9]. For example, a three-path

channel can result in an asymptotic performance loss as great as 2.34 dB, and

a four-path channel can result in an asymptotic loss as great as 4.2 dB [14,15].

The asymptotic performance loss of one-shot MLSE equalization for a

given channel’s impulse response is determined by the minimum Euclidean

distance between paths that determine an error event in the equalizer’s trellis.

Packet-level iteration results in state pinning in each dwell interval’s equalizer

trellis in the second and subsequent iterations, which eliminates some error

events that can occur in the original trellis. This often results in an increase

in the minimum Euclidean distance for remaining error events in the state-

pinned trellis and hence the asymptotic probability of error for the equalizer

is reduced for a given joint distribution of the channel-symbol statistics.
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The change in packet-detection performance that results with packet-level

iterative equalization and decoding is only partly due to the effect of state

pinning on the set of Euclidean distances for each dwell interval’s equalizer

trellis, however. State pinning also determines the number of bit errors and

the locations of the bit errors in possible error events at a given Euclidean

distance, and the subsequent results of R-S code-word decoding depend on

both characteristics of the error events that occur in each dwell interval’s

equalizer. Furthermore, decoding successes and failures from earlier iterations

alter the a posteriori joint distribution function of the statistics for the channel

symbols that are unknown at the start of the current equalizer iteration. Thus

even the pairwise error probability for a given error event differs for each

equalizer iteration in which the error event can be realized. Among these

factors, the effect of state pinning on the minimum Euclidean distance in the

equalizer trellis is the most amenable to analysis, and it provides the most

straightforward insights into the benefits of packet-level iterative equalization

and decoding. Thus it is the focus of this section.

The subsequent development concerns a static channel consisting of L

paths, where the ith path has delay iT and (complex) baseband-equivalent

attenuation hi for 0 ≤ i ≤ L − 1. Without loss of generality, it is assumed

that
L−1
∑

i=0

|hi|2 = 1.

The equalizer for one dwell interval is considered, and it is assumed that the

training stage results in a perfect model of the channel’s impulse response.

The minimum squared Euclidean distance among error events in the unpinned

equalizer trellis for a given channel response can be determined by an appli-

cation of transfer-function techniques. The quantity of interest here is the

smallest possible minimum squared Euclidean distance among all L-path chan-
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nels, however, and the corresponding channel is referred to as the worst-case

channel of L paths.

The squared Euclidean distance and the impulse response of the worst-

case L-path channel is determined by considering the ternary error sequence

defining each error event and finding the minimum eigenvalue and the cor-

responding eigenvector of an associated positive-definite, symmetric, Toeplitz

matrix [14,15]. The number of distinct error sequences can be quite large for

dwell-interval lengths of practical interest, but a breadth-first tree search with

appropriate pruning rules can be used to substantially reduce the number of

error sequences that must be considered [16]. The minimum squared Euclidean

distance is equal to four for each channel for which L = 1 or L = 2. The

worst-case minimum squared Euclidean distance is less than four if L ≥ 3, how-

ever, resulting in a corresponding asymptotic loss in the performance of MLSE

equalization [14]. Moreover, the worst-case minimum squared Euclidean dis-

tance is a decreasing function of L. (Note that the values cited in [14] for

worst-case distances are incorrect and too large for L = 7 through L = 10 .

The correct worst-case distance for L = 7 is given in [16], and tighter upper

bounds for L = 8 through L = 10 are given at the end of this section.)

Now suppose that state pinning results in an equalizer trellis in which

the polarity of the kth channel symbol is unknown but the polarities of the

L1 immediately preceding channel symbols and L2 immediately succeeding

channel symbols are known a priori. For a given channel impulse response

and given values of L1 and L2, the minimum squared Euclidean distance among

error events that result in erroneous detection of the channel symbol depends

in general on the position of the channel symbol within the dwell interval

(and thus within the trellis of the dwell interval’s equalizer). However, it is

no less than the minimum squared Euclidean distance for a channel symbol

in a trellis of infinite length. We assume an infinite-length trellis in the rest
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of this section and thus ignore beneficial “end effects” for symbols near the

beginning or end of a dwell interval. Thus the worst-case minimum squared

Euclidean distance among error events that result in erroneous detection of

the kth channel symbol does not depend on k. It is denoted by d2
min(L1, L2),

and it is referred to as the worst-case effective minimum squared Euclidean

distance with respect to a channel symbol with L1 preceding known symbols

and L2 succeeding known symbols. Clearly, it is a non-decreasing function of

both L1 and L2, and it is at least as great as the worst-case distance without

state pinning (i.e., d2
min(0, 0)).

Several general results concerning d2
min(L1, L2) can be proven. Let b and

b̃ denote the vectors of transmitted channel symbols that determine two paths

through the equalizer trellis such that the two paths form an error event in the

trellis. Specifically, let b and b̃ correspond to different decisions regarding the

kth channel symbol (i.e., b̃k = −bk). Let x and x̃ denote the corresponding

vectors of expected received symbols, with respective elements

xk =
L−1
∑

i=0

hi (−1)bk−i and x̃k =
L−1
∑

i=0

hi (−1)b̃k−i for each k.

If the error event begins at time q (i.e., it begins with the qth channel symbol)

and spans p time steps, the squared Euclidean distance for the error event is

d2(x, x̃) =

q+p−1
∑

i=q

|xk − x̃k|2.

If the L1 channel symbols preceding the kth channel symbol are known a

priori, their polarities are denoted by (b̂k−L1, · · · , b̂k−1). If the L2 channel

symbols preceding the k channel symbol are known a priori, their polarities

are denoted by (b̂k+1, · · · , b̂k+L2).

If at least L−1 consecutive states are pinned on each side of the unknown

channel symbol, then it is easily shown that the worst-case effective minimum

squared Euclidean distance with respect to the channel symbol is equal to four.
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Thus there is no asymptotic loss in MLSE equalization relative to detection in

a single-path channel for that channel symbol.

Theorem 1 If L1 ≥ L − 1, the state-pinned trellis contains only one state at

time k.

Proof: The state at time k is determined by the L−1 most recent channel

symbols. Thus exactly one state at time k satisfies the constraints.

Theorem 2 If L1 ≥ L − 1 and L2 ≥ L − 1, there is only one error event

that can result in erroneous detection of the unknown channel symbol, and the

squared Euclidean distance is equal to four. Thus d2
min(L1, L2) = 4.

Proof: From Theorem 1, an error event affecting the kth channel symbol

must begin at time step k. Clearly, the two paths that determine the error

event must differ in the kth channel symbol.

Since L2 ≥ L− 1, the error event must terminate at time step k + L with

b = (bk, b̂k+1, · · · , b̂k+L−1) and b̃ = (−bk, b̂k+1, · · · , b̂k+L−1).

The error event is thus determined uniquely, and consequently

d2
min(L1, L2) = d2(x, x̃) =

L−1
∑

i=0

|hi−(−hi)|2 = 4.

If instead L1 = L − 2 and L2 ≥ L − 2, or vice-versa, the number of

error events that result in erroneous detection of the unknown channel symbol

is greater than one. The squared Euclidean distance for each of the error

events is greater than or equal to four, however. Thus for an arbitrary L-path

channel, knowledge of the polarities of the L−2 channel symbols preceding and

succeeding each unknown channel symbol in the equalizer trellis is sufficient to

recover the loss in minimum distance resulting from intersymbol interference.
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Theorem 3 If L1 ≥ L − 2 and L2 ≥ L − 2, erroneous detection of the

unknown channel symbol must result from an error event for which the squared

Euclidean distance is at least four. For at least one such error event, the

squared Euclidean distance is equal to four. Thus d2
min(L1, L2) = 4.

Proof: Using the notation defined above,

|xq − x̃q|2 = |2 h0|2 = 4|h0|2,

|xk+j − x̃k+j|2 = |2 hj|2 = 4|hj|2 for 1 ≤ j ≤ L − 2,

and

|xq+p−1 − x̃q+p−1|2 = |2 hL−1|2 = 4|hL−1|2.

Since p ≥ (k − q) + L,

d2(x, x̃) ≥
L−1
∑

i=0

4|hi|2 = 4.

Moreover, for the error event considered in Theorem 2, d2(x, x̃) = 4.

Thus d2
min(L1, L2) = 4.

If L1 < L − 2 or L2 < L − 2, no general result concerning the worst-

case effective minimum distance can be readily obtained for an arbitrary L-

path channel. Instead we adopt the technique of [14], restricting attention

to error sequences that satisfy the constraints imposed by the known channel-

symbol polarities. The technique could be employed in the context of the tree-

search approach of [16]. The constraints of state pinning invalidate some of

the pruning rules of [16], however, and the exclusion of those rules can result in

much larger stopping times for the search. Instead, we employ the heuristic of

considering only error sequences of length no greater than 5L. This approach

does not guarantee the discovery of the true worst-case distance for given values

of L1 and L2. In practice, however, the worst-case error sequences found in
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each search are much shorter than 5L, which provides some confidence that

they are in fact true worst-case sequences. The following theorems ensure

that this approach need only be applied for (L−2)(L−1)
2

− 1 combinations of L1

and L2 (excluding L1 = L2 = 0) in order to determine the worst-case effective

minimum distance for all values of L1 and L2.

Theorem 4 For a given L2, the value of d2
min(L1, L2) is the same for all L1 ≥

L − 2.

Proof: Suppose first that L1 = L − 2, and consider an error event that

begins at time q < k. Of necessity, q < k − (L − 2) so that

b = (bq, bq+1, · · · , bk−(L−1)b̂k−(L−2), · · · , b̂k−1, bk, bk+1, · · · , bq+p)

and

b̃ = (−bq, b̃q+1, · · · , b̃k−(L−1)b̂k−(L−2), · · · , b̂k−1,−bk, b̃k+1, · · · , b̃q+p).

Then

b
′

= (bk, bk+1, · · · , bq+p)

and

b̃
′

= (−bk, b̃k+1, · · · , b̃q+p)

correspond to different decisions regarding the polarity of the kth channel

symbol and form another error event that satisfies the state-pinning con-

straints. Furthermore,

d2(x
′

, x̃
′

) ≤ d2(x, x̃).

Thus d2
min(L1, L2) is determined by an error event of the form of b

′

and b̃
′

.

Moreover, each such error event also satisfies the state-pinning constraints for

any L1 > L − 2. Thus d2
min(L1, L2) is the same for all L1 ≥ L − 2.
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Theorem 5 For each pair of non-negative integers m and n, d2
min(m, n) =

d2
min(n, m).

Proof: The proof follows the “reversed error sequence” result of [16,

Section III.C] with the additional consideration of state-pinning constraints.

Suppose L1 = n and L2 = m. Furthermore, suppose that

b = (bq, · · · , bk−1, bk, bk+1, · · · , bq+p)

and

b̃ = (b̃q, · · · , b̃k−1,−bk, b̃k+1, · · · , b̃q+p)

form an error event that satisfies the state-pinning constraints.

Consider the error event formed by

b
′

= (b
′

2k−q−p, · · · , b
′

k−1, b
′

k, b
′

k+1, · · · , b
′

2k−q) = (bq+p, · · · , bk+1, bk, bk−1, · · · , bq)

and

b̃
′

= (b̃
′

2k−q−p, · · · , b̃
′

k−1, b̃
′

k, b̃
′

k+1, · · · , b̃
′

2k−q) = (b̃q+p, · · · , b̃k+1,−bk, b̃k−1, · · · , b̃q).

The latter error event satisfies some state-pinning constraints with L1 = n and

L2 = m, and the two paths result in different decisions for the kth channel

symbol. Moreover, the value of d2(x, x̃) that results if the channel’s impulse

response is {h0, · · · , hL−1} is equal to the value of d2(x
′

, x̃
′

) that results if the

channel’s impulse response is {hL−1, · · · , h0}. The relationship is reciprocal.

Thus

d2
min(m, n) = d2

min(n, m).

Theorem 6 For any l, d2
min(0, l) = d2

min(l, 0) = d2
min(0, 0).
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Proof: With L2 = 0, there is always a minimum-distance error event

that begins with the kth channel symbol. Thus d2
min(l, 0) = d2

min(0, 0) for any

l. (See the proof of Theorem 4 above.) By Theorem 5, d2
min(0, l) = d2

min(l, 0)

for any l.

The method is illustrated by considering the collection of all three-path

channels (L = 3) and determining the worst-case effective minimum squared

Euclidean distance for each combination of L1 and L2. The reduction in

the worst-case minimum squared Euclidean distance relative to a single-path

channel is expressed in decibels. That is, it is given as 10 log10[d
2
min(L1, L2)/4].

The results for three-path channels are shown in Table 4.2. For this table and

the others shown here, the last value in each column is unchanged if the column

is extended downward. Similarly, the last value in each row is unchanged if

the row is extended to the right.

L1\L2 0 1
0 -2.3 dB -2.3 dB
1 -2.3 dB 0 dB

Table 4.2 Worst-case asymptotic loss due to ISI with a three-path channel.

Similar results are shown in Table 4.3 for the collection of four-path chan-

nels and in Table 4.4 for the collection of five-path channels. For four-path

channels, the worst-case asymptotic loss is reduced by 1.5 dB if the polarities

of only one preceding and one succeeding channel symbol are known prior to

equalization for each unknown channel symbol. More than 3 dB of the 4.2

dB worst-case asymptotic loss is recovered if the polarity of either the second

preceding or second succeeding channel symbol is also known a priori for each

unknown channel symbol. For five-path channels, more than 4.8 dB of the
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5.7 dB worst-case asymptotic loss is recovered if the polarities of the two pre-

ceding and two succeeding channel symbols are known prior to equalization

for each unknown channel symbol.

L1\L2 0 1 2
0 -4.2 dB -4.2 dB -4.2 dB
1 -4.2 dB -2.7 dB -1.1 dB
2 -4.2 dB -1.1 dB 0 dB

Table 4.3 Worst-case asymptotic loss due to ISI with a four-path channel.

L1\L2 0 1 2 3
0 -5.7 dB -5.7 dB -5.7 dB -5.7 dB
1 -5.7 dB -3.5 dB -2.3dB -2.3 dB
2 -5.7 dB -2.3 dB -0.86 dB -0.86 dB
3 -5.7 dB -2.3 dB -0.86 dB 0 dB

Table 4.4 Worst-case asymptotic loss due to ISI with a five-path channel.

Similar results can be obtained for a collection of channels with higher

values of L and in each case the asymptotic performance loss due to ISI

decreases as L1 or L2 increases. For the special case in which no states are

pinned (L1 = L2 = 0), the asymptotic performance loss due to ISI is given

for L = 3 through L = 10 in [14]. The results are incorrect for L = 7

through L = 10, where it is claimed that the error sequence polynomial

e(D) = 1 + D results in the worst case minimum distance for these channel

lengths. The correct normalized worst-case minimum distance for L = 7 is

0.1307, as shown in [16], resulting in a worst-case asymptotic loss of 8.84 dB

due to ISI. The erroneous minimum distance of 0.152 is reported in [14]. An

error sequence polynomial that results in this worst case minimum distance is
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e(D) = 1 − D − D2 + D3 + D4 − D5. For L = 8 through L = 10, the same

error sequence polynomial results in upper bounds of 0.0701, 0.0478 and 0.0340

respectively, for the worst-case minimum distance. These correspond to lower

bounds of 11.54 dB, 13.24 dB and 14.6 dB respectively, on the worst-case

asymptotic loss due to ISI. The corresponding (erroneous) minimum distances

reported in [14] are 0.1202, 0.0977 and 0.0812 respectively.

4.3 Measures of System Performance

Two factors determine the value of a digital communication technique

in most applications: the error probability that is achieved, and the cost in

computation and delay at the receiver. The most useful measure of link error

probability in a packet radio network is the probability of failed or erroneous

reception of a packet. The bounded-distance EE decoding considered in this

paper results in a probability of undetected decoding error that is much lower

than the probability of detected decoding failure if a reasonable limit is placed

on the maximum number of code-symbol erasures for any code word. (Addi-

tional protection against undetected errors in the packet can be provided by

using a cyclic redundancy-check (CRC) code as an outer code [52]). Thus the

link performance measure we employ is the probability that detection of the

packet is terminated while at least one code word has not been successfully

decoded. In the rest of the dissertation this measure is referred to simply as

the probability of packet error. In particular, for each example in this chapter

the link performance is characterized in terms of the signal-to-noise ratio that

is required to achieved a specified probability of packet error.

Each packet-level iteration results in a (restricted) execution of the equal-

ization algorithm for each dwell interval and an additional EE decoding attempt

for some of the code words in the packet. Thus packet-level iteration results in

increased detection complexity as well as variation in the detection complexity
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from packet to packet. For a given packet, in each iteration the number of

operations executed by the MLSE equalizer in a dwell interval depends on the

number of bits that are pinned in the iteration and the location of the pinned

bits within the dwell interval.

In general, the proportionate savings in additions, compare-select opera-

tions, and memory writes due to state pinning can be either smaller or greater

than the fraction of bits that are pinned in the iteration. But for one straight-

forward implementation, the overall equalizer complexity is approximately pro-

portional to the fraction of bits that are not pinned in the iteration (which is

in turn proportional to the fraction of code words not successfully decoded in

previous iterations). Moreover, the number of EE decoding attempts in an

iteration is exactly proportional to the fraction of code words that were not

successfully decoded in the previous iterations.

Thus the total number of EE decoding attempts for a packet is a suit-

able proxy for the overall complexity of detecting the packet in the receiver.

Moreover, if equalization for individual dwell intervals and EE decoding of

individual code words in a packet are performed sequentially, the complexity

is proportional to the delay incurred in packet detection. The number of EE

decoding attempts per code word for a packet is therefore used as the measure

of the detection complexity for the packet in the remainder of the discussion.

The average detection complexity is thus given by the average number of EE

decoding attempts per code word. Note that systems A and H (which use one-

shot equalization and decoding) employ exactly one EE decoding attempt per

code word, and thus each has a detection complexity of one for every packet.

In contrast, the detection complexity of each system using packet-level itera-

tion can be greater than one.
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4.4 Performance of the SFH Systems

In this section we evaluate the performance of each of the system designs

described in Section 4.1. Recall that the system that uses one-shot MLSE

equalization and bounded-distance EE decoding is denoted system A. The

system that uses packet-level iterative equalization and decoding without bit

interleaving is denoted system B. The modifications of system B that include

regular bit interleaving, pseudo-random bit, odd-even-swap, distance-swap

interleaving within each dwell interval are denoted systems C, D, E and F,

respectively. The system where the encoded binary contents of the entire

packet are interleaved prior to transmission using an s-random interleaver is

denoted system G. The replacement of rectangular block code-symbol inter-

leaving with diagonal block code-symbol interleaving in systems A and B

results in systems H and I, respectively.

In each of the examples, we consider a packet consisting of twelve (n,k)

extended R-S codewords. Each dwell interval contains a preamble sequence

of 26 bits. (The preamble sequence used in the examples is

(11101111000100101110111100), which corresponds to one of the “midamble”

training sequences specified in the GSM cellular standard.) There are twelve

code symbols in each dwell interval and an extra bit of parity is added to each

code symbol. Except where otherwise noted, the value of n is 32 and the value

of k is 16. Thus there are 98 binary channel symbols in each dwell interval

(including the preamble sequence) and 960 bits of information in each packet.

The guard interval at the end of each dwell is four times the channel-symbol

duration. The SFH packet transmission takes place over 32 dwell intervals,

except where otherwise noted, and the carrier frequency for the transmission

hops over 440 available frequency slots.
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4.4.1 Comparison of Performance of the SFH Systems

The performance of SFH systems A through G is shown for a two-path

static channel in Figure 4.6. The two paths have equal strengths, and their

path delays are 0 and T . For a probability of packet error of 0.01, the system

with packet-level iteration that does not employ bit interleaving (system B)

results in a performance improvement of 0.4 dB over the system with one-shot

equalization and decoding (system A). The system with regular bit interleaving

(system C) provides a performance improvement of 1.15 dB over system A,

and the system with pseudo-random bit interleaving (system D) results in a

performance improvement of 1.45 dB over system A. The system with odd-even

swap interleaving (system E) and the system with distance-swap interleaving

(system F) result in a performance that is the same as the performance of

system D. The system using s-random packet interleaving (system G) provides

an improvement in performance of 1.25 dB over system A.

System A requires one EE decoding attempt per code word, as noted in the

previous section. In contrast, the detection complexity of each system using

packet-level iteration is greater than one. This is illustrated by considering

the performance with the two-path channel that is shown in Figure 4.6. For a

probability of packet error of 0.01, the average detection complexity of system

B increases from one EE decoding attempt to 1.0047 EE decoding attempt per

R-S code word in a packet. At the same probability of packet error, system C

has an average detection complexity of 1.4 EE decoding attempts and system

D has an average detection complexity of 1.43 EE decoding attempts per code

word. The average detection complexities for system E, F and G are 1.44,

1.42 and 1.29 EE decoding attempts per R-S code word, respectively.

The performance of SFH systems A, B, C and D is shown in Figure 4.7 for

a static channel with three equal-strength paths. The delays of the three paths

are 0, T , and 2T . The performance of one-shot equalization and decoding
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(system A) for a single-path static channel is also shown for comparison. The

effect of intersymbol interference on system performance can be seen by com-

paring the performance of system A with the single-path channel and its perfor-

mance with the three-path channel. For a probability of packet error of 0.01,

the performance of system A is 3.25 dB poorer with the three-path channel

than with the AWGN channel.

The poorer performance of system A in intersymbol interference is consis-

tent with an examination of the factors affecting system performance. Specif-

ically, the asymptotic (high signal-to-noise ratio) performance with the three-

path channel considered here is 1.76 dB poorer than the performance in an

AWGN channel if the performance measure is the probability of a first error

event in MLSE equalization [9]. The error events that are dominant at high

signal-to-noise ratio (those at a minimum Euclidean distance for each channel)

have a more detrimental effect on packet detection with the three-path channel

than with the AWGN channel. If the channel has a single path, each such

error event results in a single channel-symbol error which results in the erasure

of a single R-S code word with a high probability. In contrast, each minimum-

distance error event for the three-path channel results in two channel-symbol

errors. This in turn results in either one undetected code-symbol error or the

erasure of two code symbols from different code words in the packet with a

high probability. Moreover, the effect of error events at distances greater than

the minimum distance is significant at the error probability of interest, and

these have a more detrimental effect for the three-path channel than for the

single-path channel. Finally, the accuracy of the per-dwell channel estimation

(equalizer training) is poorer for the three-path channel than for a single-path

channel.

The performance with the three-path channel is shown in Figure 4.7

for three of the SFH systems that use packet-level iterative equalization and
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decoding. For a probability of packet error of 0.01, system B results in per-

formance that is 0.6 dB better than the performance of system A. System C

provides a performance improvement of 1.4 dB over system A, and the system

D results in a performance improvement of 1.5 dB over system A. In Figure 4.8,

the performance of system D and the other three SFH systems employing per-

dwell bit interleaving and packet-level iteration is shown for the same three-

path static channel. System E provides a performance improvement of 1.6

dB over system A and system F results in performance improvement of 1.48

dB over system A. The system using s-random packet interleaving (system

G) provides an improvement in performance of 1.53 dB over system A. Thus

for this channel the use of bit interleaving and packet-level iteration recovers

about half of the performance loss that intersymbol interference causes in the

system with one-shot equalization and decoding.

For a probability of packet error of 0.01, system B has an average detection

complexity of 1.0071 EE decoding attempts per code word with the three-path

static channel, and system C has an average detection complexity of 1.5123

decoding attempts per code word. For the same probability of packet error,

system D has an average detection complexity of 1.594 decoding attempts per

code word. The corresponding values for system E, system F and system G

are 1.63, 1.61 and 1.59 EE decoding attempts per code word, respectively.

Thus for the three-path static channel considered in the example, the 1.6 dB

performance improvement provided by system E is achieved at the cost of

an increase in the average detection complexity of approximately 60%. Thus

packet-level iterative detection combined with bit interleaving results in signif-

icant performance gains at the cost of only a moderate increase in the average

detection complexity over one-shot equalization and coding for this channel.

The probability of packet error for the SFH systems is shown in Figure 4.9

for a four-path static channel. The four paths have equal strength, and their
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delays are 0, T , 2T and 3T . For a probability of packet error of 0.01, System B

results in a performance improvement of 0.4 dB over system A, and it increases

the average detection complexity from one EE decoding attempt to 1.0041 EE

decoding attempt per R-S code word in a packet. System C results in a per-

formance improvement of 1.55 dB over system A at the cost of an average of

1.528 decoding attempts per code word. System D provides an improvement

of 1.6 dB over system A with an average detection complexity of 1.5648 EE

decoding attempts per code word. System E results in an improvement in

performance of 1.7 dB over system A at the cost of an average detection com-

plexity of 1.6 EE decoding attempts per code word. System F and system G

both provide a improvement of 1.6 dB at a cost in complexity of an average of

1.576 and 1.55 EE decoding attempts per code word, respectively. Thus for

the two-path, three-path and four-path static channels, the packet-level itera-

tion with bit interleaving results in significant performance improvement over

either one-shot detection or packet-level iterations with no bit interleaving, and

the penalty in the average detection complexity is modest. System E, which

uses odd-even bit interleaving, provides the best performance among all the

bit interleaving methods for the static multipath channels, though the differ-

ences in performance and average complexity among systems C through G are

small. Each bit-interleaving format is beneficial in a system with packet-level

iteration, and thus systems C through G all result in much better performance

than system B.

The tradeoff between performance and complexity favors the systems

using packet-level iteration even more decidedly if performance with Rayleigh-

fading multipath channels is considered. The average probability of packet

error for a given system is determined largely by the receiver’s detection out-

comes for packets transmitted when the channel is subjected to deep fading,
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and the different systems can result in very different performance for such chan-

nels. The receiver in each system is able to successfully detect most packets

transmitted when the channel is not subjected to deep fading, however, and

most packets are detected in one iteration in this instance. Since the latter

channel conditions occur with a high probability, the different systems can

exhibit substantially differences in the average probability of packet error with

only a small difference in the average detection complexity with fading chan-

nels.

This is illustrated by considering the performance of systems A through

F, which is shown in Figure 4.10 for a Rayleigh-fading channel that consists

of two paths with equal average power. The path delays are 0 and T , and

the normalized Doppler spread of the channel is given by DT = 1.5 × 10−4.

For a probability of packet error of 0.01, System B results in a performance

improvement of 0.3 dB over system A at the cost of an average of 1.007 EE

decoding attempts per R-S code word. System C provides a gain of 1.05

dB over system A, and the average number of EE decoding attempts per

code word increases to 1.008. System D, System E and System F result in a

performance gain of 1.2 dB over system A with an average detection complexity

of 1.009 decoding attempts per code word. System G (not shown in the figure)

provides performance which is comparable to the performance of systems D,

E and F with a comparable average detection complexity.

The performance of systems A, B, C and D is shown in Figure 4.11 for

a three-path Rayleigh-fading channel with equal average power in the paths.

The performance of systems D, E, F and G for the same channel is shown in

Figure 4.12. The delays for the three paths are 0, T and 2T , and the nor-

malized Doppler spread of the channel is given by DT = 1.5 × 10−4. For a

probability of packet error of 0.01, system B results in a performance improve-

ment of 0.7 dB over system A at the cost of an average of 1.0039 EE decoding
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attempts per code word. For the same probability of packet error, system C

results in a performance improvement of 1.6 dB over system A with an average

detection complexity of 1.011 EE decoding attempts per code word. System D

results in a performance improvement of 1.6 dB over system A with an average

detection complexity of 1.010 EE decoding attempts per R-S code word. Sys-

tems E and F also result in a performance improvement of 1.6 dB over system

A for a probability of packet error of 0.01, but system G results in a perfor-

mance improvement of only about 1 dB. The performance gains of system E

and system F are achieved at an average cost of 1.010 EE decoding attempts

per code word, while system G has an average detection complexity of 1.008

EE decoding attempts per code word. Thus, for this channel restricting the

bit interleaving to within each dwell interval yields better performance than

applying a s-random interleaver to the contents of the entire packet.

In Figure 4.13, the probability of packet error is illustrated for systems

A through G with a Rayleigh-fading channel that consists of four paths with

equal average power. The path delays are 0, T , 2T and 3T , and the normal-

ized Doppler spread of the channel is given by DT = 1.5 × 10−4. System B

results in a performance improvement of 0.17 dB over system A at the cost of

an average of 1.0009 EE decoding attempts per R-S code word for a probability

of packet error of 0.01. System C provides a gain of 1.8 dB over system A,

and the average number of EE decoding attempts per code word increases to

1.0052. Systems D, E and F each result in a performance gain of 2.7 dB over

system A with an average detection complexity of 1.014 decoding attempts per

code word. System G provides a gain in performance of 2.1 dB over system

A at an average cost of 1.010 EE decoding attempts per R-S code word.

From these examples it is seen that if the multipath channel exhibits

Rayleigh fading, packet-level iteration with per-dwell bit interleaving yields

performance gains over one-shot equalization and decoding and packet-level
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iteration without bit interleaving is similar to the gains obtained for static

multipath channels of comparable delay spreads. The increase in the average

detection complexity compared with either one-shot equalization and coding

or packet-level iteration without bit interleaving is much less than for the static

channels, however. In contrast with the results for static channels, the use of

bit interleaving across dwell intervals results in somewhat poorer performance

than the use of per-dwell bit interleaving for Rayleigh-fading channels with a

large delay spread.

The effect of using diagonal code-symbol interleaving is illustrated by

considering the performance of systems H and I in several multipath channels.

The performance of systems A, B, H and I is shown in Figure 4.14 for the

equal-strength, three-path static channel considered above. (Recall that sys-

tems H and I are modifications of systems A and B, respectively, with diagonal

code-symbol interleaving replacing rectangular code-symbol interleaving.) As

shown in Figure 4.14, systems A and H result in identical performance and

systems B and I result in identical performance. The performance improve-

ment of system I over system H is obtained with an increase of 1% in the

average detection complexity, which is comparable to the complexity increase

of system B over system A.

The performance of systems A, B, H and I is shown in Figure 4.15 for

the three-path Rayleigh fading channel considered above. For a probability

of packet error of 0.01, system H results in a performance improvement of

0.5 dB over system A and system I results in a performance improvement of

0.9 dB over system B. The average detection complexity for system I is 1.002

EE decoding attempts per code word, which is slightly less than the average

detection complexity of 1.0039 EE decoding attempts for system B.

The better performance of systems H and I compared with systems A and

B, respectively, in the Rayleigh-fading channel is a result of the variation in the
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channel’s impulse response over the duration of a dwell interval. The channel

coefficients determined during the training stage have a decreasing accuracy

as the end of each dwell interval is approached, and consequently the channel

symbols are detected with a higher probability of error in the latter part of

each dwell interval. If a code symbol is represented by bits in the latter part of

a dwell interval, it is subjected to a correspondingly high probability of error

or erasure. Diagonal code-symbol interleaving provides a form of diversity

protection against the time-varying channel response that results in a lower

average probability of code-word error among the code words in the packet.

(No corresponding diversity gain occurs with a static multipath channels since

it’s impulse response does not vary with time.)

The diversity protection provided by diagonal interleaving is also illus-

trated by considering the performance of systems A, B, H and I for the

four-path Rayleigh-fading channel considered above, as shown in Figure 4.16.

The use of system H results in a performance improvement of 1.6 dB over

system A and system I results in a performance improvement of 1.8 dB over

system B at a probability of packet error of 0.01. The average detection

complexity of system I is 1.0034 decoding attempts which is slightly greater

than the complexity of 1.0009 decoding attempts for system B. Similar perfor-

mance improvements and relative detection complexities are observed for the

two-path Rayleigh-fading channel considered above. Thus the performance

gains due to the diversity protection of diagonal code-symbol interleaving are

obtained at essentially no cost in the average detection complexity.

The results for the static and fading channels demonstrate that the use

of per-dwell pseudo-random bit interleaving in conjunction with packet-level

iteration (such as used in systems D, E and F) results in performance that is

consistently comparable to or better than the performance of any of the other

systems considered. The cost of the performance gain is a modest increase
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of a few percent to a few tens of percent in the average detection complexity

compared with the other systems. The performance of systems D, E and F is

much better than the performance of system B, system C or system H for all

channels considered. It is also several tenths of a dB better than the perfor-

mance of system C (with regular interleaving) for the static channels and for

the Rayleigh-fading channel with the largest delay spread. The performance

of systems D, E, and F is also somewhat better than the performance of system

G for the fading channels, and it is much better than the performance of system

I for the static channels.

The benefit of per-dwell pseudo-random bit interleaving in a SFH system

with packet-level iteration is even more pronounced if the channel exhibits

rapid fading. This is illustrated in Figure 4.17 in which the performance of

systems B, C and D is shown for another three-path Rayleigh-fading channel

with equal average power in the paths. The delays for the three paths are

again 0, T and 2T . The normalized Doppler spread of the channel is given by

DT = 6× 10−4, however, so that the rate of variation in the channel’s impulse

response is four times as great as in the fading channels considered previously.

The impulse response varies significantly within the span of a dwell interval,

which results in an error floor at probability of packet error of 0.03 for system

B.

The introduction of per-dwell bit interleaving produces a marked reduc-

tion in the error floor. For the system with regular bit interleaving (system

C), the error floor occurs at a probability of packet error of less than 10−3.

At a packet error probability of 10−2, system C has an average detection com-

plexity of 1.0125 EE decoding attempts per code word. If pseudo-random bit

interleaving is used instead (system D), the error floor is reduced further. For

a packet error probability of 10−2, system D has a performance improvement

of 2.2 dB over system C at an average cost of 1.019 EE decoding attempts per
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code word. Systems E and F also achieve the same performance as system D

with the same average detection complexity.

4.4.2 Performance of the SFH Systems with Various R-S Codes

The various SFH systems considered in this chapter exhibit the same rel-

ative performance when considered with R-S codes of different block lengths

or different code rates. The effect of the code’s block length of the perfor-

mance of the various systems is illustrated by considering the performance of

systems A, B, C, and D with a packet format consisting of twelve code words

from a (64, 32) extended R-S code. Each packet contains 2304 bits of infor-

mation, and each code symbol has a parity-encoded binary representation of

seven bits. Hence each dwell interval contains 110 binary channel symbols,

including the preamble sequence of length 26 symbols. There are 64 dwell

intervals in each packet transmission, and there are 390 frequency slots in the

SFH system. Note that the (64, 32) R-S code has the same rate as the (32, 16)

R-S code, though the instantaneous information rate of the packet is slightly

greater with the (64, 32) code when the overhead of the transmission format

is taken into account.

The performance of systems A, B, C and D with the (64, 32) code is shown

in Figure 4.18 for an equal-strength, two-path static channel. The path delays

for the channel are 0 and T . The performance improvement that is obtained

by using packet-level iteration and bit interleaving with the (64, 32) code is

consistent with the performance improvement observed with the (32, 16) code.

For a packet error probability of 0.01, system B results in a performance

improvement of 0.35 dB over system A with an average detection complexity

of 1.009 EE decoding attempts per R-S code word. System C provides an

improvement of 0.6 dB over system A at an average cost of 1.64 EE decoding

attempts per code word. For the same packet error probability, system D
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exhibits a performance improvement of 0.95 dB, but it requires an average of

1.56 EE decoding attempts per code word to achieve this gain in performance.

In Figure 4.19, the performance of the SFH systems with the (64, 32) R-S

code is shown for the two-path, Rayleigh-fading channel with equal average

strength per path. The normalized Doppler spread of the channel is given

by DT = 1.5 × 10−4 and the channel delays are 0 and T . For a proba-

bility of packet error of 0.01, system B results in a performance improve-

ment of 0.4 dB over system A with an average detection complexity of 1.0028

decoding attempts per code word. With system C a performance gain of 0.8

dB is obtained with an increase in the average detection complexity to 1.0097

decoding attempts, and with system D a performance gain of 1.2 dB is obtained

at an average complexity cost of 1.0155 EE decoding attempts per R-S code

word.

The effect of the code rate on the various SFH systems is illustrated

by considering the performance of systems A, B, C, and D with a (32, 20)

extended R-S code and with a (32, 12) extended R-S code. As before, there

are twelve code words in each packet. If the (32, 20) code is used, each packet

consists of 1200 information bits. If instead the (32, 12) code is used, each

packet contains 720 bits of information. The other system parameters are

the same as those considered for the systems with the (32, 16) R-S code. For

both the (32, 12) and (32, 20) codes, the relative performance gain obtained

with packet iteration and each bit interleaving technique is consistent with the

performance gains observed for the (32, 16) code.

In Figure 4.20, the performance for the SFH systems with the (32, 20) R-S

code is shown for the equal-strength, two-path static channel. For a packet

error probability of 0.01, system B results in a performance improvement of

0.35 dB over system A with an average complexity of 1.0038 EE decoding

attempts per R-S code word. System C provides an improvement of 1.15 dB
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over system A at an average cost of 1.34 EE decoding attempts per code

word. For the same packet error probability, system D has a performance

improvement of 1.4 dB, but it requires an average of 1.38 EE decoding attempts

per code word to achieve this gain in performance.

The performance of systems A,B, C and D is shown with the (32, 12) R-S

code for the same two-path static channel in Figure 4.21. At a probability of

packet error of 0.01, System B results in a performance improvement of 0.4

dB over system A at the cost of an average of 1.0045 EE decoding attempts

per R-S code word. System C provides a gain of 1.2 dB over system A, and

the average number of EE decoding attempts per code word increases to 1.39.

System D results in a performance gain of 1.45 dB over system A with an

average detection complexity of 1.42 EE decoding attempts per code word.

Thus for a two-path static channel the performance/complexity tradeoff among

the SFH systems using the various R-S codes considered in this subsection is

consistent with the tradeoff between performance and complexity that was

observed early for systems using the (32, 16) R-S code.

The performance of the SFH systems with a (32, 20) R-S code and with a

(32, 12) R-S code is shown in Figures 4.22 and 4.23, respectively, for the same

Rayleigh-fading channel. For both the code rates, the performance improve-

ment of systems B,C and D over system A is consistent with the perfor-

mance improvement shown with the (32, 16) R-S code. In particular, system

D results in a performance improvement of 2.2 dB over system A in Figure 4.22

at an average cost of 1.008 EE decoding attempts per code words for a prob-

ability of packet error of 0.01. In Figure 4.23, the performance improvement

of system D is 1.3 dB with an increase in the average detection complexity to

1.008 EE decoding attempts per R-S code word for the same probability of

packet error.
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The performance of system D in the two-path static channel is shown in

Figure 4.24 for all four R-S codes considered in this chapter. For this channel,

the system employing the (32, 12) R-S code results in the worst performance.

The performance with the (32, 16) code and the (32, 20) code is better by 0.5

dB and 0.65 dB, respectively, than the performance with the (32, 12) code

for a probability of packet error of 0.01. The performance with the (64, 32)

code is 0.6 dB better than the performance of (32, 12) code for the same packet

error probability. For each code, system D results in a comparable percentage

increase in the average detection complexity over one-shot detection with the

same code. Comparison of the absolute average detection complexities for the

different codes depends on the choice of algebraic decoding algorithm and is

not addressed here.

In Figure 4.25, the performance of system D is shown for the two-path

Rayleigh-fading channel for all four R-S codes. For this channel, the system

employing the (32, 20) R-S code results in the worst performance. The per-

formance with the (32, 16) code and the (32, 12) code is 1.0 dB and 1.7 dB

better, respectively, than the performance with the (32, 20) code for probability

of packet error of 0.01. The system employing the (64, 32) R-S code results

in a performance improvement of 1.9 dB compared with the performance with

the (32, 12) code for the same probability of packet error.

A comparison of the results for the (32, k) R-S codes in Figures 4.24

and 4.25 demonstrates that for the performance measure used here, the best

choice of k depends on the channel. The highest code rate results in the best

performance in the static channel, and the lowest code rate results in the

best performance in the fading channel. Nonetheless, for all channels, code

rates and block lengths, substantial performance improvement is obtained by

employing bit interleaving and packet-level iterative equalization and decoding.
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4.4.3 Performance with an Explicit Constraint on the Detection Complexity

The focus of the performance comparison employed thus far in the chapter

is the average detection complexity of the SFH systems. Systems employing

packet-level iteration, however, exhibit variable detection complexity (and

equivalently, variable detection delay) from packet to packet. Each iteration

for a packet reduces the number of R-S code words that have not yet been

successfully decoded by one or more code words. Thus any of the systems

employing packet-level iteration may perform as many as Ns × (Ns + 1)/2 EE

decoding attempts for a given packet. For the examples that are considered,

Ns = 12. Hence there can be as many as 78 EE decoding attempts for a

given packet. This results in a worst-case detection complexity that is 6.5

times greater than the fixed detection complexity with one-shot equalization

and decoding. The worst-case detection complexity of packet-level iteration

can be reduced if an additional stopping criterion is imposed. Specifically, we

consider an additional criterion that the detection attempt for a given packet

is terminated if the number of EE decoding attempts for the packet exceeds a

predetermined maximum (which is of necessity less than 78 for our examples).

The choice of the maximum allowable number of EE decoding attempts for

a packet provides a trade-off between performance and detection complexity.

The tradeoff is illustrated in Figure 4.26 for the three-path static channel

considered above. The probability of packet error is shown in Figure 4.26 for

systems B and C with no explicit limit on the number of EE decoding attempts

per packet. The probability of packet error is also shown for system C with

limits of 18 and 24 EE decoding attempts for a packet. If the maximum

number of EE decoding attempts for a packet is restricted to 18, the perfor-

mance of system C is degraded by 0.8 dB for a probability of packet error of

0.01 in comparison with its performance if no limit is imposed. The average

detection complexity is reduced from 1.51 to 1.081 EE decoding attempts per
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code word, however, and the worst-case computation for a packet is reduced

more than four-fold from 78 to 18 EE decoding attempts. If the maximum

number of allowable EE decoding attempts per packet is 24, the performance of

system C is 0.4 dB worse than its performance with no limit. But the average

detection complexity is reduced from 1.51 to 1.31 decoding attempts per code

word, and the worst-case computation is reduced more than three-fold from

78 to 24 EE decoding attempts.

The tradeoff between performance and detection complexity with system

D is illustrated in Figure 4.27. The probability of packet is shown for systems

B and D and the four-path Rayleigh-fading channel described above. The

probability of packet error is shown for both systems with no limit in the

number of EE decoding attempts. It is also shown for system D with limits

of 13 and 15 EE decoding attempts for a packet. If the maximum number of

EE decoding attempts for a packet is limited to 15, the performance of system

D is degraded by 0.3 dB in comparison with its performance if there is no limit.

The average detection complexity is reduced from 1.014 to 1.008 EE decoding

attempts per code word. If a limit of 13 EE decoding attempts per packet is

used instead, the average detection complexity of system D is reduced to 1.002

EE decoding attempts per code word and the performance is degraded by 0.7

dB. The imposition of limits of 15 and 13 EE decoding attempts for a packet

result in approximately a five-fold reduction and exactly a six-fold reduction,

respectively, in the worst-case computation for a packet.

In Figure 4.28, the tradeoff between performance and detection com-

plexity is shown for system E for the four-path static channel described above.

The probability of packet error is shown for systems B and E with no limit

on decoding complexity. Also, shown is the performance of system E with

with limits of 18 and 24 on the maximum number of EE decoding attempts

for a packet. If the number of EE decoding attempts is restricted to 18, the
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performance of system E is degraded by 0.7 dB and the average detection

complexity is decreased from 1.6 EE decoding attempts to 1.125 EE decoding

attempts per R-S code word. Imposing a limit of 24 EE decoding attempts

per packet degrades performance by 0.35 dB, but the average detection com-

plexity is reduced to 1.272 EE decoding attempts per R-S code word. The

worst-case computation for a packet is reduced more than four-fold with a

limit of 18 decoding attempts and more than three-fold when a limit of 24

decoding attempts is imposed. Thus, imposing limits on the number of EE

decoding attempts provides a similar trade off between performance and com-

plexity for Systems C, D and E. Thus most of the performance benefits of

bit interleaving and packet-level iteration can be retained while substantially

reducing the worst-case computational burden at the receiver by selection of

an appropriate stopping criterion.
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Figure 4.1 Generic transmitter for the SFH systems in Chapter 4.
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Figure 4.2 General receiver for the SFH systems in Chapter 4.
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Figure 4.3 A two-state equalizer trellis without state pinning.
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Figure 4.4 A two-state equalizer trellis with pinned states.

53



C1,0  C1,1  C1,2  C1,3 C1,4 C1,5   C2,0 C2,1 C2,2  C2,3  C2,4  C2,5      …………………………            CNs,0  CNs,1   CNs,2  CNs,3 CNs,4 CNs,5 

         Code word 1                         Code word 2                                                    Code word Ns 

C1,0 C2,0 C3,0 …CNs,0           C1,1 C2,1  C3,1 …….CNs,1        …. …………………………                  C1,5 C2,5 C3,5 …. CNs,5 

Before interleaver1 

After interleaver1 

Figure 4.5 Regular bit interleaving for a dwell interval.
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Figure 4.6 Probability of packet error with two-path static channel.
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Figure 4.7 Probability of packet error with three-path static channel for
systems A–D.
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Figure 4.8 Probability of packet error with three-path static channel for
systems D–G.
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Figure 4.9 Probability of packet error with four-path static channel.

57



0.001

0.01

0.1

1

8 10 12 14 16 18 20 22

P
ro

b
ab

ili
ty

 o
f 

P
ac

ke
t 

E
rr

o
r

Average signal-to-noise ratio (dB)

System A

System B

System C

System D,E,F

Figure 4.10 Probability of packet error with two-path Rayleigh-fading
channel.
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Figure 4.11 Probability of packet error with three-path Rayleigh-fading
channel for systems A–D.
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Figure 4.12 Probability of packet error with three-path Rayleigh-fading
channel for systems D–G.
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Figure 4.13 Probability of packet error with four-path Rayleigh-fading
channel.
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Figure 4.14 Probability of packet error with three-path static channel for
systems A, B, H and I.
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Figure 4.15 Probability of packet error with three-path Rayleigh fading
channel for systems A, B, H and I.
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Figure 4.16 Probability of packet error with four-path Rayleigh-fading
channel for systems A, B, H and I.
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Figure 4.17 Probability of packet error with three-path Rayleigh-fading
channel and large Doppler spread.
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Figure 4.18 Probability of packet error with two-path static channel and
(64,32) R-S code.

66



0.001

0.01

0.1

1

8 10 12 14 16 18

P
ro

b
ab

ili
ty

 o
f 

P
ac

ke
t 

E
rr

o
r

Average signal-to-noise ratio (dB)

System A

System B

System C

System D

Figure 4.19 Probability of packet error with two-path Rayleigh-fading
channel and (64,32) R-S code.
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Figure 4.20 Probability of packet error with two-path static channel and
(32,20) R-S code.
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Figure 4.21 Probability of packet error with two-path static channel and
(32,12) R-S code.
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Figure 4.22 Probability of packet error with two-path Rayleigh-fading
channel and (32,20) R-S code.
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Figure 4.23 Probability of packet error with two-path Rayleigh-fading
channel and (32,12) R-S code.
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Figure 4.24 Probability of packet error for system D with two-path static
channel and various R-S codes.
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Figure 4.25 Probability of packet error for system D with two-path
Rayleigh-fading channel and various R-S codes.
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Figure 4.26 Probability of packet error with three-path static channel and
limit on decoding delay.
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Figure 4.27 Probability of packet error with four-path Rayleigh-fading
channel and limit on decoding delay.
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Figure 4.28 Probability of packet error with four-path static channel and
limit on decoding delay.
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CHAPTER 5

DIFFERENTIAL ENCODING IN SFH SYSTEMS WITH PACKET-LEVEL

ITERATIVE DETECTION

5.1 Description of the SFH System with Differential Encoding

Each of the SFH systems considered in the previous chapter employs a

transmission format in which the binary content of each row of a block inter-

leaver is transmitted using BPSK modulation. Consequently, the transmitted

binary sequence for a dwell interval exhibits memory only as a result of the

parity constraint on the bits forming the representation of a given R-S code

word. In system D, in particular, rectangular block code-symbol interleaving

is followed by a form of pseudo-random binary interleaving within each row of

the interleaver block.

In this chapter we consider a modification of system D in which the binary

data contents of each row of the interleaver are differentially encoded prior to

transmission using BPSK modulation. (Equivalently, the binary data con-

tents of each row of the interleaver are transmitted using differential BPSK

modulation.) The reference polarity for differential encoding in each row is

determined by the polarity of the last bit of the training sequence in the corre-

sponding dwell interval. The modified system is referred to as system J. The

use of differential encoding in system J introduces additional memory into the

transmitted sequence for each dwell interval.

The transmitter for system J is shown in Figure 5.1. Thus for a packet

transmitted starting at time t = 0, the transmission is given by

s(t) =
√

2P

n−1
∑

i=0

Nt+(m+1)Ns−1
∑

j=0

(−1)di(Nt+(m+1) Ns)+j

×pT (t − (i(Nt + (m + 1) Ns + Ne) + j)T ) cos(j2πfit + φi). (5.1)



The preamble sequence for the ith dwell interval is given by

{di(Nt+(m+1) Ns)+j}, 0 ≤ j ≤ Nt − 1. The differentially encoded binary data

for the ith dwell interval is given by di(Nt+(m+1) Ns)+j = di(Nt+(m+1) Ns)+j−1 ⊕

bi(Nt+(m+1) Ns)+j for Nt ≤ j ≤ Nt + (m + 1)Ns − 1, where bi(Nt+(m+1) Ns)+j is

the jth bit of the ith row of the interleaver block. The rest of the terms in

equation (5.1) are as defined in Chapter 4 for equation (4.1).

The transmission occurs over the multipath, fading channel described in

Chapter 3. The signal-to-noise ratio at the receiver is defined as in equa-

tion (4.2) in Chapter 4. No interference process appears at the receiver for

the results presented in this chapter.

The receiver for system J employs the same technique with system D in

the previous chapter, that is, packet-level iterations of MLSE equalization and

bounded-distance EE. It is thus shown in Figure 4.2 with all of the dashed

boxes included. The labeling of the equalizer trellis for each dwell interval is

modified to account for differential encoding, however. This is illustrated in

Figure 5.2, which shows the structure of a two-state equalizer trellis for a given

dwell interval at the receivers of system D and system J. The vector (h0, h1)

here represents the receiver’s estimate of the channel’s baseband-equivalent

discrete-time impulse response.

In the absence of differential encoding, as in system D, the receiver’s

equalizer trellis for the estimated two-state channel is labeled as shown in

Figure 5.2 (a). The branch label for each state transition has the form bl/x,

where bl is the corresponding polarity of the lth bit (a data bit) in the trans-

mitter’s interleaver block and x is the normalized expected (noise-free) received

sample value for the corresponding polarity bl and channel state. If instead

the differential encoding of system J is used, the equalizer trellis is labeled as

shown in Figure 5.2 (b). Each branch label has the form bl/dl/x, where bl
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and x are as before and dl is corresponding polarity of the lth differentially

encoded bit.

Within each packet-level iteration, detection of the binary contents of each

row of the block interleaver and EE decoding of each R-S code word are per-

formed in a similar manner in the receivers of system D and system J. They

differ only in the binary label sequence (the detected sequence) for a given

survivor path in the dwell interval’s trellis after Viterbi equalization. Equiv-

alently, the two receivers can be viewed as detecting the same channel-symbol

sequence for a given survivor path but with differential decoding subsequently

applied to the hard-decision output in the receiver of system J.

The introduction of differential encoding in system J alters the manner in

which the equalizer uses feedback information in the second and subsequent

packet-level iterations. For each code word that has been decoded successfully

in an earlier iteration, knowledge of the corresponding code symbols determines

the polarities of the bits in the corresponding binary representation of the

code symbols prior to differential encoding. Thus in subsequent iterations, the

equalizer for a given dwell interval restricts the Viterbi algorithm in a manner

that can be expressed as a restriction to a subset of trellis branches at some

time steps. Hence the technique employed in conjunction with differential

encoding is referred to as branch pruning.

Branch pruning in the trellis for a dwell interval is illustrated by con-

sidering the same two-state channel used as an example in chapter 4. The

feedback (b1 = 1, b2 = 0, b4 = 1, b5 = 0), provided from successful decoding

of R-S code words in previous packet-level iterations, results in the pruned

trellis shown in Figure 5.3. This contrasts with the state-pinned trellis in

Figure 4.4 that results from the same feedback in the system without differ-

ential encoding. Thus the effect of a R-S code word decision on the equalizer

trellis in subsequent iterations differs for system D and system J. This is true
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even with a single-path channel, for which the detection trellis still contains

two states in the system with differential encoding. Note that the state pin-

ning used in systems without differential encoding can be viewed as a form

of branch pruning, but the branch pruning used in systems with differential

encoding cannot be described in terms of state pinning.

In this chapter (and in Chapter 6), we examine the effect that per-dwell

differential encoding has on the performance of SFH communications with

packet-level iterative detection by comparing the performance of system J

with the performance of several of the SFH systems introduced in Chapter 4.

The characteristics of each SFH system considered in this chapter are shown

in Table 5.1.

System Code-Symbol Bit Differential Packet-Level
Interleaver Interleaver Encoding Iteration

A rectangular none no no
B rectangular none no yes
D rectangular pseudo-random, no yes

per-dwell
H diagonal none no no
I diagonal none no yes
J rectangular pseudo-random yes yes

per-dwell

Table 5.1 Characteristics of SFH systems considered in Chapter 5.

5.2 Effect of Branch Pruning on Minimum Distance of Equalizer Trellis

The choice of whether or not to use differential encoding in the SFH

system results in a tradeoff between the asymptotic performance of the system

using one-shot detection and the asymptotic performance of the system using

packet-level iteration. This is illustrated by considering the asymptotic per-

formance of systems D and J in a single-path AWGN channel in which the
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receiver is provided with a perfect estimate of the channel in each dwell

interval. The minimum squared Euclidean distance among error events at

the receiver is four in either system, but there are two minimum-distance

error events with respect to bk rather than one in the system with differen-

tial encoding. Thus the asymptotic probability of error in the detection of bk

is twice as great in system J as in system D. Consequently, the asymptotic

probability of packet error is greater for system J than for system D by a mul-

tiplicative factor that approaches 2dRS, where dRS is the minimum distance of

the R-S code. The penalty in decibels that this factor represents approaches

zero asymptotically, as the signal-to-noise ratio approaches infinity for a given

packet size and code rate, however.

For all subsequent packet-level iterations in system D, the minimum squared

Euclidean distance of an error event associated with an unknown bit bk is

equal to four regardless of known polarities that have been fed back for other

data bits in the same dwell interval. In contrast, branch pruning due to feed-

back of known bit polarities in system J alters the Euclidean distances of the

two-state detection trellis for each dwell interval during the subsequent itera-

tion. This is made clear by considering the representative time step shown in

Figure 5.2 (b).

It is apparent that if the branches are pruned to reflect a known bit

polarity, no error event can begin at the starting state of the time step and

no error event can end at the ending state of the time step. Moreover, the

time step must contribute a value of four to the squared Euclidean distance

for any error event that encompasses the time step. Consequently, if a differ-

entially encoded bit bk is unknown but the differentially encoded bits labeling

the immediately preceding L1 and immediately succeeding L2 trellis steps are

provided as feedback, the minimum squared Euclidean distance to an asso-

ciated error event for the unknown bit in the branch-pruned trellis is given
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by

d2
min = (4 + 4 min{L1, L2}). (5.2)

(If it is the first unknown bit position in the dwell interval, then L1 = ∞.)

If most R-S code words in a packet have been decoded successfully in

the previous iterations, the trellis positions of the remaining unknown bits

are usually well separated due to interleaving. Thus a large effective min-

imum distance is achieved for these bits in subsequent sequence detection

using the pruned trellis. The asymptotic performance is dominated by out-

comes in which decoding failure occurs for a single code word in the packet,

in which case the effective minimum squared distance is exactly 4 Ns for

each remaining unknown bit. It can be shown that the introduction of dif-

ferential encoding and packet-level iteration results in an improvement in

performance that approaches 10 log10(Ns) dB as the probability of packet

error approaches zero. Moreover, the detection complexity asymptotically

approaches (Ns +1)/Ns. Consequently for a given joint distribution function

of the samples from the channel, the introduction of differential encoding and

packet-level iteration results in an arbitrarily large asymptotic performance

gain at a vanishingly small asymptotic penalty in detection complexity.

The systems with and without differential encoding also differ in their

equalizer distance properties for the second and subsequent iterations if the

channel has multiple paths. This is illustrated by considering a two-path

equal-strength static channel with h0 = h1 = 1/
√

2, where once again, it is

assumed that the receiver used a perfect estimate of the channel in each dwell

interval. In the system without differential encoding, the effect of a known

bit polarity on the distance spectrum of the equalizer trellis is deterministic.

From Figure 5.2 (a), it is apparent that the two branches that remain after

one of the two states is pinned are at a squared Euclidean distance of two.
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In the system with differential encoding, in contrast, the effect of a known

bit polarity on the distance spectrum depends on the polarity in general, and

hence, it is probabilistic. From Figure 5.2 (b), the two branches that remain

after branch pruning are at a squared Euclidean distance of eight if the known

data bit is a zero for the example two-path channel, but they are at a distance

of zero if the known data bit is a one.

Now consider the general two-path static channel (h0, h1). For an unknown

bit bk in the equalizer trellis, consider the circumstance in which the polar-

ities of the L1 preceding bits and L2 succeeding bits in the dwell interval

have been provided as feedback from an earlier iteration of equalization and

decoding. (Recall that this refers to the polarities of the bits prior to differ-

ential encoding bk rather than the polarities of the channel symbols dk.) In

the following development we assume the bit polarities are independent and

equally likely a priori. We define the random variables

X1 =
k−1
∑

i=k−L1

bi

and

X2 =
k+L2
∑

i=k+1

bi

which are independent. Each has a binomial distribution. I.e.,

Pr(X1 = i) =

(

L1

i

) (

1

2

)L1

(5.3)

and

Pr(X2 = i) =

(

L2

i

) (

1

2

)L2

. (5.4)

Consider the stage of the equalizer trellis illustrated in Figure 5.3. Again,

if an error event results in a detection error for bk, either the error event
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terminates in time step k or it originates in time step k. Let Z1 denote the

minimum squared Euclidean distance among error events terminating in time

step k (within the constraint of the branch pruning in the L1 preceding time

steps). Let Z2 denote the minimum squared Euclidean distance among error

events originating in time step k (within the constraint of the branch pruning

in the L2 succeeding time steps). Then Z1 and Z2 are independent, and

Z1 = 4(|h0|2 + |h1|2) + 4|h0 − h1|2 × X1 + 4|h0 + h1|2 × (L1 − X1)

= 4
[

1 + |h0 + h1|2 × L1

]

+ 4 × X1

[

|h0 − h1|2 − |h0 + h1|2
]

and

Z2 = 4
[

1 + |h0 + h1|2 × L2

]

+ 4 × X2

[

|h0 − h1|2 − |h0 + h1|2
]

.

For the single-path channel this simplifies to

Z1 = 4 [1 + L1]

and

Z2 = 4 [1 + L2] .

Note that for this special case, Z1 and Z2 don’t depend on the polarities of the

known bits. In contrast, for the channel with two equal-strength paths and

baseband-equivalent impulse response (h(D) = 1√
2

+ 1√
2

D),

Z1 = 4 [1 + 2 × L1] − 8 × X1

and

Z2 = 4 [1 + 2 × L2] − 8 × X2.

The first two moments of random variables Z1 and Z2 are given by

E[Z1] = 4 +
(

4|h0 − h1|2 + 4|h0 + h1|2
)

× L1/2,
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E[Z2] = 4 +
(

4|h0 − h1|2 + 4|h0 + h1|2
)

× L2/2,

Var[Z1] = 64L1|h0|2|h1|2

and

Var[Z2] = 64L2|h0|2|h1|2.

The effective minimum squared Euclidean distance for bk is thus a random

variable given by Z = min{Z1, Z2}. Without loss of generality, we can assume

that L1 ≤ L2. From the Chebyshev inequality it follows that

Pr (Z < (1 − η) E[Z1]) ≤ Var[Z1]

η2E[Z1]
2

≤ 16(|h0|2|h1|2)
(|h0 − h1|2 + |h0 + h1|2)2L1η2

,

and thus Pr{Z < (1 − η) E[Z1]} approaches zero as L1 → ∞ for any η >

0. Furthermore, limL1→∞ E[Z1] = ∞. Thus the effective minimum distance

approaches infinity stochastically as min{L1, L2} approaches infinity. This

is in sharp contrast with the SFH system that does not employ differential

encoding, for which the effective minimum distance with any ISI channel never

exceeds the minimum distance achieved for one-shot detection with a single-

path channel. Consequently, if the packet size is large enough and the signal-

to-noise ratio is high enough to ensure that most code words in the packet

are decoded during the first iteration with a high probability, the minimum

distance among error events with respect to most remaining unknown bits

is large in the second and subsequent packet-level iterations of equalization

and decoding. This in turn contributes to a high probability of decoding of

the remaining code words in the later iterations and a correspondingly low

probability of packet detection failure.
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Similar results can be shown for the equalizer of the SFH system employing

differential encoding and packet-level iteration with ISI channels of more than

two paths. Specifically, it can be shown for any L-path channel the effec-

tive minimum distance of error events corresponding to an unknown bit bk

approaches infinity stochastically as the value of min{L1, L2} approaches infinity.

5.3 Evaluation of Performance for SFH System with Differential Encoding

In this section, we evaluate the performance of SFH systems B, D and J

for a variety of static and fading channels. (Recall that the system which uses

packet-level MLSE equalization and bounded-distance EE decoding, but no bit

interleaving and differential encoding is denoted system B. The modification

of system B that include pseudo-random bit interleaving within each dwell

interval is denoted system D. The system which employs pseudo-random bit

interleaving in each dwell interval and differential encoding along with packet-

level iterative detection is denoted system J). The measures of performance

and detection complexity are defined in Section 4.3. In the results in this

section, no limit is placed on the number of EE decoding attempts per packet

(other than the limit inherent in the packet-level iterative technique).

A (32,16) R-S code is considered in each of the examples, except where

otherwise noted. We focus on three packet sizes for use with the (32,16)

code: a small packet consisting of 12 code words, a medium-sized packet con-

sisting of 100 code words and a large packet consisting of 500 code words. (A

packet size of 25 code words is also considered in one example.) For the small

packet size there are 960 information bits per packet. Each dwell interval

contains a preamble sequence of 26 bits. Since there are twelve code sym-

bols in each dwell interval and an extra bit of parity is added to each code

symbol there are 98 binary channel symbols in each dwell interval (including

the preamble sequence). Each medium-sized packet contains 8000 informa-

tion bits and each dwell interval contains a preamble sequence of 217 bits, so
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there are 817 binary channel symbols in each dwell interval. For the large

packet size, there 40, 000 bits of information in each packet. Each dwell

interval contains a preamble sequence of 1085 bits, so that there are 4085

binary channel symbols in each dwell interval. Thus the three packet formats

have the same efficiency. The dwell transmission takes place over 32 dwell

intervals. The carrier frequency for SFH transmission hops over the available

frequency slots in the spectrum according to a random hopping pattern. The

number of available frequency slots is 440.

5.3.1 Performance in an AWGN channel

The performance of systems B, D and J is shown in Figure 5.4 for a single-

path static (AWGN) channel and the small packet size. For a probability of

packet error of 0.01, system J results in a performance improvement of 0.42 dB

over system D and system J results in an improvement of 0.48 dB over system

B. Thus the addition of differential encoding to bit interleaving within a dwell

interval results in a noticeable improvement in the performance of packet-level

iterative detection.

One-shot packet-level detection serves as the benchmark for detection

complexity, since it requires one EE decoding attempt per R-S code word. An

average of 1.002 EE decoding attempts per code word is required to achieve

a probability of packet error of 0.01 in system B for the single-path static

channel. For the same probability of packet error, the detection complexity

of system D is given by an average of 1.0024 EE decoding attempts per code

word. The complexity increases to an average of 1.78 EE decoding attempts

per code word if system J is used instead. Thus the performance improvement

that system J provides over systems B and D is achieved at the cost of an

increase in the detection complexity of approximately 78% compared with the

other two systems.
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The value of differential encoding is exploited only if the receiver uses iter-

ative detection, as is illustrated in Figure 5.5. In the figure, the performance

of systems D and J is shown for the single-path static channel, the small packet

size, and either of two implementations of the corresponding receiver. One

implementation employs packet-level iterative detection with no constraint on

the number of packet-level iterations. The other implementation constrains

the receiver to a single iteration; that is, the receiver employs one-shot detec-

tion.

The performance of system J (using differential encoding) is nearly 1.2

dB poorer than the performance of system D (without differential encoding)

for a probability of packet error of 0.01 if the receivers use one-shot detection.

This is a consequence of the memory introduced by differential encoding and

the consequent increase in the probability bit error after differential decoding.

Packet-level iterative detection is of benefit in system D for this channel only

because of its mitigating effect on the channel-estimation error at the receiver.

Thus the performance of system D with packet-level iterative detection exhibits

an improvement of only 0.2 dB compared with one-shot detection. Packet-

level iteration exploits the memory of differential encoding effectively, however,

and the performance of system J is thus improved by 1.85 dB if packet-level

iterative detection is used in place of one-shot packet-level detection. Conse-

quently, the performance of system J is better than the performance of system

D if packet-level iterative detection is used.

System J achieves a substantial asymptotic performance improvement at

a small asymptotic complexity cost compared with systems not employing

differential encoding for a single-path channel, as is suggested in Figure 5.4.

The performance of system J improves relative to the performance of systems B

and D as the signal-to-noise ratio increases and the cost in detection complexity

decreases as the signal-to-noise ratio increases. For a probability of packet
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error of 0.1, the performance of system J is only 0.27 dB better than the

performance of system B and the average detection complexity of the former

is 2.34 times that of the latter. For a probability of packet error of 0.01,

however, the performance improvement increases to 0.48 dB and the average

detection complexity decreases is only 1.78 times that of system B. System

J provides a performance improvement of 0.68 dB for a probability of packet

error of 0.001, and the average detection complexity is 1.41 times the detection

complexity of system B. The improvement in performance with system J is

0.90 dB and the detection complexity is only 1.33 times that of system B if

the probability of packet error is 10−4.

It is noted in Section 5.2 that for a given packet size, a single-path channel,

and ideal channel estimation, differential encoding and packet-level iteration

provide an asymptotic improvement over the performance of one-shot detec-

tion that increases without bound as the packet size increases. Since the

performance of packet-level iteration without differential encoding is no better

than that of one-shot detection with ideal channel estimation for a single-path

channel, comparable conclusions hold with respect to the asymptotic perfor-

mance of system J versus that of systems B and D. This is supported by

Figure 5.6, in which the performance of systems D and J is shown for the

single-path static channel and the small, medium-sized and large packet sizes.

If ideal channel estimates were employed by the receiver, code-symbol

decisions in system D would be independent for a single-path channel and the

probability packet error would be an increasing function of the packet size.

This occurs in practice even though there are channel-estimation errors, as seen

in Figure 5.6. In contrast, an increase in the packet size increases the number

of known bits that may surround each unknown bit in the trellis after feedback

of detected code words in the system with differential encoding. The resulting

stochastic increase in the effective minimum distance for unknown bits in the
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trellis leads to an asymptotic improvement in the probability of packet error

with increasing packet size for system J. This is observed in practice at error

probabilities of interest, as is also seen in Figure 5.6.

For the small packet and a probability of packet error of 0.01, the perfor-

mance of system J is 0.42 dB better than the performance of system D, but it

increases the detection complexity from an average of 1.0024 EE decoding

attempts per code word to an average of 1.78 EE decoding attempts per

code word. For the medium-sized packet the improvement in performance

of system J over system D is 1.3 dB, and for the large packet the improvement

in performance is 1.65 dB. The detection complexity for system J is 2.94 and

3.744 EE decoding attempts respectively per R-S code word at this packet

error probability. The corresponding complexity for system D is 1.0002 and

1.00004 EE decoding attempts per code word.

5.3.2 Performance in a Multipath Channel

The performance of systems B, D and J in shown in Figure 5.7 for the

small packet size and a two-path static channel. The delays of the two paths

are 0 and T , and the second path has magnitude one-half that of the first

path. (Thus the channel’s impulse response is characterized by the polyno-

mial h(D) = 1+0.5 D.) The figure also illustrates the performance of system

J with the medium-sized packet. Once again, the performance of system J is

superior to the performance of either system B or system D for a probability

of packet error of 0.01. For a probability of packet error of 0.01, system B

requires an average of 1.002 EE decoding attempts per code word. For the

same probability of packet error, system D results in a performance improve-

ment of 0.6 dB over system B at the cost of an average of 1.033 EE decoding

attempts per code word. System J results in a performance improvement of

0.75 dB over system B but requires an average of 1.68 EE decoding attempts
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per code word. For the same probability of packet error, system J with the

medium-sized packet results in a performance improvement of 1.4 dB over

system B with the small packet size, but the improvement is achieved at the

cost of an average of 2.75 EE decoding attempts per code word. It is apparent

from Figure 5.7 that the comparison favors system J more highly if it is based

on a lower probability of packet error, as was observed above for the single-path

channel.

The performance of the SFH systems is shown in Figure 5.8 for a two-

path static channel with equal-strength paths. The path delays are 0 and T .

As observed previously in Chapter 4 for this channel, system D results in a

performance improvement of 1.05 dB over system B for a probability of packet

error of 0.01 and the small packet size. There is a corresponding increase in

the average number of EE decoding attempts per code word from 1.0047 to

1.43. For the same probability of packet error and packet size, system J results

in a performance improvement of 0.8 dB over system B at a cost of an average

of 1.57 EE decoding attempts per code word. Also shown in the figure is the

performance of system J with the medium-sized packet. The performance

of system J with the medium-sized packet results is 1.4 dB better than the

performance of system B with the small packet. The detection complexity

for system J and this packet size is an average of 2.72 decoding attempts per

code word, however. Once again, the comparison is more favorable towards

system J if a probability of packet error of 0.001 is considered.

The performance comparison of SFH systems A, B, D and J is shown in

Figure 5.9 for the three-path static channel that results in the poorest asymp-

totic performance of one-shot MLSE equalization. I.e., it is the three-path

channel that results in the smallest minimum distance among paths in the

equalizer trellis for a given total power in the channel. The impulse response

of the channel is characterized by the polynomial h(D) = 0.5 + (
√

2)−1 D +
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0.5 D2. Once again, the performance of each system is considered for a proba-

bility of packet error of 0.01. System B results in a performance improvement

of 0.7 dB over system A at the cost of an average of 1.016 EE decoding attempts

per code word if both use the small packet size. System D has a detection

complexity of an average of 1.5 EE decoding attempts per code word for the

same packet size, and the performance is 0.7 dB better than that of system B.

System J with the small packet results in a performance improvement of 0.75

dB over system B (and an improvement of 1.4 dB over system A) at the cost

of an average of 1.56 EE decoding attempts per code word. Thus is results

in nearly identical performance to system D with a nearly identical detection

complexity. If instead the medium-sized packet is used with system J, how-

ever, its performance improvement is 1.45 dB better than the performance of

system B with the small packet (and 2.1 dB better system A with the small

packet size) . The cost of this performance gain is an average of 3.05 EE

decoding attempts per R-S code word.

Figure 5.10 illustrates the performance of systems B, D and J with the

small packet size for a static channel consisting of three equal-strength paths

with delays of 0, T and 2T . The performance of system D with the medium-

sized packet is also shown. For a probability of packet error of 0.01, system

D results in a performance improvement of 0.95 dB over system B. System D

requires an average of 1.59 EE decoding attempts per code word at this error

probability, and system B requires an average of 1.007 EE decoding attempts

per code word. For the same probability of packet error, the performance of

system J with the small packet is only 0.4 dB better than the performance of

system B even though its detection complexity is 1.46 EE decoding attempts

per code word. If the medium-sized packet is used in system J, however, its

performance is 1.25 dB better than the performance of system B with the small
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packet. The cost in complexity for system J in this instance is an average of

3.05 EE decoding attempts per code word.

A similar comparison is provided in Figure 5.11 for a four-path static

channel is made The paths have equal strength, and the path delays are 0, T ,

2T and 3T . Use of the small packet with system J results in a performance

improvement of only 0.6 dB over system B with the small packet for a proba-

bility of packet error of 0.01. The complexity is increased from an average of

1.0041 EE decoding attempts per code word for system B to an average of 1.52

decoding attempts per code word for system J. In contrast, system D with the

small packet achieves performance that is 1.15 dB better than system B at

a cost in complexity of an average of 1.56 decoding attempts per code word.

Thus for this channel and the small packet size, system D (without differential

encoding) results in much better performance than system J (with differential

encoding) even though the detection complexity is similar for the two systems.

If instead the medium-sized packet is used in system J, its performance is 1.4

dB better than that of system B with the small packet, though the detection

complexity increases to an average of 2.72 EE decoding attempts per code

word. Thus system J with the medium-sized packet achieves a small perfor-

mance improvement over system D with the small packet, but the former has

a complexity that is 75% greater than the latter.

From these examples it is clear that even though the use of differential

encoding and packet-level iteration provides an asymptotic gain in performance

for any static multipath channel, the gains are realized more readily in a static

channel if the channel does not have a large delay spread. For a channel with

a delay spread of no more than twice the channel-symbol duration, system J

achieves better performance than system D even if a small packet size is used

with system J. Moreover, the cost in increased complexity is small. Large
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improvements in performance can be obtained by increasing the packet size in

system J (up to a point), though at a cost in increased detection complexity.

For a channel with a delay spread on the order of a few times the channel-

symbol duration, system J provides better performance than system D at error

probabilities of practical interest only if the packet size of system J is increased

sufficiently. Even then, the performance gain is only obtained at the cost of a

significant increase in the detection complexity. Furthermore, it is likely that

for channels with a sufficiently large delay spread, system J will not achieve

comparable performance to system D with the small packet size, regardless of

what packet size is used with system J. We have not considered channels with

a delay spread sufficiently large to observe the latter phenomenon, however.

Differential encoding improves the performance of packet-level iterative

detection over a much wider range of channel delay spreads if the channel

exhibits fading. Furthermore, the performance gains are achieved at a small

cost in detection complexity. This illustrated in Figure 5.12, which shows the

performance of systems B, D and J using the small packet size for a Rayleigh-

fading channel that consists of two paths with equal average power. The

path delays are 0 and T , and the normalized Doppler spread of the channel

is 1.5 × 10−4. The performance of system J is superior to both system B

and system D for a probability of packet error of 0.01. System D results in an

improvement in performance of 0.85 dB over system B with a minimal increase

in the detection complexity of an average of 1.007 EE decoding attempts per

code word for system B. System J results in an improvement in performance

of 1.3 dB over system B, with only a 3.6% increase in complexity to an average

of 1.036 EE decoding attempts per code word.

In Figure 5.13, the performance of systems B, D and J is shown for a

three-path Rayleigh-fading channel. The normalized Doppler spread of the

channel is 1.5×10−4, the paths have equal average power, and the path delays
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are 0, T and 2T . For a packet error probability of 0.01, system D and system

J both result in an improvement in performance of 1.0 dB over system B if all

three system use the small packet size. At this probability of packet error,

system B requires an average of 1.003 EE decoding attempts per code word,

whereas system D require and average of 1.010 attempts and system J requires

an average of 1.045 attempts. The performance of system J is improved if

the small packet containing twelve R-S code words is replaced with a packet

of twenty-five R-S code words. (The latter packet includes 2000 information

bits. It has a preamble length of 55 bits, and thus each dwell interval consists

of 205 binary channel symbols including the preamble.) The performance of

system J with a packet size of Ns = 25 results in a performance improvement

of 1.4 dB over system B with a detection complexity of an average of 1.08 EE

decoding attempts per code word.

The performance of the same three systems with the small packet size is

shown in Figure 5.14 for a four-path Rayleigh-fading channel with path delays

at 0, T , 2T , and 3T in Figure 5.14. The paths have equal average power, and

the normalized Doppler spread of the channel is once again 1.5× 10−4. For a

packet error probability of 0.01, system J results in performance that is 3.0 dB

better than the performance of system B. The detection complexity increases

from an average of 1.0009 EE decoding attempts per code word for system

B to an average of 1.064 EE decoding attempts per code word for system J.

For the same packet error probability, the performance of system D is 0.3 dB

poorer than the performance of system J, though it requires an average of only

1.014 EE decoding attempts per code word.

Some multipath channels contain many more propagation paths in pro-

portion to the delay spread of the channel than in the examples we have con-

sidered thus far, and such channels are said to have a “dense” delay spectrum.

In general, the baseband-equivalent channel responses for frequency slots at a
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given frequency separation are less correlated if the channel of a given delay

spread has a dense delay spectrum than if it has a sparse delay spectrum. We

consider one example of a channel with a dense delay spectrum that consists

of 41 paths with path delays space uniformly between 0 to 2T , inclusive, and a

normalized Doppler spread of 1.5×10−4. Each path exhibits Rayleigh fading,

and the paths have equal average power.

The performance of five SFH systems is shown in Figure 5.15 for the small

packet size and the channel with the dense delay spectrum. The five systems

include system A (which uses one-shot detection), system D and system J.

They also include systems I and J, which employ diagonal code-symbol block

interleaving. (Recall that system H uses one-shot detection and system I uses

packet-level iterative detection.) The performance of each system is consid-

ered for a probability of packet error of 0.01. System H results in a perfor-

mance improvement of 0.3 dB over system A, whereas system I results in a

performance improvement of 0.7 dB over system A at the cost of an average

of 1.002 EE decoding attempts per code word. System D results in a perfor-

mance improvement of 1.25 dB over system A, and the detection complexity

increases to an average of 1.0107 decoding attempts per code word. The per-

formance of system J is 1.5 dB better than the performance of system A,

and requires 1.1244 EE decoding attempts per code word on average. Thus

system J achieves 0.25 dB better performance than system D, though at the

cost of an 11% increase in the detection complexity.

The slight performance advantage of system J over system D in the

Rayleigh-fading channels we have considered is preserved if the Doppler spread

of the channel is increased. Moreover, the performance advantage of system J

over system B increase markedly. This is illustrated by considering the three-

path, Rayleigh-fading channel with path delays 0, T and 2T ; equal average

power in the paths; and a normalized Doppler spread of the channel is given
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by DT = 6 × 10−4. (This is the same channel that was considered in the

example accompanied by Figure 4.17 in Chapter 4.)

The performance of systems B, D and J with the small packet size is shown

for this channel in Figure 5.16. As noted in Chapter 4, system B suffers from

an error floor at a probability of packet error of 0.03. In contrast, system

D and J have a much lower error floor. For a probability of packet error of

0.01, system J results in a performance improvement of 0.4 dB over system D,

though the detection complexity is increased from an average of 1.019 to an

average of 1.1012 EE decoding attempts per code word.

5.3.3 Performance of the SFH Systems Employing Differential Encoding with
Various R-S Codes

In this subsection, we consider the effect of the rate and the block length of

the R-S code on the desirability of using differential encoding in a SFH system

with packet-level iterative detection. Two R-S codes of block length 32 are

considered in addition to the (32, 16) code. They are a (32, 12) R-S code and

a (32, 20) R-S code, and both are considered in conjunction with the small

packet size of twelve code words. Thus there are 720 bits of information if

the (32, 12) code is employed and 1200 bits if the (32, 20) R-S code is employed.

The other parameters are the same for the systems using the (32, 16) code with

the small packet size.

The code of larger block length is a (64, 32) R-S code. Both small packets

of twelve code words and medium-sized packets of 100 code words are con-

sidered with the (64, 32) code. Each packet contains 2304 and 19, 200 bits

of information for the small packet and medium-sized packets, respectively.

Each parity-encoded code symbol has a binary representation of seven bits.

Each dwell interval contains 110 binary channel symbols with the small packet,

including a preamble sequence of length 26. For the medium-sized packet,

each dwell interval contains 917 binary channel symbols that include a preamble
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of length 217. There are 64 dwell intervals in each packet transmission, and

there are 390 frequency slots in the SFH system. Note that the (64, 32) R-S

code has the same rate as the (32, 16) R-S code, though the instantaneous

information rate of the packet is slightly greater with the (64, 32) code when

the overhead of the transmission format is taken into account.

The performance of several SFH systems using the (64, 32) code is shown

in Figure 5.17 for a two-path static channel with equal-strength paths at delays

of 0 and T . Systems B, D and J are considered. The results are consistent

with those observed for the systems using the (32, 16) code. In particular,

the packet size has a similar effect on the performance of system J with either

code. For the small packet size and a probability of packet error of 0.01,

the performance of system J is poorer than the performance of system D even

though the two have nearly the same detection complexity. If a medium-sized

packet is used in system J, however, its performance with system J is improved

at the cost of an increase in the detection complexity. With either packet size,

the performance of system J is better relative to the performance of system D

for a lower probability of packet error.

In Figure 5.18, the performance of systems B, D and J with the larger

block-length code and the small packet size is shown for the same two-path

Rayleigh-fading channel considered above. For a probability of packet error of

0.01, the performance with system J is marginally better than the performance

with system D with a small increase in the detection complexity. Once again,

this is consistent with the results observed with the (32, 16) code.

The performance of systems D and J with the lower-rate and higher-rate

R-S codes and the small packet size is shown in Figure 5.19 for the same two-

path static channel considered with the (64, 32) code. Recall from Figure 5.8

that for this channel, the performance of system J is poorer than the perfor-

mance of system D by 0.25 dB for a probability of packet error of 0.01 if the
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(32, 16) code is used. If the higher-rate (32, 20) R-S code is used, the perfor-

mance of system J is 0.15 dB worse than the performance of system D, and its

performance is 0.3 dB poorer than the performance of system D if the lower-

rate (32, 12) R-S code is used. Thus the performance of system J relative to

the performance of system D improves slightly as the code rate is increased.

With each code rate, the performance of system J relative to the performance

of system D is better for a lower probability of packet error.

The detection complexity does not depend significantly on the rate of the

R-S code for the two-path channel. The complexity of system D, measured

in average EE decoding attempts per code word, is 1.38, 1.43 and 1.42 with

the (32, 20) code, the (32, 16) code and the (32, 12) code, respectively. The

corresponding complexities of system J are 1.54, 1.57 and 1.55.

The performance of systems D and J with the high-rate and low-rate codes

and the small packet size is shown in Figure 5.20 the same two-path Rayleigh-

fading channel considered with the (64, 32) code. Recall from Figure 5.12 that

for this channel, the performance of system J is superior to the performance of

system D by 0.45 dB for a probability of packet error of 0.01 if the (32, 16) code

is used. If the higher-rate (32, 20) R-S code is used, the performance of system

J is 0.5 dB better than the performance of system D, but its performance is

0.1 dB poorer than the performance of system D if the lower-rate (32, 12) R-

S code is used. Thus as with the static two-path channel, the performance

of system J relative to the performance of system D improves slightly as the

code rate is increased. The detection complexity of system J is approximately

3.5% greater than the detection complexity of system D for each code rate.

Once again with each code rate, the performance of system J relative to the

performance of system D is better for a lower probability of packet error.

From Figures 5.19 and 5.8 it is seen that for the two-path static channel,

the best performance among the three block-length-32 codes with system J
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is obtained by the highest-rate code. The best performance among the three

block-length-32 codes with system J is obtained by the lowest-rate code if the

two-path channel is fading, however, as seen from Figure 5.20 and 5.12. Thus

the best choice of the code rate depends on the characteristics of the channel,

as is demonstrated in Chapter 4 for the systems that do not use differential

encoding.
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Figure 5.1 Transmitter for the SFH system with differential encoding.
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Figure 5.7 Probability of packet error with 1 + 0.5 D static channel.
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Figure 5.8 Probability of packet error with two-path static channel.
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channel.
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Figure 5.10 Probability of packet error with three-path static channel.
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Figure 5.11 Probability of packet error with four-path static channel.
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Figure 5.12 Probability of packet error with two-path Rayleigh-fading
channel.
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Figure 5.13 Probability of packet error with three-path Rayleigh-fading
channel.
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Figure 5.14 Probability of packet error with four-path Rayleigh-fading
channel.
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Figure 5.15 Probability of packet error with Rayleigh-fading channel and
dense delay spectrum.
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Figure 5.16 Probability of packet error with three-path Rayleigh-fading
channel and large Doppler spread.
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Figure 5.17 Probability of packet error with two-path static channel and
(64,32) R-S code.
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Figure 5.18 Probability of packet error with two-path Rayleigh-fading
channel and (64,32) R-S code.
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Figure 5.19 Probability of packet error with two-path static channel and
other code rates.
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Figure 5.20 Probability of packet error with two-path Rayleigh-fading
channel and other code rates.
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CHAPTER 6

SFH SYSTEMS WITH PACKET-LEVEL ITERATIVE DETECTION IN

CHANNELS WITH PARTIAL-BAND INTERFERENCE

As noted in the introduction, one of the most beneficial characteristics of

a properly designed SFH system is its robustness in the face of partial-band

channel impairments. In this chapter, the investigation of the performance of

SFH systems using packet-level iterative detection is extended to consider their

performance in channels that include partial-band interference. The SFH sys-

tems considered in this chapter have the same basic features as the systems

considered in the earlier chapters, but the scope is expanded to include several

variants of the systems already introduced. Among these are both systems

using coherent communications (as have been considered up to this point) and

systems using noncoherent communications.

6.1 Description of SFH Systems Using Coherent Communications

Four systems (and variants thereof) are the main focus of our investigation

of SFH systems using coherent communications in the presence of partial-

band interference. Two of them are systems A and B (described in detail in

Chapter 4). The third SFH system employs rectangular block code-symbol

interleaving, pseudo-random bit interleaving across each full dwell interval

(with a different interleaving pattern for each dwell interval), and packet-level

iterative detection. Thus it differs from systems C–F of Chapter 4 only in

the choice of the per-dwell bit interleaver. It is denoted system K. The fourth

system differs from system K only in that it applies differential encoding to the

bit-interleaved contents of each dwell interval. It is denoted system L. Thus

system L differs from system J of Chapter 5 only in the choice of the per-dwell

bit interleaver. (We choose to focus on systems K and L in lieu of systems D



and J in this chapter because the bit interleaving of the former two leads to

slightly better performance in the presence of partial-band interference than

the bit interleaving of the latter two.) The key characteristics of systems A,

B, K and L are summarized in Table 6.1. System G and a variant of system G,

both employing packet-wide s-random interleaving (discussed in Chapter 4)),

are also considered briefly in Section 6.4.

System Code-Symbol Bit Differential Packet-Level
Interleaver Interleaver Encoding Iteration

A rectangular none no no
B rectangular none no yes
K rectangular pseudo-random, no yes

unrestricted
per dwell

L rectangular pseudo-random, yes yes
unrestricted
per dwell

Table 6.1 Characteristics of coherent SFH systems considered in Chapter 6.

In the receiver for each of the SFH systems considered thus far in the dis-

sertation, an individual R-S code symbol is marked as erased if the detected

binary sequence corresponding to the parity-encoded binary representation of

the code symbol fails the parity check. The erasure decisions for distinct code

symbols are made without reference to one another. If the received signal

is subjected to partial-band interference or any other frequency-dependent

impairment, however, parity-check failures are more likely to occur in dwell

intervals that suffer from more severe channel impairments. Thus the number

of parity-check failures in a dwell interval provides information about the relia-

bility of the remaining code-symbol decisions for the dwell interval. This can

be exploited by employing threshold-based dwell erasures at the receiver [21]

in which the receiver erases all the code symbols in a dwell interval if the
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number of parity-check failures in the dwell interval exceeds a fixed dwell-

erasure threshold γ.

Among the systems we consider in this chapter are a variant of system

K and a variant of system L in which the receiver employs the dwell-erasure

technique in addition to the erasure of individual code symbols that fail parity

check. The respective packet transmission formats are identical to the formats

used in systems K and L, and the receiver employs packet-level iterations of

MLSE equalization and EE decoding as in those systems. The only difference

arises due to the introduction of the dwell-erasure threshold as an additional

erasure criterion between equalization and decoding in each packet-level iter-

ation. Note that if γ = Ns (the number of code symbols per dwell interval),

the dwell-erasure criterion is superfluous. Thus systems K and L using only

per-symbol erasures are a special case of their respective dwell-erasure variants.

In each of the SFH systems considered thus far, one parity bit is appended

to the binary representation of each R-S code symbol. A more efficient packet

format can be realized instead by generating a parity bit for the aggregate

binary representation of several R-S code symbols in a dwell interval. In this

chapter we consider variants of both system K and system L in which a single

bit of even parity is generated for the (m-bit) binary representation of every

block of Np consecutive R-S code symbols in the rectangular block code-symbol

interleaver. This is referred to as the generalized parity-bit method, and Np is

referred to as the parity-block size. (Per-dwell bit interleaving is subsequently

applied to each row of the interleaver as in systems K and L, respectively.)

The receiver in the respective generalized-parity-bit variants employs packet-

level iterative equalization and decoding as in systems K and L. If the detected

binary symbols at the equalizer output result in parity-check failure for a

parity-encoded block, the corresponding Np R-S code symbols are marked as

erasures for EE decoding in that packet-level iteration. Note that if Np = 1
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(i.e., there is a parity bit for each R-S code symbol), however, per-symbol era-

sures result. Thus systems K and L using only per-symbol erasures are spe-

cial cases of their respective generalized parity-bit variants. The generalized

parity-bit method is used here only for erasure of individual parity encoded

blocks of code symbols, though it could also be used for threshold-based dwell

erasures. In the special case in which Np = Ns (i.e., there is one parity bit per

dwell interval), however, the generalized parity-bit method results in a system

in which each block erasure is inherently a dwell erasure.

Thus in each of the SFH systems considered in this chapter that use

coherent communications, each dwell interval in a packet transmission con-

sists of a preamble sequence of Nt bits followed by the mNs + (Ns/Np) bits

corresponding to code symbols and parity bits in each dwell interval and a

guard interval of Ne bits in which no signal is transmitted. For a packet

transmitted at time t = 0, the transmission is thus given by

s(t) =
√

2P
n−1
∑

i=0

Nt+(m Ns+(Ns/Np)−1
∑

j=0

(−1)di(Nt+m Ns+(Ns/Np))+j

×pT (t − (i(Nt + m Ns + (Ns/Np) + Ne) + j)T ) cos(j2πfit + φi) (6.1)

where dl is the lth channel symbol for the corresponding system, Np = 1 for

all the systems other those using the generalized parity-bit method, and the

other parameters are as defined for equation (5.1) in Chapter 5.

The transmission is subjected to a multipath, fading channel with addi-

tive, full-band, Gaussian noise and additive interference as defined in Chapter 3.

The interference is a partial-band, Gaussian random process in which a fixed

fraction ρ of the frequency slots in the system are subjected to a white, Gaus-

sian interference process with a power spectral density of NI/ρ (in addition

to the noise process). The remaining fraction 1 − ρ of the frequency slots

have no interference and are subjected only to the noise process. The average
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signal-to-noise ratio at the receiver is thus given by

Eb

N0

=
PT

N0

n(Nt + m Ns + Ns/Np)

mkNs

M−1
∑

l=0

(ρ2
l + 2σ2

l ),

and the average signal-to-interference ratio is given by Eb/NI .

The performance of the SFH system in a multipath channel with partial-

band interference depends in general on the particular subset of the frequency

slots that are subjected to interference. In the channel model used for the

results in this chapter, the presence or absence of partial-band interference in

the sequence of frequency slots selected for the SFH transmission is determined

by a corresponding sequence of independent, Bernoulli random variables with

parameter ρ. In many practical circumstances involving partial-band inter-

ference, in contrast, a fixed subset of the frequency slots are subjected to

interference. Each example considered in this chapter concerns a channel in

which the multipath components differ in delay by an integer multiple of the

channel-symbol duration, however. Thus the performance that results with

the interference model we employ is identical to the performance that results if

any fixed subset of the frequency slots are subjected to interference (assuming

the same value of ρ is used in either case).

6.2 Measures of System Performance

In this chapter, the performance of a SFH system is characterized by

specifying the range of channel conditions under which a desired probability

of packet error is achieved by the system. Specifically, for a given multipath

channel and fraction of the band that is subjected to interference (ρ), the per-

formance of the system is given by the signal-to-interference ratio Eb/NI that

is required to achieve the desired probability of packet error if the average

signal-to-noise ratio is Eb/N0 = 20 dB. (Except where otherwise noted, the

desired probability of packet error used in the examples is 10−3.) Thus a
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larger value of the required signal-to-interference ratio represents poorer per-

formance, and a smaller value of the required signal-to-interference ratio repre-

sents better performance. In each example, the required signal-to-interference

ratio is considered as a function of ρ for all values of ρ between zero and one.

Two derivative measures are used to characterize the extremal perfor-

mance of the system for a given multipath channel. The required signal-to-

interference ratio for a given multipath channel differs for different values of ρ,

and the largest (worst case) required signal-to-noise ratio occurs for some value

of ρ. This represents the value of ρ to which the system is most vulnerable

(for the given multipath channel), and the corresponding required signal-to-

interference ratio is denoted SIRmax. It represents the signal-to-interference

ratio that would be required to achieve acceptable performance if the system

were confronted with an intelligent partial-band Gaussian interferer using an

optimal selection of its interference bandwidth.

The ability of the system to withstand high-power, narrowband interfer-

ence is measured by the quantity ρ∗. It represents the fractional interference

bandwidth below which the system achieves acceptable performance regardless

of the total interference power. That is, the system can achieve acceptable

performance (for the given multipath channel) even in the presence of infinite

received interference power as long as the interference is limited to a frac-

tion of the band no greater than ρ∗. (In the numerical results, we find that

the value of ρ∗ differs negligibly from the value of ρ for which the required

signal-to-interference ratio is 0 dB. Thus the figures in this chapter only illus-

trate results for values of the required signal-to-noise ratio of 0 dB or greater.)

Thus a small value of SIRmax and a large value of ρ∗ is desirable. Note that

the right-hand extreme of each graph corresponds to ρ = 1, in which case the

interference covers the full band.
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6.3 Performance of the SFH Systems in Partial-Band Interference

In this section we evaluate the performance of each SFH system described

in Section 6.1. Recall that system A uses no bit interleaving and one-shot

MLSE equalization and bounded-distance EE decoding. System B uses the

same packet format as system A, but its receiver uses packet-level iterative

equalization and decoding. The modification of system B that uses pseudo-

random bit interleaving in each dwell interval is denoted system K, and the

system using both per-dwell bit interleaving and differential encoding is denoted

system L.

In each of the examples, we consider a packet consisting of 22 (n, k)

extended R-S code words. Except where otherwise noted, a (32,12) R-S encoder

is used. Each packet thus contains 1320 bits of information. Each dwell

interval includes a preamble sequence of 26 bits, and except where other-

wise noted, one bit of parity is added to the binary representation of each R-S

code symbol (i.e., Np = 1). Thus there are 158 channel symbols in each dwell

interval.

The signal-to-interference ratio required to achieve a probability of packet

error of 10−3 in SFH systems A, B, K and L is shown in Figure 6.1 as a function

of the fractional interference bandwidth ρ for a single-path static, partial-

band-interference channel. One-shot detection of a transmission without bit

interleaving or differential encoding is characterized by SIRmax = 11.0 dB and

ρ∗ = 0.15, as seen by the results for system A. Instead, the use of packet-

level iterative detection with the same transmission format results in a slight

improvement in performance for all values of ρ, as seen by comparing the

results for systems A and B. The use of per-dwell bit interleaving in conjunction

with packet-level iterative reception leads to substantially better performance

over the entire range of values of ρ, as seen by the performance of system K.
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In particular, the value of SIRmax is decreased to 9.6 dB, and the value of ρ∗

is increased to 0.3.

The use of differential encoding in conjunction with per-dwell bit inter-

leaving and packet-level iterations results in uniformly better performance over

the entire range of values of ρ, as seen by comparing the results for system L

with those for systems A, B and K in Figure 6.1. The performance of system

L is characterized by SIRmax = 8.3 dB and ρ∗ = 0.3 for this channel. Thus

system L provides an improvement of 2.7 dB in SIRmax compared with system

A, which corresponds to much greater robustness with respect to an interferer

occupying the worst-case fraction of the band. Moreover, the value of ρ∗ is

doubled if system L replaces system A. Thus system L can withstand interfer-

ence from a source with extremely high power over a much larger fraction of

the band than can system A. At the other extreme, the performance of system

L is approximately 1.0 dB better than any of the other three systems when

only full-band Gaussian noise is present (i.e., when ρ = 1.0).

Note that if the receiver for the SFH systems had perfect a priori knowl-

edge of the channel characteristics and also had perfect a priori knowledge

of the symbol timing in each dwell interval, systems A, B and K would

exhibit identical performance for a single-path static, partial-band-interference

channel. This information is in reality unavailable a priori at the receiver, and

instead the receiver must employ noisy estimates of the multipath channel’s

baseband-equivalent impulse response in each dwell interval. The receiver in

each system considered here is designed to estimate an impulse response of

duration up to four times the channel-symbol interval, and the estimates may

include errors in the number of taps in the channel model, the relative mag-

nitudes of the tap weights, the phase of each tap weight, and the symbol-rate

sample timing. The errors introduce spurious ISI which degrades the perfor-

mance of the equalizer in each dwell interval.

126



The packet-level iterative detection in system B provides slightly greater

robustness with respect to channel-estimation errors than does the one-shot

detection of system A, and the use of bit interleaving in conjunction with

packet-level iterative detection in system K results in much greater robustness

with respect to channel-estimation errors than is seen with either system A

or system B. For values of ρ between 0.15 and 0.3, in particular, the effect

of channel-estimation errors precludes acceptable performance with systems A

and B whereas it can be achieved with system K. In contrast to all of this,

system L results in better performance than the other three systems over all

values of ρ even if the receivers are provided with perfect a priori knowledge

of the channel characteristics and perfect a priori knowledge on the symbol

timing in each dwell interval.

The detection complexity of system A is one EE decoding attempt per R-

S code word, and the detection complexity of system B is only slightly greater

(in terms of average decoding attempts). The detection complexity of systems

K and L is shown in Table 6.2 for a range of values of ρ. The complexity is

given in units of average EE decoding attempts per R-S code word. For all

values of ρ, system K exhibits a detection complexity which is only a fraction

of one percent higher than the complexity of one in system A. In contrast, use

of system L results in a moderate increase in the detection complexity over

system A. The greatest detection complexity for system L over the entire range

of values of ρ is an average of 1.65 average EE decoding attempts per code

word. Note that the greatest complexity arises if the interference occupies

nearly the full bandwidth, and the complexity is not much greater than one

if the fractional interference bandwidth is close to ρ∗ = 0.3 for system L.

Thus the combination of bit interleaving, differential encoding, and packet-

level iteration results in a substantially better performance than in a SFH

system lacking one or more of these features, and the gains are achieved at a
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modest complexity cost to the receiver. The additional protection that these

features provide against severe partial-band interference (as reflected in an

increased value of ρ∗) is achieved at a negligible cost in complexity.

ρ System K System L
1.0 1.0001 1.62
0.95 1.0001 1.59
0.9 1.00009 1.65
0.85 1.0001 1.49
0.8 1.0001 1.65
0.75 1.0001 1.58
0.7 1.0015 1.58
0.65 1.0002 1.48
0.6 1.0002 1.56
0.55 1.0002 1.65
0.5 1.0002 1.45
0.45 1.0004 1.4
0.4 1.0004 1.35
0.35 1.0007 1.12
0.3 1.000006 1.0008

Table 6.2 Detection complexity with single-path static,
partial-band-interference channel.

The performance of systems A, B, K and L is shown in Figure 6.2 for a

two-path static channel with partial-band interference. The paths have equal

strength, and their delays are 0 and T . System A results in SIRmax = 12.25 dB

and ρ∗ = 0.15. System B results comparable or slightly better performance

for all values of ρ. It results in the same value of ρ∗ as system A, but SIRmax

is reduced to 11.6 dB. The use of system K provides a marked improvement in

performance over systems A and B for all values of ρ. In particular, SIRmax =

9.85 dB and ρ∗ = 0.3 for system K. System L results in slightly to markedly

better performance than system K, depending on the value of ρ. The value

of SIRmax is reduced to 9.15 dB in system L, but the value of ρ∗ remains
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unchanged at 0.3. The greatest difference in the performance of systems K

and L occurs for ρ = 0.35, in which case there is a difference of more than 5

dB in the required SIR.

For the two-path channel, system B has a detection complexity that is

once again only slightly greater than that of system A. The detection com-

plexity of systems K and L is shown in Table 6.3. The greatest complexity

that arises with system K is an average of 1.14 EE decoding attempts per

code word, and the greatest complexity for system L is 1.65. For both sys-

tems the greatest complexity arises if the interference occupies nearly the full

bandwidth, and the complexity is not much greater than one if the fractional

interference bandwidth is close to their common value of ρ∗ (which is 0.3).

ρ System K System L
1.0 1.14 1.61
0.95 1.13 1.6
0.9 1.08 1.57
0.85 1.09 1.65
0.8 1.07 1.61
0.75 1.06 1.52
0.7 1.05 1.48
0.65 1.04 1.44
0.6 1.038 1.51
0.55 1.028 1.55
0.5 1.013 1.42
0.45 1.009 1.4
0.4 1.008 1.38
0.35 1.004 1.08
0.3 1.0006 1.0008

Table 6.3 Detection complexity with two-path static,
partial-band-interference channel.

The performance of systems A, B, K and L is shown in Figure 6.3 for

a three-path static channel with partial-band interference. The paths have
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equal strength, and their delays are 0, T and 2T . For system A, SIRmax and

ρ∗ are 14.16 dB and 0.1 respectively. If system B is used instead, there is

a noticeable improvement for all values of ρ. In particular, SIRmax = 13.2

dB and ρ∗ = 0.16. The value of SIRmax is reduced further to 10.3 dB with

system K, and ρ∗ is increased to 0.3. Thus bit interleaving (without differ-

ential encoding) and packet-level iteration detection results in much better

performance than one-shot detection over the full range of values of ρ with

the three-path channel. In particular, SIRmax is decreased by 2.8 dB and ρ∗

is increased three-fold.

Unlike the results for the single-path and two-path channels, the perfor-

mance of system L is not uniformly superior to the performance of system K

for the three-path channel. The performance of system L is 0.8 dB poorer

than the performance of system K in the presence of full-band noise only

(ρ = 1), and consequently the value of SIRmax is also higher (by 0.5 dB) for

system L than for system K. This is consistent with the results in Chapter 5

in which only performance in full-band noise was considered. There it was

observed that the value of differential encoding decreases for a system using

packet-level iteration as the delay spread of the channel increases and that

differential encoding actually results in poorer performance if the delay spread

is sufficiently large. The value of ρ∗ is 0.35 for system L with the three-

path channel, however, which greater than ρ∗ for system K. Thus the use of

differential encoding provides greater robustness against severe partial-band

interference in this channel than does system K. Moreover, the value of ρ∗ for

system L is greater with the three-path channel than with either the single-

path channel or the two-path channel.

The detection complexity of systems K and L is shown in Table 6.4 for

the three-path channel. The greatest complexity that arises with system K

is an average of 1.8 EE decoding attempts per code word, and the greatest
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complexity for system L is 1.75. For both systems the greatest complexity

arises if the interference occupies nearly the full bandwidth, and the complexity

is not much greater than one if the fractional interference bandwidth is close

to their respective values of ρ∗. System L exhibits greater complexity than

system K for most values of ρ.

ρ System K System L
1.0 1.8 1.75
0.95 1.78 1.74
0.9 1.65 1.65
0.85 1.77 1.68
0.8 1.6 1.66
0.75 1.53 1.62
0.7 1.55 1.6
0.65 1.48 1.58
0.6 1.35 1.62
0.55 1.22 1.7
0.5 1.09 1.55
0.45 1.03 1.48
0.4 1.03 1.43
0.35 1.01 1.13
0.3 1.0006 1.0008

Table 6.4 Detection complexity with three-path static,
partial-band-interference channel.

The performance of the SFH systems in multipath fading channels is

illustrated by considering two Rayleigh-fading channels. In both examples,

the performance is characterized by the signal-to-interference ratio required to

a achieve a probability of packet error of 10−2 if the signal-to-noise ratio is 20

dB. Thus a more modest link performance is targeted in these two examples

than in the other examples in the chapter.

The performance of systems A, B, K and L is shown in Figure 6.4 for a

two-path, Rayleigh-fading channel with partial-band interference. The paths

131



have equal average strength, their delays are 0 and T , and the normalized

Doppler spread of the channel is 1.5×10−4. For system A, SIRmax and ρ∗ are

19.6 dB and 0.05 respectively. If system B is used instead, there is a modest

improvement for all values of ρ, with SIRmax decreasing to 18.75 dB and ρ∗

increasing to 0.1. Much better performance results over the full range of ρ

if system K is used instead. In particular SIRmax = 16.5 dB and ρ∗ = 0.2.

System L achieves even better performance, and SIRmax = 15.55 dB and ρ∗ =

0.25. Thus the use of bit interleaving, differential encoding, and packet-level

iterative detection results in an improvement of 4 dB in SIRmax and a five-fold

increase in ρ∗ compared with one-shot detection.

The detection complexity of both system B and system K is less than 1%

greater than the complexity of one-shot detection. The increase in the detec-

tion complexity that results from using system L is slightly greater than 1%.

Thus for the two-path, Rayleigh-fading channel, the substantial performance

gains for all values of ρ with packet-level iterative detection are achieved at

very little cost in the average number of EE decoding attempts.

The performance of systems A, B, K and L is shown in Figure 6.5 for

a three-path, Rayleigh-fading channel with partial-band interference. The

paths have equal average strength, their delays are 0, T and 2T , and the nor-

malized Doppler spread of the channel is 1.5 × 10−4. For system A, SIRmax

and ρ∗ are 17.1 dB and 0.1 respectively. If system B is used instead, there

is a modest improvement for all values of ρ, with SIRmax decreasing to 16.35

dB and ρ∗ increasing to 0.15. The performance improves further over the

full range of ρ if system K is used, and SIRmax = 14.7 dB and ρ∗ = 0.25.

System L achieves the best performance of all four systems for each value of

ρ, and SIRmax = 13.9 dB and ρ∗ = 0.3. Thus system L exhibits a 3.2 dB

in SIRmax and a three-fold increase in ρ∗ compared with system A. Note that

the increased diversity available with the three-path fading channel results
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in uniformly better performance of all four systems in this channel than in

the two-path fading channel. The detection complexity of both system B is

less than 1% greater than the complexity of system A, and the complexity of

system K is approximately 1% greater than the complexity of system A. The

increase in the detection complexity that results from using system L is in the

range of 3-4% for the worst-case values of ρ.

6.4 Comparison of Per-Dwell and Packet-Wide Bit Interleaving

In each of the systems considered thus far in this chapter, the bit inter-

leaving (if any) is restricted to interleaving within rows of the block code-

symbol interleaver. Packet-wide bit interleaving is considered above in Chapter 4

in the format of system G, which employs packet-wide, s-random bit inter-

leaving but not differential encoding. It is shown that the performance of

system G is comparable to or slightly poorer than system D (which uses per-

dwell bit interleaving but not differential encoding) in static multipath chan-

nels but much poorer than the performance of system D in fading multipath

channels.

The key factor in the poorer performance of system G in the latter instance

is the fact that an unfavorable channel impulse response in any dwell interval

affects the binary representation of a larger number of R-S code symbols if

packet-wide bit interleaving is used than if it is not. More specifically, the

use of packet-wide bit interleaving results in the unfavorable conditions of

a single dwell interval affecting multiple R-S code symbols from some or all

R-S code words and thus increasing the probability of decoding failure for

those code words. The same effect arises in a channel that is subjected to

partial-band interference, with the consequences illustrated in Figure 6.6. The

performance is shown in Figure 6.6 for four systems and a single-path static,

partial-band-interference channel. One is system K (which uses per-dwell bit
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interleaving but not differential encoding), and another is system L (which

uses per-dwell bit interleaving and differential encoding). The third system is

system G (which uses packet-wide, s-random interleaving and no differential

encoding) and the fourth is a variant of system G that uses packet-wide, s-

random interleaving together with per-dwell differential encoding.

It is seen from Figure 6.6 that regardless of whether or not packet-wide bit

interleaving is used, the introduction of differential encoding leads to uniformly

better performance. At the same time, per-dwell bit interleaving results in

uniformly better performance than packet-wide bit interleaving regardless of

whether differential encoding is used. The difference between the performance

with packet-wide bit interleaving and the performance with per-dwell bit inter-

leaving is most pronounced in the presence of partial-band interference. Note

in particular that neither system with packet-wide bit interleaving is able to

achieve acceptable performance in the presence of severe partial-band inter-

ference even if the fractional interference bandwidth is very small. There is

negligible performance difference for the two interleaving techniques in the

presence of full-band Gaussian noise, which is in agreement with the observa-

tions in Chapter 4. If differential encoding is used, for example, the replace-

ment of packet-wide bit interleaving with per-dwell bit interleaving results

in a decrease in SIRmax from 10.8 dB to 8.3 dB and an increase in ρ∗ from

zero to 0.3. The two systems differ in performance by only a small fraction

of one decibel in full-band noise, however. Per-dwell interleaving and differ-

ential encoding results in uniformly better performance than the other three

systems.

6.5 Performance with a Dwell-Erasure Threshold

The performance of packet-level iterative detection with the dwell-erasure

technique is examined for two static multipath channels and the dwell-erasure

134



variants of two SFH systems: system K, which uses packet-level iteration

and bit interleaving but not differential encoding; and system L, which uses

differential encoding as well. (Recall that it is used in addition to per-symbol

erasure decisions.) The performance of system K is shown in Figure 6.7 for a

single-path static, partial-band-interference channel and various choices of the

dwell-erasure threshold γ. The system with a threshold of γ = 22 corresponds

to system K using per-symbol erasures only. For this system, the values of

SIRmax and ρ∗ are 9.6 dB and 0.3 respectively. As the dwell-erasure threshold

is decreased, the value of SIRmax increases and the value of ρ∗ also increases.

With a dwell-erasure-threshold of γ = 2, for example, the value of SIRmax is

11.7 dB and ρ∗ is 0.55. Thus a more aggressive dwell-erasure policy at the

receiver results in improved protection against severe partial-band interference

at the price of greater vulnerability to full-band Gaussian noise. For dwell-

erasure threshold values of γ = 5 and γ = 7, the performance penalty with the

respect to SIRmax is small and yet have much larger values of ρ∗ than does the

system with per-symbol erasures only. For system K employing dwell erasures

with γ = 5, a value of ρ∗ = 0.5 is achieved at the cost of an increase of only

0.1 dB in SIRmax compared with per-symbol erasures only.

The performance of system L is shown in Figure 6.8 for the same single-

path channel and various choices of the dwell-erasure threshold γ. Once again,

the system with a threshold of γ = 22 corresponds to the use of per-symbol

erasures only. The choice of the dwell-erasure threshold provides the same

tradeoff between protection against severe partial-band interference and full-

band Gaussian noise that was observed above with system K. In this instance,

however, if a decrease in γ is sufficient to obtain a significant improvement

in ρ∗ compared with per-symbol erasures only, it also results in a significant

increase in SIRmax compared with per-symbol erasures only. Thus it is not

possible to choose a dwell-erasure threshold in system L that provides a “nearly
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free” improvement in the protection against severe partial-band interference

provided by per-symbol erasures only.

The introduction of differential encoding results in a higher probability

of channel-symbol error during detection in the first packet-level iteration in

exchange for a potential improvement in detection performance that results in

subsequent packet-level iterations. Thus for a particular choice of the dwell-

erasure threshold, a system that employs differential encoding need not result

in improved performance over a system in which differential encoding is not

employed. Thus is illustrated by comparing Figures 6.7 and 6.8. System L

achieves better performance than system K for all values of ρ if per-symbol

erasures only are employed or if dwell erasures are employed with γ = 11. If

γ = 7, the performance of the two systems is similar, and system K results

in better performance than system L if a dwell-erasure threshold of γ = 5 or

γ = 2 is used.

The performance of systems K and L is shown in Figures 6.9 and 6.10,

respectively, for various choices of the dwell-erasure threshold γ and the same

three-path static, partial-band-interference channel considered in previous exam-

ples in this chapter. The same tradeoff between ρ∗ and SIRmax observed with

the single-path channel occurs in both systems with the three-path channel as

well. If only per-symbol erasures are used, the performance of system K is

characterized by SIRmax = 10.3 and ρ∗ = 0.3. If the dwell-erasure-threshold

is γ = 2 instead, the value of SIRmax is 14.75 dB and the value of ρ∗ is 0.56.

Moreover, any choice of the threshold γ that results in a meaningful increase

in the value of ρ also results in a significantly higher value of SIRmax.

The performance of system L in the three-path channel is characterized

by SIRmax = 10.9 and ρ∗ = 0.35 if only per-symbol erasures are used. If

instead γ = 2, the values of SIRmax and ρ∗ are 15.1 dB and 0.56, respectively.

For a given large dwell-erasure threshold, system L results in a slightly larger
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value of ρ∗ than system K at the cost of a larger value of SIRmax. For a

small dwell-erasure threshold, the two systems results in comparable values

of ρ∗ while system L still exhibits poorer performance in full-band Gaussian

noise. Thus the range of channel parameters and erasure threshold for which

system L is better than system K is much narrower with the three-path channel

than with the single-path channel, which is consistent with the observations in

Chapter 5 concerning the effect of differential encoding when communicating

over multipath channels.

In either system K or system L, the range of values of ρ can be subdivided

into regions in which a given choice of the dwell-erasure threshold γ is optimal.

For example for system L and the single-path channel, a threshold of γ = 2

results in the best performance for values of ρ between zero and 0.55 and a

threshold of γ = 22 (per-symbol erasures only) results in the best performance

for values of ρ between 0.55 and one. The best of these performances over

the full range of values of ρ is achieved if the receiver employs parallel detec-

tion [55] on a per-packet basis. That is, the receiver employs two (or more)

independent packet-level iterative equalization-and-decoding algorithms with

each employing a different value of the dwell-erasure threshold.

Since an undetected decoding error occurs with a low probability in the

bounded-distance EE decoder of the R-S code words, parallel decoding pro-

duces one of three outcomes with a very high probability: both packet-level

iterative detection algorithms detect the (same) correct packet, one algorithm

detects the correct packet and the other experiences detection failure, or both

algorithms experience detection failure. In each instance, parallel detection

results in an unambiguous result of either the correct packet or a failed packet

detection. (The probability of incorrect detected-packet decisions from either

of the parallel detectors can be made even lower by using a high-rate CRC
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code as an outer code for the packet contents and a corresponding CRC error-

detection decoder.)

Parallel detection using two packet-level iterative detectors with different

dwell-erasure thresholds thus results in performance that is given by the lower

envelope of the performance curves for the two individual detectors. If parallel

detection is used in system K with two parallel detectors using respective

thresholds of γ = 22 and γ = 2 in the single-path channel, the resulting

values of SIRmax and ρ∗ are 9.6 dB and 0.55 respectively. System L with two

parallel detectors using the same thresholds results in SIRmax = 8.3 dB and

ρ∗ = 0.55, which is better than the performance of the parallel detector based

on system K. The best performance in the three-path channel is obtained with

two parallel detectors of system K using respective thresholds of γ = 22 and

γ = 2. The performance of parallel detection in this instance is characterized

by SIRmax = 10.3 dB and ρ∗ = 0.56.

The detection complexity of parallel detection on a per-packet basis is the

sum of the complexities of the constituent packet-level iterative detection algo-

rithms. Thus typical values for the detection complexity of parallel detection

is on the order of one to four EE decoding attempts per R-S code word,

depending on the system and dwell-erasure threshold for each constituent

packet-level iterative detector and the channel parameters. The constituent

iterative detectors can be exploited more effectively if they share information

after each packet-level iteration of the two detectors. Aside from the effect on

the low-probability event of an undetected packet-detection error, this sharing

in the parallel detector is guaranteed to result in better performance than

parallel detection using independent constituent detectors and to do so with

a lower detection complexity than with the independent constituent detec-

tors. It may be possible to obtain additional improvements in performance

by also adapting the dwell-erasure decisions in each constituent detector after
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each packet-level iteration based on the results of previous iterations. (The

same adaptive dwell-erasure technique could also be employed with a single

packet-level iterative detector.)

6.6 Performance with the Generalized Parity-Bit Method

The performance of packet-level iterative detection with the generalized

parity-bit method is examined for two static multipath channels and the cor-

responding variants of SFH systems K and L. (Recall that with this method,

erasure decisions are made only on a per-block basis for each block of R-S code

symbols encoded with a single bit of parity.) The performance of system K is

shown in Figure 6.11 for a single-path static, partial-band-interference channel

and various choices of the parity-block size Np.

The system with a block size of Np = 1 corresponds to system K using per-

code-symbol parity encoding. For this system, the values of SIRmax and ρ∗ are

9.6 dB and 0.3 respectively. As the parity-block size is increased, the value

of SIRmax increases and the value of ρ∗ is non-decreasing. Any improvement

in ρ∗ with an increasing parity-block size Np is negligible for a block size of

eleven or less, however, whereas even an increase in the block size from one

to two results in a substantial increase in SIRmax. Thus choices of the parity-

block size between two and eleven, inclusive, results in performance that is

essentially uniformly poorer than the performance of per-code-symbol parity

encoding.

A meaningful tradeoff in performance for system K and the single-path

channel is obtained only by considering a parity-block size of Np = 22. (In this

instance, there is only one parity bit per row of the block interleaver so that the

generalized parity-bit technique results in a type of dwell-erasure technique.)

The use of one parity bit per dwell interval results in a value of ρ∗ of 0.35,

and thus it provides somewhat better protection against severe partial-band
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interference than the system with per-code-symbol parity encoding. This per-

formance gain is obtained only at the cost of an increase in SIRmax from

8.3 dB to 12.6 dB, however. Furthermore, a comparison of Figure 6.11 with

Figure 6.7 shows that the generalized parity-bit method with one parity-bit

per dwell interval results in uniformly poorer performance than the dwell-

erasure technique of the previous section with a dwell-erasure threshold of

either two, five or seven. Thus the generalized parity-bit method does not

provide a useful alternative to the dwell-erasure technique for system K and a

single-path channel.

The performance of system L is shown in Figure 6.12 for the single-path

static, partial-band-interference channel and various choices of the parity-block

size Np. When a parity bit is used with each R-S code symbol, the values of

SIRmax and ρ∗ are 8.3 dB and 0.3 respectively. As was seen with system K,

choices of the parity-block size between two and eleven for system L do not

provide a useful tradeoff in comparison with the use of per-code-symbol parity

encoding. The use of one parity bit per dwell interval instead of one parity bit

per code symbol results in an increase in ρ∗ from 0.3 to 0.4, but it also results

in an increase in SIRmax from 8.3 dB to 12.0 dB. Once again, however, the

use of the generalized parity-bit method with one parity bit per dwell interval

results in poorer performance than with the corresponding system using the

dwell-erasure technique and a dwell-erasure threshold of either two, five or

seven.

The performance of systems K and L is shown in Figures 6.13 and 6.14,

respectively, for various choices of parity-block size Np and the same three-

path static, partial-band-interference channel considered in previous examples

in this chapter. The same tradeoff between ρ∗ and SIRmax observed with

the single-path channel occurs in both systems with the three-path channel as

well. Once again for system K, the only alternative to per-code-symbol parity
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encoding that is of interest is the use of one parity bit per dwell interval. If

Np is increased from one to twenty-two, it results in an increase in ρ∗ from

0.3 to 0.35, though at a cost of significant increase in SIRmax. Once again,

however, the dwell-erasure technique with an appropriately chosen threshold

result in better performance for system K in the three-path channel than does

the generalized parity-bit method with one parity bit per dwell interval.

The performance of system L in the three-path channel is characterized

by SIRmax = 10.9 and ρ∗ = 0.35 if per-code-symbol parity encoding is used. If

instead Np = 22, the values of SIRmax and ρ∗ are 14.9 dB and 0.35, respectively.

For this channel, per-code-symbol parity encoding results in uniformly supe-

rior performance in system L to any other choice of parity-block size. From

these examples, it is apparent that the generalized parity-bit method by itself

does not provide an interesting alternative to the dwell-erasure technique if

the SFH system uses packet-level iterative detection. It is possible that the

incorporation of the dwell-erasure technique with the generalized parity-bit

method will lead to results of greater interest.

6.7 Comparison with Performance of Other SFH Systems in Partial-Band
Interference

In this section we compare the performance of SFH systems employing

packet-level iterative detection and R-S coding with the performance of several

other SFH systems that have been considered in previous work by others.

The other systems include two systems that employ one-shot detection and

two systems that employ forms of iterative detection. In contrast with all

the other results in this dissertation, each of the systems considered in this

section employs orthogonal binary frequency-shift keyed (BFSK) modulation

and noncoherent demodulation. Moreover, the transmission format of the

SFH systems we have previously defined are modified in this section in that

the transmission does not include a preamble sequence in any of the dwell
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intervals. (The modifications from the previous formats are made for the

purpose of fair comparison with the other SFH systems.)

6.7.1 Description of SFH Systems Using Noncoherent Communications

Two of the systems using packet-level iterative detection and R-S coding

that are described in Section 6.1 are also considered in this section: system

K and system L. The transmission formats of the systems are modified by

the introduction of BFSK modulation and the elimination of the preamble

sequences, however. Thus the transmitted signal for a packet transmission

beginning at t = 0 is given by

s(t) =
√

2P

n−1
∑

i=0

(m+1) Ns−1
∑

j=0

cos

(

j2π

[

fi + (−1)di ((m+1) Ns)+j
1

2T

]

t + φi,di ((m+1) Ns)+j

)

×pT (t − (i ((m + 1) Ns + Ne) + j)T )

where dl is the lth channel symbol for the corresponding system and the other

parameters are as defined for equation (6.1). (Note that Np = 1, implicitly.

The generalized parity-bit method is not considered in this section.) A refer-

ence polarity of zero is used to differentially encode the first bit of each dwell

interval in system L.

The results in this section are restricted to consideration of a single-path

static, partial-band-interference channel. Moreover, it is assumed for each of

the six systems under consideration that the receiver has a priori knowledge of

the fact that the channel consists of a single path and a priori knowledge of the

symbol timing at the receiver. Thus it is not necessary for the receiver in any

of the systems to address equalization of the received signal due to possible

intersymbol interference, nor is it necessary for the receiver to estimate the

optimal sampling time. For systems K and L in particular this eliminates

the channel-estimation phase of dwell reception (hence the elimination of the
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preamble sequence). It results in a memoryless channel and separate per-

channel-symbol decisions for each dwell interval in system K, and it in results in

a two-state trellis that reflects differential encoding and a memoryless channel

for each dwell interval in system L.

In contrast, it is assumed that the receiver in each system does not have

any a priori information about the amplitude or carrier phase of the received

signal, the noise and interference power, the presence of absence of interference

within any given dwell interval or even the value of ρ. Thus if the receiver in

a given system requires knowledge of the signal-to-interference-plus-noise ratio

within a dwell interval or the fractional interference bandwidth (or any similar

measure of signal quality), it must estimate the value of the parameter.

The packet format for systems K and L in this section consists of twenty-

two (32, 16) singly extended R-S code words. The receivers in systems K

and L employ noncoherent demodulation and generate two square-law outputs

for each of the two possible polarities for each transmitted channel symbol.

In system K, the larger of two outputs determines a hard decision for that

channel symbol. In system L, the two square-law outputs are used as branch

metrics for the correspondingly labeled branches in the corresponding time

step of the two-state detection trellis for the dwell interval. The detected

channel symbols (or equivalently, the detected differentially encoded bits) are

determined by using the Viterbi algorithm to determine the path through the

trellis with the largest path metric. The remainder of the operation of packet-

level iterative detection for system K and L is the same as for the systems using

coherent communications.

One of the other SFH systems uses a packet format with twenty-seven

(32,12) R-S code words. Each R-S code symbol is represented by five bits (the

parity-bit method is not used), and the rectangular block code-symbol inter-

leaving is employed. Each bit is transmitted using orthogonal BSFK mod-
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ulation. The receiver employs noncoherent hard-decision detection of each

channel symbol, it maps each detected five-bit representation to the corre-

sponding R-S code symbol, and it performs one-shot errors-only (EO) decoding

of each R-S code word. The system is referred to in this section as system

EO, and the numerical results for system EO are taken from [35].

Another of the SFH systems uses the concatenation of a (32,24) R-S

outer encoder and a rate-1/2 convolutional inner encoder. The packet format

includes fifteen R-S code words and sixteen binary test symbols per dwell

interval. Rectangular block code-symbol interleaving of the outer code words

is used, and the resulting binary representation of code symbols in each inter-

leaver row is encoded with the inner encoder prior to insertion of the test

symbols. The receiver employs a weighted metric based on the number of

test symbols resulting in errors in each dwell interval that is used in Viterbi

decoding of the inner code for the dwell interval. The hard-decision output

of the Viterbi decoder is mapped to detected R-S code symbols for one-shot

EO decoding of the R-S code words. The system is referred to in this section

as system RC. The details of system RC are given in [35], and the numerical

results for the system are taken from the same paper.

One of the systems considered in this section employs a rate-1/3 PCC

code with constituent (37,21) convolutional encoders of memory order of four,

together with iterative MAP decoding of the constituent codes. The final

system employs a rate 0.32 turbo product code with constituent (64,36,12)

BCH codes together with iterative Fossorier-Lin decoding of the constituent

codes. The systems using the PCC code and the turbo product code are

described in detail in [26] and [30], respectively, and the numerical results for

the systems are taken from the respective papers. They are denoted system

PCC and system TPC, respectively.
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The parameters of the six systems considered here are such that they

represent a fair comparison with respect to packet transmission time, dwell

duration, and information content for a given channel-symbol transmission

rate. The key characteristics of systems EO, RC, PCC, and TPC are sum-

marized in Table 6.5.

System Interleaver Encoding Detection
Algorithm

EO rectangular, R-S coding one-shot
R-S code symbols EO decoding

RC rectangular, concatenated R-S one-shot
R-S code symbols and convolutional EE decoding

PCC packet-wide parallel iterative
s-random convolutional codes MAP decoding

TPC rectangular BCH turbo-product Lin-Fossorier
code iterative algebraic

decoding

Table 6.5 Characteristics of the additional SFH systems considered with
noncoherent communications.

6.7.2 Performance in Partial-Band Interference for SFH Systems Using Non-
coherent Communications

The introduction of differential encoding into a SFH system with packet-

level iterative detection results in improved performance over a wide range

of conditions in the partial-band-interference channel even in the absence of

the channel-estimation errors discussed in Section 6.3. This is illustrated by

comparing the performance of systems K and L with noncoherent communica-

tions for a single-path, partial-band-interference channel under the condition

of perfect a priori knowledge of the symbol timing and the number of paths

in the channel. The performance is shown in Figure 6.15. The performance

of system K is characterized by SIRmax = 14.6 dB and ρ∗ = 0.23. The value
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of ρ∗ is approximately the same for system K and system L, but system L

achieves substantially better performance than system K for all values of ρ

that are greater than ρ∗. Indeed, the value of SIRmax is only 12.0 dB for

system L. The detection complexities of the two systems using noncoherent

communications are almost identical to the complexities of the corresponding

systems using coherent communications for the same single-path channel and

each value of ρ.

The performance of system L using noncoherent communications with

the dwell-erasure technique is shown in Figure 6.16 for the same single-path

channel and several values of the dwell-erasure threshold γ. Recall that a

dwell-erasure threshold of γ = 22 corresponds the use of per-symbol erasures

only, and the resulting performance is given by SIRmax = 12.0 dB and ρ∗ =

0.23. As was true for the system using coherent communications, a decrease in

the dwell-erasure threshold in the system using noncoherent communications

results in an improvement (increase) in ρ∗ but a degradation in SIRmax.

Better performance can be obtained in system L with parallel detection

of constituent packet-level iterative detectors with respective dwell-erasure

thresholds of two and twenty-two (per-symbol erasures only). The resulting

performance is characterized by SIRmax = 12.0 dB and ρ∗ = 0.45. The worst-

case detection complexity over all values of ρ is an average of only slightly more

than one EE decoding attempt per code word for system L with a dwell-erasure

threshold of two. The worst-case detection complexity over all ρ increases to

an average of 1.7 EE decoding attempts per code word is system L uses per-

symbol erasures only. Parallel detection with system L and erasures thresh-

olds of two and twenty-two for the constituent detectors results in a worst-case

detection complexity over all ρ of an average of 2.67 EE decoding attempts per

R-S code word. As noted in Section 6.5, better performance can be obtained
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with lower detection complexity by sharing of information between the con-

stituent detectors at each packet-level iteration.

The performance of system L with per-symbol erasures only is compared

in Figure 6.17 with the performance of the other two systems using R-S codes:

systems EO and RC. Clearly the use of packet-level iterative detection in

system L results in better performance than either of the two systems using

one-shot detection. System L results in an increase in ρ∗ from 0.1 to 0.22

and an improvement of 4.2 dB in SIRmax compared with system EO. It results

in an improvement in ρ∗ from 0.15 to 0.22 and a 2.0 dB decrease in SIRmax

compared with system RC. In full-band Gaussian noise, the performance of

system L is 2.3 dB better than the performance of system EO and 0.6 dB

better than the performance of system RC.

The performance of system L with two choices of the dwell-erasure threshold

is compared in Figure 6.18 with the performance of system PCC and the perfor-

mance of system TPC. The performance of system L with per-symbol erasures

only results in performance that is uniformly poorer than the performance of

either of the other two system. It results in a decrease in ρ∗ from 0.285 to 0.22

and a degradation of 3.8 dB in SIRmax compared with system TPC. Further-

more, it results in a decrease in ρ∗ from 0.31 to 0.22 and a degradation of 2.55

dB in SIRmax compared with system PCC. In full-band Gaussian noise, the

performance of system L with per-symbol erasures only is 3.0 dB poorer than

the performance of system TPC and 1.73 dB poorer than the performance of

system PCC.

In contrast, the use of a dwell-erasure threshold of γ = 2 with system

L provides a tradeoff between better protection against severe partial-band

interference with system L and much better performance in full-band Gaussian

noise with either system PCC or system TPC. In particular, the value of ρ∗

for system L with an erasure threshold of two is 0.45, which is much greater
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than the corresponding values for systems PCC and TPC. The value of SIRmax

is 7.3 dB greater for this variant of system L than for system PCC, however,

and it 8.0 dB greater than for system TPC. In full-band Gaussian noise, the

performance of system L with an erasure threshold of two is 6.5 dB poorer

than the performance of system TPC and 5.3 dB poorer than the performance

of system PCC.

The use of packet-level iterative detection with R-S coding is most com-

petitive with the other codes using iterative decoding if it is employed with

parallel detection. This is illustrated in Figure 6.19, which shows the perfor-

mance of system PCC, the performance of system TCC, and the performance

of system L with the parallel detector using constituent packet-level iterative

detectors with dwell-erasures thresholds of two and twenty-two. The parallel

detector results in much better protection against severe partial-band interfer-

ence than either system PCC or TPC at the cost of a performance penalty in

the presence of wide-band interference or noise that is much less severe than

the penalty incurred using only an erasure threshold of two. As noted in Sec-

tion 6.5 and earlier in this section, even better performance with parallel detec-

tion may be achieved if the receiver employs sharing of information between

the constituent detectors and adaptation of the dwell-erasure threshold.
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Figure 6.1 Performance in a single-path static, partial-band-interference
channel.
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Figure 6.2 Performance in a two-path static, partial-band-interference
channel.
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Figure 6.3 Performance in a three-path static, partial-band-interference
channel.
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Figure 6.4 Performance in a two-path Rayleigh-fading,
partial-band-interference channel.
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Figure 6.5 Performance in a three-path Rayleigh-fading,
partial-band-interference channel.
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Figure 6.6 Performance in a single-path static, partial-band-interference
channel with two types of interleaving.
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Figure 6.7 Performance of system K with dwell erasures in a single-path
static, partial-band-interference channel.
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Figure 6.8 Performance of system L with dwell erasures in a single-path
static, partial-band-interference channel.
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Figure 6.9 Performance of system K with dwell erasures in a three-path
static, partial-band-interference channel.
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Figure 6.10 Performance of system L with dwell erasures in a three-path
static, partial-band-interference channel.
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Figure 6.11 Performance of system K with generalized parity-bit method in
a single-path static, partial-band-interference channel.
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Figure 6.12 Performance of system L with generalized parity-bit method in
a single-path static, partial-band-interference channel.
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Figure 6.13 Performance of system K with generalized parity-bit method in
a three-path static, partial-band-interference channel.
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Figure 6.14 Performance of system L with generalized parity-bit method in
a three-path static, partial-band-interference channel.
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Figure 6.15 Performance with noncoherent communications and
packet-level iterative detection and decoding in a single-path static,

partial-band-interference channel.
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Figure 6.16 Performance of system L with noncoherent SFH
communications and dwell erasures in a single-path static,

partial-band-interference channel.
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Figure 6.17 Performance of three noncoherent SFH systems using R-S codes.
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Figure 6.18 Performance of system L with dwell erasures and two other
noncoherent SFH systems with iterative decoding.
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Figure 6.19 Performance of system L with parallel detection and two other
noncoherent SFH systems with iterative decoding.
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CHAPTER 7

CONCLUSIONS

In this dissertation, the performance of packet-level iterative MLSE equal-

ization and EE decoding is evaluated for a variety of ISI channels. The tech-

nique results in a significant improvement in system performance compared

with one-shot equalization and decoding at the cost of only a modest increase

in detection complexity. The best performance with the technique is achieved

if appropriate bit interleaving is employed. Performance gains on the order of

1.5 dB are obtained in static channels at the cost of a 60% increase in detection

complexity, and gains on the order of 2−3 dB are obtained in fading channels

with an increase of only a few percent in the average detection complexity.

The use of differential encoding is also investigated for SFH systems using

packet-level iterative detection. It is shown that differential encoding results

in better asymptotic performance in an AWGN channel, and it results in only

a modest increase in the detection complexity. For the packet sizes and error

probabilities of interest for packet radio communications, differential encoding

also yields performance improvements in static channels with moderate ISI.

Differential encoding improves the performance of packet-level iterative detec-

tion over a much wider range of channel delay spreads if the channel exhibits

fading with a modest increase in the detection complexity.

The performance of SFH systems using packet-level iterative detection is

also evaluated for channels with partial-band interference. It is shown that

the use of differential encoding with symbol-by-symbol erasures provide sig-

nificantly higher robustness with respect to both partial-band and wideband

interference than does one-shot channel-symbol detection and decoding. It

also results in better performance than a system which employs concatenated



R-S and convolutional decoding with one-shot channel-symbol detection and

decoding.

The use of dwell erasures is also considered in conjunction with packet-

level iterative detection. It is shown that the choice of the dwell-erasure

threshold provides a tradeoff between performance in partial-band interfer-

ence and performance in full-band noise. Parallel decoding with packet-level

iteration using the dwell-erasure technique in one decoder and only symbol-

by-symbol erasures in the other decoder is also considered. It is shown that it

results in performance that is better than packet-level iteration with symbol-

by-symbol erasures only regardless of the fraction of the band that is subjected

to interference, and the detection complexity is increased only about two-fold.

The performance of parallel decoding with R-S coding and packet-level

iterative detection is also compared with the performance of two modern turbo

codes and iterative decoding algorithms for a SFH system with noncoherent

detection. It is shown that the system with R-S coding and packet-level iter-

ation results in much better protection against partial-band interference at the

cost of a moderately poorer performance in full-band noise. It is also noted

how the performance of the parallel decoding system can be improved further

by a more sophisticated use of the feedback in the packet-level iterations.
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